WO2022247378A1 - 天线组件和电子设备 - Google Patents

天线组件和电子设备 Download PDF

Info

Publication number
WO2022247378A1
WO2022247378A1 PCT/CN2022/079001 CN2022079001W WO2022247378A1 WO 2022247378 A1 WO2022247378 A1 WO 2022247378A1 CN 2022079001 W CN2022079001 W CN 2022079001W WO 2022247378 A1 WO2022247378 A1 WO 2022247378A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
radiator
ground
antenna radiator
electronic device
Prior art date
Application number
PCT/CN2022/079001
Other languages
English (en)
French (fr)
Inventor
吴小浦
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Publication of WO2022247378A1 publication Critical patent/WO2022247378A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/48Earthing means; Earth screens; Counterpoises
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/10Resonant antennas
    • H01Q5/15Resonant antennas for operation of centre-fed antennas comprising one or more collinear, substantially straight or elongated active elements

Definitions

  • the present application relates to the technical field of communications, and in particular to an antenna assembly and electronic equipment.
  • 5G NR fifth generation new radio
  • antenna components on electronic devices In order to improve the signal transceiving performance of electronic devices at different frequencies, antenna components on electronic devices generally need to generate more resonance modes.
  • the antenna assembly generally needs to open multiple fractures on the metal body, thereby forming multiple antenna elements, thereby generating multiple resonance modes.
  • the increase in the number of fractures opened on the metal body will not only affect the communication performance of the antenna assembly, but also affect the overall appearance and structure of the electronic device.
  • an antenna assembly including:
  • the first antenna includes a first antenna radiator and a second antenna radiator, and a first gap exists between the first antenna radiator and the second antenna radiator;
  • a second antenna comprising a third antenna radiator
  • the first antenna radiator includes a first coupling end and a first ground end
  • the second antenna radiator includes a second coupling end and a second ground end
  • the first coupling end and the second coupling end are respectively Located on both sides of the first slot and coupled through the first slot, the first ground end is provided with a first ground point, the second ground end is provided with a second ground point, and the first antenna radiator connecting the first matching circuit through the first ground point to ground the system;
  • the third antenna radiator includes a first free end and a third ground terminal, the third ground terminal is provided with a third ground point, and the third antenna radiator is connected to the second antenna radiator through the third ground terminal.
  • the matching circuit is connected to the ground system, and the antenna connecting body is respectively connected to the first ground terminal and the third ground terminal;
  • a first feed point is provided on the first antenna radiator, and the first feed point is used to connect to a first feed source;
  • the third antenna radiator is provided with a second feed point, and the second feed point is used to connect to a second feed source.
  • an embodiment of the present application provides an electronic device, including an antenna assembly, the antenna assembly includes a first antenna, the first antenna includes a first antenna radiator and a second antenna radiator, and the first antenna There is a first gap between the radiator and the second antenna radiator;
  • the first slit is located on the first side of the electronic device, the distance from the first slit to the second side of the electronic device is greater than 30mm, and the distance from the first slit to the third side of the electronic device The distance is greater than 30 mm, the second side is adjacent to one side of the first side, and the third side is adjacent to the other side of the first side;
  • the first antenna radiator includes a first coupling end and a first ground end
  • the second antenna radiator includes a second coupling end and a second ground end
  • the first coupling end and the second coupling end are respectively Located on both sides of the first slot and coupled through the first slot, the first ground end is provided with a first ground point, the second ground end is provided with a second ground point, and the first antenna radiator connecting the first matching circuit through the first ground point to ground the system;
  • the first antenna radiator is provided with a first feed point, and the first feed point is used to connect to a first feed source.
  • FIG. 1 is a schematic structural diagram of an electronic device provided in an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of another electronic device provided by an embodiment of the present application.
  • FIG. 3 is a schematic diagram of electronic components integrated on a motherboard of an electronic device provided in an embodiment of the present application
  • FIG. 4 is a schematic structural diagram of an antenna assembly provided by an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a matching network composed of a combination of capacitance and inductance provided by an embodiment of the present application;
  • FIG. 6 is a schematic structural diagram of a first antenna provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram of the distribution of S parameters of a first antenna provided by an embodiment of the present application.
  • Fig. 8 is a schematic structural diagram of a second antenna provided by an embodiment of the present application.
  • FIG. 9 is a schematic diagram of the distribution of S parameters of a second antenna provided by an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of another antenna assembly provided by an embodiment of the present application.
  • Fig. 11 is a schematic structural diagram of another antenna assembly provided by an embodiment of the present application.
  • FIG. 12 is a schematic diagram of the distribution of S parameters of a third antenna provided by an embodiment of the present application.
  • Fig. 13 is a schematic structural diagram of another antenna assembly provided by an embodiment of the present application.
  • Fig. 14 is a schematic structural diagram of another antenna assembly provided by an embodiment of the present application.
  • Fig. 15 is a schematic structural diagram of another proximity sensor working process provided by the embodiment of the present application.
  • Fig. 16 is a schematic diagram of the distribution of S parameters of the first antenna, the second antenna and the third antenna provided by the embodiment of the present application;
  • Fig. 17 is a schematic diagram of the distribution of radiation efficiency and total efficiency of a first antenna, a second antenna, and a third antenna provided by an embodiment of the present application;
  • FIG. 18 to FIG. 24 are structural schematic diagrams of another antenna assembly provided by the embodiment of the present application.
  • Fig. 25 is a schematic structural diagram of a first antenna including a fifth antenna radiator provided by an embodiment of the present application.
  • Fig. 26 is a schematic diagram of the distribution of S parameters of a first antenna including a fifth antenna radiator provided by an embodiment of the present application;
  • Fig. 27 is a schematic diagram of the distribution of radiation efficiency and total efficiency of a first antenna including a fifth antenna radiator provided by an embodiment of the present application;
  • 28 to 39 are schematic structural diagrams of an antenna assembly applied to an electronic device according to an embodiment of the present application.
  • FIG. 40 is a schematic distribution diagram of an antenna assembly, a proximity sensor and a detection circuit applied to an electronic device according to an embodiment of the present application.
  • connection should be interpreted in a broad sense, for example, “connection” can be a fixed connection, an electrical connection, a detachable connection, an elastic connection, a direct connection, an indirect connection through an intermediary Connected, connected at intervals, etc., there is no specific limitation on this.
  • the antenna assembly in the embodiment of the present application can be applied to an electronic device, which can be an electronic device with an antenna assembly or a communication module with an antenna assembly, and can be various handheld devices, vehicle-mounted devices, and wearable devices with an antenna assembly , computing equipment or other equipment connected to a wireless modem, or various forms of stations (stations, STAs), access points (access points, APs), user equipments (user equipment, UEs), mobile stations (mobile Stations) , MS), terminal device (terminal device), session initiation protocol (session initiation protocol, SIP) phone, wireless local loop (wireless local loop, WLL) station, personal digital assistant (personal digital assistant, PDA), personal computer ( personal computer, PC), relay equipment, computers supporting the 802.11 protocol, terminal equipment supporting 5G communication systems, and terminal equipment in the future evolving public land mobile network (PLMN), etc.
  • stations stations, STAs
  • access points access points
  • APs user equipments
  • UEs mobile stations
  • MS terminal device
  • session initiation protocol session initiation protocol
  • the electronic device 100 may include a display module 110 , a frame assembly 120 , a rear cover assembly 130 and a motherboard 140 .
  • the frame assembly 120 is located between the display module 110 and the rear cover assembly 130, and is wound around the rear cover assembly 130; within.
  • the electronic device 100 shown in FIG. 1 and FIG. 2 may also include other modules and components, which are not specifically limited in this embodiment of the present application.
  • the display module 110 can be used to display images and colors, and can be a liquid crystal display (liquid crystal display, LCD), an organic light emitting diode display (organic light emitting display, OLED), a thin film diode (thin filmdiode, TFD) display screen or thin film field effect transistor (thin film transistor, TFT) display screen, etc.
  • liquid crystal display liquid crystal display
  • OLED organic light emitting diode display
  • TFD thin film diode
  • TFT thin film field effect transistor
  • the frame component 120 can be made of metal material, such as magnesium alloy, stainless steel and other metal materials, and can be used as a part of the antenna component, that is, the frame component 120 can be used as a part of the antenna radiator.
  • the back cover assembly 130 can be a conductive material shell, can be a metal shell, such as magnesium alloy, stainless steel and other metals, can be a non-conductive material shell, can be a plastic shell, a ceramic shell, a carbon fiber shell or
  • the glass housing can be a housing structure in which conductive materials and non-conductive materials cooperate with each other, or can be a housing structure in which metal and plastic cooperate with each other.
  • the rear cover assembly 130 may form a metal mid-plane by injection molding, and then inject molding on the metal mid-plane to form a shell structure of the plastic mid-plane.
  • the rear cover assembly 130 may form the magnesium alloy mid-plate by injection molding, and then inject molding on the magnesium alloy mid-plate to form the shell structure of the plastic mid-plate.
  • the frame assembly 120 may have an antenna slot, and the antenna slot may be filled with plastic or other insulating medium to ensure the overall integrity of the frame assembly 120 .
  • the display module 110, the frame assembly 120 and the rear cover assembly 130 together form a storage space, which can be used to accommodate the main board 140, the antenna assembly and other components or modules, such as receivers, camera modules, audio interfaces, Fingerprint recognition modules, sensors, speakers and batteries, etc. Meanwhile, various electronic components can be integrated on the main board 140 . Further, the main board 140 may be a printed circuit board (printed circuit board, PCB), a flexible circuit board (flexible printed circuit, FPC) and the like.
  • PCB printed circuit board
  • FPC flexible printed circuit
  • FIG. 3 is a schematic diagram of electronic components integrated on a mainboard of an electronic device provided by an embodiment of the present application.
  • the electronic components integrated on the motherboard 140 may include a processor 310 , an antenna, a communication module 320 , a power management module 330 , and a memory 340 .
  • the communication function of the electronic device 100 may be implemented by an antenna, a communication module 320, a modem processor, a baseband processor, and the like.
  • the antenna in the electronic device 100 is used for transmitting and receiving electromagnetic wave signals.
  • the antenna in the electronic device 100 can be used to cover single or multiple communication frequency bands.
  • the antenna can cover the 1000MHz to 3000MHz frequency band (ie, the medium and high frequency MHB frequency band in LTE or NR), and the 3000MHz to 10000MHz frequency band (ie, the LTE or NR in the MHB frequency band).
  • Ultra-high frequency UHB frequency band can cover the 3300MHz to 4120MHz frequency band (that is, the N77 frequency band in 5G), can cover the 3300MHz to 3800MHz frequency band (that is, the N78 frequency band in 5G), can cover the 4140MHz to 5000MHz frequency band (that is, the N79 frequency band in 5G ), can cover 2.4GHz, 5GHz or 6GHz frequency band (ie WIFI frequency band), and can cover 1575MHz (ie GPS-L1 frequency band).
  • the processor 310 may include a central processing unit (central processing unit, CPU), an application processor (application processor, AP), a modem processor, a graphics processing unit (graphics processing unit, GPU), an image signal processor (image signal processor, ISP), controller, video codec, digital signal processor (digital signal processor, DSP), baseband processor, neural network processor (neural-network processing unit, NPU), etc.
  • the processor 310 uses various interfaces and lines to connect various components or modules in the entire electronic device 100, and executes or executes instructions, programs, code sets or instruction sets stored in the memory 340, and calls stored in the memory 340 to perform various functions of the electronic device 100 and process data.
  • the communication module 320 can provide mobile communication including 2G/3G/4G/5G, bluetooth (BT), wireless local area networks (WLAN), wireless fidelity (wireless fidelity) applied on the electronic device 100 , WIFI) network, global navigation satellite system (global navigation satellite system, GNSS), near field communication (near field communication, NFC), frequency modulation (frequency modulation, FM), infrared (infrared, IR) and other wireless communication solutions .
  • the communication module 320 may include at least one filter, switch, power amplifier, low noise amplifier (low noise amplifier, LNA) and the like.
  • the communication module 320 can receive electromagnetic waves through the antenna, filter and amplify the received electromagnetic waves, and send them to the modem processor for demodulation.
  • the communication module 320 can also amplify the signal modulated by the modem processor, and convert it into electromagnetic wave and radiate it through the antenna.
  • at least part of the functional modules of the communication module 320 may be set in the processor 310 .
  • at least part of the functional modules of the communication module 320 and at least part of the modules of the processor 310 may be set in a same device.
  • the power management module 330 is used to connect the battery and the processor 310 .
  • the power management module 330 receives an input from a battery to power the processor 310, the communication module 320, the memory 340, and the like.
  • the power management module 330 can also be used to monitor parameters such as battery capacity, battery cycle times, and battery health status (leakage, impedance).
  • the memory 340 may be used to store computer executable program codes, where the executable program codes include instructions.
  • the memory 340 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, flash memory device, universal flash memory (universal flash storage, UFS), etc.
  • FIG. 4 is a schematic structural diagram of an antenna assembly provided by an embodiment of the present application.
  • the antenna 400 can be applied to the electronic device 100 .
  • the antenna assembly 400 may include a first antenna, a second antenna, an antenna connecting body 431 , a first matching circuit 432 and a second matching circuit 433 .
  • the first antenna may include a first antenna radiator 411 and a second antenna radiator 412, and a first gap 413 exists between the first antenna radiator 411 and the second antenna radiator 412;
  • the second antenna may include a third antenna radiator 421;
  • the first antenna radiator 411 may include a first coupled end (C) and a first ground end (B), the second antenna radiator may include a second coupled end (D) and a second ground end (E), and the first coupled end (C) and the second coupling end (D) are located on both sides of the first slit 413 and coupled through the first slit 413, the first grounding end (B) is provided with a first grounding point (GND1), and the second grounding end (E ) is provided with a second ground point (GND2), and the first antenna radiator 411 is connected to the first matching circuit 432 through the first ground terminal (B) to ground the system;
  • the third antenna radiator 421 may include a first free end (G) and a third ground terminal (H), the third ground terminal (H) is provided with a third ground point (GND3), and the third antenna radiator 421 passes through the third
  • the ground terminal (H) is connected to the second matching circuit 433 to ground the system, and the antenna connecting body 431 is respectively connected to the first ground terminal (B) and the third ground terminal (H);
  • a first feed point (A) may be provided on the first antenna radiator 411, and the first feed point (A) may be used to connect to the first feed source 414;
  • the third antenna radiator 421 is provided with a second feed point (F), and the second feed point (F) can be used to connect to the second feed source 422 .
  • the first antenna radiator 411 may be a flexible circuit board (Flexible Printed Circuit, FPC) antenna radiator, a laser direct structuring (Laser Direct Structuring, LDS) antenna radiator, a printing direct structuring (Print Direct Structuring, PDS) antenna Any of radiators and metal branches.
  • the second antenna radiator 412 may be any one of an FPC antenna radiator, an LDS antenna radiator, a PDS antenna radiator, and a metal branch.
  • the capacitance value of the capacitor can be determined by the relative area of the end face where one end (C) of the first antenna radiator 411 is located, the relative area of the end face where one end (D) of the second antenna radiator 412 is located, the distance between CD and the first gap
  • the medium filled in 413 is jointly determined.
  • the excitation signal generated by the first feed 414 can be coupled to the second antenna radiator 412 via the first antenna radiator 411 . Therefore, the coupling of the second antenna radiator 412 through the first slot 413 can generate multiple resonance modes of the first antenna. It can be seen that when the first antenna transmits and receives electromagnetic wave signals, not only the first antenna radiator 411 but also the second antenna radiator 412 can be used, so as to realize the antenna communication performance of the antenna assembly 400 .
  • the resonance mode of the antenna assembly 400 is increased through a slot (the first slot), so that the antenna assembly 400 covers multiple frequency bands, ensures that the antenna assembly 400 supports the transmission requirements of multi-carrier aggregation, and improves the spatial multiplexing capability.
  • the third antenna radiator 421 may be any one of an FPC antenna radiator, an LDS antenna radiator, a PDS antenna radiator, and a metal branch.
  • the second feed source 422 can be used to generate an excitation signal, and the excitation signal is loaded on the third antenna radiator 421, so that the third antenna radiator 421 radiates electromagnetic waves Signal. Since the FH section on the third antenna radiator 421 can be equivalent to a small inductance to the ground, the FG section on the third antenna radiator 421 can generate a resonant mode through the excitation of the second feed source 422 . Similarly, the GH segment on the third antenna radiator 421 can be excited by the second feed source 422 to generate a resonant mode. Therefore, the third antenna radiator 421 can generate multiple resonance modes of the second antenna by being excited by the second feed source 422 .
  • the antenna assembly 400 can cover multiple frequency bands, ensure that the antenna assembly 400 supports the transmission requirements of multi-carrier aggregation, and improve the spatial multiplexing capability .
  • the antenna connecting body 431 can be used to connect the first antenna and the second antenna.
  • the first antenna and the second antenna are connected through the antenna connecting body 431 , so as to implement a common radiator of the first antenna and the second antenna. Therefore, when the first antenna is working, not only the first antenna radiator 411 and the second antenna radiator 412 can be used to send and receive electromagnetic wave signals, but also the third antenna radiator 421 of the second antenna and the newly added
  • the antenna connector 431 is used to send and receive electromagnetic wave signals, thereby increasing the frequency band covered by the antenna assembly 400, ensuring that the antenna assembly 400 supports the transmission requirements of multi-carrier aggregation, and improving the spatial multiplexing capability.
  • the second antenna when the second antenna is working, not only can use its own third antenna radiator 421 to send and receive electromagnetic wave signals, but also can use the first antenna radiator 411 and the second antenna radiator 412 of the first antenna, and the newly added
  • the antenna connector 431 is used to send and receive electromagnetic wave signals, thereby increasing the frequency band covered by the antenna assembly 400, ensuring that the antenna assembly 400 supports the transmission requirements of multi-carrier aggregation, and improving the spatial multiplexing capability.
  • the first antenna and the second antenna are connected through the antenna connecting body 431.
  • the second antenna radiator 412 can be regarded as the antenna unit 1, and the first antenna radiator 411, the third antenna radiator 421 and the antenna connecting body 431 as the antenna unit 2 . Therefore, the first feed 414 is connected to the first feed point (A) of the antenna unit 2, the second feed 422 is connected to the second feed point (F) of the antenna unit 2, and the antenna unit 2 is at the first ground terminal ( B) and the third ground terminal (H) are connected to the ground through the first matching circuit 432 and the second matching circuit 433 respectively, so as to improve the radiation efficiency of the antenna assembly 400 .
  • the antenna connecting body 431 may have the same material as the first antenna radiator 411 or the third antenna radiator 421 .
