WO2022246969A1 - 一种电动汽车集成热管理系统及实现方法 - Google Patents

一种电动汽车集成热管理系统及实现方法 Download PDF

Info

Publication number
WO2022246969A1
WO2022246969A1 PCT/CN2021/104858 CN2021104858W WO2022246969A1 WO 2022246969 A1 WO2022246969 A1 WO 2022246969A1 CN 2021104858 W CN2021104858 W CN 2021104858W WO 2022246969 A1 WO2022246969 A1 WO 2022246969A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
heat
thermal management
temperature
liquid
Prior art date
Application number
PCT/CN2021/104858
Other languages
English (en)
French (fr)
Inventor
肖启能
Original Assignee
深圳昂湃技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳昂湃技术有限公司 filed Critical 深圳昂湃技术有限公司
Publication of WO2022246969A1 publication Critical patent/WO2022246969A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00357Air-conditioning arrangements specially adapted for particular vehicles
    • B60H1/00385Air-conditioning arrangements specially adapted for particular vehicles for vehicles having an electrical drive, e.g. hybrid or fuel cell
    • B60H1/00392Air-conditioning arrangements specially adapted for particular vehicles for vehicles having an electrical drive, e.g. hybrid or fuel cell for electric vehicles having only electric drive means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00271HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00271HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit
    • B60H1/00278HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit for the battery
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/02Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant
    • B60H1/03Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant and from a source other than the propulsion plant
    • B60H1/034Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant and from a source other than the propulsion plant from the cooling liquid of the propulsion plant and from an electric heating device
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3204Cooling devices using compression
    • B60H1/3205Control means therefor
    • B60H1/321Control means therefor for preventing the freezing of a heat exchanger
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3204Cooling devices using compression
    • B60H1/3228Cooling devices using compression characterised by refrigerant circuit configurations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/27Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by heating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/615Heating or keeping warm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • H01M10/637Control systems characterised by the use of reversible temperature-sensitive devices, e.g. NTC, PTC or bimetal devices; characterised by control of the internal current flowing through the cells, e.g. by switching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6554Rods or plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • H01M10/6568Liquids characterised by flow circuits, e.g. loops, located externally to the cells or cell casings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/657Means for temperature control structurally associated with the cells by electric or electromagnetic means
    • H01M10/6571Resistive heaters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/66Heat-exchange relationships between the cells and other systems, e.g. central heating systems or fuel cells
    • H01M10/663Heat-exchange relationships between the cells and other systems, e.g. central heating systems or fuel cells the system being an air-conditioner or an engine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00271HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit
    • B60H2001/00307Component temperature regulation using a liquid flow
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the invention relates to a vehicle air conditioning device, system and method, and in particular to an improvement of an integrated thermal management system, device and method of an electric vehicle.
  • the hot air core is heated by resistive heating elements such as PTC to raise the temperature in the passenger compartment to survive the cold winter. In summer, the battery-driven electric compressor is used.
  • the refrigeration system uses the evaporator (cold air core) to cool the interior of the car.
  • the hot air core and the cold air core are independent of each other to complete the cooling and heating functions.
  • PTC ceramic heating elements are used for heating, and the energy consumption ratio is relatively large.
  • the power consumption ratio (COP, Positive Temperature Coefficient) per unit heating capacity is about 1. For example, if a heater with a power of 4000W is used, the maximum heating capacity is 4000W. In order to improve the heating efficiency, some models have begun to use heat pump air conditioners.
  • the coefficient of heating efficiency (COP) is relatively high, that is, the ratio of heating capacity to power consumption is relatively large, generally up to 2 or more. For example, when the power consumption is 2000W, The heat obtained indoors can be above 4000W, but its power consumption still has a non-negligible negative impact on the cruising range.
  • the current power batteries (such as lithium iron phosphate batteries and ternary lithium batteries) are prone to lithium precipitation at the negative electrode when charged under low temperature conditions. After the formation of lithium dendrites, the diaphragm may be pierced, seriously affecting the safety and life of the battery.
  • the battery management system (BMS, Battery Management System) will strictly limit its working charge and discharge boundaries; moreover, the lower the temperature, the lower the activity of the chemical components in the battery, and the electrolyte becomes viscous and conducts electricity The capacity will decrease, and at the same time, the internal resistance of the battery will increase, and the charging and discharging power will be significantly reduced.
  • the cruising range at low temperature has always been a pain point that restricts the popularization of new energy vehicles.
  • thermal management lies in the effective thermal management of the battery to improve battery charge and discharge. Capacity, and improve the heating efficiency of air conditioning to reduce power consumption.
  • the motor and motor controller have a high power consumption efficiency for the battery.
  • the power consumption efficiency of the motor controller is generally around 0.96-0.97, and the power consumption efficiency of the motor is high.
  • the point is also around 0.96, the calorific value of the drive train is low, the waste heat of the motor can be used to heat the battery, and when the water temperature at the outlet of the motor reaches a certain condition, it can be used to heat the battery.
  • the mass of the battery is generally between 350kg and 500kg.
  • the heat management is relatively simple. The battery is simply heated by the waste heat of the motor, but the waste heat of the motor cannot heat the battery to the ideal level under all conditions. temperature, so that the battery has a good charge and discharge capacity.
  • the heat generation of the auxiliary driving control unit is also greatly increased. If only the heat dissipation system is used to dissipate the heat into the air , is a huge and obvious waste. Especially in cold weather in winter, it is necessary to design a new type of high-efficiency thermal management technology product to maximize the recovery and utilization of heat energy, which can be used for heating and heating of air-conditioning in the car and thermal management of batteries, so as to reduce the power consumption of air-conditioning as much as possible. This has become an important topic of great concern in the field of electric vehicles, but so far there is no effective solution.
  • the heat pump air conditioner absorbs the heat of the outdoor air and discharges it to the driver's cabin in winter, as the outdoor temperature drops, the surface temperature of the outdoor evaporator will also decrease, often falling below the ambient temperature or even below 0°C.
  • the outdoor air flows through the evaporator to be cooled, the water vapor in the air contacts the surface of the evaporator whose temperature is lower than the air dew point temperature, and the phenomenon of phase change and condensation occurs. At this time, the moisture contained in the air will precipitate and attach to the surface of the evaporator.
  • frost layer When the outdoor ambient temperature or the surface of the evaporator continues to be lower than 0°C, the moisture attached to the surface of the evaporator may further condense to form a frost layer. The lower the surface temperature and the greater the relative humidity, the faster the frost will form. The frost layer accumulates until the surface is gradually covered by frost, forming a continuous frost layer.
  • the frost layer as a porous medium will not only reduce the heat transfer performance of the system and increase energy consumption due to its small thermal conductivity, but even block the airflow channel of the outdoor fan in severe cases, causing the temperature of the evaporator to become lower and lower until the evaporation function cannot be completed. System clogging or hydraulic shock damages the compressor, causing very serious failure consequences. Therefore, outdoor fans in winter need defrosting and defrosting.
  • the current main defrosting technology is to switch to cooling mode to actively defrost, detect the surface temperature of the outdoor heat exchanger, and start when it is lower than the set value and maintain for a period of time
  • the specific method is to switch the four-way reversing valve, suspend heating, and make it work in cooling mode.
  • the compressor outputs high-temperature and high-pressure steam into the outdoor heat exchanger (condenser in cooling mode).
  • the outdoor fan will be stopped first, and the melted frost and snow will turn into water and flow out before starting the fan. Blow dry.
  • the four-way reversing valve is controlled to restore the air conditioner to the heating mode.
  • the defrosting time of this method is short, but during the defrosting operation, the heating needs to be suspended, and the heat is absorbed from the cab instead, resulting in large fluctuations in the indoor temperature, reducing the comfort of the indoor environment, and the reversing valve needs to be reversing frequently , easy to wear and noisy.
  • Another commonly used method is the active defrosting of the bypass valve.
  • the defrosting valve When heating, the defrosting valve is opened, and the high-temperature and high-pressure steam output from the compressor is directly passed into the outdoor heat exchanger (used as an evaporator in heating mode) for defrosting.
  • the four-way valve does not need to be reversed, the defrosting bypass solenoid valve is opened, the fan is turned off, and the exhaust gas of the compressor is sent to the outdoor heat exchanger through the bypass pipeline (in the heating mode, it is used as an evaporation
  • the defrosted refrigerant enters the gas-liquid separator through the four-way reversing valve, and is finally sucked by the compressor.
  • the disadvantage of this method is also that the heating will stop during defrosting, which will cause fluctuations in the indoor temperature.
  • the purpose of the present invention is to provide an electric vehicle integrated thermal management system and its implementation method, through comprehensive management of heat-generating components such as heat pump air conditioner, battery heat exchanger, motor and its driving part, power management and automatic driving control unit, forming a convenient
  • the control and management system and implementation method aim at the integrated thermal management of electric vehicles, so as to realize more convenient thermal management and control.
  • An electric vehicle integrated thermal management system which includes a compressor, and an indoor heat exchanger and an outdoor heat exchanger, including a refrigerant circuit and a second liquid circuit that are relatively independent;
  • the compressor, the indoor heat exchanger, and a primary side of a first heat exchanger and a primary side of a second heat exchanger connected by pipelines are arranged in the refrigerant circuit, through which the first and/or second heat exchanger is in heat exchange with said second liquid circuit;
  • the first heat exchanger and the second heat exchanger are respectively arranged downstream and upstream of the compressor in the refrigerant circuit;
  • the secondary side of the outdoor heat exchanger and the first heat exchanger connected by pipelines, and the secondary side of the second heat exchanger are arranged in the second liquid circuit;
  • a pipeline for connecting the battery heat exchanger is also arranged in the second liquid circuit.
  • a pipeline for connecting the motor and the heat exchanger of the motor-driven part is also arranged in the second liquid circuit.
  • the second liquid circuit is further provided with pipelines for connecting power management and automatic driving control heat exchangers.
  • the electric vehicle integrated thermal management system wherein, the system is also configured to adopt a modular configuration, and the second liquid circuit is also provided with: a first pipeline interface and a second pipeline interface for connecting with the compressor / motor heat exchanger plug; the third pipeline interface and the fourth pipeline interface, used for plugging with the heat exchanger of the motor drive, power converter and driving control system; and the fifth pipeline interface and the sixth
  • the pipeline interface is used to plug in the heat exchanger of the battery; the second pipeline interface is directly connected to the third pipeline interface, and the first pipeline interface is connected to the first pump.
  • the sixth pipeline interface communicates with the secondary side of the first heat exchanger.
  • the first to sixth pipeline interfaces are arranged on the modularized system, and have a standardized layout of pipeline interfaces.
  • the second liquid circuit is also provided with: a first pump, arranged upstream of the secondary side of the first heat exchanger, for driving the second Cooling liquid flows in the secondary liquid circuit; the first to sixth pipe interfaces are provided on the pipeline between the first pump and the upstream of the secondary side of the first heat exchanger.
  • the fifth pipeline interface is in communication with a fifth bypass valve, and the fifth bypass valve is used to bypass the first to fourth pipelines in a controlled manner. road interface.
  • the fourth pipeline interface is also connected to a sixth bypass valve, and the sixth bypass valve is used to control bypass the fifth to sixth Pipeline interface.
  • a third pump is further arranged on the branch of the first pipeline interface, which is used to drive the cooling liquid to flow out of the first pipeline interface.
  • a second check valve is further connected between the fourth pipeline interface and the fifth pipeline interface to prevent the cooling liquid from passing through the fifth pipeline interface.
  • the inside flows in the opposite direction to the fourth pipeline interface.
  • a third one-way valve is arranged upstream of the fifth bypass valve to ensure the one-way flow of the cooling liquid.
  • the load (such as a battery heat exchanger) connected between the fifth and sixth pipeline interfaces and the load between the first and fourth pipelines
  • the connected loads (such as heat exchangers of various electronic control modules and power management modules that need heat dissipation) will be in a parallel working state.
  • the load (such as a battery heat exchanger) connected between the fifth and sixth pipeline interfaces and the load between the first and fourth pipelines
  • the connected loads (such as heat exchangers of various electronic control modules and power management modules that need heat dissipation) will be in a serial working state.
  • the coolant is driven by the first pump to first pass through the load connected between the first and fourth pipelines and collect and take away its heat, the temperature of the liquid will be heated to increase, and then from the first
  • the fifth pipeline enters the load (such as a battery heat exchanger) connected between the fifth and sixth pipeline interfaces to heat the load (such as a battery heat exchanger) connected between the fifth and sixth pipeline interfaces .
  • the electric vehicle integrated thermal management system further includes a thermal management controller, which is set in the circuit of the electric vehicle integrated thermal management system, and is used to execute different control strategies.
  • a first bypass valve is arranged in parallel with the secondary side of the first heat exchanger for controlled formation of a bypass.
  • a second bypass valve is arranged in parallel with the secondary side of the second heat exchanger for controlled formation of a bypass.
  • a first electronic expansion valve is provided in communication with the primary side downstream of the first heat exchanger, and a third bypass valve is provided in parallel with the communication path for controlled form a bypass.
  • a second electronic expansion valve is provided in communication with the primary side upstream of the second heat exchanger, and a fourth bypass valve is provided in parallel with the communication passage for controlled form a bypass.
  • the electric vehicle integrated thermal management system wherein, the secondary side of the first heat exchanger is connected to the first end of the first three-way valve at the same end as the downstream of the first bypass valve, and the first Two ends of the three-way valve are connected to the outdoor heat exchanger; three ends of the first three-way valve are connected to one end of a second three-way valve, and two ends of the second three-way valve are connected to the outdoor heat exchanger.
  • the downstream end of the heat exchanger is connected to the secondary side of the second heat exchanger; the third end of the second three-way valve is connected to the inlet of the first pump.
  • a second pump is arranged at the upstream end of the outdoor heat exchanger for driving the circulation of cooling fluid.
  • a liquid storage tank is arranged upstream of the first pump and the second pump, and the liquid storage tank adopts two liquid storage areas A and B, and the two liquid storage areas
  • the liquid storage area is connected at the bottom; and, the inlet of the first pump and the 3-end of the second three-way valve are close to and opened in the A liquid storage area of the liquid storage tank; the second pump The inlet and the liquid outlet at the downstream end of the second heat exchanger are adjacent to and opened in the B liquid storage area of the liquid storage tank.
  • a PTC is further arranged downstream of the first pump in series with the first pump.
  • the first heat exchanger and the second heat exchanger are plate heat exchangers.
  • a method for realizing any one of the electric vehicle integrated thermal management systems which includes a thermal management controller, which is set in the circuit of the electric vehicle integrated thermal management system, and is used to implement different control strategies; and includes the following steps :
  • the refrigerant is compressed by the compressor, and communicated with the indoor heat exchanger for heat exchange of indoor air;
  • the second liquid circuit is provided with an outdoor heat exchanger to exchange heat with outdoor air;
  • the refrigerant circuit and the second liquid circuit operate relatively independently, and the second liquid circuit can choose to pass through the first heat exchanger and the outdoor heat exchanger as a cooling mode or choose to pass through the second heat exchanger and the outdoor heat exchanger.
  • the outdoor heat exchanger is used as the heat exchange in the heating mode;
  • a pipeline for connecting the battery heat exchanger is also arranged in the second liquid circuit.
  • the integrated thermal management system and implementation method for electric vehicles adopt a relatively independent refrigerant circuit and a second liquid circuit, which are respectively connected to the indoor heat exchanger and the outdoor heat exchanger through pipelines, so that
  • the outdoor heat exchanger works in the second liquid circuit and does not need to withstand the high pressure of the refrigerant circuit, which improves its reliability and prolongs its service life;
  • the piping design of the second liquid circuit can form a more free logical control mode , to adjust the temperature according to different ambient temperature requirements;
  • the heat of the battery pack is connected to the management pipeline of the heat pump air conditioner, which realizes the function of maintaining the battery temperature at extremely low temperatures, and can also collect the heat generated by the battery and other
  • the heat from the components is used for heating by the heat pump air conditioner to improve heating efficiency and reduce power consumption.
  • the entire integrated thermal management system and its implementation method can be set into a modular structure, and more free control strategies can be realized by the thermal management controller, and various control strategies can be realized through the programming of the controller.
  • FIG. 1 is a schematic diagram of a functional block diagram of an electric vehicle integrated thermal management system and its implementation method according to the present invention.
  • Fig. 2 is a schematic structural diagram of a preferred embodiment of the electric vehicle integrated thermal management system and its implementation method according to the present invention.
  • Fig. 3 is a schematic diagram of pressure and enthalpy of heat pump air conditioners in the present invention and in the prior art.
  • Fig. 4 is a schematic diagram of the working principle of the cooling mode of the preferred embodiment of the electric vehicle integrated thermal management system and implementation method of the present invention.
  • Fig. 5 is a schematic diagram of the working principle of further cooling in the cooling mode of the preferred embodiment of the electric vehicle integrated thermal management system and implementation method according to the present invention.
  • Fig. 6 is a schematic diagram of the working principle of heat recovery in the heating mode of a preferred embodiment of the electric vehicle integrated thermal management system and implementation method of the present invention.
  • Fig. 7 is a schematic diagram of the working principle of the heating mode of the preferred embodiment of the electric vehicle integrated thermal management system and implementation method according to the present invention, which further requires an outdoor heat exchanger to absorb air heat.
  • FIG. 8 is a schematic diagram of the working principle of using an external heat source and a heat pump to heat up the temperature of the battery in the heating mode of the preferred embodiment of the electric vehicle integrated thermal management system and implementation method of the present invention (same as heat storage for defrosting).
  • Fig. 9 is a schematic diagram of using a heat pump and an external heat source to heat up the battery while adding a PTC to rapidly intensify heating in the heating mode of the preferred embodiment of the electric vehicle integrated thermal management system and its implementation method according to the present invention (accelerated defrosting heat storage at the same time ).
  • FIG. 10 is a schematic diagram of the working principle of stopping heat pump heating when the cooling liquid needs to be kept warm in the heating mode in the preferred embodiment of the electric vehicle integrated thermal management system and implementation method of the present invention.
  • Fig. 11 is a schematic diagram of the working principle when defrosting is required in the heating mode in the preferred embodiment of the electric vehicle integrated thermal management system and implementation method of the present invention.
  • Fig. 12 is a schematic diagram of the working principle of conventional heat dissipation for waste heat in the preferred embodiment of the electric vehicle integrated thermal management system and its implementation method in the present invention when the refrigerant circuit does not need to work under the driving condition without the air conditioner.
  • Fig. 13 is a schematic diagram of the working principle of the electric vehicle integrated thermal management system and implementation method in a preferred embodiment of the present invention when charging under low temperature conditions or during low temperature standby.
  • Fig. 14 is a schematic diagram of the specific air-conditioning pipeline structure in a preferred embodiment of the electric vehicle integrated thermal management system and implementation method of the present invention.
  • Fig. 15 is a schematic diagram of the pipeline structure for dissipating heat from the battery and waste heat in cooling mode in a preferred embodiment of the electric vehicle integrated thermal management system and implementation method of the present invention.
  • Fig. 16 is a schematic diagram of the pipeline structure for further strengthening heat dissipation and cooling in cooling mode in a preferred embodiment of the electric vehicle integrated thermal management system and implementation method of the present invention.
  • Figure 17 is a schematic diagram of the temperature-saving pipeline structure when the refrigerant circuit stops working in the preferred embodiment of the electric vehicle integrated thermal management system and its implementation method in the present invention when the air conditioner is not turned on for charging or under low-temperature standby conditions.
  • Fig. 18 is a schematic diagram of the pipeline structure when the refrigerant circuit stops working and the heat dissipation maintains the temperature in the preferred embodiment of the electric vehicle integrated thermal management system and implementation method of the present invention under the condition of normal temperature without the air conditioner.
  • Fig. 19 is a schematic diagram of the pipeline structure for recovering waste heat from batteries and waste heat for heating in a preferred embodiment of the electric vehicle integrated thermal management system and implementation method of the present invention when the water temperature is normal in the heating state.
  • Fig. 20 is a schematic diagram of the pipeline structure of the heating mode in which the water temperature is normally cooler but lower than the air temperature in the preferred embodiment of the electric vehicle integrated thermal management system and implementation method of the present invention.
  • Fig. 21 is a schematic diagram of the piping structure of the electric vehicle integrated thermal management system and implementation method in the preferred embodiment of the present invention, using the heat pump and working waste heat to heat the battery while heating.
  • Fig. 22 is a schematic diagram of the pipeline structure for defrosting preparation in the heat preservation state where heat absorption from the heat pump needs to be stopped in the heating mode in the preferred embodiment of the electric vehicle integrated thermal management system and implementation method of the present invention.
  • Fig. 23 is a schematic diagram of the pipeline structure of the defrosting operation in the preferred embodiment of the electric vehicle integrated thermal management system and implementation method of the present invention.
  • an electric vehicle integrated thermal management system and its implementation method provided by the present invention, it can integrate heat-generating components such as heat pump air conditioners, battery packs, motors and their driving parts, power management and automatic driving control units.
  • heat-generating components such as heat pump air conditioners, battery packs, motors and their driving parts, power management and automatic driving control units.
  • an integrated heat management system which uses two relatively independent refrigerant circuits and a second liquid circuit to realize heat exchange to the outside and heat exchange to the interior of the car respectively.
  • a heat exchanger for mutual heat exchange is provided between the refrigerant circuit and the second liquid circuit.
  • the present invention can coordinate and manage the heat flow paths and configurations of the refrigerant circuit of the heat pump air conditioner under various working conditions, the heat circuit of the battery pack in the second liquid circuit, and other functional units, so that each part can always work in a reasonable manner. Temperature conditions, to play the best work efficiency.
  • the heat generated by electric vehicle heating components such as the motor and its driving part, power management part, and automatic driving control unit can be used (these components inevitably generate heat and need to be dissipated during normal operation, hereinafter collectively referred to as external heat sources ), and the heat generated by absorbing the heat energy of the air through the heat pump air conditioner is aggregated by the heat exchanger and can be controlled to realize serial flow or parallel flow according to the needs.
  • the liquid carries the heat of the heat pump and the waste heat of the external heat source through the battery pack to make the temperature rise rapidly High to a suitable temperature range to ensure that the charge and discharge capacity of the battery is not restricted by low temperature conditions.
  • the perfect thermal management of the battery pack is used to maximize the charging and discharging performance of the power battery and improve the cruising range under low temperature conditions.
  • Another purpose of the preferred embodiment of the electric vehicle integrated thermal management system in the present invention is to design a brand-new heat pump air-conditioning technology through an integrated comprehensive architecture design, so that it can collect and utilize as much as possible in the low-temperature heating mode.
  • the heat generated by functional components (or external heat sources) such as battery packs, motors and their driving parts, power management, and automatic driving control can maximize waste heat recovery and utilization, and be used for heating and heating in heat pump air conditioners. Reduce heating power consumption and improve heating coefficient of efficiency (COP).
  • the waste heat recovery mechanism in the preferred embodiment of the system and implementation method of the present invention can efficiently recover and store the waste heat of electric vehicles, and release it for defrosting and deicing under low-temperature frosting conditions. To achieve the purpose of energy saving. Moreover, the defrosting and deicing process is carried out simultaneously with the heating process of the heat pump, and it is not necessary to stop the heating first for defrosting, which ensures the continuity of the heating work, reduces indoor temperature fluctuations, and greatly improves driving comfort.
  • the heat of liquid circuits such as power battery heat exchanger, motor and its driving part, power management and auxiliary driving control unit in the preferred embodiment of the present invention not only shares the heat of the condensing radiator of the heat pump air conditioning system
  • the indoor heat exchanger 4 (as shown in Figure 2) can be used not only as a cold air core (evaporator) in the cooling state, but also as a hot air core in the heating state.
  • the core (condenser) and the two heat exchangers have multiple functions, and the structure is significantly simplified compared with the traditional automotive air conditioning system, which is of great benefit to reducing the cost of the vehicle and reducing the space.
  • the preferred embodiment of the integrated thermal management system applied to electric vehicles in the present invention includes a system host 41, auxiliary components and their connecting joints and pipes.
  • the system host 41 can be set as an integrated modular device, and the corresponding connecting joint can be set to be plugged and connected with the external heat dissipation pipeline of the electric vehicle.
  • This modular design method can The interface of each pipeline is set as a unified standard joint, and the inlet and outlet pipeline interfaces corresponding to each component are set on the joint, such as the heat exchange pipeline applied to the power battery, and the pipeline applied to other heat dissipation functional components of the vehicle
  • the interface can be conveniently plugged in through a standard connector, so that it can be matched and adapted to various models through a standardized module.
  • the accessory parts in the present invention are part of the realization of the functions of the host, and they are referred to as accessory components only when they are placed outside the main box.
  • the following descriptions of the host will still include accessory components.
  • the accessory components include: the indoor heat exchanger 4 and its supporting fan 20, the air guide element and its wiring terminal, the outdoor heat exchanger 13 and its supporting first fan 19 and its wiring connecting terminal, the power input port Power, the battery Heat exchanger 32, motor and motor drive part heat exchanger 33, compressor/motor heat exchanger 34, indoor temperature sensor T_room 23, outdoor temperature sensor T_a 25, outdoor heat exchanger 13 surface temperature sensor T_s_49, and the whole vehicle Control bus terminal for controller communication (CAN or LIN or other types of data interface).
  • the battery heat exchanger 32 is a mechanism that requires special attention and maintains temperature balance in the preferred embodiment of the present invention, while the heat exchanger of the motor and motor drive part, as well as the power management and automatic driving control heat exchanger Etc., the heat generated by the operation of the vehicle, under the action of the vehicle thermal management system, is transmitted and dissipated to the place where the heat is needed in time, so that it can better improve the operating efficiency of the vehicle and increase the battery life while reducing the energy loss of the battery. mileage.
  • connection joints and pipelines include the coolant joints and pipelines 42 connecting the host 41 to the outdoor heat exchanger 13, the refrigerant joints and pipelines 43 connecting the host 41 to the indoor heat exchanger 4, and the coolant joints and pipelines 43 connecting the host 41 to the battery heat exchanger 32.
  • Coolant connectors 39, 40 and pipes 44, coolant connectors 35, 36 and pipes 45 connecting the main engine 41 to the compressor/motor heat exchanger 34, coolant connecting the main engine 41 to the power management and automatic driving control heat exchanger 33 Fittings 37, 38 and pipe 46.
  • Most of the main engine 41 of the present invention is designed in a box-type housing, which includes a thermal management controller 48 and an integrated thermal management circuit.
  • the integrated thermal management circuit includes a refrigerant circuit and a second
  • the specific structure of the liquid circuit is described in detail below.
  • the thermal management controller 48 is arranged on an independent circuit board and connected to the pumps, valves, and fans of the integrated thermal management circuit, and realizes switching of the corresponding pumps, valves, and fans through a pre-programmed management strategy. Control to realize corresponding cooling, heating, defrosting, defrosting and other functions.
  • the integrated heat management circuit in the main engine of the present invention in addition to setting the structure of the indoor heat exchanger and outdoor heat exchanger, battery, motor and power supply (the battery, motor and power supply are the original functional structures of the vehicle) Outside the main engine, most of the remaining pipelines of the refrigerant circuit and the second liquid circuit are arranged in a main engine, and are connected to the outside, especially with the motor and power supply of the vehicle.
  • the insertion position of the thermal management circuit adopts a standard pipe joint structure, which is used for thermal management connection of different heat-generating components of the vehicle.
  • the refrigerant circuit includes a compressor 1 connected in sequence to form a cycle, the primary side of the first heat exchanger 2, the first electronic expansion valve 3, the indoor heat exchanger 4 and its Corresponding to the second fan 20 of the indoor heat exchanger, the second electronic expansion valve 5 , the primary side of the second heat exchanger 6 , and the gas-liquid separator 8 .
  • the electric compressor When working in the refrigeration mode, the electric compressor outputs high-temperature and high-pressure refrigerant vapor, which exchanges heat with the refrigerant circuit in the first heat exchanger 2, and the heat is transferred from the first heat exchanger 2 to the second liquid circuit and then passes through the second liquid circuit.
  • the outdoor heat exchanger 13 of the liquid circuit dissipates heat to the outdoor air, while the refrigerant absorbs the heat of the indoor air from the indoor heat exchanger 4, causing the indoor temperature to drop to cool down.
  • the second heat exchanger 6 can absorb heat from the second liquid circuit, and discharge heat from the indoor heat exchanger 4 to the indoor air to raise the temperature for heating.
  • the first and second electronic expansion valves 3 and 5 are used to switch the working mode of the refrigerant circuit and to control the indoor temperature.
  • the thermal management controller 48 is set in the control circuit, and can adjust the first electronic expansion valve 3 and the second electronic expansion valve 5 according to the industrial control strategy to switch the working mode of the refrigerant circuit and perform indoor temperature control (cooling or heating) , also monitor the data of each temperature sensor to control the actions of various valves and adjust the rotating speed of the compressor 1 to control the temperature.
  • the data and control communication between the system and the vehicle controller are also completed by the thermal management controller 48 of.
  • the second liquid circuit of the preferred embodiment of the present invention includes the first pump 22, the second pump 15, the third pump 27, the secondary side of the first heat exchanger 2 (there is no communication between one side and the secondary side) mutual heat exchange), the first bypass valve 9, the first three-way valve 10, the outdoor heat exchanger 13 and its first fan 19, the second three-way valve 11, the secondary side of the second heat exchanger 6 (there is no communication between one side and the secondary side but mutual heat exchange), the second bypass valve 12, the liquid storage tank 16 (or a multi-port joint with similar connection function), the first one-way valve 21, the external cooling liquid Inlet and outlet fittings 35-40 and all connecting lines 44-46.
  • the outdoor heat exchanger 13 and its first fan 19 are used in the cooling mode to dissipate and discharge the heat of the cooling liquid in the second liquid circuit to the outdoor air, or in the heating mode to absorb heat from the outdoor air To the carrier cooling liquid in the second liquid circuit.
  • the secondary side of the second heat exchanger 6 and the secondary side of the first heat exchanger 2 are connected to the pipeline of the second liquid circuit for heat exchange with the refrigerant circuit.
