WO2022246825A1 - 混合自动重传反馈码本的确定方法、装置及设备 - Google Patents

混合自动重传反馈码本的确定方法、装置及设备 Download PDF

Info

Publication number
WO2022246825A1
WO2022246825A1 PCT/CN2021/096899 CN2021096899W WO2022246825A1 WO 2022246825 A1 WO2022246825 A1 WO 2022246825A1 CN 2021096899 W CN2021096899 W CN 2021096899W WO 2022246825 A1 WO2022246825 A1 WO 2022246825A1
Authority
WO
WIPO (PCT)
Prior art keywords
dci
serving cell
dai
downlink information
terminal device
Prior art date
Application number
PCT/CN2021/096899
Other languages
English (en)
French (fr)
Inventor
张轶
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to CN202180095036.0A priority Critical patent/CN116964973A/zh
Priority to PCT/CN2021/096899 priority patent/WO2022246825A1/zh
Publication of WO2022246825A1 publication Critical patent/WO2022246825A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems

Definitions

  • the embodiments of the present application relate to the technical field of mobile communication, and in particular to a method, device and equipment for determining a HARQ feedback codebook.
  • DSS Dynamic Spectrum Sharing
  • NR transmission cannot use the LTE Cell Reference Signal (CRS) and the LTE Physical Downlink Control Channel (Physical Downlink Control CHannel) , PDCCH) resources. Therefore, in DSS, the capacity of NR PDCCH will be affected.
  • CRS Cell Reference Signal
  • PDCCH Physical Downlink Control Channel
  • NR version 17 supports one downlink control information (Downlink Control Information, DCI) to schedule multiple downlink information.
  • DCI Downlink Control Information
  • multiple downlink information is located in different In the serving cell (also called carrier).
  • a DCI transmitted in a primary cell (Primary Cell, PCell) or a secondary cell (Secondary Cell, SCell) can simultaneously schedule a physical downlink shared channel (Physical Downlink Share CHannel, PDSCH) of the PCell and a PDSCH of the SCell.
  • PDSCH Physical Downlink shared channel
  • HARQ Hybrid Automatic Repeat ReQuest
  • Embodiments of the present application provide a method, device and equipment for determining a HARQ feedback codebook, so as to solve the problem that the HARQ feedback codebook cannot be determined when one DCI schedules multiple downlink information.
  • the embodiment of the present application provides a method for determining a HARQ feedback codebook, including:
  • the terminal device receives the first DCI; the first DCI carries a first downlink assignment index (Downlink Assignment Index, DAI);
  • DAI Downlink Assignment Index
  • the value of the first DAI is the first accumulated number, or the sum of the first accumulated number and the first adjustment amount; the first accumulated number is until the current PDCCH monitoring opportunity and the current serving cell, the DCI association
  • the cumulative number of downlink information; the first adjustment amount is related to the downlink information associated with at least one target DCI; the at least one target DCI includes the network equipment in the current PDCCH monitoring opportunity until the current serving cell
  • the terminal device determines a first HARQ feedback codebook based on the first DAI.
  • the embodiment of the present application provides a method for determining a HARQ feedback codebook, including:
  • the network device sends the first DCI; the first DCI carries the first DAI;
  • the value of the first DAI is the first accumulated number, or the sum of the first accumulated number and the first adjustment amount; the first accumulated number is until the current PDCCH monitoring opportunity and the current serving cell, the DCI association
  • the cumulative number of downlink information; the first adjustment amount is related to the downlink information associated with at least one target DCI; the at least one target DCI includes the network equipment in the current PDCCH monitoring opportunity until the current serving cell
  • the network device determines a first HARQ feedback codebook based on the first DAI.
  • an apparatus for determining an ARQ feedback codebook which is applied to a terminal device, including:
  • the first communication interface is configured to receive the first DCI; the first DCI carries the first DAI;
  • the value of the first DAI is the first accumulated number, or the sum of the first accumulated number and the first adjustment amount; the first accumulated number is until the current PDCCH monitoring opportunity and the current serving cell, the DCI association
  • the cumulative number of downlink information; the first adjustment amount is related to the downlink information associated with at least one target DCI; the at least one target DCI includes the network equipment in the current PDCCH monitoring opportunity until the current serving cell
  • the transmission is used to schedule multiple downlink information DCI;
  • the first processing unit is configured to determine a first HARQ feedback codebook based on the first DAI.
  • the embodiment of the present application provides an apparatus for determining an ARQ feedback codebook, which is applied to a network device, including:
  • the second communication interface is configured to send the first DCI; the first DCI carries the first DAI;
  • the value of the first DAI is the first accumulated number, or the sum of the first accumulated number and the first adjustment amount; the first accumulated number is until the current PDCCH monitoring opportunity and the current serving cell, the DCI association
  • the cumulative number of downlink information; the first adjustment amount is related to the downlink information associated with at least one target DCI; the at least one target DCI includes the network equipment in the current PDCCH monitoring opportunity until the current serving cell
  • the second processing unit is configured to determine a first HARQ feedback codebook based on the first DAI.
  • the embodiment of the present application provides a terminal device, including: a processor and a memory, the memory is used to store computer programs, the processor is used to call and run the computer programs stored in the memory, and execute the above-mentioned first The method for determining the HARQ feedback codebook described in the aspect.
  • the embodiment of the present application provides a network device, including: a processor and a memory, the memory is used to store computer programs, the processor is used to invoke and run the computer programs stored in the memory, and execute the above-mentioned second The method for determining the HARQ feedback codebook described in the aspect.
  • the chip provided in the embodiment of the present application is used to implement the above method for determining the HARQ feedback codebook.
  • the chip includes: a processor, configured to call and run a computer program from the memory, so that the device installed with the chip executes the above method for determining the HARQ feedback codebook.
  • the computer-readable storage medium provided by the embodiment of the present application is used for storing a computer program, and the computer program enables the computer to execute the above method for determining the HARQ feedback codebook.
  • the computer program product provided by the embodiment of the present application includes computer program instructions, and the computer program instructions cause the computer to execute the above method for determining the HARQ feedback codebook.
  • the computer program provided by the embodiment of the present application when running on a computer, enables the computer to execute the above method for determining the HARQ feedback codebook.
  • the terminal device receives the first DCI; the first DCI carries the first DAI; wherein, the value of the first DAI is the first accumulated number, or, the first DAI The sum of a cumulative number and the first adjustment amount; the first cumulative number is the cumulative number of downlink information associated with DCI until the current PDCCH monitoring opportunity and the current serving cell; the first adjustment amount is the downlink information associated with at least one target DCI Correlation; at least one target DCI includes DCI transmitted by the network device for scheduling multiple downlink information in the current PDCCH monitoring opportunity up to the current serving cell; the terminal device determines the first HARQ feedback codebook based on the first DAI.
  • the first DAI carried in the first DCI can not only accumulate the number of downlink information scheduled by DCI up to the current PDCCH monitoring opportunity and the current serving cell, but also accumulate the target DCI association used to schedule multiple downlink information The number of downlink information.
  • the first HARQ feedback codebook determined by the terminal device according to the value of the first DAI may include HARQ-ACK information corresponding to multiple downlink information scheduled by at least one target DCI, thus improving the efficiency of information transmission .
  • FIG. 1 is a schematic diagram of an application scenario of an embodiment of the present application
  • FIG. 2A is a first schematic diagram of data transmission in the related art provided by the embodiment of the present application.
  • FIG. 2B is a second schematic diagram of data transmission in the related art provided by the embodiment of the present application.
  • FIG. 3 is a schematic flowchart of a method for determining a HARQ feedback codebook provided in an embodiment of the present application
  • FIG. 4A is a first schematic diagram of data transmission provided by the embodiment of the present application.
  • Fig. 4B is a second schematic diagram of data transmission provided by the embodiment of the present application.
  • FIG. 5 is a third schematic diagram of data transmission provided by the embodiment of the present application.
  • FIG. 6 is a fourth schematic diagram of data transmission provided by the embodiment of the present application.
  • Fig. 7 is a schematic diagram 5 of data transmission provided by the embodiment of the present application.
  • FIG. 8 is a first structural diagram of an apparatus for determining a HARQ feedback codebook provided in an embodiment of the present application.
  • FIG. 9 is a second structural diagram of an apparatus for determining a HARQ feedback codebook provided in an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a chip according to an embodiment of the present application.
  • Fig. 12 is a schematic block diagram of a communication system provided by an embodiment of the present application.
  • FIG. 1 is a schematic diagram of an application scenario of an embodiment of the present application.
  • a communication system 100 may include a terminal device 110 and a network device 120 .
  • the network device 120 may communicate with the terminal device 110 through an air interface. Multi-service transmission is supported between the terminal device 110 and the network device 120 .
  • the embodiment of the present application is only described by using the communication system 100 as an example, but the embodiment of the present application is not limited thereto. That is to say, the technical solutions of the embodiments of the present application can be applied to various communication systems, such as: LTE system, LTE Time Division Duplex (Time Division Duplex, TDD), Universal Mobile Telecommunications System (Universal Mobile Telecommunication System, UMTS), IoT Internet of Things (IoT) system, Narrow Band Internet of Things (NB-IoT) system, enhanced Machine-Type Communications (eMTC) system, 5G communication system (also known as new Wireless (New Radio, NR) communication system), or future communication systems, etc.
  • LTE system LTE Time Division Duplex (Time Division Duplex, TDD), Universal Mobile Telecommunications System (Universal Mobile Telecommunication System, UMTS), IoT Internet of Things (IoT) system, Narrow Band Internet of Things (NB-IoT) system, enhanced Machine-Type Communications (eMTC) system, 5G communication system (also known as new Wireless (New Radio
  • the network device 120 may be an access network device that communicates with the terminal device 110 .
  • the access network device can provide communication coverage for a specific geographical area, and can communicate with the terminal device 110 located in the coverage area.
  • the network device 120 may be an evolved base station (Evolutional Node B, eNB or eNodeB) in an LTE system, or a next generation radio access network (Next Generation Radio Access Network, NG RAN) device, or a base station ( gNB), or a wireless controller in a cloud radio access network (Cloud Radio Access Network, CRAN), or the network device 120 can be a relay station, an access point, a vehicle-mounted device, a wearable device, a hub, a switch, a bridge , routers, or network devices in the future evolution of the Public Land Mobile Network (Public Land Mobile Network, PLMN), etc.
  • Evolutional Node B, eNB or eNodeB next generation radio access network
  • gNB next generation Radio Access Network
  • CRAN Cloud Radio Access Network
  • the terminal device 110 may be any terminal device, including but not limited to a terminal device connected to the network device 120 or other terminal devices by wire or wirelessly.
  • the terminal equipment 110 may refer to an access terminal, a user equipment (User Equipment, UE), a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, a terminal, a wireless communication device, user agent, or user device.
  • Access terminals can be cellular phones, cordless phones, Session Initiation Protocol (SIP) phones, IoT devices, satellite handheld terminals, Wireless Local Loop (WLL) stations, Personal Digital Assistant , PDA), handheld devices with wireless communication functions, computing devices or other processing devices connected to wireless modems, vehicle-mounted devices, wearable devices, terminal devices in 5G networks or terminal devices in future evolution networks, etc.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • the terminal device 110 can be used for device-to-device (Device to Device, D2D) communication.
  • D2D Device to Device
  • the wireless communication system 100 may also include a core network device 130 that communicates with the base station.
  • the core network device 130 may be a 5G core network (5G Core, 5GC) device, for example, Access and Mobility Management Function (Access and Mobility Management Function , AMF), and for example, authentication server function (Authentication Server Function, AUSF), and for example, user plane function (User Plane Function, UPF), and for example, session management function (Session Management Function, SMF).
  • the core network device 130 may also be a packet core evolution (Evolved Packet Core, EPC) device of the LTE network, for example, a data gateway (Session Management Function+Core Packet Gateway, SMF+PGW- C) Equipment.
  • EPC packet core evolution
  • SMF+PGW-C can realize the functions of SMF and PGW-C at the same time.
  • the above-mentioned core network equipment may be called by other names, or a new network entity may be formed by dividing functions of the core network, which is not limited in this embodiment of the present application.
  • Various functional units in the communication system 100 may also establish a connection through a next generation network (next generation, NG) interface to implement communication.
  • NG next generation network
  • the terminal device establishes an air interface connection with the access network device through the NR interface to transmit user plane data and control plane signaling; the terminal device can establish a control plane signaling connection with the AMF through the NG interface 1 (N1 for short); access Network equipment such as the next generation wireless access base station (gNB), can establish a user plane data connection with UPF through NG interface 3 (abbreviated as N3); access network equipment can establish control plane signaling with AMF through NG interface 2 (abbreviated as N2) UPF can establish a control plane signaling connection with SMF through NG interface 4 (N4 for short); UPF can exchange user plane data with the data network through NG interface 6 (N6 for short); AMF can communicate with SMF through NG interface 11 (N11 for short) The SMF establishes a control plane signaling connection; the SMF may establish a control plane signaling connection with the PCF through an NG interface 7 (N7 for short).
  • gNB next generation wireless access base station
  • N3 next generation wireless access base station
  • Figure 1 exemplarily shows a base station, a core network device, and two terminal devices.
  • the wireless communication system 100 may include multiple base station devices and each base station may include other numbers of terminals within the coverage area.
  • the device is not limited in the embodiment of this application.
  • FIG. 1 is only an illustration of a system applicable to this application, and of course, the method shown in the embodiment of this application may also be applicable to other systems.
  • system and “network” are often used interchangeably herein.
  • the term “and/or” in this article is just an association relationship describing associated objects, which means that there can be three relationships, for example, A and/or B can mean: A exists alone, A and B exist simultaneously, and there exists alone B these three situations.
  • the character "/" in this article generally indicates that the contextual objects are an "or” relationship.
  • the "indication” mentioned in the embodiments of the present application may be a direct indication, may also be an indirect indication, and may also mean that there is an association relationship.
  • A indicates B, which can mean that A directly indicates B, for example, B can be obtained through A; it can also indicate that A indirectly indicates B, for example, A indicates C, and B can be obtained through C; it can also indicate that there is an association between A and B relation.
  • the "correspondence” mentioned in the embodiments of the present application may mean that there is a direct correspondence or an indirect correspondence between the two, or that there is an association between the two, or that it indicates and is indicated. , configuration and configured relationship.
  • the "predefined” or “predefined rules” mentioned in the embodiments of this application can be used by pre-saving corresponding codes, tables or other It is implemented by indicating related information, and this application does not limit the specific implementation.
  • pre-defined may refer to defined in the protocol.
  • the "protocol” may refer to a standard protocol in the communication field, for example, it may include the LTE protocol, the NR protocol, and related protocols applied to future communication systems, and this application does not limit this .
  • the terminal device can feed back the reception results of multiple downlink information transmitted by the network device, that is, the HARQ response (HARQ-ACK) information, to the network device in an uplink control information (UCI).
  • the downlink information may include one or more of the following information: PDSCH, Semi-Persistent Scheduling (Semi-Persistent Scheduling, SPS) PDSCH release indication information, and SCell dormancy indication information.
  • SPS Semi-Persistent Scheduling
  • SCell dormancy indication information This embodiment of the present application does not limit it.
  • the multiple pieces of downlink information may come from different downlink time units and/or different codewords under MIMO and/or different carriers under carrier aggregation.
  • the communication system can support two different HARQ feedback codebooks, one is a semi-static HARQ feedback codebook (also known as Type-1 HARQ-ACK feedback codebook), and the other is a dynamic HARQ feedback codebook (also known as Type-2 HARQ-ACK feedback codebook).
  • a semi-static HARQ feedback codebook also known as Type-1 HARQ-ACK feedback codebook
  • a dynamic HARQ feedback codebook also known as Type-2 HARQ-ACK feedback codebook
  • the dynamic HARQ feedback codebook mainly reduces the signaling overhead of feedback information, that is, in the set of PDCCH monitoring occasions (The set of PDCCH monitoring occasions), the number of PDSCH, SPS PDSCH release instructions and SCell sleep instructions actually scheduled according to DCI Determines the number of bits of acknowledgment/negative (ACK/NACK) information.
  • the network device can configure a DAI information for each DCI.
  • each DCI carries one DAI information, and the DAI may also be called a counter DCI (Counter DCI, C-DAI).
  • the network device configures a serving cell to transmit downlink information (that is, serving cell 1 in FIG. Transmission block (Transmission Block, TB) transmission mode, and each DCI only schedules 1 codebook.
  • the network device sends DCI 1 to DCI 4 to the terminal device.
  • DCI 1 is used to schedule PDSCH 1, and the value of its corresponding DAI is 1.
  • DCI 2 is used to schedule PDSCH 2, and the corresponding DAI value is 2.
  • DCI 3 is used to schedule PDSCH 3, and the corresponding DAI value is 3.
  • DCI 4 is used to schedule PDSCH 4, and the corresponding DAI value is 4.
  • the terminal equipment fails to detect and schedule DCI 3 of PDSCH 3, the terminal equipment does not receive PDSCH 3.
  • the terminal device receives DCI 4 for scheduling PDSCH 4, and the corresponding DAI value is 4, the terminal device can determine the missed detection of PDSCH 3 according to the received DCI values in DCI 1, DCI 2, and DCI 4. Then the 4-bit HARQ-ACK information will be fed back to the network side.
  • the DAI may include C-DAI and total DCI (Total DAI, T-DCI).
  • C-DAI represents the cumulative number of PDSCH, SPS PDSCH release indication information or SCell dormancy indication information associated with the DCI to the current serving cell and the current PDCCH monitoring opportunity.
  • T-DAI represents the cumulative number of PDSCH reception, SPS PDSCH release information or SCell dormancy indication information associated with DCI on all serving cells up to the current PDCCH monitoring opportunity.
  • the C-DAI included in the DCI is 2 bits.
  • the C-DAI configured by the network device is a cycle count value of 1 to 4, that is to say, the value of the C-DAI is cycled between 1, 2, 3, and 4, and the first occurrence of "1" is counted as 1. The second occurrence of "1" actually counts as 5.
  • the construction process of the dynamic HARQ feedback codebook is as follows:
  • the terminal device receives PDSCH or SPS PDSCH release information or SCell dormancy indication information, then:
  • the terminal device fills the HARQ-ACK information of the data scheduled by the DCI on the 4th*j+C-DAI-1 bit of the HARQ feedback codebook;
  • the terminal device is configured with HARQ-ACK spatial bundling, that is, harq-ACK-SpatialBundlingPUCCH, then the terminal device is on the 4th*j+C-DAI-1 bit, Fill in the value after the logical AND of the HARQ-ACK information of the two TBs scheduled by DCI in the current serving cell;
  • the terminal device is at bit 2*4*j+2*(C-DAI-1), Fill in the HARQ-ACK information of the first TB scheduled by DCI, and fill in the HARQ-ACK information of the second TB scheduled by DCI in the 2*4*j+2*(C-DAI-1)+1 bit .
  • the terminal device can determine the total number of bits of the HARQ feedback codebook according to the value of the last DAI received in the PDCCH monitoring opportunity set, which is recorded as O ACK . If these bit positions are not filled with corresponding HARQ-ACK information, these bit positions are filled with NACK.
  • R17 supports one DCI to schedule downlink information transmitted in multiple serving cells.
  • the network device sends DCI 1 to DCI 4 to the terminal device.
  • DCI 1 is used to schedule PDSCH 1 transmitted in serving cell 1.
  • DCI 2 is used to schedule PDSCH 2 transmitted in serving cell 1, and the value of the corresponding DAI is 2.
  • DCI 3 is used to schedule PDSCH 3 transmitted in serving cell 1 and PDSCH 4 transmitted in serving cell 2.
  • DCI 4 is used to schedule PDSCH 5 transmitted in serving cell 1.
  • a network device transmits both DCI for scheduling one downlink information and DCI for scheduling multiple downlink information in the PDCCH monitoring opportunity set, if a certain DCI is missed, the terminal device will not be able to know the missed DCI Whether the DCI of one downlink information or multiple DCIs of downlink information is scheduled. Furthermore, the terminal device cannot determine whether the corresponding position should contain 1-bit HARQ-ACK information or multiple bits of HARQ-ACK information, that is to say, the terminal device cannot distinguish whether the missed DCI 3 in Figure 2A and Figure 2B below is to schedule a downlink The DCI of the information is also the DCI of scheduling multiple downlink information.
  • the present application provides a method, device and equipment for determining a HARQ feedback codebook.
  • the technical solutions of the present application are described in detail below through specific examples.
  • the above related technologies may be combined with the technical solutions of the embodiments of the present application in any combination, and all of them belong to the protection scope of the embodiments of the present application.
  • the embodiment of the present application includes at least part of the following content.
  • Fig. 3 is a schematic flowchart of a method for determining a HARQ feedback codebook provided by an embodiment of the present application. As shown in Fig. 3, the method includes the following steps:
  • Step 310 the network device sends the first DCI; the first DCI carries the first DAI,
  • Step 320 the terminal device receives the first DCI; the first DCI carries the first DAI;
  • the value of the first DAI is the first cumulative number, or the sum of the first cumulative number and the first adjustment amount; the first cumulative number is the downlink information associated with the DCI up to the current PDCCH monitoring opportunity and the current serving cell The cumulative number; the first adjustment amount is related to the downlink information associated with at least one target DCI; the at least one target DCI includes the DCI transmitted by the network device for scheduling multiple downlink information in the current PDCCH monitoring opportunity until the current serving cell.
  • Step 330 the terminal device determines a first HARQ feedback codebook based on the first DAI.
  • Step 340 the network device determines the first HARQ feedback codebook based on the first DAI.
  • the first DCI bearer is transmitted in the PDCCH.
  • the terminal device can detect the first DCI sent by the network device in the PDCCH monitoring opportunity set. That is to say, the first DCI may be received by the terminal device in any PDCCH monitoring opportunity in the PDCCH monitoring opportunity set.
  • the first DCI may be a DCI for scheduling one piece of downlink information, or may be a DCI for scheduling multiple pieces of downlink information, which is not limited in this embodiment of the present application.
  • the first DAI may be carried in the first DCI.
  • the first DAI is used to accumulate the number of downlink information transmitted in the PDCCH monitoring opportunity set.
  • the first DAI may be a counter-type DAI, namely C-DAI.
  • the value of the first DAI may be the first accumulated number, or the sum of the first accumulated number and the first adjustment amount.
  • the first cumulative number is the cumulative number of DCI-related downlink information transmitted by the network device until the current PDCCH monitoring opportunity and the current serving cell.
  • the current PDCCH monitoring opportunity refers to the PDCCH monitoring opportunity for receiving the first DCI.
  • the current serving cell refers to the serving cell that transmits the first DCI.
  • the first cumulative number is counted in the PDCCH monitoring opportunity set according to the order in which the index value of the serving cell increases first and then the index value of the PDCCH monitoring opportunity increases, until the PDCCH monitoring opportunity and the PDCCH monitoring opportunity currently transmitting the first DCI Up to the serving cell currently transmitting the first DCI, the accumulated number of downlink information of all DCI scheduling transmitted by the network device.
  • the first adjustment amount may be related to downlink information associated with at least one target DCI; at least one target DCI is included in the PDCCH monitoring opportunity set for the current transmission of the first DCI, and until the current serving cell, the network device transmits All DCIs used to schedule multiple downlink messages.