  • the antenna connecting body 431 may be any one of an FPC antenna radiator, an LDS antenna radiator, a PDS antenna radiator, and a metal branch.
  • the first antenna radiator 411 , the second antenna radiator 412 , the third antenna radiator 421 and the antenna connecting body 431 may be in the same plane.
  • the first antenna radiator 411, the second antenna radiator 412, the third antenna radiator 421, and the antenna connecting body 431 are all metal patches, then the first antenna radiator 411, the second antenna radiator 412, The third antenna radiator 421 and the antenna connecting body 431 may be coplanar.
  • the first ground point (GND1) is used to connect to the ground system
  • the second ground point (GND1) is used to connect to the ground system
  • the third ground point (GND3) is used to connect to the ground system.
  • the ground system may refer to a component that can serve as a ground pole, and the ground system is generally composed of a relatively large piece of metal.
  • the system of the present application may be the same, and the system may include one or more components.
  • the ground system 110 may include at least one of the ground component in the display module 110 , the frame component 120 , the back cover component 130 , and the ground component in the motherboard 140 .
  • the frame assembly 120 constitutes a grounding part of the electronic device 100 , and when the electronic devices in the electronic device 100 need to be grounded, the frame assembly 120 can be connected to ground the system.
  • the first matching circuit 432 can be used for impedance matching and/or DC blocking matching.
  • the first matching circuit 432 may include at least one of a capacitor, an inductor, a combination of a capacitor and an inductor, a switch, and a variable capacitor.
  • the first matching circuit 432 may be one of (a) to (h) in FIG. 5 .
  • the first matching circuit 432 may include a DC blocking capacitor to achieve DC blocking matching.
  • the second matching circuit 433 can be used for impedance matching and/or DC blocking matching.
  • the second matching circuit 433 may include at least one of a capacitor, an inductor, a combination of a capacitor and an inductor, a switch, and a variable capacitor.
  • the second matching circuit 433 can be one of (a) to (h) in FIG. 5 .
  • the second matching circuit 433 may include a DC blocking capacitor to achieve DC blocking matching.
  • the first gap 413 may be filled with non-metal insulating material.
  • the present application specifically describes the first antenna in the antenna assembly 400 below.
  • the first antenna includes a first antenna radiator 411 and a second antenna radiator 412 .
  • the first feed source 414 can be used to generate an excitation signal, and the excitation signal is loaded on the first antenna radiator 411, so that the first antenna radiator 411 radiates electromagnetic waves Signal. Since the section AB on the first antenna radiator 411 can be equivalent to a small inductance to the ground, the AC section on the first antenna radiator 411 can generate a resonant mode through the excitation of the first feed source 414 . Similarly, the section CB on the first antenna radiator 411 can be excited by the first feed source 414 to generate a resonant mode. It can be seen that the first antenna radiator 411 can be used to generate multiple resonance modes of the first antenna by being excited by the first feed source 414 .
  • the first antenna radiator 411 may be used to generate low-frequency and high-frequency resonance modes
  • the second antenna radiator 412 may be used to generate medium-frequency resonance modes.
  • the first antenna can be used to cover at least one of the following frequency bands: LTE MHB frequency band, LTE UHB frequency band, NR MHB frequency band, NR UHB frequency band, and WIFI 2.4GHz frequency band.
  • the first antenna in the embodiment of the present application can cover LTE MHB frequency band, LTE UHB frequency band, NR MHB frequency band, NR UHB frequency band, WIFI 2.4GHz frequency band, etc., so as to satisfy the communication performance of the antenna while realizing the first antenna component
  • the antenna covers multiple frequency bands and supports the transmission requirements of multi-carrier aggregation.
  • the length of the first antenna radiator 411 may be greater than the length of the second antenna radiator 412 .
  • the length from the first feeding point (A) to the first coupling end (C) may be greater than the length from the first feeding point (A) to the first grounding end (B) (the length of the AB section length).
  • the first antenna supports different frequency bands by setting different positions of the first feeding point (A) on the first antenna radiator 411 .
  • the position of the first feeding point (A) on the first antenna radiator 412 is closer to the first ground terminal (B), that is, the length of the AC section is greater than the length of the AB section, thereby improving the first antenna radiator 411. radiation efficiency.
  • the first antenna can be used to support the first resonant mode, the second resonant mode, the third resonant mode, and the fourth resonant mode; wherein, the length from the first ground end to the first coupling end is the first resonant mode
  • the mode center frequency corresponds to 1/8 to 1/4 times the wavelength
  • the length from the second ground end to the second coupling end is 1/4 times the wavelength corresponding to the second resonance mode center frequency
  • the length of the coupling end is 1/4 times the wavelength corresponding to the center frequency of the third resonance mode
  • the length from the first grounding end to the first coupling end is 3/4 times the wavelength corresponding to the center frequency of the fourth resonance mode.
  • the center frequency of the first resonant mode can be a frequency from 1.5GHz to 2.0GHz; the center frequency of the second resonant mode can be a frequency from 2.5GHz to 3.0GHz; the center frequency of the third resonant mode can be A frequency from 3.0 GHz to 4.0 GHz; the central frequency of the fourth resonant mode may be a frequency from 4.5 GHz to 5.0 GHz.
  • the central frequency of the resonant mode can be adapted to the length of the antenna radiator that generates the resonant mode. Therefore, the length from the first ground terminal (B) to the first coupled terminal (C) (the length of the BC segment), the length from the second ground terminal (E) to the second coupled terminal (D) (the length of the DE segment), The length (the length of the AC section) from the first feeding point (A) to the first coupling end (C) can be set by the center frequency of the resonant mode generated therein respectively.
  • FIG. 7 provides a schematic distribution diagram of a scattering (scatter, S) parameter (parameter) of the first antenna.
  • the parameter S1,1 represents the reflection loss of the first antenna.
  • Mark 1 in FIG. 6 indicates that the center frequency of the first resonance mode is 1.7767 GHz, and its corresponding S parameter (S1, 1) is -4.5137 dB. Therefore, the length from the first grounding end (B) to the first coupling end (C) is about one of 20 mm to 45 mm. Since the transmission speed of electromagnetic waves will be affected by various transmission media, in actual engineering, the first ground terminal (B) to the first coupling terminal (C) should be smaller than the above-mentioned value, and the same can be seen below.
  • Mark 2 in FIG. 7 indicates that the center frequency of the second resonance mode is 2.5978 GHz, and its corresponding S parameter (S1, 1) is -13.398 dB. Therefore, the length from the second ground end (E) to the second coupling end (D) may be 28 mm.
  • Mark 3 in FIG. 7 indicates that the center frequency of the third resonance mode is 3.4879 GHz, and its corresponding S parameter (S1, 1) is -7.1213 dB. Therefore, the length from the first feeding point (A) to the first coupling end (C) is about 21 mm.
  • Mark 4 in FIG. 7 indicates that the center frequency of the fourth resonance mode is 4.9369 GHz, and its corresponding S parameter (S1, 1) is -16.755 dB. Therefore, the distance from the first ground terminal (B) to the first coupled terminal (C) is about 45mm.
  • the following embodiments of the present application will specifically describe the second antenna in the antenna assembly 400 .
  • the second antenna includes a third antenna radiator 421 .
  • the FG section on the third antenna radiator 421 can be excited by the second feed source 422 to generate a resonant mode.
  • the GH segment on the third antenna radiator 421 can be excited by the second feed source 422 to generate a resonant mode. Therefore, the third antenna radiator 421 can be used to generate multiple resonance modes of the second antenna through the excitation of the second feed 422 . It can be seen that through the second antenna in the antenna assembly 400, the resonant mode of the antenna assembly 400 is increased, the antenna assembly 400 covers multiple frequency bands, and the antenna assembly 400 supports the transmission requirement of multi-carrier aggregation.
  • the second antenna can be used to cover at least one of the following frequency bands: LTE MHB frequency band, LTE UHB frequency band, NR MHB frequency band, NR UHB frequency band, WIFI 2.4GHz frequency band, GPS-L1 frequency band.
  • the second antenna in the embodiment of the present application can cover LTE MHB frequency band, LTE UHB frequency band, NR MHB frequency band, NR UHB frequency band, WIFI 2.4GHz frequency band, GPS-L1 frequency band, etc., thereby satisfying antenna communication performance while further realizing
  • the antenna assembly 400 covers multiple frequency bands and ensures that the antenna assembly 400 supports the transmission requirement of multi-carrier aggregation.
  • the length from the second feed point (F) to the first free end (G) may be greater than the length from the second feed point (F) to the third ground end (H).
  • different positions of the second feed point (F) on the third antenna radiator 421 can be set to realize that the second antenna covers different frequency bands.
  • the position of the second feed point (F) on the third antenna radiator 421 is closer to the third ground terminal (H), that is, the length from the second feed point (F) to the first free end (G) is greater than
  • the length from the second feed point (F) to the third ground end (H) can improve the radiation efficiency of the third antenna radiator 422 .
  • the second antenna can be used to support the fifth resonant mode and the sixth resonant mode; wherein, the length from the third ground end (H) to the first free end (G) can be the center frequency of the fifth resonant mode Corresponding to 1/4 times the wavelength; the length from the second feeding point (F) to the first free end (G) may be 1/4 times the wavelength corresponding to the center frequency of the sixth resonant mode.
  • the center frequency of the fifth resonant mode may be a frequency from 1.5 GHz to 2.0 GHz; the center frequency of the sixth resonant mode may be a frequency from 2.0 GHz to 3.0 GHz.
  • FIG. 9 provides a schematic diagram of distribution of S parameters of the second antenna.
  • the curve S2,2 represents the reflection loss of the second antenna.
  • Mark 1 in FIG. 7 indicates that the center frequency of the fifth resonance mode may be 1.5697 GHz, and its corresponding S parameter (S2, 2) is -7.3678 dB. Therefore, the length from the third ground end (H) to the first free end (G) is about 47.7mm. Since the transmission speed of electromagnetic waves is affected by various transmission media, in actual engineering, the length from the third ground end (H) to the first free end (G) is smaller than the above value, and the same reasoning follows.
  • Mark 2 in FIG. 9 indicates that the center frequency of the sixth resonance mode is 2.515 GHz, and its corresponding S parameter (S2, 2) is -7.3044 dB. Therefore, the length from the second feeding point (F) to the first free end (G) is about 29.8 mm.
  • the antenna assembly 400 includes the fourth antenna radiator, the third matching circuit, and the fourth matching circuit.
  • the antenna assembly 400 also includes: a third matching circuit 441 and a fourth matching circuit 442; the third matching circuit 441 is connected in series between the first feeding point (A) and the first feeding source 414; the fourth matching The circuit 442 is connected in series between the second feed point (F) and the second feed 422 .
  • the third matching circuit 441 may be used for impedance matching and/or DC blocking matching.
  • the third matching circuit 441 may include at least one of a capacitor, an inductor, a combination of a capacitor and an inductor, a switch, and a variable capacitor.
  • the third matching circuit 441 can be one of (a) to (h) in FIG. 5 .
  • the third matching circuit 441 may include a DC blocking capacitor to achieve DC blocking matching.
  • the fourth matching circuit 442 can be used for impedance matching and/or DC blocking matching.
  • the fourth matching circuit 442 may include at least one of a capacitor, an inductor, a combination of a capacitor and an inductor, a switch, and a variable capacitor.
  • the fourth matching circuit 442 can be one of (a) to (h) in FIG. 5 .
  • the fourth matching circuit 442 may include a DC blocking capacitor to achieve DC blocking matching.
  • the antenna assembly 400 further includes a third antenna.
  • the antenna assembly 400 also includes: a third antenna, the third antenna includes a fourth antenna radiator 451; there is a second gap 452 between the fourth antenna radiator 451 and the third antenna radiator 421; the fourth antenna The radiator includes a second free end (I) and a fourth ground end (J), the first free end (G) and the second free end (I) are respectively located on both sides of the second slot (452) and pass through the second slot ( 452) coupling, the fourth ground terminal (J) is provided with a fourth ground point (GND1); the fourth antenna radiator 451 is provided with a third feed point (K), and the third feed point is used to connect the third feed point source.
  • the third antenna includes a fourth antenna radiator 451; there is a second gap 452 between the fourth antenna radiator 451 and the third antenna radiator 421; the fourth antenna The radiator includes a second free end (I) and a fourth ground end (J), the first free end (G) and the second free end (I) are respectively located on both sides of the second slot (452) and pass through the
  • ground point (GND1) is used to connect to the ground system.
  • the third feed source 453 can be used to generate an excitation signal, and the excitation signal is loaded on the fourth antenna radiator 451, so that the fourth antenna radiator 451 Radiation electromagnetic wave signal. Since the third feed point (K) on the fourth antenna radiator 451 can be equivalent to a small inductance to the ground to the fourth ground terminal (J), the third feed point (K) to the second free end (I ) can be excited by the third feed 453 to generate a resonant mode. Similarly, the resonance mode can be generated from the second free terminal (I) to the fourth ground terminal (J) by being excited by the third feed source 453 .
  • the fourth antenna radiator 451 can be used to generate multiple resonance modes through the excitation of the third feed source 453 . It can be seen that by adding a third antenna to the antenna assembly 400, the resonant mode of the antenna assembly 400 is increased to further realize the antenna assembly 400 covering multiple frequency bands and ensure that the antenna assembly 400 supports multi-carrier aggregation transmission requirements.
  • the third antenna radiator 421 and the fourth antenna radiator 451 are arranged at intervals (that is, there is a second gap 445 between them), that is, the fourth antenna radiator 451 and the antenna unit 2 have a common aperture, so the second gap 445 There is coupling, so that the third antenna radiator 421 and the fourth antenna radiator 451 are equivalently connected by capacitance.
  • the third antenna can not only use its own fourth antenna radiator 451 to send and receive electromagnetic wave signals, but also use antenna unit 1 and antenna unit 2 to send and receive electromagnetic wave signals, thereby further increasing the frequency band covered by the antenna assembly 400 and ensuring the antenna
  • the component 400 supports the transmission requirements of multi-carrier aggregation and improves the spatial multiplexing capability.
  • the fourth antenna radiator 442 can be regarded as the antenna unit 3 in the embodiment of the present application. Therefore, the antenna unit 1 is coupled to the antenna unit 2, and the antenna unit 2 is coupled to the antenna unit 3, thereby increasing the frequency band covered by the antenna assembly 400, ensuring that the antenna assembly 400 supports the transmission requirements of multi-carrier aggregation, and improving the spatial multiplexing capability.
  • the first antenna radiator 411 , the second antenna radiator 412 , the third antenna radiator 421 , the antenna connecting body 431 and the fourth antenna radiator 451 may be in the same plane.
  • the first antenna radiator 411, the second antenna radiator 412, the third antenna radiator 421, the antenna connecting body 431 and the fourth antenna radiator 451 are all metal patches, etc., then the first antenna radiator 411, The second antenna radiator 412 , the third antenna radiator 421 , the antenna connecting body 431 and the fourth antenna radiator 451 may be in the same plane.
  • the fourth antenna radiator 451 may be any one of an FPC antenna radiator, an LDS antenna radiator, a PDS antenna radiator, and a metal branch.
  • the third antenna can be used to support at least one of the following frequency bands: N78 frequency band, N79 frequency band, and WIFI 5GHz frequency band.
  • the third antenna in the embodiment of the present application can cover the N78 frequency band, the N79 frequency band, the WIFI 5GHz frequency band, etc., thereby satisfying the antenna communication performance while further realizing that the antenna assembly 400 covers multiple frequency bands, and ensuring that the antenna assembly 400 supports multi-carriers Aggregated transport needs.
  • the length from the second free end (I) to the third feeding point (K) may be shorter than the length from the third feeding point (K) to the fourth grounding end (J).
  • different positions of the third feeding point (K) on the fourth antenna radiator 451 can be set to realize that the third antenna covers different frequency bands.
  • the position of the third feeding point (K) on the fourth antenna radiator 451 is farther away from the fourth ground terminal (J), that is, the length from the second free end (I) to the third feeding point (K) is less than
  • the length from the third feed point (K) to the fourth ground end (J) can improve the radiation efficiency of the fourth antenna radiator 451 .
  • the third antenna is used to support the seventh resonant mode, the eighth resonant mode, the ninth resonant mode, and the tenth resonant mode; wherein, the current distribution of the seventh resonant mode is obtained from the third feeding point to the third ground end; the length from the fourth ground end to the second free end is 1/8 to 1/4 times the wavelength corresponding to the center frequency of the eighth resonance mode; the length from the third feeding point to the second free end is the ninth
  • the central frequency of the resonant mode corresponds to 1/4 times the wavelength; the length from the third ground end to the first free end is 3/4 times the wavelength corresponding to the central frequency of the tenth resonant mode.
  • the center frequency of the seventh resonant mode can be a frequency from 3.0GHz to 3.5GHz; the center frequency of the eighth resonant mode can be a frequency from 3.5GHz to 4.0GHz; the center frequency of the ninth resonant mode can be A frequency from 5.0 GHz to 6.0 GHz; the center frequency of the tenth resonant mode may be a frequency from 6.0 GHz to 7.0 GHz.
  • FIG. 12 provides a schematic diagram of distribution of S parameters of a third antenna.
  • the curve S3,3 represents the reflection loss of the third antenna.
  • Mark 2 in FIG. 12 indicates that the center frequency of the eighth resonance mode is 3.8669 GHz, and its corresponding S parameter (S3, 3) is -5.1333 dB. Therefore, the length from the second free end (I) to the fourth ground end (J) is about one of 9.7 mm to 19.4 mm. Since the transmission speed of electromagnetic waves is affected by various transmission media, the length from the second free end (I) to the fourth ground end (J) is smaller than the above-mentioned value in actual engineering, as can be seen below. Mark 3 in FIG.
  • the antenna assembly 400 further includes a fifth matching circuit.
  • the antenna assembly 400 further includes: a fifth matching circuit 443 .
  • the fifth matching circuit 443 can be used for impedance matching and/or DC blocking matching.
  • the fifth matching circuit 443 may include at least one of a capacitor, an inductor, a combination of a capacitor and an inductor, a switch, and a variable capacitor.
  • the fifth matching circuit 443 may be one of (a) to (h) in FIG. 5 .
  • the fifth matching circuit 443 may include a DC blocking capacitor to achieve DC blocking matching.
  • the embodiment of the present application needs to consider the first matching circuit 432, the second matching circuit 433, the third matching circuit 441, the Whether the four matching circuits 442 and the fifth matching circuit 443 include a DC blocking device, the DC blocking device may include a DC blocking capacitor or a DC blocking circuit.
  • the antenna assembly 400 may further include: The first capacitor (C1), the second capacitor (C2), the third capacitor (C3), the fourth capacitor (C4), the fifth capacitor (C5), the sixth capacitor (C6) and the seventh capacitor (C7); wherein , the first capacitor is connected in series between the first antenna radiator 411 and the ground system connected to the first ground point; the second capacitor is connected in series between the third antenna radiator 421 and the ground system connected to the third ground point; Three capacitors are connected in series between the first feed point (A) and the first feed source 414; the fourth capacitor is connected in series between the second feed point (F) and the second feed source 422; the fifth capacitor is connected in series between the second Between the antenna radiator 412 and the ground system connected to the second ground point; the sixth capacitor is connected in series between the third feed point (K) and the third feed source 453
  • the first capacitor (C1), the second capacitor (C2), the third capacitor (C3), the fourth capacitor (C4), the fifth capacitor (C5), the sixth capacitor (C6), and the seventh capacitor (C7) The value of the capacitor can be 22pF, so that the influence on the antenna assembly 400 is small.
  • the proximity sensor in the electronic device can use a suspended metal body to sense the capacitance signal change brought by the user using the electronic device, so as to determine whether the user is approaching or far away. the electronic device.
  • the proximity sensor 1510 includes a printed circuit board (PCB) and an overlay board, and the proximity sensor 1510 itself can generate a capacitive signal (C 1 ).
  • the proximity sensor 1510 can sense the capacitance signal change (C 2 ) brought by the user 1520 .
  • the first capacitor (C1), the second capacitor (C2), the third capacitor (C3), the fourth capacitor (C4), and the fifth capacitor ( C5), the sixth capacitor (C6), and the seventh capacitor (C7) so that the antenna assembly 400 is suspended, so that the antenna assembly 400 is used as a metal body suspended relative to the feed source and/or the DC circuit in the ground system, Furthermore, it is realized that the antenna assembly 400 has the capability of SAR detection.