  • the heating mode it can absorb the heat of the refrigerant vapor, and in the heating mode, it is used to transfer the heat of the refrigerated liquid in the second liquid circuit to the refrigerant circuit to evaporate the refrigerant.
  • the first pump 22, the third pump 27 and the second pump 15 provide the impetus for circulation, and their operation is controlled by the control signal sent by the thermal management controller 48 according to the different needs of the working mode, so as to realize the control of the corresponding pumps.
  • Flow driving force; the first pump 22 is provided with an opening in the liquid storage tank 16, and the downstream of the first pump 22 is provided with a third pump 27 and a fifth branch that bifurcate to form two branches
  • the bypass valve 28, the third pump 27 is provided with a first pipeline interface 35, and a pipeline arranged in the main engine, and two pipeline interfaces, namely the second pipeline, are set on the connecting surface of the main engine Interface 36 and the third pipeline interface 37 (direct conduction between the two pipeline interfaces), an external interface to be connected is provided between the first pipeline interface 35 and the second pipeline interface 36, for Connect the heat exchanger of the compressor/motor or the heat exchanger of other heat-generating components, so that the heat on it can be introduced into the host from the second pipeline interface 36 through the heat exchanger.
  • the second pump 15 is arranged in the upstream pipeline of the outdoor heat exchanger, parallel to the pipelines of the first pump and the secondary side of the first heat exchanger, forming an additional circulation branch that facilitates the design of more functions. road.
  • the terms upstream and downstream in this specification refer to the upper side of the device, that is, the direction of fluid coming (upstream) or the lower side, that is, the direction of fluid going (downstream), in the fluid circulation path, along the direction of fluid flow.
  • more pipeline interfaces can be provided to adapt to more liquid heat exchangers of heat-generating components, such as the fourth pipeline interface 38, the fifth pipeline interface 39 and the sixth pipeline interface 40 shown in Figure 2
  • the communication and connection of the heat exchangers installed in the motor drive, power converter, and driving control system can be realized and collected. Heat is introduced into the second liquid circuit.
  • the battery heat exchanger 32 can be communicated and connected to the second liquid circuit.
  • multiple different pipeline interfaces can be set.
  • other components that generate "waste heat" can be provided with corresponding pipelines
  • To connect the interface it is only necessary to add serial connection pipes and pipeline joints similar to the second pipeline interface 36 and the third pipeline interface 37 .
  • a second one-way valve 30 is arranged between the fourth pipeline interface 38 and the fifth pipeline interface 39, which can be used to ensure that the cooling liquid flows from the inside of the fourth pipeline interface to the direction of the fifth pipeline interface; and
  • the fifth pipeline interface 39 is also connected to the other end of the fifth bypass valve 28, and a third one-way valve 31 is also arranged at the front end of the fifth bypass valve 28, so as to ensure that in the second liquid circuit,
  • the branch of the fifth bypass valve 28 is a one-way flow of the liquid in the pipeline.
  • the third pump 27 can increase the driving pressure for the coolant in the first pipeline interface 35 to flow out of the first pipeline interface.
  • a sixth bypass valve 29 is also provided between the fourth pipeline interface 38 and the sixth pipeline interface 40, and both the fifth bypass valve 28 and the sixth bypass valve 29 can pass through the heat
  • the control of the management controller 48 realizes the corresponding switch, thereby realizing the corresponding industrial control function.
  • the fifth bypass valve 28 can be controlled to realize the bypass of the first to fourth pipeline interfaces, so that the coolant can be passed through the fifth bypass under certain necessary conditions (such as the liquid temperature is high).
  • the circuit valve 28 flows to the battery heat exchanger across other external heat sources, and the heat generated by other external "waste heat" components of the electric vehicle is not used to heat the battery heat exchanger.
  • the sixth bypass valve 29 can be controlled to bypass the fifth to sixth pipeline interfaces. Under the joint action of the fifth bypass valve 28, the liquid temperature can cross the battery heat exchanger when the temperature is high enough. Instead, the "waste heat" is collected directly, which does not heat the battery heat exchanger.
  • the first bypass valve 9 and the second bypass valve 12 are respectively used for controlled switches to change the circulation path of the brine in the second liquid circuit. Respectively across the secondary side of the first heat exchanger 2 and the secondary side of the second heat exchanger 6, so as to realize the function of selecting whether to exchange heat with the refrigerant circuit, thereby correspondingly realizing the corresponding heat management function.
  • the first bypass valve 9 is parallel connected to both ends of the secondary side of the first heat exchanger 2, and the second bypass valve 12 is parallel connected to both ends of the secondary side of the second heat exchanger 6. end.
  • the first bypass valve 9 communicates with the parallel end of the secondary side of the first heat exchanger 2 and is connected to the 1st end of the first three-way valve 10, and the 3rd end of the first three-way valve 10 is connected to End 1 of the second three-way valve 11 and end 2 of the first three-way valve 10 are connected to one end of the outdoor heat exchanger 13 .
  • an open position can be set in the main engine 41 of the present invention for installing the outdoor heat exchanger 13 and the fan 19, and the outdoor heat exchanger of the vehicle can also be installed between the box body of the main engine 41. Any place outside the vehicle, and communicate with the main engine 41 with pipelines.
  • the other end of the outdoor heat exchanger 13 is connected to the second end of the second three-way valve 11, and is parallel to the secondary side of the second heat exchanger 6 and one side of the second bypass valve 12. end connection.
  • the 3rd end of the second three-way valve 11 communicates with the other side end of the second bypass valve 12 in parallel, and is provided with an open end in the liquid storage tank 16, and is connected to the first pump 22 is set close to the open end of the liquid storage tank 16 and is opened in the liquid storage tank 16 .
  • the other end of the secondary side of the second heat exchanger 6 is also communicated with the liquid storage tank 16, and is adjacent to the opening of the second pump 15 in the liquid storage tank 16, and is open. set up.
  • the above-mentioned two approaching open opening positions are set in the two liquid storage areas A and B in the liquid storage tank 16, and the two liquid storage areas are set as open channels at the bottom of the liquid storage tank 16, And the two approaching positions are arranged on the top of two different liquid storage areas, so that when circulating, it can be ensured that the stability of the cycle can be maintained by approaching the setting in the liquid storage tank 16, and the opening can make the
  • the liquid in the second liquid circuit can be replenished through the liquid storage tank, and when heat storage is required, a gradual liquid exchange can be carried out through the open opening, thereby forming a certain pressure in the liquid storage tank 16. Heat storage process.
  • the liquid storage tank 16 can also be realized by using a multi-directional pipe joint, and the volume of the liquid storage tank 16 can also be set to have different sizes, so that it can be set to match the heat storage requirements of different vehicles according to actual needs.
  • a liquid filling cap 17 is also provided on the liquid storage tank 16 for adding cooling liquid to the liquid storage tank 16 .
  • the fifth bypass valve 28 is used to control whether the bypass liquid of the first pump 22 all flows through the external heat source heat exchanger (motor drive, power converter and driving control system heat exchanger 33 and compressor/motor heat exchanger) exchanger 34), the second three-way valve 11 can be used to control whether the branch liquid of the first pump 22 flows through the secondary side of the heat exchanger 6, especially in the heating and heat storage process in the heating mode In this way, the branch of the first pump 22 is relatively independent from the heating branch of the first pump 15, which ensures that the heating and heat storage work can be carried out at the same time.
  • the function of the first one-way valve 21 is to prevent the high-temperature liquid output by the branch of the first pump 22 from flowing back through the second pump 15 to form a short circuit in some cases where the second pump 15 is not required to work.
  • the liquid cooling of the battery heat exchanger 32 (hereinafter referred to as the battery pack), the compressor/motor heat exchanger 34, the power management and automatic driving control unit 33 (hereinafter collectively referred to as the external heat source)
  • the circuit and the refrigerant circuit of the heat pump air conditioner are closely coupled together through a heat exchanger, and the circulation path of the refrigerant and the cooling liquid and the configuration strategy control are adjusted through the thermal management controller 48, which can realize effective comprehensive thermal management of the battery pack and external heat sources , make it work in a suitable temperature range, and use the heat pump to recover the heat from the battery pack and external heat sources as much as possible in the cold winter environment for heating in the driving room, and ensure that the temperature of the battery pack is within a reasonable range, and improve
  • the heating efficiency greatly reduces the power consumption of the heat pump air conditioner during heating.
  • the trapezoid represents four stages of enthalpy change
  • the arc represents the three state regions of the refrigerant
  • the gas-liquid mixed state is inside the arc
  • the liquid state is on the left side outside the arc
  • the gaseous state is on the right side outside the arc.
  • the sides of the trapezoid indicate the state changes during the operation of the air conditioner, including pressure and enthalpy.
  • all references to the pressure-enthalpy point are shown in Figure 3.
  • the thermal management controller reads the indoor target temperature T_r (such as 25°C) set by the user in advance, and when T_r is lower than the outdoor ambient temperature T_a, it enters the cooling working mode .
  • T_r such as 25°C
  • the working process in this mode is as follows: the compressor 1 compresses the refrigerant from a normal temperature vapor state (point 1 in the pressure-enthalpy diagram) into a high-temperature and high-pressure vapor state (point 2 in the pressure-enthalpy diagram), and enters the first heat exchanger 2 On the primary side, heat exchange occurs with the secondary measuring liquid connected to the second liquid circuit, and the temperature drops, and condenses into a high-pressure medium-temperature liquid (point 3 in the pressure-enthalpy diagram).
  • the thermal management controller reads the coolant temperature T2 of the liquid temperature sensor 26 arranged on the second liquid circuit, and when the temperature of T2 is normal (such as T2 ⁇ 55° C.), control The controller judges and selects the applicable control strategy, as shown in the simplified schematic diagram 4: the battery heat exchanger 32 is connected with the motor drive, power management, driving control system heat exchanger, compressor, main motor and other external heat sources (motor drive, power conversion heat exchanger and driving control system heat exchanger 33, compressor/motor heat exchanger 34) are connected in parallel through the cooling circuit (because the battery pack does not need additional heating at this temperature), and the coolant is pushed to the second heat exchanger by the corresponding pump The secondary side of 2 then absorbs the heat of the refrigerant vapor, so that the refrigerant completes the condensation process.
  • the battery heat exchanger 32 is connected with the motor drive, power management, driving control system heat exchanger, compressor, main motor and other external heat sources (motor drive, power conversion heat exchanger and driving control system heat exchanger 33, compressor/motor heat exchange
  • the first fan 19 is used to force the outdoor air to take away heat to complete heat dissipation. And the temperature of the liquid on the second liquid circuit drops and returns to the liquid storage tank to enter the water inlet of the adjacent water pump for circulation.
  • the thermal management controller can read the coolant temperature of the liquid temperature sensor 26 arranged on the second liquid circuit T2, when the temperature of T2 is too high (such as T2>55°C), heat dissipation needs to be strengthened to quickly reduce the temperature of the coolant in the second liquid circuit, and the thermal management controller judges and selects an applicable control strategy: the difference from the previous After the cooling liquid passes through the outdoor heat exchanger 13 to dissipate heat, it further enters the heat exchanger 6 (Chiller) to cool down.
  • the battery heat exchanger 32 is connected with external heating sources such as motor drive, power management, driving control system heat exchanger, compressor, main motor (motor drive, power converter and driving control system heat exchanger 33 and Compressor/motor heat exchanger 34)
  • the cooling circuit is connected in parallel (because the battery pack does not need to pay attention to heating at this temperature), the liquid on the second liquid circuit is pushed by the corresponding pump to the secondary side of the first heat exchanger 2 to absorb refrigeration
  • the heat of the refrigerant vapor causes the refrigerant to complete the condensation process.
  • the heat-polymerized liquid carries heat to the outdoor heat exchanger 13, and the first fan 19 is used to force the outdoor air to take away the heat to complete heat dissipation.
  • the temperature of the liquid on the second liquid circuit drops, it is sent to the secondary side of the second heat exchanger 6 (Chiller) through switching of the valve assembly to exchange heat with the evaporated refrigerant.
  • the primary side of the second heat exchanger 6 flows low-temperature gas or gas-liquid mixture, after heat exchange in the first heat exchanger 2, the temperature of the cooling liquid on the secondary side can be reduced and the cooling of the refrigerant on the primary side can be promoted. Complete evaporation, which is beneficial to avoid liquid hammer damage caused by the compressor sucking liquid refrigerant.
  • the temperature of the steam at the inlet of the compressor is too high, which is not good for the cooling of the general compressor itself. Under all working conditions and application conditions, the designer needs to make corresponding selection and cooling measures (liquid cooling or cooling) according to the actual working temperature range. oil cooling) to prevent the compressor from being overheated and damaged by the high suction temperature.
  • the temperature of the cooling liquid in the second liquid circuit of the present invention is further lowered after being cooled by the second heat exchanger 6 (Chiller), and then returns to the liquid storage tank and enters the adjacent water pump and its water inlet for circulation.
  • Chiller second heat exchanger 6
  • the heat generated by the air conditioner during refrigeration and the heat of the battery heat exchanger 32 and external heat sources are all generated by the second
  • the coolant in the liquid circuit absorbs and polymerizes and then emits from the outdoor heat exchanger 13.
  • the advantage of sharing this device is not only that the cost is greatly reduced but also the volume of the entire system can be reduced.
  • the higher coolant temperature T2 requires a stronger cooling rate, and the active cooling through the second heat exchanger 6 (Chiller) can lower the temperature to a more suitable range as soon as possible.
  • Heating working cycle see simplified schematic diagram 6, Figure 7 and Figure 8):
  • the thermal management controller in the preferred embodiment of the present invention reads the indoor target temperature T_r (such as 25°C) set by the user in advance, and when T_r is higher than the outdoor ambient temperature T_a, it enters the heating operation model.
  • T_r such as 25°C
  • Compressor 1 compresses the refrigerant from a vapor state at room temperature (point 1 in the pressure-enthalpy diagram) to a vapor state at high temperature and high pressure (point 2 in the pressure-enthalpy diagram), and passes through (or uses the bypass valve to cross ) the first heat exchanger 2, and open the first electronic expansion valve 3 to the maximum opening (or bypass mode), enter the indoor heat exchanger 4 and exchange heat with the indoor air under the action of its corresponding fan 20 to make The room temperature rises, where the refrigerant condenses into a high-pressure, medium-temperature liquid (point 3 in the pressure-enthalpy diagram).
  • the refrigerant is condensed in the indoor heat exchanger 4 and then throttled and depressurized by the second electronic expansion valve 5 to become wet steam or a vapor-liquid mixture (point 4 in the pressure-enthalpy diagram), and then sent to the second heat exchanger 6 for primary absorption.
  • the heat of the liquid in the two-liquid circuit the temperature of the refrigerant rises due to the absorption of heat, the enthalpy increases, and the evaporation returns to vapor (point 1 of the pressure-enthalpy diagram).
  • the thermal management controller in the heating state, reads the coolant temperature T2 of the liquid temperature sensor 26 arranged on the second liquid circuit, when the temperature of T2 is normal (such as 0 ⁇ T2 ⁇ 50°C) and T2 is higher than the outdoor ambient temperature T_a, the thermal management controller judges accordingly to apply the corresponding control strategy. Waste heat recovery from sources (motor drive, power converter, and driving control system heat exchanger 33 and compressor/motor heat exchanger 34) is used to improve the heating efficiency of the heat pump air conditioner. So the second liquid circuit will bypass the outdoor heat exchanger 13 and be directly absorbed by the refrigerant in the second heat exchanger 6, forming a heat exchange between the one side and the secondary side in the second heat exchanger 6 .
  • Waste heat recovery from sources (motor drive, power converter, and driving control system heat exchanger 33 and compressor/motor heat exchanger 34) is used to improve the heating efficiency of the heat pump air conditioner. So the second liquid circuit will bypass the outdoor heat exchanger 13 and be directly absorbed by the refrigerant in the second heat exchanger 6,
  • the cooling liquid in the second liquid circuit carries the battery pack and the waste heat energy temperature of the external heat source is higher than the outdoor ambient air temperature T_a, it can make the heating circuit work more efficiently, which is equivalent to shifting point 1 of the pressure-enthalpy diagram to the right.
  • battery heat exchanger 32 and external heating sources such as motor drive, power management, driving control system heat exchanger, compressor, main motor (motor drive, power converter and driving control system heat exchanger 33 and Compressor/motor heat exchanger 34)
  • the heat exchanger circuit is connected in parallel (because the battery pack does not need additional attention and heating at this temperature, so it is connected in parallel), the coolant is pushed by the corresponding pump, and is skipped under the switching of the valve group
  • the first heat exchanger 2 and the outdoor heat exchanger 13 are sent to the secondary side of the second heat exchanger 6 to exchange heat with the refrigerant to make it evaporate.
  • the temperature of the cooling liquid on the secondary side can be reduced (heat is absorbed) after passing through the heat exchange of the second heat exchanger 6, and the primary side cooling liquid can be promoted.
  • the complete evaporation of the refrigerant avoids liquid hammer damage caused by the compressor sucking liquid refrigerant.
  • the cooling liquid After being cooled by the second heat exchanger 6, the cooling liquid returns to the liquid storage tank and enters the water inlet of the first pump 1 which is arranged close to it, so that it can be circulated.
  • the cooling liquid can be commonly used water, or in order to resist freezing, it can be various anti-cooling liquids that have been prepared. Because there are various common anti-cooling liquids on the market in the prior art, in This will not be repeated here.
  • the heating and battery heat exchanger 32 and the external heating source (motor drive, power converter and driving control system heat exchanger 33 and compressor/motor heat exchange) in the preferred embodiment of the heat pump air conditioner of the present invention Device 34) heat is discharged to the room through the shared indoor heat exchanger 4, and the benefit of reusing the device is not only that the cost is greatly reduced but also the volume of the whole system is reduced.
  • the temperature of the liquid temperature sensor 26 is monitored and controlled by the thermal management controller at any time to be within a set reasonable range.
  • the coolant carries the waste heat energy of the battery heat exchanger 32 and external heat sources (motor drive, power converter and driving control system heat exchanger 33 and compressor/motor heat exchanger 34) 4, and absorbs the outdoor environment Therefore, the temperature of the heating circuit can be raised as much as possible, so that the heating efficiency of the heat pump is higher.
  • battery heat exchanger 32 and external heating sources such as motor drive, power management, driving control system heat exchanger, compressor, main motor (motor drive, power converter and driving control system heat exchanger 33 and Compressor/motor heat exchanger 34)
  • the heat exchanger circuit is connected in parallel (at this normal temperature, the battery pack does not require additional attention and heating, so it is connected in parallel), the coolant is pushed by the corresponding pump, and passes through the first circuit under the switching of the valve assembly.
  • the heat exchanger 2 absorbs the heat energy of the air through the outdoor heat exchanger 13 (or discharges heat to the outside when the liquid is too high temperature), and sends it to the secondary side of the second heat exchanger 6 (Chiller) for heat exchange with the primary side refrigerant. Exchange causes it to complete evaporation.
  • the temperature of the cooling liquid is reduced and the complete evaporation of the refrigerant is promoted. It is beneficial to avoid liquid hammer damage caused by the compressor sucking liquid refrigerant.
  • the cooling liquid returns to the liquid storage tank after absorbing heat through the second heat exchanger 6 (Chiller) and enters the first pump inlet near the setting to form a circulation cycle.
  • the heating and battery heat exchanger 32 and the external heating source (motor drive, power converter and driving control system heat exchanger 33 and compressor/motor heat exchange) in the preferred embodiment of the heat pump air conditioner of the present invention Device 34) heat is discharged to the room through the shared indoor heat exchanger 4, and the benefit of reusing the device is not only that the cost is greatly reduced but also the volume of the whole system is reduced.
  • the temperature of the liquid temperature sensor 26 is monitored and controlled by the thermal management controller at any time to be within a set reasonable range.
  • the temperature of the coolant is very high (such as T2 > 50°C).
  • T2 > 50°C the temperature of the coolant
  • the secondary side of the heat exchanger 6 Chller exchanges heat with the primary side refrigerant to promote its evaporation.
  • This design not only effectively controls the temperature of the cooling liquid, but also enables the refrigerant to obtain sufficient heat of evaporation to improve heating efficiency.
  • the thermal management controller determines to apply the control strategies shown in FIG. 8 and FIG. 9 .
  • the thermal management controller determines to apply the control strategies shown in FIG. 8 and FIG. 9 .
  • the power battery needs to be heated by external heat to get the maximum charge and discharge capacity and safety.
  • the battery heat exchanger 32 is connected with the motor drive, power management, External heating sources such as driving control system heat exchangers, compressors, and main motors (motor drives, power converters, driving control system heat exchangers 33 and compressor/motor heat exchangers 34) heat exchanger circuits are changed to series connection, cooling
  • the liquid is first heated by an external heat source (motor drive, power converter, driving control system heat exchanger 33 and compressor/motor heat exchanger 34) and then flows into the battery heat exchanger 32 to use waste heat to heat the battery pack.
  • the heating of the PTC is turned off.
  • the application and working control mode of the PTC should also be used as a possible optimal implementation option.
  • the heat pump air conditioner is in the active heating process
  • the compressor 1 is in the compression heating work
  • the battery heat exchanger 32 is connected with the motor drive, power management, driving control system heat exchanger
  • External heating sources such as compressors and main motors (motor drive, power converter, and driving control system heat exchanger 33 and compressor/motor heat exchanger 34) heat exchanger circuits are connected in series, and the second liquid circuit adopts two branch circuits.
  • the thermal management controller will then Select the corresponding control strategy according to the actual coolant temperature T2.
  • the starting point is that after the temperature of the battery pack is raised, rely on the external heating source and the self-heating effect of the battery pack as much as possible to maintain a reasonable working temperature and provide it to the heat pump air conditioner for heat recovery.
  • the second pump pushes the liquid through the outdoor heat exchanger 13, exchanges heat with the outdoor air and then sends it to the second pump.
  • the secondary side of the secondary heat exchanger 6 performs heat exchange (heat absorption) with the refrigerant on the primary side, and the refrigerant absorbs the heat of the branch circuit to evaporate, and then returns to the suction port of the compressor 1 to form a closed loop.
  • the heat generated by the heat pump is the same as that of the external heat source (motor drive, power converter and The driving control system heat exchanger 33 and the compressor/motor heat exchanger 34) aggregate heat together to heat the coolant, and because the battery heat exchanger 32 is heated, the temperature rises rapidly to the optimum operating temperature, ensuring that it can be obtained in a low-temperature external environment. Best charge and discharge performance. Because the heating heat source comes from the waste heat generated by the heat pump air-conditioning system and other external heat sources, its heating energy efficiency is much higher than that of PTC and other electric heating methods.
  • the embodiment shown in FIG. 9 is a working mode under extremely cold conditions (such as coolant temperature T2 ⁇ -20° C.), and the PTC can be turned on manually or automatically to help speed up the temperature rise.
  • the design of the preferred embodiment of the present invention is only at the beginning of start-up when the coolant temperature is extremely low (for example, below -20°C), or when the user needs to accelerate the temperature rise to quickly heat the battery pack during a short period of time, manual or Automatically turn on to execute the strategy shown in Figure 9 to accelerate the temperature rise, turn on the PTC heating, and only after completing an emergency temperature rise, the coolant on the secondary side is heated to a value slightly higher than the set temperature defined by this strategy (such as 28°C ), the PTC can be turned off, and the PTC does not need to work continuously.
  • the thermal management controller reads the indoor target temperature T_r set by the user in advance, and enters the heating mode when the outdoor temperature T_a is lower than T_r. After the heating operation is started, if the thermal management controller detects that the outdoor temperature T_a is lower than 0 degrees, and the surface temperature T_s of the outdoor heat exchanger 13 is lower than the set defrosting condition temperature (such as T_s ⁇ - 3°C), the thermal management controller judges accordingly and selects a corresponding control strategy, that is, heating + automatic defrosting mode. Specifically divided into three stages:
  • the coolant in the second liquid circuit is heated by using the heat pump air conditioner heating and external heat source or PTC heating (T_a ⁇ -20°C to automatically turn on the PTC, or to turn it on manually at any time) in the preferred embodiment of the present invention,
  • PTC heating T_a ⁇ -20°C to automatically turn on the PTC, or to turn it on manually at any time
  • Its working mode is the same as that of the embodiment shown in the aforementioned Fig. 8 and Fig. 9 and starts heating and heat storage.
  • the temperature of the cooling liquid in the second liquid circuit increases, a certain amount of heat is stored in the liquid storage tank and the entire second liquid circuit, and the heat is roughly the specific heat capacity of all cooling liquids multiplied by the weight and the required temperature rise.
  • This heat storage process is a preparation for defrosting. During this process, the heating work does not stop.
  • the heat storage temperature reaches the set defrosting temperature (such as 28°C) and meets the temperature conditions for defrosting, start timing (such as 40 minutes) and keep warm. Then it is automatically heated by the first plate heat exchanger 2, and the PTC automatic heating (if opened) is stopped. After the temperature drops below the lower limit of the defrosting temperature, return to the aforementioned heating stage (that is, the working mode as shown in Figure 8), and the heating-warming-heating process can be repeated to maintain the temperature of the coolant in the battery pack heat exchanger . Because after each defrosting, frost does not form immediately to affect the operation of the outdoor evaporator, so that the outdoor heat exchanger can work normally for a period of time before frosting occurs again.
  • the set defrosting temperature such as 28°C
  • start timing such as 40 minutes
  • the heat pump air-conditioning device of the preferred embodiment of the present invention does not need to delay when the car is started for the first time, and can perform defrosting immediately after heat storage when the defrosting temperature condition is met, so as to melt the possible presence of the outdoor heat exchanger 13 Frost.
  • the third stage is defrosting, as shown in Figure 11, after the above-mentioned heat storage and heat preservation preparation, the temperature of the coolant rises to the set value (such as 28°C), at this time, the thermal management controller controls the valve group to make the high-temperature coolant flow to The outdoor heat exchanger 13 is used for defrosting. Because the liquid temperature is higher, the outdoor heat exchanger 13 is heated to increase the temperature to melt the frost or ice condensed on the surface. In order to let the surface temperature of the heat exchanger rise rapidly, the fan 19 attached to the heat exchanger must be turned off during the defrosting process. After the defrosting is completed, the frost will turn into liquid water and then turn on the first fan 19 to dry the surface of the outdoor heat exchanger. moisture.
  • the set value such as 28°C
  • the coolant passes through the outdoor heat exchanger 13 and then flows through the secondary side of the second heat exchanger 6.
  • the waste heat is conducive to the evaporation and absorption of heat by the refrigerant, and the temperature of the refrigerant vapor will also be higher (the point in the pressure-enthalpy diagram). 1 point 2 to the right), the enthalpy value after compression is higher, and the same compression work can obtain greater heating capacity, which improves the heating efficiency.
  • the heating process does not need to be stopped, which avoids fluctuations in the indoor temperature during the defrosting process and improves the comfort of the driving environment in the car.
  • the controller selects the corresponding control strategy control program according to the specific coolant temperature.
  • the user may not need to turn on the air conditioner.
  • the ambient temperature in the car is suitable, it can be seen that the battery does not need to be heated up but only needs to be conventionally cooled.
  • the thermal management controller selects a corresponding control program according to this condition: at this time, the compressor 1 does not need to be started, the path of the second liquid circuit is shown in Figure 12, the battery heat exchanger 32 is connected with the motor drive, power management, and driving control External heating sources such as system heat exchangers, compressors, and main motors (motor drives, power converters, and driving control system heat exchangers 33 and compressor/motor heat exchangers 34) are connected in parallel (because the battery at this temperature package does not require additional heating), is pushed by the corresponding pump through the secondary side of the first heat exchanger 2 (because the refrigerant circuit in this embodiment is not working, it has no effect whether it passes through or not), then passes through the outdoor heat exchanger 13, and uses The first fan 19 forces the outdoor air to take away heat to complete heat dissipation, and the temperature of the liquid on the second liquid circuit drops and then returns to the liquid storage tank and enters the water inlet of the adjacent water pump, so that a circulation cycle can be formed.
  • External heating sources such as system heat
  • the battery heat exchanger 32 is connected with external heating sources such as motor drive, power management, driving control system heat exchanger, compressor, main motor (motor drive, power converter, driving control system heat exchanger 33 and compressor/motor heat exchanger).
  • the heat of the exchanger 34) is dissipated by the unified outdoor heat exchanger 13, which does not need to be arranged separately, which saves the space and cost of the device.
  • the temperature of the battery pack when charging at low temperature or standby at low temperature (for example, the outdoor ambient temperature T_a ⁇ -5°C), the temperature of the battery pack should be kept at a suitable temperature during charging or standby.
  • the thermal management controller selects the corresponding control program according to the working requirements and temperature conditions: Considering that the temperature is low, the power battery needs to be heated back to the temperature to obtain the maximum charge and discharge capacity and safety, so the battery heat exchanger 32 Heat exchange with external heat sources such as motor drives, power management, driving control system heat exchangers, compressors, and main motors (motor drives, power converters, and driving control system heat exchangers 33 and compressor/motor heat exchangers 34)
  • the circuit of the inverter is connected in series, and the corresponding pump pushes the coolant to be heated by the PTC and external heat sources (motor drive, power converter, driving control system heat exchanger 33 and compressor/motor heat exchanger 34) before entering the battery heat exchanger 32 To heat, and then through the outdoor heat exchanger 13 and the second plate heat exchanger 6 back to the water pump water inlet near the setting in the liquid storage tank.
  • the controller can enable the PTC for heating and supplement, and adjust the power supply voltage of the PTC. Keep the coolant near the set standby temperature (such as 10°C). In order to reduce unnecessary heat loss, the first fan 19 is turned off by default.
  • the thermal management controller turns on the first fan 19 to dissipate heat until Turn off the fan after it is lower than the set safe value.
  • This state requires the operation of the liquid circulation pump to promote the continuous circulation of the coolant. Because the compressor 1 is in the off state, it does not matter whether the coolant path passes through the outdoor heat exchanger 13 or the second plate heat exchanger 6, as shown in FIG. 13 .
  • the cooling and heating working modes no longer use the four-way reversing valve of the traditional heat pump air conditioner to switch, but use relatively independent refrigerant circuits and second liquid circuits.
  • the indoor heat exchanger is arranged on the refrigerant circuit
  • the outdoor heat exchanger is arranged on the second liquid circuit
  • at least one heat exchanger is arranged between the two circuits for mutual heat exchange , which simplifies the refrigerant flow path and the switching action of the refrigerant
  • the second heat exchanger 6 and the first heat exchanger 2 are uniformly coupled to the second liquid cooling circuit, and connected with the second
  • the battery heat exchanger 32 in the liquid cooling circuit is connected with external heating sources such as motor drives, power management, driving control system heat exchangers, compressors, and main motors (motor drives, power converters, and driving control system heat exchangers 33 and compressors).
  • machine/motor heat exchanger 34 to aggregate heat, and then adjust and control its path to make corresponding processing according to needs, so as to achieve unified thermal management (including but not limited to cooling, heating, heating + heat storage, heating + The purpose of defrosting, heat preservation, heat dissipation, etc.).
  • the coupling relationship between the second liquid cooling circuit and the refrigerant circuit is established, and it is conditioned to perform corresponding operations according to the intention of thermal management. Heating is required in winter, and the battery heat exchanger 32 in the second liquid cooling circuit and the heat exchanger of the motor drive, power management, driving control system, compressor, main motor and other external heat sources (motor drive, power converter) should be recycled as much as possible. And the heat from the driving control system heat exchanger 33 and the compressor/motor heat exchanger 34) to the refrigerant circuit is used to improve the efficiency of heating and heating.
  • the method and approach of recovery adopts different control strategies according to the different temperatures of the coolant in the second liquid cooling circuit. The purpose of this distinction is to achieve heat recovery and obtain the highest recovery efficiency.
  • the heat is absorbed by the second heat exchanger 6 (the evaporator during heating) of the refrigerant circuit, and according to the comparison between the cooling liquid temperature and the outdoor air temperature, the controller distinguishes two different types as shown in Figure 6 and Figure 7
  • the control strategy is to minimize unnecessary heat loss and maximize the heat recovery rate.