  • the target DCI refers to the DCI used to schedule multiple pieces of downlink information.
  • At least one target DCI may include the first DCI, or may not include the first DCI. If the first DCI can schedule multiple pieces of downlink information, at least one target DCI includes the first DCI. If the first DCI only schedules one piece of downlink information, the first DCI is not included in at least one target DCI.
  • the first adjustment amount may be determined according to the number of downlink information associated with at least one target DCI. That is to say, the first adjustment amount can count multiple pieces of downlink information scheduled by the target DCI, so as to ensure that the terminal device and the network device understand the same number of scheduled downlink information.
  • the downlink information may include at least one of the following information:
  • the terminal device may determine the bit position of the HARQ-ACK information corresponding to the downlink information of the first DCI schedule in the first HARQ feedback codebook according to the first DAI, and fill the first DCI scheduler at the determined bit position The HARQ-ACK information corresponding to the downlink information.
  • the network device may determine, according to the first DAI, which bits in the first HARQ feedback code the HARQ-ACK information corresponding to the downlink information scheduled by the first DCI is located in.
  • the first HARQ feedback codebook is a dynamic HARQ feedback codebook, that is, a Type-2 HARQ-ACK feedback codebook.
  • the method provided in the embodiment of the present application may further include steps 350 and 360 .
  • Step 350 the terminal device sends the first HARQ feedback codebook to the network device.
  • Step 360 the network device receives the first HARQ feedback codebook sent by the terminal device.
  • the network device can determine the reception result of the downlink information transmitted in the PDCCH monitoring opportunity set according to the information contained in the first HARQ feedback codebook, and perform corresponding processing.
  • the first DAI carried in the first DCI can not only accumulate the number of downlink information scheduled by DCI up to the current PDCCH monitoring opportunity and the current serving cell, but also accumulate the target DCI association used to schedule multiple downlink information The number of downlink information.
  • the first HARQ feedback codebook determined by the terminal device according to the value of the first DAI may include HARQ-ACK information corresponding to multiple downlink information scheduled by at least one target DCI, thus improving the efficiency of information transmission . .
  • the value of the first DAI is the sum of the first cumulative number and the first adjustment amount.
  • the value of the first DAI is the sum of the first cumulative number and the first adjustment amount.
  • the first adjustment amount is the number of downlink information of the serving cell whose index value is larger than the index value of the current serving cell in the serving cell where the plurality of downlink information scheduled by at least one target DCI is located.
  • the network device can transmit multiple DCIs in one PDCCH monitoring opportunity, and if the multiple DCIs transmitted by the network device include at least one target DCI (that is, DCI for scheduling multiple downlink information), the first adjustment amount can be is the number of all downlink information transmitted on the serving cell whose index value is larger than the index value of the current serving cell in the serving cell where the plurality of downlink information scheduled by at least one target DCI is located.
  • the target DCI that is, DCI for scheduling multiple downlink information
  • the value of the first DAI is the first accumulated number.
  • the network device transmits at least one target DCI, but the index value of the serving cell where the multiple downlink information scheduled by at least one target DCI is located is smaller than the index value of the current serving cell, that is The current serving cell is the serving cell with the largest index value where at least one target DCI scheduled downlink information is located.
  • the PDCCH monitoring opportunity set includes only one PDCCH monitoring opportunity.
  • the network device may transmit downlink information in serving cell 1 to serving cell 4 .
  • the network device can transmit DCI a through serving cell 1, and DCI a can schedule PDSCH 1 in serving cell 1 and PDSCH 3 in serving cell 3.
  • the network device can transmit DCI b through serving cell 2, and DCI b can schedule PDSCH 2 in serving cell 2 and PDSCH 4 in serving cell 4.
  • the DAI corresponding to DCI a statistics may be made in the order of increasing index values of the serving cell.
  • the serving cell 1 there is one DCI for scheduling multiple downlink information, that is, DCI a.
  • the serving cell with the largest index value where the PDSCH scheduled by DCI a is located is serving cell 3, and its index value is greater than the index value of current serving cell 1. Therefore, the value of DAI carried in DCI a should be the first accumulated amount + the first adjustment amount.
  • the first cumulative number is 1
  • the first adjustment amount is the number of downlink information of the serving cell 3 , that is, the first adjustment amount is 1. Therefore, the DAI value corresponding to DCI a is 2.
  • the DAI corresponding to DCI b when determining the DAI corresponding to DCI b, it can be determined that in the current PDCCH monitoring opportunity, as of the current serving cell 2 transmitting DCI b, there are two DCIs scheduling multiple downlink information, namely DCI a and DCI b. And, the serving cell of the maximum index value where the multiple PDSCHs scheduled by DCI a and DCI b are located is serving cell 4, and its index value is greater than the index value of current serving cell 2. Therefore, the value of DAI carried in DCI b should be the first accumulated amount + the first adjustment amount.
  • the first cumulative number is the number of PDSCHs transmitted by the serving cell 1 and the serving cell 2, that is, the first cumulative number is 2.
  • the first adjustment amount is the number of PDSCHs of the serving cell 3 and the serving cell 4 , that is, the first adjustment amount is 2. Therefore, the DAI value corresponding to DCI b is 4.
  • the network device can transmit DCI a through serving cell 1, and DCI a can schedule PDSCH 1 in serving cell 1 and PDSCH 3 in serving cell 3.
  • the network device can transmit DCI b through the serving cell 2, and the DCI b can schedule the PDSCH 2 of the serving cell 2.
  • the network device can also transmit DCI c through the serving cell 4, and the DCI c can schedule the PDSCH 4 of the serving cell 4.
  • the DAI corresponding to DCI a statistics may be made in the order of increasing index values of the serving cell.
  • the serving cell up to the serving cell 1, there is one DCI for scheduling multiple downlink information, that is, DCI a.
  • the serving cell with the largest index value where the PDSCH 3 scheduled by DCI a is located is the serving cell 3, and its index value is greater than the index value of the current serving cell 1. Therefore, the value of DAI carried in DCI a should be the first accumulated amount + the first adjustment amount.
  • the first cumulative number is 1
  • the first adjustment amount is the number of downlink information of the serving cell 3 , that is, the first adjustment amount is 1. Therefore, the DAI value corresponding to DCI a is 2.
  • the DAI corresponding to DCI b When determining the DAI corresponding to DCI b, it can be determined that in the current PDCCH monitoring opportunity, as of the current serving cell 2 that transmits DCI b, there is a DCI that schedules multiple downlink information, that is, DCI a. And, the serving cell with the largest index value where the PDSCH scheduled by DCI a is located is serving cell 3, and its index value is greater than the index value of current serving cell 2. Therefore, the value of DAI carried in DCI b should be the first accumulated amount + the first adjustment amount. Wherein, the first cumulative number is 2, and the first adjustment amount is the number of downlink information of the serving cell 3, that is, the first adjustment amount is 1. Therefore, the DAI value corresponding to DCI b is 3.
  • the DAI corresponding to DCI c it can be determined that in the current PDCCH monitoring opportunity, as of the current serving cell 4 that transmits DCI c, there is a DCI that schedules multiple downlink information, that is, DCI a.
  • the serving cell with the largest index value where the PDSCH scheduled by DCI a is located is serving cell 3, and its index value is smaller than the index value of current serving cell 4. Therefore, the value of DAI carried in DCI c should be the first accumulated number.
  • the first cumulative number is 4, that is, the cumulative number of PDSCHs transmitted in the serving cell 1 to the serving cell 4 . Therefore, the DAI value corresponding to DCI c is 4.
  • the value of the first DAI does not change the counting nature of the downlink information, and only corrects the cumulative number, which can avoid the failure of DCI detection to cause network equipment and The terminal equipment has inconsistent understanding of the number of HARQ-ACK bits.
  • the format of the first DCI is the first DCI format; the first DCI format indicates that the first DCI is used to schedule N downlink information; N is an integer greater than or equal to 2;
  • the format of the first DCI is the second DCI format; the second DCI format indicates that the first DCI is used to schedule a piece of downlink information.
  • the first DCI received by the terminal device may be a DCI for scheduling one piece of downlink information, or may be a DCI for scheduling multiple pieces of downlink information.
  • the DCI format may be used to indicate whether the currently transmitted DCI is a DCI for scheduling one downlink information or a DCI for scheduling multiple downlink information.
  • the DCI format of a certain DCI when the format of a certain DCI is the first DCI format, it is determined that the DCI is a DCI for scheduling multiple downlink information.
  • the format of a certain DCI is the second DCI format, it is determined that the DCI is a DCI for scheduling a piece of downlink information.
  • the second DCI format may be DCI format 1_0 (that is, DCI format 1_0), or DCI format 1_1, or any one of DCI format 1_2, which is not limited in this embodiment of the present application.
  • the DAI values corresponding to the multiple downlink information scheduled by the first DCI are the same, or, the multiple downlink information scheduled by the first DCI The downlink information shares the same DAI indication field.
  • DCI a schedules PDSCH 1 and PDSCH 3. Therefore, the DAI value corresponding to PDSCH 1 and PDSCH 3 is both 2.
  • multiple downlink information scheduled by the same DCI share the same DAI, which can reduce DCI signaling overhead.
  • the manner of determining the HARQ feedback codebook of the DCI is also different.
  • the terminal device and the network device may determine that the downlink information scheduled by the first DCI is in the first HARQ feedback code The position in this document, and fill the HARQ-ACK information corresponding to the downlink information in the determined position.
  • the terminal device and the network device can construct the first HARQ-ACK information containing the N downlink information in the following two ways: HARQ feedback codebook.
  • the terminal device determines the first HARQ feedback codebook based on the first DAI, which may be implemented in the following manner:
  • the arrangement order of the HARQ-ACK information corresponding to the N downlink information in the first HARQ feedback codebook is related to the index value of the serving cell where the N downlink information is located; T D is in the first DCI according to the first DAI The number of occupied bits is determined, and j is the number of occurrences of the maximum value of DAI up to the current PDCCH monitoring opportunity and the current serving cell.
  • the terminal device may determine N bits in the first HARQ feedback codebook according to the value of the first DAI, and respectively fill in the HARQ-ACK information corresponding to the N downlink information scheduled by the first DCI.
  • the terminal device may fill in the HARQ-ACK information respectively corresponding to the N pieces of downlink information in the first HARQ feedback codebook according to the order of the index values of the serving cells where the N pieces of downlink information are located.
  • the DAI carried in the DCI may be a cycle count value. That is, the value of DAI cycles between 1 and T D. Wherein, T D is 2 M , and M is the number of bits occupied by the DAI in the DCI.
  • j is the number of times when the index value of the serving cell increases first and then the index value of the PDCCH monitoring opportunity increases until the current PDCCH monitoring opportunity and the current serving cell.
  • the number of bits occupied by the DAI in the DCI is 2 bits, that is, the value of the DAI carried in each DCI cycles between 1 and 4.
  • the value of j is 0.
  • the terminal can perform the first round of cycle counting, and the values of DAI are 1, 2, 3, and 4 respectively.
  • the maximum value of DAI is "4" for the first time, set the value of j to 1, and continue the second round of cycle counting.
  • the values of DAI are 1, 2, 3, and 4 respectively.
  • the first condition may include at least one of the following:
  • the terminal device is configured with a first parameter, and the value of the second parameter configured by the terminal device on at least one of the serving cells where the N downlink information is located is 2;
  • the value of the second parameter configured by the terminal device on each of the serving cells where the N downlink information is located is 1;
  • the first parameter is used to enable HARQ-ACK spatial bundling
  • the second parameter is used to indicate the maximum number of codewords that can be scheduled by one DCI.
  • the terminal device can use the codeword in the first HARQ feedback codebook Bits of (T D *j+first DAI-N) to bits of (T D *j+first DAI-1) are respectively filled with HARQ-ACK information corresponding to N PDSCHs scheduled by the first DCI.
  • the terminal device can -2) bits are filled with the HARQ-ACK information corresponding to the serving cell with a larger index value among the above two serving cells.
  • the terminal device may fill the bit of (T D *j+first DAI-1) with the HARQ-ACK information corresponding to the serving cell with a larger index value among the above two serving cells.
  • the terminal device is configured with HARQ-ACK spatial bundling (that is, the terminal device is configured with harq-ACK-SpatialBundlingPUCCH), and the DCI of the terminal device on at least one serving cell can schedule two codeword (that is, the terminal device is configured to receive 2 TBs in at least one serving cell), then the terminal device can use the (T D *j+first DAI-N) bit in the first HARQ feedback codebook, Bits up to (T D *j+first DAI-1) are respectively filled with HARQ-ACK information corresponding to the N PDSCHs scheduled by the first DCI.
  • HARQ-ACK spatial bundling that is, the terminal device is configured with harq-ACK-SpatialBundlingPUCCH
  • the DCI of the terminal device on at least one serving cell can schedule two codeword (that is, the terminal device is configured to receive 2 TBs in at least one serving cell)
  • the terminal device can use the (T D *j+first DAI-N) bit in the first
  • the HAQR-ACK information filled with each bit in the first HARQ feedback codebook is a value obtained after logical AND processing of the HARQ-ACK information of two TBs transmitted by each serving cell.
  • the terminal device can ) is filled with the value after the logical AND of the HARQ-ACK information of 2 TBs transmitted by the serving cell with the smaller index value among the above two serving cells.
  • the terminal device may fill the bits of (T D *j+first DAI-1) with the HARQ-ACK information of the two TBs transmitted by the serving cell with a larger index value among the above two serving cells after the logical AND value of .
  • the first condition may include any condition other than the following:
  • the terminal device is not configured with the first parameter, and the value of the second parameter configured on at least one of the serving cells in which the N pieces of downlink information are located is 2.
  • the terminal device can use the first HARQ feedback
  • the bits of (T D *j+first DAI-N) in the codebook to the bits of (T D *j+first DAI-1) respectively fill the HARQ corresponding to the N PDSCHs scheduled by the first DCI -ACK information.
  • the PDCCH monitoring opportunity set includes PDCCH monitoring opportunity 1 and PDCCH monitoring opportunity 2.
  • the network device can transmit DCI a through serving cell 1 in PDCCH monitoring opportunity 1, and DCI a is the second DCI format, and DCI a is used to schedule PDSCH 1.
  • DCI b is transmitted through serving cell 2
  • DCI b is the second DCI format
  • DCI b is used to schedule PDSCH 2.
  • DCI c is transmitted through serving cell 1
  • DCI c is the second DCI format
  • DCI b is used to schedule PDSCH 3.
  • DCI d is transmitted through serving cell 2
  • DCI d is the first DCI format
  • DCI d can schedule PDSCH 4 of serving cell 1 and PDSCH 5 transmitted by serving cell 2.
  • the terminal device can determine that the first HARQ feedback codebook includes 5 bits according to the value of DAI in DCI d.
  • the terminal device fills the 0th bit of the first HARQ feedback codebook with the HARQ-ACK information corresponding to the PDSCH 1 scheduled by DCI a, and fills the 1st bit with the HARQ-ACK information corresponding to the PDSCH 2 scheduled by DCI b,
  • the second bit is filled with the HARQ-ACK information corresponding to PDSCH 3 scheduled by DCI c
  • the third bit is filled with the HARQ-ACK information corresponding to PDSCH 4 transmitted by serving cell 1 scheduled by DCI d
  • the fourth bit The bit fills the HARQ-ACK information corresponding to the PDSCH 5 transmitted by the serving cell 2 scheduled by the DCI d.
  • the final first HARQ feedback codebook is: ⁇ ACK/NACK PDSCH 1 , ACK/NACK PDSCH 2 , ACK/NACK PDSCH 3 , ACK/NACK PDSCH 4 , ACK/NACK PDSCH 5 ⁇ .
  • the network device can transmit downlink information to the terminal device in serving cell 1 and serving cell 2, and serving cell 1 and serving cell 2 are not configured CBG-based transport.
  • the PDCCH monitoring opportunity set includes PDCCH monitoring opportunity 1 to PDCCH monitoring opportunity 4 .
  • the network device can transmit DCI a through serving cell 1 in PDCCH monitoring opportunity 1, and DCI a is the second DCI format, and DCI a is used to schedule PDSCH 1.
  • DCI b is transmitted through serving cell 2
  • DCI b is the second DCI format
  • DCI b is used to schedule PDSCH 2.
  • DCI c is transmitted through serving cell 1
  • DCI c is the second DCI format
  • DCI b is used to schedule PDSCH 3.
  • DCI d is transmitted through serving cell 2
  • DCI d is the first DCI format
  • DCI d can schedule PDSCH 4 of serving cell 1 and PDSCH 5 transmitted by serving cell 2.
  • the DCI e is transmitted through the serving cell 1
  • the DCI e is the first DCI format
  • the DCI e can schedule the PDSCH 6 of the serving cell 1 and the PDSCH 7 transmitted by the serving cell 2.
  • the DCI f is transmitted through the serving cell 2
  • the DCI f is the second DCI format
  • the DCI f can schedule the PDSCH 8.
  • the terminal device may determine that the length of the first HARQ feedback codebook is 8 bits according to the DAI carried by the DCI f transmitted in PDCCH monitoring opportunity 4.
  • the first HARQ feedback codebook can be: ⁇ ACK/NACK PDSCH 1 , ACK/NACK PDSCH 2 , ACK/NACK PDSCH 3 , ACK/NACK PDSCH 4 , ACK/NACK PDSCH 5 , NACK, NACK, ACK/NACK PDSCH 8 ⁇
  • the terminal device can determine that two pieces of downlink information are missed. However, whether the two downlink information are scheduled by one DCI or two DCIs are scheduled separately is transparent to the terminal device.
  • the terminal device determines the first HARQ feedback codebook based on the first DAI, which may be implemented in the following manner:
  • the bits of +2*N-1 are respectively filled with the HARQ-ACK information corresponding to the N downlink information scheduled by the first DCI;
  • the arrangement order of the HARQ-ACK information corresponding to the N downlink information in the first HARQ feedback codebook is related to the index value of the serving cell where the N downlink information is located;
  • the second condition includes: the terminal device is not configured with the first parameter, and the value of the second parameter configured on at least one serving cell among the serving cells where the N PDSCHs are located is 2.
  • the terminal device when the terminal device is not configured with HARQ-ACK spatial bundling (that is, the terminal device is not configured with harq-ACK-SpatialBundlingPUCCH), and the DCI of the terminal device on at least one serving cell can schedule two codewords (that is, the terminal device It is configured to receive 2 TB in at least one serving cell), then the terminal device can determine 2*N bits in the first HARQ feedback codebook according to the value of the first DAI, and fill the N bits of the first DCI scheduling respectively HARQ-ACK information corresponding to each downlink information, and each downlink information corresponds to 2 TB.
  • the terminal device may fill in the HARQ-ACK information respectively corresponding to the N pieces of downlink information in the first HARQ feedback codebook according to the order of the index values of the serving cells where the N pieces of downlink information are located.
  • the positions of the HARQ-ACK information corresponding to the multiple TBs transmitted by each serving cell in the first HARQ feedback codebook are adjacent.
  • the terminal device can be in 2*T D *j+2*( The bits of the first DAI-2) are filled with the HARQ-ACK bit information corresponding to the first TB transmitted by the serving cell with a smaller index value, at the 2nd*T D *j+2*(first DAI-1) Fill the bits of the HARQ-ACK information of the second TB transmitted by the serving cell with a smaller index value.
  • the terminal device when the terminal device is configured with DCI that can schedule 2 codewords in any serving cell, the terminal device may determine that the length of the first HARQ feedback codebook is 10 bits, and the length of the first HARQ feedback codebook is 10 bits.
  • a HARQ feedback codebook is: ⁇ ACK/NACK PDSCH 1, TB1 , ACK/NACK PDSCH 1, TB2 , ACK/NACK PDSCH 2, TB1 , ACK/NACK PDSCH 2, TB2 , ACK/NACK PDSCH 3, TB1 , ACK/ NACK PDSCH 3, TB2 , ACK/NACK PDSCH 4, TB1 , ACK/NACK PDSCH 4, TB2 , ACK/NACK PDSCH 5, TB1 , ACK/NACK PDSCH 5, TB2 ⁇ .
  • the DCI is a cycle count value
  • the terminal device continuously misses multiple DCIs
  • the number of bits in the first HARQ feedback codebook generated by the terminal device will be different from the first HARQ feedback codebook that the network device expects the terminal device to generate.
  • HARQ feedbacks the number of bits in the codebook to understand the inconsistency.
  • the network device can transmit downlink information to the terminal device in the serving cell 1 and the serving cell 2, and neither the serving cell 1 nor the serving cell 2 is configured with CBG-based transmission, and the terminal device supports a maximum 1 codeword.
  • DAI is a cycle count value, and DAI contains 2 bits, that is, the maximum value of DAI is 4.
  • the PDCCH monitoring opportunity set includes PDCCH monitoring opportunity 1 to PDCCH monitoring opportunity 4 .
  • the network device can transmit DCI a through serving cell 1 in PDCCH monitoring opportunity 1, and DCI a is the second DCI format for scheduling PDSCH 1.
  • DCI b is the second DCI format for scheduling PDSCH 2.
  • the network device transmits DCI c through the serving cell 1, and the DCI c is the second DCI format for scheduling PDSCH 3.
  • DCI d is transmitted through serving cell 2
  • DCI d is the first DCI format
  • DCI d can schedule PDSCH 4 of serving cell 1 and PDSCH 5 of serving cell 2.
  • the network device can also transmit DCI e through serving cell 1 in PDCCH monitoring opportunity 3, and DCI e is the second DCI format for scheduling PDSCH 6.
  • the DCI f is transmitted through the serving cell 2
  • the DCI f is the first DCI format, which is used to schedule the PDSCH 7 of the serving cell 1 and the PDSCH 8 of the serving cell 2.
  • the DCI g is transmitted through the serving cell 2, and the DCI g is the first DCI format, which is used to schedule the PDSCH 9 of the serving cell 1 and the PDSCH 10 of the second serving cell.
  • DCI g's DAI 2.
  • the terminal device if the terminal device misses the DCI e and DCI f transmitted in PDCCH monitoring opportunity 3, the terminal device will determine the length of the final HARQ feedback codebook to be 6 bits according to the last DCI g. However, the network device expects the HARQ feedback information generated by the terminal device to be 10 bits.
  • the terminal device sets the value of j to j+1;
  • the second DAI is carried by the second DCI;
  • the serving cell where the downlink information scheduled by the second DCI is located includes the serving cell whose index value is the first index value, the first index value is smaller than the second index value, and the terminal device is in the index No downlink information is received on the serving cell whose value is greater than the first index value and less than the second index value;
  • the second index value is the minimum value among the index values corresponding to the serving cells where the N pieces of downlink information are located.
  • the terminal device may also receive the second DCI in the PDCCH monitoring opportunity set.
  • the second DCI includes the second DAI.
  • the second DCI may be in the first DCI format or in the second DCI format; that is, the second DCI may schedule one downlink information, or may schedule multiple downlink information, which is not discussed in this embodiment of the present application. Do limited.
  • the terminal device may receive the first DCI and the second DCI in the same PDCCH monitoring opportunity. In the same PDCCH monitoring opportunity, the terminal device can detect the DCI in descending order of the index values of the serving cells.
  • the terminal device detects that the downlink information of the second DCI schedule includes a serving cell with an index value of the first index value, the first index value is smaller than the second index value, and the terminal device has an index value greater than the first index value and less than the second index value If no downlink information is received on the serving cells between the index values, it can be considered that the second DCI is received before the first DCI.
  • the terminal device detects that the serving cell where the downlink information of the second DCI scheduling is located includes a serving cell with an index value of the first index value, and the first index value is smaller than the serving cell of the serving cell where the multiple downlink information of the first DCI scheduling is located The minimum value of the index value of , and the terminal device has not received downlink information on the serving cell whose index value is between the first index value and the minimum index value of the above-mentioned serving cell, then the second DCI can be considered as the first DCI Received before. In this scenario, the terminal device determines that it may have consecutive missed detections.
  • the first index value may be an index value of any one of the serving cells in which the plurality of downlink information scheduled by the second DCI is located.
  • the first index value may be a maximum index value among multiple serving cells, or the first index value may be a minimum index value among multiple serving cells, which is not limited in this embodiment of the present application.
  • the first index value is the index value of the serving cell where the downlink information scheduled by the second DCI is located.
  • the terminal device detects that the index value of the serving cell where a certain downlink information scheduled by the second DCI is located is smaller than the minimum index value among the N serving cells associated with the first DCI, and the terminal device's two serving cells If no downlink information is received on the serving cell between the index values of , it can be considered that the terminal device may be continuously missed.
  • the construction process of the first HARQ feedback codebook is as follows:
  • the terminal device receives a plurality of downlink information scheduled by the first DCI, then:
  • the terminal device may, when the first condition is met, use the (T D *j+first DAI-2)th bit
  • the bits fill the HARQ-ACK information corresponding to the downlink information transmitted by the serving cell with the smaller index value among the above two serving cells.
  • the (T D *j+first DAI-1)th bit is filled with the HARQ-ACK information corresponding to the downlink information transmitted by the serving cell with a smaller index value among the above two serving cells.
  • the terminal device may, when the second condition is met, select the 2nd*T D *j+2*(th One DAI-2) bits to 2*T D *j+2*(first DAI)+1 bits are respectively filled with the HARQ-ACK information corresponding to the N downlink information scheduled by the first DCI.
  • the construction process of the first HARQ feedback codebook is as follows:
  • the terminal device determines that the current first temporary value is less than 1, and then updates the first temporary value to 1. Based on this, the terminal device fills the 0th bit in the first HARQ feedback codebook with the HARQ-ACK information corresponding to the downlink information scheduled by DCI a.
  • the terminal device determines that the current first temporary value is less than 2, and then updates the first temporary value to 2.
  • the terminal device fills the first bit in the first HARQ feedback codebook with the HARQ-ACK information corresponding to the downlink information scheduled by DCI b.
  • the terminal device can receive DCI c at PDCCH monitoring opportunity 2 and serving cell 1, and the DAI of DCI c is 3.
  • the terminal device determines that the current first temporary value is less than 3, and updates the first temporary value to 3.
  • the terminal equipment fills the second bit in the first HARQ feedback codebook with the HARQ-ACK information corresponding to the downlink information scheduled by DCI c.
  • the current first temporary value is 3, which is greater than the value of DAI in DCI d, then the value of j is adjusted to 1, and the terminal device updates the first temporary value to 1.
  • the terminal equipment fills the (4*1+1-2)th bit in the first HARQ feedback codebook, that is, the third bit into the HARQ-ACK corresponding to the downlink information in the serving cell 1 scheduled by DCI information, and the (4*1+1-1) bit, that is, the 4th bit is filled with the HARQ-ACK information corresponding to the downlink information in the serving cell 2 scheduled by DCI d.
  • the current first temporary value is 1, which is smaller than the value of DAI in DCI g.
  • the terminal device detects that the difference between the DAI of DCI g and the DAI of the previous DCI d is 1, and the current DCI g is the first DCI format, the terminal device adjusts the value of j to 2 and updates the first DCI format.
  • the temporary value is 2.
  • the terminal device can fill the (4*2+2-2)th bit in the first HARQ feedback codebook, that is, the 8th bit, with the HARQ-ACK corresponding to the downlink information in the serving cell 1 scheduled by DCIg information, and the (4*2+2-1) bit, that is, the 9th bit is filled with the HARQ-ACK information corresponding to the downlink information in the serving cell 2 scheduled by the DCI g.
  • the method for determining the HARQ feedback codebook provided by the embodiment of the present application can avoid that the number of bits contained in the HARQ feedback codebook generated by the terminal device due to continuous DCI miss detection is different from the HARQ feedback that the network device expects the terminal device to generate.
  • the number of bits contained in the codebook understanding the inconsistency problem.
  • sequence numbers of the above-mentioned processes do not mean the order of execution, and the order of execution of the processes should be determined by their functions and internal logic, and should not be used in this application.
  • the implementation of the examples constitutes no limitation.
  • the terms “downlink”, “uplink” and “sidelink” are used to indicate the transmission direction of signals or data, wherein “downlink” is used to indicate that the transmission direction of signals or data is sent from the station The first direction to the user equipment in the cell, “uplink” is used to indicate that the signal or data transmission direction is the second direction sent from the user equipment in the cell to the station, and “side line” is used to indicate that the signal or data transmission direction is A third direction sent from UE1 to UE2.
  • “downlink signal” indicates that the transmission direction of the signal is the first direction.
  • the term “and/or” is only an association relationship describing associated objects, indicating that there may be three relationships. Specifically, A and/or B may mean: A exists alone, A and B exist simultaneously, and B exists alone. In addition, the character "/" in this article generally indicates that the contextual objects are an "or” relationship.
  • FIG. 8 is a schematic diagram of the first structural composition of the device for determining the HARQ feedback codebook provided by the embodiment of the present application, which is applied to a terminal device.
  • the device 80 for determining the HARQ feedback codebook includes:
  • the first communication interface 81 is configured to receive first downlink control information DCI; the first DCI carries a first downlink allocation index DAI;
  • the value of the first DAI is the first cumulative number, or the sum of the first cumulative number and the first adjustment amount;
  • the first cumulative number is the current physical downlink control channel PDCCH monitoring opportunity and the current serving cell So far, the cumulative number of downlink information associated with DCI;
  • the first adjustment amount is related to at least one downlink information associated with target DCI;
  • the at least one downlink information includes the current PDCCH monitoring opportunity, up to the current serving cell, DCI transmitted by the network device for scheduling multiple downlink information;
  • the first processing unit 82 is configured to determine a first HARQ feedback codebook based on the first DAI.
  • the first adjustment amount is the number of downlink information of the serving cell whose index value is greater than the index value of the current serving cell in the serving cell where the plurality of downlink information scheduled by the at least one target DCI is located .
  • the at least one target DCI exists up to the current serving cell, and the plurality of downlink information scheduled by the at least one target DCI is located in the serving cell If there is a serving cell with an index value greater than the index value of the current serving cell, the value of the first DAI is the sum of the first accumulated number and the first adjustment amount.
  • the first The value of DAI is the first cumulative number.
  • the format of the first DCI is the first DCI format; the first DCI format indicates that the first DCI is used to schedule N downlink information; N is an integer greater than or equal to 2;
  • the format of the first DCI is a second DCI format; the second DCI format indicates that the first DCI is used to schedule a piece of downlink information.
  • the first DCI is a first DCI format; when the terminal device satisfies the first condition, the first processing unit 82 is specifically configured to, in the first HARQ feedback codebook
  • the bits from the (T D *j+first DAI-N) to the (T D *j+first DAI-1) bits in the are respectively filled with the N pieces of downlink information corresponding to the first DCI scheduling HARQ-ACK information; the arrangement order of the HARQ-ACK information corresponding to the N downlink information in the first HARQ feedback codebook is related to the index value of the serving cell where the N downlink information is located;
  • T D is determined according to the number of bits occupied by the first DAI in the first DCI, and j is the number of occurrences of the maximum value of DAI until the current PDCCH monitoring opportunity and the current serving cell.
  • the first condition includes at least one of the following:
  • the terminal device is configured with a first parameter, and the value of the second parameter configured by the terminal device on at least one serving cell among the serving cells where the N pieces of downlink information are located is 2;
  • the value of the second parameter configured on each of the serving cells where the N pieces of downlink information are located is 1;
  • the first parameter is used to enable HARQ-ACK spatial bundling
  • the second parameter is used to indicate the maximum number of codewords that can be scheduled by one DCI.
  • the first condition includes any condition except the following conditions:
  • the terminal device is not configured with the first parameter, and the value of the second parameter configured on at least one of the serving cells in which the N pieces of downlink information are located is 2; the first parameter is used to use HARQ-ACK spatial bundling is possible, and the second parameter is used to indicate the maximum number of codewords that can be scheduled by one DCI.
  • the first DCI is a first DCI format; when the terminal device satisfies the second condition, the first processing unit 82 is specifically configured to, in the first HARQ feedback codebook Bits of the 2*T D *j+2*(first DAI-N), to the bits of the 2*T D *j+2*(first DAI-N)+2*N-1 , respectively filling the HARQ-ACK information corresponding to the N downlink information scheduled by the first DCI; the arrangement order of the HARQ-ACK information corresponding to the N downlink information in the first HARQ feedback codebook is the same as the N The index value of the serving cell where the downlink information is located;
  • T D is determined according to the number of bits occupied by the first DAI in the first DCI, and j is the number of times that DAI is the maximum value until the current PDCCH monitoring opportunity and the current serving cell;
  • the second condition includes: the terminal device is not configured with the first parameter, and the value of the second parameter configured on at least one serving cell among the serving cells where the N pieces of downlink information are located is 2.
  • the first processing unit 82 is further configured to set the terminal device to set The value of j is j+1;
  • the second DAI is carried by the second DCI;
  • the serving cell where the downlink information scheduled by the second DCI is located includes a serving cell whose index value is a first index value, and the first index value is smaller than the second index value , and the terminal device does not receive downlink information on serving cells whose index values are greater than the first index value and less than the second index value;
  • the second index value is a minimum value among index values of serving cells corresponding to serving cells where the N pieces of downlink information are located.
  • FIG. 9 is a schematic diagram of the structure and composition of the device for determining the HARQ feedback codebook provided by the embodiment of the present application. It is applied to network equipment. As shown in FIG. 9, the device 90 for determining the HARQ feedback codebook includes:
  • the second communication interface 91 is configured for the network device to send first downlink control information DCI; the first DCI carries a first downlink allocation index DAI;
  • the value of the first DAI is the first cumulative number, or the sum of the first cumulative number and the first adjustment amount;
  • the first cumulative number is the current physical downlink control channel PDCCH monitoring opportunity and the current serving cell So far, the cumulative number of downlink information associated with DCI;
  • the first adjustment amount is related to the downlink information associated with at least one target DCI;
  • the at least one target DCI includes the current PDCCH monitoring opportunity, up to the current serving cell, DCI transmitted by the network device for scheduling multiple downlink information;
  • the second processing unit 92 is configured to determine a first HARQ feedback codebook based on the first DAI.
  • the first adjustment amount is the downlink information of the serving cell whose index value is larger than the index value of the current serving cell in the serving cell where the plurality of downlink information scheduled by the at least one target DCI is located. number.
  • the at least one target DCI exists up to the current serving cell, and the plurality of downlink information scheduled by the at least one target DCI is located in the serving cell , there is a serving cell whose index value is greater than the index value of the current serving cell, then the value of the first DAI is the sum of the first accumulated number and the first adjustment amount.
  • the first The value of DAI is the first cumulative number.
  • the format of the first DCI is the first DCI format; the first DCI format indicates that the first DCI is used to schedule N downlink information; N is an integer greater than or equal to 2;
  • the format of the first DCI is a second DCI format; the second DCI format indicates that the first DCI is used to schedule a piece of downlink information.
  • the device 90 for determining the HARQ feedback codebook further includes: a second communication interface 91;
  • the first DCI is a first DCI format; when the terminal device satisfies the first condition, the (T D *j+first DAI in the first HARQ feedback codebook The bits from -N) to the (T D *j+first DAI-1) bits are respectively filled with the HARQ-ACK information corresponding to the N downlink information scheduled by the first DCI; the N downlink The arrangement order of the HARQ-ACK information corresponding to the information in the first HARQ feedback codebook is related to the index value of the serving cell where the N pieces of downlink information are located;
  • T D is determined according to the number of bits occupied by the first DAI in the first DCI
  • j is the number of occurrences of the maximum value of DAI until the current PDCCH monitoring opportunity and the current serving cell.
  • the first condition includes at least one of the following:
  • the terminal device is configured with a first parameter, and the value of the second parameter configured by the terminal device on at least one serving cell among the serving cells where the N pieces of downlink information are located is 2;
  • the value of the second parameter configured by the terminal device on each of the serving cells where the N pieces of downlink information are located is 1;
  • the first parameter is used to enable HARQ-ACK spatial bundling
  • the second parameter is used to indicate the maximum number of codewords that can be scheduled by one DCI.
  • the first condition includes any condition except the following conditions:
  • the terminal device is not configured with the first parameter, and the value of the second parameter configured on at least one of the serving cells in which the N pieces of downlink information are located is 2; the first parameter is used to use HARQ-ACK spatial bundling is possible, and the second parameter is used to indicate the maximum number of codewords that can be scheduled by one DCI.
  • the first DCI is a first DCI format; when the terminal device satisfies the second condition, the 2nd*T D *j+2* in the first HARQ feedback codebook (first DAI-N) bits, to 2*T D *j+2*(first DAI-N)+2*N-1 bits, respectively filled with the N of the first DCI scheduling
  • T D is determined according to the number of bits occupied by the first DAI in the first DCI, and j is the number of times that DAI is the maximum value until the current PDCCH monitoring opportunity and the current serving cell;
  • the second condition includes: the terminal device is not configured with the first parameter, and the value of the second parameter configured on at least one serving cell among the serving cells where the N PDSCHs are located is 2.
  • the second processing unit 92 is further configured to: if the difference between the first DAI minus the second DAI is less than N, and the first DCI is in the first DCI format, the network The device sets the value of j to j+1;
  • the second DAI is carried by the second DCI;
  • the serving cell where the downlink information scheduled by the second DCI is located includes a serving cell whose index value is a first index value, and the first index value is smaller than the second index value , and the terminal device does not receive downlink information on a serving cell whose index value is greater than the first index value and less than the second index value;
  • the second index value is a minimum value among index values corresponding to serving cells where the N pieces of downlink information are located.
  • Fig. 10 is a schematic structural diagram of a communication device 1000 provided by an embodiment of the present application.
  • the communication device may be a terminal device or a network device.
  • the communication device 1000 shown in FIG. 10 includes a processor 1010, and the processor 1010 can invoke and run a computer program from a memory, so as to implement the method in the embodiment of the present application.
  • the communication device 1000 may further include a memory 1020 .
  • the processor 1010 can invoke and run a computer program from the memory 1020, so as to implement the method in the embodiment of the present application.
  • the memory 1020 may be an independent device independent of the processor 1010 , or may be integrated in the processor 1010 .
  • the communication device 1000 may further include a transceiver 1030, and the processor 1010 may control the transceiver 1030 to communicate with other devices, specifically, to send information or data to other devices, or receive other Information or data sent by the device.
  • the processor 1010 may control the transceiver 1030 to communicate with other devices, specifically, to send information or data to other devices, or receive other Information or data sent by the device.
  • the transceiver 1030 may include a transmitter and a receiver.
  • the transceiver 1030 may further include antennas, and the number of antennas may be one or more.
  • the communication device 1000 may specifically be the network device of the embodiment of the present application, and the communication device 1000 may implement the corresponding processes implemented by the network device in each method of the embodiment of the present application. For the sake of brevity, details are not repeated here.
  • the operations performed by the second processing unit 92 shown in FIG. 9 may be implemented by the processor 1010 in the communication device 1000 .
  • the operations performed by the second communication interface 91 shown in FIG. 9 may be implemented by the transceiver 1030 in the communication device 1000 .
  • the communication device 1000 may specifically be the mobile terminal/terminal device of the embodiment of the present application, and the communication device 1000 may implement the corresponding processes implemented by the mobile terminal/terminal device in each method of the embodiment of the present application, for the sake of brevity , which will not be repeated here.
  • the operations performed by the first processing unit 82 shown in FIG. 8 may be implemented by the processor 1010 in the communication device 1000 .
  • the operations performed by the first communication interface 81 shown in FIG. 8 may be implemented by the transceiver 1030 in the communication device 1000 .
  • FIG. 11 is a schematic structural diagram of a chip according to an embodiment of the present application.
  • the chip 1100 shown in FIG. 11 includes a processor 1110, and the processor 1110 can call and run a computer program from a memory, so as to implement the method in the embodiment of the present application.
  • the chip 1100 may further include a memory 1120 .
  • the processor 1110 can invoke and run a computer program from the memory 1120, so as to implement the method in the embodiment of the present application.
  • the memory 1120 may be an independent device independent of the processor 1110 , or may be integrated in the processor 1910 .
  • the chip 1100 may also include an input interface 1130 .
  • the processor 1110 can control the input interface 1130 to communicate with other devices or chips, specifically, can obtain information or data sent by other devices or chips.
  • the chip 1100 may also include an output interface 1140 .
  • the processor 1110 can control the output interface 1140 to communicate with other devices or chips, specifically, can output information or data to other devices or chips.
  • the chip can be applied to the network device in the embodiment of the present application, and the chip can implement the corresponding processes implemented by the network device in the methods of the embodiment of the present application.
  • the chip can implement the corresponding processes implemented by the network device in the methods of the embodiment of the present application.
  • the chip can be applied to the mobile terminal/terminal device in the embodiments of the present application, and the chip can implement the corresponding processes implemented by the mobile terminal/terminal device in the various methods of the embodiments of the present application.
  • the chip can implement the corresponding processes implemented by the mobile terminal/terminal device in the various methods of the embodiments of the present application.
  • the chip can implement the corresponding processes implemented by the mobile terminal/terminal device in the various methods of the embodiments of the present application.
  • the chip can be applied to the mobile terminal/terminal device in the embodiments of the present application, and the chip can implement the corresponding processes implemented by the mobile terminal/terminal device in the various methods of the embodiments of the present application.
  • the chip mentioned in the embodiment of the present application may also be called a system-on-chip, a system-on-chip, a system-on-a-chip, or a system-on-a-chip.
  • Fig. 12 is a schematic block diagram of a communication system 1200 provided by an embodiment of the present application. As shown in FIG. 12 , the communication system 1200 includes a terminal device 1210 and a network device 1220 .
  • the terminal device 1210 can be used to realize the corresponding functions realized by the terminal device in the above method
  • the network device 1220 can be used to realize the corresponding functions realized by the network device in the above method.
  • the processor in the embodiment of the present application may be an integrated circuit chip, which has a signal processing capability.
  • each step of the above-mentioned method embodiments may be completed by an integrated logic circuit of hardware in a processor or instructions in the form of software.
  • the above-mentioned processor can be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application-specific integrated circuit (Application Specific Integrated Circuit, ASIC), an off-the-shelf programmable gate array (Field Programmable Gate Array, FPGA) or other available Program logic devices, discrete gate or transistor logic devices, discrete hardware components.
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • a general-purpose processor may be a microprocessor, or the processor may be any conventional processor, or the like.
  • the steps of the method disclosed in connection with the embodiments of the present application may be directly implemented by a hardware decoding processor, or implemented by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, register.
  • the storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiments of the present application may be a volatile memory or a nonvolatile memory, or may include both volatile and nonvolatile memories.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electronically programmable Erase Programmable Read-Only Memory (Electrically EPROM, EEPROM) or Flash.
  • the volatile memory can be Random Access Memory (RAM), which acts as external cache memory.
  • RAM Static Random Access Memory
  • SRAM Static Random Access Memory
  • DRAM Dynamic Random Access Memory
  • Synchronous Dynamic Random Access Memory Synchronous Dynamic Random Access Memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM, DDR SDRAM enhanced synchronous dynamic random access memory
  • Enhanced SDRAM, ESDRAM synchronous connection dynamic random access memory
  • Synchlink DRAM, SLDRAM Direct Memory Bus Random Access Memory
  • Direct Rambus RAM Direct Rambus RAM
  • the memory in the embodiment of the present application may also be a static random access memory (static RAM, SRAM), a dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM), etc. That is, the memory in the embodiments of the present application is intended to include, but not be limited to, these and any other suitable types of memory.
  • the embodiment of the present application also provides a computer-readable storage medium for storing computer programs.
  • the computer-readable storage medium can be applied to the network device in the embodiments of the present application, and the computer program enables the computer to execute the corresponding processes implemented by the network device in the methods of the embodiments of the present application.
  • the computer program enables the computer to execute the corresponding processes implemented by the network device in the methods of the embodiments of the present application.
  • the computer-readable storage medium can be applied to the mobile terminal/terminal device in the embodiments of the present application, and the computer program enables the computer to execute the corresponding processes implemented by the mobile terminal/terminal device in the various methods of the embodiments of the present application , for the sake of brevity, it is not repeated here.
  • the embodiment of the present application also provides a computer program product, including computer program instructions.
  • the computer program product may be applied to the network device in the embodiment of the present application, and the computer program instructions cause the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the Let me repeat for the sake of brevity, the Let me repeat.
  • the computer program product can be applied to the mobile terminal/terminal device in the embodiments of the present application, and the computer program instructions cause the computer to execute the corresponding processes implemented by the mobile terminal/terminal device in the methods of the embodiments of the present application, For the sake of brevity, details are not repeated here.
  • the embodiment of the present application also provides a computer program.
  • the computer program can be applied to the network device in the embodiment of the present application.
  • the computer program executes the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer program executes the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer program can be applied to the mobile terminal/terminal device in the embodiment of the present application.
  • the computer program executes each method in the embodiment of the present application to be implemented by the mobile terminal/terminal device
  • the corresponding process will not be repeated here.
  • the disclosed systems, devices and methods may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the functions described above are realized in the form of software function units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the prior art or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory,) ROM, random access memory (Random Access Memory, RAM), magnetic disk or optical disc, etc., which can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种HARQ反馈码本的确定方法及装置、终端设备、网络设备,该方法包括:终端设备接收第一下行控制信息DCI;所述第一DCI中携带第一下行分配索引DAI;其中,所述第一DAI的取值为第一累计数目,或者,第一累计数目和第一调整量之和;所述第一累计数目为到当前物理下行控制信道PDCCH监测机会和当前服务小区为止,DCI关联的下行信息的累计个数;所述第一调整量与至少一个目标DCI关联的下行信息相关;所述至少一个目标DCI包括所述当前PDCCH监测机会中,到所述当前服务小区为止,网络设备传输的用于调度多个下行信息的DCI;所述终端设备基于所述第一DAI,确定第一HARQ反馈码本。

Description

混合自动重传反馈码本的确定方法、装置及设备 技术领域
本申请实施例涉及移动通信技术领域,具体涉及一种混合自动重传反馈码本的确定方法、装置及设备。
背景技术
为了提高频谱效率,同时保证第4代移动通信网络(the 4th generation mobile communication technology,4G)到第5代移动通信网络(the 5th generation mobile communication technology,5G)的平滑过渡,第三代合作伙伴计划(3rd Generation Partnership Project,3GPP)提出了长期演进技术(Long Term Evolution,LTE)系统和新空口(New Radio,NR)系统之间的动态频谱共享(Dynamic Spectrum Sharing,DSS)技术。DSS是指在同一频段内为LTE系统和NR系统动态、灵活的分配频谱资源。
实际应用中,为了避免NR系统对LTE系统的干扰,在LTE和NR共享的频谱资源中,NR传输无法使用LTE小区参考信号(Cell Reference Signal,CRS)和LTE物理下行控制信道(Physical Downlink Control CHannel,PDCCH)的资源。因此,在DSS中,NR PDCCH的容量将会受到影响。
为了解决DSS中PDCCH的资源使用受限问题,在NR的版本17(Release 17,R17)中支持一个下行控制信息(Downlink Control Information,DCI)调度多个下行信息,这里,多个下行信息位于不同的服务小区(也可以称为载波)中。例如,在主小区(Primary Cell,PCell),或者辅小区(Secondary Cell,SCell)中传输的一个DCI,可以同时调度PCell的物理下行共享信道(Physical Downlink Share CHannel,PDSCH)和SCell的PDSCH。然而,在同一个DCI调度的多个下行信息的场景中,如何确定多个下行信息对应的混合自动重传(Hybrid Automatic Repeat ReQuest,HARQ)反馈码本,目前并没有明确的方法。
发明内容
本申请实施例提供一种HARQ反馈码本的确定方法、装置及设备,以解决一个DCI调度多个下行信息时,无法确定HARQ反馈码本的问题。
第一方面,本申请实施例提供一种HARQ反馈码本的确定方法,包括:
终端设备接收第一DCI;所述第一DCI中携带第一下行分配索引(Downlink Assignment Index,DAI);
其中,所述第一DAI的取值为第一累计数目,或者,第一累计数目和第一调整量之和;所述第一累计数目为到当前PDCCH监测机会和当前服务小区为止,DCI关联的下行信息的累计个数;所述第一调整量与至少一个目标DCI关联的下行信息相关;所述至少一个目标DCI包括所述当前PDCCH监测机会中,到所述当前服务小区为止,网络设备传输的用于调度多个下行信息的DCI;
所述终端设备基于所述第一DAI,确定第一HARQ反馈码本。
第二方面,本申请实施例提供一种HARQ反馈码本的确定方法,包括:
网络设备发送第一DCI;所述第一DCI中携带第一DAI;
其中,所述第一DAI的取值为第一累计数目,或者,第一累计数目和第一调整量之和;所述第一累计数目为到当前PDCCH监测机会和当前服务小区为止,DCI关联的下行信息的累计个数;所述第一调整量与至少一个目标DCI关联的下行信息相关;所述至少一个目标DCI包括所述当前PDCCH监测机会中,到所述当前服务小区为止,网络设备传输的用于调度多个下行信息的DCI;
所述网络设备基于所述第一DAI,确定第一HARQ反馈码本。
第三方面,本申请实施例提供一种ARQ反馈码本的确定装置,应用于终端设备,包括:
第一通信接口,配置为收第一DCI;所述第一DCI中携带第一DAI;
其中,所述第一DAI的取值为第一累计数目,或者,第一累计数目和第一调整量之和;所述第一累计数目为到当前PDCCH监测机会和当前服务小区为止,DCI关联的下行信息的累计个数;所 述第一调整量与至少一个目标DCI关联的下行信息相关;所述至少一个目标DCI包括所述当前PDCCH监测机会中,到所述当前服务小区为止,网络设备传输的用于调度多个下行信息DCI;
第一处理单元,配置为基于所述第一DAI,确定第一HARQ反馈码本。
第四方面,本申请实施例提供一种ARQ反馈码本的确定装置,应用于网络设备,包括:
第二通信接口,配置为发送第一DCI;所述第一DCI中携带第一DAI;
其中,所述第一DAI的取值为第一累计数目,或者,第一累计数目和第一调整量之和;所述第一累计数目为到当前PDCCH监测机会和当前服务小区为止,DCI关联的下行信息的累计个数;所述第一调整量与至少一个目标DCI关联的下行信息相关;所述至少一个目标DCI包括所述当前PDCCH监测机会中,到所述当前服务小区为止,网络设备传输的用于调度多个下行信息的DCI;
第二处理单元,配置为基于所述第一DAI,确定第一HARQ反馈码本。
第五方面,本申请实施例提供一种终端设备,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行上述第一方面所述的HARQ反馈码本的确定方法。
第六方面,本申请实施例提供一种网络设备,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行上述第二方面所述的HARQ反馈码本的确定方法。
本申请实施例提供的芯片,用于实现上述的HARQ反馈码本的确定方法。
具体地,该芯片包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该芯片的设备执行上述的HARQ反馈码本的确定方法。
本申请实施例提供的计算机可读存储介质,用于存储计算机程序,该计算机程序使得计算机执行上述的HARQ反馈码本的确定方法。
本申请实施例提供的计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行上述的HARQ反馈码本的确定方法。
本申请实施例提供的计算机程序,当其在计算机上运行时,使得计算机执行上述的HARQ反馈码本的确定方法。
本申请实施例提供的HARQ反馈码本的确定方法中,终端设备接收第一DCI;所述第一DCI中携带第一DAI;其中,第一DAI的取值为第一累计数目,或者,第一累计数目和第一调整量之和;第一累计数目为到当前PDCCH监测机会和当前服务小区为止,DCI关联的下行信息的累计个数;第一调整量与至少一个目标DCI关联的下行信息相关;至少一个目标DCI包括当前PDCCH监测机会中,到当前服务小区为止,网络设备传输的用于调度多个下行信息的DCI;终端设备基于第一DAI,确定第一HARQ反馈码本。可以看出,第一DCI中携带的第一DAI不仅可以累计截止到当前PDCCH监测机会和当前服务小区为止的DCI调度的下行信息个数,还可以累计用于调度多个下行信息的目标DCI关联的下行信息个数。这样,终端设备根据第一DAI的取值确定出的第一HARQ反馈码本中,可以包括至少一个目标DCI调度的多个下行信息分别对应的HARQ-ACK信息,如此,提升了信息传输的效率。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1是本申请实施例的一个应用场景的示意图;
图2A是本申请实施例提供的相关技术中的数据传输示意图一;
图2B是本申请实施例提供的相关技术中的数据传输示意图二;
图3是本申请实施例提供的一种HARQ反馈码本的确定方法的流程示意图;
图4A是本申请实施例提供的一种数据传输示意图一;
图4B是本申请实施例提供的一种数据传输示意图二;
图5是本申请实施例提供的一种数据传输示意图三;
图6是本申请实施例提供的一种数据传输示意图四;
图7是本申请实施例提供的一种数据传输示意图五;
图8是本申请实施例提供的一种HARQ反馈码本的确定装置的结构组成示意图一;
图9是本申请实施例提供的一种HARQ反馈码本的确定装置的结构组成示意图二;
图10是本申请实施例提供的一种通信设备示意性结构图;
图11是本申请实施例的芯片的示意性结构图;
图12是本申请实施例提供的一种通信系统的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
图1是本申请实施例的一个应用场景的示意图。
如图1所示,通信系统100可以包括终端设备110和网络设备120。网络设备120可以通过空口与终端设备110通信。终端设备110和网络设备120之间支持多业务传输。
应理解,本申请实施例仅以通信系统100进行示例性说明,但本申请实施例不限定于此。也就是说,本申请实施例的技术方案可以应用于各种通信系统,例如:LTE系统、LTE时分双工(Time Division Duplex,TDD)、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、物联网(Internet of Things,IoT)系统、窄带物联网(Narrow Band Internet of Things,NB-IoT)系统、增强的机器类型通信(enhanced Machine-Type Communications,eMTC)系统、5G通信系统(也称为新无线(New Radio,NR)通信系统),或未来的通信系统等。
在图1所示的通信系统100中,网络设备120可以是与终端设备110通信的接入网设备。接入网设备可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备110进行通信。
网络设备120可以是LTE系统中的演进型基站(Evolutional Node B,eNB或eNodeB),或者是下一代无线接入网(Next Generation Radio Access Network,NG RAN)设备,或者是NR系统中的基站(gNB),或者是云无线接入网络(Cloud Radio Access Network,CRAN)中的无线控制器,或者该网络设备120可以为中继站、接入点、车载设备、可穿戴设备、集线器、交换机、网桥、路由器,或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)中的网络设备等。
终端设备110可以是任意终端设备,其包括但不限于与网络设备120或其它终端设备采用有线或者无线连接的终端设备。
例如,所述终端设备110可以指接入终端、用户设备(User Equipment,UE)、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、IoT设备、卫星手持终端、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、5G网络中的终端设备或者未来演进网络中的终端设备等。
终端设备110可以用于设备到设备(Device to Device,D2D)的通信。
无线通信系统100还可以包括与基站进行通信的核心网设备130,该核心网设备130可以是5G核心网(5G Core,5GC)设备,例如,接入与移动性管理功能(Access and Mobility Management Function,AMF),又例如,认证服务器功能(Authentication Server Function,AUSF),又例如,用户面功能(User Plane Function,UPF),又例如,会话管理功能(Session Management Function,SMF)。可选地,核心网络设备130也可以是LTE网络的分组核心演进(Evolved Packet Core,EPC)设备,例如,会话管理功能+核心网络的数据网关(Session Management Function+Core Packet Gateway,SMF+PGW-C)设备。应理解,SMF+PGW-C可以同时实现SMF和PGW-C所能实现的功能。在网络演进过程中,上述核心网设备也有可能叫其它名字,或者通过对核心网的功能进行划分形成新的网络实体,对此本申请实施例不做限制。
通信系统100中的各个功能单元之间还可以通过下一代网络(next generation,NG)接口建立连接实现通信。
例如,终端设备通过NR接口与接入网设备建立空口连接,用于传输用户面数据和控制面信令;终端设备可以通过NG接口1(简称N1)与AMF建立控制面信令连接;接入网设备例如下一代无线接入基站(gNB),可以通过NG接口3(简称N3)与UPF建立用户面数据连接;接入网设备可以通过NG接口2(简称N2)与AMF建立控制面信令连接;UPF可以通过NG接口4(简称N4)与SMF建立控制面信令连接;UPF可以通过NG接口6(简称N6)与数据网络交互用户面数据; AMF可以通过NG接口11(简称N11)与SMF建立控制面信令连接;SMF可以通过NG接口7(简称N7)与PCF建立控制面信令连接。
图1示例性地示出了一个基站、一个核心网设备和两个终端设备,可选地,该无线通信系统100可以包括多个基站设备并且每个基站的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。
需要说明的是,图1只是以示例的形式示意本申请所适用的系统,当然,本申请实施例所示的方法还可以适用于其它系统。此外,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。还应理解,在本申请的实施例中提到的“指示”可以是直接指示,也可以是间接指示,还可以是表示具有关联关系。举例说明,A指示B,可以表示A直接指示B,例如B可以通过A获取;也可以表示A间接指示B,例如A指示C,B可以通过C获取;还可以表示A和B之间具有关联关系。还应理解,在本申请的实施例中提到的“对应”可表示两者之间具有直接对应或间接对应的关系,也可以表示两者之间具有关联关系,也可以是指示与被指示、配置与被配置等关系。还应理解,在本申请的实施例中提到的“预定义”或“预定义规则”可以通过在设备(例如,包括终端设备和网络设备)中预先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,本申请对于其具体的实现方式不做限定。比如预定义可以是指协议中定义的。还应理解,本申请实施例中,所述"协议"可以指通信领域的标准协议,例如可以包括LTE协议、NR协议以及应用于未来的通信系统中的相关协议,本申请对此不做限定。
为便于理解本申请实施例的技术方案,以下对本申请实施例的相关技术进行说明,以下相关技术作为可选方案与本申请实施例的技术方案可以进行任意结合,其均属于本申请实施例的保护范围。
在介绍本申请之前,下面对本申请涉及的相关知识进行介绍。
HARQ反馈码本:终端设备可以将网络设备传输的多个下行信息的接收结果,即HARQ应答(HARQ-ACK)信息,在一个上行控制信息(Uplink Control Information,UCI)中反馈给网络设备。其中,所述下行信息可以包括以下信息中的一个或者多个:PDSCH、半静态调度(Semi-Persistent Scheduling,SPS)PDSCH释放指示信息、SCell休眠指示信息。本申请实施例对此不做限定。所述多个下行信息可以来自不同的下行时间单元和/或MIMO下的不同码字和/或载波聚合下的不同载波。
目前,通信系统可以支持两种不同的HARQ反馈码本,一种是半静态HARQ反馈码本(也被称为Type-1 HARQ-ACK反馈码本),另一种是动态HARQ反馈码本(也被称为Type-2 HARQ-ACK反馈码本)。
其中,动态HARQ反馈码本主要降低反馈信息的信令开销,即在PDCCH监测机会集合内(The set of PDCCH monitoring occasions),根据DCI实际调度的PDSCH、SPS PDSCH释放指示、以及SCell休眠指示的数量确定肯定/否定(ACK/NACK)信息的比特数。
特别地,为了应对DCI漏检的问题,网络设备可以为每个DCI配置一个DAI信息。
在网络设备只配置1个载波传输下行信息的场景中,各DCI中携带一个DAI信息,该DAI也可以称为计数DCI(Counter DCI,C-DAI)。
示例性的,参考图2A所示的一种相关技术中的数据传输示意图一,在该数据传输场景中,网络设备配置一个服务小区传输下行信息(即图2A中的服务小区1)、以及基于传输块(Transmission Block,TB)的传输方式,且每个DCI只调度1个码本。如图2A所示,网络设备向终端设备发送DCI 1~DCI 4。其中,DCI 1用于调度PDSCH 1,其对应的DAI的取值为1。DCI 2用于调度PDSCH 2,其对应的DAI的取值为2。DCI 3用于调度PDSCH 3,其对应的DAI的取值为3。DCI 4用于调度PDSCH 4,其对应的DAI的取值为4。若终端设备漏检调度PDSCH 3的DCI 3,导致终端设备未接收到PDSCH 3。终端设备接收到调度PDSCH 4的DCI 4,且对应的DAI的取值为4,则终端设备可以根据接收到的DCI 1、DCI 2和DCI 4中的DCI取值,判断出漏检PDSCH 3,则将反馈4比特HARQ-ACK信息给网络侧。
在网络设备配置多个载波传输下行信息的场景中,DAI可以包括C-DAI和总数DCI(Total DAI,T-DCI)。其中,C-DAI表示到当前服务小区和当前PDCCH监测机会,DCI关联的PDSCH、SPS PDSCH释放指示信息或者SCell休眠指示信息的累计个数。T-DAI表示到当前PDCCH监测机会,所有服务小区上的DCI关联的PDSCH接收、SPS PDSCH释放信息或者SCell休眠指示信息的累计个数。
示例性的,DCI中包含的C-DAI为2比特。网络设备配置的C-DAI为1~4的循环计数值,也就是说C-DAI的取值是在1,2,3,4之间循环,第一次出现的“1”计数为1,第二次出现的“1”实际计 数为5。基于此,动态HARQ反馈码本的构建过程如下:
首先,初始化第一临时值为0;初始化j=0,其中j表示C-DAI达到最大值的次数。
其次,按照服务小区的索引增加然后PDCCH监测机会的索引增加的顺序,遍历所有的PDCCH监测机会和服务小区。
具体地,在当前的PDCCH监测机会和当前服务小区,若终端设备接收到PDSCH或者SPS PDSCH释放信息或者SCell休眠指示信息,则:
判断DCI中携带的C-DAI和第一临时值的大小关系;
如果C-DAI的取值小于等于第一临时值,则将j+1,并更新第一临时值为C-DAI的取值;
否则,更新第一临时值,为C-DAI的取值。
如果一个DCI能够调度的最大码字数为1,则终端设备在HARQ反馈码本的第4*j+C-DAI-1的比特位上,填充DCI调度的数据的HARQ-ACK信息;
如果一个DCI能够调度的最大码字数为2,且终端设备被配置了HARQ-ACK空间捆绑,即harq-ACK-SpatialBundlingPUCCH,则终端设备在第4*j+C-DAI-1的比特位上,填充当前服务小区中DCI调度的两个TB的HARQ-ACK信息逻辑与后的取值;
如果一个DCI能够调度的最大码字数为2,且终端设备未被配置了HARQ-ACK空间捆绑,则终端设备在第2*4*j+2*(C-DAI-1)的比特位上,填充DCI调度的第一个TB的HARQ-ACK信息,在第2*4*j+2*(C-DAI-1)+1的比特位上填DCI调度的第二个TB的HARQ-ACK信息。
最后,终端设备可以根据PDCCH监听机会集合内接收到的最后一个DAI的取值,确定HARQ反馈码本的总比特数,记为O ACK,若在上述执行过程中,在HARQ反馈码本的某些比特位置上未填充相应的HARQ-ACK信息,则在这些比特位置上填充NACK。
R17中支持一个DCI调度多个服务小区中传输的下行信息。参考图2B所示的一种相关技术中的数据传输示意图一,网络设备向终端设备发送DCI 1~DCI 4。其中,DCI 1用于调度在服务小区1中传输的PDSCH 1。DCI 2用于调度在服务小区1传输的PDSCH 2,其对应的DAI的取值为2。DCI 3用于调度在服务小区1传输的PDSCH 3,以及在服务小区2传输的PDSCH4。DCI 4用于调度在服务小区1中传输的PDSCH 5。
相关技术中,当网络设备在PDCCH监测机会集合中既传输调度一个下行信息的DCI,又传输调度多个下行信息的DCI时,如果某个DCI漏检,终端设备将无法得知漏检的DCI调度的是一个下行信息的DCI还是多个下行信息的DCI。进而,终端设备无法确定对应位置应该包含1比特HARQ-ACK信息还是多个比特HARQ-ACK信息,也就是说,终端设备是无法区分下图2A和图2B中漏检的DCI 3是调度一个下行信息的DCI,还是调度多个下行信息的DCI。这将会导致网络设备和终端设备对HARQ反馈码本携带的信息理解不一致的问题。例如,在图2A中终端设备漏检的是调度一个PDSCH的DCI 3,因此终端设备构建的HARQ反馈码本需要包含4比特的信息;而在图2B中,终端设备漏检的是调度两个PDSCH的DCI 3,因此终端设备构建的HARQ反馈码本需要包含5比特的信息。
由此可见,当DCI调度两个或两个以上服务小区中的下行信息时,即一个DCI调度多个服务小区传输的下行信息时,如何确定HARQ反馈码本是本申请亟待解决的技术问题。
为了解决上述技术问题,本申请提供一种HARQ反馈码本的确定方法、装置及设备。为便于理解本申请实施例的技术方案,以下通过具体实施例详述本申请的技术方案。以上相关技术作为可选方案与本申请实施例的技术方案可以进行任意结合,其均属于本申请实施例的保护范围。本申请实施例包括以下内容中的至少部分内容。
图3为本申请一实施例提供的HARQ反馈码本的确定方法的流程示意图,如图3所示,该方法包括以下步骤:
步骤310、网络设备发送第一DCI;第一DCI中携带第一DAI,
步骤320、终端设备接收第一DCI;第一DCI中携带第一DAI;
其中,第一DAI的取值为第一累计数目,或者,第一累计数目和第一调整量之和;第一累计数目为到当前PDCCH监测机会和当前服务小区为止,DCI关联的下行信息的累计个数;第一调整量与至少一个目标DCI关联的下行信息相关;至少一个目标DCI包括当前PDCCH监测机会中,到当前服务小区为止,网络设备传输的用于调度多个下行信息的DCI。
步骤330、终端设备基于第一DAI,确定第一HARQ反馈码本。
步骤340、网络设备基于第一DAI,确定第一HARQ反馈码本。
本申请实施例中,第一DCI承载在PDCCH中传输。这里,终端设备可以在PDCCH监测机会 集合中检测网络设备发送的第一DCI。也就是说,第一DCI可以是终端设备在PDCCH监测机会集合中的任意一个PDCCH监听机会中接收。
在一些实施例中,第一DCI可以是用于调度一个下行信息的DCI,也可以是调度多个下行信息的DCI,本申请实施例对此不做限定。
本申请实施例中,第一DCI中可以携带第一DAI。第一DAI用于累计PDCCH监测机会集合中传输的下行信息的个数。
在一些实施例中,第一DAI可以是计数器型的DAI,即C-DAI。
在一些实施例中,第一DAI的取值可以是第一累计数目,或者,第一累计数目和第一调整量之和。
其中,第一累计数目为到当前PDCCH监测机会和当前服务小区为止,网络设备传输的DCI关联的下行信息的累计个数。
这里,当前PDCCH监测机会,是指接收第一DCI的PDCCH监测机会。当前服务小区,是指传输第一DCI的服务小区。
可以理解的是,第一累计数目,是在PDCCH监测机会集合中,按照先服务小区的索引值增加然后PDCCH监测机会的索引值增加的顺序进行统计,到当前传输第一DCI的PDCCH监测机会和当前传输第一DCI的服务小区为止,网络设备传输的所有DCI调度的下行信息累计个数。
在一些实施例中,第一调整量,可以与至少一个目标DCI关联的下行信息相关;至少一个目标DCI包括在当前传输第一DCI的PDCCH监测机会集合中,到当前服务小区为止,网络设备传输的用于调度多个下行信息的所有DCI。
也就是说,目标DCI是指用于调度多个下行信息的DCI。
需要说明的是,至少一个目标DCI可以包括第一DCI,也可以不包括第一DCI。若第一DCI可以调度多个下行信息,则至少一个目标DCI中包括所述第一DCI。若第一DCI仅调度一个下行信息,则至少一个目标DCI中不包括所述第一DCI。
可以理解的是,第一调整量可以根据至少一个目标DCI所关联的下行信息的个数确定。也就是说,第一调整量可以对目标DCI调度的多个下行信息进行计数,从而保证终端设备和网络设备对调度的下行信息的个数理解一致。
在一些实施例中,下行信息可以包括以下信息中的至少一个:
PDSCH、SPS PDSCH释放指示信息、SCell休眠指示信息。
进一步地,终端设备可以根据第一DAI,确定第一DCI调度的下行信息对应的HARQ-ACK信息在第一HARQ反馈码本中的比特位置,并在确定的比特位置上填充该第一DCI调度的下行信息对应的HARQ-ACK信息。
而网络设备可以根据第一DAI,确定第一DCI调度的下行信息对应的HARQ-ACK信息,位于第一HARQ反馈码中的哪些比特位中。
需要说明的是,第一HARQ反馈码本是动态HARQ反馈码本,即Type-2 HARQ-ACK反馈码本。
可选地,本申请实施例提供的方法还可以包括步骤350和360。
步骤350、终端设备向网络设备发送第一HARQ反馈码本。
步骤360、网络设备接收终端设备发送的第一HARQ反馈码本。
这样,网络设备可以根据第一HARQ反馈码本中包含的信息,确定在PDCCH监测机会集合中传输的下行信息的接收结果,并进行相应的处理。
由此可见,第一DCI中携带的第一DAI不仅可以累计截止到当前PDCCH监测机会和当前服务小区为止的DCI调度的下行信息个数,还可以累计用于调度多个下行信息的目标DCI关联的下行信息个数。这样,终端设备根据第一DAI的取值确定出的第一HARQ反馈码本中,可以包括至少一个目标DCI调度的多个下行信息分别对应的HARQ-ACK信息,如此,提升了信息传输的效率。。
在一些实施例中,若在当前PDCCH监测机会中,到当前服务小区为止,存在网络设备传输的至少一个目标DCI,且至少一个目标DCI调度的多个下行信息所在的服务小区中,存在索引值比当前服务小区的索引值大的服务小区,则第一DAI的取值为第一累计数目和第一调整量之和。
可以理解的是,在当前传输第一DCI的PDCCH监测机会中,按照服务小区的索引值增加的顺序遍历到当前服务小区,若存在网络设备传输的至少一个目标DCI(即调度多个下行信息的DCI),且当前服务小区并不是至少一个目标DCI调度的下行信息所在的最大索引值的服务小区,则第一DAI的取值为第一累计数目和第一调整量之和。
在一些实施例中,第一调整量为至少一个目标DCI调度的多个下行信息所在的服务小区中,索 引值比当前服务小区的索引值大的服务小区的下行信息的个数。
可以理解的是,网络设备可以在一个PDCCH监测机会中传输多个DCI,若网络设备传输的多个DCI中包含至少一个目标DCI(即调度多个下行信息的DCI)时,第一调整量可以是至少一个目标DCI调度的多个下行信息所在的服务小区中,索引值比当前服务小区的索引值大的服务小区上传输的所有下行信息的个数。
在一些实施例中,若在当前PDCCH监测机会中,到当前服务小区为止,不存在索引值比当前服务小区的索引值大的服务小区的下行信息,则第一DAI的取值为第一累计数目。
其中,在当前PDCCH监测机会中,到当前服务小区为止,不存在索引值比当前服务小区的索引值大的服务小区的下行信息,可以包括以下任意一种情况:
在当前PDCCH监测机会中,到当前服务小区为止,网络设备未传输目标DCI;
在当前PDCCH监测机会中,到当前服务小区为止,网络设备传输至少一个目标DCI,但是至少一个目标DCI调度的多个下行信息所在的服务小区的索引值,均小于当前服务小区的索引值,即当前服务小区为至少一个目标DCI调度的下行信息所在的最大索引值的服务小区。
在一示例中,参考图4A示的一种数据传输示意图一,PDCCH监测机会集合仅包括一个PDCCH监测机会。网络设备可以在服务小区1至服务小区4传输下行信息。
其中,网络设备可以通过服务小区1传输DCI a,DCI a可以调度服务小区1的PDSCH 1和服务小区3中的PDSCH 3。网络设备可以通过服务小区2传输DCI b,DCI b可以调度服务小区2的PDSCH 2和服务小区4中的PDSCH 4。
这里,确定DCI a对应的DAI时,可以按照服务小区的索引值增加的顺序统计。在当前PDCCH监测机会中,截止到服务小区1,存在一个用于调度多个下行信息的DCI,即DCI a。并且,DCI a调度的PDSCH所在的最大索引值的服务小区为服务小区3,其索引值大于当前服务小区1的索引值。因此,DCI a中携带的DAI的取值应为第一累计数目+第一调整量。其中,第一累计数目为1,第一调整量为服务小区3的下行信息个数,即第一调整量为1。因此,DCI a对应的DAI取值为2。
进一步地,确定DCI b对应的DAI时,可以确定在当前PDCCH监测机会中,截止到传输DCI b的当前服务小区2,存在两个调度多个下行信息的DCI,即DCI a和DCI b。并且,DCI a和DCI b调度的多个PDSCH所在的最大索引值的服务小区为服务小区4,其索引值大于当前服务小区2的索引值。因此,DCI b中携带的DAI的取值应为第一累计数目+第一调整量。其中,第一累计数目为服务小区1和服务小区2传输的PDSCH的个数,即第一累计数目为2。第一调整量为服务小区3和服务小区4的PDSCH个数,即第一调整量为2。因此,DCI b对应的DAI取值为4。
在另一示例中,参考图4B所示的一种数据传输示意图二,网络设备可以通过服务小区1传输DCI a,DCI a可以调度服务小区1的PDSCH 1和服务小区3中的PDSCH 3。网络设备可以通过服务小区2传输DCI b,DCI b可以调度服务小区2的PDSCH 2。网络设备还可以通过服务小区4传输DCI c,DCI c可以调度服务小区4的PDSCH 4。
这里,确定DCI a对应的DAI时,可以按照服务小区的索引值增加的顺序统计。在当前PDCCH监测机会中,截止到服务小区1,存在一个用于调度多个下行信息的DCI,即DCI a。并且,DCI a调度的PDSCH 3所在的最大索引值的服务小区为服务小区3,其索引值大于当前服务小区1的索引值。因此,DCI a中携带的DAI的取值应为第一累计数目+第一调整量。其中,第一累计数目为1,第一调整量为服务小区3的下行信息个数,即第一调整量为1。因此,DCI a对应的DAI取值为2。
在确定DCI b对应的DAI时,可以确定在当前PDCCH监测机会中,截止到传输DCI b的当前服务小区2,存在一个调度多个下行信息的DCI,即DCI a。并且,DCI a调度的PDSCH所在的最大索引值的服务小区为服务小区3,其索引值大于当前服务小区2的索引值。因此,DCI b中携带的DAI的取值应为第一累计数目+第一调整量。其中,第一累计数目为2,第一调整量为服务小区3的下行信息个数,即第一调整量为1。因此,DCI b对应的DAI取值为3。
在确定DCI c对应的DAI时,可以确定在当前PDCCH监测机会中,截止到传输DCI c的当前服务小区4,存在一个调度多个下行信息的DCI,即DCI a。其中,DCI a调度的PDSCH所在的最大索引值的服务小区为服务小区3,其索引值小于当前服务小区4的索引值。因此,DCI c中携带的DAI的取值应为第一累计数目。其中,第一累计数目为4,即服务小区1至服务小区4中传输的PDSCH累计个数。因此,DCI c对应的DAI取值为4。
综上所述,本申请实施例提供的反馈码本确定方法中,第一DAI的取值并未改变下行信息的计数本质,只在累计数量上做修正,可以避免DCI漏检导致网络设备和终端设备对HARQ-ACK比特数理解不一致的问题。
在一些实施例中,第一DCI的格式为第一DCI格式;第一DCI格式表示第一DCI用于调度N个下行信息;N为大于或等于2的整数;
或者,
第一DCI的格式为第二DCI格式;第二DCI格式表示所述第一DCI用于调度一个下行信息。
可以理解的是,终端设备接收到的第一DCI可以是用于调度一个下行信息的DCI,也可以是用于调度多个下行信息的DCI。
在一些实施中,可以通过DCI格式,来指示当前传输的DCI是调度一个下行信息的DCI,还是调度多个下行信息的DCI。
其中,当某个DCI的格式为第一DCI格式,则确定该DCI是调度多个下行信息的DCI。当某个DCI的格式为第二DCI格式,则确定该DCI是调度一个下行信息的DCI。这里,第二DCI格式可以是DCI格式1_0(即DCI format 1_0),或者,DCI format 1_1,或者DCI format 1_2中的任意一种,本申请实施例对此不做限定。
在一些实施例中,在第一DCI为能够调度多个下行信息的第一DCI格式的情况下,第一DCI调度的多个下行信息对应的DAI值相同,或者,第一DCI调度的多个下行信息共享同一个DAI指示域。
示例性的,参考图4A所示,DCI a调度PDSCH 1和PDSCH 3。因此,PDSCH 1和PDSCH 3对应的DAI值均为2。
本申请实施例中,同一个DCI调度的多个下行信息,共享同一个DAI,能够降低DCI信令开销。
本申请实施例中,终端设备接收到的DCI的格式不同,则确定该DCI的HARQ反馈码本的方式也就不同。
在一些实施例中,若第一DCI为调度一个下行信息的第二DCI格式,则终端设备和网络设备可以按照上述相关技术中的方式,确定第一DCI调度的下行信息在第一HARQ反馈码本中的位置,并在确定的位置中填充该下行信息对应的HARQ-ACK信息。
在一些实施例中,若第一DCI为调度N个下行信息的第一DCI格式,则终端设备和网络设备可以通过以下两种方式构建包含该N个下行信息对应的HARQ-ACK信息的第一HARQ反馈码本。
方式一、
在终端设备满足第一条件的情况下,终端设备基于第一DAI,确定第一HARQ反馈码本,可以通过以下方式实现:
终端设备在第一HARQ反馈码本中的第(T D*j+第一DAI-N)的比特位,至第(T D*j+第一DAI-1)的比特位,分别填充第一DCI调度的N个下行信息对应的HARQ-ACK信息;
其中,N个下行信息对应的HARQ-ACK信息在第一HARQ反馈码本的排列顺序,与N个下行信息所在的服务小区的索引值相关;T D根据第一DAI在所述第一DCI中占用的比特数确定,j为到当前PDCCH监测时机和当前服务小区为止,DAI为最大值的出现次数。
可以理解的是,终端设备可以根据第一DAI的值,在第一HARQ反馈码本中确定N个比特位,分别填充第一DCI调度的N个下行信息对应的HARQ-ACK信息。
其中,终端设备可以按照N个下行信息所在服务小区的索引值的大小顺序,在第一HARQ反馈码本中填充N个下行信息分别对应的HARQ-ACK信息。
本申请实施例中,为了降低DCI的信令开销,DCI中携带的DAI可以是循环计数值。即DAI的取值在1~T D之间循环。其中,T D为2 M,M为DAI在DCI中占用的比特数。
另外,j为按照先服务小区的索引值增加然后PDCCH监测机会的索引值增加的顺序进行统计时,截止到当前PDCCH监测时机和当前服务小区为止,DAI取值为最大值的出现次数。示例性的,假设DAI在DCI中占用的比特数为2比特,即每个DCI中携带的DAI的取值在1~4之间循环。在初始情况下,j的取值为0。终端可以进行第一轮循环计数,DAI的取值分别为1、2、3、4。当检测到DAI第一次出现最大值“4”时,设置j取值为1,并继续第二轮循环计数,DAI的取值分别为1、2、3、4。在第二轮循环计数时,“DAI=1”(即第二次出现“DAI=1”),表征DAI的取值为5(即4*1+1),“DAI=2”表征DAI的取值为6(即4*1+2),“DAI=3”表征DAI的取值为7(4*1+3),“DAI=4”表征DAI的取值为8(4*1+4)。进一步,当判断DAI第二次出现最大值“4”时,设置j取值为2,并继续第三轮循环计数,直至统计到最后一个DCI中的DAI。也就是说,j为DAI最大值的出现次数。
在一些实施例中,第一条件可以包括以下至少之一:
终端设备被配置有第一参数,且终端设备在N个下行信息所在的服务小区中的至少一个服务小 区上被配置的第二参数的取值为2;
终端设备在N个下行信息所在的服务小区中每个服务小区上被配置的第二参数的取值为1;
其中,第一参数用于使能HARQ-ACK空间捆绑,第二参数用于指示一个DCI能够调度的最大的码字数。
在一种可能的实现方式中,若所有服务小区中传输的DCI均只调度1个码字,即终端设备在所有服务小区中接收一个TB,则终端设备可以在第一HARQ反馈码本中的第(T D*j+第一DAI-N)的比特位,至第(T D*j+第一DAI-1)的比特位,分别填充第一DCI调度的N个PDSCH对应的HARQ-ACK信息。
示例性的,若第一DCI调度两个服务小区中传输的下行信息,且每个服务小区中传输的DCI均只调度1个码字,则终端设备可以在第(T D*j+第一DAI-2)的比特位上填充上述两个服务小区中,索引值较大的服务小区对应的HARQ-ACK信息。另外,终端设备可以在第(T D*j+第一DAI-1)的比特位上填充上述两个服务小区中,索引值较大的服务小区对应的HARQ-ACK信息。
在另一种可能的实现方式中,若终端设备被配置了HARQ-ACK空间捆绑(即终端设备被配置了harq-ACK-SpatialBundlingPUCCH),且终端设备在至少一个服务小区上的DCI可以调度2个码字(即终端设备在至少一个服务小区中上被配置接收2个TB),则终端设备可以在第一HARQ反馈码本中的第(T D*j+第一DAI-N)的比特位,至第(T D*j+第一DAI-1)的比特位,分别填充第一DCI调度的N个PDSCH对应的HARQ-ACK信息。
其中,第一HARQ反馈码本中的每个比特位填充的HAQR-ACK信息是每个服务小区传输的两个TB的HARQ-ACK信息逻辑与处理后的取值。
示例性的,若第一DCI调度两个服务小区中传输的下行信息,且所有服务小区中传输的DCI最大调度2个码字,则终端设备可以在第(T D*j+第一DAI-2)的比特位上填充上述两个服务小区中,索引值较小的服务小区传输的2个TB的HARQ-ACK信息逻辑与后的取值。另外,终端设备可以在第(T D*j+第一DAI-1)的比特位上填充上述两个服务小区中,索引值较大的服务小区传输的2个TB的HARQ-ACK信息逻辑与后的取值。
在一些实施例中,第一条件可以包括除以下条件之外的任一条件:
终端设备未被配置第一参数,且N个下行信息所在的服务小区中的至少一个服务小区上被配置的第二参数的取值为2。
也就是说,在终端设备未被配置HARQ-ACK空间捆绑,且终端设备被配置在至少一个服务小区上的DCI最大调度2个码字以外的任何场景中,终端设备均可以在第一HARQ反馈码本中的第(T D*j+第一DAI-N)的比特位,至第(T D*j+第一DAI-1)的比特位,分别填充第一DCI调度的N个PDSCH对应的HARQ-ACK信息。
在一示例中,参考图5所示的一种数据传输示意图三,网络设备可以在服务小区1和服务小区2中向终端设备传输下行信息,且服务小区1和服务小区2均未被配置基于码块组(Code Block Group,CBG)的传输。其中,PDCCH监测机会集合包括PDCCH监测机会1和PDCCH监测机会2。网络设备可以在PDCCH监测机会1中,通过服务小区1传输DCI a,且DCI a为第二DCI格式,DCI a用于调度PDSCH 1。在PDCCH监测机会1中,通过服务小区2传输DCI b,且DCI b为第二DCI格式,DCI b用于调度PDSCH 2。在PDCCH监测机会2中,通过服务小区1传输DCI c,且DCI c为第二DCI格式,DCI b用于调度PDSCH 3。在PDCCH监测机会2中,通过服务小区2传输DCI d,且DCI d为第一DCI格式,DCI d可以调度服务小区1的PDSCH 4和服务小区2传输的PDSCH 5。
DCI a的DAI=1,DCI b的DAI=2,DCI c的DAI=3,DCI d由于调度两个下行信息,则DCI d的DAI=1。
这样,终端设备可以根据DCI d中DAI的取值,确定第一HARQ反馈码本包括5个比特。终端设备在该第一HARQ反馈码本的第0的比特位填充DCI a调度的PDSCH 1对应的HARQ-ACK信息,在第1的比特位填充DCI b调度的PDSCH 2对应的HARQ-ACK信息,在第2的比特位填充DCI c调度的PDSCH 3对应的HARQ-ACK信息,在第3的比特位填充DCI d调度的服务小区1传输的PDSCH 4对应的HARQ-ACK信息,在第4的比特位填充DCI d调度的服务小区2传输的PDSCH 5对应的HARQ-ACK信息。综上,最终的第一HARQ反馈码本为:{ACK/NACK PDSCH 1,ACK/NACK PDSCH 2,ACK/NACK PDSCH 3,ACK/NACK PDSCH 4,ACK/NACK PDSCH 5}。
在另一示例中,参考图6所示的一种数据传输示意图四,网络设备可以在服务小区1和服务小区2中向终端设备传输下行信息,且服务小区1和服务小区2均未被配置基于CBG的传输。
其中,PDCCH监测机会集合包括PDCCH监测机会1至PDCCH监测机会4。网络设备可以在 PDCCH监测机会1中,通过服务小区1传输DCI a,且DCI a为第二DCI格式,DCI a用于调度PDSCH 1。在PDCCH监测机会1中,通过服务小区2传输DCI b,且DCI b为第二DCI格式,DCI b用于调度PDSCH 2。在PDCCH监测机会2中,通过服务小区1传输DCI c,且DCI c为第二DCI格式,DCI b用于调度PDSCH 3。在PDCCH监测机会2中,通过服务小区2传输DCI d,且DCI d为第一DCI格式,DCI d可以调度服务小区1的PDSCH 4和服务小区2传输的PDSCH 5。在PDCCH监测机会3中,通过服务小区1传输DCI e,且DCI e为第一DCI格式,DCI e可以调度服务小区1的PDSCH 6和服务小区2传输的PDSCH 7。在PDCCH监测机会4中,通过服务小区2传输DCI f,且DCI f为第二DCI格式,DCI f可以调度PDSCH 8。
网络设备可以根据上述方法,确定DCI a的DAI=1,DCI b的DAI=2,DCI c的DAI=3,DCI d的DAI=1,DCI e的DAI=3,DCI f的DAI=4。
在图6所示的场景中,当终端设备漏检DCI e时,终端设备可以根据PDCCH监测时机4中传输的DCI f携带的DAI,可以确定第一HARQ反馈码本的长度为8个比特。第一HARQ反馈码本可以为:{ACK/NACK PDSCH 1,ACK/NACK PDSCH 2,ACK/NACK PDSCH 3,ACK/NACK PDSCH 4,ACK/NACK PDSCH 5,NACK,NACK,ACK/NACK PDSCH 8}
需要说明的是,终端设备可以根据接收到的DCI携带的DAI信息,确定漏检了两个下行信息。然而,这两个下行信息是一个DCI调度的,还是两个DCI分别调度的,对于终端设备来说是透明的。
方式二、
在终端设备满足第二条件的情况下,终端设备基于第一DAI,确定第一HARQ反馈码本,可以通过以下方式实现:
终端设备在第一HARQ反馈码本中的第2*T D*j+2*(第一DAI-N)的比特位,至第2*T D*j+2*(第一DAI-N)+2*N-1的比特位,分别填充第一DCI调度的N个下行信息对应的HARQ-ACK信息;
其中,N个下行信息对应的HARQ-ACK信息在第一HARQ反馈码本的排列顺序,与N个下行信息所在的服务小区的索引值相关;
第二条件包括:终端设备未被配置第一参数,且在N个PDSCH所在的服务小区中的至少一个服务小区上被配置的第二参数的取值为2。
也就是说,当终端设备没有被配置HARQ-ACK空间捆绑(即终端设备没有被配置harq-ACK-SpatialBundlingPUCCH),且终端设备在至少一个服务小区上的DCI可以调度2个码字(即终端设备在至少一个服务小区中上被配置接收2个TB),则终端设备可以根据第一DAI的值,在第一HARQ反馈码本中确定2*N个比特位,分别填充第一DCI调度的N个下行信息对应的HARQ-ACK信息,每个下行信息对应2个TB。
其中,终端设备可以按照N个下行信息所在服务小区的索引值的大小顺序,在第一HARQ反馈码本中填充N个下行信息分别对应的HARQ-ACK信息。并且,每个服务小区传输的多个TB所对应的HARQ-ACK信息在第一HARQ反馈码本中的位置相邻。
示例性的,若第一DCI调度两个服务小区中传输的下行信息,且某个服务小区中传输的DCI可以调度2个码字,则终端设备可以在2*T D*j+2*(第一DAI-2)的比特位上填充索引值较小的服务小区传输的第一个TB对应的HARQ-ACK比特信息,在第2*T D*j+2*(第一DAI-1)的比特上填充索引值较小的服务小区传输的第二个TB的HARQ-ACK信息。另外,在2*T D*j+2*(第一DAI)的比特上填充索引值较大的服务小区传输的第一个TB的HARQ-ACK信息,在2*T D*j+2*(第一DAI)+1的比特上填充索引值较大的服务小区传输的第二个TB的HARQ-ACK信息。
示例性的,在图5所示的场景中,当终端设备在任意一个服务小区被配置DCI可以调度2个码字时,终端设备可以确定第一HARQ反馈码本的长度为10比特,并且第一HARQ反馈码本为:{ACK/NACK PDSCH 1,TB1,ACK/NACK PDSCH 1,TB2,ACK/NACK PDSCH 2,TB1,ACK/NACK PDSCH 2,TB2,ACK/NACK PDSCH 3,TB1,ACK/NACK PDSCH 3,TB2,ACK/NACK PDSCH 4,TB1,ACK/NACK PDSCH 4,TB2,ACK/NACK PDSCH 5,TB1,ACK/NACK PDSCH 5,TB2}。
实际应用中,在DCI为循环计数值的场景中,若终端设备连续漏检多个DCI,会导致终端设备生成的第一HARQ反馈码本的比特数,和网络设备期待终端设备生成的第一HARQ反馈码本的比特数,理解不一致的问题。
示例性的,参考图7所示,网络设备可以在服务小区1和服务小区2中向终端设备传输下行信息,且服务小区1和服务小区2均未被配置基于CBG的传输,终端设备支持最大1个码字。DAI为循环计数值,DAI包含2比特,即DAI的最大值均为4。
其中,PDCCH监测机会集合包括PDCCH监测机会1至PDCCH监测机会4。网络设备可以在 PDCCH监测机会1中,通过服务小区1传输DCI a,且DCI a为第二DCI格式,用于调度PDSCH 1。网络设备在PDCCH监测机会1中,通过服务小区2传输DCI b,且DCI b为第二DCI格式,用于调度PDSCH 2。
网络设备在PDCCH监测机会2中,通过服务小区1传输DCI c,且DCI c为第二DCI格式,用于调度PDSCH 3。在PDCCH监测机会2中,通过服务小区2传输DCI d,且DCI d为第一DCI格式,DCI d可以调度服务小区1的PDSCH 4和服务小区2的PDSCH 5。网络设备还可以在PDCCH监测机会3中,通过服务小区1传输DCI e,且DCI e为第二DCI格式,用于调度PDSCH 6。在PDCCH监测机会3中,通过服务小区2传输DCI f,且DCI f为第一DCI格式,用于调度服务小区1的PDSCH 7和服务小区2的PDSCH 8。在PDCCH监测机会4中,通过服务小区2传输DCI g,且DCI g为第一DCI格式,用于调度服务小区1的PDSCH 9和第二服务小区的PDSCH 10。
网络设备可以根据上述方法,确定DCI a的DAI=1,DCI b的DAI=2,DCI c的DAI=3,DCI d的DAI=1,DCI e的DAI=2,DCI f的DAI=4,DCI g的DAI=2。
在图7所示的场景中,若终端设备漏检了PDCCH监测机会3中传输的DCI e和DCI f时,终端设备会根据最后一个DCI g确定最终的HARQ反馈码本的长度为6比特。而网络设备期望终端设备生成的HARQ反馈信息为10比特。
针对上述问题,本申请实施例提供的HARQ反馈码本确定方法中,还可以包括以下步骤:
若第一DAI减去第二DAI的差值小于N,且第一DCI为第一DCI格式,则终端设备设置j的值为j+1;
其中,第二DAI通过第二DCI携带;第二DCI调度的下行信息所在的服务小区中包括索引值为第一索引值的服务小区,第一索引值小于第二索引值,且终端设备在索引值大于第一索引值且小于第二索引值的服务小区上未接收到下行信息;
第二索引值为N个下行信息所在的服务小区对应的索引值中的最小值。
这里,终端设备还可以在PDCCH监测机会集合中接收第二DCI。第二DCI中包括第二DAI。
在一些实施例中,第二DCI可以是第一DCI格式,也可以是第二DCI格式;即,第二DCI可以调度一个下行信息,也可以调度多个下行信息,本申请实施例对此不做限定。
在一些实施例中,终端设备可以在同一个PDCCH监测机会中接收第一DCI和第二DCI。终端设备在同一个PDCCH监测机会中,可以按照服务小区的索引值由大到小的顺序检测DCI。
若终端设备检测到第二DCI调度的下行信息中包括索引值为第一索引值的服务小区,第一索引值小于第二索引值,并且终端设备在索引值大于第一索引值且小于第二索引值之间的服务小区上未收到下行信息,则可以认为第二DCI是第一DCI之前接收。
若终端设备检测到第二DCI调度的下行信息所在的服务小区中包括索引值为第一索引值的服务小区,第一索引值小于第一DCI调度的多个下行信息所在的服务小区中服务小区的索引值的最小值,并且,终端设备在索引值在第一索引值和上述服务小区的索引值最小值之间的服务小区上未收到下行信息,则可以认为第二DCI是第一DCI之前接收。在该场景下,终端设备确定其可能会出现连续漏检的情况。
需要说明的是,当第二DCI为第一DCI格式时,第一索引值可以是第二DCI调度的多个下行信息所在的服务小区中任意一个服务小区的索引值。例如第一索引值可以是多个服务小区中的最大索引值,第一索引值也可以是多个服务服务小区中的最小索引值,本申请实施例对此不做限定。另外,当第二DCI为第二DCI格式时,第一索引值,即第二DCI调度的下行信息所在的服务小区的索引值。
也就是说,若终端设备检测到第二DCI调度的某个下行信息所在的服务小区的索引值,小于第一DCI关联的N个服务小区中的最小索引值,并且终端设备这两个服务小区的索引值之间的服务小区上未收到下行信息,则可以认为终端设备可能会出现连续漏检的情况。
这样,终端设备在向第一HARQ反馈码本中填充第一DCI调度的N个下行信息对应的HARQ-ACK信息之前,可以计算第一DCI减去第二DCI的差值。若该差值小于N,且第一DCI为第一DCI格式,则终端设备确定已经出现了连续漏检的情况,此时终端设备可以设置j=j+1。并根据调整后的j值,填充第一DCI调度的多个下行信息对应的HARQ-ACK信息。
在一示例中,若终端设备在第二DCI之后接收到第一DCI,且第一DCI调度两个服务小区中传输的下行信息,则第一HARQ反馈码本的构建过程如下:
首先,初始化第一临时值为0;初始化j=0,其中j表示DAI达到最大值的次数。
其次,按照服务小区的索引值增加然后PDCCH监测机会的索引值增加的顺序,遍历所有的PDCCH监测机会和服务小区。
具体地,在当前的PDCCH监测机会和当前服务小区,若终端设备接收到第一DCI调度的多个下行信息,则:
判断第一DAI和第一临时值的大小关系;
如果第一DAI的取值小于等于第一临时值,则将j+1,并更新第一临时值为第一DAI的取值;
如果第一DAI的取值减去第一临时值的差值为1,则将j+1,并更新第一临时值为第一DAI的取值;
否则,更新第一临时值,为第一DAI的取值。
在一种可能的实现方式中,在确定了j的取值后,终端设备可以在满足第一条件时,在第一HARQ反馈码本的第(T D*j+第一DAI-2)的比特位填充上述两个服务小区中,索引值较小的服务小区传输的下行信息对应的HARQ-ACK信息。并且,在第(T D*j+第一DAI-1)的比特位,填充上述两个服务小区中,索引值较小的服务小区传输的下行信息对应的HARQ-ACK信息。
在另一种可能的实现方式中,在确定了j的取值后,终端设备可以在满足第二条件时,在第一HARQ反馈码本中的第2*T D*j+2*(第一DAI-2)个比特位,至第2*T D*j+2*(第一DAI)+1的比特位,分别填充第一DCI调度的N个下行信息对应的HARQ-ACK信息。
在另一示例中,在图7所示的场景,第一HARQ反馈码本的构建过程如下:
终端设备首先将第一临时值初始化为0,且j=0;
终端设备可以在PDCCH监测时机1和服务小区1接收DCI a,DCI a的DAI=1。终端设备确定当前第一临时值小于1,则更新第一临时值为1。基于此,终端设备在第一HARQ反馈码本中的第0的比特位填充DCI a调度的下行信息对应的HARQ-ACK信息。
接着,终端设备在PDCCH监测时机1和服务小区2接收到DCI b,DCI b的DAI=2。终端设备确定当前第一临时值小于2,则更新第一临时值为2。并且,终端设备在第一HARQ反馈码本中的第1的比特位填充DCI b调度的下行信息对应的HARQ-ACK信息。
接下来,终端设备可以在PDCCH监测时机2和服务小区1接收到DCI c,DCI c的DAI=3。终端设备确定当前第一临时值小于3,则更新第一临时值为3。并且,终端设备在第一HARQ反馈码本中的第2的比特位填充DCI c调度的下行信息对应的HARQ-ACK信息。
进一步地,终端设备可以在PDCCH监测时机2和服务小区2接收到DCI d,DCI d的DAI=1。当前第一临时值为3,大于DCI d中DAI的取值,则调整j的取值为1,同时终端设备更新第一临时值为1。
基于此,终端设备在第一HARQ反馈码本中的第(4*1+1-2)的比特位,即第3的比特位填充DCI d调度的服务小区1中下行信息对应的HARQ-ACK信息,并在第(4*1+1-1)的比特位,即第4的比特位填充DCI d调度的服务小区2中下行信息对应的HARQ-ACK信息。
接着,终端设备在PDCCH监测时机4和服务小区2接收到DCI g,DCI g的DAI=2。当前第一临时值为1,小于DCI g中DAI的取值。但是,终端设备检测到DCI g的DAI与前一个DCI d的DAI之间的差值为1,且当前DCI g为第一DCI格式,则终端设备调整j的取值为2,并更新第一临时值为2。这样,终端设备可以在第一HARQ反馈码本中的第(4*2+2-2)的比特位,即第8的比特位填充DCI g调度的服务小区1中下行信息对应的HARQ-ACK信息,并在第(4*2+2-1)的比特位,即第9的比特位填充DCI g调度的服务小区2中下行信息对应的HARQ-ACK信息。
由此可见,本申请实施例提供的HARQ反馈码本的确定方法,可以避免由于连续DCI漏检而导致终端设备生成的HARQ反馈码本包含的比特数,与网络设备期待终端设备生成的HARQ反馈码本包含的比特数,理解不一致的问题。
以上结合附图详细描述了本申请的优选实施方式,但是,本申请并不限于上述实施方式中的具体细节,在本申请的技术构思范围内,可以对本申请的技术方案进行多种简单变型,这些简单变型均属于本申请的保护范围。例如,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合,为了避免不必要的重复,本申请对各种可能的组合方式不再另行说明。又例如,本申请的各种不同的实施方式之间也可以进行任意组合,只要其不违背本申请的思想,其同样应当视为本申请所公开的内容。又例如,在不冲突的前提下,本申请描述的各个实施例和/或各个实施例中的技术特征可以和现有技术任意的相互组合,组合之后得到的技术方案也应落入本申请的保护范围。
还应理解,在本申请的各种方法实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。此外,在本申请实施例中,术语“下行”、“上行”和“侧行”用于表示信号或数据的传输方 向,其中,“下行”用于表示信号或数据的传输方向为从站点发送至小区的用户设备的第一方向,“上行”用于表示信号或数据的传输方向为从小区的用户设备发送至站点的第二方向,“侧行”用于表示信号或数据的传输方向为从用户设备1发送至用户设备2的第三方向。例如,“下行信号”表示该信号的传输方向为第一方向。另外,本申请实施例中,术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系。具体地,A和/或B可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
图8是本申请实施例提供的HARQ反馈码本的确定装置的结构组成示意图一,应用于终端设备,如图8所示,所述HARQ反馈码本的确定装置80包括:
第一通信接口81,配置为收第一下行控制信息DCI;所述第一DCI中携带第一下行分配索引DAI;
其中,所述第一DAI的取值为第一累计数目,或者,第一累计数目和第一调整量之和;所述第一累计数目为到当前物理下行控制信道PDCCH监测机会和当前服务小区为止,DCI关联的下行信息的累计个数;所述第一调整量与至少一个目标DCI关联的下行信息相关;所述至少一个下行信息包括所述当前PDCCH监测机会中,到当前服务小区为止,网络设备传输的用于调度多个下行信息的DCI;
第一处理单元82,配置为基于所述第一DAI,确定第一HARQ反馈码本。
在一些实施例中,所述第一调整量为所述至少一个目标DCI调度的多个下行信息所在的服务小区中,索引值比当前服务小区的索引值大的服务小区的下行信息的个数。
在一些实施例中,若在所述当前PDCCH监测机会中,到所述当前服务小区为止,存在所述至少一个目标DCI,且所述至少一个目标DCI调度的多个下行信息所在的服务小区中,存在索引值比所述当前服务小区的索引值大的服务小区,则所述第一DAI的取值为所述第一累计数目和所述第一调整量之和。
在一些实施例中,若在所述当前PDCCH监测机会中,到所述当前服务小区为止,不存在索引值比所述当前服务小区的索引值大的服务小区的下行信息,则所述第一DAI的取值为所述第一累计数目。
在一些实施例中,所述第一DCI的格式为第一DCI格式;所述第一DCI格式表示所述第一DCI用于调度N个下行信息;N为大于或等于2的整数;
或者,
所述第一DCI的格式为第二DCI格式;所述第二DCI格式表示所述第一DCI用于调度一个下行信息。
在一些实施例中,所述第一DCI为第一DCI格式;在所述终端设备满足第一条件的情况下,所述第一处理单元82,具体配置为在所述第一HARQ反馈码本中的第(T D*j+第一DAI-N)的比特位,至第(T D*j+第一DAI-1)的比特位,分别填充所述第一DCI调度的N个下行信息对应的HARQ-ACK信息;所述N个下行信息对应的HARQ-ACK信息在所述第一HARQ反馈码本的排列顺序,与所述N个下行信息所在的服务小区的索引值相关;
其中,T D根据所述第一DAI在第一DCI中占用的比特数确定,j为到所述当前PDCCH监测时机和所述当前服务小区为止,DAI为最大值的出现次数。
在一些实施例中,所述第一条件包括以下至少之一:
所述终端设备被配置有第一参数,且所述终端设备在所述N个下行信息所在的服务小区中的至少一个服务小区上被配置的第二参数的取值为2;
所述N个下行信息所在的服务小区中每个服务小区上被配置的第二参数的取值为1;
其中,所述第一参数用于使能HARQ-ACK空间捆绑,所述第二参数用于指示一个DCI能够调度的最大的码字数。
在一些实施例中,所述第一条件包括除以下条件之外的任一条件:
所述终端设备未被配置第一参数,且在所述N个下行信息所在的服务小区中的至少一个服务小区上被配置的第二参数的取值为2;所述第一参数用于使能HARQ-ACK空间捆绑,所述第二参数用于指示一个DCI能够调度的最大的码字数。
在一些实施例中,所述第一DCI为第一DCI格式;在所述终端设备满足第二条件的情况下,所述第一处理单元82,具体配置为在所述第一HARQ反馈码本中的第2*T D*j+2*(第一DAI-N)的比特位,至第2*T D*j+2*(第一DAI-N)+2*N-1的比特位,分别填充所述第一DCI调度的N个下行信 息对应的HARQ-ACK信息;所述N个下行信息对应的HARQ-ACK信息在所述第一HARQ反馈码本的排列顺序,与所述N个下行信息所在的服务小区的索引值相关;
其中,T D根据所述第一DAI在所述第一DCI中占用的比特数确定,j为到所述当前PDCCH监测时机和所述当前服务小区为止,DAI为最大值的出现次数;所述第二条件包括:所述终端设备未被配置第一参数,且在所述N个下行信息所在的服务小区中的至少一个服务小区上被配置的第二参数的取值为2。
在一些实施例中,第一处理单元82,还配置为若所述第一DAI减去第二DAI的差值小于N,且所述第一DCI为第一DCI格式,则所述终端设备设置所述j的值为j+1;
其中,所述第二DAI通过第二DCI携带;所述第二DCI调度的下行信息所在的服务小区中包括索引值为第一索引值的服务小区,所述第一索引值小于第二索引值,且所述终端设备在索引值大于所述第一索引值且小于所述第二索引值之间的服务小区上未接收到下行信息;
所述第二索引值为所述N个下行信息所在的服务小区对应的服务小区的索引值中的最小值。
图9是本申请实施例提供的HARQ反馈码本的确定装置的结构组成示意图二,应用于网络设备,如图9所示,所述HARQ反馈码本的确定装置90包括:
第二通信接口91,配置为网络设备发送第一下行控制信息DCI;所述第一DCI中携带第一下行分配索引DAI;
其中,所述第一DAI的取值为第一累计数目,或者,第一累计数目和第一调整量之和;所述第一累计数目为到当前物理下行控制信道PDCCH监测机会和当前服务小区为止,DCI关联的下行信息的累计个数;所述第一调整量与至少一个目标DCI关联的下行信息相关;所述至少一个目标DCI包括所述当前PDCCH监测机会中,到当前服务小区为止,网络设备传输的用于调度多个下行信息的DCI;
第二处理单元92,配置为基于所述第一DAI,确定第一HARQ反馈码本。
在一些实施例中,所述第一调整量为所述至少一个目标DCI调度的多个下行信息所在的服务小区中,索引值比所述当前服务小区的索引值大的服务小区的下行信息的个数。
在一些实施例中,若在所述当前PDCCH监测机会中,到所述当前服务小区为止,存在所述至少一个目标DCI,且所述至少一个目标DCI调度的多个下行信息所在的服务小区中,存在索引值比当前服务小区的索引值大的服务小区,则所述第一DAI的取值为所述第一累计数目和所述第一调整量之和。
在一些实施例中,若在所述当前PDCCH监测机会中,到所述当前服务小区为止,不存在索引值比所述当前服务小区的索引值大的服务小区的下行信息,则所述第一DAI的取值为所述第一累计数目。
在一些实施例中,所述第一DCI的格式为第一DCI格式;所述第一DCI格式表示所述第一DCI用于调度N个下行信息;N为大于或等于2的整数;
或者,
所述第一DCI的格式为第二DCI格式;所述第二DCI格式表示所述第一DCI用于调度一个下行信息。
在一些实施例中,所述HARQ反馈码本的确定装置90还包括:第二通信接口91;
在一些实施例中,所述第一DCI为第一DCI格式;在所述终端设备满足第一条件的情况下,在所述第一HARQ反馈码本中的第(T D*j+第一DAI-N)的比特位,至第(T D*j+第一DAI-1)的比特位,分别填充有所述第一DCI调度的N个下行信息对应的HARQ-ACK信息;所述N个下行信息对应的HARQ-ACK信息在所述第一HARQ反馈码本的排列顺序,与所述N个下行信息所在的服务小区的索引值相关;
其中,T D根据所述第一DAI在所述第一DCI中占用的比特数确定,j为到所述当前PDCCH监测时机和所述当前服务小区为止,DAI为最大值的出现次数。
在一些实施例中,所述第一条件包括以下至少之一:
所述终端设备被配置有第一参数,且所述终端设备在所述N个下行信息所在的服务小区中的至少一个服务小区上被配置的第二参数的取值为2;
所述终端设备在所述N个下行信息所在的服务小区中每个服务小区上被配置的第二参数的取值为1;
其中,所述第一参数用于使能HARQ-ACK空间捆绑,所述第二参数用于指示一个DCI能够调度的最大的码字数。
在一些实施例中,所述第一条件包括除以下条件之外的任一条件:
所述终端设备未被配置第一参数,且在所述N个下行信息所在的服务小区中的至少一个服务小区上被配置的第二参数的取值为2;所述第一参数用于使能HARQ-ACK空间捆绑,所述第二参数用于指示一个DCI能够调度的最大的码字数。
在一些实施例中,所述第一DCI为第一DCI格式;在所述终端设备满足第二条件的情况下,所述第一HARQ反馈码本中的第2*T D*j+2*(第一DAI-N)个比特位,至第2*T D*j+2*(第一DAI-N)+2*N-1个比特位,分别填充有所述第一DCI调度的N个下行信息对应的HARQ-ACK信息;所述N个下行信息对应的的HARQ-ACK信息在所述第一HARQ反馈码本的排列顺序,与所述N个下行信息所在的服务小区的索引值相关;
其中,T D根据所述第一DAI在所述第一DCI中占用的比特数确定,j为到所述当前PDCCH监测时机和所述当前服务小区为止,DAI为最大值的出现次数;所述第二条件包括:所述终端设备未被配置第一参数,且在所述N个PDSCH所在的服务小区中的至少一个服务小区上被配置的第二参数的取值为2。
在一些实施例中,所述第二处理单元92,还配置为若所述第一DAI减去第二DAI的差值小于N,且所述第一DCI为第一DCI格式,则所述网络设备设置所述j的值为j+1;
其中,所述第二DAI通过第二DCI携带;所述第二DCI调度的下行信息所在的服务小区中包括索引值为第一索引值的服务小区,所述第一索引值小于第二索引值,且所述终端设备在索引值大于所述第一索引值且小于所述第二索引值的服务小区上未接收到下行信息;
所述第二索引值为所述N个下行信息所在的服务小区对应的索引值中的最小值。
本领域技术人员应当理解,本申请实施例的上述HARQ反馈码本的确定装置的相关描述可以参照本申请实施例的HARQ反馈码本的确定方法的相关描述进行理解。
图10是本申请实施例提供的一种通信设备1000示意性结构图。该通信设备可以终端设备,也可以是网络设备。图10所示的通信设备1000包括处理器1010,处理器1010可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图10所示,通信设备1000还可以包括存储器1020。其中,处理器1010可以从存储器1020中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器1020可以是独立于处理器1010的一个单独的器件,也可以集成在处理器1010中。
可选地,如图10所示,通信设备1000还可以包括收发器1030,处理器1010可以控制该收发器1030与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器1030可以包括发射机和接收机。收发器1030还可以进一步包括天线,天线的数量可以为一个或多个。
可选地,该通信设备1000具体可为本申请实施例的网络设备,并且该通信设备1000可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述
需要说明的是,当通信设备1000为本申请实施例的网络设备时,图9所示的第二处理单元92执行的操作可以由通信设备1000中的处理器1010实现。图9所示的第二通信接口91执行的操作可以由通信设备1000中的收发器1030实现。
可选地,该通信设备1000具体可为本申请实施例的移动终端/终端设备,并且该通信设备1000可以实现本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
需要说明的是,当通信设备1000为本申请实施例的移动终端/终端设备时,图8所示的第一处理单元82执行的操作可以由通信设备1000中的处理器1010实现。图8所示的第一通信接口81执行的操作可以由通信设备1000中的收发器1030实现。
图11是本申请实施例的芯片的示意性结构图。图11所示的芯片1100包括处理器1110,处理器1110可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图11所示,芯片1100还可以包括存储器1120。其中,处理器1110可以从存储器1120中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器1120可以是独立于处理器1110的一个单独的器件,也可以集成在处理器1910中。
可选地,该芯片1100还可以包括输入接口1130。其中,处理器1110可以控制该输入接口1130 与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
可选地,该芯片1100还可以包括输出接口1140。其中,处理器1110可以控制该输出接口1140与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
可选地,该芯片可应用于本申请实施例中的网络设备,并且该芯片可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该芯片可应用于本申请实施例中的移动终端/终端设备,并且该芯片可以实现本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
图12是本申请实施例提供的一种通信系统1200的示意性框图。如图12所示,该通信系统1200包括终端设备1210和网络设备1220。
其中,该终端设备1210可以用于实现上述方法中由终端设备实现的相应的功能,以及该网络设备1220可以用于实现上述方法中由网络设备实现的相应的功能为了简洁,在此不再赘述。
应理解,本申请实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供了一种计算机可读存储介质,用于存储计算机程序。
可选的,该计算机可读存储介质可应用于本申请实施例中的网络设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机可读存储介质可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序产品,包括计算机程序指令。
可选的,该计算机程序产品可应用于本申请实施例中的网络设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序产品可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序 指令使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序。
可选的,该计算机程序可应用于本申请实施例中的网络设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序可应用于本申请实施例中的移动终端/终端设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,)ROM、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (32)

  1. 一种混合自动重传请求HARQ反馈码本的确定方法,包括:
    终端设备接收第一下行控制信息DCI;所述第一DCI中携带第一下行分配索引DAI;
    其中,所述第一DAI的取值为第一累计数目,或者,第一累计数目和第一调整量之和;所述第一累计数目为到当前物理下行控制信道PDCCH监测机会和当前服务小区为止,DCI关联的下行信息的累计个数;所述第一调整量与至少一个目标DCI关联的下行信息相关,所述至少一个目标DCI包括所述当前PDCCH监测机会中,到所述当前服务小区为止,网络设备传输的用于调度多个下行信息的DCI;
    所述终端设备基于所述第一DAI,确定第一HARQ反馈码本。
  2. 根据权利要求1所述的方法,其中,所述第一调整量为所述至少一个目标DCI调度的多个下行信息所在的服务小区中,索引值比所述当前服务小区的索引值大的服务小区的下行信息的个数。
  3. 根据权利要求1或2所述的方法,其中,若在所述当前PDCCH监测机会中,到所述当前服务小区为止,存在所述至少一个目标DCI,且所述至少一个目标DCI调度的多个下行信息所在的服务小区中,存在索引值比所述当前服务小区的索引值大的服务小区,则所述第一DAI的取值为所述第一累计数目和所述第一调整量之和。
  4. 根据权利要求1-3任一项所述的方法,其中,若在所述当前PDCCH监测机会中,到所述当前服务小区为止,不存在索引值比所述当前服务小区的索引值大的服务小区的下行信息,则所述第一DAI的取值为所述第一累计数目。
  5. 根据权利要求1-4任一项所述的方法,其中,所述第一DCI的格式为第一DCI格式;所述第一DCI格式表示所述第一DCI用于调度N个下行信息;N为大于或等于2的整数;
    或者,
    所述第一DCI的格式为第二DCI格式;所述第二DCI格式表示所述第一DCI用于调度一个下行信息。
  6. 根据权利要求1-5任一项所述的方法,其中,所述第一DCI为第一DCI格式;在所述终端设备满足第一条件的情况下,所述终端设备基于所述第一DAI,确定第一HARQ反馈码本,包括:
    所述终端设备在所述第一HARQ反馈码本中的第(T D*j+第一DAI-N)的比特位,至第(T D*j+第一DAI-1)的比特位,分别填充所述第一DCI调度的N个下行信息对应的HARQ-ACK信息;所述N个下行信息对应的HARQ-ACK信息在所述第一HARQ反馈码本的排列顺序,与所述N个下行信息所在的服务小区的索引值相关;
    其中,T D根据所述第一DAI在所述第一DCI中占用的比特数确定,j为到所述当前PDCCH监测时机和所述当前服务小区为止,DAI为最大值的出现次数。
  7. 根据权利要求6所述的方法,其中,所述第一条件包括以下至少之一:
    所述终端设备被配置有第一参数,且所述终端设备在所述N个下行信息所在的服务小区中的至少一个服务小区上被配置的第二参数的取值为2;
    所述N个下行信息所在的服务小区中每个服务小区上被配置的第二参数的取值为1;
    其中,所述第一参数用于使能HARQ-ACK空间捆绑,所述第二参数用于指示一个DCI能调度的最大的码字数。
  8. 根据权利要求6所述的方法,其中,所述第一条件包括除以下条件之外的任一条件:
    所述终端设备未被配置第一参数,且在所述N个下行信息所在的服务小区中的至少一个服务小区上被配置的第二参数的取值为2;
    其中,所述第一参数用于使能HARQ-ACK空间捆绑,所述第二参数用于指示一个DCI能调度的最大的码字数。
  9. 根据权利要求1-5任一项所述的方法,其中,所述第一DCI为第一DCI格式;在所述终端设备满足第二条件的情况下,所述终端设备基于所述第一DAI,确定第一HARQ反馈码本,包括:
    所述终端设备在所述第一HARQ反馈码本中的第2*T D*j+2*(第一DAI-N)的比特位,至第2*T D*j+2*(第一DAI-N)+2*N-1的比特位,分别填充所述第一DCI调度的N个下行信息对应的HARQ-ACK信息;所述N个下行信息对应的HARQ-ACK信息在所述第一HARQ反馈码本的排列顺序,与所述N个下行信息所在的服务小区的索引值相关;
    其中,T D根据所述第一DAI在所述第一DCI中占用的比特数确定,j为到所述当前PDCCH监测时机和所述当前服务小区为止,DAI为最大值的出现次数;所述第二条件包括:所述终端设备未 被配置第一参数,且在所述N个下行信息所在的服务小区中的至少一个服务小区上被配置的第二参数的取值为2。
  10. 根据权利要求6-9任一项所述的方法,其中,所述方法还包括:
    若所述第一DAI减去第二DAI的差值小于N,且所述第一DCI为第一DCI格式,则所述终端设备设置所述j的值为j+1;
    其中,所述第二DAI通过第二DCI携带;所述第二DCI调度的下行信息所在的服务小区中包括索引值为第一索引值的服务小区,所述第一索引值小于第二索引值,且所述终端设备在索引值大于所述第一索引值且小于所述第二索引值的服务小区上未接收到下行信息;
    所述第二索引值为所述N个下行信息所在的服务小区对应的索引值中服务小区的索引值的最小值。
  11. 一种混合自动重传请求HARQ反馈码本的确定方法,应用于网络设备,包括:
    网络设备发送第一下行控制信息DCI;所述第一DCI中携带第一下行分配索引DAI;
    其中,所述第一DAI的取值为第一累计数目,或者,第一累计数目和第一调整量之和;所述第一累计数目为到当前物理下行控制信道PDCCH监测机会和当前服务小区为止,DCI关联的下行信息的累计个数;所述第一调整量与少一个目标DCI关联的下行信息相关,所述至少一个目标DCI包括所述当前PDCCH监测机会中,到所述当前服务小区为止,网络设备传输的用于调度多个下行信息的DCI;
    所述网络设备基于所述第一DAI,确定第一HARQ反馈码本。
  12. 根据权利要求11所述的方法,其中,所述第一调整量为所述至少一个目标DCI调度的多个下行信息所在的服务小区中,索引值比所述当前服务小区的索引值大的服务小区的下行信息的个数。
  13. 根据权利要求11或12所述的方法,其中,若在所述当前PDCCH监测机会中,到当所述前服务小区为止,存在所述至少一个目标DCI,且所述至少一个目标DCI调度的多个下行信息所在的服务小区中,存在索引值比所述当前服务小区的索引值大的服务小区,则所述第一DAI的取值为所述第一累计数目和所述第一调整量之和。
  14. 根据权利要求13所述的方法,其中,若在所述当前PDCCH监测机会中,到所述当前服务小区为止,不存在索引值比所述当前服务小区的索引值大的服务小区的下行信息,则所述第一DAI的取值为所述第一累计数目。
  15. 根据权利要求14的方法,其中,所述第一DCI的格式为第一DCI格式;所述第一DCI格式表示所述第一DCI用于调度N个下行信息;N为大于或等于2的整数;
    或者,
    所述第一DCI的格式为第二DCI格式;所述第二DCI格式表示所述第一DCI用于调度一个下行信息。
  16. 根据权利要求11-15所述的方法,其中,所述第一DCI为第一DCI格式;在所述终端设备满足第一条件的情况下,在所述第一HARQ反馈码本中的第(T D*j+第一DAI-N)的比特位,至第(T D*j+第一DAI-1)的比特位,分别填充有所述第一DCI调度的N个下行信息对应的HARQ-ACK信息;所述N个下行信息对应的HARQ-ACK信息在所述第一HARQ反馈码本的排列顺序,与所述N个下行信息所在的服务小区的索引值相关;
    其中,T D根据所述第一DAI在所述第一DCI中占用的比特数确定,j为到所述当前PDCCH监测时机和所述当前服务小区为止,DAI为最大值的出现次数。
  17. 根据权利要求16所述的方法,其中,所述第一条件包括以下至少之一:
    所述终端设备被配置有第一参数,且所述终端设备在所述N个下行信息所在的服务小区中的至少一个服务小区上被配置的第二参数的取值为2;
    所述终端设备在所述N个下行信息所在的服务小区中每个服务小区上被配置的第二参数的取值为1;
    其中,所述第一参数用于使能HARQ-ACK空间捆绑,所述第二参数用于指示一个DCI能调度的最大的码字数。
  18. 根据权利要求16所述的方法,其中,所述第一条件包括除以下条件之外的任一条件:
    所述终端设备未被配置第一参数,且在所述N个下行信息所在的服务小区中的至少一个服务小区上被配置的第二参数的取值为2;
    其中,所述第一参数用于使能HARQ-ACK空间捆绑,所述第二参数用于指示一个DCI能调度的最大的码字数。
  19. 根据权利要求11-18任一项所述的方法,其中,所述第一DCI为第一DCI格式;
    在所述终端设备满足第二条件的情况下,所述第一HARQ反馈码本中的第2*T D*j+2*(第一DAI-N)个比特位,至第2*T D*j+2*(第一DAI-N)+2*N-1个比特位,分别为所述第一DCI调度的N个下行信息对应的HARQ-ACK信息;所述N个下行信息对应的HARQ-ACK信息在所述第一HARQ反馈码本的排列顺序,与所述N个下行信息所在的服务小区的索引值相关;
    其中,T D根据所述第一DAI在所述第一DCI中占用的比特数确定,j为到所述当前PDCCH监测时机和所述当前服务小区为止,DAI为最大值的出现次数;所述第二条件包括:所述终端设备未被配置第一参数,且在所述N个PDSCH所在的服务小区中的至少一个服务小区上被配置的第二参数的取值为2。
  20. 根据权利要求16-19任一项所述的方法,其中,所述方法还包括:
    若所述第一DAI减去第二DAI的差值小于N,且所述第一DCI为第一DCI格式,则所述网络设备设置所述j的值为j+1;
    其中,所述第二DAI通过第二DCI携带;所述第二DCI调度的下行信息所在的服务小区中包括索引值为第一索引值的服务小区,所述第一索引值小于第二索引值,且所述终端设备在索引值大于所述第一索引值且小于所述第二索引值的服务小区上未接收到下行信息;
    所述第二索引值为所述N个下行信息所在的服务小区对应的索引值中的最小值。
  21. 一种混合自动重传请求HARQ反馈码本的确定装置,应用于终端设备,包括:
    第一通信接口,配置为收第一下行控制信息DCI;所述第一DCI中携带第一下行分配索引DAI;
    其中,所述第一DAI的取值为第一累计数目,或者,第一累计数目和第一调整量之和;所述第一累计数目为到当前物理下行控制信道PDCCH监测机会和当前服务小区为止,DCI关联的下行信息的累计个数;所述第一调整量与至少一个目标DCI关联的下行信息相关;所述至少一个目标DCI包括所述当前PDCCH监测机会中,到所述当前服务小区为止,网络设备传输的用于调度多个下行信息的DCI;
    第一处理单元,配置为基于所述第一DAI,确定第一HARQ反馈码本。
  22. 一种混合自动重传请求HARQ反馈码本的确定装置,应用于网络设备,包括:
    第二通信接口,配置为发送第一下行控制信息DCI;所述第一DCI中携带第一下行分配索引DAI;
    其中,所述第一DAI的取值为第一累计数目,或者,第一累计数目和第一调整量之和;所述第一累计数目为到当前物理下行控制信道PDCCH监测机会和当前服务小区为止,DCI关联的下行信息的累计个数;所述第一调整量与至少一个目标DCI关联的下行信息相关;所述至少一个目标DCI包括所述当前PDCCH监测机会中,到所述当前服务小区为止,网络设备传输的用于调度多个下行信息的DCI;
    第二处理单元,配置为基于所述第一DAI,确定第一HARQ反馈码本。
  23. 一种终端设备,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求1至10中任一项所述的方法。
  24. 一种网络设备,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求11至20中任一项所述的方法。
  25. 一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至10中任一项所述的方法。
  26. 一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求11至20中任一项所述的方法。
  27. 一种计算机可读存储介质,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1至10中任一项所述的方法。
  28. 一种计算机可读存储介质,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求11至20中任一项所述的方法。
  29. 一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1至10中任一项所述的方法。
  30. 一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求11至20中任一项所述的方法。
  31. 一种计算机程序,所述计算机程序使得计算机执行如权利要求1至10中任一项所述的方法。
  32. 一种计算机程序,所述计算机程序使得计算机执行如权利要求11至20中任一项所述的方法。
PCT/CN2021/096899 2021-05-28 2021-05-28 混合自动重传反馈码本的确定方法、装置及设备 WO2022246825A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180095036.0A CN116964973A (zh) 2021-05-28 2021-05-28 混合自动重传反馈码本的确定方法、装置及设备
PCT/CN2021/096899 WO2022246825A1 (zh) 2021-05-28 2021-05-28 混合自动重传反馈码本的确定方法、装置及设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/096899 WO2022246825A1 (zh) 2021-05-28 2021-05-28 混合自动重传反馈码本的确定方法、装置及设备

Publications (1)

Publication Number Publication Date
WO2022246825A1 true WO2022246825A1 (zh) 2022-12-01

Family

ID=84228339

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/096899 WO2022246825A1 (zh) 2021-05-28 2021-05-28 混合自动重传反馈码本的确定方法、装置及设备

Country Status (2)

Country Link
CN (1) CN116964973A (zh)
WO (1) WO2022246825A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109478978A (zh) * 2016-07-18 2019-03-15 三星电子株式会社 具有可变传输持续时间的载波聚合
CN110830178A (zh) * 2018-08-10 2020-02-21 北京展讯高科通信技术有限公司 Harq-ack信息的反馈方法、用户终端及计算机可读存储介质
US20200228289A1 (en) * 2015-09-11 2020-07-16 Hong He Transmission of uplink control information in wireless systems
WO2020202477A1 (ja) * 2019-04-02 2020-10-08 株式会社Nttドコモ ユーザ端末及び無線通信方法
CN111954307A (zh) * 2019-05-17 2020-11-17 北京三星通信技术研究有限公司 无线通信网络中的通信方法和设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200228289A1 (en) * 2015-09-11 2020-07-16 Hong He Transmission of uplink control information in wireless systems
CN109478978A (zh) * 2016-07-18 2019-03-15 三星电子株式会社 具有可变传输持续时间的载波聚合
CN110830178A (zh) * 2018-08-10 2020-02-21 北京展讯高科通信技术有限公司 Harq-ack信息的反馈方法、用户终端及计算机可读存储介质
WO2020202477A1 (ja) * 2019-04-02 2020-10-08 株式会社Nttドコモ ユーザ端末及び無線通信方法
CN111954307A (zh) * 2019-05-17 2020-11-17 北京三星通信技术研究有限公司 无线通信网络中的通信方法和设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "On HARQ Management", 3GPP DRAFT; R1-1721013, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Reno, USA; 20171127 - 20171201, 18 November 2017 (2017-11-18), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051370376 *

Also Published As

Publication number Publication date
CN116964973A (zh) 2023-10-27

Similar Documents

Publication Publication Date Title
WO2018227600A1 (zh) 反馈信息的发送和接收方法、装置以及通信系统
US11570786B2 (en) Wireless communication method and device
WO2020056632A1 (zh) 一种信息传输方法及装置、终端
US20230231665A1 (en) Method for feeding back hybrid automatic repeat request acknowledgement (harq-ack) and terminal device
EP3965331A1 (en) Harq information feedback method and device
CN113994613A (zh) 通信方法和通信装置
WO2020143052A1 (zh) 用于传输反馈信息的方法、终端设备和网络设备
WO2022150937A1 (zh) 用于接收数据的方法与装置和用于发送数据的方法与装置
US20230199799A1 (en) Wireless communication method, terminal device and network device
WO2021026841A1 (zh) 调度请求传输的方法和设备
WO2020133247A1 (zh) 无线通信方法、终端设备和网络设备
CN113271614B (zh) 用于处理实体上链路控制通道碰撞的装置及方法
WO2022246825A1 (zh) 混合自动重传反馈码本的确定方法、装置及设备
WO2021164684A1 (zh) 上行反馈资源的确定方法和终端设备
WO2022032515A1 (zh) 无线通信方法、终端设备和网络设备
WO2022021233A1 (zh) 一种控制信息传输方法及装置、终端设备
WO2020051835A1 (zh) 确定harq-ack码本的方法、终端设备和网络设备
JP2022546903A (ja) Harqコードブック決定方法及び装置、端末装置、ネットワーク装置
TWI784764B (zh) 處理混合自動重傳請求重新傳送的裝置
WO2022236605A1 (zh) 无线通信方法、终端设备和网络设备
WO2023019490A1 (zh) 一种无线通信方法及装置、终端设备
WO2023010579A1 (zh) 一种harq-ack码本的反馈方法及装置、通信设备
WO2022236752A1 (zh) 无线通信方法、第一设备和第二设备
WO2019028775A1 (zh) 反馈信息的发送和接收方法、装置及通信系统
WO2022151427A1 (zh) 一种传输方法、终端设备和网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21942399

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180095036.0

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21942399

Country of ref document: EP

Kind code of ref document: A1