  • the Part of the matching circuit does not need to add DC blocking devices.
  • the first matching circuit 432 includes a DC blocking device (that is, the first matching circuit 432 has DC blocking matching)
  • the antenna assembly 400 does not need to include the first capacitor ( C1 ) and the corresponding connection relationship, which is not specifically limited.
  • the embodiment of the present application further evaluates the impedance bandwidth, isolation, and radiation efficiency (radiantefficiency) between the antennas in the antenna assembly 400. and total efficiency (total efficiency) etc. for analysis.
  • FIG. 16 provides a schematic diagram of the distribution of S parameters of the first antenna, the second antenna and the third antenna.
  • the curve 1611 represents the parameter S1,1 of the first antenna (the parameter S1,1 represents the reflection loss of the first antenna)
  • the curve 1621 represents the parameter S2,1 of the first antenna (the parameter S2,1 represents the Antenna feed-in loss)
  • curve 1622 represents the parameter S2,2 of the second antenna (parameter S2,2 represents the reflection loss of the second antenna)
  • curve 1631 represents the parameter S3,1 of the third antenna (parameter S3,1 represents the first The feeding loss from the third antenna to the first antenna)
  • the curve 1632 represents the parameter S3,2 of the third antenna (the parameter S3,2 represents the feeding loss from the third antenna to the second antenna)
  • the curve 1633 represents the parameter of the third antenna S3,3 (the parameter S3,3 represents the reflection loss of the third antenna).
  • FIG. 17 provides a schematic diagram of distribution of radiation efficiency and total efficiency of the first antenna, the second antenna and the third antenna.
  • the curve 1711 represents the radiation efficiency of the first antenna
  • the curve 1712 represents the radiation efficiency of the second antenna
  • the curve 1713 represents the radiation efficiency of the third antenna
  • the curve 1721 represents the total efficiency of the first antenna
  • the curve 1722 represents the total efficiency of the second antenna.
  • Efficiency curve 1723 represents the overall efficiency of the third antenna. It can be seen that each antenna in the antenna assembly 400 has a good efficiency bandwidth.
  • the antenna assembly 400 further includes at least one sixth matching circuit.
  • the antenna assembly 400 may further include: at least one sixth matching circuit 461, one end of the sixth matching circuit 461 is connected to the fifth ground terminal (L) on the antenna connecting body 431, the fifth ground terminal ( L) is provided with a fifth ground point (GND5), the fifth ground terminal (L) is located between the first ground terminal (B) and the third ground terminal (H), and the other end of the sixth matching circuit 461 is connected to the fifth ground terminal The ground system to which the site is connected.
  • the sixth matching circuit 461 that is grounded in the antenna assembly 400 (antenna unit 2), it is beneficial to improve the isolation between the antennas in the antenna assembly 400, and can effectively filter out the inefficient resonant modes.
  • the greater the number of the sixth matching circuits 461 the better the isolation between the antennas in the antenna assembly 400 , and it is more beneficial to filter out the low-efficiency resonant modes on the antenna unit 2 .
  • the sixth matching circuit 461 can be used for impedance matching and/or DC blocking matching.
  • the sixth matching circuit 461 may include at least one of a capacitor, an inductor, a combination of a capacitor and an inductor, a switch, and a variable capacitor.
  • the sixth matching circuit 461 may be one of (a) to (h) in FIG. 5 .
  • the sixth matching circuit 461 may include a DC blocking capacitor to achieve DC blocking matching.
  • the antenna assembly 400 further includes: an eighth capacitor ( C8 ), which is connected in series between the antenna connecting body 431 and the ground system connected to the fifth ground point.
  • the capacitance value of the eighth capacitor ( C8 ) may be 22pF, so that the influence on the antenna assembly 400 is small.
  • those skilled in the art can know the specific connection relationship based on the above description, which will not be repeated here.
  • the following embodiments of the present application will specifically describe the antenna component 400 including the fifth antenna radiator.
  • the antenna assembly 400 may also include: a fifth antenna radiator 471, one end (M) of the fifth antenna radiator is connected to the first feed source 414, the fifth The other end (N) of the antenna radiator is an open circuit end.
  • the fifth antenna radiator 471 is added to the first antenna, thereby increasing the resonant mode of the first antenna, ensuring more flexible debugging of the antenna component, improving the antenna efficiency of the antenna component, and further realizing
  • the antenna assembly 400 covers multiple frequency bands, ensuring that the antenna assembly 400 supports the transmission requirement of multi-carrier aggregation and improves the spatial multiplexing capability.
  • the fifth antenna radiator 471 may be regarded as the antenna unit 4 .
  • the third matching circuit 441 includes a ninth capacitor (C9), a tenth capacitor (C10), an eleventh capacitor (C11), a twelfth capacitor (C12), a first inductor (L1 ) and the second inductor (L2).
  • the capacitance value of the ninth capacitor is 1.0pF
  • the capacitance value of the tenth capacitor is 0.8pF
  • the capacitance value of the eleventh capacitor is 0.5pF
  • the capacitance value of the twelfth capacitor is 0.8pF
  • the inductance value of the first inductor is 1.0nH
  • the inductance of the first inductor is 15nH.
  • the fifth antenna radiator 471 may be an FPC antenna radiator, an LDS antenna radiator, a PDS antenna radiator, or a metal branch.
  • the fifth antenna radiator 471 can be used to cover at least one of the following frequency bands: LTE MHB frequency band, LTE UHB frequency band, NR MHB frequency band, NR UHB frequency band, and WIFI 2.4GHz frequency band.
  • the fifth antenna radiator 471 can be used to support the eleventh resonant mode; the length of the fifth antenna radiator 471 (the length of the MN section) can be 1/8 of the wavelength corresponding to the center frequency of the eleventh resonant mode to 1/2 times.
  • the center frequency of the eleventh resonant mode may be one of frequencies from 4.5 GHz to 5.5 GHz.
  • FIG. 26 provides a schematic diagram of distribution of S parameters of the first antenna including the fifth antenna radiator.
  • the curve S1,1 represents the reflection loss of the first antenna.
  • Mark 4 in FIG. 26 indicates that the center frequency of the eleventh resonance mode is 4.9793 GHz, and its corresponding S parameter (S1, 1) is -13.045 dB. Therefore, the length of the fifth antenna radiator 471 (the length of the MN section) is about one of 7.53 mm to 30.12 mm. Since the transmission speed of electromagnetic waves is affected by various transmission media, the length of the fifth antenna radiator 471 should be smaller than the above-mentioned value in actual engineering.
  • the added fifth antenna radiator of the first antenna has affected the frequency covered by the first antenna shown in FIG. 7 .
  • the embodiment of the present application further analyzes the radiation efficiency (radiant efficiency) and the total efficiency (total efficiency) of the first antenna.
  • FIG. 27 provides a schematic diagram of distribution of radiation efficiency and total efficiency of the first antenna.
  • the curve 2711 represents the radiation efficiency of the first antenna
  • the curve 2712 represents the total efficiency of the first antenna. It can be seen that adding the fifth antenna radiator 471 to the first antenna is beneficial to improving the antenna efficiency of the antenna assembly and ensuring a specific and good efficiency bandwidth of the antenna assembly.
  • the antenna assembly is used to cover at least one of the following frequency bands: LTE MHB frequency band, LTE UHB frequency band, NR MHB frequency band, NR UHB frequency band, WIFI 2.4GHz frequency band, WIFI 5GHz frequency band, GPS-L1 frequency band.
  • the first antenna, the second antenna and the third antenna of the antenna assembly 400 of the embodiment of the present application have a common aperture, and each antenna has good isolation, impedance bandwidth, and radiation. efficiency and space reusability.
  • the antenna assembly 400 can cover multiple frequency bands, support the transmission requirements of multi-carrier aggregation, and have the capability of SAR detection.
  • an embodiment of the present application further provides an electronic device, which may be the above-mentioned electronic device 100 , and which may include an antenna component, and the antenna component may be the above-mentioned antenna component 400 .
  • the antenna assembly may include a first antenna, and the first antenna may include a first antenna radiator and a second antenna radiator, and a first gap exists between the first antenna radiator and the second antenna radiator;
  • the first gap is located on the first side of the electronic device, the distance from the first gap to the second side of the electronic device is greater than 30 mm, and the distance from the first gap to the third side of the electronic device is greater than 30 mm, and the distance between the second side and the first side is greater than 30 mm.
  • One side is arranged adjacently, and the third side is arranged adjacent to the other side of the first side;
  • the first antenna radiator includes a first coupling end and a first grounding end
  • the second antenna radiator includes a second coupling end and a second grounding end
  • the first coupling end and the second coupling end are respectively located on both sides of the first slot and pass through
  • the first slot is coupled, the first ground terminal is provided with a first ground point, the second ground terminal is provided with a second ground point, and the first antenna radiator is connected to the first matching circuit through the first ground point to ground the system;
  • the first antenna radiator is provided with a first feed point, and the first feed point is used for connecting to a first feed source.
  • the first antenna radiator and the second antenna radiator are spaced apart (that is, there is a first gap between them), that is, the first antenna radiator and the second antenna radiator share a common Aperture, so there is coupling in the first slot, so that the first antenna radiator and the second antenna radiator are equivalently connected by capacitance.
  • the capacitance value of the capacitor can be determined by the relative area of the end face where one end of the first antenna radiator is located, the relative area of the end face where one end of the second antenna radiator is located, the distance between the first slots and the medium filled in the first slot .
  • the excitation signal generated by the first feed source can be coupled to the second antenna radiator via the first antenna radiator.
  • the coupling of the second antenna radiator through the first slot can generate multiple resonance modes of the first antenna. It can be seen that when the first antenna transmits and receives electromagnetic wave signals, not only the first antenna radiator but also the second antenna radiator can be used, so as to realize the antenna communication performance of the antenna assembly. At the same time, the resonance mode of the antenna assembly is increased through a slot (the first slot), so that the antenna assembly can cover multiple frequency bands, ensure that the antenna assembly supports the transmission requirements of multi-carrier aggregation, and improve the spatial multiplexing capability.
  • the electronic device has a first side, a second side and a third side.
  • the second side is arranged adjacent to one side of the first side
  • the third side is arranged adjacent to the other side of the first side.
  • the electronic device 100 has left and right long sides and up and down short sides, therefore, the first side can be a long side of the electronic device 100, the second side can be a short side of the electronic device 100, and the third side It may be the other short side of the electronic device 100 .
  • the first gap is defined on the first side of the electronic device, and the distance from the first gap to the second side of the electronic device is greater than 30 mm, and the distance from the first gap to the third side of the electronic device The distance between the sides is greater than 30mm, so that when the user holds the second side and the third side of the electronic device, the user's hand will not easily touch or block the first gap located on the first side, effectively preventing the user's hand from Covering the first slit ensures the normal operation of the first antenna, thereby enabling the electronic device in which the above-mentioned antenna assembly 400 is applied to have a better communication effect.
  • the size of the antenna assembly in the embodiment of the present application is small and there are few gaps, when the antenna assembly is applied to electronic equipment, it is beneficial to reduce the structural space occupied by the antenna assembly in the electronic equipment, and reduce the The layout difficulty of the antenna assembly in the electronic equipment improves the stacking of the electronic equipment, reduces the number of gaps opened on the electronic equipment due to the layout of the antenna assembly, and ensures the integrity of the overall appearance and structure of the electronic equipment.
  • the location of the first gap should avoid the user's hand so that it is not caulked or blocked. Therefore, the distance from the first slot on the long side of the electronic device to the top of the electronic device (the upper short side of the electronic device) is greater than 30 mm, and the distance from the first slot to the bottom of the electronic device (the upper short side of the electronic device) is greater than 30 mm. The distance between the lower short side) is greater than 30mm, so as to ensure that the first antenna can work better.
  • the length of the first side is greater than 60 mm.
  • the antenna assembly can be located in the receiving space jointly formed by the display module 110 , the frame assembly 120 and the rear cover assembly 130 of the electronic device 100 .
  • the first antenna, the second antenna, or the third antenna may be the antenna in FIG. 3 .
  • the first feed source may be set on the main board 140 in the electronic device 100 .
  • the communication function of the electronic device 100 is guaranteed through the feeding mode of the first feeding source.
  • the first antenna radiator may be different metal structures (metal body or metal arm, etc.) on the electronic device 100 .
  • a frame on the frame assembly 120 a metal patch printed on the inner side of the rear cover assembly 130, a metal patch printed on the inner side of the frame assembly 120, a flexible circuit arranged on the main board 140, a printed circuit board printed on the main board 140 Metal patch.
  • the second antenna radiator may be a different metal structure (metal body or metal arm, etc.) on the electronic device 100, which is not specifically limited.
  • the first antenna radiator can be used to generate low-frequency and high-frequency resonance modes
  • the second antenna radiator can be used to generate intermediate-frequency resonance modes.
  • the first antenna can be used to cover at least one of the following frequency bands: LTE MHB frequency band, LTE UHB frequency band, NR MHB frequency band, NR UHB frequency band, and WIFI 2.4GHz frequency band.
  • the first antenna in the embodiment of the present application can cover LTE MHB frequency band, LTE UHB frequency band, NR MHB frequency band, NR UHB frequency band, WIFI 2.4GHz frequency band, etc., so as to satisfy the communication performance of the antenna while realizing the first antenna component
  • the antenna covers multiple frequency bands and supports the transmission requirements of multi-carrier aggregation.
  • the length of the first antenna radiator may be greater than the length of the second antenna radiator.
  • the length from the first feeding point to the first coupling end may be greater than the length from the first feeding point to the first grounding end.
  • the first antenna can support different frequency bands by setting different positions of the first feeding point on the radiator of the first antenna. Wherein, the closer the position of the first feeding point on the first antenna radiator is to the first ground terminal, the radiation efficiency of the first antenna radiator can be improved.
  • the first antenna can be used to support the first resonant mode, the second resonant mode, the third resonant mode, and the fourth resonant mode; wherein, the length from the first ground end to the first coupling end is the first resonant mode
  • the mode center frequency corresponds to 1/8 to 1/4 times the wavelength
  • the length from the second ground end to the second coupling end is 1/4 times the wavelength corresponding to the second resonance mode center frequency
  • the length of the coupling end is 1/4 times the wavelength corresponding to the center frequency of the third resonance mode
  • the length from the first grounding end to the first coupling end is 3/4 times the wavelength corresponding to the center frequency of the fourth resonance mode.
  • the center frequency of the first resonant mode can be a frequency from 1.5GHz to 2.0GHz; the center frequency of the second resonant mode can be a frequency from 2.5GHz to 3.0GHz; the center frequency of the third resonant mode can be A frequency from 3.0 GHz to 4.0 GHz; the central frequency of the fourth resonant mode may be a frequency from 4.5 GHz to 5.0 GHz.
  • a frame 2800 may represent a part of the outline of the electronic device.
  • a vertical side (such as the left side) where the frame body 2800 is located represents the first side of the electronic device
  • a horizontal top side where the frame body 2800 is located represents the second side of the electronic device
  • a horizontal side where the frame body 2800 is located represents the first side of the electronic device.
  • the bottom side represents the third side of the electronic device.
  • the first antenna radiator 411 of the above-mentioned antenna assembly 400 is located on the first side of the electronic device
  • the second antenna radiator 412 of the above-mentioned antenna assembly 400 is located on the first side of the electronic device
  • the first slot to the second side The distance is greater than 30mm, and the distance from the first slit to the third side is greater than 30mm.
  • the first side of the electronic device may be a long side of the electronic device 100 . Accordingly, the first antenna radiator 411 and the second antenna radiator 412 may be located on the long sides of the electronic device 100 . Wherein, the first antenna radiator 411 and the second antenna radiator 412 may be a section of frame on the frame component 120 or a metal body printed on the inner side of the frame component 120 .
  • the purpose of the first antenna radiator 411 and the second antenna radiator 412 being located on the long side of the electronic device 100 is: when the user passes through the horizontal screen of the electronic device 100 (for example, the top side of the horizontal direction where the user holds the frame body 2800 and/or or bottom side) when playing games or watching videos, etc., since the first slit 413 is located on the long side of the electronic device 100, it can effectively prevent the user's hand from covering the first slit 413, ensuring the normal operation of the first antenna, and furthermore Therefore, the electronic device to which the above-mentioned antenna assembly 400 is applied has relatively good communication effect.
  • the antenna assembly may further include: a second antenna, the second antenna includes a third antenna radiator; the third antenna radiator includes a first free end and a third ground end, and the third ground end is provided with a third ground end. location, the third antenna radiator is grounded through the third ground terminal; the third antenna radiator is provided with a second feed point, and the second feed point is used to connect to the second feed source.
  • the second feed source may be used to generate an excitation signal, and the excitation signal is loaded on the third antenna radiator, so that the third antenna radiator radiates electromagnetic wave signals. Since the FH segment on the third antenna radiator can be equivalent to a small inductance to the ground, the FG segment on the third antenna radiator can generate a resonant mode through the excitation of the second feed source. Similarly, the GH segment on the radiator of the third antenna can generate a resonant mode through the excitation of the second feed source. Therefore, the third antenna radiator can generate multiple resonance modes of the second antenna by being excited by the second feed source.
  • the resonant mode of the antenna assembly is increased, the antenna assembly can cover multiple frequency bands, the antenna assembly can support the transmission requirements of multi-carrier aggregation, and the spatial multiplexing capability can be improved.
  • the third antenna radiator may be a different metal structure (metal body or metal arm, etc.) on the electronic device 100 .
  • a frame on the frame assembly 120 a metal patch printed on the inner side of the rear cover assembly 130, a metal patch printed on the inner side of the frame assembly 120, a flexible circuit arranged on the main board 140, a printed circuit board printed on the main board 140 Metal patch.
  • the second antenna can be used to cover at least one of the following frequency bands: LTE MHB frequency band, LTE UHB frequency band, NR MHB frequency band, NR UHB frequency band, WIFI 2.4GHz frequency band, GPS-L1 frequency band.
  • the second antenna in the embodiment of the present application can cover LTE MHB frequency band, LTE UHB frequency band, NR MHB frequency band, NR UHB frequency band, WIFI 2.4GHz frequency band, GPS-L1 frequency band, etc., thereby satisfying antenna communication performance while further realizing
  • the antenna assembly 400 covers multiple frequency bands and ensures that the antenna assembly 400 supports the transmission requirement of multi-carrier aggregation.
  • the length from the second feed point (F) to the first free end (G) may be greater than the length from the second feed point (F) to the third ground end (H).
  • different positions of the second feed point (F) on the third antenna radiator 421 can be set to realize that the second antenna covers different frequency bands.
  • the position of the second feed point (F) on the third antenna radiator 421 is closer to the third ground terminal (H), that is, the length from the second feed point (F) to the first free end (G) is greater than
  • the length from the second feed point (F) to the third ground end (H) can improve the radiation efficiency of the third antenna radiator 422 .
  • the second antenna can be used to support the fifth resonant mode and the sixth resonant mode; wherein, the length from the third ground end (H) to the first free end (G) can be the center frequency of the fifth resonant mode Corresponding to 1/4 times the wavelength; the length from the second feeding point (F) to the first free end (G) may be 1/4 times the wavelength corresponding to the center frequency of the sixth resonant mode.
  • the center frequency of the fifth resonant mode may be a frequency from 1.5 GHz to 2.0 GHz; the center frequency of the sixth resonant mode may be a frequency from 2.0 GHz to 3.0 GHz.
  • the third antenna radiator 421 of the above-mentioned antenna assembly 400 includes a first sub-radiator (HP section) and a second sub-radiator (GP section);
  • the other end of the first sub-radiator is the third ground terminal (H);
  • the other end of the second sub-radiator is the first free end (G);
  • the first sub-radiator is located on the electronic device On the first side, the second sub-radiator is located on the second side of the electronic device;
  • the second feeding point (F) is located on the first sub-radiator or the second sub-radiator.
  • first sub-radiator and the second sub-radiator may be a section of a diagonal frame on the frame component 120 or a metal body printed on the inner side of the frame component 120 .
  • one end of the first sub-radiator is bent and connected with one end of the second sub-radiator, which facilitates the setting of the second antenna corresponding to the corner of the electronic device.
  • the purpose of setting the angle of the second antenna corresponding to the electronic device is: when the user passes through the vertical screen of the electronic device 100 (for example, the vertical side where the user holds the frame body 2800 or the horizontal bottom edge where the user holds the frame body 2800 ) during use, since the user’s hand is generally held on the lower half of the long side of the electronic device 100 or the lower short side of the electronic device 100, when a part of the second antenna is located on the upper short side of the electronic device 100, the second The second antenna is difficult to be held by the user, so that the normal operation of the second antenna can be ensured, and the electronic device to which the above-mentioned antenna assembly 400 is applied can have a relatively good communication effect.
  • the third antenna radiator 421 of the antenna assembly 400 is located on the first side or the second side of the electronic device.
  • the third antenna radiator 421 is located on the long side or the short side of the electronic device 100 . It can be understood that the second antenna is located on the long side or the short side of the electronic device 100 . Wherein, the third antenna radiator 421 may be a section of frame on the frame component 120 or a metal body printed on the inner side of the frame component 120 .
  • the purpose of the third antenna radiator 421 being located on the long side of the electronic device 100 is: when the user uses the horizontal screen of the electronic device 100 (such as the top side and/or bottom side where the user holds the frame body 2800 in the horizontal direction)) , since the user's hand is generally held on the short side of the electronic device 100, it is difficult for the user to hold the second antenna located on the long side of the electronic device 100, so as to ensure the normal operation of the second antenna, and thus make the above-mentioned
  • the electronic equipment used by the antenna assembly 400 has a relatively good communication effect.
  • the purpose of the third antenna radiator 421 being located on the short side of the electronic device 100 is: when the user passes through the vertical screen of the electronic device 100 (such as the vertical side where the user holds the frame body 2800 or the horizontal side where the user holds the frame body 2800 bottom side) during use, since the user’s hand is generally held on the lower half of the long side of the electronic device 100 or the lower short side of the electronic device 100, when the second antenna is located on the upper short side of the electronic device 100, the second antenna The second antenna is difficult to be held by the user, so that the normal operation of the second antenna can be ensured, and the electronic device to which the above-mentioned antenna assembly 400 is applied can have a relatively good communication effect.
  • the antenna assembly may further include: an antenna connection body, a first matching circuit and a second matching circuit; the antenna connection body is respectively connected to the first ground terminal and the third ground terminal; the first antenna radiator passes through the first ground point The first matching circuit is connected to the ground; the third antenna radiator is connected to the second matching circuit through the third ground terminal to ground the system.
  • the antenna connection body may be different metal structures (metal body or metal arm, etc.) on the electronic device 100 .
  • a frame on the frame assembly 120 a metal patch printed on the inner side of the rear cover assembly 130, a metal patch printed on the inner side of the frame assembly 120, a flexible circuit arranged on the main board 140, a printed circuit board printed on the main board 140 Metal patch.
  • the first antenna and the second antenna are connected through the antenna connector, so as to realize the common radiator of the first antenna and the second antenna, increase the frequency band covered by the antenna assembly 400, and ensure that the antenna assembly 400 supports the transmission requirements of multi-carrier aggregation. Improving the spatial multiplexing capability can further enable the electronic device to which the above-mentioned antenna assembly 400 is applied to have a relatively good communication effect.
  • the antenna connector 431 is respectively connected to the first ground terminal (B) and the third ground terminal (H), and the first matching circuit 432 is connected in series with the first antenna radiator 411 and the first ground point. Between the ground system, the second matching circuit 433 is connected in series between the third antenna radiator 421 and the ground system connected to the third ground point.
  • the antenna assembly may further include: a third matching circuit and a fourth matching circuit; wherein, the third matching circuit is connected in series between the first feed point and the first feed source; the fourth matching circuit is connected in series between the second Between the feed point and the second feed source.
  • the third matching circuit 441 is connected in series between the first feeding point (A) and the first feeding source 414, and the fourth matching circuit 442 is connected in series between the second feeding point (F) and the second between feeds 422 .
  • the antenna assembly may further include: a third antenna, the third antenna includes a fourth antenna radiator; there is a second gap between the fourth antenna radiator and the end of the third antenna radiator; the fourth antenna radiator includes The second free end and the fourth ground end, the first free end and the second free end are respectively located on both sides of the second slot and coupled through the second slot, the fourth ground end is provided with a fourth ground point; on the fourth antenna radiator A third feed point is provided, and the third feed point is used for connecting a third feed source.
  • the fourth antenna radiator may be a different metal structure (a metal body or a metal arm, etc.) on the electronic device 100 .
  • a frame on the frame assembly 120 a metal patch printed on the inner side of the rear cover assembly 130, a metal patch printed on the inner side of the frame assembly 120, a flexible circuit arranged on the main board 140, a printed circuit board printed on the main board 140 Metal patch.
  • the third feed source 453 can be used to generate an excitation signal, and the excitation signal is loaded on the fourth antenna radiator 451, so that the fourth antenna radiator 451 Radiation electromagnetic wave signal. Since the third feed point (K) on the fourth antenna radiator 451 can be equivalent to a small inductance to the ground to the fourth ground terminal (J), the third feed point (K) to the second free end (I ) can be excited by the third feed 453 to generate a resonant mode. Similarly, the resonance mode can be generated from the second free terminal (I) to the fourth ground terminal (J) by being excited by the third feed source 453 .
  • the fourth antenna radiator 451 can be used to generate multiple resonance modes through the excitation of the third feed source 453 . It can be seen that by adding a third antenna to the antenna assembly 400, the resonant mode of the antenna assembly 400 is increased to further realize the antenna assembly 400 covering multiple frequency bands and ensure that the antenna assembly 400 supports multi-carrier aggregation transmission requirements.
  • the third antenna radiator 421 and the fourth antenna radiator 451 are arranged at intervals (that is, there is a second gap 445 between them), that is, the fourth antenna radiator 451 and the antenna unit 2 have a common aperture, so the second gap 445 There is coupling, so that the third antenna radiator 421 and the fourth antenna radiator 451 are equivalently connected by capacitance.
  • the third antenna can not only use its own fourth antenna radiator 451 to send and receive electromagnetic wave signals, but also use antenna unit 1 and antenna unit 2 to send and receive electromagnetic wave signals, thereby further increasing the frequency band covered by the antenna assembly 400 and ensuring the antenna
  • the component 400 supports the transmission requirements of multi-carrier aggregation and improves the spatial multiplexing capability.
  • the fourth antenna radiator 442 can be regarded as the antenna unit 3 in the embodiment of the present application. Therefore, the antenna unit 1 is coupled to the antenna unit 2, and the antenna unit 2 is coupled to the antenna unit 3, thereby increasing the frequency band covered by the antenna assembly 400, ensuring that the antenna assembly 400 supports the transmission requirements of multi-carrier aggregation, and improving the spatial multiplexing capability.
  • the third antenna can be used to support at least one of the following frequency bands: N78 frequency band, N79 frequency band, and WIFI 5GHz frequency band.
  • the third antenna in the embodiment of the present application can cover the N78 frequency band, the N79 frequency band, the WIFI 5GHz frequency band, etc., thereby satisfying the antenna communication performance while further realizing that the antenna assembly 400 covers multiple frequency bands, and ensuring that the antenna assembly 400 supports multi-carriers Aggregated transport needs.
  • the length from the second free end (I) to the third feeding point (K) may be shorter than the length from the third feeding point (K) to the fourth grounding end (J).
  • different positions of the third feeding point (K) on the fourth antenna radiator 451 can be set to realize that the third antenna covers different frequency bands.
  • the position of the third feeding point (K) on the fourth antenna radiator 451 is farther away from the fourth ground terminal (J), that is, the length from the second free end (I) to the third feeding point (K) is less than
  • the length from the third feed point (K) to the fourth ground end (J) can improve the radiation efficiency of the fourth antenna radiator 451 .
  • the third antenna is used to support the seventh resonant mode, the eighth resonant mode, the ninth resonant mode, and the tenth resonant mode; wherein, the current distribution of the seventh resonant mode is obtained from the third feeding point to the third ground end; the length from the fourth ground end to the second free end is 1/8 to 1/4 times the wavelength corresponding to the center frequency of the eighth resonance mode; the length from the third feeding point to the second free end is the ninth
  • the central frequency of the resonant mode corresponds to 1/4 times the wavelength; the length from the third ground end to the first free end is 3/4 times the wavelength corresponding to the central frequency of the tenth resonant mode.
  • the center frequency of the seventh resonant mode can be a frequency from 3.0GHz to 3.5GHz; the center frequency of the eighth resonant mode can be a frequency from 3.5GHz to 4.0GHz; the center frequency of the ninth resonant mode can be A frequency from 5.0 GHz to 6.0 GHz; the center frequency of the tenth resonant mode may be a frequency from 6.0 GHz to 7.0 GHz.
  • the fourth antenna radiator 451 of above-mentioned antenna assembly 400 comprises the 3rd sub-radiator (IQ section) and the 4th sub-radiator (JQ section); One end of the 3rd sub-radiator and the 4th sub-radiator The other end of the third sub-radiator is the second free end (I); the other end of the fourth sub-radiator is the fourth ground terminal (J); the third sub-radiator is located on the first On one side, the fourth sub-radiator is located on the second side of the electronic device; the third feeding point (K) is located on the third sub-radiator or the fourth sub-radiator.
  • the third sub-radiator and the fourth sub-radiator may be a section of a diagonal frame on the frame component 120 or a metal body printed on the inner side of the frame component 120 .
  • one end of the third sub-radiator is bent and connected with one end of the fourth sub-radiator, which facilitates the angle setting of the third antenna corresponding to the electronic device.
  • the purpose of setting the angle of the third antenna corresponding to the electronic device is: when the user passes through the vertical screen of the electronic device 100 (such as the vertical side where the user holds the frame body 2800 or the horizontal bottom edge where the user holds the frame body 2800 ) during use, since the user’s hand is generally held on the lower half of the long side of the electronic device 100 or the lower short side of the electronic device 100, when a part of the third antenna is located on the upper short side of the electronic device, and
  • the second slit 452 is located in the upper half of the long side of the electronic device 100, thereby effectively preventing the user's hand from covering the second slit 452 and ensuring the normal operation of the third antenna.
  • the device has relatively good communication effect.
  • the fourth antenna radiator 451 is located on the second side of the electronic device.
  • the fourth antenna radiator 451 is located on the first side of the electronic device.
  • the fourth antenna radiator 451 is located on the long side or the short side of the electronic device 100 . It can be understood that the third antenna is located on the long side or the short side of the electronic device 100 . Wherein, the fourth antenna radiator 451 may be a section of frame on the frame component 120 or a metal body printed on the inner side of the frame component 120 .
  • the purpose of the fourth antenna radiator 451 being located on the long side of the electronic device 100 is: when the user passes through the vertical screen of the electronic device 100 (for example, the vertical side where the user holds the frame body 2800 or the vertical side where the user holds the frame body 2800
  • the second slit 452 is located at the upper half of the long side of the electronic device 100, the user's hand is generally held at the lower half of the long side of the electronic device 100 or at the bottom of the electronic device 100.
  • the short side can effectively prevent the user's hand from covering the second slit 452 and ensure the normal operation of the third antenna, thereby enabling the electronic device in which the antenna assembly 400 is applied to have a relatively good communication effect.
  • the purpose of the third antenna radiator 421 being located on the short side of the electronic device 100 is: when the user passes through the vertical screen of the electronic device 100 (such as the vertical side where the user holds the frame body 2800 or the horizontal side where the user holds the frame body 2800 bottom side) during use, since the second slit 452 is located on the upper short side of the electronic device 100, and the user's hand is generally held on the lower half of the long side of the electronic device 100 or the lower short side of the electronic device 100, so that it can This effectively prevents the user's hands from covering the second slit 452 and ensures the normal operation of the third antenna, thereby enabling the electronic device in which the above-mentioned antenna assembly 400 is applied to have a relatively good communication effect.
  • the antenna assembly may further include: a fifth antenna radiator; one end of the fifth antenna radiator is connected to the first feeding point, and the other end of the fifth antenna radiator is a free end.
  • the fifth antenna radiator may be a different metal structure (a metal body or a metal arm, etc.) on the electronic device 100 .
  • a frame on the frame assembly 120 a metal patch printed on the inner side of the rear cover assembly 130, a metal patch printed on the inner side of the frame assembly 120, a flexible circuit arranged on the main board 140, a printed circuit board printed on the main board 140 Metal patch.
  • the fifth antenna radiator 471 is added to the first antenna, thereby increasing the resonant mode of the first antenna, ensuring more flexible debugging of the antenna component, improving the antenna efficiency of the antenna component, and further realizing
  • the antenna assembly 400 covers multiple frequency bands and ensures that the antenna assembly 400 supports the transmission requirement of multi-carrier aggregation.
  • the fifth antenna radiator 471 may be regarded as the antenna unit 4 .
  • one end of the fifth antenna radiator 471 is connected to the first feeding point (A), and the other end of the fifth antenna radiator is a free end.
  • the electronic device may include at least one key, such as a power key, a volume key, and a mute key.
  • the frame assembly 120 of the electronic device 100 needs to open a certain space for arranging the keys, or the keys are placed inside the frame assembly 120 by touch without opening a space. Therefore, when the above-mentioned antenna assembly 400 is applied to an electronic device, how to realize the structural layout of the antenna assembly 400 and the key to improve the overall stacking of the electronic device will be described in detail below.
  • the electronic device further includes at least one button; the first antenna radiator 411 is arranged around or around the button; or, the second antenna radiator 412 is arranged around or around the button; or, the third antenna radiator 421 is arranged around or around the button or, the antenna connecting body 431 is arranged around or around the button; or, the fourth antenna radiator 451 is arranged around or around the button.
  • the first antenna radiator 411 needs to open the space to Used to place the button. At this time, the first antenna radiator 411 is arranged around the key.
  • the frame assembly 120 of the electronic device 100 does not need to open a certain space, but uses a touch control to place a button on the inside of the frame assembly 120, and the first antenna radiator 411 is a section of the frame of the frame assembly 120, then the button can be close to the second An antenna radiator 411 is arranged, that is, the first antenna radiator 411 is arranged around the key.
  • the structure and layout of the rest of the antenna radiator and the keys can be known in the same way, and will not be repeated here.
  • the electronic device includes a button 3901 and a button 3902 .
  • the second antenna radiator 412 surrounds or is arranged around the button 3901
  • the antenna connecting body 431 is arranged around or around the button 3902 . It can be seen that, through the structural layout of the antenna assembly 400 and the buttons, it is beneficial to improve the stacking of the whole electronic device.
  • the antenna unit 1/antenna of the above antenna assembly 400 needs to be separated by a DC blocking device.
  • Element 2/antenna element 3 acts as a metal body suspended relative to the DC circuit in the feed and/or ground system.
  • a DC blocking device is connected in series between the first feed source and the first antenna radiator; a DC blocking device is connected in series between the second feed source and the third antenna radiator; between the third feed source and the fourth antenna radiator There is a DC blocking device in series between the first antenna radiator and the ground system connected to the first ground point; a DC blocking device is connected in series between the third antenna radiator and the ground system connected to the third ground point.
  • a direct device; a direct blocking device is connected in series between the second antenna radiator and the ground system connected to the second ground point.
  • the DC blocking device may include a DC blocking capacitor or a DC blocking circuit.
  • the application implements
  • the example electronic device includes a proximity sensor, so that the SAR detection capability of the electronic device is realized through the proximity sensor and the antenna assembly 400 .
  • the electronic device may also include: a proximity sensor and at least one detection branch; the detection branch is used to connect the proximity sensor and the antenna assembly 400; the proximity sensor is used to detect changes in capacitance signals through the antenna assembly 400 to determine whether the user is approaching or away from the the electronic device.
  • the detection branch may include a signal filter device.
  • adding a signal filter device to the detection branch can isolate or filter higher frequency signals, thereby ensuring that the antenna assembly 400 is not affected by the detection branch.
  • the signal filter device may include an inductor or a signal filter circuit.
  • the inductance value of the inductor may be 82nH, so that the influence on the above-mentioned antenna assembly 400 is small.
  • the proximity sensor can be set on the main board 140 in the electronic device 100
  • the detection branch can be set on the main board 140 in the electronic device 100 .
  • the electronic device further includes a proximity sensor 4001 , an inductor L3 , an inductor L4 and an inductor L5 .
  • the line connecting the proximity sensor 4001 to the antenna unit 3 through the inductor L3 can be regarded as a detection branch.
  • the line connecting the proximity sensor 4001 to the antenna unit 2 through the inductor L4 can be regarded as a detection branch
  • the line connecting the proximity sensor 4001 to the antenna unit 1 through the inductor L5 can be regarded as a detection branch.
  • the proximity sensor 4001 can also be connected to any position on the antenna unit 1/antenna unit 2/antenna unit 3 through a detection branch. Meanwhile, the proximity sensor 4001 may also be connected to at least one of the antenna unit 1/antenna unit 2/antenna unit 3 through a detection branch, which is not specifically limited.
  • the proximity sensor in the electronic device can use the suspended antenna assembly 400 to sense the capacitance signal change brought by the user using the electronic device, so as to determine whether the user is close to or far away from the electronic device, thereby ensuring that the electronic device has SAR detection Ability.
  • the application of the antenna assembly 400 in the embodiment of the present application to electronic equipment can help improve the stacking of electronic equipment, improve the communication capability of the antenna assembly when the electronic equipment is used in landscape or portrait mode, and ensure that the electronic equipment Possess the ability of SAR detection.