  • the control strategy shown in Figure 7 is also applicable, and the coolant will be sent to the outdoor heat exchanger 13 for heat dissipation, and then pass through the second heat exchanger 6 of the refrigerant circuit (manufactured The evaporator when it is hot) absorbs waste heat, so as to recover heat as much as possible and effectively control the temperature of the coolant in a reasonable range, so as to ensure that the temperature of the battery pack and all heating components of the vehicle is in a normal and reasonable range.
  • the thermal management controller judges accordingly that the control strategy shown in Figure 8 and Figure 9 is applicable, so the temperature is low and the battery heat
  • the heat exchanger 32 and the external heating source (motor drive, power converter, driving control system heat exchanger 33 and compressor/motor heat exchanger 34) need to rely on the heat of the heat pump air conditioner to be heated by the first heat exchanger 2 (Fig.
  • the thermal management controller as shown in the figure 9 strategy, turn on the PTC heating, and turn it off after the first defrosting and battery pack heating are completed. After the temperature rises, it will transfer to other control procedures.
  • the thermal management controller After the heating operation is started, if the thermal management controller detects that the outdoor temperature T_a is lower than 0 degrees, and the surface temperature T_s of the outdoor heat exchanger 13 is lower than the set defrosting condition temperature (such as T_s ⁇ - 3°C), the controller judges that the heating + automatic defrosting mode is applicable based on this condition.
  • the set defrosting condition temperature such as T_s ⁇ - 3°C
  • the controller judges that the heating + automatic defrosting mode is applicable based on this condition.
  • the working mode is the same as that of Fig. 8 and Fig. 9
  • delay heat preservation delay heat preservation
  • defrosting Fig. 11
  • the waste heat generated by the heat pump is stored in the coolant, and the heated coolant flows through the outdoor heat exchanger 13 to achieve the purpose of defrosting. Repeat the above process again after reaching the temperature that needs to be defrosted next time.
  • the defrosting and heating processes can be performed at the same time, the indoor temperature will not fluctuate due to defrosting
  • the refrigerant circuit when charging at low temperature or standby at low temperature or driving without the air conditioner, the refrigerant circuit does not work, so the compressor does not need to be started, and only the second liquid circuit can independently complete the heat dissipation and heating and heat preservation work. This shows that the design flexibility of the heat pump air conditioner of the present invention is very prominent.
  • a preferred embodiment of the integrated thermal management system applied to an electric vehicle of the present invention includes a system host 41 and accessory components and their connection joints and pipes.
  • the specific analysis of its working principle and process is as follows:
  • the thermal management controller obtains the indoor target temperature T_r set by the user in advance, and enters the cooling working mode when the outdoor ambient temperature T_a is higher than T_r.
  • the refrigeration mode read the coolant temperature T2 of the liquid temperature sensor 26 provided on the second liquid circuit, and when T2 ⁇ 55°C, the controller judges that the cooling A1 control strategy is applicable.
  • the thermal management process will be analyzed in conjunction with Fig. 15 below.
  • the refrigerant working cycle path is marked with a solid line arrow, and the second liquid circuit is shown with a dotted line arrow and a dotted line arrow, where the dotted line arrow is the battery Bao Zhilu.
  • the thermal management controller controls the refrigerant circuit in the following steps:
  • the third bypass valve 14 is installed at both ends of the pipeline connected to the primary side of the first plate heat exchanger 2 and the first electronic expansion valve 3, and is used to bypass the above-mentioned pipeline when it is turned on.
  • the third bypass valve 14 is disconnected; the fourth bypass valve 7 is connected, and the fourth bypass valve 7 is set and connected to the primary side of the second plate heat exchanger 6 and its second electronic expansion valve 5.
  • the refrigerant vapor in the refrigerant circuit will pass through the primary side of the first heat exchanger 2 and cross the The pipeline of the second heat exchanger 6 and the second electronic expansion valve 5 .
  • A1-2 The first electronic expansion valve 3 is adjusted to the maximum opening and reset, and the PTC is closed.
  • A1-3 Compressor 1 starts to work and establishes a cycle.
  • A1-4 After the compressor 1 is started for a few seconds, the first electronic expansion valve 3 is adjusted to the initial opening (for example, 30%).
  • the thermal management controller calculates and controls the first electronic expansion according to the evaporator outlet temperature sensor 24 (temperature T1) and the indoor heat exchanger air outlet temperature sensor 23 (temperature T_room) The opening of valve 3.
  • the thermal management controller calculates and adjusts the compressor according to the evaporator outlet temperature sensor 24 (temperature T1) and the indoor heat exchanger air outlet temperature sensor 23 (T_room) so that it is in the most economical and energy-saving state.
  • the thermal management controller controls the second liquid circuit as follows:
  • the fifth bypass valve 28 and the sixth bypass valve 29 are electromagnetic valves, which are opened (i.e. conduction), and the battery heat exchanger 32 and the external heating source (motor drive, power converter and driving control system) Heat exchanger 33 and compressor/motor heat exchanger 34) form a parallel relationship.
  • the secondary side flowing through the first heat exchanger 2 absorbs the heat of the polymerized refrigerant vapor.
  • the thermal management controller controls the speed of the first fan 19 attached to the outdoor heat exchanger 13 according to the temperature of the coolant, so that the speed and noise are the lowest when the temperature meets the requirements.
  • the thermal management controller takes the indoor target temperature T_r set by the user, and enters the cooling working mode when the outdoor ambient temperature T_a is higher than T_r.
  • the refrigeration mode read the coolant temperature T2 of the liquid temperature sensor 26 set on the second liquid circuit.
  • T2>55°C the controller judges that the A2 control strategy is applicable: for the convenience of description, the following analyzes the thermal In the management process, the working cycle path of the refrigerant is marked with a solid arrow, and the second liquid circuit is shown with a dotted arrow and a dotted line, where the dotted arrow is a branch of the battery pack.
  • the thermal management controller controls the refrigerant circuit in the following steps:
  • A2-1 The third bypass valve 14 is disconnected, the fourth bypass valve 7 is disconnected, the refrigerant vapor will pass through the primary side of the first heat exchanger 2, and also pass through the primary side of the second heat exchanger 6 and the second The pipeline of electronic expansion valve 5.
  • A2-2 The second electronic expansion valve 5 is adjusted to the maximum opening (or bypass mode), and the first electronic expansion valve 3 is adjusted to the maximum opening to reset.
  • A2-3 The compressor 1 starts to work, establishes a cycle, and closes the PTC 18.
  • the first electronic expansion valve 3 is adjusted to the initial opening (for example, 30%).
  • the thermal management controller senses the temperature T1 according to the evaporator outlet temperature sensor 24 and the indoor heat exchanger air outlet temperature sensor 23 senses the temperature T_room, and then calculates and close-loop controls the first electronic expansion valve 3 opening.
  • the thermal management controller calculates and adjusts the compressor according to the temperature T1 sensed by the evaporator outlet temperature sensor 24 and the temperature T_room sensed by the indoor heat exchanger air outlet temperature sensor 23 to make it in the most economical and energy-saving state.
  • the thermal management controller controls the second liquid circuit according to the following steps:
  • A2-7 Open the fifth bypass valve 28 and the sixth bypass valve 29, that is, the corresponding electromagnetic valves, and the battery heat exchanger 32 and the external heating source (motor drive, power converter, and driving control system heat exchanger 33 and The compressor/motor heat exchanger 34) is connected in parallel pipeline, and the cooling liquid in the second liquid circuit flows through the first heat exchanger 2 to absorb the heat of polymerized refrigerant vapor.
  • the thermal management controller controls the speed of the first fan 19 attached to the outdoor heat exchanger 13 according to the coolant temperature, so that the speed and noise are the lowest when the temperature meets the requirements.
  • the thermal management controller selects B0 control according to working requirements and temperature conditions Strategy: Considering that the air temperature is low, the power battery needs to be heated back to the temperature to obtain the maximum charge and discharge capacity and safety, so the battery heat exchanger 32 is connected with the motor drive, power management, driving control system heat exchanger, compressor, External heating sources such as the main motor (motor drive, power converter, driving control system heat exchanger 33 and compressor/motor heat exchanger 34) heat exchanger circuits are connected in series, because when the vehicle is in charging or thermal standby state, the vehicle does not If the compressor is not running, the compressor is also turned off, and the heat generated by the external heat source may not be sufficient to maintain the temperature of the battery pack.
  • the thermal management controller can enable PTC 18 to heat as needed, and adjust the power supply voltage of PTC 18 to maintain the coolant at Near the set standby
  • the first fan 19 is turned off by default.
  • the battery and related charging control circuit will also generate heat, and the coolant temperature T2 may rise to exceed the set high temperature value (for example, 45 degrees), at this time, the thermal management controller will control to turn on the first
  • the fan 19 dissipates heat to the outside until the coolant temperature T2 is lower than the set value, and then the fan is turned off. This state requires the operation of the liquid circulation pump to promote the continuous circulation of the coolant.
  • the thermal management controller controls the circulation of the refrigerant circuit according to the following steps:
  • B0-1 Compressor off. The refrigerant circuit stops working.
  • the thermal management controller controls the working process of the second liquid circuit according to the following steps:
  • B0-2 Close the fifth bypass valve 28 and the sixth bypass valve 29, that is, the electromagnetic valve, the battery heat exchanger 32 and the external heat source (motor drive, power converter and driving control system heat exchanger 33 and compressor/motor heat exchanger (34) liquid circuit in series communication.
  • the first bypass valve 9 is turned on, so that the coolant can cross the secondary side of the first heat exchanger 2, and the second bypass valve 12 is turned off, so that the coolant can pass through The secondary side of the second heat exchanger 6 . (Because the refrigerant circuit is not working, it has no effect whether the first bypass valve 9 and the second bypass valve 12 are opened or not)
  • the thermal management controller controls the speed of the first fan 19 attached to the outdoor heat exchanger 13 according to the temperature of the coolant, so that the speed and noise are the lowest when the temperature meets the requirements.
  • the thermal management controller controls the heating of the PTC 18 according to the coolant temperature T2, so that the coolant temperature T2 is maintained near the set standby temperature (such as 10°C).
  • the thermal management controller selects the B1 control strategy according to this condition: the compressor 1 does not need to be started, the working path of the second liquid circuit is shown in Figure 18, the battery heat exchanger 32 is connected with the motor drive, power management, Driving control system heat exchanger, compressor, main motor and other external heating sources (motor drive, power converter, driving control system heat exchanger 33 and compressor/motor heat exchanger 34) cooling circuits are connected in parallel (because at this temperature The lower battery pack does not need additional heating), is pushed by the first pump 22 through the secondary side of the first heat exchanger 2 (because the refrigerant circuit is not working, it has no effect whether it passes through or not), then passes through the outdoor heat exchanger 13, and is used Its first fan 19 forces the outdoor air to take away heat to complete heat dissipation.
  • the thermal management controller turns on the first fan 19 to dissipate heat and adjusts the speed of the first fan 19 so that the temperature of the cooling liquid is approximately or equal to the set value (eg T2 ⁇ 45° C.).
  • This state requires the operation of the liquid circulation pump to promote the continuous circulation of the cooling liquid. Because the compressor 1 is in the closed state, it does not matter whether the cooling liquid path passes through the first heat exchanger 2 or the second plate heat exchanger 6, as shown in Figure 18 Shown:
  • the thermal management process is analyzed below, and the circulation of the second liquid circuit is shown by dotted line arrows and dotted line arrows, where the branch of the dotted line arrow is the battery pack liquid branch.
  • the thermal management controller controls the refrigerant circuit in the following steps:
  • B1-1 Compressor off. The refrigerant circuit stops working.
  • the thermal management controller controls the second liquid circuit as follows:
  • the fifth bypass valve 28 and the sixth bypass valve 29, that is, the corresponding electromagnetic valves, are opened, and the battery heat exchanger 32 and the external heat source (motor drive, power converter, and driving control system heat exchanger) 33 and compressor/motor heat exchanger 34) communicate in parallel.
  • the first bypass valve 9 and the second bypass valve 12 are connected, and the cooling liquid crosses the first heat exchanger 2 and the second heat exchanger 6 (because the refrigerant circuit is not working, the Whether the first bypass valve 9 and the second bypass valve 12 are opened or not has no effect).
  • the thermal management controller controls the speed of the first fan 19 attached to the outdoor heat exchanger 13 according to the temperature of the coolant, so that the speed and noise are the lowest when the temperature meets the requirements.
  • the thermal management controller After the heat pump air conditioner in the preferred embodiment of the present invention is turned on, the thermal management controller reads the indoor target temperature T_r (such as 25°C) set by the user in advance, and when T_r is higher than the outdoor ambient temperature T_a, it enters the heating operation model.
  • T_r such as 25°C
  • Compressor 1 compresses the refrigerant from a normal temperature vapor state (point 1 in the pressure-enthalpy diagram) to a high-temperature and high-pressure vapor state (point 2 in the pressure-enthalpy diagram), and passes through (or uses the bypass valve to cross)
  • the first heat exchanger 2 the first electronic expansion valve 3 is opened to the maximum opening or bypass mode, enters the indoor heat exchanger 4 and exchanges heat with the indoor air under the action of the second fan 20, and the indoor air is heated for When the room is heated, the temperature of the refrigerant drops and condenses into a high-pressure medium-temperature liquid (point 3 in the pressure-enthalpy diagram).
  • the refrigerant is condensed by the heat exchanger 4 and then throttled and depressurized by the second electronic expansion valve 5 to become wet steam or a vapor-liquid mixture (point 4 in the pressure-enthalpy diagram), and then sent to the primary side of the second heat exchanger 6 to absorb the first
  • the heat of the liquid in the two-liquid circuit, the enthalpy of the refrigerant increases due to the temperature rise of the absorbed heat, evaporates into vapor (point 1 of the pressure-enthalpy diagram) and returns to the suction port of the compressor 1 through the gas-liquid separator 8.
  • the thermal management controller reads the coolant temperature T2 of the liquid temperature sensor 26 arranged on the second liquid circuit.
  • T2 the coolant temperature
  • T_a the temperature of T2
  • the thermal management controller judges accordingly that the C4 control strategy is applicable.
  • the starting point of the design of this strategy is to integrate the battery heat exchanger 32 and the external heat sources (motor drive, power converter and driving control system) as much as possible.
  • the heat recovery of the heat exchanger 33 and the compressor/motor heat exchanger 34) is used to improve the heating efficiency of the heat pump air conditioner. So the second liquid circuit will bypass the outdoor heat exchanger 13 and recover heat directly from the second heat exchanger 6 (evaporator).
  • the battery heat exchanger 32 is connected with external heating sources such as motor drive, power management, driving control system heat exchanger, compressor, main motor (motor drive, power converter and driving control system heat exchanger 33 and Compressor/motor heat exchanger 34)
  • the heat exchanger circuit is connected in parallel (because the battery pack does not require additional attention and heating at this temperature, so it is set in parallel), the coolant is pushed by the first pump, and under the switching of the valve group Skip over the first heat exchanger 2 and the outdoor heat exchanger 13, and send it to the secondary side of the second heat exchanger 6 to exchange heat with the evaporated refrigerant.
  • the temperature of the secondary side cooling liquid can be reduced (heat is absorbed) after the heat exchange in the second heat exchanger 6, and the primary The complete evaporation of the side refrigerant avoids liquid hammer damage caused by the compressor sucking liquid refrigerant.
  • the coolant is cooled by the second heat exchanger 6 (Chiller), and then returns to the liquid storage tank 16 and enters the water inlet of the first pump, thereby forming a circular circulation.
  • the thermal management control process is analyzed below, the dotted line arrows show the circulation branch of the second liquid circuit, and the solid line arrows show the refrigerant circulation path.
  • the thermal management controller controls the refrigerant circuit in the following steps:
  • C4-1 The third bypass valve 14 is turned on, and the refrigerant vapor will cross the passage between the primary side of the first heat exchanger 2 and the first electronic expansion valve 3 .
  • C4-3 The second electronic expansion valve 5 is adjusted to the maximum opening and reset.
  • C4-4 The compressor 1 starts to work, establishes a cycle, and closes the PTC 18.
  • the thermal management controller After waiting for a few seconds, the thermal management controller performs strategic calculations and close-loop controls the first temperature sensor according to the temperature T1 sensed by the evaporator outlet temperature sensor 24 and the temperature T_room sensed by the air outlet temperature sensor 23 of the indoor heat exchanger. Second, the opening degree of the electronic expansion valve 5.
  • the thermal management controller According to the temperature T1 sensed by the temperature sensor 24 at the outlet of the evaporator and the temperature T_room sensed by the temperature sensor 23 at the air outlet of the indoor heat exchanger, the thermal management controller performs strategic operations and adjusts the compressor to make it the most economical and energy-saving state.
  • the thermal management controller controls the second liquid circuit as follows:
  • C4-8 The fifth bypass valve 28 and the sixth bypass valve 29, that is, the corresponding solenoid valves are both connected, and the battery heat exchanger 32 and the external heating source (motor drive, power converter and driving control system) The heat exchanger 33 and the compressor/motor heat exchanger 34) communicate in parallel with the liquid circuit.
  • C4-9 The first bypass valve 9 is turned on, the coolant passes through the secondary side of the first heat exchanger 2, the second bypass valve 12 is turned off, and the coolant passes through the secondary side of the second heat exchanger 6 side, and recover heat to the refrigerant circuit.
  • the second three-way valve 11 conducts tangentially to 2-1.
  • the thermal management controller judges to apply the control strategy of C3 based on this.
  • the starting point of the design of this strategy is that in addition to the waste heat recovery mentioned above, which is used to improve the heating efficiency of the heat pump air conditioner, it is also considered that the outdoor ambient temperature T_a is higher than the coolant, so the second liquid circuit liquid can be exchanged outdoors under the switching of the valve assembly.
  • the heater 13 absorbs the heat of the outdoor ambient air, and then the refrigerant in the second heat exchanger 6 absorbs the heat.
  • the waste heat energy of the battery heat exchanger 32 and external heat sources absorbs the heat of the outdoor ambient air
  • the temperature of the heating circuit can be raised as close as possible to the outdoor ambient temperature T_a, so that the heating efficiency of the heat pump is higher.
  • the liquid in the second liquid circuit can pass through the outdoor heat exchanger 13 to cool down to the outdoor ambient air when the valve assembly is switched, and then the second heat
  • the refrigerant in the exchanger 6 absorbs the remaining heat, which not only suppresses the temperature of the coolant from rising, but also recovers its heat as much as possible to improve the heating efficiency of the heat pump.
  • the battery heat exchanger 32 is connected with the motor drive, power management, driving control system heat exchanger, compressor , main motor and other external heating sources (motor drive, power converter, driving control system heat exchanger 33 and compressor/motor heat exchanger 34) the heat exchanger circuit is connected in series, and the coolant is pushed by the first pump and the third pump , across the secondary side of the first heat exchanger 2 under the switching of the valve assembly, absorb (or discharge) thermal energy through the outdoor heat exchanger 13, and then send it to the secondary side of the second heat exchanger 6 and its primary side
  • the refrigerant performs heat exchange.
  • the temperature of the cooling liquid will decrease after passing through the second heat exchanger 6, and the refrigerant absorbs heat and evaporates, which is beneficial to prevent the compressor from sucking liquid refrigerant And the occurrence of liquid hammer damage failure.
  • the cooling liquid After absorbing heat through the second heat exchanger 6, the cooling liquid returns to the liquid storage tank and enters the water inlet of the first pump, thereby forming a circular circulation.
  • the thermal management control process is analyzed below, the second liquid circuit is shown by the dotted arrow, and the refrigerant circulation path is shown by the solid arrow.
  • the thermal management controller controls the refrigerant circuit in the following steps:
  • C3-1 The third bypass valve 14 is turned on, and the refrigerant vapor will cross the passage between the primary side of the first heat exchanger 2 and the first electronic expansion valve 3 .
  • C3-3 The second electronic expansion valve 5 is adjusted to the maximum opening and reset.
  • C3-4 The compressor 1 starts to work, establishes a cycle, and closes the PTC 18.
  • the thermal management controller After a few seconds, the thermal management controller performs calculations and close-loop control according to the temperature T1 sensed by the temperature sensor 24 at the outlet of the evaporator and the temperature T_room sensed by the temperature sensor 23 at the air outlet of the indoor heat exchanger. Second, the opening degree of the electronic expansion valve 5.
  • the thermal management controller calculates and adjusts the compressor according to the temperature T1 sensed by the temperature sensor 24 at the outlet of the evaporator and the temperature T_room sensed by the air outlet temperature sensor 23 of the indoor heat exchanger to make it the most economical Energy saving state.
  • the thermal management controller controls the second liquid circuit as follows:
  • C3-8 Control the fifth bypass valve 28 and the sixth bypass valve 29, i.e. solenoid valves, to close, so that the battery heat exchanger 32 and external heat sources (motor drive, power converter and driving control system heat The exchanger 33 and the compressor/motor heat exchanger 34) are connected in series in liquid circuit.
  • the battery heat exchanger 32 and external heat sources motor drive, power converter and driving control system heat
  • the exchanger 33 and the compressor/motor heat exchanger 34 are connected in series in liquid circuit.
  • the first bypass valve 9 is turned on, so that the coolant crosses the secondary side of the first heat exchanger 2; the second bypass valve 12 is turned off, and the coolant passes through the secondary side of the second heat exchanger 6 Secondary side, thereby performing heat exchange and recovering heat to the refrigerant circuit.
  • the battery heat exchanger 32 is connected with the motor drive, power management, driving control system heat exchanger, compressor,
  • the main motor and other external heat sources (motor drive, power converter, driving control system heat exchanger 33 and compressor/motor heat exchanger 34) heat exchanger loops are connected in series, and the cooling liquid first passes through the external heat source (motor drive, power supply).
  • the battery pack can also be heated while the air conditioner is turned on to preheat by remote control or at regular intervals.
  • PTC 18 can be used in series with the second liquid circuit to quickly heat and defrost and preheat the battery pack, which is also a user's personalized selection requirement.
  • PTC 18 consumes a lot of energy and the coefficient of energy efficiency (COP) is not high. It is only used when the coolant temperature is extremely low (such as lower than -20°C) and at the beginning of startup, or the user needs to accelerate the temperature rise to When defrosting and deicing and heating the battery pack, the thermal management controller controls the implementation of the C1 strategy to turn on the heating of the PTC 18, and then shuts off after the first defrosting and battery pack heating are completed.
  • the application and work control mode of PTC should also be regarded as a possible optimal implementation option.
  • the heat pump air conditioner is in the active heating process
  • the compressor 1 is in the compression and heating work
  • the battery heat exchanger 32 is connected with the motor drive, power management, driving control system heat exchanger, compressor, main External heating sources such as motors (motor drive, power converter, driving control system heat exchanger 33 and compressor/motor heat exchanger 34) heat exchanger loops are connected in series, and the second liquid loop is divided into two circuits and connected in series with the heat source
  • the coolant in the circuit is pushed to flow by the first pump 22 (Pump1) and the third pump 27 (Pump3) (dotted arrow branch), enters the secondary side of the first heat exchanger 2 under the switching of the valve group, and flows from the compressor
  • the high-temperature and high-pressure refrigerant vapor output from 1 is also sent to the primary side of the first heat exchanger 2, and the two perform heat exchange in the first heat exchanger 2.
  • the cooling liquid on the secondary side is heated to raise its temperature, and the refrigerant vapor on the primary side is cooled and its temperature drops slightly. It is further condensed into a high-pressure medium-temperature liquid through the heat exchange between the indoor heat exchanger 4 and the indoor air, and then expanded by the second electron.
  • the valve 5 throttles and lowers the pressure. Due to the sudden drop in pressure, it absorbs the heat of the secondary side coolant in the second plate heat exchanger 6 and evaporates into a gaseous state, and then returns to the suction port of the compressor 1 through the gas-liquid separator, and repeats itself. .
  • the secondary side coolant of the second heat exchanger 6 is heated to a temperature slightly higher than the set temperature value (such as 28°C) defined by this strategy, and the thermal management controller then cools it according to the actual The liquid temperature T2 re-selects the corresponding control strategy.
  • the starting point of this is that the battery pack does not need to be heated after the temperature is raised, and relies on the external heating source and the self-heating effect of the battery pack as much as possible to maintain a reasonable working temperature and provide heat recovery for the heat pump.
  • the second pump 15 pushes the liquid through the outdoor heat exchanger 13, exchanges heat with the outdoor air, and then sends it to the second heat exchanger 6
  • the secondary side of the secondary side exchanges heat with the refrigerant on the primary side (heat absorption), the refrigerant absorbs the heat of the branch and evaporates, and then returns to the suction port of compressor 1 to form a closed loop.
  • the thermal management control process ( FIG. 21 ) will be analyzed below.
  • the second liquid circuit is shown by dotted line and dotted line, and the solid line arrow shows the refrigerant circulation path.
  • the thermal management controller controls the refrigerant circuit in the following steps:
  • C2C1-1 The third bypass valve 14 is disconnected, and the refrigerant vapor will pass through the primary side of the first heat exchanger 2 and then pass through the passage of the first electronic expansion valve 3 .
  • the fourth bypass valve 7 is disconnected, and the refrigerant passes through the passage of the second heat exchanger 6 and the second electronic expansion valve 5 .
  • the first electronic expansion valve 3 is adjusted to the maximum opening or bypass mode, and the second electronic expansion valve 5 is adjusted to the maximum opening to reset.
  • C2C1-4 Compressor 1 starts to work and establishes a cycle. Close PTC 18.
  • the thermal management controller calculates and controls the opening degree of the second electronic expansion valve 5 in a closed loop according to the temperature T1 sensed by the evaporator outlet temperature sensor 24.
  • the thermal management controller calculates and adjusts the compressor to be in the most economical and energy-saving state according to the temperature T_room sensed by the temperature sensor 23 at the air outlet of the indoor heat exchanger.
  • the more T_room (23) is higher than the set reference room temperature T_r the lower the rotation speed is through the frequency conversion control of the compressor, and vice versa.
  • the thermal management controller controls the second liquid circuit as follows:
  • C2C1-8 The corresponding solenoid valves of the fifth bypass valve 28 and the sixth bypass valve 29 are both disconnected, and the battery heat exchanger 32 and the external heat source (motor drive, power converter and driving control system heat exchanger) 33 and the compressor/motor heat exchanger 34) liquid circuit is connected in series communication.
  • the first bypass valve 9 is disconnected to allow the cooling liquid to pass through the secondary side of the first heat exchanger 2 .
  • the second bypass valve 12 is disconnected to control the coolant in the branch of the dotted line arrow to pass through the second heat exchanger 6 .
  • the branch cooling liquid controlled by the dotted line arrow passes through the second heat exchanger 6 to exchange heat with the refrigerant. Then return to the liquid storage tank 16B area.
  • C1-14 If the vehicle is started for the first time, and in an extremely low temperature environment, the coolant temperature is extremely low (such as lower than -20°C), or the user needs to accelerate the temperature rise to defrost and ice and heat the battery pack, The C1 strategy is executed under the control of the thermal management controller, the PTC 18 is turned on for heating, and the PTC 18 is turned off after the first defrosting and battery pack heating are completed.
  • the thermal management controller After the air conditioner is turned on or in normal operation, the thermal management controller reads the indoor target temperature T_r set by the user, and enters the heating working mode when the outdoor temperature T_a is lower than T_r. After the heating operation is started, if the thermal management controller detects that the outdoor temperature T_a is lower than 0 degrees, and the surface temperature T_s of the outdoor heat exchanger 13 is lower than the set defrosting condition temperature (for example, T_s ⁇ -3°C), the thermal management controller judges that the C0 control strategy is applicable, that is, the heating + automatic defrosting mode.
  • the set defrosting condition temperature for example, T_s ⁇ -3°C
  • control strategy of C0 is divided into three stages:
  • the heating work does not stop, but the enthalpy of the refrigerant is lower because the heat storage branch is connected to absorb the waste heat of the first plate heat exchanger 2.
  • the outlet temperature of the indoor heat exchanger 4 is slightly lowered, but the change of the subcooling temperature will be sensed in time by the temperature T1 and T_room sensed by the temperature sensors 23 and 24 of the thermal management controller and by increasing the compressor speed Or adjust the opening degree of the second electronic expansion valve 5 (Vf) to obtain fast closed-loop correction, so there will be no influence.
  • frost does not form immediately to affect the operation of the outdoor evaporator, and it can work normally for a period of time before frosting occurs again. Therefore, after heat storage, keep warm and delay the set time (for example, set to 40 minutes) before the next defrosting. But when the car is started for the first time without delay, the defrosting can be performed immediately after meeting the defrosting temperature conditions and heat storage, so as to melt the frost that may exist in the outdoor heat exchanger 13 .
  • the defrosting process is shown in Figure 23.
  • the temperature of the coolant rises to the set value (such as 28°C).
  • the thermal management controller controls the valve group to make the high-temperature coolant flow to
  • the outdoor heat exchanger 13 is used for defrosting. Because the liquid temperature is higher, the outdoor heat exchanger 13 is heated to increase the temperature to melt the frost or ice condensed on the surface.
  • the first fan 19 attached to the heat exchanger is turned off during the defrosting process. After the defrosting is completed, the frost turns into liquid water and flows away, and then the fan is turned on to dry the water on the surface of the heat exchanger.
  • the coolant passes through the outdoor heat exchanger 13 and then flows through the secondary side of the second heat exchanger 6.
  • the waste heat is conducive to the evaporation and absorption of heat by the refrigerant, and the temperature of the refrigerant vapor will also be higher.
  • Point 1 in the pressure-enthalpy diagram Move point 2 to the right, the enthalpy value after compression is higher, and the same compression work can obtain greater heating capacity, which improves heating efficiency.
  • the heating process does not need to be stopped, which avoids fluctuations in the indoor temperature during the defrosting process and improves the comfort of the driving environment in the car.
  • the thermal management controller selects the corresponding control program according to the temperature T2 sensed by the specific liquid temperature sensor 26 until the automatic defrosting condition is met again to trigger the C0 control program.
  • the first stage, heat storage, is the same as the C2&C1 working strategy. It only heats up the coolant while heating to reach the set defrosting temperature (such as 28°C).
  • the second stage delayed heat preservation, heat preservation after heat storage and delay the set time (for example, set to 40 minutes).
  • the heat preservation method is shown in Figure 22.
  • the difference from heat storage is that the A bypass valve 9 is no longer actively heated by the first plate heat exchanger 2 to control the coolant, and stops the active heating of the PTC 18 (if opened).
  • the controller controls the refrigerant circuit according to the following steps (Fig. 23):
  • the first electronic expansion valve 3 is adjusted to the maximum opening or bypass mode, and the second electronic expansion valve 5 is adjusted to the maximum opening to reset.
  • Compressor 1 starts to work and establishes a cycle.
  • the thermal management controller calculates the temperature T1 sensed by the temperature sensor 24 at the outlet of the evaporator and controls the opening of the second electronic expansion valve 5 in a closed loop.
  • the thermal management controller calculates and adjusts the compressor to be in the most economical and energy-saving state according to the temperature T_room sensed by the temperature sensor 23 at the air outlet of the indoor heat exchanger.
  • the more T_room (23) is higher than the set reference room temperature T_r the lower the rotation speed is through the frequency conversion control of the compressor, and vice versa.
  • the thermal management controller controls the second liquid circuit as follows:
  • the first bypass valve 9 is disconnected, and the coolant passes through the secondary side of the first heat exchanger 2 .
  • the second bypass valve 12 is disconnected, and the cooling liquid that is controlled by the dotted arrow branch passes through the second heat exchanger 6 . With residual temperature, the cooling liquid passes through the second heat exchanger 6 to exchange heat with the refrigerant, so as to force the refrigerator to completely evaporate and raise the temperature of the steam, which is more conducive to heating. Then get back to the B area of the liquid storage tank 16.
  • the coolant temperature may be extremely low (such as lower than -20°C), or when the user needs to accelerate the temperature rise to defrost and ice and heat the battery pack.
  • the thermal management controller controls the implementation of the C1 strategy, turns on the heating action of the PTC 18, and turns off the PTC 18 after completing the first quick defrosting and battery pack heating.
  • control strategies of the preferred embodiments of the thermal management heat pump air-conditioning device, system, and implementation method of the present invention are arranged in charts as follows:
  • the principle design is mainly aimed at the on-board air conditioner of the electric vehicle, and because the structure of the plate heat exchanger can be reasonably, the tube can be The road is integrated to form a smaller vehicle air conditioner.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Automation & Control Theory (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Control Of Eletrric Generators (AREA)
  • Motorcycle And Bicycle Frame (AREA)

Abstract

一种电动汽车集成热管理系统及实现方法,其设置包括一压缩机(1)、一室内热交换器(4)和一室外热交换器(13),还包括相对独立设置的一制冷剂回路和一第二液体回路;第一热交换器(2)和第二热交换器(6)分别设置在制冷剂回路中压缩机(1)的下游和上游;在第二液体回路中设置包括有通过管路连接的室外热交换器(13)和第一热交换器(2)的二次侧,及第二热交换器(6)的二次侧;在第二液体回路中还设置有用于连接电池热交换器(32)的管路。

Description

一种电动汽车集成热管理系统及实现方法 技术领域
本发明涉及一种车辆的空调装置及系统和方法,尤其涉及的是一种电动汽车的集成热管理系统、装置及方法的改进。
背景技术
现有技术中,电动汽车取代燃油汽车已成为必然趋势,因其具有低噪音、加速机动性能好、使用几乎零碳排放、使用成本相对较低等优点,越来越受到社会各界大众消费者的青睐。但电动汽车的工作原理与传统燃油车不同,在设计上必须要有相应同步更新,才能满足用户对舒适性、节能和续航里程等方面日益提高的品质要求。
传统燃油车在发动机工作时,不可避免地会放出大量的热量,在寒冷的冬天正好可以利用这些工作废热透过液体热交换器(热风芯子)加热空气,从而使乘客舱内温度升高;夏天则可利用发动机的机械动力带动空调压缩机等所构成的制冷系统从蒸发器(冷风芯子)吸收驾乘室空气热量进行制冷降温。
目前大多数的电动汽车则完全依靠自身电池所存储的电量,通过PTC等电阻性发热元件加热热风芯子使乘客舱内温度升高以度过寒冬,夏天则利用电池驱动电动压缩机所构成的制冷系统,通过蒸发器(冷风芯子)来进行车内制冷降温。热风芯子和冷风芯子互为独立完成制冷与制热功能。
采用PTC陶瓷发热元件制热,能耗比相对较大,其单位制热量所消耗的电能比(COP,Positive Temperature Coefficient)约为1,如用4000W功率的加热器,制热量最大值为4000W。为了提高制热效率,一些车型开始使用热泵空调,制热的能效系数(COP)比较高,即制热量与耗电量的比值较大,一般可达2以上,如当耗电功率为2000W时,室内获得的热量可以在4000W以上,但其电力消耗仍对续航里程存在不可忽视的负面影响。
另一方面,目前的动力电池(如磷酸铁锂电池和三元锂电池)在低温条件下充电易 发生负极析锂,形成锂枝晶后可能刺穿隔膜,严重影响电池安全和寿命,所以在低温工况下,电池管理系统(BMS,Battery Management System)会更严格限制其工作充放电边界;再者,气温越低,电池中化学成分的活性就越低、电解液变得粘稠后导电能力就会下降,同时电池内阻变大,充放电功率都明显降低。
一些研究表明,在其他条件不变时,当气温降低到零下25℃时,锂电池充放电容量比常温(如正5摄氏度时)要衰减达50%或以上,并且,因充电性能下降,低温下为了保护电池,车辆大都会减少或放弃制动能量回收,光制动能量回收这一部份对续航里程的影响就可达到10%或以上。所以现今很多电动汽车在低温环境下续航里程会急剧下降。
综上,低温下的续航里程一直是制约新能源汽车推广普及的痛点,在现有条件下如何提高低温工况下电池的续航里程关键在于热管理,在于对电池的有效热管理提高电池充放电容量,以及提高空调制热效率减少电力消耗量。
纯电动汽车上所有的热量最终都来源于电池输出的电,电机和电机控制器对于电池用电的效率较高,电机控制器的用电效率一般在0.96~0.97左右,电机的用电高效率点也在0.96左右,传动系的发热量较低,电机余热可以用来给电池加热,当电机出口水温达到一定条件之后即可以用来给电池加热。
目前,电池的质量一般在350kg~500kg,在一些相关技术实现方式中,热管理较为简单,单纯地利用电机余热对电池进行加热,但电机余热并不能在所有状态下都能把电池加热到理想的温度,以使电池具有很好的充放电能力。
随着自动驾驶控制及其信息处理和计算需求的增加,除电机及其驱动部份、电源管理外,辅助驾驶控制单元的发热量也是大幅增加,如果只是利用散热系统把这些热量散发到空气中,是巨大的明显浪费。特别在冬天寒冷的天气,需要设计一种新型高效的热管理技术产品,以最大化地回收利用热能,用于车内空调制热取暖和电池热管理,尽可能降低空调制热耗电量,这已经成为电动汽车领域非常关注的重要课题,但迄今为止尚无有效的解决方案。
对于冬季结霜的问题,由于热泵空调冬季吸收室外空气热量向驾乘室内排放,随着 室外温度的降低其室外的蒸发器表面温度也会随之降低,常下降至低于环境温度甚至低于0℃。当室外空气在流经蒸发器被冷却时,空气中的水蒸气接触到温度低于空气露点温度的蒸发器表面,就会发生相变结露现象。此时,空气中所含的水分就会析出并依附于蒸发器表面,当室外环境温度或蒸发器表面持续低于0℃时,蒸发器表面所依附的水分将可能进一步凝结形成霜层。表面温度越低,相对湿度的越大,结霜速度越快。结霜层积累直至表面逐渐被霜所覆盖,形成连续的霜层。
作为多孔介质的霜层由于导热系数小,不仅会降低系统的传热性能,增加能耗,严重时甚至会堵塞室外风机的气流通道,造成蒸发器温度越来越低直至无法完成蒸发功能而导致系统堵塞或液击损坏压缩机,引发非常严重的故障后果。所以冬季的室外风机需要进行融霜除霜,目前的主要除霜技术手段为切换至制冷模式主动除霜,侦测室外热交换器表面温度,当低于设定值并维持一段时间后就开始进行融霜工作,具体做法是切换四通换向阀,暂停制热,使其工作于制冷模式。
压缩机输出高温高压蒸汽进入室外热交换器(制冷模式的冷凝器),为使其本体温度尽快升高到足以融霜,会先暂停室外风机,融化的霜雪化为水流出后再启动风机吹干水份。融霜过程结束后再控制四通换向阀使空调恢复到制热模式。这种方法除霜时间短,但是在除霜运行时,需要暂停制热,反从驾驶室内吸热,造成了室内温度波动较大,降低了室内环境舒适性,且换向阀需频繁换向,易磨损且噪音较大。
另一常用方式为旁通阀主动除霜,制热时开启融霜阀,从压缩机输出的高温高压蒸气直接通入室外热交换器(制热模式下作为蒸发器)进行除霜。运用该种除霜方法时,四通阀不需要进行换向,融霜旁通电磁阀开启,关闭风机,压缩机排气经旁通管路送至室外换热器(制热模式下作为蒸发器)入口进行放热除霜,融霜后的制冷剂通过四通换向阀进入气液分离器,最后被压缩机吸入。该方式的缺点同样是,在除霜时制热将停止而会造成室内温度的波动。
因此,在冬季需要融霜除霜时,制热过程不稳定而使车内温度波动较大,现有技术还存在缺陷而有待于改进和发展。
发明内容
本发明的目的在于提供一种电动汽车集成热管理系统及实现方法,通过将热泵空调、电池热交换器、电机及其驱动部分、电源管理及自动驾驶控制单元等发热部件进行综合管理,形成方便控制和管理的针对电动汽车集成热管理的系统和实现方法,实现更方便地热管理和控制。
本发明的技术方案如下:
一种电动汽车集成热管理系统,其设置包括一压缩机,以及,一室内换热器和一室外换热器,其中,包括相对独立设置的一制冷剂回路和一第二液体回路;
在所述制冷剂回路中设置包括有通过管路连接的所述压缩机、所述室内换热器以及一第一热交换器的一次侧和一第二热交换器的一次侧,通过所述第一和/或第二热交换器与所述第二液体回路进行热交换;
所述第一热交换器和所述第二热交换器分别设置在所述制冷剂回路中所述压缩机的下游和上游;
在所述第二液体回路中设置包括有通过管路连接的所述室外热交换器和所述第一热交换器的二次侧,及所述第二热交换器的二次侧;
在所述第二液体回路中还设置有用于连接电池热交换器的管路。
所述的电动汽车集成热管理系统,其中,所述第二液体回路中还设置有用于连接电机及电机驱动部分热交换器的管路。
所述的电动汽车集成热管理系统,其中,所述第二液体回路中还设置有用于连接电源管理及自动驾驶控制热交换器的管路。
所述的电动汽车集成热管理系统,其中,所述系统还设置采用模块化设置,并在第二液体回路中还设置有:第一管路接口和第二管路接口,用于与压缩机/电机的热交换器插接;第三管路接口和第四管路接口,用于与电机驱动、电源转换器及驾驶控制系统的热交换器插接;以及第五管路接口和第六管路接口,用于与电池部位的热交换器插接;所述第二管路接口与所述第三管路接口直接导通,所述第一管路接口连通所述第一泵,所述第六管路接口连通所述第一换热器的二次侧。
所述的电动汽车集成热管理系统,其中,所述第一至第六管路接口设置在所述模块化的系统上,并具有标准化的管路接口布置。
所述的电动汽车集成热管理系统,其中,在所述第二液体回路中还设置有:一第一泵,设置在所述第一热交换器的二次侧上游,用于驱动所述第二液体回路中的冷却液流动;在所述第一泵与所述第一热交换器的二次侧上游之间的管路上设置所述第一至第六管路接口。
所述的电动汽车集成热管理系统,其中,所述第五管路接口与一第五旁路阀导通,所述第五旁路阀用于受控旁路所述第一至第四管路接口。
所述的电动汽车集成热管理系统,其中,所述第四管路接口还与一第六旁路阀导通,所述第六旁路阀用于受控旁路所述第五至第六管路接口。
所述的电动汽车集成热管理系统,其中,在所述第一管路接口的支路上还设置有一第三泵,用于驱动冷却液流出所述第一管路接口。
所述的电动汽车集成热管理系统,其中,在所述第四管路接口与所述第五管路接口之间还连接有一第二单向阀,用于防止冷却液从第五管路接口内部向第四管路接口反方向流动。
所述的电动汽车集成热管理系统,其中,所述第五旁路阀上游还设置有一第三单向阀,用于保证冷却液的单向流向。
所述第六旁路阀与第六旁路阀同时受控导通时,所述第五与第六管路接口间所接负荷(比如电池热交换器)与第一与第四管路间所接负荷(比如各种需散热的电控模块和电源管理模块的热交换器)将处于并联工作状态。
所述第六旁路阀与第六旁路阀同时受控截止时,所述第五与第六管路接口间所接负荷(比如电池热交换器)与第一与第四管路间所接负荷(比如各种需散热的电控模块和电源管理模块的热交换器)将处于串联工作状态。在此状态下,冷却液在所述第一泵的推动下先经过第一与第四管路间所接负荷并收集带走其热量,液体温度将被加热而升高,再从所述第五管路进入第五与第六管路接口间所接负荷(比如电池热交换器),起到加热所述第五与第六管路接口间所接负荷(比如电池热交换器)的作用。
所述的电动汽车集成热管理系统,其中,还包括一热管理控制器,设置在所述电动汽车集成热管理系统的电路中,用于执行不同控制策略。
所述的电动汽车集成热管理系统,其中,与所述第一热交换器的二次侧并行设置有一第一旁路阀,用于受控形成旁路。
所述的电动汽车集成热管理系统,其中,与所述第二热交换器的二次侧并行设置有一第二旁路阀,用于受控形成旁路。
所述的电动汽车集成热管理系统,其中,与所述第一热交换器的一次侧下游连通设置有一第一电子膨胀阀,与该连通通路并行设置有一第三旁路阀,用于受控形成旁路。
所述的电动汽车集成热管理系统,其中,与所述第二热交换器的一次侧上游连通设置有一第二电子膨胀阀,与该连通通路并行设置有一第四旁路阀,用于受控形成旁路。
所述的电动汽车集成热管理系统,其中,所述第一热交换器的二次侧与所述第一旁路阀的下游共端连接一第一三通阀的1端,所述第一三通阀的2端连接所述室外换热器;所述第一三通阀的3端连接一第二三通阀的1端,所述第二三通阀的2端与所述室外换热器的下游端共端设置,并连接到所述第二热交换器的二次侧;所述第二三通阀的3端设置与所述第一泵的入口连接。
所述的电动汽车集成热管理系统,其中,在所述室外热交换器的上游端设置有一第二泵,用于驱动冷却液循环。
所述的电动汽车集成热管理系统,其中,在所述第一泵及所述第二泵的上游设置有一储液罐,所述储液罐设置采用A、B两个储液区,该两储液区在底部连通;并且,所述第一泵的入口与所述第二三通阀的3端在所述储液罐的A储液区内抵近并开放设置;所述第二泵的入口与所述第二换热器的下游端出液口在所述储液罐的B储液区内抵近并开放设置。
所述的电动汽车集成热管理系统,其中,在所述第一泵的下游与所述第一泵串联还设置有一PTC。
所述的电动汽车集成热管理系统,其中,所述第一热交换器以及所述第二热交换器采用板式热交换器。
一种任一所述电动汽车集成热管理系统的实现方法,其设置包括一热管理控制器,设置在所述电动汽车集成热管理系统的电路中,用于执行不同控制策略;并包括以下步骤:
所述制冷剂回路中通过所述压缩机进行制冷剂压缩,并连通所述室内热交换器进行室内空气的热交换;
所述第二液体回路中设置连通室外热交换器,与室外空气进行热交换;
所述制冷剂回路与所述第二液体回路相对独立运行,所述第二液体回路可选择通过第一热交换器与所述室外热交换器作为制冷模式或选择通过第二热交换器与所述室外热交换器作为制热模式的热交换;
在所述第二液体回路中还设置有用于连接电池热交换器的管路。
本发明所提供的一种电动汽车集成热管理系统及实现方法,由于采用了相对独立设置的制冷剂回路和第二液体回路,分别通过管路连通连接室内换热器和室外换热器,这样室外换热器处于第二液体回路工作,无需承受制冷剂回路的高压,提高了其工作可靠性,并可延长其使用寿命;第二液体回路的管路设计可以形成更为自由的逻辑管控方式,以针对不同的环境温度要求进行温度调控处理;另外,将电池包的热量进行接入热泵空调的管理管路,实现了针对极低温度下的电池温度维持功能,还可收集电池及其它发热部件的热量用于热泵空调制热以提高制热效率减少电力消耗。并且可以将整个集成热管理系统及实现方法设置成模块化的结构,由热管理控制器实现更自由的控制策略,而且诸控制策略可以通过控制器的编程实现。
附图说明
图1为本发明所述电动汽车集成热管理系统及实现方法的原理框图示意图。
图2为本发明所述电动汽车集成热管理系统及实现方法较佳实施例的结构示意图。
图3为本发明及现有技术中热泵空调原理压焓示意图表。
图4为本发明所述电动汽车集成热管理系统及实现方法较佳实施例的制冷模式工作原理示意图。
图5为本发明所述电动汽车集成热管理系统及实现方法较佳实施例的制冷模式中进一步降温的工作原理示意图。
图6为本发明所述电动汽车集成热管理系统及实现方法较佳实施例的制热模式热量回收工作原理示意图。
图7为本发明所述电动汽车集成热管理系统及实现方法较佳实施例的制热模式中进一步需要室外换热器吸收空气热量的工作原理示意图。
图8为本发明所述电动汽车集成热管理系统及实现方法较佳实施例的制热模式下利用外部热源和热泵对电池的温度加热升温之工作原理示意图(除霜蓄热同)。
图9为本发明所述电动汽车集成热管理系统及实现方法较佳实施例的制热模式下利用热泵和外部热源对电池进行加热升温同时附加PTC快速强化加热的示意图(加速除霜蓄热同)。
图10为本发明所述电动汽车集成热管理系统及实现方法较佳实施例中在制热模式下冷却液体需要保温时的停止热泵加热工作原理示意图。
图11为本发明所述电动汽车集成热管理系统及实现方法较佳实施例中在制热模式下需要做融霜时的工作原理示意图。
图12为本发明所述电动汽车集成热管理系统及实现方法较佳实施例中在不开空调行车工况下制冷剂回路无须工作的情况下对废热的常规散热工作原理示意图。
图13为本发明所述电动汽车集成热管理系统及实现方法较佳实施例中在低温工况下充电或低温待机时的工作原理示意图。
图14为本发明所述电动汽车集成热管理系统及实现方法较佳实施例中具体空调管路结构示意图。
图15为本发明所述电动汽车集成热管理系统及实现方法较佳实施例中在制冷模式下分别对电池和废热进行散热的管路结构示意图。
图16为本发明所述电动汽车集成热管理系统及实现方法较佳实施例中在制冷模式下进一步加强散热降温的管路结构示意图。
图17为本发明所述电动汽车集成热管理系统及实现方法较佳实施例中在不开空调 充电或待机低温工况下制冷剂回路停止工作时的节温管路结构示意图。
图18为本发明所述电动汽车集成热管理系统及实现方法较佳实施例中在不开空调常温工况下制冷剂回路停止工作时散热保持温度时的管路结构示意图。
图19为本发明所述电动汽车集成热管理系统及实现方法较佳实施例中在制热状态下水温常温时对电池和废热回收余热用于制热的管路结构示意图。
图20为本发明所述电动汽车集成热管理系统及实现方法较佳实施例中在制热模式下水温正常偏凉但比气温低制热的管路结构示意图。
图21为本发明所述电动汽车集成热管理系统及实现方法较佳实施例中在制热同时利用热泵及工作废热对电池加热升温的管路结构示意图。
图22为本发明所述电动汽车集成热管理系统及实现方法较佳实施例中在制热模式中需要停止从热泵吸热的保温状态做融霜准备管路结构示意图。
图23为本发明所述电动汽车集成热管理系统及实现方法较佳实施例中融霜操作的管路结构示意图。
具体实施方式
以下对本发明的较佳实施例加以详细说明。
本发明所提供的一种电动汽车集成热管理系统及实现方法较佳实施例中,其可以通过将热泵空调、电池包、电机及其驱动部份、电源管理及自动驾驶控制单元等发热部件综合考虑,进行集成设计,使其由分散化的热管理向模块成化热管理转变。集成式热管理系统对减小空间体积、提高整车的能源的利用效率很有意义。
本发明较佳实施例中设计提供了一种集成式的热管理系统,采用了两个相对独立的制冷剂回路和第二液体回路,分别实现对外部的热交换和对车内内部的热交换,并在所述制冷剂回路与所述第二液体回路之间设置有相互之间进行热交换的热交换器。本发明可以通过协调统一管理各种工况下热泵空调的制冷剂回路与第二液体回路中电池包热回路及其它各功能单元的热流路径和组态,使各部份始终工作于合理的工作温度条件,发挥出最佳工作效能。
在严寒条件下,可以利用电机及其驱动部份、电源管理部份及自动驾驶控制单元等电动汽车发热部件产生的热量(这些部件在正常工作时就不可避免发热且需要散热,以下统称外部热源),以及通过热泵空调吸收空气热能所产生的热量经换热器聚合并根据需要可以控制实现串流或并流,在串流时液体携带热泵热量和外部热源废热经过电池包使之温度快速升高到合适的温度区间,保证电池的充放电容量不受低温条件制约。对电池包的完善热管理,以利发挥出动力电池最好的充放电效能,提升低温工况下的续航里程。
本发明所述电动汽车集成热管理系统较佳实施例的另一目的在于通过集成式综合架构设计,设计一种全新的热泵空调技术,使其在低温制热工作模式下,尽最大可能收集利用电池包、电机及其驱动部份、电源管理及自动驾驶控制等功能部件(或称外部热源)工作发出的热量,可做到最大化的余热回收利用,用于热泵空调进行制热供暖,以降低制热的电能消耗,提高制热能效系数(COP)。
本发明所述系统及实现方法较佳实施例中的余热回收机制,结合新式热泵空调结构,可以高效回收并储蓄电动车工作废热,在低温结霜工况下释放出来用于融霜除冰以达节能目的。且该融霜除冰过程与热泵制热过程同时进行,并不需要先停止制热来进行除霜,保证了制热工作的连续性,减小室内温度波动从而大大提高驾乘舒适性。
在夏天需要制冷的高温条件下,本发明较佳实施例中动力电池热交换器、电机及其驱动部份、电源管理及辅助驾驶控制单元等液体回路的热量不仅共用热泵空调系统的冷凝散热器进行散热,不需要重复设置两套散热器;而且在必要时也能通过制冷剂的热交换器(蒸发)吸收热量而主动控制其液体温度于合理范围。更进一步地,因热泵空调创新的结构设计原理,使室内热交换器4(如图2所示)既可作为制冷状态下冷风芯子(蒸发器),又可复用于制热状态的热风芯子(冷凝器),两个热交换器的功能复用,较传统汽车空调系统结构明显简化,对降低整车成本和缩减空间大有裨益。
本发明所述应用于电动汽车的集成热管理系统较佳实施例,如图1和图2所示的,其包括一系统主机41和附属部件及其连接接头和管道。在实际的产品设计中,可以设置所述系统主机41为一体化的模块设备,并设置对应的连接接头可以与电动汽车的外部散热 管路插接连接,这种模块化的设计方式,可以将各个管路的接口设置为一个统一的标准接头,在该接头上设置对应各个部件的进出管路接口,例如应用到动力电池的热交换管路,以及应用到车辆其他散热功能部件上的管路接口,可以通过一个标准接头实现方便插接,这样可以通过一个标准化模块实现对各种不同车型的匹配适应。
本发明所述附属部件作为所述主机功能实现的一部份,称其为附属部件仅指其安放位置在主机箱体以外,以下对所述主机的说明中仍会包括附属部件。所述附属部件包括:室内换交换器4及其配套20风扇、导风元件和其接线连接端,室外热交换器13及其配套第一风扇19和其接线连接端子、电源输入端口Power,电池热交换器32、电机及电机驱动部份热交换器33、压缩机/电机热交换器34、室内温度传感器T_room 23、室外温度传感器T_a 25、室外热交换器13表面温度传感器T_s_49、与整车控制器通讯的控制总线接线端子(CAN或LIN或其它类型数据接口)。
需要注意的是,所述电池热交换器32是本发明较佳实施例中需要特别关注和保持温度平衡的机构,而电机及电机驱动部分热交换器,以及电源管理及自动驾驶控制热交换器等等将车辆运行所产生的热量,在车辆热管理的系统作用下,及时传递散发到需要热量的地方,从而可以实现在减少电池能量损耗的情况下,更好地提高车辆运行效率从而增加续航里程。
所述连接接头和管道包括主机41与室外热交换器13连接的冷却液接头和管道42、主机41与室内热交换器4连接的冷媒接头和管道43、主机41与电池热交换器32连接的冷却液接头39、40和管道44、主机41与压缩机/电机热交换器34连接的冷却液接头35、36和管道45、主机41与电源管理及自动驾驶控制热交换器33连接的冷却液接头37、38和管道46。
本发明所述主机41的大部份设计在一个箱式壳体内,其包括一热管理控制器48和集成热管理回路,如图2所示,集成热管理回路又包括制冷剂回路和第二液体回路,具体结构如下文详细说明。所述热管理控制器48设置在一个独立的电路板上,并连接到所述集成热管理回路的各泵、阀及风扇等,通过预先的编程管理策略实现对相应泵、阀及风扇开关的控制,实现相应的制冷、制热、除霜、融霜等功能。
本发明所述主机中的集成热管理回路中,除了将所述室内换热器和室外换热器以及 电池、电机以及电源的结构(电池、电机以及电源等为车辆原有功能结构)设置在所述主机之外,而将所述制冷剂回路以及所述第二液体回路的剩余大部分管路都设置在了一个主机之内,并在对外连接的位置,尤其是与车辆的电机和电源热管理回路插接的位置,设置采用标准的管接头结构,用来对车辆的不同发热部件进行热管理连接。
同时,所述制冷剂回路如图2所示的包括依次连通连接并形成循环的一压缩机1,第一热交换器2的一次侧,第一电子膨胀阀3,室内热交换器4及其对应的室内热交换器第二风扇20,第二电子膨胀阀5,第二热交换器6的一次侧,以及气液分离器8。工作在制冷模式时,由电动压缩机输出高温高压制冷剂蒸汽,于第一热交换器2与制冷剂回路进行热交换,由第一热交换器2传递热量到第二液体回路再经第二液体回路的室外热交换器13散热到室外空气,而制冷剂从室内热交换器4吸收室内空气热量,导致室内温度下降以降温纳凉。在制热模式下时,第二热交换器6可从第二液体回路吸收热量后,并从室内热交换器4向室内空气排放热量以升温取暖。第一和第二电子膨胀阀3和5用来转换制冷剂回路的工作模式和进行室内温度控制。
所述热管理控制器48设置在控制电路中,可根据工控策略调节第一电子膨胀阀3和第二电子膨胀阀5来转换制冷剂回路的工作模式和进行室内温度控制(制冷或制热),还监测各温度传感器的数据来控制各种阀门的动作以及调节压缩机1的转速以控制温度,本系统与整车控制器之间的数据和控制通讯也是由所述热管理控制器48完成的。
本发明较佳实施例的所述第二液体回路包括第一泵22、第二泵15、第三泵27、第一热交换器2的二次侧(一侧与二次侧之间不连通但进行相互热交换)、第一旁路阀9、第一三通阀10、室外热交换器13及其第一风扇19,第二三通阀11、第二热交换器6的二次侧(一侧与二次侧之间不连通但进行相互热交换)、第二旁路阀12、储液罐16(或类似连接功能的多口接头)、第一单向阀21、对外冷却液进出接头35-40及所有连接管路44-46。
其中室外热交换器13及其第一风扇19在制冷模式中用于把第二液体回路中载冷液体的热量散发排放到室外空气中,或在制热模式中用于从室外空气中吸收热量给第二液体回路中的载冷液体。所述第二热交换器6的二次侧和第一热交换器2的二次侧接入到所述第二液体回路的管路之中,用于与制冷剂回路进行热交换,在制冷模式下可吸收制冷剂 蒸汽的热,在制热模式下用于将第二液体回路中载冷液体的热量传递给制冷剂回路而使制冷剂蒸发。
所述第一泵22、第三泵27和第二泵15提供循环的推动力,根据工作模式的不同需要,其运转受控于热管理控制器48发出的控制信号,来实现对相应泵的流量驱动力;所述第一泵22在所述储液罐16中设置有开口,并在所述第一泵22的下游设置有分叉形成两个支路的第三泵27和一第五旁路阀28,所述第三泵27设置有第一管路接口35,以及在所述主机内设置的一管路,在所述主机接管面上设置两个管路接口即第二管路接口36和第三管路接口37(两个管路接口之间直接导通),在所述第一管路接口35与第二管路接口36之间设置有待连通连接的外部接口,用来连接压缩机/电机的热交换器或其它发热部件的热交换器,以便将其上的热量可以通过热交换器从第二管路接口36导入所述主机内。
所述第二泵15设置在所述室外热交换器的上游管路中,与第一泵及第一热交换器二次侧等的管路并行,形成方便设计更多功能的额外一条循环支路。本说明书中的上游与下游用语,是指在流体循环路径中,沿着流体流动方向,比较靠近本器件的上侧即流体来的方向(上游)或下侧即流体去的方向(下游)。
另外还可以设置更多的管路接口以适应更多的发热部件的液体热交换器,例如图2中所示的第四管路接口38以及第五管路接口39和第六管路接口40,通过所述第三管路接口37和第四管路接口38与外部对应接口的插接,可以实现对电机驱动、电源转换器以及驾驶控制系统等设置的热交换器进行连通连接并收集其热量导入所述第二液体回路。通过所述第五管路接口39和所述第六管路接口40的连通连接,可以实现将所述电池热交换器32进行连通并接入所述第二液体回路。
根据电动汽车的各工作部件,可以设置多个不同的管路接口,除了针对电池包的管路接口需要考虑保温进行特别设置之外,其他产生“废热”的部件都可以分别设置对应的管路连接接口,只需增加设置类似于第二管路接口36和第三管路接口37的串接接管和管路接头即可。
在所述第四管路接口38与第五管路接口39之间设置有一第二单向阀30,可以用来保证冷却液从第四管路接口内部向第五管路接口方向流动;并且第五管路接口39还连通所 述第五旁路阀28的另一端,在所述第五旁路阀28的前端还设置有一第三单向阀31,从而保证在第二液体回路中,所述第五旁路阀28的支路上管内液体的单向流通。所述第三泵27可以增加所述第一管路接口35中的冷却液从所述第一管路接口中流出的驱动压力。在所述第四管路接口38与所述第六管路接口40之间还设置有一第六旁路阀29,上述第五旁路阀28和第六旁路阀29都可以经过所述热管理控制器48的控制实现对应的开关,从而实现相应的工控功能。
这样所述第五旁路阀28可以通过受控实现对第一至第四管路接口的旁路,从而可以在某些必要的情况下(比如液体温度较高)使冷却液经第五旁路阀28跨过其它外部发热源流向电池热交换器,电动汽车其它外部“废热”部件所产生热量不用来加热电池热交换器。所述第六旁路阀29通过受控可以实现对第五至第六管路接口进行旁路,与第五旁路阀28共同作用下,液体温度足够高的情况下可以跨越电池热交换器而直接收集“废热”,该废热不对电池热交换器进行加热。
所述第一旁路阀9和第二旁路阀12分别用于受控制开关来改变第二液体回路中载冷液体的流通路径,其接通时载冷液将通过其形成的旁路直接分别跨过第一热交换器2的二次侧和第二热交换器6的二次侧,从而可以实现选择是否与制冷剂回路发生热量交换的功能,从而对应实现相应热管理功能。
所述第一旁路阀9并接在所述第一热交换器2的二次侧两端,所述第二旁路阀12并接在所述第二热交换器6的二次侧两端。所述第一旁路阀9与所述第一热交换器2的二次侧的并接端连通连接有第一三通阀10的1端,所述第一三通阀10的3端连通所述第二三通阀11的1端,所述第一三通阀10的2端连通连接所述室外热交换器13的一端。需要说明的是,在本发明所述主机41内可以设置开放的位置用来安装所述室外热交换器13和风扇19,也可以将车辆的室外热交换器安装于所述主机41箱体之外车辆的任何地方,并以管道与所述主机41进行连通连接。
所述室外热交换器13的另一端连通连接所述第二三通阀11的2端,并与所述第二热交换器6二次侧以及所述第二旁路阀12的一侧并端连通连接。所述第二三通阀11的3端与所述第二旁路阀12的另一侧端并端连通,并在所述储液罐16中设置有开口端,并与所述第 一泵22在所述储液罐16中的开口端抵近设置,并开放于该储液罐16中设置。所述第二热交换器6的二次侧另一端也连通设置到所述储液罐16中,并与所述第二泵15在所述储液罐16中的开口抵近设置,并开放设置。
上述两个抵近的开放开口位置设置在所述储液罐16中的A、B两个储液区内,该两个储液区在所述储液罐16的底部设置为开通的通道,并将两个抵近位置设置在两个不同储液区的上部,这样在进行循环时,可以保证在所述储液罐16内通过抵近设置可以保持本循环的稳定,同时开放可以使得的在所述第二液体回路中的液体可以通过所述储液罐进行补充,以及在需要蓄热时,可以通过开放的开口进行逐步的液体交换,从而在所述储液罐16内形成一定的蓄热过程。而通过在所述储液罐16的底部形成两个储液区的沟通,可以实现两个储液区之间的蓄热交互。所述储液罐16也可以采用多向管接头实现,并且也可以设置所述储液罐16的体积具有不同的尺寸,从而根据实际需要可以设置匹配不同车辆的蓄热需求。储液罐16上还设置有一加液盖17,用来对储液罐16进行冷却液的添加。
所述第五旁通阀28用于控制所述第一泵22支路液体是否全部流经外部热源热交换器(电机驱动、电源转换器以及驾驶控制系统热交换器33和压缩机/电机热交换器34),所述第二三通阀11可以用于配合控制第一泵22支路液体是否流经热交换器6的二次侧,特别是在制热模式下的加热升温蓄热过程中实现第一泵22支路与第一泵15的制热支路相对独立,保证了制热与蓄热工作可以同时进行。所述第一单向阀21的作用是在一些不需要第二泵15工作的情况下,可以阻止第一泵22支路输出的较高温度液体经第二泵15返流形成短路。
本发明设计的较佳实施例中,将电池热交换器32(以下简称电池包)、压缩机/电机热交换器34、电源管理及自动驾驶控制单元33(以下总称外部发热源)的液体冷却回路与热泵空调制冷剂回路通过热交换器密切耦合在一起,通过热管理控制器48调节制冷剂与冷却液的流通路径和组态策略控制,可以实现对电池包和外部发热源有效综合热管理,使其工作于合适的温度区间,并且在冬季寒冷环境尽最大可能利用热泵回收电池包和外部热源的热量以用于驾乘室内供暖,并保证电池包的温度在合理范围之内,并提高制热效率,大大减少热泵空调制热时的电力消耗。
如图3所示是本发明以及现有技术中的空调制冷剂进行制冷循环的压焓图,梯形代表的是四个焓值变化的阶段,而弧线代表的是制冷剂的三个状态区域,弧线内为气液混合态,而弧线外左侧为液态,弧线外右侧为气态区。梯形的边表明了空调工作过程中的状态变化,包括压力和焓值。以下说明中,所有提到压焓点的位置,都请参考图3所示。
在不同的用户操作选项中,如开空调或不开空调、充电待机等,和不同的初始温度条件下,本发明较佳实施例中设计了分别不同的控制策略,以下将利用简图结合热泵空调压焓图(图3)分别说明其工作原理和过程,因为目的在于解析设计思路和系统运作主要过程,所以简图先被省去第二冷却液回路中的部分阀组件。阀组件是实现这些设计意图的执行器件,其工作由所述热管理控制器按48依照控制策略来操控,而阀组件的设置及其控制程序又是根据以下说明的原理进行配置的,各具体实施案例将进一步进行阐述:
1、制冷模式的工作循环(参见简化示意图4和图5):
结合图2所示,在热泵空调打开后,所述热管理控制器读取用户事先设定的室内目标温度T_r(比如25℃),当T_r低于室外环境温度T_a时,即进入制冷工作模式。在此模式下工作过程为:压缩机1将制冷剂从常温蒸汽态(压焓图点1)压缩成为高温高压的汽态(压焓图点2),进入所述第一热交换器2的一次侧,与接入所述第二液体回路的二次测液体发生热交换而温度下降,冷凝成为高压中温液态(压焓图点3)。再经过第一电子膨胀阀3节流降压成为湿蒸汽或汽液混合物(压焓图点4),送入室内热交换器4吸收室内空气热量从而使室内降温,制冷剂因吸收热量温度上升焓增加蒸发恢复成为蒸气(压焓图点1)。在此循环中,点1到点4是室内热交换器4的吸热制冷过程,其单位制冷量q0=h1-h3(或q0=h1-h4),压缩机单位理论做功ω0=h2-h1。
在制冷状态下,如图4所示,所述热管理控制器读取设置于第二液体回路上的液体温度传感器26的冷却液温度T2,当T2温度正常(比如T2<55℃),控制器判断并选择适用的控制策略,如简化示意图4所示:电池热交换器32与电机驱动、电源管理、驾驶控制系统热交换器、压缩机、主电机等外部发热源(电机驱动、电源转换器以及驾驶控制系统热交换器33、压缩机/电机热交换器34)都经过冷却回路并联(因在此温度下电池包无需额外 加热),冷却液被相应的泵推送去第二热交换器2的二次侧再吸收制冷剂蒸汽的热量,从而使制冷剂完成冷凝过程。然后经过室外热交换器13,利用第一风扇19强制室外空气带走热量,以完成散热。而第二液体回路上的液体温度下降后返回储液罐进入抵近的水泵入水口,周流循环。
由此可以看出,空调制冷与电池热交换器32和外部发热源(电机驱动、电源转换器以及驾驶控制系统热交换器33和压缩机/电机热交换器34)热量都是从室外热交换器13散发出去,不需要分别设置不同的散热器,共用该器件的好处不仅是在成本大大降低而且整个系统的体积缩小,可以更方便地应用在车辆空调装置上。
在制冷状态下,如图5所示,本发明较佳实施例的车载热管理系统中,其热管理控制器可以读取设置于所述第二液体回路上的液体温度传感器26的冷却液温度T2,当T2温度偏高(比如T2>55℃)需要加强散热以快速将所述第二液体回路冷却液温度降低,所述热管理控制器判断并选择适用的控制策略:与前面不同的地方是冷却液经室外热交换器13散热后,再进一步进入热交换器6(Chiller)进行降温。
如图5所示,电池热交换器32与电机驱动、电源管理、驾驶控制系统热交换器、压缩机、主电机等外部发热源(电机驱动、电源转换器以及驾驶控制系统热交换器33和压缩机/电机热交换器34)冷却回路并联(因在此温度下电池包无需额外关注加热),第二液体回路上的液体被相应泵推送去第一热交换器2的二次侧吸收制冷剂蒸汽的热量使制冷剂完成冷凝过程。经热量聚合后的液体携带热量送室外热交换器13,利用第一风扇19强制室外空气带走热量完成散热。
第二液体回路上的液体温度下降后,经过阀门组件的切换送入第二热交换器6(Chiller)的二次侧与已蒸发的制冷剂进行热交换。因第二热交换器6的一次侧流动的是较低温度汽体或气液混合物,经过第一热交换器2的热交换后能够降低二次侧冷却液的温度并促进一次侧制冷剂的完全蒸发,这样有利于避免压缩机吸入液态制冷剂而发生液击损坏故障。但需注意的是压缩机入口蒸汽的温度过高对一般压缩机自身的冷却不利,在所有工况应用条件下需要设计者根据实际工作温度范围做好相应的选型和冷却措施(液冷或油冷),以防止过高的吸气温度使压缩机过热损坏。
本发明所述第二液体回路内的冷却液经第二热交换器6(Chiller)二次冷却后温度进一步降低,再返回储液罐进入抵近的水泵及其入水口,周流循环。
可以看出,空调制冷时的热量与电池热交换器32和外部发热源(电机驱动、电源转换器以及驾驶控制系统热交换器33和压缩机/电机热交换器34)热量都是由第二液体回路内冷却液吸收聚合后再从室外热交换器13散发出去,共用该器件的好处不仅是成本大大降低而且可以使得整个系统体积缩小。另一方面,这个较高的冷却液温度T2需要更加强的降温冷却速度,经过第二热交换器6(Chiller)的主动冷却可使其温度尽快降下去并至更合适范围。
2、制热工作循环(参见简化示意图6、图7和图8):
在热泵空调打开后,本发明较佳实施例中的热管理控制器读取用户事先设定的室内目标温度T_r(比如25℃),当T_r高于室外环境温度T_a时,即进入制热工作模式。在此模式下的工作过程为:压缩机1将制冷剂从常温蒸汽态(压焓图点1)压缩成为高温高压的汽态(压焓图点2),通过(或利用旁路阀跨过)第一热交换器2,并将第一电子膨胀阀3开到最大开度(或旁通模式),进入室内热交换器4并在其对应风机20作用下与室内空气发生热交换而使室内温度上升,制冷剂在此冷凝成为高压中温液态(压焓图点3)。
制冷剂经过室内热交换器4冷凝后再经过第二电子膨胀阀5节流降压成为湿蒸汽或汽液混合物(压焓图点4),送入第二热交换器6的一次测吸收第二液体回路内液体的热量,制冷剂因吸收热量而温度上升、焓增加,蒸发恢复为蒸气(压焓图点1)。在此循环中,图3中的点2到点3是室内热交换器4的排出热的制热过程,其单位制热量q0=h2-h3,压缩机单位理论做功ω0=h2-h1。
如图6所示的较佳实施例中,在制热状态下,所述热管理控制器读取设置于第二液体回路上的液体温度传感器26的冷却液温度T2,当T2温度正常(比如0<T2<50℃)且T2高于室外环境温度T_a时,所述热管理控制器依此判断适用相应的控制策略,该策略的设计出发点为尽最大可能将电池热交换器32和外部发热源(电机驱动、电源转换器以及驾驶控制系统热交换器33和压缩机/电机热交换器34)的废热回收,用于提高热泵空调制热效率。所以第二液体回路将绕过室外换热器13而直接由第二热交换器6内的制冷剂吸收,在所述 第二热交换器6内形成一侧和二次侧之间的热交换。
因所述第二液体回路中的冷却液携带电池包和外部发热源的废热能量温度高于室外环境空气温度T_a,故能够使制热回路更高效工作,相当于压焓图点1右移,压缩机做同样的压缩功,但制冷剂焓值也更高(h2同步右移),又因为单位制热量q0=h2-h3,h2更大,制热量也将越大,制热效率更高。
如图6所示:电池热交换器32与电机驱动、电源管理、驾驶控制系统热交换器、压缩机、主电机等外部发热源(电机驱动、电源转换器以及驾驶控制系统热交换器33和压缩机/电机热交换器34)热交换器回路并联(因在此温度下电池包无需额外关注并加热,所以并联),冷却液被相应的泵推送,在阀组的切换下跨越而跳过第一热交换器2及室外热交换器13,送入第二热交换器6的二次侧与制冷剂进行热交换使其蒸发。
因第二换热器6的一次侧流动的是较低温度制冷剂,在经过第二热交换器6的热交换后能够降低二次侧冷却液的温度(热量被吸收),并促进一次侧制冷剂的完全蒸发,避免压缩机吸入液态制冷剂而发生液击损坏故障。
冷却液经第二热交换器6冷却后返回所述储液罐进入抵近设置的第一泵1入水口,这样就可以周流循环。须注意的是,所述冷却液可以是采用常用的水,或者为了抵抗冷冻,可以是经过调制的各种抗冷液,因现有技术中市场上已有各种常见的抗冷液,在此不再赘述。
可以看出,本发明所述热泵空调较佳实施例中所制热与电池热交换器32和外部发热源(电机驱动、电源转换器以及驾驶控制系统热交换器33和压缩机/电机热交换器34)热量都是共用室内热交换器4排放到室内的,复用该器件的好处不仅是成本大大降低而且整个系统体积缩小。液体温度传感器26的温度随时被热管理控制器监测和控制处于设定的合理范围。另一方面,最大化回收利用电池包和外部发热源的热量用于室内制热取暖,这个节温和热回收的理念贯穿始终,由于本发明较佳实施例中可以设置相应的阀组件及管路进行管路的跳接,从而可以形成更多的管路管理策略,提高热泵空调的制热效率,减少室内制热取暖电能的消耗,使得寒季续航里程得到大大提升。
如图7所示,在制热状态下的较佳实施例中,还存在另一种情况是,第二液体回路上的液体温度传感器26的冷却液温度T2正常,但低于室外环境温度T_a(比如0℃<T2<50℃, T2<T_a),或者,液体温度传感器26的冷却液温度T2明显超高(比如T2>50℃),此两种情况所述热管理控制器将依此判断并选用适用的控制策略,该策略的设计出发点除了上述的废热回收,用于提高热泵空调制热效率外,还要考虑到室外环境温度T_a比冷却液还要高或者冷却液的温度很高(比如T2>50℃)的情形,所以第二液体回路液体可在阀组件切换下经过室外换热器13吸收(或排放)热量,再由第二热交换器6内的制冷剂吸收其热量而蒸发。
因所述冷却液携带电池热交换器32和外部发热源(电机驱动、电源转换器以及驾驶控制系统热交换器33和压缩机/电机热交换器34)4的废热能量,并吸收了室外环境空气的热量,故能够在使制热回路温度尽可能上升,使热泵制热效率较高。如图7所示:电池热交换器32与电机驱动、电源管理、驾驶控制系统热交换器、压缩机、主电机等外部发热源(电机驱动、电源转换器以及驾驶控制系统热交换器33和压缩机/电机热交换器34)热交换器回路并联(在该正常温度下电池包无需额外关注并加热,所以并联),冷却液被相应的泵推送,在阀组件的切换下跨过第一热交换器2,经室外热交换器13吸收空气热能量(或在液体过高温时向室外排放热量),送入第二热交换器6(Chiller)的二次侧与一次侧制冷剂进行热交换促使其完成蒸发。
因第二换热器6的一次侧流动的是较低温度汽体或汽液混合体,经过第二热交换器6(Chiller)后降低冷却液的温度并促进剂冷剂的完全蒸发,有利于避免压缩机吸入液态制冷剂而发生液击损坏故障。而冷却液经第二热交换器6(Chiller)吸热后返回储液罐进入抵近设置的第一泵入水口,形成周流循环。
可以看出,本发明所述热泵空调较佳实施例中所制热与电池热交换器32和外部发热源(电机驱动、电源转换器以及驾驶控制系统热交换器33和压缩机/电机热交换器34)热量都是共用室内热交换器4排放到室内的,复用该器件的好处不仅是成本大大降低而且整个系统体积缩小。所述液体温度传感器26的温度随时被热管理控制器监测和控制处于设定的合理范围。同时可以最大化回收利用电池包和外部发热源的热量使液体温度升高并在热交换器6二次侧被吸热用于室内制热取暖,提高热泵空调制热效率,减少室内制热取暖电能的消耗,寒季续航里程得到大大提升。
而另一种可能情况下冷却液的温度很高(比如T2>50℃),经过经室外热交换器13与空气热热交换后,其温度降低,带着余温的冷却液再送入第二热交换器6(Chller)的二次侧与一次侧制冷剂进行热交换促使其完成蒸发。如此设计既有效控制了冷却液的温度,又使制冷剂得到充份的蒸收热量,提高制热效率。
如图8和图9所示的较佳实施例中,在制热状态下,所述第二液体回路中的液体温度传感器26监测到冷却液温度T2较低时(比如T2<0℃),所述热管理控制器依此判断适用图8和图9的控制策略。在室外温度较低的情况下,考虑到冷却液温度也较低,动力电池需要外部热量加热回温才能获得最大充放电容量和安全性,故将电池热交换器32与电机驱动、电源管理、驾驶控制系统热交换器、压缩机、主电机等外部发热源(电机驱动、电源转换器以及驾驶控制系统热交换器33和压缩机/电机热交换器34)热交换器回路改为串联,冷却液先经外部热源(电机驱动、电源转换器以及驾驶控制系统热交换器33和压缩机/电机热交换器34)加热后再流入电池热交换器32以利用废热进行对电池包的加热。
但仅利用上述外部发热源加热可能是不够和来不及的,因此在许多情况下可能无法很好满足电池包加热升温需求,因为电动汽车发热部件大多需要在行驶过程中才会逐步累积较多热量而产生升温作用,更况且外部发热源(电机驱动、电源转换器以及驾驶控制系统热交换器33和压缩机/电机热交换器34)的发热功率不是一个恒定值。因此利用热泵空调制热来加热第二液体回路成为最可行的方式。
再者,考虑到现今信息技术在车辆的应用如火如荼,出门之前先通过远程遥控指令可以让汽车空调和坐椅提前预热或自动到达指定位置等候将成为常规应用,新技术的应用能让用户避免经受上车后一段时间内的严寒酷暑,大大改善汽车的使用舒适性。同理,借助遥控或定时开启空调预热的同时,加热电池包也成为集成式热管理系统的较优实施选项。
当然,在恶劣冰雪天气条件下需要紧急升温使用时,使用PTC串联在第二液体回路中,来快速加热除霜且预热电池包也是一个用户个性化的选择需求,参见图9的工作流程。值得关注的是,PTC的耗能较大,能效系数(COP)不高,一般只在冷却液温度极低(如低于-20℃)条件下的启动之初,或用户需要加速升温以除霜除冰和加热电池包时,才由热管理控制器控制执行该附加加热策略,开启PTC加热。
在完成第一次除霜和电池包加热工作后关闭PTC的加热,PTC的应用和工作控制方式也应作为一个可能的较优实施选项。如图8和图9所示的:此时热泵空调处于主动制热过程中,压缩机1处于压缩制热工作中,电池热交换器32与电机驱动、电源管理、驾驶控制系统热交换器、压缩机、主电机等外部发热源(电机驱动、电源转换器以及驾驶控制系统热交换器33和压缩机/电机热交换器34)热交换器回路串联,第二液体回路采用两个支路兵分两路循环(注意两个支路之间实际上在储液罐位置有相对隔离和底部连通,下不赘述),与热源串联回路的冷却液被第一泵(Pump1)推送流动(实线箭头支路),在阀组的切换下进入第一热交换器2的二次侧,从压缩机1输出的高温高压制冷剂蒸汽也送往第一热交换器2的一次侧,二者在第一热交换器2中进行热交换,二次侧的冷却液被加热而升温,一次侧的制冷剂蒸汽通过室内换热器4进一步放出热量冷凝成高压中温液体,再经第二电子膨胀阀5节流降压。因制冷剂的压力骤降,至第二换热器6中吸收板式第二换热器6二次侧冷却液的热量而蒸发,再经汽液分离器回到压缩机1吸气口,周而复始。
经过若干循环后,所述第二热交换器6的二次侧冷却液被加热至稍高于本实施例策略所定义的设定温度值(如28℃)时,所述热管理控制器随后根据实际冷却液温度T2选择相应控制策略,此举出发点为,电池包温度被升高后尽可能依赖外部发热源和电池包自发热效应来维持合理工作温度并提供给热泵空调进行热量回收。
在图8和图9中所示实施例中另一液体支路(浅色箭头支路),第二泵(Pump2)推送液体经过室外热交换器13,与室外空气进行热交换后再送至第二热交换器6的二次侧与一次侧的制冷剂进行热交换(吸热),制冷剂吸收该支路热量蒸发,然后返回压缩机1吸气口形成闭环。
从上述工作过程可以看出,在冷却液温度T2较低(比如低于0℃)时,本发明热泵空调较佳实施例中,热泵所制热量与外部发热源(电机驱动、电源转换器以及驾驶控制系统热交换器33和压缩机/电机热交换器34)热量聚合一同加热冷却液,因电池热交换器32被加热,温度快速上升至最适宜工作温度,保证其在低温外部环境下获得最佳充放电性能。因其加热热源来自于热泵空调系统和其它外部热源工作时产生的废热,其加热能效也比单纯采用PTC等电热方式要高得多。
而图9所示实施例为温度为极端寒冷条件下(如冷却液温度T2<-20℃)的工作模式,可以手动或自动开启PTC以帮助加速升温。本发明较佳实施例的设计只在冷却液温度极低(例如低于-20℃)条件下的启动之初,或用户需要加速升温以快速加热电池包的短暂时间段内时,可手动或自动开启以执行图9所示策略进行加速升温,开启PTC加热,并仅在完成一次紧急升温使得二次侧的冷却液被加热至稍高于本策略所定义的设定温度值(如28℃)后,即可关闭PTC,PTC不需要持续性工作。
较佳实施例中,在空调开机后,或正常工作中,所述热管理控制器读取用户事先设定的室内目标温度T_r,当室外温度T_a低于T_r时,即进入制热工作模式。在制热工作启动后,如果所述热管理控制器侦测到室外温度T_a低于0度,并且,室外换热器13表面温度T_s低于所设定的除霜条件温度(比如T_s<-3℃),所述热管理控制器依此判断并选用相应的控制策略,即制热+自动除霜模式。具体地分成三个阶段:
第一阶段,利用本发明较佳实施例中热泵空调制热和外部热源或者以及PTC加热(T_a<-20℃自动开启PTC,或随时手动开启)对第二液体回路中的冷却液进行加热,其工作方式与前述图8和图9所示实施例一样开始制热蓄热。因第二液体回路冷却液温度升高,在所述储液罐及整个第二液体回路中蓄储了一定的热量,该热量大致为所有冷却液的比热容乘以重量和所需温升。该蓄热过程是为融霜的准备工作,在此过程中制热工作并未停止,唯因蓄热支路接入而吸收板式第一换热器2的余热量而使制冷剂焓值更低,使室内换热器4出口温度稍有下降,但该过冷温度的变化将被热管理控制器的温度传感器24(感知温度T1)所及时感知并通过加大压缩机转速或调整第二电子膨胀阀5(Vf)开度而得到快速闭环修正,所以并不会造成影响。
第二阶段,在蓄热温度到达设定除霜温度(比如28℃)后满足除霜的温度条件时,开始计时(比如40分钟)并保温,保温方式如图10所示即控制冷却液不再经板式第一换热器2主动加热,并停止PTC主动加热(如有开)。待温度降低至低于除霜温度下限值后再回到前述加热阶段(即如图8的工作模式),可以重复加热-保温-加热过程,以维持电池包换热器中冷却液的温度。因为在每一次除霜后,并不是立即就会结霜至影响室外蒸发器运作,使得室外换热器都可正常工作一段时间才会再次结霜。所以经过蓄热后保 温并延时设定的时间后(比如设定为40分钟),再进行除霜。本发明较佳实施例的热泵空调装置在汽车第一次启动时并不需延时,在符合除霜温度条件时可以经过蓄热后立即执行除霜,以融化室外换热器13可能存在的冰霜。
第三阶段,除霜,如图11所示,经过上述蓄热保温准备后冷却液温度上升至设定值(比如28℃),此时所述热管理控制器控制阀组使高温冷却液流向室外换热器13去进行融霜。因为液体温度较高,室外换热器13被加热升温而融化表面凝结的霜或冰。为了让换热器表面温度快速上升,除霜过程中须关闭换热器所附风扇19,待融霜完成后,霜化成液体水流走后再开启该第一风扇19吹干室外换热器表面水份。
除霜时,冷却液经过室外换热器13后再流经第二换热器6的二次侧,余热有利于制冷剂蒸发吸收热量,制冷剂蒸汽温度也将较高(压焓图中点1点2右移),压缩后焓值更高,同样压缩做功得到更大的制热量,提高了制热效率。同时,在蓄热-除霜过程中,制热过程是不需要停止,避免了除霜过程中室内温度的波动,提高了车内驾乘环境舒适性。
除霜完成后,控制器再根据具体的冷却液温度选择相对应的控制策略控制程序。
本发明所述热泵空调装置较佳实施例中,如图12所示的,在车辆启动后,用户可能并没有开空调的需求。此时假定车内环境温度适宜,可知电池也不需要升温而仅需要进行常规散热。所述热管理控制器根据该条件选择相应的控制程序:此时压缩机1不需启动,第二液体回路的路径如图12所示,电池热交换器32与电机驱动、电源管理、驾驶控制系统热交换器、压缩机、主电机等外部发热源(电机驱动、电源转换器以及驾驶控制系统热交换器33和压缩机/电机热交换器34)冷却回路并联(因在此温度下的电池包无需额外加热),被相应泵推送经过第一换热器2的二次侧(因本实施例中制冷剂回路并未工作,经不经过无影响),然后过室外热交换器13,利用第一风扇19强制室外空气带走热量完成散热,第二液体回路上的液体温度下降后返回储液罐进入抵近的水泵入水口,这样就可以形成周流循环。由此可以看出,该实施例模式中无需热泵制冷或制热,仅第二液体回路的液体循环帮助外部热源与电池包散热即可,其耗电最小。且电池热交换器32与电机驱动、电源管理、驾驶控制系统热交换器、压缩机、主电机等外部发热源 (电机驱动、电源转换器以及驾驶控制系统热交换器33和压缩机/电机热交换器34)的热量是借由统一的室外热交换器13散热的,无需分别设置,节省了装置的空间和成本。
本发明所述热泵空调装置的较佳实施例中,如图13所示的,低温充电或低温待机时(比如室外环境温度T_a<-5℃),充电或待机时应保证电池包温度处于合适水平,所述热管理控制器根据工作需求和温度条件选择相应的控制程序:因考虑到气温较低,动力电池需要加热回温才能获得最大充放电容量和安全性,故将电池热交换器32与电机驱动、电源管理、驾驶控制系统热交换器、压缩机、主电机等外部发热源(电机驱动、电源转换器以及驾驶控制系统热交换器33和压缩机/电机热交换器34)热交换器回路串联,由相应的泵推动冷却液经PTC和外部热源(电机驱动、电源转换器以及驾驶控制系统热交换器33和压缩机/电机热交换器34)加热后再入电池热交换器32以加热,再经过室外换热器13和板式第二换热器6后回到储液罐内的抵近设置的水泵入水口。
因为处于充电或热待机状态,车辆并未行驶,压缩机也处于关闭状态,此时外部热源产热可能并不足以维持温度,必要时控制器可以启用PTC进行加热补充,并调整PTC的供电电压使冷却液维持在设定的待机温度(如10℃)附近。为减少不必要的热量损失,所述第一风扇19内定关闭。
因大电流充电时,电池及相关的充电控制电路有热量产生,冷却液温度可能上升至超出设定高温值(比如50度),此时所述热管理控制器开启第一风扇19对外散热直至低于设定安全值后再关闭风扇。该状态需要液体循环泵运转以推动冷却液不断循环,因压缩机1处于关闭状态,冷却液路径是否经过室外换热器13或板式第二换热器6并无影响,如图13所示。
本发明所述的热泵空调装置及系统中,其制冷与制热工作模式不再使用传统热泵空调的四通换向阀进行切换,而采用相对独立设置的制冷剂回路和第二液体回路,在所述制冷剂回路上设置所述室内换热器,在所述第二液体回路上设置所述室外换热器,并在两个回路之间设置至少一个热交换器进行相互之间的热交换,简化了制冷剂流动路径并将制冷剂的切换动作,在进一步的实施例中,统一通过第二热交换器6和第一热交换器2耦合传递到第二液冷回路,并与第二液冷回路中的电池热交换器32与电机驱动、电源管 理、驾驶控制系统热交换器、压缩机、主电机等外部发热源(电机驱动、电源转换器以及驾驶控制系统热交换器33和压缩机/电机热交换器34)的热量进行聚合处理,再根据需要调节控制其路径去作出相应处理,以达到统一热管理(包括但不限于制冷,制热,制热+蓄热,制热+融霜,保温,散热等)的目的。
本发明较佳实施例中,建立了第二液冷回路与制冷剂回路之间的耦合联系,并使其有条件按照热管理的意图进行相应的操作。冬天需要制热,尽最大可能回收第二液冷回路中电池热交换器32与电机驱动、电源管理、驾驶控制系统热交换器、压缩机、主电机等外部发热源(电机驱动、电源转换器以及驾驶控制系统热交换器33和压缩机/电机热交换器34)的热量至制冷剂回路用于提高制热取暖的效率。而回收的方法和途径又根据第二液冷回路中冷却液的不同温度而采用不同的控制策略,如此区分的目的在于实现热回收且得到最高的回收效率。
热量通过制冷剂回路的第二热交换器6(制热时的蒸发器)吸收,而根据冷却液温度与室外空气温度对比,控制器又区分出如图6和图7所示的两种不同的控制策略,都是为了尽可能减少不必要的热量损失而尽可能提高热回收率。
当冷却液温度超高(比如T2>50℃),同样适用图7所示的控制策略,冷却液将送室外换热器13进行散热,再经制冷剂回路的第二热交换器6(制热时的蒸发器)吸收余热,这样既尽可能回收热量又有效控制冷却液温度处于合理区间,以保证电池包及所有车辆的发热部件温度处于正常合理范围。
所述第二液体回路中冷却液温度T2较低时(比如T2<0℃),所述热管理控制器依此判断适用如图8和图9的控制策略,因此时温度较低,电池热交换器32和外部发热源(电机驱动、电源转换器以及驾驶控制系统热交换器33和压缩机/电机热交换器34)需要依靠热泵空调的热量来由第一换热器2来加热(图8),而当冷却液温度极低(如低于-20℃)条件下的启动之初,或用户需要加速升温以除霜除冰和加热电池包时,由热管理控制器控制执行如图9的策略,开启PTC加热,在完成第一次除霜和电池包加热工作后关闭。温度回升后将转到其它控制程序。
在制热工作启动后,如果所述热管理控制器侦测到室外温度T_a低于0度,并且,室 外换热器13表面温度T_s低于所设定的除霜条件温度(比如T_s<-3℃),控制器依此条件判断适用制热+自动除霜模式。在该控制的实施例中,分蓄热(工作方式与图8和图9相同),延时保温,融霜(图11)三个阶段。依靠热泵制热的余热储蓄在冷却液中,并使加热过的冷却液流过室外换热器13以达到除霜的目的。待下次再达到需要除霜的温度后再次重复以上过程。在本发明较佳实施例中,除霜与制热过程可同时进行,室内温度不因除霜而波动,舒适性会更高。
本发明较佳实施例中在低温充电或低温待机或不开空调行驶时,制冷剂回路不工作因而压缩机不需启动,仅靠第二液体回路也可以单独完成散热和加热保温工作。由此可见本发明热泵空调装置的设计灵活性,非常突出。
以下将以一个具体实施例如图14所示,结合图3所示的压焓图,说明各个工作状态的工作过程:
如图1和图14所示的,本发明一种应用于电动汽车的集成热管理系统较佳实施例中,其包括一系统主机41和附属部件及其连接接头和管道。对其工作原理和过程具体分析如下:
A1、在本发明所述热泵空调打开后,所述热管理控制器获取用户事先设定的室内目标温度T_r,当室外环境温度T_a高于T_r时,即进入制冷工作模式。在制冷模式状态下,读取设置于第二液体回路上的液体温度传感器26的冷却液温度T2,当T2<55℃,控制器判断适用制冷的A1控制策略。
为方便说明,以下结合图15来分析热管理过程,用实线箭头标示出制冷剂工作循环路径,以点划线箭头和虚点线箭头示出第二液体回路,其中虚点线箭头为电池包支路。
所述热管理控制器按以下步骤控制制冷剂回路:
A1-1:第三旁路阀14设置在与第一板式热交换器2的一次侧及第一电子膨胀阀3连接起来的管路两端,用于接通时旁路上述管路,该第三旁路阀14断开;第四旁路阀7接通,所述第四旁路阀7设置连接在所述第二板式热交换器6的一次侧及其第二电子膨胀阀5所连接管路的两端,用于接通时旁路该第二热交换器的一次侧管路,所述制冷剂回路中的制冷剂蒸汽将通过第一换热器2的一次侧,并跨越第二换热器6和第二电子膨胀阀5的管 路。
A1-2:所述第一电子膨胀阀3调到开度最大复位,并关闭PTC。
A1-3:压缩机1开启工作,建立循环。
A1-4:待若干秒压缩机1完成启动后,所述第一电子膨胀阀3调到工作初始开度(比如30%)。
A1-5:待若干秒后,所述热管理控制器根据蒸发器出口温度传感器24(温度T1)和室内换热器出风口温度传感器23(温度T_room)运算并闭环控制所述第一电子膨胀阀3的开度。
A1-6:所述热管理控制器根据蒸发器出口温度传感器24(温度T1)和室内换热器出风口温度传感器23(T_room)运算并调节压缩机使其处于最经济节能状态。
所述热管理控制器按以下步骤控制第二液体回路:
A1-7:第五旁路阀28和第六旁路阀29采用电磁阀,打开(即导通),所述电池热交换器32和外部发热源(电机驱动、电源转换器以及驾驶控制系统热交换器33和压缩机/电机热交换器34)形成并联关系。流经第一换热器2的二次侧吸收聚合制冷剂汽热量。
A1-8:第二液体回路中的第一三通阀10(Va)切向2-1联通3关闭(以下Va=2表示,该表示方式方便工控编程时作为指令进行使用),控制冷却液流向室外热交换器13进行散热。此时第一旁路阀9断开。
A1-9:所述第二液体回路中的第二旁路阀12接通(以下Vd=1表示),冷却液被旁路跨越第二换热器6的二次侧,而直接流回储液罐16。
A1-10:第一泵22、第三泵27都开启(以下Pump1=1,Pump3=1表示),第二泵15的开或关无影响。
A1-11:所述热管理控制器根据冷却液温度控制室外换热器13所附第一风扇19的转速,使其在温度满足要求的前提下转速和噪音最低。
如图16所示的A2控制模式实施例中:
A2、在热泵空调打开后,所述热管理控制器取用户设定的室内目标温度T_r,当室外环境温度T_a高于T_r,即进入制冷工作模式。制冷模式状态下,读取设置于第二液体 回路上的液体温度传感器26的冷却液温度T2,当T2>55℃,控制器判断适用A2控制策略:为方便说明,以下结合图16来分析热管理过程,用实线箭头标示出制冷剂工作循环路径,以点划线箭头和虚点线示出第二液体回路,其中虚点线箭头为电池包支路。
所述热管理控制器按以下步骤控制制冷剂回路:
A2-1:第三旁路阀14断开,第四旁路阀7断开,制冷剂蒸汽将通过第一换热器2的一次侧,也通过第二换热器6一次侧和第二电子膨胀阀5的管路。A2-2:所述第二电子膨胀阀5调到最大开度(或旁通模式),所述第一电子膨胀阀3调到开度最大复位。
A2-3:所述压缩机1开启工作,建立循环,并关闭PTC 18。
A2-4:待若干秒压缩机1完成启动后,所述第一电子膨胀阀3调到工作初始开度(比如30%)。
A2-5:待若干秒后,所述热管理控制器根据蒸发器出口温度传感器24感知温度T1和室内换热器出风口温度传感器23感知温度T_room,然后运算并闭环控制第一电子膨胀阀3开度。
A2-6:所述热管理控制器根据蒸发器出口温度传感器24感知的温度T1和室内换热器出风口温度传感器23感知的温度T_room运算并调节压缩机使其处于最经济节能状态。
所述热管理控制器按以下步骤控制所述第二液体回路:
A2-7:将第五旁路阀28和第六旁路阀29即相应的电磁阀打开,电池热交换器32和外部发热源(电机驱动、电源转换器以及驾驶控制系统热交换器33和压缩机/电机热交换器34)并联管路连接,所述第二液体回路中的冷却液流经第一换热器2吸收聚合制冷剂汽热量。
A2-8:所述第一三通阀10(Va)切向2-1联通保持3断开(以下Va=2表示),控制冷却液流向室外热交换器13进行散热。
A2-9:所述第二旁路阀12断开(以下Vd=0表示),冷却液即进入第二换热器6的二次侧与一次侧的制冷剂进行热交换,这样可以进一步降温。
A2-10:第一泵22、第三泵27都受控开启(以下Pump1=1,Pump3=1表示),第二泵15开或关无影响。
A2-11:所述热管理控制器根据冷却液温度控制室外换热器13所附第一风扇19的转速,使其在温度满足要求的前提下转速和噪音最低。
如图17所示是本发明热泵空调较佳实施例中的B0具体控制策略:
B0、在低温充电或低温待机时(比如室外环境温度T_a<-5℃),充电或待机都应保证电池包的温度处于合适水平,所述热管理控制器根据工作需求和温度条件选择B0控制策略:因考虑到气温度较低,动力电池需要加热回温才能获得最大充放电容量和安全性,故将电池热交换器32与电机驱动、电源管理、驾驶控制系统热交换器、压缩机、主电机等外部发热源(电机驱动、电源转换器以及驾驶控制系统热交换器33和压缩机/电机热交换器34)热交换器回路进行串联连通,因为处于充电或热待机状态时,车辆并未行驶,因此压缩机也处于关闭状态,外部热源产热可能并不足以维持电池包温度,所述热管理控制器可以根据需要启用PTC 18加热,并调整PTC 18的供电电压使冷却液维持在设定的待机温度(如10℃)附近。
为减少不必要的热量损失,第一风扇19内定关闭。因大电流充电时,电池及相关的充电控制电路也会有热量产生,冷却液温度T2可能上升至超出设定高温值(比如45度),此时所述热管理控制器会控制开启第一风扇19对外散热直至冷却液温度T2低于设定值后再关闭该风扇。该状态需要液体循环泵运转以推动冷却液不断循环,因压缩机1处于关闭状态,冷却液路径是否经过室外换热器13或板式换热器6并无影响,如图16所示,为方便说明,以下分析热管理控制过程,以点划线箭头示出第二液体回路的循环路径。
所述热管理控制器按以下步骤控制制冷剂回路的循环:
B0-1:压缩机关闭。所述制冷剂回路停止工作。
所述热管理控制器按以下步骤控制所述第二液体回路的工作流程:
B0-2:将第五旁路阀28和第六旁路阀29即电磁阀进行关闭,所述电池热交换器32和外部发热源(电机驱动、电源转换器以及驾驶控制系统热交换器33和压缩机/电机热交换器34)液体回路进行串联连通。
B0-3:第一旁路阀9接通,这样冷却液就可以跨越所述第一换热器2的二次侧,而所述第二旁路阀12断开,这样冷却液就可以通过所述第二热交换器6的二次侧。(由于制 冷剂回路没有工作,第一旁路阀9和第二旁路阀12开或不开无影响)
B0-4:所述第一三通阀10(Va)切向2-1联通(以下Va=2表示),控制冷却液流向室外热交换器13。
B0-6:第一泵22、第三泵27都开启(以下Pump1=1,Pump3=1表示),第二泵15开或关无影响。
B0-7:所述热管理控制器根据冷却液温度控制室外换热器13所附第一风扇19的转速,使其在温度满足要求的前提下转速和噪音最低。
B0-8:所述热管理控制器根据冷却液温度T2来控制PTC 18的加热,使冷却液温度T2维持在设定的待机温度(如10℃)附近。
请参见图18所示的,本发明热管理系统的B1控制策略如下:
B1、使用本发明热泵空调的车辆启动、开机后,但可能用户并没有开空调的需求。此时假定车内环境温度适宜(比如T_a<28℃),可知电池也不需要升温仅需要进行常规散热。所述热管理控制器根据该条件选择B1控制策略:所述压缩机1不需启动,所述第二液体回路的工作路径如图18所示,电池热交换器32与电机驱动、电源管理、驾驶控制系统热交换器、压缩机、主电机等外部发热源(电机驱动、电源转换器以及驾驶控制系统热交换器33和压缩机/电机热交换器34)冷却回路并联连通(因在此温度下电池包无需额外加热),被第一泵22推送经过第一换热器2的二次侧(因制冷剂回路并未工作,经不经过无影响),然后过室外热交换器13,利用其第一风扇19强制室外空气带走热量完成散热,所述第二液体回路上的液体温度下降后返回储液罐进入第一泵的入水口,形成周流循环。可以看出,该模式无需热泵制冷或制热,仅第二液体回路的液体循环帮助外部热源与电池包散热即可,其实现的耗电最小。
此时所述热管理控制器开启第一风扇19对外散热并调节该第一风扇19的转速以使冷却液温度大约或等于设定值(如T2<45℃)。该状态需要液体循环泵运转以推动冷却液不断循环,因所述压缩机1处于关闭状态,冷却液路径是否经过第一换热器2或第二板式换热器6并无影响,如图18所示:为方便说明,以下分析热管理过程,以点划线箭头和虚点线箭头示出第二液体回路的循环,其中虚点线箭头的支路为电池包液体支路。
所述热管理控制器按以下步骤控制制冷剂回路:
B1-1:压缩机关闭。所述制冷剂回路停止工作。
所述热管理控制器按以下步骤控制第二液体回路:
B1-2:所述第五旁路阀28和所述第六旁路阀29即相应电磁阀开启,电池热交换器32和外部发热源(电机驱动、电源转换器以及驾驶控制系统热交换器33和压缩机/电机热交换器34)并联连通。
B1-3:所述第一旁路阀9、所述第二旁路阀12接通,冷却液跨越第一换热器2和第二换热器6(由于制冷剂回路不工作,所述第一旁路阀9、第二旁路阀12开或不开无影响)。
B1-4:所述第一三通阀10(Va)切向2-1联通(以下Va=2表示),控制冷却液流向室外热交换器13。
B1-6:第一泵22、第三泵27都开启(以下Pump1=1,Pump3=1表示),第二泵15开或关无影响。
B1-7:所述热管理控制器根据冷却液温度控制室外换热器13所附第一风扇19的转速,使其在温度满足要求的前提下转速和噪音最低。
如图19所示的为本发明所述热泵空调装置及系统的C控制策略:
C、制热工作循环:
在本发明较佳实施例的热泵空调打开后,所述热管理控制器读取用户事先设定的室内目标温度T_r(比如25℃),当T_r高于室外环境温度T_a,即进入制热工作模式。
在此模式下工作过程为:压缩机1将制冷剂从常温蒸汽态(压焓图点1)压缩成为高温高压的汽态(压焓图点2),通过(或利用旁路阀跨过)第一热交换器2,第一电子膨胀阀3开到最大开度或旁通模式,进入室内热交换器4并在第二风机20作用下与室内空气发生热交换,室内空气被加热用于室内取暖,制冷剂温度下降冷凝成为高压中温液态(压焓图点3)。
制冷剂经过热交换器4冷凝后再经过第二电子膨胀阀5节流降压,成为湿蒸汽或汽液混合物(压焓图点4),送入第二热交换器6的一次侧吸收第二液体回路内液体的热量,制冷剂因吸收热量温度上升焓增加,蒸发成为蒸气(压焓图点1)并经气液分离器8返回 压缩机1吸气口。在此循环中,压焓图点2到点3是室内热交换器4的排出热的制热过程,其单位制热量q0=h2-h3,压缩机单位理论做功ω0=h2-h1。
C4控制策略:水温正常。在制热状态下,所述热管理控制器读取设置于所述第二液体回路上的液体温度传感器26的冷却液温度T2,当T2温度正常(比如0>T2<50℃)且T2高于室外环境温度T_a,所述热管理控制器依此判断适用C4控制策略,该策略的设计出发点为尽最大可能将电池热交换器32和外部发热源(电机驱动、电源转换器以及驾驶控制系统热交换器33和压缩机/电机热交换器34)的热量回收,用于提高热泵空调制热效率。所以第二液体回路将绕过室外换热器13而直接由第二热交换器6(蒸发器)回收热量。
因所述冷却液携带电池热交换器32和外部发热源(电机驱动、电源转换器以及驾驶控制系统热交换器33和压缩机/电机热交换器34)的废热能量温度高于室外环境空气温度T_a,故能够使制热回路更高效工作,相当于压焓图点1右移,压缩机做同样的压缩功,但制冷剂焓值也更高(h2同步右移),又因为单位制热量q0=h2-h3,h2更大,制热量也将越大,制热效率更高。
如图19所示,电池热交换器32与电机驱动、电源管理、驾驶控制系统热交换器、压缩机、主电机等外部发热源(电机驱动、电源转换器以及驾驶控制系统热交换器33和压缩机/电机热交换器34)热交换器回路并联连通(因在此温度下电池包无需额外关注并加热,所以并联设置),所述冷却液被第一泵推送,在阀组的切换下跨越而跳过第一热交换器2及室外热交换器13,送入到第二热交换器6的二次侧与已蒸发的制冷剂进行热交换。
因所述第二换热器6的一次侧流动的是较低温度制冷剂,经过第二热交换器6的热交换后能够降低二次侧冷却液的温度(热量被吸收),并促进一次侧制冷剂的完全蒸发,避免压缩机吸入液态制冷剂而发生液击损坏故障。冷却液经第二热交换器6(Chiller)冷却后返回储液罐16进入第一泵的入水口,从而形成周流循环。为方便说明,以下分析热管理控制过程,以虚线箭头示出第二液体回路的循环支路,实线箭头示出制冷剂循环路径。
所述热管理控制器按以下步骤控制制冷剂回路:
C4-1:所述第三旁路阀14接通,制冷剂蒸汽将跨越所述第一换热器2的一次侧和第一电子膨胀阀3的通路。
C4-2:第四旁路阀7断开,制冷剂通过第二换热器6和第二电子膨胀阀5的通路。
C4-3:所述第二电子膨胀阀5调到开度最大复位。
C4-4:所述压缩机1开启工作,建立循环,关闭PTC 18。
C4-5:待若干秒压缩机1完成启动后,所述第二电子膨胀阀5调到工作初始开度(比如30%)。
C4-6:待若干秒后,所述热管理控制器根据蒸发器出口温度传感器24感知的温度T1和室内换热器出风口温度传感器23感知的温度T_room,进行策略运算并闭环控制所述第二电子膨胀阀5的开度。
C4-7:所述热管理控制器根据蒸发器出口的温度传感器24感知的温度T1和室内换热器出风口温度传感器23感知的温度T_room,进行策略运算并调节压缩机使其处于最经济节能状态。
所述热管理控制器按以下步骤控制第二液体回路:
C4-8:所述第五旁路阀28和所述第六旁路阀29即对应的电磁阀都接通,电池热交换器32和外部发热源(电机驱动、电源转换器以及驾驶控制系统热交换器33和压缩机/电机热交换器34)液体回路并联连通。
C4-9:所述第一旁路阀9接通,冷却液跨越第一换热器2的二次侧,第二旁路阀12断开,冷却液通过第二热交换器6的二次侧,并回收热量到制冷剂回路。
C4-10:所述第一三通阀10(Va)切向3-1联通(以下Va=3表示),控制冷却液绕过室外热交换器13,避免热量散发。所述第二三通阀11切向2-1导通。
C4-11:第一泵22、第三泵27都开启(以下Pump1=1,Pump3=1表示),第二泵15的开或关无影响。
如图20所示是本发明所述热泵空调装置执行C3控制策略的实施例步骤:
C3、在制热状态下,另一种情况是,第二液体回路上的液体温度传感器26的冷却液 温度T2正常,但低于室外环境温度T_a(比如0℃<T2<50℃,T2<T_a),或冷却液温度超高(比如T2>50℃),所述热管理控制器依此判断适用C3的控制策略。该策略的设计出发点是除了上述的废热回收,用于提高热泵空调制热效率外,还考虑到室外环境温度T_a比冷却液还要高,所以第二液体回路液体可在阀组件切换下经过室外换热器13吸收室外环境空气热量,再由第二热交换器6内的制冷剂吸收其热量。
因所述电池热交换器32和外部发热源(电机驱动、电源转换器以及驾驶控制系统热交换器33和压缩机/电机热交换器34)的废热能量并吸收了室外环境空气的热量,故能够在使制热回路温度尽可能上升至接近室外环境温度T_a,使热泵制热效率更高。
另外,当冷却液温度超高(比如T2>50℃)同样适用本控制策略,第二液体回路液体可在阀组件切换下经过室外换热器13向室外环境空气散热降温,再由第二热交换器6内的制冷剂吸收其余热,既抑制了冷却液温度不至于再升高,又尽可能回收了其热量用于提高热泵制热效率。
如图20所示的,因在制热状态下,且冷却液温度T2比室外环境温度T_a还要低,故电池热交换器32与电机驱动、电源管理、驾驶控制系统热交换器、压缩机、主电机等外部发热源(电机驱动、电源转换器以及驾驶控制系统热交换器33和压缩机/电机热交换器34)热交换器回路串联连通,冷却液被第一泵及第三泵推送,在阀组件的切换下跨过第一热交换器2的二次侧,经室外热交换器13吸收(或排放)热能量,然后送入第二热交换器6的二次侧与其一次侧制冷剂进行热交换。
因第二换热器6的一次侧流动的是较低温度汽体,经过第二热交换器6后冷却液的温度将降低,制冷剂吸收热量而蒸发,有利于避免压缩机吸入液态制冷剂而发生液击损坏故障。冷却液经第二热交换器6吸热后返回储液罐进入第一泵的入水口,从而形成周流循环。为方便说明,以下分析热管理控制过程,以虚线箭头示出第二液体回路,实线箭头示出制冷剂循环路径。
所述热管理控制器按以下步骤控制制冷剂回路:
C3-1:所述第三旁路阀14接通,制冷剂蒸汽将跨越所述第一换热器2的一次侧和第一电子膨胀阀3的通路。
C3-2:所述第四旁路阀7断开,制冷剂通过第二换热器6的一次侧和第二电子膨胀阀5的通路。
C3-3:所述第二电子膨胀阀5调到开度最大复位。
C3-4:所述压缩机1开启工作,建立循环,关闭PTC 18。
C3-5:待若干秒压缩机1完成启动后,第二电子膨胀阀5调到工作初始开度(比如30%)。
C3-6:待若干秒后,所述热管理控制器根据蒸发器出口的温度传感器24所感知的温度T1和室内换热器出风口温度传感器23所感知的温度T_room,进行运算并闭环控制第二电子膨胀阀5的开度。
C3-7:所述热管理控制器根据蒸发器出口的温度传感器24所感知的温度T1和室内换热器出风口温度传感器23所感知的温度T_room,进行运算并调节压缩机使其处于最经济节能状态。
所述热管理控制器按以下步骤控制第二液体回路:
C3-8:控制所述第五旁路阀28和所述第六旁路阀29即电磁阀都关闭,使得电池热交换器32和外部发热源(电机驱动、电源转换器以及驾驶控制系统热交换器33和压缩机/电机热交换器34)液体回路串联连通。
C3-9:所述第一旁路阀9接通,使得冷却液跨越第一换热器2的二次侧;第二旁路阀12断开,冷却液通过第二热交换器6的二次侧,从而进行热交换,回收热量到制冷剂回路。
C3-10:所述第一三通阀10(Va)切向2-1联通(以下Va=2表示),控制冷却液通过室外热交换器13,与空气热交换。
C3-11:第一泵22、第三泵27都开启(以下Pump1=1,Pump3=1表示),第二泵15的开或关无影响。
如图21所示,是本发明所述热泵空调装置采用C2和C1的控制策略下的处理过程:
C2&C1、在制热状态下,所述第二液体回路中的液体温度传感器26监测到冷却液温度T2较低时(比如T2<0℃),所述热管理控制器依此判断适用C2和C1如图21所示的控 制策略。
考虑到冷却液温度较低,动力电池需要外部热量加热回温才能获得最大充放电容量和安全性,故将电池热交换器32与电机驱动、电源管理、驾驶控制系统热交换器、压缩机、主电机等外部发热源(电机驱动、电源转换器以及驾驶控制系统热交换器33和压缩机/电机热交换器34)热交换器回路串联连通连接,冷却液先经外部热源(电机驱动、电源转换器以及驾驶控制系统热交换器33和压缩机/电机热交换器34)加热再流入电池热交换器32以加热。
但仅利用上述外部发热源加热是不够和来不及的,许多情况下不能够很好地满足电池包加热升温需求。因为电动汽车发热部件大多需要在行驶过程中才会逐步累积较多热量而产生升温作用,况且外部发热源(电机驱动、电源转换器以及驾驶控制系统热交换器33和压缩机/电机热交换器34)的发热功率不是一个恒定值。利用热泵空调制热来加热第二液体回路成为最可行的方式。
再者,考虑到现今信息技术在车辆的应用如火如荼,出门之前可先通过远程遥控指令让汽车空调和坐椅提前预热或自动到达指定位置等候将成为常规应用,新技术的应用能让用户避免经受上车后一段时间内严寒酷暑,大大改善汽车的使用舒适性。
同理,借助遥控或定时开启空调预热的同时,也可加热电池包。当然,在恶劣冰雪天气条件下需要紧急升温使用时,可以使用PTC 18串联在第二液体回路中来快速加热除霜且预热电池包,这也是一个用户个性化的选择需求。
值得关注的是,PTC 18的耗能较大,能效系数(COP)不高,只在冷却液温度极低(如低于-20℃)条件下且作为启动之初,或用户需要加速升温以除霜除冰和加热电池包时,由所述热管理控制器控制执行C1策略,才开启PTC 18的加热,在完成第一次除霜和电池包加热工作后关闭。PTC的应用和工作控制方式也应作为一个可能的较优实施选项。
如图21所示,此时热泵空调处于主动制热过程中,压缩机1处于压缩制热工作中,电池热交换器32与电机驱动、电源管理、驾驶控制系统热交换器、压缩机、主电机等外部发热源(电机驱动、电源转换器以及驾驶控制系统热交换器33和压缩机/电机热交换 器34)热交换器回路串联连通连接,第二液体回路分成两路循环,与热源串联回路的冷却液被第一泵22(Pump1)和第三泵27(Pump3)推送流动(虚线箭头支路),在阀组的切换下进入第一热交换器2的二次侧,从压缩机1输出的高温高压制冷剂蒸汽也送往第一热交换器2一次侧,二者在所述第一热交换器2中进行热交换。
二次侧的冷却液被加热而升温,一次侧的制冷剂蒸汽被冷却而温度稍有下降,通过室内换热器4与室内空气热交换而进一步冷凝成高压中温液体,再经第二电子膨胀阀5节流降压,因压力骤降,至板式第二换热器6中吸收二次侧冷却液的热量而蒸发成气态,再经汽液分离器回到压缩机1吸气口,周而复始。
经过若干循环后,所述第二热交换器6的二次侧冷却液被加热至稍高于本策略所定义的设定温度值(如28℃),所述热管理控制器随后根据实际冷却液温度T2重新选择相应控制策略,此举出发点为,电池包温度被升高后不需要被继续加热,尽可能依赖外部发热源和电池包自发热效应来维持合理工作温度并提供给热泵热量回收。
在图21中所示另一虚点线箭头的液体支路中,由第二泵15(Pump2)推送液体经过室外热交换器13,与室外空气进行热交换后再送至第二热交换器6的二次侧与一次侧的制冷剂进行热交换(吸热),制冷剂吸收该支路热量蒸发,然后返回压缩机1吸气口形成闭环。
以下分析热管理控制过程(图21),以点划线和虚点线示出第二液体回路,实线箭头示出制冷剂循环路径。
所述热管理控制器按以下步骤控制制冷剂回路:
C2C1-1:第三旁路阀14断开,制冷剂蒸汽将经过第一换热器2的一次侧再通过第一电子膨胀阀3的通路。
C2C1-2:第四旁路阀7断开,制冷剂通过第二换热器6和第二电子膨胀阀5的通路。
C2C1-3:所述第一电子膨胀阀3调到最大开度或旁通模式,第二电子膨胀阀5调到开度最大复位。
C2C1-4:压缩机1开启工作,建立循环。关闭PTC 18。
C2C1-5:待若干秒压缩机1完成启动后,所述第二电子膨胀阀5调到工作初始开度 (比如30%)。
C2C1-6:待若干秒后,所述热管理控制器根据蒸发器出口温度传感器24感知的温度T1运算并闭环控制第二电子膨胀阀5开度,T1(24)越低第二电子膨胀阀5开度越小,反之亦反。防止制热过程中蒸发器蒸发不完全而发性液击故障(出口温度过低)。
C2C1-7:所述热管理控制器根据室内换热器出风口温度传感器23感知的温度T_room运算并调节压缩机使其处于最经济节能状态,T_room(23)高于设定基准室温T_r越多,通过压缩机变频控制使其转速越低,反之越高。
所述热管理控制器按以下步骤控制第二液体回路:
C2C1-8:所述第五旁路阀28和第六旁路阀29的对应电磁阀都断开,电池热交换器32和外部发热源(电机驱动、电源转换器以及驾驶控制系统热交换器33和压缩机/电机热交换器34)液体回路串联连通连接。
C2C1-9:所述第一旁路阀9断开,以使冷却液通过第一换热器2的二次侧。
C2C1-10:所述第一三通阀10(Va)切向3-1联通(以下Va=3表示),控制虚点线箭头支路冷却液跳过室外热交换器13。
C2C1-11:所述第二三通阀11(Vb)切向3-1联通(以下Va=3表示),控制虚点线支路冷却液跳过第二热交换器6直接回到储液罐16A。
C2C1-12:所述第二旁路阀12断开,控制点划线箭头支路的冷却液通过第二热交换器6。控制点划线箭头支路冷却液经过第二热交换器6与制冷剂进行热交换。然后再回到储液罐16B区中。
C2C1-13:第一泵22、第三泵27都开启(以下Pump1=1,Pump3=1表示),第二泵15也开启。冷却液分点划线箭头和虚点线箭头两路循环。
C1-14:如果车辆是第一次启动,且在温度极低的环境,冷却液温度极低(如低于-20℃),或用户需要加速升温以除霜除冰和加热电池包时,由所述热管理控制器控制执行C1策略,开启PTC 18加热,在完成第一次除霜和电池包加热工作后PTC 18关闭。
C2-15:PTC 18关闭。
参见附图21、图22和图23,是本发明热泵空调装置的C0控制策略处理步骤:
C0、空调开机后,或正常工作中,所述热管理控制器读取用户设定的室内目标温度T_r,当室外温度T_a低于T_r,即进入制热工作模式。在制热工作启动后,如果所述热管理控制器侦测到室外温度T_a低于0度,并且,室外换热器13表面温度T_s低于所设定的除霜条件温度(比如,T_s<-3℃),所述热管理控制器依此判断适用C0控制策略,即制热+自动除霜模式。
所述C0的控制策略,分成三个阶段:
第一阶段,利用热泵空调制热和外部热源以及PTC加热(T_a<-20℃自动开启PTC,或随时手动开启)第二液体回路中的冷却液,其工作方式与所述C2和C1策略一样开始制热蓄热,参照图21所示。因第二液体回路冷却液温度升高,蓄储了一定的热量,该热量大致为所有冷却液的比热容乘以重量和所需温升,而储液罐可以设置冷却液的容量(重量)。蓄热过程为融霜的准备工作,在此过程中制热工作并未停止,唯因蓄热支路接入而吸收板式第一换热器2的余热量而使制冷剂焓值更低,使室内换热器4出口温度稍有下降,但该过冷温度的变化将被所述热管理控制器的温度传感器23和24所感知的温度T1和T_room所及时感知并通过加大压缩机转速或调整第二电子膨胀阀5(Vf)的开度而得到快速闭环修正,所以并不会造成影响。
第二阶段,在蓄热温度到达设定除霜温度(比如28℃)后满足除霜的温度条件,开始计时(比如40分钟)并保温,保温方式如图22所示,即控制冷却液不再经板式第一换热器2主动加热,并停止PTC 18的主动加热(如有开)。待温度降低至低于除霜温度下限值后再回到前述加热阶段如图21所示,本阶段重复加热(图21)-保温(图22)-加热(图21)过程,以维持冷却液的温度在设定除霜温度(比如28℃)附近。
因为每一次除霜后,并不是立即就会结霜至影响室外蒸发器运作,都可正常工作一段时间才会再次结霜。所以经过蓄热后保温并延时设定的时间后(比如,设定为40分钟)再进行下一次除霜。但在汽车第一次启动并不需延时时,符合除霜温度条件并经过蓄热后可以立即执行除霜,以融化室外换热器13可能已存在的冰霜。
第三阶段,除霜过程如图23所示,经过上述蓄热保温准备后冷却液温度上升至设定值(比如28℃),此时所述热管理控制器控制阀组使高温冷却液流向室外换热器13去进 行融霜。因为液体温度较高,室外换热器13被加热升温而融化表面凝结的霜或冰。为了让换热器表面温度快速上升,除霜过程中关闭换热器所附第一风扇19,待融霜完成后,霜化成液体水流走后再开启风扇吹干换热器表面水份。
除霜时,冷却液经过室外换热器13后再流经第二换热器6的二次侧,余热有利于制冷剂蒸发吸收热量,制冷剂蒸汽温度也将较高,压焓图点1点2右移,压缩后焓值更高,同样压缩做功得到更大的制热量,提高了制热效率。同时,在蓄热-除霜过程中,制热过程是不需要停止的,避免了除霜过程中室内温度的波动,提高了车内驾乘环境舒适性。
除霜完成后,所述热管理控制器再根据具体的液体温度传感器26所感知的温度T2选择相对应的控制程序,直至再次满足自动除霜条件而触发C0控制程序。
具体地,
第一阶段,蓄热,与C2&C1工作策略一样,只是一边制热一边把冷却液加热升温到达设定除霜温度(比如28℃)。
第二阶段,延时保温,经过蓄热后保温并延时设定的时间(比如,设定为40分钟),在此期间保温方式如图22所示,与蓄热的差别是接通第一旁路阀9以控制冷却液不再经板式第一换热器2主动加热,并停止PTC 18的主动加热(如有开)。
第三阶段,制热同时使高温冷却液流向室外换热器13去进行融霜,控制器按以下步骤控制制冷剂回路(图23):
C0-1:第三旁路阀14断开,制冷剂蒸汽将经过第一换热器2的一次侧再通过第一电子膨胀阀3的通路。
C0-2:第四旁路阀7断开,制冷剂通过第二换热器6和第二电子膨胀阀5的通路。
C0-3:第一电子膨胀阀3调到最大开度或旁通模式,第二电子膨胀阀5调到开度最大复位。
C0-4:压缩机1开启工作,建立循环。
C0-5:待若干秒压缩机1完成启动后,第二电子膨胀阀5调到工作初始开度(比如30%)。
C0-6:待若干秒后,所述热管理控制器根据蒸发器出口的温度传感器24感知的温度 T1运算并闭环控制第二电子膨胀阀5开度,T1(24)越低第二电子膨胀阀5的开度越小,反之亦反。防止制热过程中蒸发器蒸发不完全仍有液态制冷剂(出口温度过低)。
C0-7:所述热管理控制器根据室内换热器出风口温度传感器23感知的温度T_room运算并调节压缩机使其处于最经济节能状态,T_room(23)高于设定基准室温T_r越多,通过压缩机变频控制使其转速越低,反之越高。
所述热管理控制器按以下步骤控制第二液体回路:
C0-8:所述第五旁路阀28和第六旁路阀29对应的电磁阀都断开,电池热交换器32和外部发热源(电机驱动、电源转换器以及驾驶控制系统热交换器33和压缩机/电机热交换器34)液体回路串联连通连接。
C0-9:所述第一旁路阀9断开,冷却液通过第一换热器2的二次侧。
C0-10:第一三通阀10(Va)切向2-1联通(以下Va=2表示),控制虚线箭头支路的冷却液通过室外热交换器13进行融霜(同时风扇19关闭)。
C0-11:第二旁路阀12断开,控制虚线箭头支路已蓄热的冷却液通过第二热交换器6。冷却液带着余温经过第二热交换器6与制冷剂进行热交换,以迫使制冷器完全蒸发且使蒸汽温度上升,更利于制热。然后再回到所述储液罐16的B区。
C0-13:第一泵22、第三泵27开启(以下Pump1=1,Pump3=1表示),第二泵15关闭。冷却液沿虚线箭头支路单路循环。
C0-14:如果车辆是第一次启动,且环境温度极低,则冷却液温度可能极低(如低于-20℃),或用户需要加速升温以除霜除冰和加热电池包时,由所述热管理控制器控制执行C1策略,开启PTC 18的加热动作,在完成第一次快速除霜和电池包加热工作后在关闭PTC 18。
以下对本发明所述热管理热泵空调装置、系统及实现方法的较佳实施例的各控制策略做图表整理:
Figure PCTCN2021104858-appb-000001
Figure PCTCN2021104858-appb-000002
制冷降温(设定室温T_r低于室外温度T_a)
正常 T2<55℃ A1 并联风冷散热
正常偏热 T2>55℃ A2 并联散热+Chiller主动冷却
不开空调(人为选择控制)
Figure PCTCN2021104858-appb-000003
需要说明的是,上述本发明较佳实施例中的描述,例如对温度的具体数值的使用仅为实施例,在实际的产品中可以根据不同地域、季节的不同或电池特性规格不同,做不同于上述实施例中具体温度值的改变或调整,对本领域技术人员来说应该是可以做出各种不同的改变或变形的。
本发明所述热管理方式的热泵空调装置、系统及实现方法较佳实施例中,主要是针对电动汽车的车载空调进行原理设计,并因为采用板式换热器都能精致的结构,可以将 管路进行一体化设置,从而形成体积较小车载空调装置。此外,在进行模块化设置的情况下,还可以将与电池包以及电机及其驱动部份、电源管理及自动驾驶控制单元等车辆原有工作部件的散热、保温(主要针对寒冷环境下的电池包)、废热利用等,形成方便插接的管路插头,从而可以形成匹配不同电动汽车的标准化模块元件,并配合设置在电路中的热管理控制器实现各种操控策略,从而形成智能化的电动汽车热管理系统,方便装配和拆换。
应当理解的是,对本领域普通技术人员来说,可以根据上述结构和原理说明加以改进或变换,而所有这些改进和变换都应属于本发明所附权利要求的保护范围。

Claims (22)

  1. 一种电动汽车集成热管理系统,其设置包括一压缩机,以及,一室内换热器和一室外换热器,其特征在于,包括相对独立设置的一制冷剂回路和一第二液体回路;
    在所述制冷剂回路中设置包括有通过管路连接的所述压缩机、所述室内换热器以及一第一热交换器的一次侧和一第二热交换器的一次侧,通过所述第一和/或第二热交换器与所述第二液体回路进行热交换;
    所述第一热交换器和所述第二热交换器分别设置在所述制冷剂回路中所述压缩机的下游和上游;
    在所述第二液体回路中设置包括有通过管路连接的所述室外热交换器和所述第一热交换器的二次侧,及所述第二热交换器的二次侧;
    在所述第二液体回路中还设置有用于连接电池热交换器的管路。
  2. 根据权利要求1所述的电动汽车集成热管理系统,其特征在于,所述第二液体回路中还设置有用于连接电机及电机驱动部分热交换器的管路。
  3. 根据权利要求2所述的电动汽车集成热管理系统,其特征在于,所述第二液体回路中还设置有用于连接电源管理及自动驾驶控制热交换器的管路。
  4. 根据权利要求3所述的电动汽车集成热管理系统,其特征在于,所述系统还设置采用模块化设置,并在第二液体回路中还设置有:第一管路接口和第二管路接口,用于与压缩机/电机的热交换器插接;第三管路接口和第四管路接口,用于与电机驱动、电源转换器及驾驶控制系统的热交换器插接;以及第五管路接口和第六管路接口,用于与电池部位的热交换器插接;所述第二管路接口与所述第三管路接口直接导通,所述第一管路接口连通所述第一泵,所述第六管路接口连通所述第一换热器的二次侧。
  5. 根据权利要求4所述的电动汽车集成热管理系统,其特征在于,所述第一至第六管路接口设置在所述模块化的系统上,并具有标准化的管路接口布置。
  6. 根据权利要求5所述的电动汽车集成热管理系统,其特征在于,在所述第二液体回路中还设置有:一第一泵,设置在所述第一热交换器的二次侧上游,用于驱动所述第二液体回路中的冷却液流动;在所述第一泵与所述第一热交换器的二次侧上游之间的管路上设置所述第一至第六管路接口。
  7. 根据权利要求6所述的电动汽车集成热管理系统,其特征在于,所述第五管路接口与一第五旁路阀导通,所述第五旁路阀用于受控旁路所述第一至第四管路接口。
  8. 根据权利要求7所述的电动汽车集成热管理系统,其特征在于,所述第四管路接口还与一第六旁路阀导通,所述第六旁路阀用于受控旁路所述第五至第六管路接口。
  9. 根据权利要求8所述的电动汽车集成热管理系统,其特征在于,在所述第四管路接口与所述第五管路接口之间还连接有一第二单向阀,用于防止冷却液从第五管路接口内部向第四管路接口内部及第六旁路阀反方向流动。
  10. 根据权利要求9所述的电动汽车集成热管理系统,其特征在于,所述第五旁路阀上游还设置有一第三单向阀,用于保证冷却液的单向流向。
  11. 根据权利要求10所述的电动汽车集成热管理系统,其特征在于,在所述第一管路接口的支路上还设置有一第三泵,用于驱动冷却液流出所述第一管路接口。
  12. 根据权利要求11所述的电动汽车集成热管理系统,其特征在于,还包括一热管理控制器,设置在所述电动汽车集成热管理系统的电路中,用于执行不同控制策略。
  13. 根据权利要求12所述的电动汽车集成热管理系统,其特征在于,与所述第一热交换器的二次侧并行设置有一第一旁路阀,用于受控形成旁路。
  14. 根据权利要求13所述的电动汽车集成热管理系统,其特征在于,与所述第二热交换器的二次侧并行设置有一第二旁路阀,用于受控形成旁路。
  15. 根据权利要求14所述的电动汽车集成热管理系统,其特征在于,与所述第一热交换器的一次侧下游连通设置有一第一电子膨胀阀,与该连通通路并行设置有一第三旁路阀,用于受控形成旁路。
  16. 根据权利要求15所述的电动汽车集成热管理系统,其特征在于,与所述第二热交换器的一次侧上游连通设置有一第二电子膨胀阀,与该连通通路并行设置有一第四旁路阀,用于受控形成旁路。
  17. 根据权利要求16所述的电动汽车集成热管理系统,其特征在于,所述第一热交换器的二次侧与所述第一旁路阀的下游共端连接一第一三通阀的1端,所述第一三通阀的2端连接所述室外换热器;所述第一三通阀的3端连接一第二三通阀的1端,所述第 二三通阀的2端与所述室外换热器的下游端共端设置,并连接到所述第二热交换器的二次侧;所述第二三通阀的3端设置与所述第一泵的入口抵近连通。
  18. 根据权利要求17所述的电动汽车集成热管理系统,其特征在于,在所述室外热交换器的上游端设置有一第二泵,用于驱动冷却液循环。
  19. 根据权利要求18所述的电动汽车集成热管理系统,其特征在于,在所述第一泵及所述第二泵的上游设置有一储液罐,所述储液罐设置采用A、B两个储液区,该两储液区在底部连通;并且,所述第一泵的入口与所述第二三通阀的3端在所述储液罐的A储液区内抵近并开放设置;所述第二泵的入口与所述第二换热器的下游端出液口在所述储液罐的B储液区内抵近并开放设置。
  20. 根据权利要求19所述的电动汽车集成热管理系统,其特征在于,在所述第一泵的下游与所述第一泵串联还设置有一PTC。
  21. 根据权利要求1至20任一所述的电动汽车集成热管理系统,其特征在于,所述第一热交换器以及所述第二热交换器采用板式热交换器。
  22. 一种如权利要求1至21任一所述电动汽车集成热管理系统的实现方法,其设置包括一热管理控制器,设置在所述电动汽车集成热管理系统的电路中,用于执行不同控制策略;并包括以下步骤:
    所述制冷剂回路中通过所述压缩机进行制冷剂压缩,并连通所述室内热交换器进行室内空气的热交换;
    所述第二液体回路中设置连通室外热交换器,与室外空气进行热交换;
    所述制冷剂回路与所述第二液体回路相对独立运行,所述第二液体回路可选择通过第一热交换器与所述室外热交换器作为制冷模式或选择通过第二热交换器与所述室外热交换器作为制热模式的热交换;
    在所述第二液体回路中还设置有用于连接电池热交换器的管路及接头。
PCT/CN2021/104858 2021-05-27 2021-07-07 一种电动汽车集成热管理系统及实现方法 WO2022246969A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110587471.7A CN113183715A (zh) 2021-05-27 2021-05-27 一种电动汽车集成热管理系统及实现方法
CN202110587471.7 2021-05-27

Publications (1)

Publication Number Publication Date
WO2022246969A1 true WO2022246969A1 (zh) 2022-12-01

Family

ID=76985516

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/104858 WO2022246969A1 (zh) 2021-05-27 2021-07-07 一种电动汽车集成热管理系统及实现方法

Country Status (3)

Country Link
CN (1) CN113183715A (zh)
TW (1) TWI787989B (zh)
WO (1) WO2022246969A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116619983A (zh) * 2023-07-19 2023-08-22 成都壹为新能源汽车有限公司 一种车辆一体化融合热管理系统及方法
CN117199631A (zh) * 2023-09-21 2023-12-08 无锡启乐智能装备有限公司 一种宽调节范围的直冷直热式电池包控温测试系统

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113997830A (zh) * 2021-12-17 2022-02-01 经纬恒润(天津)研究开发有限公司 一种新能源汽车以及热管理系统
CN114571945A (zh) * 2022-02-24 2022-06-03 智己汽车科技有限公司 一种电动汽车热管理回路系统及其控制方法
TWI831612B (zh) * 2023-02-14 2024-02-01 財團法人車輛研究測試中心 氫氣溫控系統、低溫儲貨裝置及低溫儲貨裝置的分區控溫方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011016070A1 (de) * 2011-04-05 2012-10-11 Daimler Ag Klimatisierungsanlage eines Kraftfahrzeugs
CN103017410A (zh) * 2013-01-22 2013-04-03 北京德能恒信科技有限公司 一种冷暖式热管热泵复合循环系统
CN108001153A (zh) * 2017-11-22 2018-05-08 珠海格力电器股份有限公司 电动汽车的热管理系统、控制方法及电动汽车
CN110271378A (zh) * 2018-03-13 2019-09-24 上海银轮热交换系统有限公司 车用蓄热式热泵系统
WO2019203675A1 (en) * 2018-04-19 2019-10-24 Privredno Drustvo za Pruzanje Usluga iz Oblasti Automatike i Programiranja Synchrotek D.o.o. Vehicle thermal management system

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI295118B (en) * 2004-03-10 2008-03-21 Black & Decker Inc Thermal management systems for battery packs
CN100513933C (zh) * 2007-08-15 2009-07-15 刘桂祥 热水空气调节两用机
CN107351623B (zh) * 2016-05-10 2019-11-05 比亚迪股份有限公司 汽车热管理系统及电动汽车
CN206163651U (zh) * 2016-11-08 2017-05-10 福州丹诺西诚电子科技有限公司 电动车的电池热管理系统
CN206394457U (zh) * 2016-12-27 2017-08-11 上海思致汽车工程技术有限公司 一种智能化多回路电动汽车冷却系统
CN108482067B (zh) * 2018-05-21 2019-11-29 上海思致汽车工程技术有限公司 一种节能型多回路电动汽车热管理系统
CN209274309U (zh) * 2018-10-30 2019-08-20 广州小鹏汽车科技有限公司 一种电动汽车热管理系统
CN109747378A (zh) * 2018-12-28 2019-05-14 大乘汽车有限公司 电动车电池热管理系统
CN211106836U (zh) * 2019-05-27 2020-07-28 珠海格力电器股份有限公司 一种电动汽车空调系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011016070A1 (de) * 2011-04-05 2012-10-11 Daimler Ag Klimatisierungsanlage eines Kraftfahrzeugs
CN103017410A (zh) * 2013-01-22 2013-04-03 北京德能恒信科技有限公司 一种冷暖式热管热泵复合循环系统
CN108001153A (zh) * 2017-11-22 2018-05-08 珠海格力电器股份有限公司 电动汽车的热管理系统、控制方法及电动汽车
CN110271378A (zh) * 2018-03-13 2019-09-24 上海银轮热交换系统有限公司 车用蓄热式热泵系统
WO2019203675A1 (en) * 2018-04-19 2019-10-24 Privredno Drustvo za Pruzanje Usluga iz Oblasti Automatike i Programiranja Synchrotek D.o.o. Vehicle thermal management system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116619983A (zh) * 2023-07-19 2023-08-22 成都壹为新能源汽车有限公司 一种车辆一体化融合热管理系统及方法
CN116619983B (zh) * 2023-07-19 2023-11-10 成都壹为新能源汽车有限公司 一种车辆一体化融合热管理系统及方法
CN117199631A (zh) * 2023-09-21 2023-12-08 无锡启乐智能装备有限公司 一种宽调节范围的直冷直热式电池包控温测试系统

Also Published As

Publication number Publication date
TWI787989B (zh) 2022-12-21
CN113183715A (zh) 2021-07-30
TW202246074A (zh) 2022-12-01

Similar Documents

Publication Publication Date Title
WO2022246969A1 (zh) 一种电动汽车集成热管理系统及实现方法
CN110525169B (zh) 纯电动汽车用集成乘员舱热泵空调及三电热管理系统
CN110525168B (zh) 新能源汽车二次回路乘员舱及电池电机电控热管理系统
US20220097478A1 (en) Thermal management system
EP4197832A1 (en) Electric vehicle thermal management loop, control method, and pure electric vehicle
CN111251813B (zh) 车辆的热管理系统及车辆
CN111251802A (zh) 车辆的热管理系统及车辆
CN112428771B (zh) 热管理系统
CN112428769B (zh) 热管理系统
CN111993884B (zh) 一种混合动力车辆热管理系统及混合动力车辆热管理方法
CN113173050A (zh) 热管理系统
CN113173049A (zh) 热管理系统
CN111251809B (zh) 车辆的热管理系统及车辆
CN110682761A (zh) 双室外换热器热泵系统
CN111251814A (zh) 车辆的热管理系统及车辆
CN109649114B (zh) 一种新能源客车分体式空调系统
CN116605005A (zh) 一种车用热管理系统和汽车
WO2022068606A1 (zh) 热管理系统
CN111251808A (zh) 车辆的热管理系统及车辆
CN215284271U (zh) 新能源混合动力车型驾驶室和动力电池集成热管理系统
CN111251801A (zh) 车辆的热管理系统及车辆
CN114905919A (zh) 汽车的热管理系统及汽车
CN111251804B (zh) 车辆的热管理系统及车辆
CN111845244B (zh) 热综合管理系统
CN108633223B (zh) 一种空调电池热泵的控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21942538

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE