WO2022247348A1 - 一种x射线源绝缘散热装置及其制作方法 - Google Patents

一种x射线源绝缘散热装置及其制作方法 Download PDF

Info

Publication number
WO2022247348A1
WO2022247348A1 PCT/CN2022/075924 CN2022075924W WO2022247348A1 WO 2022247348 A1 WO2022247348 A1 WO 2022247348A1 CN 2022075924 W CN2022075924 W CN 2022075924W WO 2022247348 A1 WO2022247348 A1 WO 2022247348A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
heat sink
ray source
anode
cylinder wall
Prior art date
Application number
PCT/CN2022/075924
Other languages
English (en)
French (fr)
Inventor
唐志宏
严为
朱士前
胡申顺
Original Assignee
上海超群检测科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海超群检测科技股份有限公司 filed Critical 上海超群检测科技股份有限公司
Publication of WO2022247348A1 publication Critical patent/WO2022247348A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/04Electrodes ; Mutual position thereof; Constructional adaptations therefor
    • H01J35/08Anodes; Anti cathodes
    • H01J35/10Rotary anodes; Arrangements for rotating anodes; Cooling rotary anodes
    • H01J35/105Cooling of rotating anodes, e.g. heat emitting layers or structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/04Electrodes ; Mutual position thereof; Constructional adaptations therefor
    • H01J35/08Anodes; Anti cathodes
    • H01J35/10Rotary anodes; Arrangements for rotating anodes; Cooling rotary anodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/04Electrodes ; Mutual position thereof; Constructional adaptations therefor
    • H01J35/08Anodes; Anti cathodes
    • H01J35/12Cooling non-rotary anodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/24Tubes wherein the point of impact of the cathode ray on the anode or anticathode is movable relative to the surface thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2235/00X-ray tubes
    • H01J2235/12Cooling
    • H01J2235/1204Cooling of the anode

Definitions

  • the invention relates to the technical field of X-ray source manufacturing, in particular to an X-ray source insulation and cooling device and a manufacturing method thereof.
  • the working principle of the X-ray source is that positive and negative high voltage drive the anode and cathode of the X-ray tube respectively, one of which is the filament for emitting electrons, as the cathode, and the other is the target for receiving electron bombardment, as the anode, the two The stages are sealed in a high-vacuum glass or ceramic shell, and X-rays are generated during the bombardment of the electron stream.
  • X-rays are electromagnetic waves with extremely short wavelengths and high energy. Its wavelength is shorter than that of visible light (about At 0.001-10 nanometers), the photon energy is tens of thousands to hundreds of thousands of times greater than that of visible light;
  • the object of the present invention is to provide an X-ray source insulation and heat dissipation device and its manufacturing method, to solve the above-mentioned background technology.
  • the working life of the source will be greatly extended. Therefore, it is urgent to design an X-ray source insulation and heat dissipation device and its manufacturing method to improve the heat conduction efficiency of the entire ray source, prolong its life, and enhance its reliability.
  • an X-ray source insulation and heat dissipation device including a housing, the left side of the housing is fixed with an X-ray vacuum tube anode handle, and the right side of the X-ray vacuum tube anode handle is An anode radiator is provided, a heat sink is provided on the right side of the anode radiator, a cylinder wall is provided on the right side of the heat dissipation piece, and a fan is fixedly installed on the right side of the cylinder wall.
  • the heat sink is made of insulating materials with thermal conductivity >10W/mK, such materials include but not limited to aluminum nitride, beryllium oxide, aluminum oxide, magnesium orthosilicate, silicon carbide, and hexagonal boron nitride.
  • the anode handle of the X-ray vacuum tube is closely attached to the anode radiator.
  • the heat conduction pad is a metal material with a shielding effect, an attenuation effect on rays, and a thermal conductivity >25W/(m*K), including but not limited to Tungsten, Molybdenum, Lead, Iron, Aluminum.
  • the heat-dissipating element and the cylinder wall are bonded and connected by heat-conducting adhesive, and the heat-dissipating element 3 and the cylinder wall 4 may also be in direct contact.
  • the fan is fixedly connected to the cylinder wall through screws, and the fan may not be used depending on temperature requirements.
  • the present invention also provides a method for manufacturing an X-ray source insulation and heat dissipation device, the manufacturing steps of which are as follows:
  • Step 1 Fit the anode heat sink tightly to the right side of the anode handle of the X-ray vacuum tube, then add a thermal pad between the anode heat sink and the heat sink, and bond it by evenly applying heat-conducting adhesive, or not using heat-conducting adhesive , and ensure that the joint surface of the anode radiator and the radiator is flat;
  • Step 2 Select high thermal conductivity insulating materials for the heat sink, and then clean the heat sink with ultrasonic cleaning equipment to remove the residual processing fluid processed on the heat sink, as well as internal tiny impurities and gas impurities, etc., and dry them after cleaning to remove heat dissipation. residual water vapor inside and outside the parts;
  • Step 3 Apply heat-conducting glue evenly on the bonding surface between the heat sink and the cylinder wall, or not use heat-conducting glue, so that the heat sink and the cylinder wall are bonded, and ensure that the joint surface between the heat sink and the cylinder wall is smooth;
  • Step 4 Fix and install the fan on the air outlet of the cylinder wall through screws, so that the heat received by the cylinder wall is blown to the air through the fan to achieve thermal balance.
  • the bonding surface between the anode radiator and the heat sink is wiped to ensure that the bonding surface is dust-free.
  • step 3 before bonding the heat sink and the cylinder wall, the bonding surface between the heat sink and the cylinder wall is wiped first to ensure that the bonding surface is dust-free.
  • the X-ray source insulation heat dissipation device and its manufacturing method are made of high thermal conductivity insulating materials, including but not limited to aluminum nitride, beryllium oxide, aluminum oxide, magnesium orthosilicate, silicon carbide, hexagonal boron nitride, high
  • the heat sink made of heat-conducting insulating material has a certain degree of insulation, which can avoid the ignition of the metal medium. Its high thermal conductivity can effectively export the heat of the vacuum tube, which greatly enhances the reliability and life of the X-ray tube and X-ray source. Under the premise of satisfying the high-voltage performance, the stability of the system is greatly enhanced, the performance of the X-ray source is improved more effectively, and the service life of the X-ray source is extended.
  • the development of the performance direction has laid a solid foundation;
  • the X-ray source insulation and heat dissipation device and its manufacturing method have effectively improved the service life of the X-ray tube, a key component of the X-ray source, and at the same time laid a solid foundation for the development of the X-ray source towards greater power. Base. Moreover, other heat dissipation methods, such as convection, can be added inside, which can more effectively enhance the heat dissipation capability of this method.
  • Fig. 1 is a schematic diagram of the structure of the present invention.
  • a kind of X-ray source insulation cooling device comprises X-ray vacuum tube anode handle 1, anode radiator 2, radiator 3, cylinder wall 4, fan 5 and casing 6, casing 6.
  • An X-ray vacuum tube anode handle 1 is fixedly installed on the left side of the interior.
  • the shape of the shell 6 is not limited to cylindrical or square.
  • the right side of the X-ray vacuum tube anode handle 1 is provided with an anode radiator 2, and the right side of the anode radiator 2
  • the right side is provided with a heat conduction pad 7, and the material of the heat conduction pad 7 includes but is not limited to tungsten sheet, molybdenum sheet, lead sheet, iron sheet, and aluminum sheet.
  • the right side of the thermal pad 7 is provided with a heat sink 3.
  • the heat sink 3 is an insulating material with a certain thermal conductivity, including but not limited to aluminum nitride, beryllium oxide, aluminum oxide, magnesium orthosilicate,
  • the right side of the radiator 3 is provided with a cylinder wall 4 , and the right side of the cylinder wall 4 is fixedly installed with a fan 5 .
  • the heat sink 3 adopts insulating materials with thermal conductivity >10W/mK, including but not limited to aluminum nitride, beryllium oxide, aluminum oxide, magnesium orthosilicate, silicon carbide, hexagonal boron nitride, and high thermal conductivity insulating materials for heat dissipation Part 3 has a certain degree of insulation, which can avoid the ignition of the metal medium. Its high thermal conductivity can effectively export the heat of the vacuum tube, which greatly enhances the reliability and life of the X-ray tube and X-ray source.
  • Aluminum nitride The dielectric constant is about 8.5-11.0 (1MHz), and the dielectric constant of alumina is 8.0-11.0 (1MHz).
  • the stability of the system is greatly enhanced, and the X-ray source is more effectively improved. performance, thereby prolonging the service life of the X-ray source, and at the same time, laying a solid foundation for the development of the X-ray source towards better high-voltage performance, among which the thermal conductivity of aluminum nitride is about 160-200W/m K, the thermal conductivity of alumina is 25-30W/m K, which effectively improves the service life of the X-ray tube, the key component of the X-ray source, and also paves the way for the development of the X-ray source towards higher power. Laid a solid foundation.
  • anode handle 1 of the X-ray vacuum tube is closely attached to the anode radiator 2 .
  • the anode radiator 2 and the heat sink 3 are bonded and connected by heat-conducting adhesive
  • the heat-conducting pad 7 is a metal material with a shielding effect, an attenuation effect on rays, and a thermal conductivity >25W/(m*K), Including but not limited to tungsten, molybdenum, lead, iron, aluminum, thermal conductive adhesive has good thermal conductivity and is convenient for heat transfer.
  • heat conduction pad 7 between the heat sink 3 and the cylinder wall 4, and the heat sink 3 and the cylinder wall 4 can also be in direct contact, so as to facilitate heat transfer.
  • the fan 5 is fixedly connected with the cylinder wall 4 by screws, and depending on the temperature requirement, the fan may not be used, and the received heat is blown into the air through the fan 5 .
  • a method for manufacturing an X-ray source insulation and heat dissipation device the manufacturing steps are as follows:
  • Step 1 Fit the anode radiator 2 tightly to the right side of the anode handle 1 of the X-ray vacuum tube, and then add a thermal pad 7 between the anode radiator 2 and the heat sink 3, or use no thermal adhesive, and spread it evenly Thermally conductive glue is bonded, and the bonding surface of the anode radiator 2 and the heat sink 3 is guaranteed to be smooth;
  • Step 2 The heat sink 3 is selected from one of aluminum nitride and aluminum oxide, both of which are high thermal conductivity insulating materials, and then the heat sink 3 is cleaned by ultrasonic cleaning equipment to remove the processing residue on the heat sink 3
  • the processing fluid, internal tiny impurities and gas impurities, etc., are dried after cleaning, so as to remove the residual water vapor inside and outside the heat sink 3;
  • Step 3 Apply heat-conducting adhesive evenly on the bonding surface between the heat sink 3 and the cylinder wall 4, or not use heat-conducting glue, so that the heat sink 3 and the cylinder wall 4 are bonded, and ensure that the heat sink 3 and the cylinder wall 4 The bonding surface is smooth;
  • Step 4 Fix and install the fan 5 at the air outlet of the cylinder wall 4 through screws, so that the heat received by the cylinder wall 4 is blown into the air through the fan 5 to achieve heat balance.
  • step 1 before bonding the anode radiator 2 and the radiator 3, first wipe the bonding surface between the anode radiator 2 and the radiator 3 to ensure that the bonding surface is dust-free and the joint surface is smooth , which can conduct heat conduction to the greatest extent.
  • step 3 bonding between the heat sink 3 and the cylinder wall 4 first wipe the bonding surface between the heat sink 3 and the cylinder wall 4 to ensure that the bonding surface is dust-free and the bonding surface is smooth. Can conduct heat to the greatest extent.
  • the heat dissipation effect of aluminum nitride, a high thermal conductivity insulating material is the best, followed by aluminum oxide, and the effect of no high thermal conductivity insulating material is the worst.
  • the stability of the system is greatly enhanced, the performance of the X-ray source is improved more effectively, and the service life of the X-ray source is extended.
  • the anode radiator 2 is closely attached to the right side of the anode handle 1 of the X-ray vacuum tube, and then the anode radiator 2 and the heat sink 3 are evenly coated with heat-conducting adhesive for bonding, and the anode radiator 2 is guaranteed
  • the bonding surface with the heat sink 3 is flat, and before bonding the anode radiator 2 and the heat sink 3, wipe the bonding surface between the anode radiator 2 and the heat sink 3 to ensure that the bonding surface is dust-free, ensuring
  • the joint surface is smooth, which can conduct heat to the greatest extent.
  • the heat sink 3 is selected from aluminum nitride and aluminum oxide.
  • Both aluminum nitride and aluminum oxide are high thermal conductivity insulating materials, and then the heat sink 3 is cleaned by ultrasonic cleaning equipment. , remove the residual processing fluid processed on the heat sink 3 and the internal tiny impurities and gas impurities, etc., dry after cleaning, so as to remove the residual water vapor inside and outside the heat sink 3, and place the gap between the heat sink 3 and the cylinder wall 4 Apply heat-conducting glue evenly on the bonding surface of the heat sink 3 to make the bonding between the heat sink 3 and the cylinder wall 4, and ensure that the joint surface of the heat sink 3 and the cylinder wall 4 is flat.
  • the heat sink 3 and the cylinder wall 4 Before bonding the heat sink 3 and the cylinder wall 4, first Wipe the bonding surface between the heat sink 3 and the cylinder wall 4 to ensure that the bonding surface is dust-free, ensures the flatness of the joint surface, and can conduct heat conduction to the greatest extent. Fix the fan 5 on the cylinder wall 4 by screws At the air outlet, the heat received by the cylinder wall 4 is blown into the air by the fan 5 to achieve thermal balance.

Landscapes

  • X-Ray Techniques (AREA)

Abstract

一种X射线源绝缘散热装置,包括外壳(6),外壳(6)内部的左侧固定安装有电子真空管阳极柄(1),X射线真空管阳极柄(1)的右侧安装有阳极散热器(2),阳极散热器(2)的右侧安装有导热垫(7)。该X射线源绝缘散热装置及其制作方法,可以避免金属介质的打火,它的高热导率能将真空管的热量有效导出,极大地增强了X射线管和X射线源的可靠性和寿命;有效地提升了X射线源的关键部件X射线管的使用寿命,同时,也为X射线源朝更大的功率方向的发展打下了坚实的基础,在散热件边上安装导热垫,可以更好地进行散热,同时可以视情况在内部增加其他散热机构,如增加散热泵等。

Description

一种X射线源绝缘散热装置及其制作方法 技术领域
本发明涉及X射线源制造技术领域,具体为一种X射线源绝缘散热装置及其制作方法。
背景技术
X射线源的工作原理是正负高压分别驱动X射线管的阳极和阴极,其中一个是用于发射电子的灯丝,作为阴极,另一个是用于接受电子轰击的靶材,作为阳极,这两级均被密封在高真空的玻璃或陶瓷外壳内,在电子流轰击过程中产生X射线,X射线是一种波长极短,能量很大的电磁波,它的波长比可见光的波长更短(约在0.001~10纳米),光子能量比可见光的光子能量大几万至几十万倍;
光子能量产生的同时会有很高的热量,因此在X射线源制造工业中,散热是非常关键的指标,关系到X射线管和射线源的可靠性和寿命,并且,在X射线源里,绝缘也是非常关键的,运用绝缘材料可以避免高压打火现象,X射线源工作寿命会有极大的延长,因此,急需设计一种X射线源绝缘散热装置及其制作方法,提升整个射线源的导热效率,并能延长其寿命,增强其可靠性。
发明内容
本发明的目的在于提供一种X射线源绝缘散热装置及其制作方法,以解决上述背景技术中提出在X射线源里,绝缘也是非常关键的,运用绝缘材料可以避免高压打火现象,X射线源工作寿命会有极大的延长,因此,急需设计一种X射线源绝缘散热装置及其制作方法,提升整个射线源的导热效率,并能延长其寿命,增强其可靠性的问题。
为实现上述目的,本发明提供如下技术方案:一种X射线源绝缘散热装置,包括外壳,所述外壳内部的左侧固定安装有X射线真空管阳极柄,所述X 射线真空管阳极柄的右侧设置有阳极散热器,所述阳极散热器的右侧设置有散热件,所述散热件的右侧设置有筒壁,所述筒壁的右侧固定安装有风扇。
优选的,所述散热件采用采用导热系数>10W/mK绝缘材料,该材料包括但不限于氮化铝、氧化铍、氧化铝、正硅酸镁、碳化硅、六方氮化硼。
优选的,所述X射线真空管阳极柄与阳极散热器紧密贴合。
优选的,所述阳极散热器与散热件之间有导热垫,导热垫为有屏蔽作用的,对射线有衰减作用,且导热率>25W/(m*K)的金属材料,包括但不限于钨、钼、铅、铁、铝。
优选的,所述散热件与筒壁之间通过导热胶粘接连接,散热件3与筒壁4也可直接接触。
优选的,所述风扇通过螺钉与筒壁固定连接,同时视温度要求,风扇可以不用。
本发明还提供一种X射线源绝缘散热装置制作方法,其制作步骤如下:
步骤一:将阳极散热器紧密贴合在X射线真空管阳极柄的右侧,然后将阳极散热器与散热件之间加上导热垫,并通过均匀涂抹导热胶进行粘接,也可不采用导热胶,并保证阳极散热器与散热件的结合面平整;
步骤二:散热件选取高导热绝缘材料,然后将散热件通过超声波清洗设备清洗,去除散热件上加工的残留加工液以及内部微小杂质及气体杂质等等,清洗后进行烘干处理,以便清除散热件内外部残留的水汽;
步骤三:将将散热件与筒壁之间的粘接面均匀涂抹导热胶,也可不采用导热胶,使散热件与筒壁之间粘接,并保证散热件与筒壁的结合面平整;
步骤四:将风扇通过螺钉固定安装在筒壁的排风口处,使得筒壁接收到的热量通过风扇吹送到空气中,达到热平衡。
优选的,所述步骤一阳极散热器与散热件在粘接之前,先将阳极散热器与散热件之间的粘接面进行擦拭,确保粘接面无尘。
优选的,所述步骤三散热件与筒壁之间粘接之前,先将散热件与筒壁之间的粘接面进行擦拭,确保粘接面无尘。
与现有技术相比,本发明的有益效果是:
1、该X射线源绝缘散热装置及其制作方法,散热件采用高导热绝缘材料,包括但不限于氮化铝、氧化铍、氧化铝、正硅酸镁、碳化硅、六方氮化硼,高导热绝缘材料的散热件具有一定的绝缘性,可以避免金属介质的打火,它的高热导率能将真空管的热量有效导出,极大地增强了X射线管和X射线源的可靠性和寿命,在满足高压性能的前提下,极大地增强了系统的稳定性,更有效地提升了X射线源的性能,进而延长了X射线源的使用寿命,同时,也为X射线源朝更优的高压性能方向的发展立下了坚实基础;
2、该X射线源绝缘散热装置及其制作方法,有效地提升了X射线源的关键部件X射线管的使用寿命,同时,也为X射线源朝更大的功率方向的发展打下了坚实的基础。并且,可以在内部增加其他散热方式,如对流,能更加有效地增强该方式的散热能力。
附图说明
图1为本发明结构示意图。
图中:1、X射线真空管阳极柄;2、阳极散热器;3、散热件;4、筒壁;5、风扇;6、外壳;7、导热垫。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
请参阅图1,本发明提供一种技术方案:一种X射线源绝缘散热装置,包括X射线真空管阳极柄1、阳极散热器2、散热件3、筒壁4、风扇5和外壳6, 外壳6内部的左侧固定安装有X射线真空管阳极柄1,外壳6的形状不限于圆筒形、方形,X射线真空管阳极柄1的右侧设置有阳极散热器2,阳极散热器2的右侧设置有的右侧设置有导热垫7,导热垫7材质包括但不限于钨片、钼片、铅片、铁片、铝片,该材质对射线有衰减作用的材质,同时还有屏蔽作用,根据需要也可以没有,导热垫7的右侧设置有散热件3,散热件3为有一定热导率的绝缘材料,包括但不限于氮化铝、氧化铍、氧化铝、正硅酸镁、碳化硅、六方氮化硼等(导热系数>10W/mK)的物质,散热件3的右侧设置有筒壁4,筒壁4的右侧固定安装有风扇5。
进一步的,散热件3采用采用导热系数>10W/mK绝缘材料,包括但不限于氮化铝、氧化铍、氧化铝、正硅酸镁、碳化硅、六方氮化硼,高导热绝缘材料的散热件3具有一定的绝缘性,可以避免金属介质的打火,它的高热导率能将真空管的热量有效导出,极大地增强了X射线管和X射线源的可靠性和寿命,氮化铝的介电常数约8.5~11.0(1MHz),氧化铝的介电常数为8.0~11.0(1MHz),在满足高压性能的前提下,极大地增强了系统的稳定性,更有效地提升了X射线源的性能,进而延长了X射线源的使用寿命,同时,也为X射线源朝更优的高压性能方向的发展立下了坚实基础,其中氮化铝的热导率高约160~200W/m·K,氧化铝的热导率为25~30W/m·K,有效地提升了X射线源的关键部件X射线管的使用寿命,同时,也为X射线源朝更大的功率方向的发展打下了坚实的基础。
进一步的,X射线真空管阳极柄1与阳极散热器2紧密贴合。
进一步的,阳极散热器2与散热件3之间通过导热胶粘接连接,导热垫7为有屏蔽作用的,对射线有衰减作用,且导热率>25W/(m*K)的金属材料,包括但不限于钨、钼、铅、铁、铝,导热胶导热效果好,便于传热。
进一步的,散热件3与筒壁4之间有导热垫7,散热件3与筒壁4也可直接接触,便于传热。
进一步的,风扇5通过螺钉与筒壁4固定连接,同时视温度要求,风扇可以不用,通过风扇5将接收到的热量吹散到空气中。
一种X射线源绝缘散热装置制作方法,其制作步骤如下:
步骤一:将阳极散热器2紧密贴合在X射线真空管阳极柄1的右侧,然后将阳极散热器2与散热件3之间加上导热垫7,也可不采用导热胶,并通过均匀涂抹导热胶进行粘接,并保证阳极散热器2与散热件3的结合面平整;
步骤二:散热件3选取氮化铝和氧化铝中的一种,氮化铝和氧化铝均为高导热绝缘材料,然后将散热件3通过超声波清洗设备清洗,去除散热件3上加工的残留加工液以及内部微小杂质及气体杂质等等,清洗后进行烘干处理,以便清除散热件3内外部残留的水汽;
步骤三:将将散热件3与筒壁4之间的粘接面均匀涂抹导热胶,也可不采用导热胶,使散热件3与筒壁4之间粘接,并保证散热件3与筒壁4的结合面平整;
步骤四:将风扇5通过螺钉固定安装在筒壁4的排风口处,使得筒壁4接收到的热量通过风扇5吹送到空气中,达到热平衡。
进一步的,步骤一阳极散热器2与散热件3在粘接之前,先将阳极散热器2与散热件3之间的粘接面进行擦拭,确保粘接面无尘,保证了结合面的平整,能够最大程度的进行导热。
进一步的,步骤三散热件3与筒壁4之间粘接之前,先将散热件3与筒壁4之间的粘接面进行擦拭,确保粘接面无尘,保证了结合面的平整,能够最大程度的进行导热。
性能测试
上述实施例在进行散热测试过程中,发现在同等实验环境下,使用高导热绝缘材料进行散热,阳极柄降温明显,而且高压性能更稳定,机器打火几率小,详见表1。
散热材质 环境温度 油温 靶心温度
氮化铝 40℃ 58.0℃ 93℃
氧化铝 40℃ 50.2℃ 103℃
无陶瓷散热 40℃ 58.8℃ 107.8℃
表1
由上述实际使用数据得知,在同等实验条件,同等结构条件下,高导热绝缘材料氮化铝的散热效果最好,氧化铝次之,无高导热绝缘材料的效果最差,在满足高压性能的前提下,极大地增强了系统的稳定性,更有效地提升了X射线源的性能,进而延长了X射线源的使用寿命。
工作原理:首先,将阳极散热器2紧密贴合在X射线真空管阳极柄1的右侧,然后将阳极散热器2与散热件3之间均匀涂抹导热胶进行粘接,并保证阳极散热器2与散热件3的结合面平整,阳极散热器2与散热件3在粘接之前,先将阳极散热器2与散热件3之间的粘接面进行擦拭,确保粘接面无尘,保证了结合面的平整,能够最大程度的进行导热,散热件3选取氮化铝和氧化铝中的一种,氮化铝和氧化铝均为高导热绝缘材料,然后将散热件3通过超声波清洗设备清洗,去除散热件3上加工的残留加工液以及内部微小杂质及气体杂质等等,清洗后进行烘干处理,以便清除散热件3内外部残留的水汽,将将散热件3与筒壁4之间的粘接面均匀涂抹导热胶,使散热件3与筒壁4之间粘接,并保证散热件3与筒壁4的结合面平整,散热件3与筒壁4之间粘接之前,先将散热件3与筒壁4之间的粘接面进行擦拭,确保粘接面无尘,保证了结合面的平整,能够最大程度的进行导热,将风扇5通过螺钉固定安装在筒壁4的排风口处,使得筒壁4接收到的热量通过风扇5吹送到空气中,达到热平衡。
最后应当说明的是,以上内容仅用以说明本发明的技术方案,而非对本发明保护范围的限制,本领域的普通技术人员对本发明的技术方案进行的简 单修改或者等同替换,均不脱离本发明技术方案的实质和范围。

Claims (9)

  1. 一种X射线源绝缘散热装置,包括外壳(6),其特征在于:所述外壳(6)内部的左侧固定安装有X射线真空管阳极柄(1),所述X射线真空管阳极柄(1)的右侧设置有阳极散热器(2),所述阳极散热器(2)的右侧设置有导热垫(7),导热垫(7)的右侧设置有散热件(3),所述散热件(3)的右侧设置有筒壁(4),所述筒壁(4)的右侧固定安装有风扇(5)。
  2. 根据权利要求1所述的一种X射线源绝缘散热装置,其特征在于:所述散热件(3)采用导热系数>10W/mK绝缘材料,该材料包括但不限于氮化铝、氧化铍、氧化铝、正硅酸镁、碳化硅、六方氮化硼。
  3. 根据权利要求1所述的一种X射线源绝缘散热装置,其特征在于:所述X射线真空管阳极柄(1)与阳极散热器(2)紧密贴合。
  4. 根据权利要求1所述的一种X射线源绝缘散热装置,其特征在于:所述阳极散热器(2)与散热件(3)之间有导热垫(7),导热垫(7)为有屏蔽作用的,对射线有衰减作用,且导热率>25W/(m*K)的金属材料,包括但不限于钨、钼、铅、铁、铝。
  5. 根据权利要求1所述的一种X射线源绝缘散热装置,其特征在于:所述散热件(3)与筒壁(4)之间通过导热胶粘接连接,散热件(3)与筒壁(4)也可直接接触。
  6. 根据权利要求1所述的一种X射线源绝缘散热装置,其特征在于:所述风扇(5)通过螺钉与筒壁(4)固定连接,同时视温度要求,风扇可以不用。
  7. 根据权利要求1-6所述的一种X射线源绝缘散热装置,其特征在于,其制作步骤如下:
    步骤一:将阳极散热器(2)紧密贴合在X射线真空管阳极柄(1)的右侧,然后将阳极散热器(2)与散热件(3)之间加上导热垫,并通过均匀涂抹导热胶进行粘接,也可不采用导热胶,并保证阳极散热器(2)与散热件(3) 的结合面平整;
    步骤二:散热件(3)选取高导热绝缘材料,然后将散热件(3)通过超声波清洗设备清洗,去除散热件(3)上加工的残留加工液以及内部微小杂质及气体杂质等等,清洗后进行烘干处理,以便清除散热件(3)内外部残留的水汽;
    步骤三:将散热件(3)与筒壁(4)之间的粘接面均匀涂抹导热胶,也可不采用导热胶,使散热件(3)与筒壁(4)之间粘接,并保证散热件(3)与筒壁(4)的结合面平整;
    步骤四:将风扇(5)通过螺钉固定安装在筒壁(4)的排风口处,使得筒壁(4)接收到的热量通过风扇(5)吹送到空气中,达到热平衡。
  8. 根据权利要求7所述的一种X射线源绝缘散热装置的制作方法,其特征在于:所述步骤一阳极散热器(2)与散热件(3)在粘接之前,先将阳极散热器(2)与散热件(3)之间的粘接面进行擦拭,确保粘接面无尘。
  9. 根据权利要求7所述的一种X射线源绝缘散热装置制作方法,其特征在于:所述步骤三散热件(3)与筒壁(4)之间粘接之前,先将散热件(3)与筒壁(4)之间的粘接面进行擦拭,确保粘接面无尘。
PCT/CN2022/075924 2021-05-28 2022-02-10 一种x射线源绝缘散热装置及其制作方法 WO2022247348A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110592031.0A CN115410882A (zh) 2021-05-28 2021-05-28 一种x射线源绝缘散热装置及其制作方法
CN202110592031.0 2021-05-28

Publications (1)

Publication Number Publication Date
WO2022247348A1 true WO2022247348A1 (zh) 2022-12-01

Family

ID=84155652

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/075924 WO2022247348A1 (zh) 2021-05-28 2022-02-10 一种x射线源绝缘散热装置及其制作方法

Country Status (2)

Country Link
CN (1) CN115410882A (zh)
WO (1) WO2022247348A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007257995A (ja) * 2006-03-23 2007-10-04 Jobu:Kk X線発生装置
CN202837207U (zh) * 2012-08-14 2013-03-27 杭州惠威无损探伤设备有限公司 一种工业用定向x射线探伤机
CN203733753U (zh) * 2014-02-13 2014-07-23 吕美菊 一种新型x射线发生器
WO2016066810A1 (de) * 2014-10-30 2016-05-06 Smiths Heimann Gmbh Röntgenstrahlungserzeuger
CN205593943U (zh) * 2016-03-22 2016-09-21 杭州惠威无损探伤设备有限公司 一种具有双层管体的x射线探伤机
CN211743091U (zh) * 2020-04-20 2020-10-23 西安佳谱电子科技有限公司 一种x射线管高效散热装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007257995A (ja) * 2006-03-23 2007-10-04 Jobu:Kk X線発生装置
CN202837207U (zh) * 2012-08-14 2013-03-27 杭州惠威无损探伤设备有限公司 一种工业用定向x射线探伤机
CN203733753U (zh) * 2014-02-13 2014-07-23 吕美菊 一种新型x射线发生器
WO2016066810A1 (de) * 2014-10-30 2016-05-06 Smiths Heimann Gmbh Röntgenstrahlungserzeuger
CN205593943U (zh) * 2016-03-22 2016-09-21 杭州惠威无损探伤设备有限公司 一种具有双层管体的x射线探伤机
CN211743091U (zh) * 2020-04-20 2020-10-23 西安佳谱电子科技有限公司 一种x射线管高效散热装置

Also Published As

Publication number Publication date
CN115410882A (zh) 2022-11-29

Similar Documents

Publication Publication Date Title
JP4161328B2 (ja) 複合ハウジングを有するx線発生装置
CN1253286C (zh) 静电吸附台和基底处理装置
WO2017215169A1 (zh) 高功率电磁波发生器的工质接触式冷却系统及其工作方法
JP2009164038A (ja) 固定陽極型x線管および一体型x線発生装置
WO2022247348A1 (zh) 一种x射线源绝缘散热装置及其制作方法
US2241974A (en) High power cathode ray device
US6747419B2 (en) Method and apparatus for heat pipe cooling of an excimer lamp
US11552224B2 (en) Wavelength conversion device
US7056017B2 (en) Cooling system and method for an imaging system
US11543649B2 (en) Wavelength conversion device for projector
JP2003123999A (ja) X線管装置
WO2023024448A1 (zh) 一种x射线源散热装置及其制作方法
CN106568230B (zh) 一种基于半导体致冷片的InGaAs光电阴极致冷装置
CN201262679Y (zh) 一种摄像机内部芯片散热结构
JP2912913B1 (ja) 板体加熱装置
TWI740223B (zh) 波長轉換裝置
WO2021210048A1 (ja) 放熱構造及びその製造方法、真空バルブ
US20180010780A1 (en) Highly efficient heat-dissipating light-emitting diode lighting device
CN210432265U (zh) 一种高发热石墨烯的散热结构
JP2012109389A (ja) エキシマ光照射装置
JP3788619B2 (ja) ランプ冷却装置、それを用いたプロジェクタ
KR20210017140A (ko) 방열부재를 구비한 엑스선 발생장치
CN112020167B (zh) 射频加热设备
TWM627953U (zh) 單層銅箔碳複合材均熱及散熱片
CN108411269B (zh) 一种应用于立式硅片磁控溅射镀膜机的离子清洗电极

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22810083

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22810083

Country of ref document: EP

Kind code of ref document: A1