Abstract

本申请实施例公开了一种天线组件和电子设备。该天线组件包括第一天线、第二天线、天线连接体、第一匹配电路和第二匹配电路;第一天线中的第一天线辐射体和第二天线辐射体之间存在第一缝隙;第一天线辐射体包括第一耦合端和第一接地端,第二天线辐射体包括第二耦合端和第二接地端,第一天线辐射体通过第一接地端连接第一匹配电路以接地系统;第二天线中的第三天线辐射体包括第一自由端和第三接地端,第三天线辐射体通过第三接地端连接第二匹配电路以接地系统;天线连接体分别连接第一接地端和第三接地端;第一天线辐射体上设有第一馈电点,第三天线辐射体上设有第二馈电点,从而实现第一天线和第二天线的共辐射体,提高天线组件覆盖的频段。

Description

天线组件和电子设备
本发明要求2021年05月26日递交的发明名称为“天线组件和电子设备”的申请号202110582434.7的在先申请优先权,上述在先申请的内容以引入的方式并入本文本中。
技术领域
本申请涉及通信技术领域,具体涉及一种天线组件和电子设备。
背景技术
为了解决新一代移动通信,如第五代新无线(5th generation new radio,5G NR)通信,对传输速率高的要求,越来越多的手机等具有通信功能的电子设备需要安装多个天线组件。
为了提升电子设备在不同频率上的信号收发性能,电子设备上的天线组件通常需要产生更多的谐振模态。目前,天线组件通常需要在金属体上开设多个断口,从而形成多个天线单元,进而产生多个谐振模态。然而,在金属体上开设的断口数量的增多,不仅会影响天线组件的通信性能,还会影响电子设备的整体外观结构等。
发明内容
第一方面,本申请实施例提供一种天线组件,包括:
第一天线,所述第一天线包括第一天线辐射体和第二天线辐射体,所述第一天线辐射体和所述第二天线辐射体之间存在第一缝隙;
第二天线,所述第二天线包括第三天线辐射体;
天线连接体;
第一匹配电路和第二匹配电路;
所述第一天线辐射体包括第一耦合端和第一接地端,所述第二天线辐射体包括第二耦合端和第二接地端,所述第一耦合端和所述第二耦合端分别位于所述第一缝隙两侧并通过所述第一缝隙耦合,所述第一接地端设有第一接地点,所述第二接地端设有第二接地点,所述第一天线辐射体通过所述第一接地点连接所述第一匹配电路以接地系统;
所述第三天线辐射体包括第一自由端和第三接地端,所述第三接地端设有第三接地点,所述第三天线辐射体通过所述第三接地端连接所述第二匹配电路以接所述地系统,所述天线连接体分别连接所述第一接地端和所述第三接地端;
所述第一天线辐射体上设有第一馈电点,所述第一馈电点用于连接第一馈源;
所述第三天线辐射体上设有第二馈电点,所述第二馈电点用于连接第二馈源。
第二方面,本申请实施例提供一种电子设备,包括天线组件,所述天线组件包括第一天线,所述第一天线包括第一天线辐射体和第二天线辐射体,所述第一天线辐射体与所述第二天线辐射体之间存在第一缝隙;
所述第一缝隙位于所述电子设备的第一边,所述第一缝隙到所述电子设备的第二边的距离大于30mm,以及所述第一缝隙到所述电子设备的第三边的距离大于30mm,所述第二边与所述第一边的一侧相邻设置,所述第三边与所述第一边的另一侧相邻设置;
所述第一天线辐射体包括第一耦合端和第一接地端,所述第二天线辐射体包括第二耦合端和第二接地端,所述第一耦合端和所述第二耦合端分别位于所述第一缝隙两侧并通过所述第一缝隙耦合,所述第一接地端设有第一接地点,所述第二接地端设有第二接地点,所述第一天线辐射体通过所述第一接地点连接所述第一匹配电路以接地系统;
所述第一天线辐射体上设有第一馈电点,所述第一馈电点用于连接第一馈源。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍。显而易见地,下面描述的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的一种电子设备的结构示意图;
图2是本申请实施例提供的又一种电子设备的结构示意图;
图3是本申请实施例提供的一种电子设备的主板上集成的电子元器件的示意图;
图4是本申请实施例提供的一种天线组件的结构示意图;
图5是本申请实施例提供的一种由电容与电感的组合的匹配网络的结构示意图;
图6是本申请实施例提供的一种第一天线的结构示意图;
图7是本申请实施例提供的一种第一天线的S参数的分布示意图;
图8是本申请实施例提供的一种第二天线的结构示意图;
图9是本申请实施例提供的一种第二天线的S参数的分布示意图;
图10是本申请实施例提供的又一种天线组件的结构示意图;
图11是本申请实施例提供的又一种天线组件的结构示意图;
图12是本申请实施例提供的一种第三天线的S参数的分布示意图;
图13是本申请实施例提供的又一种天线组件的结构示意图;
图14是本申请实施例提供的又一种天线组件的结构示意图;
图15是本申请实施例提供的又一种接近传感器工作过程的结构示意图;
图16是本申请实施例提供的一种第一天线、第二天线和第三天线各自的S参数的分布示意图;
图17是本申请实施例提供的一种第一天线、第二天线和第三天线的辐射效率和总效率的分布示意图;
图18至图24是本申请实施例提供的又一种天线组件的结构示意图;
图25是本申请实施例提供的一种包括第五天线辐射体的第一天线的结构示意图;
图26是本申请实施例提供的一种包括第五天线辐射体的第一天线的S参数的分布示意图;
图27是本申请实施例提供的一种包括第五天线辐射体的第一天线的辐射效率和总效率的分布示意图;
图28至图39是本申请实施例提供的一种应用于电子设备的天线组件的结构示意图;
图40是本申请实施例提供的一种应用于电子设备的天线组件、接近传感器和检测电路的分布示意图。
具体实施方式
为了使本技术领域的人员更好地理解本申请方案,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、软件、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其他步骤或单元。
在本申请中,除非另有明确的规定和限定,术语“连接”应做广义理解,例如,“连接”可以是固定连接、电气连接、可拆卸连接、弹性连接、直接相连、通过中间媒介间接相连、间隔连接等,对此不作具体限制。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。下面结合附图,对本申请实施例进行详细介绍。
为了更好地理解本申请实施例的技术方案,下面先对本申请实施例可能涉及的概念进行介绍。
本申请实施例中的天线组件可以应用于电子设备,该电子设备可以是具有天线组件的电子设备或者具有天线组件的通信模块,可以是各种具有天线组件的手持设备、车载设备、可穿戴设备、计算设备或者连接到无线调制解调器的其他设备,也可以是各种形式的站点(station,STA)、接入点(access point,AP)、用户设备(user equipment,UE)、移动台(mobile Station,MS)、终端设备(terminal device)、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、个人计算机(personal computer,PC)、中继设备、支持802.11协议的计算机、支持5G通信系统中的终端设备以及未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的终端设备等。为了方便说明,下面以电子设备为移动终端设备为例进行说明,请参阅图1和图2。
在图1和图2中,电子设备100可以包括显示模组110、边框组件120、后盖组件130和主板140。其中,边框组件120位于显示模组110和后盖组件130之间,并绕设于后盖组件130的四周;主板140位于显示模组110、边框组件120和后盖组件130共同形成的收容空间之内。需要说明的是,图1和图2所示的电子设备100还可以包括其他模组和组件,本申请实施例不作具体限制。
具体的,显示模组110可以用于显示图像和色彩,可以为液晶显示屏(liquid crystal display,LCD)、有机发光二极管显示屏(organic light emitting display,OLED)、薄膜二极管(thin filmdiode,TFD)显示屏或薄膜场效应晶体管(thin film transistor,TFT)显示屏等。
具体的,边框组件120可以为金属材质,如镁合金、不锈钢等金属材质,并且可以作为天线组件的一部分,也就是说,边框组件120可以作为天线辐射体的一部分。
具体的,后盖组件130可以为导电材质壳体,可以为金属壳体,如镁合金、不锈钢等金属,可以为非导电材质壳体,可以为塑胶壳体、陶瓷壳体、碳纤维壳体或者玻璃壳体,可以为导电材质与非导电材质相互配合的壳体结构,还可以为金属与塑胶相互配合的壳体结构。进一步的,后盖组件130可以采用注塑的方式形成金属中板,并在金属中板上再注塑以形成塑胶中板的壳体结构。进一步的,后盖组件130可以采用注塑的方式形成镁合金中板,并在镁合金中板上再注塑以形成塑胶中板的壳体结构。
在本申请实施例中,边框组件120上可以具有天线缝隙,并且该天线缝隙上可以填充有塑料或其它绝缘介质以保证边框组件120整体的完整性。
具体的,显示模组110、边框组件120和后盖组件130共同形成收容空间,该收容空间可以用于容纳主板140、天线组件和其他组件或模组,例如受话器、摄像头模组、音频接口、指纹识别模组、传感器、扬声器和电池等。同时,主板140上可以集成各类的电子元器件。进一步的,主板140可以为印刷电路板(printed circuit board,PCB)、柔性电路板(flexible printed circuit,FPC)等。
下面对主板140上集成的电子元器件进行介绍,请参阅图3。图3是本申请实施例提供的一种电子设备的主板上集成的电子元器件的示意图。其中,主板140上集成的电子元器件可以包括处理器310、天线、通信模块320、电源管理模块330、存储器340。
在本申请实施例中,电子设备100的通信功能可以通过天线、通信模块320、调制解调处理器和基带处理器等实现。其中,电子设备100中的天线用于发射和接收电磁波信号。同时,电子设备100中的天线可用于覆盖单个或多个通信频带,例如天线可以覆盖1000MHz至3000MHz频段(即LTE或NR中的中高频MHB频段),3000MHz至10000MHz频段(即LTE或NR中的超高频UHB频段),可以覆盖3300MHz至4120MHz频段(即5G中的N77频段),可以覆盖3300MHz至3800MHz频段(即5G中的N78频段),可以覆盖4140MHz至5000MHz频段(即5G中的N79频段),可以覆盖2.4GHz、5GHz或者6GHz频段(即WIFI频段),可以覆盖1575MHz(即GPS-L1频段)。
具体的,处理器310可以包括中央处理器(central processing unit,CPU)、应用处理器(application processor,AP)、调制解调处理器、图形处理器(graphicsprocessingunit,GPU)、图像信号处理器(image signal processor,ISP)、控制器、视频编解码器、数字信号处理器(digital signal processor,DSP)、基带处理器、神经网络处理器(neural-network processing unit,NPU)等。此外,处理器310利用各种接口和线路连接整个电子设备100内的各个组件或模组,并通过运行或执行存储在存储器340内的指令、程序、代码集或指令集,以及调用存储在存储器340内的数据以执行电子设备100的各种功能和处理数据。
具体的,通信模块320可以提供应用在电子设备100上的包括2G/3G/4G/5G等移动通信、蓝牙(bluetooth,BT)、无线局域网(wirelesslocal area networks,WLAN)、无线保真(wireless fidelity,WIFI)网络、全球导航卫星系统(global navigation satellite system,GNSS)、近距离无线通信(near field communication,NFC)、调频(frequency modulation,FM)、红外(infrared,IR)等无线通信的解决方案。通信模块320可以包括至少一个滤波器、开关、功率放大器和低噪声放大器(lownoise amplifier,LNA)等。通信模块320可以由天线接收电磁波,并对接收的电磁波进行滤波、放大等处理,传送至调制解调处理器进行解调。通信模块320还可以对经调制解调处理器调制后的信号放大,经天线转为电磁波辐射出去。在一些可能的示例中,通信模块320的至少部分功能模块可以被设置于处理器310中。在一些可能的示例中,通信模块320的至少部分功能模块可以与处理器310的至少部分模块被设置在同一个器件中。
具体的,电源管理模块330用于连接电池和处理器310。电源管理模块330接收电池的输入以为处理器310、通信模块320、存储器340等供电。电源管理模块330还可以用于监测电池容量、电池循环次数、电池健康状态(漏电、阻抗)等参数。
具体的,存储器340可以用于存储计算机可执行程序代码,该可执行程序代码包括指令。此外,存储器340可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪 存器件、通用闪存存储器(universal flash storage,UFS)等。
结合上述描述,下面对本申请实施例的天线组件进行具体介绍。
请参阅图4,图4是本申请实施例提供的一种天线组件的结构示意图。天线400可以应用于电子设备100。天线组件400可以包括第一天线、第二天线、天线连接体431、第一匹配电路432和第二匹配电路433。其中,第一天线可以包括第一天线辐射体411和第二天线辐射体412,第一天线辐射体411和第二天线辐射体412之间存在第一缝隙413;
第二天线可以包括第三天线辐射体421;
第一天线辐射体411可以包括第一耦合端(C)和第一接地端(B),第二天线辐射体包括第二耦合端(D)和第二接地端(E),第一耦合端(C)和第二耦合端(D)分别位于第一缝隙413两侧并通过第一缝隙413耦合,第一接地端(B)设有第一接地点(GND1),第二接地端(E)设有第二接地点(GND2),第一天线辐射体411通过第一接地端(B)连接第一匹配电路432以接地系统;
第三天线辐射体421可以包括第一自由端(G)和第三接地端(H),第三接地端(H)设有第三接地点(GND3),第三天线辐射体421通过第三接地端(H)连接第二匹配电路433以接地系统,天线连接体431分别连接第一接地端(B)和第三接地端(H);
第一天线辐射体411上可以设有第一馈电点(A),第一馈电点(A)可以用于连接第一馈源414;
第三天线辐射体421上设有第二馈电点(F),第二馈电点(F)可以用于连接第二馈源422。
具体的,第一天线辐射体411可以为柔性电路板(Flexible Printed Circuit,FPC)天线辐射体、激光直接成型(Laser Direct Structuring,LDS)天线辐射体、印刷直接成型(Print Direct Structuring,PDS)天线辐射体、金属枝节中的任一种。同理,第二天线辐射体412可以为FPC天线辐射体、LDS天线辐射体、PDS天线辐射体、金属枝节中的任一种。
需要说明的是,在天线组件400的第一天线中,由于第一天线辐射体411和第二天线辐射体412间隔设置(即二者之间存在第一缝隙413),即第一天线辐射体411和第二天线辐射体412共口径,因此第一缝隙413存在耦合,从而使得第一天线辐射体411和第二天线辐射体412相当于通过电容连接。其中,该电容的电容值可以由第一天线辐射体411一端(C)所在端面的相对面积、第二天线辐射体412一端(D)所在端面的相对面积、CD之间的间距和第一缝隙413内填充的介质共同决定。
另外,当天线组件400工作时,第一馈源414产生的激励信号可经由第一天线辐射体411耦合到第二天线辐射体412。因此,第二天线辐射体412可以通过第一缝隙413的耦合产生第一天线的多个谐振模态。可见,在第一天线收发电磁波信号时,不仅可以利用第一天线辐射体411,还可以利用第二天线辐射体412,从而实现天线组件400的天线通信性能。同时,通过一个缝隙(第一缝隙)增加天线组件400的谐振模态,从而实现天线组件400覆盖多个频段,保证天线组件400支持多载波聚合的传输需求,以及提升空间复用能力。
具体的,第三天线辐射体421可以为FPC天线辐射体、LDS天线辐射体、PDS天线辐射体、金属枝节中的任一种。
需要说明的是,在天线组件400的第二天线中,第二馈源422可以用于产生激励信号,并由激励信号加载在第三天线辐射体421,以使得第三天线辐射体421辐射电磁波信号。由于第三天线辐射体421上的FH段可以等效于到地小电感,因此第三天线辐射体421上的FG段可以通过第二馈源422的激励产生谐振模态。同理,第三天线辐射体421上的GH段可以通过第二馈源422的激励产生谐振模态。因此,第三天线辐射体421可以通过第二馈源422的激励产生第二天线的多个谐振模态。
可见,通过在天线组件400中的第二天线,从而增加天线组件400的谐振模态,实现天线组件400覆盖多个频段,保证天线组件400支持多载波聚合的传输需求,以及提升空间复用能力。
具体的,天线连接体431可以用于连接第一天线和第二天线。
需要说明的是,本申请实施例通过天线连接体431连接第一天线和第二天线,从而实现第一天线和第二天线的共辐射体。因此,当第一天线工作时,不但可以利用自身的第一天线辐射体411和第二天线辐射体412来收发电磁波信号,还可以利用第二天线的第三天线辐射体421,以及新增的天线连接体431来收发电磁波信号,从而提高天线组件400覆盖的频段,保证天线组件400支持多载波聚合的传输需求,以及提升空间复用能力。同理,当第二天线工作时,不但可以利用自身的第三天线辐射体421来收发电磁波信号,还可以利用第一天线的第一天线辐射体411和第二天线辐射体412,以及新增的天线连接体431来收发电磁波信号,从而提高天线组件400覆盖的频段,保证天线组件400支持多载波聚合的传输需求,以及提升空间复用能力。
另外,通过天线连接体431将第一天线和第二天线连接,本申请实施例可以将第二天线辐射体412看作天线单元1,而将第一天线辐射体411、第三天线辐射体421和天线连接体431看作天线单元2。因此, 第一馈源414通过连接天线单元2的第一馈电点(A),第二馈源422连接天线单元2的第二馈电点(F),天线单元2在第一接地端(B)和第三接地端(H)分别通过第一匹配电路432和第二匹配电路433下地,从而有利于提高天线组件400的辐射效率。
具体的,天线连接体431可以与第一天线辐射体411或者第三天线辐射体421具有相同的材质。
具体的,天线连接体431可以为FPC天线辐射体、LDS天线辐射体、PDS天线辐射体、金属枝节中的任一种。
具体的,第一天线辐射体411、第二天线辐射体412、第三天线辐射体421和天线连接体431可以共面。
例如,若第一天线辐射体411、第二天线辐射体412、第三天线辐射体421和天线连接体431均为金属贴片等,则第一天线辐射体411、第二天线辐射体412、第三天线辐射体421和天线连接体431可以共面。
具体的,第一接地点(GND1)用于连接地系统;第二接地点(GND1)用于连接地系统;第三接地点(GND3)用于连接地系统。
具体的,地系统可以是指能够作为地极的部件,该地系统通常为较大块的金属构成。其中,本申请的地系统可以是同一个,该地系统可以包括一个或多个部件。在电子设备100中,该地系统110可以包括显示模组110中的接地部件、边框组件120、后盖组件130、主板140中的接地部件中的至少一个。
例如,边框组件120构成电子设备100的地极的部件,当电子设备100中的电子器件需要接地时,可连接边框组件120以接地系统。
具体的,第一匹配电路432可以用于阻抗匹配和/或隔直匹配。其中,第一匹配电路432可以包括电容、电感、电容与电感的组合、开关、可变电容中的至少之一。例如,请参阅图5,第一匹配电路432可以为图5中的(a)至(h)中的一种。
需要说明的是,第一匹配电路432可以包括隔直电容以实现隔直匹配。
具体的,第二匹配电路433可以用于阻抗匹配和/或隔直匹配。其中,第二匹配电路433可以包括电容、电感、电容与电感的组合、开关、可变电容中的至少之一。例如,请参阅图5,第二匹配电路433可以为图5中的(a)至(h)中的一种。
需要说明的是,第二匹配电路433可以包括隔直电容以实现隔直匹配。
具体的,第一缝隙413内可以填充非金属绝缘材料。
结合上述描述,下面本申请对天线组件400中的第一天线进行具体说明。
请参阅图6,第一天线包括第一天线辐射体411和第二天线辐射体412。
需要说明的是,在天线组件400的第一天线中,第一馈源414可以用于产生激励信号,并由激励信号加载在第一天线辐射体411,以使得第一天线辐射体411辐射电磁波信号。由于第一天线辐射体411上的AB段可以等效于到地小电感,因此第一天线辐射体411上的AC段可以通过第一馈源414的激励产生谐振模态。同理,第一天线辐射体411上的CB段可以通过第一馈源414的激励产生谐振模态。可见,第一天线辐射体411可以用于通过第一馈源414的激励产生第一天线的多个谐振模态。
具体的,第一天线辐射体411可以用于产生低频和高频的谐振模态,第二天线辐射体412可以用于产生中频的谐振模态。
具体的,第一天线可以用于覆盖以下至少一种频段:LTE MHB频段、LTE UHB频段、NR MHB频段、NR UHB频段、WIFI 2.4GHz频段。
可见,本申请实施例的第一天线可以覆盖LTE MHB频段、LTE UHB频段、NR MHB频段、NR UHB频段、WIFI 2.4GHz频段等,从而在满足天线通信性能的同时,实现由天线组件的第一天线覆盖多个频段,以及支持多载波聚合的传输需求。
具体的,第一天线辐射体411的长度可以大于第二天线辐射体412的长度。
具体的,第一馈电点(A)到第一耦合端(C)的长度(AC段的长度)可以大于第一馈电点(A)到第一接地端(B)的长度(AB段的长度)。
需要说明的是,本申请实施例可以通过设置第一馈电点(A)在第一天线辐射体411上的不同位置,实现第一天线支持不同的频段。其中,第一馈电点(A)在第一天线辐射体412上的位置越靠近第一接地端(B),即AC段的长度大于AB段的长度,从而可以提高第一天线辐射体411的辐射效率。
具体的,第一天线可以用于支持第一谐振模态、第二谐振模态、第三谐振模态、第四谐振模态;其中,第一接地端到第一耦合端的长度为第一谐振模态中心频率对应波长的1/8至1/4倍;第二接地端到第二耦合端的长度为第二谐振模态中心频率对应波长的1/4倍;第一馈电点到第一耦合端的长度为第三谐振模态中心频率对应波长的1/4倍;第一接地端到第一耦合端的长度为第四谐振模态中心频率对应波长的3/4倍。
进一步的,第一谐振模态中心频率可以为1.5GHz至2.0GHz中的一个频率;第二谐振模态中心频率 可以为2.5GHz至3.0GHz中的一个频率;第三谐振模态中心频率可以为3.0GHz至4.0GHz中的一个频率;第四谐振模态中心频率可以为4.5GHz至5.0GHz中的一个频率。
需要说明的是,谐振模态中心频率可以适配于产生该谐振模态的天线辐射体的长度。因此,第一接地端(B)到第一耦合端(C)的长度(BC段的长度)、第二接地端(E)到第二耦合端(D)的长度(DE段的长度)、第一馈电点(A)到第一耦合端(C)的长度(AC段的长度)可以分别通过其产生的谐振模态中心频率设置。
示例性的,请参阅图7,图7提供了一种第一天线的散射(scatter,S)参数(parameter)的分布示意图。其中,参数S1,1表示第一天线的反射损失。图6中的标记1表示第一谐振模态中心频率为1.7767GHz,其对应的S参数(S1,1)为-4.5137dB。因此,第一接地端(B)到第一耦合端(C)的长度约为20mm至45mm中的一个取值。由于电磁波传输速度会受到各种传输介质的影响,因此在实际工程中第一接地端(B)到第一耦合端(C)要小于上述的取值,下述同理可知。
图7中的标记2表示第二谐振模态中心频率为2.5978GHz,其对应的S参数(S1,1)为-13.398dB。因此,第二接地端(E)到第二耦合端(D)的长度可以为28mm。
图7中的标记3表示第三谐振模态中心频率为3.4879GHz,其对应的S参数(S1,1)为-7.1213dB。因此,第一馈电点(A)到第一耦合端(C)的长度约为21mm。
图7中的标记4表示第四谐振模态中心频率为4.9369GHz,其对应的S参数(S1,1)为-16.755dB。因此,第一接地端(B)到第一耦合端(C)约为45mm。
结合上述描述,下面本申请实施例将对天线组件400中的第二天线进行具体说明。
请参阅图8,第二天线包括第三天线辐射体421。
需要说明的是,在天线组件400的第二天线中,第三天线辐射体421上的FG段可以通过第二馈源422的激励产生谐振模态。同理,第三天线辐射体421上的GH段可以通过第二馈源422的激励产生谐振模态。因此,第三天线辐射体421可以用于通过第二馈源422的激励产生第二天线的多个谐振模态。可见,通过在天线组件400中的第二天线,从而增加天线组件400的谐振模态,实现天线组件400覆盖多个频段,以及保证天线组件400支持多载波聚合的传输需求。
具体的,第二天线可以用于覆盖以下至少一种频段:LTE MHB频段、LTE UHB频段、NR MHB频段、NR UHB频段、WIFI 2.4GHz频段、GPS-L1频段。
可见,本申请实施例的第二天线可以覆盖LTE MHB频段、LTE UHB频段、NR MHB频段、NR UHB频段、WIFI 2.4GHz频段、GPS-L1频段等,从而在满足天线通信性能的同时,进一步实现天线组件400覆盖多个频段,以及保证天线组件400支持多载波聚合的传输需求。
具体的,第二馈电点(F)到第一自由端(G)的长度可以大于第二馈电点(F)到第三接地端(H)的长度。
需要说明的是,本申请实施例可以通过设置第二馈电点(F)在第三天线辐射体421上的不同位置,实现第二天线覆盖不同的频段。其中,第二馈电点(F)在第三天线辐射体421上的位置越靠近第三接地端(H),即第二馈电点(F)到第一自由端(G)的长度大于第二馈电点(F)到第三接地端(H)的长度,从而可以提高第三天线辐射体422的辐射效率。
具体的,第二天线可以用于支持第五谐振模态、第六谐振模态;其中,第三接地端(H)到第一自由端(G)的长度可以为第五谐振模态中心频率对应波长的1/4倍;第二馈电点(F)到第一自由端(G)的长度可以为第六谐振模态中心频率对应波长的1/4倍。
进一步的,第五谐振模态中心频率可以为1.5GHz至2.0GHz中的一个频率;第六谐振模态中心频率可以为2.0GHz至3.0GHz中的一个频率。
示例性的,请参阅图9,图9提供了一种第二天线的S参数的分布示意图。其中,曲线S2,2表示第二天线的反射损失。图7中的标记1表示第五谐振模态中心频率可为1.5697GHz,其对应的S参数(S2,2)为-7.3678dB。因此,第三接地端(H)到第一自由端(G)的长度约为47.7mm。由于电磁波传输速度会受到各种传输介质的影响,因此在实际工程中,第三接地端(H)到第一自由端(G)的长度要小于上述的取值,下述同理可知。
图9中的标记2表示第六谐振模态中心频率为2.515GHz,其对应的S参数(S2,2)为-7.3044dB。因此,第二馈电点(F)到第一自由端(G)的长度约为29.8mm。
结合上述描述,下面本申请实施例将对天线组件400包括第四天线辐射体、第三匹配电路和第四匹配电路进行具体说明。
请参阅图10,天线组件400还包括:第三匹配电路441和第四匹配电路442;第三匹配电路441串联在第一馈电点(A)与第一馈源414之间;第四匹配电路442串联在第二馈电点(F)与第二馈源422之间。
具体的,第三匹配电路441可以用于阻抗匹配和/或隔直匹配。其中,第三匹配电路441可以包括电容、电感、电容与电感的组合、开关、可变电容中的至少之一。例如,请参阅图5,第三匹配电路441可以为图5中的(a)至(h)中的一种。
需要说明的是,第三匹配电路441可以包括隔直电容以实现隔直匹配。
具体的,第四匹配电路442可以用于阻抗匹配和/或隔直匹配。其中,第四匹配电路442可以包括电容、电感、电容与电感的组合、开关、可变电容中的至少之一。例如,请参阅图5,第四匹配电路442可以为图5中的(a)至(h)中的一种。
需要说明的是,第四匹配电路442可以包括隔直电容以实现隔直匹配。
结合上述描述,下面本申请实施例将对天线组件400还包括第三天线进行具体说明。
请参阅图11,天线组件400还包括:第三天线,第三天线包括第四天线辐射体451;第四天线辐射体451与第三天线辐射体421之间存在第二缝隙452;第四天线辐射体包括第二自由端(I)和第四接地端(J),第一自由端(G)和第二自由端(I)分别位于第二缝隙(452)两侧并通过第二缝隙(452)耦合,第四接地端(J)设有第四接地点(GND1);第四天线辐射体451上设有第三馈电点(K),第三馈电点用于连接第三馈源。
具体的,第四接地点(GND1)用于连接地系统。
需要说明的是,在天线组件400的第三天线中,首先,第三馈源453可以用于产生激励信号,并由激励信号加载在第四天线辐射体451,以使得第四天线辐射体451辐射电磁波信号。由于第四天线辐射体451上的第三馈电点(K)到第四接地端(J)可以等效于到地小电感,因此第三馈电点(K)到第二自由端(I)可以通过第三馈源453的激励产生谐振模态。同理,第二自由端(I)到第四接地端(J)可以通过第三馈源453的激励产生谐振模态。可见,第四天线辐射体451可以用于通过第三馈源453的激励产生多个谐振模态。可见,通过在天线组件400中增加第三天线,从而增加天线组件400的谐振模态,进一步实现天线组件400覆盖多个频段,以及保证天线组件400支持多载波聚合的传输需求。
其次,由于第三天线辐射体421和第四天线辐射体451间隔设置(即二者之间存在第二缝隙445),即第四天线辐射体451和天线单元2共口径,因此第二缝隙445存在耦合,从而使得第三天线辐射体421和第四天线辐射体451相当于通过电容连接。当第三天线工作时,不但可以利用自身的第四天线辐射体451来收发电磁波信号,还可以利用天线单元1以及天线单元2来收发电磁波信号,从而进一步提高天线组件400覆盖的频段,保证天线组件400支持多载波聚合的传输需求,以及提升空间复用能力。
最后,通过第三天线辐射体421和第四天线辐射体451间隔设置,本申请实施例可以将第四天线辐射体442看作天线单元3。因此,天线单元1和天线单元2耦合,以及天线单元2和天线单元3耦合,从而提高天线组件400覆盖的频段,保证天线组件400支持多载波聚合的传输需求,以及提升空间复用能力。
具体的,第一天线辐射体411、第二天线辐射体412、第三天线辐射体421、天线连接体431和第四天线辐射体451可以共面。
例如,若第一天线辐射体411、第二天线辐射体412、第三天线辐射体421、天线连接体431和第四天线辐射体451均为金属贴片等,则第一天线辐射体411、第二天线辐射体412、第三天线辐射体421、天线连接体431和第四天线辐射体451可以共面。
具体的,第四天线辐射体451可以为FPC天线辐射体、LDS天线辐射体、PDS天线辐射体、金属枝节中的任一种。
具体的,第三天线可以用于支持以下至少一种频段:N78频段、N79频段、WIFI 5GHz频段。
可见,本申请实施例的第三天线可以覆盖N78频段、N79频段、WIFI 5GHz频段等,从而在满足天线通信性能的同时,进一步实现天线组件400覆盖多个频段,以及保证天线组件400支持多载波聚合的传输需求。
具体的,第二自由端(I)到第三馈电点(K)的长度可以小于第三馈电点(K)到第四接地端(J)的长度。
需要说明的是,本申请实施例可以通过设置第三馈电点(K)在第四天线辐射体451上的不同位置,实现第三天线覆盖不同的频段。其中,第三馈电点(K)在第四天线辐射体451上的位置越远离第四接地端(J),即第二自由端(I)到第三馈电点(K)的长度小于第三馈电点(K)到第四接地端(J)的长度,从而可以提高第四天线辐射体451的辐射效率。
具体的,第三天线用于支持第七谐振模态、第八谐振模态、第九谐振模态、第十谐振模态;其中,第七谐振模态的电流分布是从第三馈电点到第三接地端;第四接地端到第二自由端的长度为第八谐振模态中心频率对应波长的1/8至1/4倍;第三馈电点到第二自由端的长度为第九谐振模态中心频率对应波长的1/4倍;第三接地端到第一自由端的长度为第十谐振模态中心频率对应波长的3/4倍。
进一步的,第七谐振模态中心频率可以为3.0GHz至3.5GHz中的一个频率;第八谐振模态中心频率可以为3.5GHz至4.0GHz中的一个频率;第九谐振模态中心频率可以为5.0GHz至6.0GHz中的一个频率;第十谐振模态中心频率可以为6.0GHz至7.0GHz中的一个频率。
结合上述描述,请参阅图12,图12提供了一种第三天线的S参数的分布示意图。其中,曲线S3,3表示第三天线的反射损失。图12中的标记2表示第八谐振模态中心频率为3.8669GHz,其对应的S参数(S3,3)为-5.1333dB。因此,第二自由端(I)到第四接地端(J)的长度约为9.7mm至19.4mm中的之一。由于电磁波传输速度会受到各种传输介质的影响,因此在实际工程中第二自由端(I)到第四接地端(J)的长度要小于上述的取值,下述同理可知。图12中的标记3表示第九谐振模态中心频率为5.6098GHz,其对应的S参数(S2,2)为-10.755dB。因此,第二自由端(I)到第三馈电点(K)的长度约为13.37mm。
结合上述描述,下面本申请实施例将对天线组件400还包括第五匹配电路进行具体说明。
请参阅图13,天线组件400还包括:第五匹配电路443。
具体的,第五匹配电路443可以用于阻抗匹配和/隔直匹配。其中,第五匹配电路443可以包括电容、电感、电容与电感的组合、开关、可变电容中的至少之一。例如,请参阅图5,第五匹配电路443可以为图5中的(a)至(h)中的一种。
需要说明的是,第五匹配电路443可以包括隔直电容以实现隔直匹配。
结合上述描述,为了实现天线组件400具备电磁波能量吸收比(specific absorption rate,SAR)检测的能力,本申请实施例需要考虑第一匹配电路432、第二匹配电路433、第三匹配电路441、第四匹配电路442和第五匹配电路443是否包含隔直器件,该隔直器件可以包括隔直电容或者隔直电路。
请参阅图14,若第一匹配电路432、第二匹配电路433、第三匹配电路441、第四匹配电路442和第五匹配电路443均不包含隔直器件,则天线组件400还可以包括:第一电容(C1)、第二电容(C2)、第三电容(C3)、第四电容(C4)、第五电容(C5)、第六电容(C6)和第七电容(C7);其中,第一电容串联于第一天线辐射体411和第一接地点所连接的地系统之间;第二电容串联于第三天线辐射体421和第三接地点所连接的地系统之间;第三电容串联于第一馈电点(A)和第一馈源414之间;第四电容串联于第二馈电点(F)和第二馈源422之间;第五电容串联于第二天线辐射体412和第二接地点所连接的地系统之间;第六电容串联于第三馈电点(K)和第三馈源453之间。
其中,第一电容(C1)、第二电容(C2)、第三电容(C3)、第四电容(C4)、第五电容(C5)、第六电容(C6)、第七电容(C7)的电容值可以为22pF,从而对天线组件400的影响较小。
需要说明的是,当天线组件400应用于电子设备时,电子设备中的接近传感器可以利用悬浮的金属体来感应使用该电子设备的用户所带来的电容信号变化,从而判断用户是否靠近或远离该电子设备。
例如,在图15的(a)中,接近传感器1510包括印刷电路板板(printed circuit board,PCB)和覆盖(overlay)板,并且接近传感器1510自身能产生电容信号(C 1)。当用户1520靠近接近传感器1510时,接近传感器1510能够感应到用户1520所带来的电容信号变化(C 2)。因此,本申请实施例通过在天线组件400中添加具备隔直功能的第一电容(C1)、第二电容(C2)、第三电容(C3)、第四电容(C4)、第五电容(C5)、第六电容(C6)、第七电容(C7),从而实现将天线组件400进行悬浮,以便将天线组件400作为相对于馈源和/或地系统中的直流电路悬浮的金属体,进而实现天线组件400具备SAR检测的能力。
另外,可以理解的是,若第一匹配电路432、第二匹配电路433、第三匹配电路441、第四匹配电路442和第五匹配电路443中存在部分的匹配电路包含隔直器件,则该部分的匹配电路不需要再添加隔直器件。例如,如果第一匹配电路432包含隔直器件(即第一匹配电路432具有隔直匹配),天线组件400就无需包括第一电容(C1),以及相应的连接关系,对此不作具体限制。
结合上述描述,在天线组件400包括第一天线、第二天线和第三天线的情况下,本申请实施例再对天线组件400中各天线之间的阻抗带宽、隔离度、辐射效率(radiantefficiency)和总效率(total efficiency)等进行分析。
请参阅图16,图16提供了一种第一天线、第二天线和第三天线的S参数的分布示意图。其中,曲线1611表示第一天线的参数S1,1(参数S1,1表示第一天线的反射损失),曲线1621表示第一天线的参数S2,1(参数S2,1表示第二天线到第一天线的馈入损失),曲线1622表示第二天线的参数S2,2(参数S2,2表示第二天线的反射损失),曲线1631表示第三天线的参数S3,1(参数S3,1表示第三天线到第一天线的馈入损失),曲线1632表示第三天线的参数S3,2(参数S3,2表示第三天线到第二天线的馈入损失),曲线1633表示第三天线的参数S3,3(参数S3,3表示第三天线的反射损失)。可见,在天线组件400中,第一天线、第二天线和第三天线分别具有良好的阻抗带宽,以及各天线之间具有良好的隔离度。
请参阅图17,图17提供了一种第一天线、第二天线和第三天线的辐射效率和总效率的分布示意图。 其中,曲线1711表示第一天线的辐射效率,曲线1712表示第二天线的辐射效率,曲线1713表示第三天线的辐射效率,曲线1721表示第一天线的总效率,曲线1722表示第二天线的总效率,曲线1723表示第三天线的总效率。可见,天线组件400中的各天线具有良好的效率带宽。
结合上述描述,下面本申请实施例将天线组件400还包括至少一个第六匹配电路进行具体说明。
请参阅图18和图19,天线组件400还可以包括:至少一个第六匹配电路461,第六匹配电路461的一端连接天线连接体431上的第五接地端(L),第五接地端(L)设有第五接地点(GND5),第五接地端(L)位于第一接地端(B)和第三接地端(H)之间,第六匹配电路461的另一端接第五接地点所连接的地系统。
需要说明的是,通过在天线组件400(天线单元2)中增加下地的第六匹配电路461,有利于提高天线组件400中各天线之间的隔离度,以及能够有效滤除天线单元2上具有低效率的谐振模态。同时,第六匹配电路461的数量越多,天线组件400中各天线之间的隔离度越好,以及更有利于滤除天线单元2上具有低效率的谐振模态。
具体的,第六匹配电路461可以用于阻抗匹配和/或隔直匹配。其中,第六匹配电路461可以包括电容、电感、电容与电感的组合、开关、可变电容中的至少之一。例如,请参阅图5,第六匹配电路461可以为图5中的(a)至(h)中的一种。
需要说明的是,第六匹配电路461可以包括隔直电容以实现隔直匹配。
结合上述描述,为了实现包含第六匹配电路的天线组件400具备SAR检测的能力。因此,若第六匹配电路不包含隔直器件,则天线组件400还包括:第八电容(C8),第八隔电容串联于天线连接体431和第五接地点所连接的地系统之间。其中,第八电容(C8)的电容值可以为22pF,从而对天线组件400的影响较小。另外,本领域技术人员结合上述描述,可知具体的连接关系,对此不再赘述。
结合上述描述,下面本申请实施例对天线组件400包括第五天线辐射体进行具体说明。
请参阅图20、图21、图22、图23和图24,天线组件400还可以包括:第五天线辐射体471,第五天线辐射体的一端(M)连接第一馈源414,第五天线辐射体的另一端(N)为开路端。
需要说明的是,本申请实施例通过在第一天线中增加第五天线辐射体471,从而增加第一天线的谐振模态,保证天线组件的调试更加灵活,提升天线组件的天线效率,进一步实现天线组件400覆盖多个频段,保证天线组件400支持多载波聚合的传输需求,以及提升空间复用能力。
另外,本申请实施例可以将第五天线辐射体471看作天线单元4。
下面对第五天线辐射体471、第三匹配电路441和第一天线之间的连接关系做一个示例性说明。
示例性的,请参阅图25,第三匹配电路441包括第九电容(C9)、第十电容(C10)、第十一电容(C11)、第十二电容(C12)、第一电感(L1)和第二电感(L2)。其中,第九电容的容值为1.0pF,第十电容的容值为0.8pF,第十一电容的容值为0.5pF,第十二电容的容值为0.8pF,第一电感的电感值为1.0nH,第一电感的电感值为15nH。由于第五天线辐射体4711连接在0.5pF与0.8pF之间,因此,该形式的电容连接方式对天线组件400所覆盖的其他频段影响较小,对其他频段相当于并联了0.35pF(0.5pF串联0.8pF等效为0.35pF)。
具体的,第五天线辐射体471可以为FPC天线辐射体、LDS天线辐射体、PDS天线辐射体、金属枝节。
具体的,第五天线辐射体471可以用于覆盖以下至少一种频段:LTE MHB频段、LTE UHB频段、NR MHB频段、NR UHB频段、WIFI 2.4GHz频段。
具体的,第五天线辐射体471可以用于支持第十一谐振模态;第五天线辐射体471的长度(MN段的长度)可以为第十一谐振模态中心频率对应波长的1/8至1/2倍。
其中,第十一谐振模态中心频率可以为4.5GHz至5.5GHz中的一个频率。
结合上述描述,请参阅图26,图26提供了一种包括第五天线辐射体的第一天线的S参数的分布示意图。其中,曲线S1,1表示第一天线的反射损失。图26中的标记4表示第十一谐振模态中心频率为4.9793GHz,其对应的S参数(S1,1)为-13.045dB。因此,第五天线辐射体471的长度(MN段的长度)约为7.53mm至30.12mm中的之一。由于电磁波传输速度会受到各种传输介质的影响,因此在实际工程中第五天线辐射体471的长度要小于上述的取值。另外,相比于图5所示,第一天线新增的第五天线辐射体已影响图7所述的第一天线的所覆盖的频率。
结合上述描述,在天线组件400包括第五天线辐射体471的情况下,本申请实施例再对第一天线的辐射效率(radiantefficiency)和总效率(total efficiency)等进行分析。
请参阅图27,图27提供了一种第一天线的辐射效率和总效率的分布示意图。其中,曲线2711表示第一天线的辐射效率,曲线2712表示第一天线的总效率。可见,在第一天线中增加第五天线辐射体471,有利于提升天线组件的天线效率,保证天线组件具体良好的效率带宽。
结合上述描述,天线组件用于覆盖以下至少一种频段:LTE MHB频段、LTE UHB频段、NR MHB频段、NR UHB频段、WIFI 2.4GHz频段、WIFI 5GHz频段、GPS-L1频段。
综上所述,可以看出,本申请实施例的天线组件400的第一天线、第二天线和第三天线之间具有共口径,并且各天线之间具有良好的隔离度、阻抗带宽、辐射效率和空间复用能力。同时,天线组件400能够覆盖多个频段,支持多载波聚合的传输需求,以及具备SAR检测的能力等。
结合上述描述,本申请实施例还提供一种电子设备,该电子设备可以为上述电子设备100,该电子设备可以包括天线组件,该天线组件可以是上述天线组件400。其中,
该天线组件可以包括第一天线,第一天线可以包括第一天线辐射体和第二天线辐射体,第一天线辐射体与第二天线辐射体之间存在第一缝隙;
第一缝隙位于电子设备的第一边,第一缝隙到电子设备的第二边的距离大于30mm,以及第一缝隙到电子设备的第三边的距离大于30mm,第二边与第一边的一侧相邻设置,第三边与第一边的另一侧相邻设置;
第一天线辐射体包括第一耦合端和第一接地端,第二天线辐射体包括第二耦合端和第二接地端,第一耦合端和第二耦合端分别位于第一缝隙两侧并通过第一缝隙耦合,第一接地端设有第一接地点,第二接地端设有第二接地点,第一天线辐射体通过第一接地点连接第一匹配电路以接地系统;
第一天线辐射体上设有第一馈电点,第一馈电点用于连接第一馈源。
需要说明的是,首先,本申请对各个实施例的描述都各有侧重。因此,电子设备侧的实施例中没有详述的部分,可以参见上述天线组件400侧的实施例中的相关描述,并能达到相同的技术效果,对此不再赘述。
其次,在天线组件的第一天线中,由于第一天线辐射体和第二天线辐射体间隔设置(即二者之间存在第一缝隙),即第一天线辐射体和第二天线辐射体共口径,因此第一缝隙存在耦合,从而使得第一天线辐射体和第二天线辐射体相当于通过电容连接。其中,该电容的电容值可以由第一天线辐射体一端所在端面的相对面积、第二天线辐射体一端所在端面的相对面积、第一缝隙之间的间距和第一缝隙内填充的介质共同决定。另外,当第一天线工作时,第一馈源产生的激励信号可经由第一天线辐射体耦合到第二天线辐射体。因此,第二天线辐射体可以通过第一缝隙的耦合产生第一天线的多个谐振模态。可见,在第一天线收发电磁波信号时,不仅可以利用第一天线辐射体,还可以利用第二天线辐射体,从而实现天线组件的天线通信性能。同时,通过一个缝隙(第一缝隙)增加天线组件的谐振模态,从而实现天线组件覆盖多个频段,保证天线组件支持多载波聚合的传输需求,以及提升空间复用能力。
再次,该电子设备具有第一边、第二边和第三边。其中,第二边与第一边的一侧相邻设置,第三边与第一边的另一侧相邻设置。
例如,在图1中,电子设备100具有左右长边和上下短边,因此,第一边可以是电子设备100的一条长边,第二边可以是电子设备100的一条短边,第三边可以是电子设备100的另一条短边。
最后,本申请实施例通过将第一缝隙限定在该电子设备的第一边上,且第一缝隙到该电子设备的第二边的距离大于30mm,以及第一缝隙到该电子设备的第三边的距离大于30mm,从而在用户持握该电子设备的第二边和第三边时,用户的手部将不易触碰或遮挡位于第一边上的第一缝隙,有效避免用户的手部遮挡第一缝隙,保证第一天线的正常工作,进而可使得上述天线组件400所应用的电子设备具有更好的通信效果。
另外,由于本申请实施例的天线组件的尺寸较小且缝隙较少,从而在该天线组件应用于电子设备的情况下,有利于减小该天线组件在电子设备中所占用的结构空间,降低该天线组件在电子设备中的布局难度,提高电子设备的整机堆叠,减少因布局该天线组件在电子设备上所开设的缝隙数,以及保证电子设备的整体外观结构的完整度。
例如,当用户将图1所示的电子设备以横屏方式玩游戏、看视频等时,即用户持握该电子设备的两条短边,为了使该电子设备的天线组件中的第一天线仍然正常工作,第一缝隙的位置应该避开用户的手部,使其不被堵缝或遮挡。因此,位于该电子设备的长边上的第一缝隙到该电子设备的顶部(该电子设备的上短边)的距离大于30mm,以及第一缝隙到该电子设备的低部(该电子设备的下短边)的距离大于30mm,从而保证第一天线能更好的工作。
具体的,第一边的长度大于60mm。
具体的,该天线组件可以位于电子设备100的显示模组110、边框组件120和后盖组件130共同形成的收容空间之内。
具体的,第一天线、第二天线或者第三天线可以为图3中的天线。
具体的,第一馈源可以设置在电子设备100内的主板140上。同时,通过第一馈源的馈电方式来保证 电子设备100的通信功能。
具体的,第一天线辐射体可以是电子设备100上的不同金属结构(金属体或金属臂等)。例如,边框组件120上的一段边框、印刷在后盖组件130内侧上的金属贴片、印刷在边框组件120内侧上的金属贴片、设置在主板140上的柔性电路、印刷在主板140上的金属贴片。同理,第二天线辐射体可以是电子设备100上的不同金属结构(金属体或金属臂等),对此不作具体限制。
具体的,第一天线辐射体可以用于产生低频和高频的谐振模态,第二天线辐射体可以用于产生中频的谐振模态。
具体的,第一天线可以用于覆盖以下至少一种频段:LTE MHB频段、LTE UHB频段、NR MHB频段、NR UHB频段、WIFI 2.4GHz频段。
可见,本申请实施例的第一天线可以覆盖LTE MHB频段、LTE UHB频段、NR MHB频段、NR UHB频段、WIFI 2.4GHz频段等,从而在满足天线通信性能的同时,实现由天线组件的第一天线覆盖多个频段,以及支持多载波聚合的传输需求。
具体的,第一天线辐射体的长度可以大于第二天线辐射体的长度。
具体的,第一馈电点到第一耦合端的长度可以大于第一馈电点到第一接地端的长度。
需要说明的是,本申请实施例可以通过设置第一馈电点在第一天线辐射体上的不同位置,实现第一天线支持不同的频段。其中,第一馈电点在第一天线辐射体上的位置越靠近第一接地端,从而可以提高第一天线辐射体的辐射效率。
具体的,第一天线可以用于支持第一谐振模态、第二谐振模态、第三谐振模态、第四谐振模态;其中,第一接地端到第一耦合端的长度为第一谐振模态中心频率对应波长的1/8至1/4倍;第二接地端到第二耦合端的长度为第二谐振模态中心频率对应波长的1/4倍;第一馈电点到第一耦合端的长度为第三谐振模态中心频率对应波长的1/4倍;第一接地端到第一耦合端的长度为第四谐振模态中心频率对应波长的3/4倍。
进一步的,第一谐振模态中心频率可以为1.5GHz至2.0GHz中的一个频率;第二谐振模态中心频率可以为2.5GHz至3.0GHz中的一个频率;第三谐振模态中心频率可以为3.0GHz至4.0GHz中的一个频率;第四谐振模态中心频率可以为4.5GHz至5.0GHz中的一个频率。
在上述天线组件400应用于本申请的电子设备的情况下,下面本申请实施例将对第一天线在电子设备中的结构布局进行具体说明。
请参阅图28,框体2800可以表示该电子设备的部分外轮廓。其中,框体2800所在竖向的一个侧边(如左侧边)表示该电子设备的第一边,框体2800所在横向的顶边表示该电子设备的第二边,框体2800所在横向的底边表示该电子设备的第三边。因此,上述天线组件400的第一天线辐射体411位于该电子设备的第一边,上述天线组件400的第二天线辐射体412位于该电子设备的第一边,第一缝隙到第二边的距离大于30mm,以及第一缝隙到第三边的距离大于30mm。
需要说明的是,电子设备的第一边可以是电子设备100的一条长边。因此,第一天线辐射体411和第二天线辐射体412可以位于电子设备100的长边上。其中,第一天线辐射体411和第二天线辐射体412可以是边框组件120上的一段边框或者印刷在边框组件120内侧上的金属体等。
另外,第一天线辐射体411和第二天线辐射体412位于电子设备100的长边的目的在于:当用户通过电子设备100的横屏(如用户持握框体2800所在横向的顶边和/或底边)玩游戏或看视频等使用时,由于第一缝隙413位于电子设备100的长边,从而能够有效避免用户的手部遮挡第一缝隙413,保证第一天线的正常工作,进而可使得上述天线组件400所应用的电子设备具有较为良好的通信效果。
结合上述描述,该天线组件还可以包括:第二天线,第二天线包括第三天线辐射体;第三天线辐射体包括第一自由端和第三接地端,第三接地端设有第三接地点,第三天线辐射体通过第三接地端接地系统;第三天线辐射体上设有第二馈电点,第二馈电点用于连接第二馈源。
需要说明的是,在天线组件的第二天线中,第二馈源可以用于产生激励信号,并由激励信号加载在第三天线辐射体,以使得第三天线辐射体辐射电磁波信号。由于第三天线辐射体上的FH段可以等效于到地小电感,因此第三天线辐射体上的FG段可以通过第二馈源的激励产生谐振模态。同理,第三天线辐射体上的GH段可以通过第二馈源的激励产生谐振模态。因此,第三天线辐射体可以通过第二馈源的激励产生第二天线的多个谐振模态。
可见,通过在天线组件中的第二天线,从而增加天线组件的谐振模态,实现天线组件覆盖多个频段,保证天线组件支持多载波聚合的传输需求,以及提升空间复用能力。
具体的,第三天线辐射体可以是电子设备100上的不同金属结构(金属体或金属臂等)。例如,边框组件120上的一段边框、印刷在后盖组件130内侧上的金属贴片、印刷在边框组件120内侧上的金属贴 片、设置在主板140上的柔性电路、印刷在主板140上的金属贴片。
具体的,第二天线可以用于覆盖以下至少一种频段:LTE MHB频段、LTE UHB频段、NR MHB频段、NR UHB频段、WIFI 2.4GHz频段、GPS-L1频段。
可见,本申请实施例的第二天线可以覆盖LTE MHB频段、LTE UHB频段、NR MHB频段、NR UHB频段、WIFI 2.4GHz频段、GPS-L1频段等,从而在满足天线通信性能的同时,进一步实现天线组件400覆盖多个频段,以及保证天线组件400支持多载波聚合的传输需求。
具体的,第二馈电点(F)到第一自由端(G)的长度可以大于第二馈电点(F)到第三接地端(H)的长度。
需要说明的是,本申请实施例可以通过设置第二馈电点(F)在第三天线辐射体421上的不同位置,实现第二天线覆盖不同的频段。其中,第二馈电点(F)在第三天线辐射体421上的位置越靠近第三接地端(H),即第二馈电点(F)到第一自由端(G)的长度大于第二馈电点(F)到第三接地端(H)的长度,从而可以提高第三天线辐射体422的辐射效率。
具体的,第二天线可以用于支持第五谐振模态、第六谐振模态;其中,第三接地端(H)到第一自由端(G)的长度可以为第五谐振模态中心频率对应波长的1/4倍;第二馈电点(F)到第一自由端(G)的长度可以为第六谐振模态中心频率对应波长的1/4倍。
进一步的,第五谐振模态中心频率可以为1.5GHz至2.0GHz中的一个频率;第六谐振模态中心频率可以为2.0GHz至3.0GHz中的一个频率。
下面本申请实施例将对第二天线在该电子设备上的结构布局分情形进行说明。
情形一:
请参阅图29,上述天线组件400的第三天线辐射体421包括第一子辐射体(HP段)和第二子辐射体(GP段);第一子辐射体的一端与第二子辐射体的一端弯折相连,第一子辐射体的另一端为第三接地端(H);第二子辐射体的另一端为第一自由端(G);第一子辐射体位于该电子设备的第一边,第二子辐射体位于该电子设备的第二边;第二馈电点(F)位于第一子辐射体或者第二子辐射体上。
其中,第一子辐射体和第二子辐射体可以是边框组件120上的一段对角边框或者印刷在边框组件120内侧上的金属体等。
需要说明的是,第一子辐射体的一端与第二子辐射体的一端弯折相连,可方便第二天线对应电子设备的角设置。其中,第二天线对应电子设备的角设置的目的在于:当用户通过电子设备100的竖屏(如用户持握框体2800所在竖向的侧边或者用户持握框体2800所在横向的底边)使用时,由于用户的手部一般握持在电子设备100的长边的下半部分或者电子设备100的下短边,因此当第二天线的一部分位于电子设备100的上短边时,第二天线很难被用户握持,从而保证第二天线的正常工作,进而可使得上述天线组件400所应用的电子设备具有较为良好的通信效果。
情形二:
请参阅图30,上述天线组件400的第三天线辐射体421位于该电子设备的第一边或者第二边。
需要说明的是,第三天线辐射体421位于电子设备100的长边或者短边上。可以理解的是,第二天线位于电子设备100的长边或者短边上。其中,第三天线辐射体421可以是边框组件120上的一段边框或者印刷在边框组件120内侧上的金属体等。
另外,第三天线辐射体421位于电子设备100的长边的目的在于:当用户通过电子设备100的横屏(如用户持握框体2800所在横向的顶边和/或底边))使用时,由于用户的手部一般握持在电子设备100的短边上,因此用户很难握持位于电子设备100的长边上的第二天线,从而保证第二天线的正常工作,进而可使得上述天线组件400所应用的电子设备具有较为良好的通信效果。
第三天线辐射体421位于电子设备100的短边的目的在于:当用户通过电子设备100的竖屏(如用户持握框体2800所在竖向的侧边或者用户持握框体2800所在横向的底边)使用时,由于用户的手部一般握持在电子设备100的长边的下半部分或者电子设备100的下短边,因此当第二天线位于电子设备100的上短边时,第二天线很难被用户握持,从而保证第二天线的正常工作,进而可使得上述天线组件400所应用的电子设备具有较为良好的通信效果。
结合上述描述,该天线组件还可以包括:天线连接体、第一匹配电路和第二匹配电路;天线连接体分别连接第一接地端和第三接地端;第一天线辐射体通过第一接地点连接第一匹配电路接地;第三天线辐射体通过第三接地端连接第二匹配电路以接地系统。
具体的,天线连接体可以是电子设备100上的不同金属结构(金属体或金属臂等)。例如,边框组件120上的一段边框、印刷在后盖组件130内侧上的金属贴片、印刷在边框组件120内侧上的金属贴片、设置在主板140上的柔性电路、印刷在主板140上的金属贴片。
可见,通过天线连接体将第一天线和第二天线连接,从而实现第一天线和第二天线的共辐射体,提高天线组件400覆盖的频段,保证天线组件400支持多载波聚合的传输需求,提升空间复用能力,进而可使得上述天线组件400所应用的电子设备具有较为良好的通信效果。
下面本申请实施例将对天线连接体、第一匹配电路和第二匹配电路在该电子设备上的结构布局进行说明。
请参阅图31和图32,天线连接体431分别连接第一接地端(B)和第三接地端(H),第一匹配电路432串联于第一天线辐射体411和第一接地点所连接的地系统之间,第二匹配电路433串联于第三天线辐射体421和第三接地点所连接的地系统之间。
结合上述描述,该天线组件还可以包括:第三匹配电路、第四匹配电路;其中,第三匹配电路串联在第一馈电点与第一馈源之间;第四匹配电路串联在第二馈电点与第二馈源之间。
下面本申请实施例将对第三匹配电路、第四匹配电路在该电子设备上的结构布局进行说明。
请参阅图33和图34,第三匹配电路441串联在第一馈电点(A)与第一馈源414之间,第四匹配电路442串联在第二馈电点(F)与第二馈源422之间。
结合上述描述,该天线组件还可以包括:第三天线,第三天线包括第四天线辐射体;第四天线辐射体与第三天线辐射体端之间存在第二缝隙;第四天线辐射体包括第二自由端和第四接地端,第一自由端和第二自由端分别位于第二缝隙两侧并通过第二缝隙耦合,第四接地端设有第四接地点;第四天线辐射体上设有第三馈电点,第三馈电点用于连接第三馈源。
其中,第四天线辐射体可以是电子设备100上的不同金属结构(金属体或金属臂等)。例如,边框组件120上的一段边框、印刷在后盖组件130内侧上的金属贴片、印刷在边框组件120内侧上的金属贴片、设置在主板140上的柔性电路、印刷在主板140上的金属贴片。
需要说明的是,在天线组件400的第三天线中,首先,第三馈源453可以用于产生激励信号,并由激励信号加载在第四天线辐射体451,以使得第四天线辐射体451辐射电磁波信号。由于第四天线辐射体451上的第三馈电点(K)到第四接地端(J)可以等效于到地小电感,因此第三馈电点(K)到第二自由端(I)可以通过第三馈源453的激励产生谐振模态。同理,第二自由端(I)到第四接地端(J)可以通过第三馈源453的激励产生谐振模态。可见,第四天线辐射体451可以用于通过第三馈源453的激励产生多个谐振模态。可见,通过在天线组件400中增加第三天线,从而增加天线组件400的谐振模态,进一步实现天线组件400覆盖多个频段,以及保证天线组件400支持多载波聚合的传输需求。
其次,由于第三天线辐射体421和第四天线辐射体451间隔设置(即二者之间存在第二缝隙445),即第四天线辐射体451和天线单元2共口径,因此第二缝隙445存在耦合,从而使得第三天线辐射体421和第四天线辐射体451相当于通过电容连接。当第三天线工作时,不但可以利用自身的第四天线辐射体451来收发电磁波信号,还可以利用天线单元1以及天线单元2来收发电磁波信号,从而进一步提高天线组件400覆盖的频段,保证天线组件400支持多载波聚合的传输需求,以及提升空间复用能力。
最后,通过第三天线辐射体421和第四天线辐射体451间隔设置,本申请实施例可以将第四天线辐射体442看作天线单元3。因此,天线单元1和天线单元2耦合,以及天线单元2和天线单元3耦合,从而提高天线组件400覆盖的频段,保证天线组件400支持多载波聚合的传输需求,以及提升空间复用能力。
具体的,第三天线可以用于支持以下至少一种频段:N78频段、N79频段、WIFI 5GHz频段。
可见,本申请实施例的第三天线可以覆盖N78频段、N79频段、WIFI 5GHz频段等,从而在满足天线通信性能的同时,进一步实现天线组件400覆盖多个频段,以及保证天线组件400支持多载波聚合的传输需求。
具体的,第二自由端(I)到第三馈电点(K)的长度可以小于第三馈电点(K)到第四接地端(J)的长度。
需要说明的是,本申请实施例可以通过设置第三馈电点(K)在第四天线辐射体451上的不同位置,实现第三天线覆盖不同的频段。其中,第三馈电点(K)在第四天线辐射体451上的位置越远离第四接地端(J),即第二自由端(I)到第三馈电点(K)的长度小于第三馈电点(K)到第四接地端(J)的长度,从而可以提高第四天线辐射体451的辐射效率。
具体的,第三天线用于支持第七谐振模态、第八谐振模态、第九谐振模态、第十谐振模态;其中,第七谐振模态的电流分布是从第三馈电点到第三接地端;第四接地端到第二自由端的长度为第八谐振模态中心频率对应波长的1/8至1/4倍;第三馈电点到第二自由端的长度为第九谐振模态中心频率对应波长的1/4倍;第三接地端到第一自由端的长度为第十谐振模态中心频率对应波长的3/4倍。
进一步的,第七谐振模态中心频率可以为3.0GHz至3.5GHz中的一个频率;第八谐振模态中心频率可以为3.5GHz至4.0GHz中的一个频率;第九谐振模态中心频率可以为5.0GHz至6.0GHz中的一个频率; 第十谐振模态中心频率可以为6.0GHz至7.0GHz中的一个频率。
下面本申请实施例将对第三天线在该电子设备上的结构布局分情形进行说明。
情形一:
请参阅图35,上述天线组件400的第四天线辐射体451包括第三子辐射体(IQ段)和第四子辐射体(JQ段);第三子辐射体的一端与第四子辐射体的一端弯折相连,第三子辐射体的另一端为第二自由端(I);第四子辐射体的另一端为第四接地端(J);第三子辐射体位于电子设备的第一边,第四子辐射体位于电子设备的第二边;第三馈电点(K)位于第三子辐射体或者第四子辐射体上。
其中,第三子辐射体和第四子辐射体可以是边框组件120上的一段对角边框或者印刷在边框组件120内侧上的金属体等。
需要说明的是,第三子辐射体的一端与第四子辐射体的一端弯折相连,可方便第三天线对应电子设备的角设置。其中,第三天线对应电子设备的角设置的目的在于:当用户通过电子设备100的竖屏(如用户持握框体2800所在竖向的侧边或者用户持握框体2800所在横向的底边)使用时,由于用户的手部一般握持在电子设备100的长边的下半部分或者电子设备100的下短边上,因此当第三天线的一部分位于电子设备的上短边时,而第二缝隙452位于电子设备100的长边的上半部分,,从而能够有效避免用户的手部遮挡第二缝隙452,保证第三天线的正常工作,进而可使得上述天线组件400所应用的电子设备具有较为良好的通信效果。
情形二:
请参阅图36,第四天线辐射体451位于电子设备的第二边。
请参阅图37,第四天线辐射体451位于电子设备的第一边。
需要说明的是,第四天线辐射体451位于电子设备100的长边或者短边上。可以理解的是,第三天线位于电子设备100的长边或者短边上。其中,第四天线辐射体451可以是边框组件120上的一段边框或者印刷在边框组件120内侧上的金属体等。
另外,第四天线辐射体451位于电子设备100的长边的目的在于:当用户通过电子设备100的竖屏(如用户持握框体2800所在竖向的侧边或者用户持握框体2800所在横向的底边)使用时,由于第二缝隙452位于电子设备100的长边的上半部分,而用户的手部一般握持在电子设备100的长边的下半部分或者电子设备100的下短边,从而能够有效避免用户的手部遮挡第二缝隙452,保证第三天线的正常工作,进而可使得上述天线组件400所应用的电子设备具有较为良好的通信效果。
第三天线辐射体421位于电子设备100的短边的目的在于:当用户通过电子设备100的竖屏(如用户持握框体2800所在竖向的侧边或者用户持握框体2800所在横向的底边)使用时,由于第二缝隙452位于电子设备100的上短边,而用户的手部一般握持在电子设备100的长边的下半部分或者电子设备100的下短边,从而能够有效避免用户的手部遮挡第二缝隙452,保证第三天线的正常工作,进而可使得上述天线组件400所应用的电子设备具有较为良好的通信效果。
结合上述描述,该天线组件还可以包括:第五天线辐射体;第五天线辐射体的一端连接第一馈电点,第五天线辐射体的另一端为自由端。
其中,第五天线辐射体可以是电子设备100上的不同金属结构(金属体或金属臂等)。例如,边框组件120上的一段边框、印刷在后盖组件130内侧上的金属贴片、印刷在边框组件120内侧上的金属贴片、设置在主板140上的柔性电路、印刷在主板140上的金属贴片。
需要说明的是,本申请实施例通过在第一天线中增加第五天线辐射体471,从而增加第一天线的谐振模态,保证天线组件的调试更加灵活,提升天线组件的天线效率,进一步实现天线组件400覆盖多个频段,以及保证天线组件400支持多载波聚合的传输需求。
另外,本申请实施例可以将第五天线辐射体471看作天线单元4。
下面本申请实施例将对第五天线辐射体在该电子设备上的结构布局进行说明。
请参阅图38,第五天线辐射体471的一端连接第一馈电点(A),第五天线辐射体的另一端为自由端。
结合上述描述,由于电子设备可以包括至少一个按键,比如电源键、音量键、静音键。例如,电子设备100的边框组件120需要开设一定空隙用于安置按键,或者不开设空隙而利用触控式在边框组件120内侧安置按键。因此,当上述天线组件400应用于电子设备时,如何实现天线组件400和按键的结构布局,以提高电子设备的整机堆叠,下面进行具体说明。
具体的,电子设备还包括至少一个按键;第一天线辐射体411环绕或围绕按键设置;或者,第二天线辐射体412环绕或围绕按键设置;或者,第三天线辐射体421环绕或围绕按键设置;或者,天线连接体431环绕或围绕按键设置;或者,第四天线辐射体451环绕或围绕按键设置。
需要说明的是,若电子设备100的边框组件120需要开设一定空隙用于安置按键,且第一天线辐射体411为边框组件120的一段边框,则第一天线辐射体411上需要开设该空隙以用于安置该按键。此时,第一天线辐射体411环绕该按键设置。或者,若电子设备100的边框组件120不需要开设一定空隙,而利用触控式在边框组件120内侧安置按键,且第一天线辐射体411为边框组件120的一段边框,则该按键可以靠近第一天线辐射体411设置,即第一天线辐射体411围绕该按键设置。其余天线辐射体与按键的结构布局同理可知,对此不再赘述。
示例性的,请参阅图39,电子设备包括按键3901和按键3902。其中,第二天线辐射体412环绕或围绕按键3901设置,天线连接体431环绕或围绕按键3902设置。可见,通过天线组件400和按键的结构布局,从而有利于提高电子设备的整机堆叠。
结合上述图14、图23和图24的描述,当天线组件400应用于电子设备时,为了实现该电子设备具备SAR检测的能力,需要通过隔直器件将上述天线组件400的天线单元1/天线单元2/天线单元3作为相对于馈源和/或地系统中的直流电路悬浮的金属体。
具体的,第一馈源和第一天线辐射体之间串联有隔直器件;第二馈源和第三天线辐射体之间串联有隔直器件;第三馈源和第四天线辐射体之间串联有隔直器件;第一天线辐射体和第一接地点所连接的地系统之间串联有隔直器件;第三天线辐射体和第三接地点所连接的地系统之间串联有隔直器件;第二天线辐射体和第二接地点所连接的地系统之间串联有隔直器件。
其中,该隔直器件可以包括隔直电容或者隔直电路。
结合描述,在通过隔直电容将上述天线组件400的天线单元1/天线单元2/天线单元3作为相对于馈源和/或地系统中的直流电路悬浮的金属体的情况下,本申请实施例的电子设备包括接近传感器,从而通过接近传感器和天线组件400实现电子设备的SAR检测能力。
具体的,电子设备还可以包括:接近传感器和至少一个检测支路;检测支路用于连接接近传感器和天线组件400;接近传感器用于通过天线组件400检测电容信号变化以判断用户是否靠近或远离该电子设备。
进一步的,该检测支路可以包括信号过滤器件。
需要说明的是,该检测支路中加入信号过滤器件可以隔离或过滤较高频率信号,从而保证天线组件400不受该检测支路的影响。
进一步的,信号过滤器件可以包括电感或者信号过滤电路。其中,该电感的电感值可以为82nH,从而对上述天线组件400的影响较小。
进一步的,该接近传感器可以设置在电子设备100内的主板140上,该检测支路可以设置在电子设备100内的主板140上。
示例性的,请参阅图40,电子设备还包括接近传感器4001、电感L3、电感L4和电感L5。其中,接近传感器4001通过电感L3连接天线单元3的线路可以看作检测支路。同理,接近传感器4001通过电感L4连接天线单元2的线路可以看作检测支路,接近传感器4001通过电感L5连接天线单元1的线路可以看作检测支路。
需要说明的是,接近传感器4001也可以通过检测支路连接天线单元1/天线单元2/天线单元3上任意位置。同时,接近传感器4001也可以通过检测支路连接天线单元1/天线单元2/天线单元3中至少之一,对此不作具体限制。
可见,电子设备中的接近传感器可以利用悬浮的天线组件400来感应使用该电子设备的用户所带来的电容信号变化,从而判断用户是否靠近或远离该电子设备,进而保证该电子设备具备SAR检测的能力。
需要说明的是,在上述实施例中,本申请对各个实施例的描述都各有侧重。因此,本领域技术人员通过已有附图中的结构布局可以获知某个实施例中的技术方案(或结构布局)并未提供详述的附图描述,对此不再赘述。
综上所述,本申请实施例的天线组件400应用于电子设备,可以有利于提高电子设备的整机堆叠,提升电子设备横屏或竖屏使用下的天线组件的通信能力,以及保证电子设备具备SAR检测的能力。
以上对本申请实施例进行了详细介绍,本申请实施例中的说明只是用于帮助理解本申请的方法及其核心思想。本领域技术人员应该知悉,本申请实施例在具体实施方式和应用范围上均会有改变之处,至此,本说明书内容不应理解为对本申请的限制。
尽管上述已经示意和描述了本申请的实施例,可以理解的是,上述实施例仅仅是示例性的,不能理解为对本申请的限制。因此,本领域技术人员在本申请所要求保护的范围内可以对上述实施例或附图进行变化、修改、替换和变型,这些改进和润饰也视为本申请所要求保护的范围。

Claims (20)

  1. 一种天线组件,其特征在于,包括:
    第一天线,所述第一天线包括第一天线辐射体和第二天线辐射体,所述第一天线辐射体和所述第二天线辐射体之间存在第一缝隙;
    第二天线,所述第二天线包括第三天线辐射体;
    天线连接体;
    第一匹配电路和第二匹配电路;
    所述第一天线辐射体包括第一耦合端和第一接地端,所述第二天线辐射体包括第二耦合端和第二接地端,所述第一耦合端和所述第二耦合端分别位于所述第一缝隙两侧并通过所述第一缝隙耦合,所述第一接地端设有第一接地点,所述第二接地端设有第二接地点,所述第一天线辐射体通过所述第一接地端连接所述第一匹配电路以接地系统;
    所述第三天线辐射体包括第一自由端和第三接地端,所述第三接地端设有第三接地点,所述第三天线辐射体通过所述第三接地端连接所述第二匹配电路以接所述地系统,所述天线连接体分别连接所述第一接地端和所述第三接地端;
    所述第一天线辐射体上设有第一馈电点,所述第一馈电点用于连接第一馈源;
    所述第三天线辐射体上设有第二馈电点,所述第二馈电点用于连接第二馈源。
  2. 根据权利要求1所述的方法,其中,所述第一天线用于支持第一谐振模态、第二谐振模态、第三谐振模态、第四谐振模态;其中,
    所述第一接地端到所述第一耦合端的长度为所述第一谐振模态中心频率对应波长的1/8至1/4倍;
    所述第二接地端到所述第二耦合端的长度为所述第二谐振模态中心频率对应波长的1/4倍;
    所述第一馈电点到所述第一耦合端的长度为所述第三谐振模态中心频率对应波长的1/4倍;
    所述第一接地端到所述第一耦合端的长度为所述第四谐振模态中心频率对应波长的3/4倍。
  3. 根据权利要求1所述的方法,其中,所述第二天线用于支持第五谐振模态和第六谐振模态;其中,
    所述第三接地端到所述第一自由端的长度为所述第五谐振模态中心频率对应波长的1/4倍;
    所述第二馈电点到所述第一自由端的长度为所述第六谐振模态中心频率对应波长的1/4倍。
  4. 根据权利要求1所述的天线组件,其中,所述天线组件还包括:第三匹配电路、第四匹配电路;其中,
    所述第三匹配电路串联在所述第一馈电点与所述第一馈源之间;
    所述第四匹配电路串联在所述第二馈电点与所述第二馈源之间。
  5. 根据权利要求1-4任一项所述的天线组件,其中,所述天线组件还包括:
    第三天线,所述第三天线包括第四天线辐射体;
    所述第四天线辐射体与所述第三天线辐射体端之间存在第二缝隙;
    所述第四天线辐射体包括第二自由端和第四接地端,所述第一自由端和所述第二自由端分别位于所述第二缝隙两侧并通过所述第二缝隙耦合,所述第四接地端设有第四接地点;
    所述第四天线辐射体上设有第三馈电点,所述第三馈电点用于连接第三馈源。
  6. 根据权利要求5所述的方法,其中,所述第三天线用于支持第七谐振模态、第八谐振模态、第九谐振模态和第十谐振模态;其中,
    所述第七谐振模态的电流分布是从所述第三馈电点到所述第三接地端;
    所述第四接地端到所述第二自由端的长度为所述第八谐振模态中心频率对应波长的1/8至1/4倍;
    所述第三馈电点到所述第二自由端的长度为所述第九谐振模态中心频率对应波长的1/4倍;
    所述第三接地端到所述第一自由端的长度为所述第十谐振模态中心频率对应波长的3/4倍。
  7. 根据权利要求1-6任一项所述的天线组件,其中,所述天线组件还包括:
    至少一个第六匹配电路,所述第六匹配电路的一端连接所述天线连接体上的第五接地端,所述第五接地端设有第五接地点,所述第五接地端位于所述第一接地端和所述第三接地端之间,所述第六匹配电路的另一端接所述第五接地点所连接的所述地系统。
  8. 根据权利要求1-7任一项所述的天线组件,其中,所述天线组件还包括:第五天线辐射体;
    所述第五天线辐射体的一端连接所述第一馈电点,所述第五天线辐射体的另一端为自由端。
  9. 根据权利要求1-8任一项所述的天线组件,其中,所述天线组件用于覆盖以下至少一种频段:LTE MHB频段、LTE UHB频段、NR MHB频段、NR UHB频段、WIFI 2.4GHz频段、WIFI 5GHz频段、GPS-L1频段。
  10. 一种电子设备,其特征在于,包括天线组件,所述天线组件包括第一天线,所述第一天线包括 第一天线辐射体和第二天线辐射体,所述第一天线辐射体与所述第二天线辐射体之间存在第一缝隙;
    所述第一缝隙位于所述电子设备的第一边,所述第一缝隙到所述电子设备的第二边的距离大于30mm,以及所述第一缝隙到所述电子设备的第三边的距离大于30mm,所述第二边与所述第一边的一侧相邻设置,所述第三边与所述第一边的另一侧相邻设置;
    所述第一天线辐射体包括第一耦合端和第一接地端,所述第二天线辐射体包括第二耦合端和第二接地端,所述第一耦合端和所述第二耦合端分别位于所述第一缝隙两侧并通过所述第一缝隙耦合,所述第一接地端设有第一接地点,所述第二接地端设有第二接地点,所述第一天线辐射体通过所述第一接地点连接所述第一匹配电路以接地系统;
    所述第一天线辐射体上设有第一馈电点,所述第一馈电点用于连接第一馈源。
  11. 根据权利要求10所述的电子设备,其中,所述天线组件还包括:
    第二天线,所述第二天线包括第三天线辐射体;
    所述第三天线辐射体包括第一自由端(G)和第三接地端(H),所述第三接地端设有第三接地点,所述第三天线辐射体通过所述第三接地端接所述地系统;
    所述第三天线辐射体上设有第二馈电点,所述第二馈电点用于连接第二馈源。
  12. 根据权利要求11所述的电子设备,其中,所述第三天线辐射体包括第一子辐射体和第二子辐射体;
    所述第一子辐射体的一端与所述第二子辐射体的一端弯折相连,所述第一子辐射体的另一端为所述第三接地端;
    所述第二子辐射体的另一端为所述第一自由端;
    所述第一子辐射体位于所述电子设备的所述第一边,所述第二子辐射体位于所述电子设备的所述第二边;
    所述第二馈电点位于所述第一子辐射体或者所述第二子辐射体上。
  13. 根据权利要求11所述的电子设备,其中,所述第三天线辐射体位于所述电子设备的所述第一边或者所述第二边。
  14. 根据权利要求11-13任一项所述的电子设备,其中,所述天线组件还包括:天线连接体、第一匹配电路和第二匹配电路;
    所述天线连接体分别连接所述第一接地端和所述第三接地端;
    所述第一天线辐射体通过所述第一接地点连接所述第一匹配电路接地;
    所述第三天线辐射体通过所述第三接地端连接所述第二匹配电路以接所述地系统。
  15. 根据权利要求14所述的电子设备,其中,所述天线组件还包括:第三匹配电路、第四匹配电路;其中,
    所述第三匹配电路串联在所述第一馈电点与所述第一馈源之间;
    所述第四匹配电路串联在所述第二馈电点与所述第二馈源之间。
  16. 根据权利要求11-15任一项所述的电子设备,其中,所述天线组件还包括:
    第三天线,所述第三天线包括第四天线辐射体;
    所述第四天线辐射体与所述第三天线辐射体端之间存在第二缝隙;
    所述第四天线辐射体包括第二自由端和第四接地端,所述第一自由端和所述第二自由端分别位于所述第二缝隙两侧并通过所述第二缝隙耦合,所述第四接地端设有第四接地点;
    所述第四天线辐射体上设有第三馈电点,所述第三馈电点用于连接第三馈源。
  17. 根据权利要求16所述的电子设备,其中,所述第四天线辐射体包括第三子辐射体和第四子辐射体;
    所述第三子辐射体的一端与所述第四子辐射体的一端弯折相连,所述第三子辐射体的另一端为所述第二自由端;
    所述第四子辐射体的另一端为所述第四接地端;
    所述第三子辐射体位于所述电子设备的所述第一边,所述第四子辐射体位于所述电子设备的所述第二边;
    所述第三馈电点位于所述第三子辐射体或者所述第四子辐射体上。
  18. 根据权利要求16所述的电子设备,其中,所述第四天线辐射体位于所述电子设备的所述第一边或者所述第二边。
  19. 根据权利要求16所述的电子设备,其中,所述第一馈源和所述第一天线辐射体之间设有隔直器件;
    所述第二馈源和所述第三天线辐射体之间串联有隔直器件;
    所述第三馈源和所述第四天线辐射体之间串联有隔直器件;
    所述第一天线辐射体和所述第一接地点所连接的所述地系统之间串联有隔直器件;
    所述第三天线辐射体和所述第三接地点所连接的所述地系统之间串联有隔直器件;
    所述第二天线辐射体和所述第二接地点所连接的所述地系统之间串联有隔直器件。
  20. 根据权利要求19所述的电子设备,其中,所述电子设备还包括:
    接近传感器和至少一个检测支路;
    所述检测支路用于连接所述接近传感器和所述天线组件;
    所述接近传感器用于通过所述天线组件检测电容信号变化以判断用户是否靠近或远离所述电子设备。
PCT/CN2022/079001 2021-05-26 2022-03-03 天线组件和电子设备 WO2022247378A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110582434.7A CN115411492A (zh) 2021-05-26 2021-05-26 天线组件和电子设备
CN202110582434.7 2021-05-26

Publications (1)

Publication Number Publication Date
WO2022247378A1 true WO2022247378A1 (zh) 2022-12-01

Family

ID=84155615

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/079001 WO2022247378A1 (zh) 2021-05-26 2022-03-03 天线组件和电子设备

Country Status (2)

Country Link
CN (1) CN115411492A (zh)
WO (1) WO2022247378A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120164962A1 (en) * 2010-12-28 2012-06-28 Chi Mei Communication Systems, Inc. Proximity sensor module and electronic device using same
US20160365623A1 (en) * 2015-06-11 2016-12-15 Samsung Electronics Co., Ltd. Antenna and electronic device including the same
CN106486757A (zh) * 2015-08-26 2017-03-08 小米科技有限责任公司 一种天线、移动终端背盖及移动终端
CN109218515A (zh) * 2017-06-30 2019-01-15 三星电子株式会社 用于检测用户接近的电子设备及其操作方法
CN208637584U (zh) * 2018-08-24 2019-03-22 Oppo广东移动通信有限公司 天线组件和电子设备
CN112768900A (zh) * 2020-12-29 2021-05-07 Oppo广东移动通信有限公司 天线系统及电子设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120164962A1 (en) * 2010-12-28 2012-06-28 Chi Mei Communication Systems, Inc. Proximity sensor module and electronic device using same
US20160365623A1 (en) * 2015-06-11 2016-12-15 Samsung Electronics Co., Ltd. Antenna and electronic device including the same
CN106486757A (zh) * 2015-08-26 2017-03-08 小米科技有限责任公司 一种天线、移动终端背盖及移动终端
CN109218515A (zh) * 2017-06-30 2019-01-15 三星电子株式会社 用于检测用户接近的电子设备及其操作方法
CN208637584U (zh) * 2018-08-24 2019-03-22 Oppo广东移动通信有限公司 天线组件和电子设备
CN112768900A (zh) * 2020-12-29 2021-05-07 Oppo广东移动通信有限公司 天线系统及电子设备

Also Published As

Publication number Publication date
CN115411492A (zh) 2022-11-29

Similar Documents

Publication Publication Date Title
CN113013593B (zh) 天线组件和电子设备
US9041253B2 (en) Direct feeding apparatus for impedance matching of wireless power transmission device, and transmitter and receiver using the same
US8836588B2 (en) Antenna device and electronic apparatus including antenna device
US8842048B2 (en) Antenna apparatus for portable terminal
US8860623B2 (en) Antenna system with high isolation characteristics
US20130293425A1 (en) Antenna Structures Having Slot-Based Parasitic Elements
US7511669B2 (en) Antenna Device and Radio Communication Apparatus
US20130050050A1 (en) Distributed loop antennas
US20120098708A1 (en) Electronic apparatus and antenna unit
CN109687105B (zh) 电子设备
CN111725618B (zh) 天线组件和电子设备
US20220278445A1 (en) Electronic device equipped with transparent antenna
WO2020216241A1 (zh) 紧凑型天线及移动终端
WO2022121764A1 (zh) 一种显示模组及电子设备
WO2023020467A1 (zh) 天线系统和电子设备
KR20130030993A (ko) 휴대용 단말기의 안테나 장치
US20220329280A1 (en) Radio frequency module, control method, and electronic device
US20140347247A1 (en) Antenna device for electronic device
WO2022247378A1 (zh) 天线组件和电子设备
US20140340261A1 (en) Dual band antenna
WO2024001069A1 (zh) 天线组件、中框组件以及电子设备
CN216928930U (zh) 天线及电子设备
KR102018548B1 (ko) 이동 단말기
JP3841100B2 (ja) 電子装置および無線通信端末
CN113067147A (zh) 天线组件及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22810112

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE