WO2023019490A1 - 一种无线通信方法及装置、终端设备 - Google Patents

一种无线通信方法及装置、终端设备 Download PDF

Info

Publication number
WO2023019490A1
WO2023019490A1 PCT/CN2021/113364 CN2021113364W WO2023019490A1 WO 2023019490 A1 WO2023019490 A1 WO 2023019490A1 CN 2021113364 W CN2021113364 W CN 2021113364W WO 2023019490 A1 WO2023019490 A1 WO 2023019490A1
Authority
WO
WIPO (PCT)
Prior art keywords
uplink control
control information
power adjustment
adjustment amount
bits
Prior art date
Application number
PCT/CN2021/113364
Other languages
English (en)
French (fr)
Inventor
徐婧
林亚男
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2021/113364 priority Critical patent/WO2023019490A1/zh
Priority to CN202180097896.8A priority patent/CN117280780A/zh
Publication of WO2023019490A1 publication Critical patent/WO2023019490A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/28TPC being performed according to specific parameters using user profile, e.g. mobile speed, priority or network state, e.g. standby, idle or non transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/32TPC of broadcast or control channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the embodiments of the present application relate to the field of mobile communication technologies, and in particular to a wireless communication method and device, and a terminal device.
  • high-priority services such as ultra-reliable low-latency (URLLC) services are introduced into the communication system.
  • URLLC ultra-reliable low-latency
  • a terminal transmits services of different priorities at the same time.
  • uplink control information with multiple priorities is multiplexed through one uplink control channel, that is, uplink control information with different priorities is transmitted through one uplink control channel, the terminal device cannot adapt an appropriate power adjustment amount for the uplink control channel.
  • Embodiments of the present application provide a wireless communication method and device, and a terminal device.
  • the terminal device determines a target power adjustment amount of the first uplink control channel, the target power adjustment amount is determined based on a first power adjustment amount and a second power adjustment amount, and the first power adjustment amount is a power corresponding to the first uplink control information an adjustment amount, the second power adjustment amount is a power adjustment amount corresponding to the second uplink control information, and the first uplink control channel is used to multiplex and transmit the first uplink control information and the second uplink control information, The priority of the first uplink control information is different from the priority of the second uplink control information.
  • the first determining unit is configured to determine a target power adjustment amount of the first uplink control channel, the target power adjustment amount is determined based on the first power adjustment amount and the second power adjustment amount, the first power adjustment amount is the first uplink The power adjustment amount corresponding to the control information, the second power adjustment amount is the power adjustment amount corresponding to the second uplink control information, and the first uplink control channel is used to multiplex and transmit the first uplink control information and the second uplink control information Two uplink control information, the priority of the first uplink control information is different from the priority of the second uplink control information.
  • the terminal device provided in the embodiment of the present application includes a processor and a memory.
  • the memory is used for storing computer programs
  • the processor is used for invoking and running the computer programs stored in the memory to execute the above wireless communication method.
  • the chip provided in the embodiment of the present application is used to implement the above wireless communication method.
  • the chip includes: a processor, configured to call and run a computer program from the memory, so that the device installed with the chip executes the above wireless communication method.
  • the computer-readable storage medium provided by the embodiment of the present application is used for storing a computer program, and the computer program causes a computer to execute the above wireless communication method.
  • the computer program product provided by the embodiments of the present application includes computer program instructions, where the computer program instructions cause a computer to execute the above wireless communication method.
  • the computer program provided by the embodiment of the present application when running on a computer, enables the computer to execute the above wireless communication method.
  • the first power adjustment amount and the second uplink control information corresponding to the first uplink control information can be The corresponding second power adjustment amount determines the target power adjustment amount of the first uplink control channel, so as to determine the corresponding power adjustment amount of the first uplink control channel based on the power adjustment amount corresponding to the plurality of uplink control information transmitted by the first uplink control channel.
  • the power adjustment amount so as to achieve the purpose of adapting a proper power adjustment amount for the first uplink control channel.
  • FIG. 1 is a schematic diagram of an application scenario of an embodiment of the present application
  • FIG. 2 is a schematic flowchart of an optional wireless communication method according to an embodiment of the present application.
  • FIG. 3 is an optional schematic diagram of an uplink control channel overlapping manner according to an embodiment of the present application
  • FIG. 4 is an optional schematic diagram of an uplink control channel overlapping manner according to an embodiment of the present application.
  • FIG. 5A is an optional structural schematic diagram 1 of a wireless communication device according to an embodiment of the present application.
  • FIG. 5B is a second optional structural schematic diagram of the wireless communication device according to the embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a chip according to an embodiment of the present application.
  • Fig. 8 is a schematic block diagram of a communication system provided by an embodiment of the present application.
  • FIG. 1 is a schematic diagram of an application scenario of an embodiment of the present application.
  • a communication system 100 may include a terminal device 110 and a network device 120 .
  • the network device 120 may communicate with the terminal device 110 through an air interface. Multi-service transmission is supported between the terminal device 110 and the network device 120 .
  • the embodiment of the present application is only described by using the communication system 100 as an example, but the embodiment of the present application is not limited thereto. That is to say, the technical solutions of the embodiments of the present application can be applied to various communication systems, such as: Long Term Evolution (Long Term Evolution, LTE) system, LTE Time Division Duplex (Time Division Duplex, TDD), Universal Mobile Communication System (Universal Mobile Telecommunication System, UMTS), Internet of Things (Internet of Things, IoT) system, Narrow Band Internet of Things (NB-IoT) system, enhanced Machine-Type Communications (eMTC) system, 5G communication system (also known as New Radio (NR) communication system), or future communication systems, etc.
  • LTE Long Term Evolution
  • LTE Time Division Duplex Time Division Duplex
  • TDD Time Division Duplex
  • Universal Mobile Telecommunication System Universal Mobile Telecommunication System
  • UMTS Universal Mobile Communication System
  • Internet of Things Internet of Things
  • NB-IoT Narrow Band Internet of Things
  • eMTC enhanced Machine-Type Communications
  • the network device 120 may be an access network device that communicates with the terminal device 110 .
  • the access network device can provide communication coverage for a specific geographical area, and can communicate with terminal devices 110 (such as UEs) located in the coverage area.
  • the network device 120 may be an evolved base station (Evolutional Node B, eNB or eNodeB) in a Long Term Evolution (Long Term Evolution, LTE) system, or a Next Generation Radio Access Network (NG RAN) device, Either a base station (gNB) in the NR system, or a wireless controller in a cloud radio access network (Cloud Radio Access Network, CRAN), or the network device 120 can be a relay station, an access point, a vehicle-mounted device, a wearable Devices, hubs, switches, bridges, routers, or network devices in the future evolution of the Public Land Mobile Network (Public Land Mobile Network, PLMN), etc.
  • Evolutional Node B, eNB or eNodeB in a Long Term Evolution (Long Term Evolution, LTE) system
  • NG RAN Next Generation Radio Access Network
  • gNB base station
  • CRAN Cloud Radio Access Network
  • the network device 120 can be a relay station, an access point, a vehicle-mounted device, a wear
  • the terminal device 110 may be any terminal device, including but not limited to a terminal device connected to the network device 120 or other terminal devices by wire or wirelessly.
  • the terminal equipment 110 may refer to an access terminal, a user equipment (User Equipment, UE), a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, a terminal, a wireless communication device, user agent, or user device.
  • Access terminals can be cellular phones, cordless phones, Session Initiation Protocol (SIP) phones, IoT devices, satellite handheld terminals, Wireless Local Loop (WLL) stations, Personal Digital Assistant , PDA), handheld devices with wireless communication functions, computing devices or other processing devices connected to wireless modems, vehicle-mounted devices, wearable devices, terminal devices in 5G networks or terminal devices in future evolution networks, etc.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • the terminal device 110 can be used for device-to-device (Device to Device, D2D) communication.
  • D2D Device to Device
  • the wireless communication system 100 may also include a core network device 130 that communicates with the base station.
  • the core network device 130 may be a 5G core network (5G Core, 5GC) device, for example, Access and Mobility Management Function (Access and Mobility Management Function , AMF), and for example, authentication server function (Authentication Server Function, AUSF), and for example, user plane function (User Plane Function, UPF), and for example, session management function (Session Management Function, SMF).
  • the core network device 130 may also be a packet core evolution (Evolved Packet Core, EPC) device of the LTE network, for example, a data gateway (Session Management Function+Core Packet Gateway, SMF+PGW- C) Equipment.
  • EPC packet core evolution
  • SMF+PGW-C can realize the functions of SMF and PGW-C at the same time.
  • the above-mentioned core network equipment may be called by other names, or a new network entity may be formed by dividing functions of the core network, which is not limited in this embodiment of the present application.
  • Various functional units in the communication system 100 may also establish a connection through a next generation network (next generation, NG) interface to implement communication.
  • NG next generation network
  • the terminal device establishes an air interface connection with the access network device through the Uu interface to transmit user plane data and control plane signaling; the terminal device can establish a control plane signaling connection with the AMF through the NG interface 1 (N1 for short);
  • the access Network equipment such as the next generation wireless access base station (gNB), can establish a user plane data connection with UPF through NG interface 3 (abbreviated as N3); access network equipment can establish control plane signaling with AMF through NG interface 2 (abbreviated as N2) connection;
  • UPF can establish a control plane signaling connection with SMF through NG interface 4 (abbreviated as N4);
  • UPF can exchange user plane data with the data network through NG interface 6 (abbreviated as N6);
  • AMF can communicate with SMF through NG interface 11 (abbreviated as N11)
  • the SMF establishes a control plane signaling connection; the SMF may establish a control plane signaling connection with the PCF through an NG interface 7 (N7 for short).
  • Figure 1 exemplarily shows a base station, a core network device, and two terminal devices.
  • the wireless communication system 100 may include multiple base station devices and each base station may include other numbers of terminals within the coverage area.
  • the device is not limited in the embodiment of this application.
  • FIG. 1 is only an illustration of a system applicable to this application, and of course, the method shown in the embodiment of this application may also be applicable to other systems.
  • system and “network” are often used interchangeably herein.
  • the term “and/or” in this article is just an association relationship describing associated objects, which means that there can be three relationships, for example, A and/or B can mean: A exists alone, A and B exist simultaneously, and there exists alone B these three situations.
  • the character "/" in this article generally indicates that the contextual objects are an "or” relationship.
  • the "indication” mentioned in the embodiments of the present application may be a direct indication, may also be an indirect indication, and may also mean that there is an association relationship.
  • A indicates B, which can mean that A directly indicates B, for example, B can be obtained through A; it can also indicate that A indirectly indicates B, for example, A indicates C, and B can be obtained through C; it can also indicate that there is an association between A and B relation.
  • the "correspondence” mentioned in the embodiments of the present application may mean that there is a direct correspondence or an indirect correspondence between the two, or that there is an association between the two, or that it indicates and is indicated. , configuration and configured relationship.
  • the "predefined” or “predefined rules” mentioned in the embodiments of this application can be used by pre-saving corresponding codes, tables or other It is implemented by indicating related information, and this application does not limit the specific implementation.
  • pre-defined may refer to defined in the protocol.
  • the "protocol” may refer to a standard protocol in the communication field, for example, it may include the LTE protocol, the NR protocol, and related protocols applied to future communication systems, and this application does not limit this .
  • uplink feedback adopts high-priority and low-priority uplink feedback to be transmitted separately.
  • the high-priority uplink feedback transmission is given priority. Discard low priority uplink feedback.
  • R17 URLLC enhancement in order to minimize the loss caused by the loss of low-priority uplink feedback, when the high-priority and low-priority uplink feedback conflicts, the high-priority and low-priority uplink feedback are multiplexed and transmitted, and different transmissions are adopted.
  • the code rate ensures the reliability of each priority and the overall transmission efficiency.
  • the transmit power of the uplink control channel is determined by the maximum output power, the target received power, the number of physical resource blocks (Physical Resource Block, PRB) of the uplink control channel, downlink path loss estimation, and for different physical uplink control channels (Physical Uplink Control Channel, The offset of the PUCCH) format, the power adjustment corresponding to the equivalent code rate of the PUCCH, and the closed-loop adjustment of the uplink control channel are jointly determined.
  • the uplink control channel here may be PUCCH.
  • the transmit power of the PUCCH can be calculated based on formula (1):
  • P CMAX,f,c (i) is the maximum output power
  • P O_PUCCH,b,f,c (q u ) is the target received power
  • q u is the target received power index of the uplink reference signal
  • PL b,f,c (q d ) is the downlink path loss estimate
  • q d is the downlink reference signal index
  • ⁇ TF_PUCCH (F) is the offset for different PUCCH formats
  • F is the uplink The format of the control channel
  • ⁇ TFb,f,c (i) is the power adjustment amount for the PUCCH equivalent code rate
  • g b,f,c (i,l) is the closed-loop adjustment amount of the uplink control channel
  • l is the power control Adjustment index
  • f is the carrier where the uplink control channel is located
  • c is the primary cell where the uplink control channel is located
  • b is the BWP where the up
  • the equivalent code rate of UCI is the transmission code rate of UCI, that is, the code rate adopted during transmission.
  • ⁇ TFb,f,c (i) The determination methods of ⁇ TFb,f,c (i) include:
  • the power adjustment amount ⁇ TFb,f,c (i) for the PUCCH equivalent code rate is calculated by formula (2),
  • K 1 6 Bit Per Resource Element (BPRE)(i) is the equivalent code rate
  • BPRE(i) (O HARQ-ACK (i)+O SR (i)+O CSI (i))/N RE (i)
  • O HARQ-ACK is the number of information bits of Hybrid Automatic Repeat-reQuest Acknowledgment (HARQ-ACK) in UCI
  • O SR is the number of information bits in UIC Scheduling Request (Scheduling Request, SR) information bit number
  • O CSI is the channel state information (Channel State Information, CSI) information bit number in UCI
  • N RE is the resource element (Resource Element, RE) number occupied by UCI
  • N RE (i) can Calculated based on formula (3):
  • the power adjustment amount ⁇ TFb,f,c (i) for the PUCCH equivalent code rate is calculated by formula (4):
  • BPRE(i) (O HARQ-ACK (i)+O SR (i)+O CSI (i)+O CRC (i))/N RE (i) formula (5);
  • O HARQ-ACK (i) is the number of HARQ-ACK information bits in UCI
  • O SR (i) is the number of SR information bits in UIC
  • O CSI (i) is the number of CSI bits in UCI
  • O CRC (i) is the UCI corresponding The number of cyclic redundancy check (Cyclic Redundancy Check, CRC) bits
  • N RE (i) is the number of resource elements occupied by UCI
  • N RE (i) can be determined based on formula (3).
  • ⁇ TFb,f,c (i) is the adjustment amount for the PUCCH equivalent code rate.
  • a control channel uses only one transmission code rate, which corresponds to the equivalent code rate of PUCCH.
  • R17 introduces an uplink control channel that contains multiple transmission code rates. For example, high-priority information corresponds to the first code rate, and low-priority information corresponds to the second code rate.
  • the existing PUCCH equivalent code rate cannot correspond to any kind of information. Unable to adapt proper power adjustment.
  • An optional processing flow of the wireless communication method provided in the embodiment of the present application, as shown in FIG. 2 includes the following steps:
  • the terminal device determines a target power adjustment amount of a first uplink control channel.
  • the target power adjustment amount is determined based on a first power adjustment amount and a second power adjustment amount, the first power adjustment amount is a power adjustment amount corresponding to the first uplink control information, and the second power adjustment amount is a second uplink power adjustment amount
  • the power adjustment amount corresponding to the control information, the first uplink control channel is used to multiplex and transmit the first uplink control information and the second uplink control information, and the priority of the first uplink control information is different from that of the first uplink control information Two, the priorities of the uplink control information are different.
  • the terminal device determines to multiplex the first uplink control channel to transmit the first uplink control information and the second uplink control information, determine the first power adjustment amount corresponding to the first uplink control information and the second uplink control information corresponding to the second uplink control information. two power adjustment amounts, and determine the target power adjustment amount of the first uplink control channel based on the first power adjustment amount and the second power adjustment amount.
  • the first uplink control channel is used to multiplex the uplink control channel for transmitting the first uplink control information and the second uplink control information.
  • the uplink control channel is PUCCH.
  • the target power adjustment amount is used to determine the transmit power of the first uplink control information.
  • the terminal device After determining the target power adjustment amount, the terminal device determines the transmission power of the first uplink control channel based on the target power adjustment amount, and sends the first uplink control information and the second uplink control information on the first uplink control channel based on the determined transmission power.
  • the network device receives the first uplink control information and the second uplink control information transmitted by the terminal device by multiplexing the first uplink control channel, and the target power adjustment amount corresponding to the first uplink control information and the second uplink control information transmitted by the first uplink control channel is Determined based on a first power adjustment amount and a second power adjustment amount, the first power adjustment amount is a power adjustment amount corresponding to the first uplink control information, and the second power adjustment amount is a power adjustment amount corresponding to the second uplink control information quantity.
  • the priority of the first uplink control information is different from the priority of the second uplink control information.
  • the priority of the first uplink control information is higher than that of the second uplink control information.
  • the priority of the first uplink control information is lower than that of the second uplink control information.
  • the first power adjustment amount and the second uplink control information corresponding to the first uplink control information may be The second power adjustment amount corresponding to the information determines the target power adjustment amount of the first uplink control channel, so as to determine the first uplink control channel based on the power adjustment amount corresponding to a plurality of uplink control information transmitted by the first uplink control channel
  • the power adjustment amount is to adapt an appropriate power adjustment amount for the first uplink control channel.
  • the priority of the uplink control information may be determined based on at least one of the following attribute parameters: service type, service reliability requirement, and transmission delay requirement.
  • Service types may include: enhanced mobile broadband (eMBB), massive machine type communication (mMTC), uRLLC, etc.
  • the reliability requirements of the business can be represented by different reliability labels.
  • the reliability requirements include: first-level reliability, second-level reliability, and third-level reliability, and are sorted according to reliability from high to low: first-level reliability, secondary reliability, and tertiary reliability.
  • the transmission delay requirements of services can be represented by different delay identifiers.
  • the transmission delay requirements include: first-level delay, second-level delay, and third-level delay, and the order of delay requirements from high to low is: Level 1 delay, Level 2 delay and Level 3 delay.
  • the information priority of the PUCCH or PUSCH may be determined according to the level of the current attribute parameter.
  • the delay requirement of the first uplink control information is higher than that of the second uplink control information, and the priority of the first uplink control information is higher than that of the second uplink control information.
  • the delay requirement of the first uplink control information is lower than that of the second uplink control information, and the priority of the first uplink control information is lower than that of the second uplink control information.
  • the information priority of the PUCCH or the information priority of the PUSCH may be determined according to the multiple attribute parameters.
  • the attribute parameters include multiple types of attribute parameters
  • the levels corresponding to different attribute parameters are determined, and the quantization results of multiple levels are weighted and summed to obtain the information priority of PUCCH or PUSCH.
  • the attribute parameters include multiple types of attribute parameters
  • the levels corresponding to each attribute parameter are determined, and the highest level is determined as the information priority of the corresponding channel.
  • the wireless communication method shown in FIG. 2 two uplink control information with different priorities, that is, the first uplink control information and the second uplink control information are multiplexed on the first uplink control channel.
  • the wireless communication method shown in FIG. 2 is applicable to the scenario where three or more uplink control information with different priorities are multiplexed on the same uplink control channel, that is, the first uplink control channel.
  • the target power adjustment amount is determined based on at least two power adjustment amounts, and different power adjustment amounts in the at least two power adjustment amounts are power adjustments corresponding to different uplink control information in the at least two uplink control information.
  • the first uplink control channel is used to multiplex and transmit the at least two uplink control information, and different uplink control information in the at least two uplink control information have different priorities.
  • the at least two pieces of uplink control information include first uplink control information and second uplink control information
  • the at least two power adjustment amounts include a first power adjustment amount and a second power adjustment amount.
  • the first uplink control channel multiplexes and transmits uplink control information 1, uplink control information 2, and uplink control information 3, and the priorities of uplink control information 1, uplink control information 2, and uplink control information 3 are different, and the uplink control information
  • the power adjustment amount corresponding to information 1 is power adjustment amount 1
  • the power adjustment amount corresponding to uplink control information 2 is power adjustment amount 2
  • the power adjustment amount corresponding to uplink control information 3 is power adjustment amount 3
  • the target power adjustment amount is determined based on the power adjustment amount 1, the power adjustment amount 2, and the power adjustment amount 3.
  • the terminal device when the terminal device determines that the second uplink control channel and the third uplink control channel overlap in the time domain, determine to multiplex the first uplink control channel to transmit the first uplink control information and the For second uplink control information, the second uplink control channel is used to transmit the first uplink control information, and the third uplink control channel is used to transmit the second uplink control information.
  • the code rate of the first uplink control information and the code rate of the second uplink control information are determined independently.
  • the terminal device determines that the second uplink control channel used to transmit the first uplink control information and the third uplink control channel used to transmit the second uplink control information overlap in the time domain, and transmits the first uplink control channel when multiplexing the first uplink control channel. control information and second uplink control information.
  • the uplink control channel 1 is used to transmit uplink control information 1
  • the uplink control channel 2 is used to transmit uplink control information 2.
  • the uplink control channel 1 and the uplink control channel 2 overlap in the time domain, multiplexing Uplink control information 1 and uplink control information 2 are transmitted on the uplink control channel 3 .
  • the time domain overlap between the second uplink control channel and the third uplink control channel means that the time domain resources of the second uplink control channel and the time domain resources of the third uplink control channel overlap in time domain.
  • FIG. 3 The way in which the second uplink control channel and the third uplink control channel overlap in the time domain is shown in FIG. 3 , including partial overlap shown in 301 , inclusion shown in 302 and complete overlap shown in 303 .
  • the terminal device determines when part of the uplink control channels or all the uplink control channels of the at least two uplink control channels used to transmit the at least two uplink control information domain overlap, it is determined to multiplex at least two uplink control information for transmission on the first uplink control channel, wherein the uplink control channels different from the at least two uplink control channels are used to transmit different uplink control channels in the at least two uplink control information control information.
  • equivalent code rates corresponding to different uplink control information are determined independently.
  • the target power adjustment amount includes at least one of the following:
  • Case 1 the smaller of the first power adjustment amount and the second power adjustment amount
  • Case 2 The larger of the first power adjustment amount and the second power adjustment amount.
  • the target power adjustment amount is the smaller of the first power adjustment amount and the second power adjustment amount.
  • the terminal device determines that the target power adjustment amount is the second power adjustment amount.
  • the terminal device determines that the target power adjustment amount is the first power adjustment amount.
  • the target power adjustment amount is the larger of the first power adjustment amount and the second power adjustment amount.
  • the terminal device determines that the target power adjustment amount is the first power adjustment amount.
  • the terminal device determines that the target power adjustment amount is the second power adjustment amount.
  • the target power adjustment amount is the smaller of the first power adjustment amount and the second power adjustment amount
  • the target power adjustment amount is the larger of the first power adjustment amount and the second power adjustment amount
  • case one may be understood as the target power adjustment amount being the smallest of the at least two power adjustment amounts.
  • the second situation may be understood as the target power adjustment amount being the largest of the at least two power adjustment amounts.
  • the target power adjustment amount is the largest and/or smallest of the at least two power adjustment amounts, where the at least two power adjustment amounts are different
  • the power adjustment amounts are respectively power adjustment amounts corresponding to different uplink control information in the at least two uplink control information.
  • the power adjustment amount is determined based at least on a code rate of uplink control information corresponding to the power adjustment amount.
  • the first power adjustment amount is determined based at least on a code rate of the first uplink control information.
  • the code rate of the first uplink control information may be understood as an equivalent code rate of the first uplink control information.
  • the second power adjustment amount is determined based at least on a code rate of the second uplink control information.
  • the code rate of the second uplink control information may be understood as an equivalent code rate of the second uplink control information.
  • the format of the uplink control information is format 2, format 3 or format 4.
  • the power adjustment amount is determined based on a first value and the code rate, and the first value is a constant.
  • the first power adjustment amount is determined based on the first value and a code rate of the first uplink control information,
  • the first value is a constant.
  • the second power adjustment amount is determined based on the first value and a code rate of the second uplink control information,
  • the first value is a constant.
  • the first number of bits is the same as the second number of bits.
  • both the first number of bits and the second number of bits are eleven.
  • the first number of bits is different from the second number of bits.
  • the first bit number is 11, and the second bit number is 10.
  • the first value may be denoted as K 1 , where K 1 is a constant coefficient.
  • K 1 is 6.
  • the first number of bits is the same as the second number of bits, and when the number of bits of the uplink control information is less than or equal to the first number of bits, the power adjustment amount ⁇ TF can be calculated based on formula (6):
  • A is the code rate of the uplink control information, that is, the equivalent code rate.
  • A is the code rate of the first uplink control information
  • A is the code rate of the second uplink control information
  • the power adjustment amount is determined based on a second value and the code rate, and the second value is constant.
  • the first power adjustment amount is determined based on a second value and a code rate of the first uplink control information, and the The second value is a constant.
  • the second power adjustment amount is determined based on a second value and a code rate of the second uplink control information, and the second value is constant.
  • the second value may be denoted as K 2 , where K 2 is a constant coefficient.
  • K2 is 2.4.
  • the first number of bits is the same as the second number of bits, and when the number of bits of the uplink control information is greater than the first number of bits, the power adjustment amount ⁇ TF can be calculated based on formula (7):
  • A is the code rate of the first uplink control information
  • A is the code rate of the second uplink control information
  • the number of bits of the first uplink control information and the number of bits of the second uplink control information meet at least one of the following conditions:
  • Condition 2 Both the number of bits of the first uplink control information and the number of bits of the second uplink control information are less than or equal to the first bit value.
  • the target power adjustment amount is determined based on the first power adjustment amount and the second power adjustment amount , or determine the target power adjustment amount based on at least two power adjustment amounts.
  • condition one may be interpreted as the number of bits of each piece of uplink control information in the at least two pieces of uplink control information being greater than the third number of bits.
  • the second condition may be understood as that the number of bits of each piece of uplink control information in the at least two uplink control pieces of information is less than or equal to the third number of bits.
  • the third number of bits is the same as the first number of bits. In one example, the third number of bits is eleven.
  • the target power adjustment amount further includes at least one of the following:
  • Case 3 The power adjustment amount corresponding to the uplink control information of the first priority, where the uplink control information of the first priority is the first uplink control information or the second uplink control information;
  • the terminal device determines the priority of the first uplink control information and the priority of the second uplink control information, and determines the power adjustment amount corresponding to the uplink control information whose priority is the first priority as the target power adjustment amount.
  • the priority of the first uplink control information is priority A
  • the priority of the second uplink control information is priority B
  • priority A is the first priority
  • the target power adjustment amount is determined as the first priority A power adjustment amount.
  • the terminal device determines the code rate of the first uplink control information and the code rate of the second uplink control information, and determines the power adjustment amount corresponding to the uplink control information with the first code rate as the target power adjustment amount
  • the code rate of the first uplink control information is code rate A
  • the code rate of the second uplink control information is code rate B
  • the code rate A is the first code rate
  • the target power adjustment amount is determined as the first A power adjustment amount
  • the target power adjustment amount adopts the first situation.
  • the target power adjustment amount adopts the third situation.
  • the target power adjustment amount adopts the first situation.
  • the target power adjustment amount adopts case one
  • the target power adjustment amount adopts case three
  • the target power adjustment amount adopts case one
  • the target power adjustment amount adopts case four
  • the target power adjustment amount may be at least one of the following:
  • the priority is the power adjustment amount corresponding to the uplink control information of the first priority
  • the code rate is the power adjustment amount corresponding to the uplink control information of the first code rate.
  • the third case can be understood as the target power adjustment amount is at least two uplink control information, the priority is corresponding to the uplink control information of the first priority power adjustment.
  • case 4 can be understood as the target power adjustment value being the one corresponding to the uplink control information with the first code rate among the at least two uplink control information power adjustment.
  • the terminal device determines the priority of each uplink control information in the at least two uplink control information level, and determine the power adjustment amount corresponding to the uplink control information whose priority is the first priority as the target power adjustment amount.
  • the terminal device determines the code of each uplink control information in the at least two uplink control information rate, and determine the power adjustment amount corresponding to the uplink control information with the first code rate as the target power adjustment amount.
  • the first priority is a higher priority or a lower priority among the priority of the first uplink control information and the priority of the second uplink control information.
  • the terminal device determines that the target power adjustment amount is the first power adjustment amount corresponding to the first uplink control information.
  • the terminal device determines that the target power adjustment amount is the second power adjustment amount corresponding to the second uplink control information.
  • the first code rate is a higher code rate or a lower code rate among the code rate of the first uplink control information and the code rate of the second uplink control information.
  • the terminal device determines that the target power adjustment amount is the first power adjustment amount corresponding to the first uplink control information.
  • the terminal device determines that the target power adjustment amount is the second power adjustment amount corresponding to the second uplink control information.
  • the number of bits of the first uplink control information and the number of bits of the second uplink control information meet the following conditions:
  • Condition 3 Among the bit numbers of the first uplink control information and the bit numbers of the second uplink control information, one bit number is greater than the first bit value, and the other bit number is less than or equal to the first bit value.
  • the first number of bits is 11.
  • the target power adjustment value is determined based on condition three or condition four.
  • condition three can be understood as the number of bits of part of the uplink control information in the at least two uplink control information is less than or equal to the third number of bits, and part of the uplink control information The number of bits of information is greater than the third number of bits.
  • the target power adjustment amount adopts case one or case two; when the bits of the first uplink control information If the number of bits and the number of bits of the second uplink control information satisfy condition three, then the target power adjustment amount adopts case three or case four.
  • the target power adjustment value is determined by using the third or fourth case.
  • the code rate is determined based at least on the number of REs occupied by the uplink control information and the number of bits of at least one of the following information in the uplink control information:
  • the code rate A can be calculated based on formula (8):
  • O HARQ-ACK is the number of bits of HARQ-ACK information
  • O SR is the number of bits of SR information
  • O CSI is the number of bits of CSI
  • N RE is the number of REs occupied by uplink control information.
  • the code rate A can be calculated based on formula (9):
  • O CRC is the number of bits of CRC information.
  • formula (8) is used to calculate the coding rate A.
  • the format of the uplink control information is format 2, format 3 or format 4, and the number of bits of the uplink control information is less than or equal to the first number of bits, then formula (8) is used to calculate the code rate A.
  • formula (9) is used to calculate the code rate A.
  • the format of the uplink control information is format 2, format 3 or format 4, and the number of bits of the uplink control information is greater than the first number of bits, then formula (9) is used to calculate the code rate A.
  • the uplink control information is first uplink control information
  • the priority of the first uplink control information is higher than the priority of the second uplink control information
  • the first The number of REs occupied by the uplink control information is a first number, and the first number is determined based on at least one of the following parameters:
  • the number of bits of information that the first uplink control channel can carry is the number of bits of information that the first uplink control channel can carry
  • the modulation mode of the first uplink control channel is the modulation mode of the first uplink control channel
  • the number of REs N RE occupied by the uplink control information may be based on formula (10A), formula (10B), formula (10C) and formula ( Any formula in 10D) is calculated to obtain:
  • E tot is the total number of information bits that can be carried by the first uplink control channel, is the number of bits of high-priority uplink control information without CRC, is the number of CRC bits corresponding to the high-priority uplink control information, for Case, for Case, Or 11, r HP is the code rate of the high-priority uplink control information configured by high-level signaling, Q m is the modulation mode of the first uplink control channel, and SF is the spreading number of the first uplink control channel, Indicates that the included parameters are rounded up, for example: express yes Round up, for example: express yes Rounded up.
  • the second uplink control information when the uplink control information is second uplink control information, and the priority of the second uplink control information is lower than the priority of the first uplink control information, the second The number of REs occupied by the uplink control information is a second number, and the second number is determined based on at least one of the following parameters:
  • the number of REs available on the first uplink control channel is the number of REs available on the first uplink control channel
  • a first number where the first number is the number of REs occupied by the first uplink control information.
  • the number N RE of REs occupied by the uplink control information can be calculated based on formula (11):
  • N LP_UCI N tot -N HP_UCI formula (11);
  • N tot is the total number of REs available for the first uplink control channel
  • N HP_UCI is the number of REs occupied by high-priority uplink control information
  • the second uplink control information when the uplink control information is second uplink control information, and the priority of the second uplink control information is lower than the priority of the first uplink control information, the second The number of REs occupied by the uplink control information is a second number, and the second number is determined based on at least one of the following parameters:
  • the number of bits of information that the second uplink control channel can carry is the number of bits of information that the second uplink control channel can carry
  • the number of bits of the second uplink control information including CRC information
  • the modulation mode of the first uplink control channel is the modulation mode of the first uplink control channel
  • the number of REs N RE occupied by the uplink control information may be based on formula (12A), formula (12B), formula (12C) and formula ( 12D) calculated by any formula:
  • E HP_UCI is the number of bits of high priority uplink control information including CRC
  • CRC is the number of bits of low-priority uplink control information excluding CRC is the number of CRC bits corresponding to the low priority uplink control information
  • r LP is the code rate of low-priority uplink control information configured by high-level signaling
  • Q m is the modulation mode of the first uplink control channel
  • SF is the spreading number of the first uplink control channel.
  • the priority of the at least two uplink control information is sorted according to the priority, wherein the RE occupied by the highest priority uplink control information UCI1
  • the number N UCI1 can be obtained based on formula (10A), formula (10B), formula (10C) or formula (10D),
  • formula (10A) in the case of determining the number of REs occupied by uplink control information UCI1 with the highest priority based on formula (10A), formula (10A) can be expressed as formula (13),
  • O UCI1 is the number of bits of UCI1 not including CRC
  • O CRC1 is the number of bits of CRC corresponding to UCI1.
  • the number of REs whose priority is only lower than the highest priority uplink control information UCI2 N UCI2 can be based on formula (11) or formula (12A), formula (12B) formula (12C) formula (12D) any formula calculated,
  • formula (11) can be expressed as formula (14),
  • N UCI2 N tot - N UCI1 formula (14);
  • formula (12A) can be expressed as formula (15),
  • E UCI1 is the number of bits of UCI1 including CRC
  • O UCI2 is the number of bits of UIC2 not including CRC
  • r UCI2 is the code rate of UCI2 configured by high-level signaling.
  • formula (12A) For the convenience of description, here, taking formula (11) or formula (12A) as an example, to determine the number of REs occupied by uplink control information other than the highest priority uplink control information, when using formula (12B) When formula (12C) or formula (12D) determines the number of REs occupied by uplink control information other than the highest priority uplink control information, the idea is similar to using formula (11) or formula (12A) to determine the number of REs.
  • the number of REs occupied by uplink control information UCI3 whose priority is the third, that is lower than UCI2, can be calculated based on formula (16) or formula (17):
  • N UCI3 N tot -N UCI1 -N UCI2 formula (16);
  • E UCI2 is the number of bits of UCI2 that includes CRC
  • O UCI3 is the number of bits of UIC3 that does not include CRC
  • r UCI3 is the UCI3 code rate configured by high-level signaling.
  • the uplink control information can be calculated based on formula (10A) or formula (13).
  • the number of REs occupied by the information includes at least one of the following:
  • the total number of REs available for the first uplink control channel is obtained by subtracting the number of REs occupied by high-priority uplink control information higher than the priority of the current uplink control information;
  • O UCI is the number of bits of the UCI
  • O CRC is the number of bits of the CRC corresponding to the UCI
  • r UCI is the code rate configured for the UCI by high-level signaling.
  • the data transmission method provided by the embodiment of the application will be further described by taking the multiplexing of high-priority uplink control information and low-priority uplink control information as an example for transmission on the first uplink control channel.
  • the terminal device determines the second uplink control channel used to transmit high-priority uplink control information and the third uplink control channel used to transmit low-priority uplink control information.
  • the second uplink control channel and the third uplink control channel are Domains overlap.
  • the terminal device multiplexes high-priority uplink control information and low-priority uplink control information to transmit on the first uplink control channel, and the code rate of high-priority uplink control information and the code rate of low-priority uplink control information are independently configured .
  • the terminal determines a power adjustment amount of the first uplink control channel, that is, a target power adjustment amount, wherein the target power adjustment amount is determined by the first power adjustment amount and or the second power adjustment amount.
  • the first power adjustment amount is a power adjustment amount corresponding to high-priority uplink control information
  • the second power adjustment amount is a power adjustment amount corresponding to low-priority uplink control information.
  • the power adjustment amount of the first uplink control channel is at least one of the following:
  • the power adjustment amount corresponding to the control information on the first priority level or the power adjustment amount corresponding to the uplink control information using the first code rate is not limited.
  • the first power adjustment amount is determined by the code rate of the high-priority uplink control information, and the determination method is as follows:
  • K 1 is a constant coefficient
  • a 11 is the code rate when the number of bits of the high-priority uplink control information is not greater than 11.
  • a 11 (O1 HARQ-ACK +O1 SR +O1 CSI )/N1 RE formula (21);
  • K 2 is a constant coefficient
  • a 12 is the code rate when the number of bits of the high-priority uplink control information is greater than 11.
  • a 12 (O1 HARQ-ACK +O1 SR +O1 CSI +O1 CRC )/N1 RE formula (23);
  • O1 HARQ-ACK , O1 SR , O1 CSI , and O1 CRC are the number of bits of HARK-ACK, SR, CSI, and CRC in the high-priority uplink control information respectively, and N1 RE is the RE occupied by the high-priority uplink control information number.
  • the second power adjustment amount is determined by the code rate of the low-priority uplink control information, and the determination method is as follows:
  • K 1 is a constant coefficient
  • a 21 is the code rate when the number of bits of the low-priority uplink control information is not greater than 11.
  • a 21 (O2 HARQ-ACK +O2 SR +O2 CSI )/N2 RE formula (25);
  • K 2 is a constant coefficient
  • a 22 is the code rate when the number of bits of the low-priority uplink control information is greater than 11.
  • a 22 (O2 HARQ-ACK +O2 SR +O2 CSI +O2 CRC )/N2 RE formula (27);
  • O2 HARQ-ACK , O2 SR , O2 CSI , and O2 CRC are the number of bits of HARK-ACK, SR, CSI, and CRC in the low-priority uplink control information respectively, and N2 RE is the RE occupied by the low-priority uplink control information number.
  • N HP_UCI The number of REs occupied by high-priority uplink control information N1 RE is N HP_UCI is calculated by formula (10A):
  • E tot is the total number of information bits that the PUCCH can carry, is the number of bits of high-priority uplink control information, is the number of CRC bits corresponding to the high-priority uplink control information, for Case, for Case, Or 11, r HP is the code rate of high-priority uplink control information, which is configured by high-level signaling, Q m is the modulation mode of the first uplink control channel, and SF is the spreading number of the first uplink control channel.
  • N LP_UCI The number of REs occupied by the low-priority uplink control information N2 RE is N LP_UCI is calculated by formula (11) or formula (12A):
  • N LP_UCI N tot -N HP_UCI formula (11);
  • N tot is the total number of resource elements (REs) available for the first uplink control channel
  • N HP_UCI is the number of REs occupied by high-priority uplink control information
  • E tot is the total number of information bits that can be carried by the PUCCH
  • E HP_UCI is The number of bits of high-priority uplink control information including CRC
  • CRC is the number of CRC bits corresponding to the low priority uplink control information
  • r LP is the code rate of the low-priority uplink control information, which is configured by high-layer signaling
  • Q m is the modulation method of the first uplink control channel
  • SF is the spreading number of the first uplink control channel.
  • the power adjustment amount of the first control channel is the power adjustment amount corresponding to the control information on the first priority level or the first code rate The power adjustment amount corresponding to the uplink control information.
  • the first priority is high priority or low priority.
  • the first code rate is a high code rate or a low code rate among the code rate of high priority uplink control information and the code rate of low priority uplink control information; otherwise (when the number of bits of uplink control information with different code rates, some greater than 11, some less than or equal to 11,), the power adjustment amount of the first control channel is the maximum or minimum value of the first power adjustment amount and the second power adjustment amount.
  • the first power adjustment amount is a power adjustment amount corresponding to high-priority uplink control information or a power adjustment amount corresponding to uplink control information using a high code rate.
  • the second power adjustment amount is the power adjustment amount corresponding to the control information on the low priority level or the power adjustment amount corresponding to the uplink control information using the low code rate.
  • the high-priority PUCCH: PUCCH1 and the low-priority PUCCH: PUCCH2 overlap in the time domain, and the high-priority uplink control information transmitted on the high-priority PUCCH and the low-priority uplink control information transmitted on the low-priority PUCCH Multiplexed to the first PUCCH, that is, the hybrid PUCCH: PUCCH3 is sent.
  • the code rates of the high-priority uplink control information and the low-priority uplink control information sent on the PUCCH3 are independently configured.
  • the PUCCH format of PUCCH3 is configured with the code rate A1 of the high-priority uplink control information
  • the code rate of the high-priority uplink control information is A1
  • the PUCCH format of PUCCH3 is configured with the code rates of the low-priority uplink control information A2, A2 It is calculated and determined according to the amount of low-priority uplink control information and the corresponding RE resources, or is configured as A2 by high-layer signaling.
  • the terminal device determines the power adjustment amount ⁇ TF of PUCCH3 according to the power adjustment amount of PUCCH1 and the power adjustment amount of PUCCH2:
  • K 1 is a constant coefficient of 6
  • a 2 (O HARQ-ACK +O SR +O CSI )/N RE .
  • K 2 is a constant coefficient of 2.4
  • a 2 (O HARQ-ACK +O SR +O CSI +O CRC )/N RE .
  • N RE is calculated as shown in formula (11) or formula (12A),
  • N RE N tot -N HP_UCI formula (11);
  • N tot is the total number of REs available for PUCCH3
  • N HP_UCI is the number of REs occupied by high-priority uplink control information.
  • E tot is the total number of information bits that can be carried by PUCCH
  • E HP_UCI is the number of bits of high priority uplink control information including CRC
  • CRC is the number of CRC bits corresponding to the low priority uplink control information
  • r LP is the code rate of low-priority uplink control information, which is configured by high-level signaling
  • Q m is the modulation method of PUCCH3
  • SF is the spreading number of PUCCH3.
  • the high-priority PUCCH PUCCH1 and the low-priority PUCCH PUCCH2 overlap in the time domain, and the high-priority uplink control information to be transmitted on the high-priority PUCCH and the low-priority uplink control information to be transmitted on the low-priority PUCCH
  • the uplink control information is multiplexed on the first PUCCH, that is, mixed PUCCH PUCCH3 for transmission.
  • the high-priority uplink control information and the low-priority uplink control information sent on the PUCCH3 independently determine the coding rate.
  • the power adjustment amount of the high-priority uplink control information, that is, the first power adjustment amount, and the power adjustment amount of the low-priority uplink control information, that is, the second power adjustment amount are determined.
  • K 1 is a constant coefficient
  • a 1 is the code rate when the number of high-priority uplink control information bits is not greater than 11
  • a 11 (O HARQ-ACK +O SR +O CSI )/N RE .
  • K 2 is a constant coefficient
  • a 1 is the code rate when the number of high-priority uplink control information bits is greater than 11
  • a 12 (O HARQ-ACK +O SR +O CSI +O CRC )/N RE .
  • E tot is the total number of information bits that the PUCCH can carry, is the number of bits of high-priority uplink control information, is the number of CRC bits corresponding to the high-priority uplink control information, for Case, for Case, Or 11, r HP is the code rate of high-priority uplink control information, which is configured by high-level signaling, Q m is the modulation mode of the first uplink control channel, and SF is the spreading number of the first uplink control channel.
  • the power adjustment amount ⁇ TF of the low-priority uplink control channel is determined by formula (32),
  • the power calibration amount ⁇ TF of the uplink control channel is determined by formula (33),
  • K 2 is a constant coefficient
  • a 22 is the code rate when the number of low priority uplink control bits is greater than 11
  • a 22 (O HARQ-ACK +O SR +O CSI +O CRC )/N RE .
  • N RE N tot -N HP_UCI formula (11);
  • N tot is the total number of REs available for the first uplink control channel
  • N HP_UCI is the number of REs occupied by high-priority uplink control information.
  • E tot is the total number of information bits that can be carried by PUCCH
  • E HP_UCI is the number of bits of high priority uplink control information including CRC
  • CRC is the number of CRC bits corresponding to the low priority uplink control information
  • r LP is the code rate of the low-priority uplink control information, which is configured by high-layer signaling
  • Q m is the modulation method of the first uplink control channel
  • SF is the spreading number of the first uplink control channel.
  • the terminal determines that the target power adjustment amount of the first uplink control channel is the maximum value of the first power adjustment amount and the second power adjustment amount.
  • the reliability of all uplink control information can be guaranteed by using the power adjustment amount or the maximum power adjustment amount corresponding to the low-priority uplink control information, or,
  • the power adjustment amount or the minimum power adjustment amount corresponding to the high-priority uplink control information is used to give priority to ensuring the reliability of the high-priority control information and improve the transmission efficiency.
  • sequence numbers of the above-mentioned processes do not mean the order of execution, and the order of execution of the processes should be determined by their functions and internal logic, and should not be used in this application.
  • the implementation of the examples constitutes no limitation.
  • the terms “downlink”, “uplink” and “sidelink” are used to indicate the transmission direction of signals or data, wherein “downlink” is used to indicate that the transmission direction of signals or data is sent from the station The first direction to the user equipment in the cell, “uplink” is used to indicate that the signal or data transmission direction is the second direction sent from the user equipment in the cell to the station, and “side line” is used to indicate that the signal or data transmission direction is A third direction sent from UE1 to UE2.
  • “downlink signal” indicates that the transmission direction of the signal is the first direction.
  • the term “and/or” is only an association relationship describing associated objects, indicating that there may be three relationships. Specifically, A and/or B may mean: A exists alone, A and B exist simultaneously, and B exists alone. In addition, the character "/" in this article generally indicates that the contextual objects are an "or” relationship.
  • FIG. 5A is a first schematic diagram of the structure and composition of a wireless communication device provided by an embodiment of the present application, which is applied to a terminal device.
  • the wireless communication device 51 includes:
  • the first determining unit 501 is configured to determine a target power adjustment amount of the first uplink control channel, the target power adjustment amount is determined based on the first power adjustment amount and the second power adjustment amount, and the first power adjustment amount is the first The power adjustment amount corresponding to the uplink control information, the second power adjustment amount is the power adjustment amount corresponding to the second uplink control information, and the first uplink control channel is used to multiplex and transmit the first uplink control information and the For the second uplink control information, the priority of the first uplink control information is different from the priority of the second uplink control information.
  • device 500 also includes:
  • the second determining unit is configured to determine to multiplex the first uplink control channel to transmit the first uplink control information and the third uplink control channel when it is determined that the second uplink control channel and the third uplink control channel overlap in the time domain Two uplink control information, the second uplink control channel is used to transmit the first uplink control information, and the third uplink control channel is used to transmit the second uplink control information.
  • the target power adjustment amount includes at least one of the following:
  • the first power adjustment amount is determined based at least on a code rate of the first uplink control information.
  • the first power adjustment amount is based on the first value and the code rate of the first uplink control information It is determined that the first value is a constant.
  • the first power adjustment amount is determined based on the second value and the code rate of the first uplink control information,
  • the second value is a constant.
  • the second power adjustment amount is determined based at least on a code rate of the second uplink control information.
  • the second power adjustment amount is based on the first value and the code rate of the second uplink control information It is determined that the first value is a constant.
  • the second power adjustment amount is determined based on the second value and the code rate of the second uplink control information, The second value is constant.
  • the number of bits of the first uplink control information and the number of bits of the second uplink control information meet at least one of the following conditions:
  • Both the number of bits of the first uplink control information and the number of bits of the second uplink control information are greater than the third bit value
  • Both the number of bits of the first uplink control information and the number of bits of the second uplink control information are less than or equal to the third bit value.
  • the target power adjustment amount further includes at least one of the following:
  • the power adjustment amount corresponding to the uplink control information of a first code rate is adopted, and the first code rate is the code rate of the first uplink control information or the code rate of the second uplink control information.
  • the first priority is a higher priority or a lower priority among the priority of the first uplink control information and the priority of the second uplink control information.
  • the first code rate is a higher code rate or a lower code rate among the code rate of the first uplink control information and the code rate of the second uplink control information.
  • the number of bits of the first uplink control information and the number of bits of the second uplink control information meet the following conditions:
  • bit number of the first uplink control information and the bit numbers of the second uplink control information one bit number is greater than a third bit value, and the other bit number is less than or equal to the third bit value.
  • the code rate is determined based at least on the number of resource elements RE occupied by the uplink control information and the number of bits of at least one of the following information in the uplink control information:
  • the uplink control information is first uplink control information
  • the priority of the first uplink control information is higher than the priority of the second uplink control information
  • the first The number of REs occupied by the uplink control information is a first number, and the first number is determined based on at least one of the following parameters:
  • the number of bits of information that the first uplink control channel can carry is the number of bits of information that the first uplink control channel can carry
  • the modulation mode of the first uplink control channel is the modulation mode of the first uplink control channel
  • the second uplink control information when the uplink control information is second uplink control information, and the priority of the second uplink control information is lower than the priority of the first uplink control information, the second The number of REs occupied by the uplink control information is a second number, and the second number is determined based on at least one of the following parameters:
  • the number of REs available on the first uplink control channel is the number of REs available on the first uplink control channel
  • a first number where the first number is the number of REs occupied by the first uplink control information.
  • the second uplink control information when the uplink control information is second uplink control information, and the priority of the second uplink control information is lower than the priority of the first uplink control information, the second The number of REs occupied by the uplink control information is a second number, and the second number is determined based on at least one of the following parameters:
  • the number of bits of information that the second uplink control channel can carry is the number of bits of information that the second uplink control channel can carry
  • the number of bits of the second uplink control information including CRC information
  • the modulation mode of the first uplink control channel is the modulation mode of the first uplink control channel
  • the wireless communication device 51 further includes a sending unit configured to multiplex and transmit the first uplink control information and the second uplink control information through the first uplink control channel.
  • FIG. 5B is a second schematic diagram of the structure and composition of the wireless communication device provided by the embodiment of the present application, which is applied to network equipment.
  • the wireless communication device 52 includes:
  • the receiving unit 502 is configured to receive the first uplink control information and the second uplink control information transmitted by the terminal device by multiplexing the first uplink control channel, and the first uplink control channel transmits the target corresponding to the first uplink control information and the second uplink control information
  • the power adjustment amount is determined based on a first power adjustment amount and a second power adjustment amount, the first power adjustment amount is the power adjustment amount corresponding to the first uplink control information, and the second power adjustment amount is the second uplink control information For a corresponding power adjustment amount, the priority of the first uplink control information is different from the priority of the second uplink control information.
  • the target power adjustment amount includes at least one of the following:
  • the first power adjustment amount is determined based at least on a code rate of the first uplink control information.
  • the first power adjustment amount is based on the first value and the code rate of the first uplink control information It is determined that the first value is a constant.
  • the first power adjustment amount is determined based on the second value and the code rate of the first uplink control information,
  • the second value is a constant.
  • the second power adjustment amount is determined based at least on a code rate of the second uplink control information.
  • the second power adjustment amount is based on the first value and the code rate of the second uplink control information It is determined that the first value is a constant.
  • the second power adjustment amount is determined based on the second value and the code rate of the second uplink control information,
  • the second value is a constant.
  • the number of bits of the first uplink control information and the number of bits of the second uplink control information meet at least one of the following conditions:
  • Both the number of bits of the first uplink control information and the number of bits of the second uplink control information are greater than the third bit value
  • Both the number of bits of the first uplink control information and the number of bits of the second uplink control information are less than or equal to the third bit value.
  • the target power adjustment amount further includes at least one of the following:
  • the power adjustment amount corresponding to the uplink control information of a first code rate is adopted, and the first code rate is the code rate of the first uplink control information or the code rate of the second uplink control information.
  • the first priority is a higher priority or a lower priority among the priority of the first uplink control information and the priority of the second uplink control information.
  • the first code rate is a higher code rate or a lower code rate among the code rate of the first uplink control information and the code rate of the second uplink control information.
  • the number of bits of the first uplink control information and the number of bits of the second uplink control information meet the following conditions:
  • bit number of the first uplink control information and the bit numbers of the second uplink control information one bit number is greater than a third bit value, and the other bit number is less than or equal to the third bit value.
  • the code rate is determined based at least on the number of resource elements RE occupied by the uplink control information and the number of bits of at least one of the following information in the uplink control information:
  • the uplink control information is first uplink control information
  • the priority of the first uplink control information is higher than the priority of the second uplink control information
  • the first The number of REs occupied by the uplink control information is a first number, and the first number is determined based on at least one of the following parameters:
  • the number of bits of information that the first uplink control channel can carry is the number of bits of information that the first uplink control channel can carry
  • the modulation mode of the first uplink control channel is the modulation mode of the first uplink control channel
  • the second uplink control information when the uplink control information is second uplink control information, and the priority of the second uplink control information is lower than the priority of the first uplink control information, the second The number of REs occupied by the uplink control information is a second number, and the second number is determined based on at least one of the following parameters:
  • the number of REs available on the first uplink control channel is the number of REs available on the first uplink control channel
  • a first number where the first number is the number of REs occupied by the first uplink control information.
  • the second uplink control information when the uplink control information is second uplink control information, and the priority of the second uplink control information is lower than the priority of the first uplink control information, the second The number of REs occupied by the uplink control information is a second number, and the second number is determined based on at least one of the following parameters:
  • the number of bits of information that the second uplink control channel can carry is the number of bits of information that the second uplink control channel can carry
  • the number of bits of the second uplink control information including CRC information
  • the modulation mode of the first uplink control channel is the modulation mode of the first uplink control channel
  • the wireless communication apparatus 52 further includes a third determining unit configured to determine a power adjustment amount or transmit power corresponding to the terminal equipment multiplexing the first uplink control channel to transmit the first uplink control information and the second uplink control information.
  • a third determining unit configured to determine a power adjustment amount or transmit power corresponding to the terminal equipment multiplexing the first uplink control channel to transmit the first uplink control information and the second uplink control information.
  • FIG. 6 is a schematic structural diagram of a communication device 600 provided in an embodiment of the present application.
  • the communication device may be a terminal device or a network device.
  • the communication device 600 shown in FIG. 6 includes a processor 610, and the processor 610 can invoke and run a computer program from a memory, so as to implement the method in the embodiment of the present application.
  • the communication device 600 may further include a memory 620 .
  • the processor 610 can invoke and run a computer program from the memory 620, so as to implement the method in the embodiment of the present application.
  • the memory 620 may be an independent device independent of the processor 610 , or may be integrated in the processor 610 .
  • the communication device 600 may further include a transceiver 630, and the processor 610 may control the transceiver 630 to communicate with other devices, specifically, to send information or data to other devices, or receive other Information or data sent by the device.
  • the transceiver 630 may include a transmitter and a receiver.
  • the transceiver 630 may further include antennas, and the number of antennas may be one or more.
  • the communication device 600 may specifically be the network device of the embodiment of the present application, and the communication device 600 may implement the corresponding processes implemented by the network device in each method of the embodiment of the present application. For the sake of brevity, details are not repeated here. .
  • the communication device 600 may specifically be the mobile terminal/terminal device of the embodiment of the present application, and the communication device 600 may implement the corresponding processes implemented by the mobile terminal/terminal device in each method of the embodiment of the present application, for the sake of brevity , which will not be repeated here.
  • FIG. 7 is a schematic structural diagram of a chip according to an embodiment of the present application.
  • the chip 700 shown in FIG. 7 includes a processor 710, and the processor 710 can call and run a computer program from a memory, so as to implement the method in the embodiment of the present application.
  • the chip 700 may further include a memory 720 .
  • the processor 710 can invoke and run a computer program from the memory 720, so as to implement the method in the embodiment of the present application.
  • the memory 720 may be an independent device independent of the processor 710 , or may be integrated in the processor 710 .
  • the chip 700 may also include an input interface 730 .
  • the processor 710 can control the input interface 730 to communicate with other devices or chips, specifically, can obtain information or data sent by other devices or chips.
  • the chip 700 may also include an output interface 740 .
  • the processor 710 can control the output interface 840 to communicate with other devices or chips, specifically, can output information or data to other devices or chips.
  • the chip can be applied to the network device in the embodiment of the present application, and the chip can implement the corresponding processes implemented by the network device in the methods of the embodiment of the present application.
  • the chip can implement the corresponding processes implemented by the network device in the methods of the embodiment of the present application.
  • the chip can be applied to the mobile terminal/terminal device in the embodiments of the present application, and the chip can implement the corresponding processes implemented by the mobile terminal/terminal device in the various methods of the embodiments of the present application.
  • the chip can implement the corresponding processes implemented by the mobile terminal/terminal device in the various methods of the embodiments of the present application.
  • the chip can implement the corresponding processes implemented by the mobile terminal/terminal device in the various methods of the embodiments of the present application.
  • the chip can be applied to the mobile terminal/terminal device in the embodiments of the present application, and the chip can implement the corresponding processes implemented by the mobile terminal/terminal device in the various methods of the embodiments of the present application.
  • the chip mentioned in the embodiment of the present application may also be called a system-on-chip, a system-on-chip, a system-on-a-chip, or a system-on-a-chip.
  • Fig. 8 is a schematic block diagram of a communication system 800 provided by an embodiment of the present application. As shown in FIG. 8 , the communication system 800 includes a terminal device 810 and a network device 820 .
  • the terminal device 810 can be used to realize the corresponding functions realized by the terminal device in the above method
  • the network device 820 can be used to realize the corresponding functions realized by the network device in the above method.
  • the processor in the embodiment of the present application may be an integrated circuit chip, which has a signal processing capability.
  • each step of the above-mentioned method embodiments may be completed by an integrated logic circuit of hardware in a processor or instructions in the form of software.
  • the above-mentioned processor can be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application-specific integrated circuit (Application Specific Integrated Circuit, ASIC), an off-the-shelf programmable gate array (Field Programmable Gate Array, FPGA) or other available Program logic devices, discrete gate or transistor logic devices, discrete hardware components.
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • a general-purpose processor may be a microprocessor, or the processor may be any conventional processor, or the like.
  • the steps of the method disclosed in connection with the embodiments of the present application may be directly implemented by a hardware decoding processor, or implemented by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, register.
  • the storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiments of the present application may be a volatile memory or a nonvolatile memory, or may include both volatile and nonvolatile memories.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electronically programmable Erase Programmable Read-Only Memory (Electrically EPROM, EEPROM) or Flash.
  • the volatile memory can be Random Access Memory (RAM), which acts as external cache memory.
  • RAM Static Random Access Memory
  • SRAM Static Random Access Memory
  • DRAM Dynamic Random Access Memory
  • Synchronous Dynamic Random Access Memory Synchronous Dynamic Random Access Memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM, DDR SDRAM enhanced synchronous dynamic random access memory
  • Enhanced SDRAM, ESDRAM synchronous connection dynamic random access memory
  • Synchlink DRAM, SLDRAM Direct Memory Bus Random Access Memory
  • Direct Rambus RAM Direct Rambus RAM
  • the memory in the embodiment of the present application may also be a static random access memory (static RAM, SRAM), a dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM), etc. That is, the memory in the embodiments of the present application is intended to include, but not be limited to, these and any other suitable types of memory.
  • the embodiment of the present application also provides a computer-readable storage medium for storing computer programs.
  • the computer-readable storage medium can be applied to the mobile terminal/terminal device in the embodiments of the present application, and the computer program enables the computer to execute the corresponding processes implemented by the mobile terminal/terminal device in the various methods of the embodiments of the present application , for the sake of brevity, it is not repeated here.
  • the computer-readable storage medium can be applied to the mobile terminal/terminal device in the embodiments of the present application, and the computer program enables the computer to execute the corresponding processes implemented by the network device in the methods of the embodiments of the present application, for the sake of brevity , which will not be repeated here.
  • the embodiment of the present application also provides a computer program product, including computer program instructions.
  • the computer program product can be applied to the mobile terminal/terminal device in the embodiments of the present application, and the computer program instructions cause the computer to execute the corresponding processes implemented by the mobile terminal/terminal device in the methods of the embodiments of the present application, For the sake of brevity, details are not repeated here.
  • the computer program product can be applied to the network device in the embodiments of the present application, and the computer program instructions cause the computer to execute the corresponding processes implemented by the mobile terminal/terminal device in the methods of the embodiments of the present application.
  • the computer program instructions cause the computer to execute the corresponding processes implemented by the mobile terminal/terminal device in the methods of the embodiments of the present application.
  • the embodiment of the present application also provides a computer program.
  • the computer program can be applied to the mobile terminal/terminal device in the embodiment of the present application.
  • the computer program executes each method in the embodiment of the present application to be implemented by the mobile terminal/terminal device
  • the corresponding process will not be repeated here.
  • the computer program can be applied to the network device in the embodiment of the present application.
  • the computer program executes the corresponding process implemented by the mobile terminal/terminal device in each method of the embodiment of the present application. , for the sake of brevity, it is not repeated here.
  • the disclosed systems, devices and methods may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the functions described above are realized in the form of software function units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the prior art or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory,) ROM, random access memory (Random Access Memory, RAM), magnetic disk or optical disc, etc., which can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种无线通信方法及装置、终端设备,该方法包括:终端设备确定第一上行控制信道的目标功率调整量,所述目标功率调整量基于第一功率调整量和第二功率调整量确定,所述第一功率调整量为第一上行控制信息对应的功率调整量,所述第二功率调整量为第二上行控制信息对应的功率调整量,所述第一上行控制信道用于复用传输所述第一上行控制信息和所述第二上行控制信息,所述第一上行控制信息的优先级与所述第二上行控制信息的优先级不同。

Description

一种无线通信方法及装置、终端设备 技术领域
本申请实施例涉及移动通信技术领域,具体涉及一种无线通信方法及装置、终端设备。
背景技术
相关技术中,通信系统中引入了超高可靠低时延(Ultra-reliable low latency,URLLC)业务等高优先级的业务,此时,一个终端会同时传输不同优先级的业务的情况。当通过一个上行控制信道复用多个优先级的上行控制信息,也就是通过一个上行控制信道传输不同优先级的上行控制信息,终端设备无法为该上行控制信道适配合适的功率调整量。
发明内容
本申请实施例提供一种无线通信方法及装置、终端设备。
本申请实施例提供的无线通信方法,包括:
终端设备确定第一上行控制信道的目标功率调整量,所述目标功率调整量基于第一功率调整量和第二功率调整量确定,所述第一功率调整量为第一上行控制信息对应的功率调整量,所述第二功率调整量为第二上行控制信息对应的功率调整量,所述第一上行控制信道用于复用传输所述第一上行控制信息和所述第二上行控制信息,所述第一上行控制信息的优先级与所述第二上行控制信息的优先级不同。
本申请实施例提供的无线通信装置,包括:
第一确定单元,配置为确定第一上行控制信道的目标功率调整量,所述目标功率调整量基于第一功率调整量和第二功率调整量确定,所述第一功率调整量为第一上行控制信息对应的功率调整量,所述第二功率调整量为第二上行控制信息对应的功率调整量,所述第一上行控制信道用于复用传输所述第一上行控制信息和所述第二上行控制信息,所述第一上行控制信息的优先级与所述第二上行控制信息的优先级不同。
本申请实施例提供的终端设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述的无线通信方法。
本申请实施例提供的芯片,用于实现上述的无线通信方法。
具体地,该芯片包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该芯片的设备执行上述的无线通信方法。
本申请实施例提供的计算机可读存储介质,用于存储计算机程序,该计算机程序使得计算机执行上述的无线通信方法。
本申请实施例提供的计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行上述的无线通信方法。
本申请实施例提供的计算机程序,当其在计算机上运行时,使得计算机执行上述的无线通信方法。
通过上述技术方案,在通过第一上行控制信道复用传输第一上行控制信息和第二上行控制信息的情况下,可以基于第一上行控制信息对应的第一功率调整量和第二上行控制信息对应的第二功率调整量,确定第一上行控制信道的目标功率调整量,从而基于第一上行控制信道所传输的多个上行控制信息所对应的功率调整量来确定第一上行控制信道对应的功率调整量,以达到为第一上行控制信道适配合适的功率调整量的目的。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1是本申请实施例的一个应用场景的示意图;
图2是本申请实施例的无线通信方法的可选地流程示意图;
图3是本申请实施例的上行控制信道重叠方式的可选地示意图;
图4是本申请实施例的上行控制信道重叠方式的可选地示意图;
图5A是本申请实施例的无线通信装置的可选地结构示意图一;
图5B是本申请实施例的无线通信装置的可选地结构示意图二;
图6是本申请实施例提供的一种通信设备示意性结构图;
图7是本申请实施例的芯片的示意性结构图;
图8是本申请实施例提供的一种通信系统的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
图1是本申请实施例的一个应用场景的示意图。
如图1所示,通信系统100可以包括终端设备110和网络设备120。网络设备120可以通过空口与终端设备110通信。终端设备110和网络设备120之间支持多业务传输。
应理解,本申请实施例仅以通信系统100进行示例性说明,但本申请实施例不限定于此。也就是说,本申请实施例的技术方案可以应用于各种通信系统,例如:长期演进(Long Term Evolution,LTE)系统、LTE时分双工(Time Division Duplex,TDD)、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、物联网(Internet of Things,IoT)系统、窄带物联网(Narrow Band Internet of Things,NB-IoT)系统、增强的机器类型通信(enhanced Machine-Type Communications,eMTC)系统、5G通信系统(也称为新无线(New Radio,NR)通信系统),或未来的通信系统等。
在图1所示的通信系统100中,网络设备120可以是与终端设备110通信的接入网设备。接入网设备可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备110(例如UE)进行通信。
网络设备120可以是长期演进(Long Term Evolution,LTE)系统中的演进型基站(Evolutional Node B,eNB或eNodeB),或者是下一代无线接入网(Next Generation Radio Access Network,NG RAN)设备,或者是NR系统中的基站(gNB),或者是云无线接入网络(Cloud Radio Access Network,CRAN)中的无线控制器,或者该网络设备120可以为中继站、接入点、车载设备、可穿戴设备、集线器、交换机、网桥、路由器,或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)中的网络设备等。
终端设备110可以是任意终端设备,其包括但不限于与网络设备120或其它终端设备采用有线或者无线连接的终端设备。
例如,所述终端设备110可以指接入终端、用户设备(User Equipment,UE)、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、IoT设备、卫星手持终端、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、5G网络中的终端设备或者未来演进网络中的终端设备等。
终端设备110可以用于设备到设备(Device to Device,D2D)的通信。
无线通信系统100还可以包括与基站进行通信的核心网设备130,该核心网设备130可以是5G核心网(5G Core,5GC)设备,例如,接入与移动性管理功能(Access and Mobility Management Function,AMF),又例如,认证服务器功能(Authentication Server Function,AUSF),又例如,用户面功能(User Plane Function,UPF),又例如,会话管理功能(Session Management Function,SMF)。可选地,核心网络设备130也可以是LTE网络的分组核心演进(Evolved Packet Core,EPC)设备,例如,会话管理功能+核心网络的数据网关(Session Management Function+Core Packet Gateway,SMF+PGW-C)设备。应理解,SMF+PGW-C可以同时实现SMF和PGW-C所能实现的功能。在网络演进过程中,上述核心网设备也有可能叫其它名字,或者通过对核心网的功能进行划分形成新的网络实体,对此本申请实施例不做限制。
通信系统100中的各个功能单元之间还可以通过下一代网络(next generation,NG)接口建立连接实现通信。
例如,终端设备通过Uu接口与接入网设备建立空口连接,用于传输用户面数据和控制面信令;终端设备可以通过NG接口1(简称N1)与AMF建立控制面信令连接;接入网设备例如下一代无线接入基站(gNB),可以通过NG接口3(简称N3)与UPF建立用户面数据连接;接入网设备可以通过NG接口2(简称N2)与AMF建立控制面信令连接;UPF可以通过NG接口4(简称N4)与SMF建立控制面信令连接;UPF可以通过NG接口6(简称N6)与数据网络交互用户面数据;AMF可以通过NG接口11(简称N11)与SMF建立控制面信令连接;SMF可以通过NG接口7(简称N7)与PCF建立控制面信令连接。
图1示例性地示出了一个基站、一个核心网设备和两个终端设备,可选地,该无线通信系统100可以包括多个基站设备并且每个基站的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。
需要说明的是,图1只是以示例的形式示意本申请所适用的系统,当然,本申请实施例所示的方法还可以适用于其它系统。此外,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。还应理解,在本申请的实施例中提到的“指示”可以是直接指示,也可以是间接指示,还可以是表示具有关联关系。举例说明,A指示B,可以表示A直接指示B,例如B可以通过A获取;也可以表示A间接指示B,例如A指示C,B可以通过C获取;还可以表示A和B之间具有关联关系。还应理解,在本申请的实施例中提到的“对应”可表示两者之间具有直接对应或间接对应的关系,也可以表示两者之间具有关联关系,也可以是指示与被指示、配置与被配置等关系。还应理解,在本申请的实施例中提到的“预定义”或“预定义规则”可以通过在设备(例如,包括终端设备和网络设备)中预先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,本申请对于其具体的实现方式不做限定。比如预定义可以是指协议中定义的。还应理解,本申请实施例中,所述"协议"可以指通信领域的标准协议,例如可以包括LTE协议、NR协议以及应用于未来的通信系统中的相关协议,本申请对此不做限定。
为便于理解本申请实施例的技术方案,以下对本申请实施例的相关技术进行说明,以下相关技术作为可选方案与本申请实施例的技术方案可以进行任意结合,其均属于本申请实施例的保护范围。
在R16 URLLC增强(enhancement),为了优先保证高优先级数据,e.g.URLLC的上行反馈,采纳了高优先级与低优先级上行反馈分别传输,当两者冲突时,优先高优先级上行反馈传输,丢弃低优先级上行反馈。
在R17 URLLC enhancement,为了尽量减少低优先级上行反馈丢失造成的损失,采纳了高优先级与低优先级上行反馈冲突时,高优先级和低优先级上行反馈复用传输,并且采用不同的传输码率,保证各自优先级的可靠性及整体的传输效率。
目前,上行控制信道的发射功率由最大输出功率、目标接收功率、上行控制信道的物理资源块(Physical Resource Block,PRB)数目、下行路损估计、针对不同物理上行控制信道(Physical Uplink Control Channel,PUCCH)格式的偏移量、对应PUCCH等效码率的功率调整量、上行控制信道的闭环调整量共同决定。其中,这里的上行控制信道可为PUCCH。
在PUCCH、PUCCH所在的带宽部分带宽部分(Bandwidth Part,BWP)、PUCCH所在的载波、PUCCH所在的主小区确定的情况下,PUCCH的发射功率可基于公式(1)计算得到:
Figure PCTCN2021113364-appb-000001
其中,P CMAX,f,c(i)是最大输出功率,P O_PUCCH,b,f,c(q u)是目标接收功率,q u是上行参考信号目标接收功率索引;
Figure PCTCN2021113364-appb-000002
是上行控制信道的PRB数目;PL b,f,c(q d)是下行路损估计,q d是下行参考信号索引;Δ TF_PUCCH(F)是针对不同PUCCH格式的偏移量,F为上行控制信道的格式; Δ TFb,f,c(i)是针对PUCCH等效码率的功率调整量;g b,f,c(i,l)是上行控制信道的闭环调整量,l是功控调整索引;f为上行控制信道所在的载波,c是上行控制信道所在的主小区,b是上行控制信道所在的BWP,i是PUCCH传输机会索引。
其中,针对PUCCH等效码率的功率调整量,Δ TFb,f,c(i)对于PUCCH格式(format)2或格式3或格式4,基于PUCCH所传输的上行控制信息(Uplink Control Information,UCI)的等效码率确定。这里,UCI的等效码率为UCI的传输码率,即传输时采用的码率。
Δ TFb,f,c(i)的确定方式包括:
·如果UCI比特数小于或等于11,则针对PUCCH等效码率的功率调整量Δ TFb,f,c(i)通过公式(2)计算得到,
Δ TFb,f,c(i)=10log 10(K 1*BPRE(i))         公式(2);
其中,K 1=6,每资源元素的比特(Bit Per Resource Element,BPRE)(i)为等效码率,BPRE(i)=(O HARQ-ACK(i)+O SR(i)+O CSI(i))/N RE(i),O HARQ-ACK为UCI中混合自动重传请求应答(Hybrid Automatic Repeat-reQuest Acknowledgement,HARQ-ACK)信息比特数,O SR为UIC中调度请求(Scheduling Request,SR)信息比特数,O CSI为UCI中信道状态信息(Channel State Information,CSI)信息比特数,N RE为UCI所占用的资源元素(Resource Element,RE)数目,N RE(i)可基于公式(3)计算得到:
Figure PCTCN2021113364-appb-000003
Figure PCTCN2021113364-appb-000004
为UCI占用的载波数,
Figure PCTCN2021113364-appb-000005
为UCI占用的符号数。
·如果UCI比特数大于11,则针对PUCCH等效码率的功率调整量Δ TFb,f,c(i)通过公式(4)计算得到:
Δ TFb,f,c(i)=10log 10(2 k2*BPRE(i)-1)         公式(4);
其中,K 2=2.4,BPRE(i)为等效码率,BPRE(i)可基于公式(5)计算得到:
BPRE(i)=(O HARQ-ACK(i)+O SR(i)+O CSI(i)+O CRC(i))/N RE(i)          公式(5);
O HARQ-ACK(i)为UCI中HARQ-ACK信息比特数,O SR(i)为UIC中SR信息比特数,O CSI(i)为UCI中CSI比特数,O CRC(i)为UCI对应的循环冗余校验(Cyclic Redundancy Check,CRC)比特数,N RE(i)为UCI占用的资源元素数目,N RE(i)可基于公式(3)确定。
上述方案中,Δ TFb,f,c(i)是针对PUCCH等效码率的调整量。在R15/16中,一个控制信道只采用一种传输码率,与PUCCH等效码率是对应的。但R17引入一个上行控制信道包含多种传输码率,例如,高优先级信息对应第一码率,低优先级信息对应第二码率,现有PUCCH等效码率无法对应任何一种信息,无法适配合适的功率调整量。
为便于理解本申请实施例的技术方案,以下通过具体实施例详述本申请的技术方案。以上相关技术作为可选方案与本申请实施例的技术方案可以进行任意结合,其均属于本申请实施例的保护范围。本申请实施例包括以下内容中的至少部分内容。
本申请实施例提供的无线通信方法的一种可选处理流程,如图2所示,包括以下步骤:
S201、终端设备确定第一上行控制信道的目标功率调整量。
所述目标功率调整量基于第一功率调整量和第二功率调整量确定,所述第一功率调整量为第一上行控制信息对应的功率调整量,所述第二功率调整量为第二上行控制信息对应的功率调整量,所述第一上行控制信道用于复用传输所述第一上行控制信息和所述第二上行控制信息,所述第一上行控制信息的优先级与所述第二上行控制信息的优先级不同。
这里,终端设备确定复用第一上行控制信道传输第一上行控制信息和第二上行控制信息的情况下,确定第一上行控制信息对应的第一功率调整量和第二上行控制信息对应的第二功率调整量,并基于第一功率调整量和第二功率调整量确定第一上行控制信道的目标功率调整量。第一上行控制信道用于复用传输第一上行控制信息和第二上行控制信息的上行控制信道。
可选地,上行控制信道为PUCCH。
可选地,目标功率调整量用于确定第一上行控制信息的发射功率。
终端设备确定目标功率调整量后,基于目标功率调整量确定第一上行控制信道的发射功率,并基于确定的发射功率在第一上行控制上发送第一上行控制信息和第二上行控制信息。
网络设备接收终端设备复用第一上行控制信道传输的第一上行控制信息和第二上行控制信息,第一上行控制信道传输第一上行控制信息和第二上行控制信息对应的目标功率调整量是基于第一功率调整量和第二功率调整量确定,所述第一功率调整量为第一上行控制信息对应的功率调整量,所述第二功率调整量为第二上行控制信息对应的功率调整量。
可选地,第一上行控制信息的优先级和第二上行控制信息的优先级不同。
在一示例中,第一上行控制信息的优先级高于第二上行控制信息的优先级。
在一示例中,第一上行控制信息的优先级低于第二上行控制信息的优先级。
本申请实施例中,在通过第一上行控制信道复用传输第一上行控制信息和第二上行控制信息的情况下,可以基于第一上行控制信息对应的第一功率调整量和第二上行控制信息对应的第二功率调整量,确定第一上行控制信道的目标功率调整量,从而基于第一上行控制信道所传输的多个上行控制信息所对应的功率调整量来确定第一上行控制信道的功率调整量,为第一上行控制信道适配合适的功率调整量。
本申请实施例中,上行控制信息的优先级可基于以下属性参数中至少一个确定:业务类型、业务可靠性要求和传输时延要求。业务类型可包括:增强型移动宽带(eMBB)、海量机器类通信(mMTC)、uRLLC等。业务的可靠性要求可通过不同的可靠性标识表征,比如:可靠性要求包括:一级可靠性、二级可靠性、三级可靠性,且根据可靠性从高至低依次排序为:一级可靠性、二级可靠性、三级可靠性。业务的传输时延要求可通过不同的时延标识表征,比如:传输时延要求包括:一级时延、二级时延和三级时延,且时延要求从高至低依次排序为:一级时延、二级时延和三级时延。
可选地,当确定优先级的属性参数包括一类属性参数时,可根据当前属性参数的等级确定PUCCH或PUSCH的信息优先级。
在一示例中,第一上行控制信息的时延需求高于第二上行控制信息的时延需求,则第一上行控制信息的优先级高于第二上行控制信息的优先级。
在一示例中,第一上行控制信息的时延需求低于第二上行控制信息的时延需求,则第一上行控制信息的优先级低于第二上行控制信息的优先级。
可选地,当确定优先级的属性参数包括多类属性参数时,可根据多个属性参数确定PUCCH的信息优先级或PUSCH的信息优先级。在一示例中,当属性参数包括多类属性参数时,确定不同属性参数对应的等级,将多个等级量化结果进行加权求和,得到PUCCH或PUSCH的信息优先级。在又一示例中,当属性参数包括多类属性参数时,确定各属性参数对应的等级,并将最高的等级确定为对应信道的信息优先级。
需要说明的是,图2所示的无线通信方法中,优先级不同的两个上行控制信息即第一上行控制信息和第二上行控制信息复用在第一上行控制信道的场景,在实际应用中,图2所示的无线通信方法同时适用于三个或三个以上优先级不同的上行控制信息复用在同一个上行控制信道即第一上行控制信道的场景。
此时,所述目标功率调整量基于至少两个功率调整量确定,所述至少两个功率调整量中不同的功率调整量分别为至少两个上行控制信息中不同的上行控制信息对应的功率调整量,所述第一上行控制信道用于复用传输所述至少两个上行控制信息,所述至少两个上行控制信息中不同上行控制信息的优先级不同。
可选地,至少两个上行控制信息包括第一上行控制信息和第二上行控制信息,至少两个功率调整量包括第一功率调整量和第二功率调整量。
在一示例中,第一上行控制信道复用传输上行控制信息1、上行控制信息2和上行控制信息3,且上行控制信息1、上行控制信息2和上行控制信息3的优先级不同,上行控制信息1对应的功率调整量为功率调整量1,上行控制信息2对应的功率调整量为功率调整量2,上行控制信息3对应的功率调整量为功率调整量3,则第一上行控制信道的目标功率调整量基于功率调整量1、功率调整量2和功率调整量3确定。
在一些实施例中,终端设备确定第二上行控制信道和第三上行控制信道在时域上重叠的情况下,确定复用所述第一上行控制信道传输所述第一上行控制信息和所述第二上行控制信息,所述第二上行控制信道用于传输所述第一上行控制信息,所述第三上行控制信道用于传输所述第二上行控制信 息。
可选地,第一上行控制信息的码率和第二上行控制信息的码率即等效码率独立确定。
终端设备确定用于传输第一上行控制信息的第二上行控制信道和用于传输第二上行控制信息的第三上行控制信道在时域上重叠,在复用第一上行控制信道传输第一上行控制信息和第二上行控制信息。
在一示例中,上行控制信道1用于传输上行控制信息1,上行控制信道2用于传输上行控制信息2,在上行控制信道1和上行控制信道2在时域上重叠的情况下,复用上行控制信道3上传输上行控制信息1和上行控制信息2。
本申请实施例中,第二上行控制信道和第三上行控制信道在时域上重叠为第二上行控制信道的时域资源和第三上行控制信道的时域资源在时域上有重叠。
第二上行控制信道和第三上行控制信道在时域上重叠的方式如图3所示,包括:301所示的部分重叠,302所示的包含以及303所示的完全重叠。
针对第一上行控制信息用于复用至少两个上行控制信息的场景,终端设备确定用于传输至少两个上行控制信息的至少两个上行控制信道中部分上行控制信道或全部上行控制信道在时域上重叠,则确定将至少两个上行控制信息复用于第一上行控制信道上传输,其中,至少两个上行控制信道不同的上行控制信道用于传输至少两个上行控制信息中不同的上行控制信息。
可选地,不同上行控制信息对应的等效码率独立确定。
在一些实施例中,所述目标功率调整量包括以下至少之一:
情况一、所述第一功率调整量和所述第二功率调整量中的较小的;
情况二、所述第一功率调整量和所述第二功率调整量中的较大的。
在一示例中,目标功率调整量为所述第一功率调整量和所述第二功率调整量中的较小的。
以第一功率调整量大于所述第二功率调整量为例,则终端设备确定目标功率调整量为第二功率调整量。
以第一功率调整量小于所述第二功率调整量为例,则终端设备确定目标功率调整量为第一功率调整量。
在一示例中,目标功率调整量为第一功率调整量和第二功率调整量中的较大的。
以第一功率调整量大于所述第二功率调整量为例,则终端设备确定目标功率调整量为第一功率调整量。
以第一功率调整量小于所述第二功率调整量为例,则终端设备确定目标功率调整量为第二功率调整量。
在一示例中,对于第一上行控制信道:上行控制信道A,目标功率调整量为所述第一功率调整量和所述第二功率调整量中的较小的,对于第一上行控制信道:上行控制信道B,目标功率调整量为所述第一功率调整量和所述第二功率调整量中的较大的。
在第一上行控制信道复用传输至少两个上行控制信息的场景中,情况一可理解为目标功率调整量为至少两个功率调整量中的最小的。
在第一上行控制信道复用传输至少两个上行控制信息的场景中,情况二可理解为目标功率调整量为至少两个功率调整量中的最大的。
对于第一上行控制信道复用传输至少两个上行控制信息的场景,目标功率调整量为至少两个功率调整量中的最大的和/或最小的,其中,至少两个功率调整量中不同的功率调整量分别为至少两个上行控制信息中不同的上行控制信息对应的功率调整量。
在一些实施例中,所述功率调整量至少基于所述功率调整量对应的上行控制信息的码率确定。
可选地,第一功率调整量至少基于所述第一上行控制信息的码率确定。
第一上行控制信息的码率可理解为第一上行控制信息的等效码率。
可选地,第二功率调整量至少基于第二上行控制信息的码率确定。
第二上行控制信息的码率可理解为第二上行控制信息的等效码率。
可选地,上行控制信息的格式为格式2、格式3或格式4。
在一些实施例中,在所述上行控制信息的比特数小于或等于比特数值阈值的情况下,所述功率调整量基于第一数值和所述码率确定,所述第一数值为常量。
可选地,在所述第一上行控制信息的比特数小于或等于第一比特数值的情况下,所述第一功率调整量基于第一数值和所述第一上行控制信息的码率确定,所述第一数值为常量。
可选地,在所述第二上行控制信息的比特数小于或等于第二比特数值的情况下,所述第二功率 调整量基于第一数值和所述第二上行控制信息的码率确定,所述第一数值为常量。
可选地,第一比特数与第二比特数相同。在一示例中,第一比特数和第二比特数均为11。
可选地,第一比特数与第二比特数不同。在一示例中,第一比特数为11,第二比特数均为10。
第一数值可标记为K 1,K 1为常系数。可选地,K 1为6。
可选地,第一比特数和第二比特数相同,上行控制信息的比特数小于或等于第一比特数的情况下,功率调整量Δ TF可基于公式(6)计算得到:
Δ TF=10log 10(K 1*A)             公式(6);
A为上行控制信息的码率即等效码率。
当Δ TF为第一功率调整量,A为第一上行控制信息的码率;当Δ TF为第二功率调整量,A为第二上行控制信息的码率。
在一些实施例中,在所述上行控制信息的比特数大于比特数阈值的情况下,所述功率调整量基于第二数值和所述码率确定,所述第二数值为常量。
可选地,在所述第一上行控制信息的比特数大于第一比特数值的情况下,所述第一功率调整量基于第二数值和所述第一上行控制信息的码率确定,所述第二数值为常量。
在所述第二上行控制信息的比特数大于第二比特数值的情况下,所述第二功率调整量基于第二数值和所述第二上行控制信息的码率确定,所述第二数值为常量。
第二数值可标记为K 2,K 2为常系数。可选地,K 2为2.4。
可选地,第一比特数和第二比特数相同,上行控制信息的比特数大于第一比特数的情况下,功率调整量Δ TF可基于公式(7)计算得到:
Figure PCTCN2021113364-appb-000006
当Δ TF为第一功率调整量,A为第一上行控制信息的码率;当Δ TF为第二功率调整量,A为第二上行控制信息的码率。
在一些实施例中,所述第一上行控制信息的比特数和所述第二上行控制信息的比特数满足以下条件至少之一:
条件一、所述第一上行控制信息的比特数和所述第二上行控制信息的比特数均大于第一比特数值;
条件二、所述第一上行控制信息的比特数和所述第二上行控制信息的比特数均小于或等于第一比特数值。
这里,当第一上行控制信息的比特数和第二上行控制信息的比特数满足条件一或条件二中任一条件,则基于第一功率调整量和第二功率调整量,确定目标功率调整量,或基于至少两个功率调整量确定目标功率调整量。
在第一上行控制信道复用传输至少两个上行控制信息的场景中,条件一可理解为至少两个上行控制信息中每个上行控制信息的比特数大于第三比特数。
在第一上行控制信道复用传输至少两个上行控制信息的场景中,条件二可理解为至少两个上行控制信息中每个上行控制信息的比特数小于或等于第三比特数。
可选地,第三比特数与第一比特数相同。在一示例中,第三比特数为11。
在一些实施例中,所述目标功率调整量还包括以下至少之一:
情况三、第一优先级的上行控制信息对应的功率调整量,所述第一优先级的上行控制信息为所述第一上行控制信息或所述第二上行控制信息;
情况四、采用第一码率的上行控制信息对应的功率调整量,所述第一码率为所述第一上行控制信息的码率或所述第二上行控制信息的码率。
对于情况三,终端设备确定第一上行控制信息的优先级和第二上行控制信息的优先级,将优先级为第一优先级的上行控制信息对应的功率调整量确定为目标功率调整量。
在一示例中,第一上行控制信息的优先级为优先级A,第二上行控制信息的优先级为优先级B,且优先级A为第一优先级,则将目标功率调整量确定为第一功率调整量。
对于情况四,终端设备确定第一上行控制信息的码率和第二上行控制信息的码率,将码率为第一码率的上行控制信息对应的功率调整量确定为目标功率调整量
在一示例中,第一上行控制信息的码率为码率A,第二上行控制信息的码率为码率B,且码率A为第一码率,则将目标功率调整量确定为第一功率调整量。
本申请实施例中,对于不同的第一上行控制信道,可采用相同的方式或不同的方式。
在一示例中,对于上行控制信道A和上行控制信道B,目标功率调整量采用情况一。
在一示例中,对于上行控制信道A和上行控制信道B,目标功率调整量采用情况三。
在一示例中,对于上行控制信道A和上行控制信道B,目标功率调整量采用情况一。
在一示例中,对于上行控制信道A,目标功率调整量采用情况一,对于上行控制信道B,目标功率调整量采用情况三。
在一示例中,对于上行控制信道A,目标功率调整量采用情况一,对于上行控制信道B,目标功率调整量采用情况四。
在第一上行控制信道复用传输至少两个上行控制信息的情况下,目标功率调整量可为以下至少之一:
至少两个上行控制信息中,优先级为第一优先级的上行控制信息对应的功率调整量;
至少两个上行控制信息中,码率为第一码率的上行控制信息对应的功率调整量。
在第一上行控制信道复用传输至少两个上行控制信息的场景中,情况三可理解为目标功率调整量为至少两个上行控制信息中,优先级为第一优先级的上行控制信息对应的功率调整量。
在第一上行控制信道复用传输至少两个上行控制信息的场景中,情况四可理解为目标功率调整量为至少两个上行控制信息中,码率为第一码率的上行控制信息对应的功率调整量。
在目标功率调整量为至少两个上行控制信息中,优先级为第一优先级的上行控制信息对应的功率调整量的情况下,终端设备确定至少两个上行控制信息中各上行控制信息的优先级,并将优先级为第一优先级的上行控制信息对应的功率调整量确定为目标功率调整量。
在目标功率调整量为至少两个上行控制信息中,码率为第一码率的上行控制信息对应的功率调整量的情况下,终端设备确定至少两个上行控制信息中各上行控制信息的码率,并将码率为第一码率的上行控制信息对应的功率调整量确定为目标功率调整量。
在一些实施例中,所述第一优先级为所述第一上行控制信息的优先级和所述第二上行控制信息的优先级中的较高的优先级或较低的优先级。
以所述第一优先级为所述第一上行控制信息的优先级和所述第二上行控制信息的优先级中的较高的优先级为例,当第一上行控制信息的优先级高于第二上行控制信息的优先级,终端设备确定目标功率调整量为第一上行控制信息对应的第一功率调整量。
以所述第一优先级为所述第一上行控制信息的优先级和所述第二上行控制信息的优先级中的较低的优先级为例,当第一上行控制信息的优先级高于第二上行控制信息的优先级,终端设备确定目标功率调整量为第二上行控制信息对应的第二功率调整量。
在一些实施例中,所述第一码率为所述第一上行控制信息的码率和所述第二上行控制信息的码率中的较高的码率或较低的码率。
以所述第一码率为所述第一上行控制信息的码率和所述第二上行控制信息的码率中的较高的码率为例,当第一上行控制信息的码率高于第二上行控制信息的码率,终端设备确定目标功率调整量为第一上行控制信息对应的第一功率调整量。
以所述第一码率为所述第一上行控制信息的码率和所述第二上行控制信息的码率中的较低的码率为例,当第一上行控制信息的码率高于第二上行控制信息的码率,终端设备确定目标功率调整量为第二上行控制信息对应的第二功率调整量。
在一些实施例中,所述第一上行控制信息的比特数和所述第二上行控制信息的比特数满足以下条件:
条件三、所述第一上行控制信息的比特数和所述第二上行控制信息的比特数中,一个比特数大于第一比特数值,且另一个比特数小于或等于所述第一比特数值。
可选地,第一比特数为11。
当第一上行控制信息的比特数和第二上行控制信息的比特数满足条件三,则基于情况三或情况四确定目标功率调整值。
在第一上行控制信道复用传输至少两个上行控制信息的场景中,条件三可理解为至少两个上行控制信息中部分上行控制信息的比特数小于或等于第三比特数,且部分上行控制信息的比特数大于第三比特数。
在一示例中,当第一上行控制信息的比特数和第二上行控制信息的比特数满足条件一或条件二,则目标功率调整量采用情况一或情况二;当第一上行控制信息的比特数和第二上行控制信息的比特数满足条件三,则目标功率调整量采用情况三或情况四。
在一示例中,当至少两个上行控制信息的比特数满足条件一或条件二,则采用情况一或情况二确定第一功率调整值;当至少两个上行控制信息的比特数满足条件三,则采用情况三或情况四确定目标功率调整值。
在一些实施例中,所述码率至少基于所述上行控制信息所占的RE的数目和所述上行控制信息中的以下至少一种信息的比特数确定:
HARQ-ACK信息;
求SR信息;
CSI;
CRC信息。
在一示例中,码率A可基于公式(8)计算得到:
A=(O HARQ-ACK+O SR+O CSI)/N RE            公式(8);
其中,O HARQ-ACK为HARQ-ACK信息的比特数,O SR为SR信息的比特数,O CSI为CSI的比特数,N RE为上行控制信息所占的RE的数目。
在一示例中,码率A可基于公式(9)计算得到:
A=(O HARQ-ACK+O SR+O CSI+O CRC)/N RE          公式(9);
其中,O CRC为CRC信息的比特数。
可选地,当上行控制信息的比特数小于或等于第一比特数,则采用公式(8)计算码率A。
可选地,上行控制信息的格式为格式2、格式3或格式4,且上行控制信息的比特数小于或等于第一比特数,则采用公式(8)计算码率A。
可选地,当上行控制信息的比特数大于第一比特数,则采用公式(9)计算码率A。
可选地,上行控制信息的格式为格式2、格式3或格式4,且上行控制信息的比特数大于第一比特数,则采用公式(9)计算码率A。
在一些实施例中,在所述上行控制信息为第一上行控制信息,且所述第一上行控制信息的优先级高于所述第二上行控制信息的优先级的情况下,所述第一上行控制信息所占的RE的数目为第一数目,所述第一数目基于以下至少一种参数确定:
所述第一上行控制信道能够承载的信息的比特数;
不包括CRC信息的所述第一上行控制信息的比特数;
CRC信息的比特数;
为所述第一上行控制信息配置的码率;
所述第一上行控制信道的调制方式;
所述第一上行控制信道的扩频数。
可选地,对于高优先级的上行控制信息,该上行控制信息所占的RE的数目N RE即第一数目N HP_UCI可基于公式(10A)、公式(10B)、公式(10C)和公式(10D)中任一公式计算得到:
Figure PCTCN2021113364-appb-000007
Figure PCTCN2021113364-appb-000008
Figure PCTCN2021113364-appb-000009
Figure PCTCN2021113364-appb-000010
其中,E tot为第一上行控制信道能够承载的总的信息比特数,
Figure PCTCN2021113364-appb-000011
为不包括CRC情况下高优先级的上行控制信息的比特数,
Figure PCTCN2021113364-appb-000012
为高优先级的上行控制信息对应的CRC的比特数,对于
Figure PCTCN2021113364-appb-000013
的情况,
Figure PCTCN2021113364-appb-000014
对于
Figure PCTCN2021113364-appb-000015
的情况,
Figure PCTCN2021113364-appb-000016
或11,r HP为由高层信令配置的高优先级的上行控制信息的码率,Q m为第一上行控制信道的调制方式,SF为第一上行控制信道的扩频数,
Figure PCTCN2021113364-appb-000017
表示对包括的参数向上取整,比如:
Figure PCTCN2021113364-appb-000018
表示对
Figure PCTCN2021113364-appb-000019
向上取整,再比如:
Figure PCTCN2021113364-appb-000020
表示对
Figure PCTCN2021113364-appb-000021
向上取整。
在一些实施例中,在所述上行控制信息为第二上行控制信息,且所述第二上行控制信息的优先级低于所述第一上行控制信息的优先级的情况下,所述第二上行控制信息所占的RE的数目为第二数目,所述第二数目基于以下至少一种参数确定:
所述第一上行控制信道上可用的RE的数量;
第一数目,所述第一数目为所述第一上行控制信息所占的RE的数目。
可选地,对于低优先级的上行控制信息,该上行控制信息所占的RE的数目N RE即第二数目N LP_UCI可基于公式(11)计算得到:
N LP_UCI=N tot-N HP_UCI                公式(11);
其中,N tot为第一上行控制信道可用的RE总数,N HP_UCI为高优先级的上行控制信息所占用的RE数。
在一些实施例中,在所述上行控制信息为第二上行控制信息,且所述第二上行控制信息的优先级低于所述第一上行控制信息的优先级的情况下,所述第二上行控制信息所占的RE的数目为第二数目,所述第二数目基于以下至少一种参数确定:
所述第二上行控制信道能够承载的信息的比特数;
包括CRC信息的所述第二上行控制信息的比特数;
不包括CRC信息的所述第二上行控制信息的比特数;
CRC信息的比特数;
为所述第二上行控制信息配置的码率;
所述第一上行控制信道的调制方式;
所述第一上行控制信道的扩频数。
可选地,对于低优先级的上行控制信息,该上行控制信息所占的RE的数目N RE即第二数目N LP_UCI可基于公式(12A)、公式(12B)、公式(12C)和公式(12D)中任一公式计算得到:
Figure PCTCN2021113364-appb-000022
Figure PCTCN2021113364-appb-000023
Figure PCTCN2021113364-appb-000024
Figure PCTCN2021113364-appb-000025
其中,E HP_UCI为包括CRC的高优先级上行控制信息的比特数,
Figure PCTCN2021113364-appb-000026
为不包括CRC的低优先 级上行控制信息的比特数
Figure PCTCN2021113364-appb-000027
为低优先级上行控制信息对应的CRC的比特数,对于
Figure PCTCN2021113364-appb-000028
的情况,
Figure PCTCN2021113364-appb-000029
对于
Figure PCTCN2021113364-appb-000030
的情况,
Figure PCTCN2021113364-appb-000031
或11,r LP为高层信令配置低优先级上行控制信息的码率,Q m为第一上行控制信道的调制方式,SF为第一上行控制信道的扩频数。
针对第一上行控制信息用于复用至少两个上行控制信息的场景,根据优先级高低对至少两个上行控制信息的优先级进行排序,其中,优先级最高的上行控制信息UCI1所占的RE的数目N UCI1可基于公式(10A)、公式(10B)、公式(10C)或公式(10D)的得到,
在一示例中,在基于公式(10A)确定优先级最高的上行控制信息UCI1所占的RE的数目的情况下,公式(10A)可表示为公式(13),
Figure PCTCN2021113364-appb-000032
其中,O UCI1为不包括CRC情况下UCI1的比特数,O CRC1为UCI1对应的CRC的比特数,对于O UCI1≤11的情况,O CRC1=0,对于O UCI1>11的情况,O CRC1=6或11,r UCI1为由高层信令配置的UCI1的码率。
优先级仅低于最高有优先级的上行控制信息UCI2所占的RE的数目N UCI2可基于公式(11)或公式(12A)、公式(12B)公式(12C)公式(12D)中任一公式计算得到,
在基于公式(11)确定N UCI2的情况下,公式(11)可以表示为公式(14),
N UCI2=N tot-N UCI1                  公式(14);
在基于公式(12A)确定N UCI2的情况下,公式(12A)可以表示为公式(15),
Figure PCTCN2021113364-appb-000033
其中,E UCI1为包括CRC的UCI1的比特数,O UCI2为不包括CRC的UIC2的比特数O CRC2为UCI2对应的CRC的比特数,对于O UCI2≤11的情况,O CRC2=0,对于O UCI2>11的情况,O CRC2=6或11,r UCI2为高层信令配置的UCI2的码率。
为方便描述,这里,以基于公式(11)或公式(12A)为例,对确定除优先级最高的上行控制信息以外的上行控制信息所占的RE的数目进行描述,当以公式(12B)、公式(12C)或公式(12D)确定除优先级最高的上行控制信息以外的上行控制信息所占的RE的数目时,思路类似采用公式(11)或公式(12A)是确定RE的数目。
对于优先级位于第三即低于UCI2的优先级的上行控制信息UCI3所占的RE的数目可基于公式(16)或公式(17)计算得到:
N UCI3=N tot-N UCI1-N UCI2              公式(16);
Figure PCTCN2021113364-appb-000034
其中,E UCI2为包括CRC的UCI2的比特数,O UCI3为不包括CRC的UIC3的比特数O CRC3为UCI3对应的CRC的比特数,对于O UCI3≤11的情况,O CRC3=0,对于O UCI3>11的情况,O CRC3=6或11,r UCI3为高层信令配置的UCI3的码率。
以此类推,对于至少两个上行控制信息中任一上行控制信息,在该上行控制信息的优先级最高的上行控制信息的情况下,可基于公式(10A)或公式(13)计算该上行控制信息所占的RE的数目,在该上行控制信息的优先级不是最高的上行控制信息的情况下,该上行控制信息所占的RE的数目包括以下至少之一:
第一上行控制信道可用的RE总数减去比当前上行控制信息的优先级高的高优先级的上行控制信息所占的RE的数目得到;
第一上行控制信道能够承载的总的信息比特数减去比当前上行控制信息的优先级高的高优先级的上行控制信息的比特数的比特数差值D1,与该上行控制信息的参数基于公式(18)的计算结果D2中的较小值S经过公式(19)的计算得到的:
Figure PCTCN2021113364-appb-000035
Figure PCTCN2021113364-appb-000036
其中,O UCI为UCI的比特数,O CRC为UCI对应的CRC的比特数,r UCI为高层信令为UCI配置的码率。
下面,以复用高优先级上行控制信息和低优先级上行控制信息在第一上行控制信道上传输为例,对申请实施例提供的数据传输方法进行进一步说明。
1、终端设备确定用于传输高优先级上行控制信息的第二上行控制信道和用于传输低优先级上行控制信息的第三上行控制信道,第二上行控制信道和第三上行控制信道在时域上有重叠。
2、终端设备复用高优先级上行控制信息和低优先级上行控制信息在第一上行控制信道上传输,且高优先级上行控制信息的码率与低优先级上行控制信息的码率独立配置。
3、终端确定第一上行控制信道的功率调整量即目标功率调整量,其中,目标功率调整量由第一功率调整量和或第二功率调整量确定。第一功率调整量为高优先级上行控制信息对应的功率调整量,第二功率调整量为低优先级上行控制信息对应的功率调整量。
4、第一上行控制信道的功率调整量为如下至少一种:
第一功率调整量和第二功率调整量中较小的;
第一功率调整量和第二功率调整量中较大的;
第一优先级上控制信息对应的功率调整量或者采用第一码率的上行控制信息对应的功率调整量。
5、第一功率调整量由高优先级上行控制信息的码率确定,确定方式如下:
对于上行控制信道格式2,3,4,且高优先级上行控制信息比特数不大于11时,第一功率调整量Δ1 TF的计算如公式(20)所示,
Δ1 TF=10log 10(K 1*A 11)             公式(20);
其中,K 1为常系数,A 11为高优先级上行控制信息比特数不大于11时的码率。
A 11的计算如公式(21)所示:
A 11=(O1 HARQ-ACK+O1 SR+O1 CSI)/N1 RE                公式(21);
对于上行控制信道格式2,3,4,且高优先级上行控制信息比特数大于11时,第一功率调整量Δ1 TF的计算如公式(22)所示,
Figure PCTCN2021113364-appb-000037
其中,K 2为常系数,A 12为高优先级上行控制信息比特数大于11时的码率。
A 12的计算如公式(23)所示:
A 12=(O1 HARQ-ACK+O1 SR+O1 CSI+O1 CRC)/N1 RE             公式(23);
其中,O1 HARQ-ACK、O1 SR、O1 CSI、O1 CRC分别为高优先级上行控制信息中HARK-ACK、SR、CSI、CRC的比特数,N1 RE为高优先级上行控制信息所占的RE数目。
6、第二功率调整量由低优先级上行控制信息的码率确定,确定方式如下:
对于上行控制信道格式2,3,4,且低优先级上行控制信息比特数不大于11时,第二功率调整量Δ2 TF的计算如公式(24)所示,
Δ2 TF=10log 10(K 1*A 21)            公式(24);
其中,K 1为常系数,A 21为低优先级上行控制信息比特数不大于11时的码率。
A 21的计算如公式(25)所示:
A 21=(O2 HARQ-ACK+O2 SR+O2 CSI)/N2 RE               公式(25);
对于上行控制信道格式2,3,4,且低优先级上行控制信息比特数大于11时,第二功率调整量Δ2 TF的计算如公式(26),
Figure PCTCN2021113364-appb-000038
其中,K 2为常系数,A 22为低优先级上行控制信息比特数大于11时的码率。
A 22的计算如公式(27)所示:
A 22=(O2 HARQ-ACK+O2 SR+O2 CSI+O2 CRC)/N2 RE          公式(27);
其中,O2 HARQ-ACK、O2 SR、O2 CSI、O2 CRC分别为低优先级上行控制信息中HARK-ACK、SR、CSI、CRC的比特数,N2 RE为低优先级上行控制信息所占的RE数目。
7、高优先级上行控制信息所占的RE的数目N1 RE即N HP_UCI通过公式(10A)计算得到:
Figure PCTCN2021113364-appb-000039
E tot为PUCCH能够承载的总的信息比特数,
Figure PCTCN2021113364-appb-000040
为高优先级上行控制信息的比特数,
Figure PCTCN2021113364-appb-000041
为高优先级上行控制信息对应的CRC的比特数,对于
Figure PCTCN2021113364-appb-000042
的情况,
Figure PCTCN2021113364-appb-000043
对于
Figure PCTCN2021113364-appb-000044
的情况,
Figure PCTCN2021113364-appb-000045
或11,r HP为高优先级上行控制信息的码率,由高层信令配置,Q m为第一上行控制信道的调制方式,SF为第一上行控制信道的扩频数。
8、低优先级上行控制信息所占的RE的数目N2 RE即N LP_UCI通过公式(11)或公式(12A)计算得到:
N LP_UCI=N tot-N HP_UCI           公式(11);
Figure PCTCN2021113364-appb-000046
其中,N tot为第一上行控制信道可用的资源元素(RE)总数,N HP_UCI为高优先级上行控制信息所占用的RE数,E tot为PUCCH能够承载的总的信息比特数,E HP_UCI为包括CRC的高优先级上行控制信息的比特数,
Figure PCTCN2021113364-appb-000047
为低优先级上行控制信息对应的CRC的比特数,对于
Figure PCTCN2021113364-appb-000048
的情况,
Figure PCTCN2021113364-appb-000049
对于
Figure PCTCN2021113364-appb-000050
的情况,
Figure PCTCN2021113364-appb-000051
或11,r LP为低优先级上行控制信息的码率,由高层信令配置,Q m为第一上行控制信道的调制方式,SF为第一上行控制信道的扩频数。
9、分情况处理:
当不同码率的上行控制信息的比特数均大于11,或者,均小于或等于11,第一控制信道的功率调整量为第一优先级上控制信息对应的功率调整量或者采用第一码率的上行控制信息对应的功率调整量。第一优先级为高优先级或者低优先级。第一码率为高优先级上行控制信息的码率和低优先级上行控制信息的码率中的高码率或者低码率;否则(当不同码率的上行控制信息的比特数,有的大于11,有的小于或等于11,),第一控制信道的功率调整量为第一功率调整量和第二功率调整量的最大值或最小值。第一功率调整量为对应高优先级上控制信息对应的功率调整量或者采用高码率的上行控制信息对应的功率调整量。第二功率调整量为对应低优先级上控制信息对应的功率调整量或者采用低码率的上行控制信息对应的功率调整量。
下面,通过不同的实例对本申请实施例提供的无线通信方法进行说明。
实例一
如图4所示,高优先级PUCCH:PUCCH1和低优先级PUCCH:PUCCH2在时域重叠,将高优 先级PUCCH上传输的高优先级上行控制信息和低PUCCH上传输的低优先级上行控制信息复用到第一PUCCH即混合PUCCH:PUCCH3发送。其中,在PUCCH3发送的高优先级上行控制信息和低优先级上行控制信息码率独立配置。例如,PUCCH3的PUCCH格式配置了高优先级上行控制信息的码率A1,则高优先级上行控制信息的码率为A1,PUCCH3的PUCCH格式配置了低优先级上行控制信息的码率A2,A2根据低优先级上行控制信息信息量以及对应的RE资源计算确定,或者由高层信令配置为A2。
终端设备根据PUCCH1的功率调整量和PUCCH2的功率调整量确定PUCCH3的功率调整量Δ TF
对于上行控制信道格式2,3,4,且上行控制信息比特数不大于11时,低优先级上行控制信道的功率调整量Δ TF的计算如公式(28)所示,
Δ TF=10log 10(K 1*A 2)              公式(28);
其中,K 1为常系数6,A 2=(O HARQ-ACK+O SR+O CSI)/N RE
对于上行控制信道格式2,3,4,且上行控制信息比特数大于11时,上行控制信道的功率校准量Δ TF的计算如公式(29)所示,
Figure PCTCN2021113364-appb-000052
K 2为常系数2.4,A 2=(O HARQ-ACK+O SR+O CSI+O CRC)/N RE
其中,N RE的计算如公式(11)或公式(12A)所示,
N RE=N tot-N HP_UCI               公式(11);
Figure PCTCN2021113364-appb-000053
其中,N tot为PUCCH3可用的RE总数,N HP_UCI为高优先级上行控制信息所占用的RE数。E tot为PUCCH能够承载的总的信息比特数,E HP_UCI为包括CRC的高优先级上行控制信息的比特数,
Figure PCTCN2021113364-appb-000054
为低优先级上行控制信息对应的CRC的比特数,对于
Figure PCTCN2021113364-appb-000055
的情况,
Figure PCTCN2021113364-appb-000056
对于
Figure PCTCN2021113364-appb-000057
的情况,
Figure PCTCN2021113364-appb-000058
或11,r LP为低优先级上行控制信息的码率,由高层信令配置,Q m为PUCCH3的调制方式,SF为PUCCH3的扩频数。
实例二
如图4所示,高优先级PUCCH即PUCCH1和低优先级PUCCH即PUCCH2在时域重叠,将高优先PUCCH上待传输的高优先级上行控制信息和低优先级PUCCH上待传输的低优先级上行控制信息复用到第一PUCCH即混合PUCCHPUCCH3发送。其中,在PUCCH3发送的高优先级上行控制信息和低优先级上行控制信息独立确定码率。确定高优先级上行控制信息的功率调整量即第一功率调整量和低优先级上行控制信息的功率调整量即第二功率调整量。
第一功率调整量
对于上行控制信道格式2,3,4,且上行控制信息比特数不大于11时,高优先级上行控制信道的功率调整量Δ TF的计算如公式(30)所示,
Δ TF=10log 10(K 1*A 11)              公式(30),
其中,K 1为常系数,A 1为高优先级上行控制信息比特数不大于11时的码率,A 11=(O HARQ-ACK+O SR+O CSI)/N RE
对于上行控制信道格式2,3,4,且上行控制信息比特数大于11时,上行控制信道的功率校准量Δ TF的计算如公式(31)所示,
Figure PCTCN2021113364-appb-000059
K 2为常系数,A 1为高优先级上行控制信息比特数大于11时的码率, A 12=(O HARQ-ACK+O SR+O CSI+O CRC)/N RE
其中,高优先级上行控制信息所占的RE的数目N RE的计算如公式(10A)所示,
Figure PCTCN2021113364-appb-000060
E tot为PUCCH能够承载的总的信息比特数,
Figure PCTCN2021113364-appb-000061
为高优先级上行控制信息的比特数,
Figure PCTCN2021113364-appb-000062
为高优先级上行控制信息对应的CRC的比特数,对于
Figure PCTCN2021113364-appb-000063
的情况,
Figure PCTCN2021113364-appb-000064
对于
Figure PCTCN2021113364-appb-000065
的情况,
Figure PCTCN2021113364-appb-000066
或11,r HP为高优先级上行控制信息的码率,由高层信令配置,Q m为第一上行控制信道的调制方式,SF为第一上行控制信道的扩频数。
第二功率调整量
对于上行控制信道格式2,3,4,且低优先级上行控制信息比特数不大于11时,低优先级上行控制信道的功率调整量Δ TF通过公式(32)确定,
Δ TF=10log 10(K 1*A 21)               公式(32),
其中,K 1为常系数,A 21为低优先级上行控制比特数不大于11时的码率,A 21=(O HARQ-ACK+O SR+O CSI)/N RE
对于上行控制信道格式2,3,4,且低优先级上行控制信息比特数大于11时,上行控制信道的功率校准量Δ TF通过公式(33)确定,
Figure PCTCN2021113364-appb-000067
K 2为常系数,A 22为低优先级上行控制比特数大于11时的码率,A 22=(O HARQ-ACK+O SR+O CSI+O CRC)/N RE
其中,低优先级上行控制信息所占的RE的数目N RE的计算如公式(11)或公式(12A)所示,
N RE=N tot-N HP_UCI                公式(11);
Figure PCTCN2021113364-appb-000068
其中,N tot为第一上行控制信道可用的RE总数,N HP_UCI为高优先级上行控制信息所占用的RE数。E tot为PUCCH能够承载的总的信息比特数,E HP_UCI为包括CRC的高优先级上行控制信息的比特数,
Figure PCTCN2021113364-appb-000069
为低优先级上行控制信息对应的CRC的比特数,对于
Figure PCTCN2021113364-appb-000070
的情况,
Figure PCTCN2021113364-appb-000071
对于
Figure PCTCN2021113364-appb-000072
的情况,
Figure PCTCN2021113364-appb-000073
或11,r LP为低优先级上行控制信息的码率,由高层信令配置,Q m为第一上行控制信道的调制方式,SF为第一上行控制信道的扩频数。
终端确定第一上行控制信道的目标功率调整量为第一功率调整量和第二功率调整量中的最大值。
本申请实施例中,采用低优先级上行控制信息对应的功率调整量或者最大功率调整量,可以保证所有上行控制信息的可靠性,或者,
采用高优先级上行控制信息对应的功率调整量或者最小功率调整量,优先保证高优先级控制信息的可靠性,提高传输效率。
另外,基于两个功率调整量取最大或最小,而不是基于优先级取最大或最小,可以避免高优先级采用高码率时,发射功率不充分。也不是仅仅基于码率取最大或最小,能够避免功率调整计算方式不同导致的偏差(注意:UCI的比特数<=11和>11两种情况下功率调整量计算方式不同)。因此,该技术好处也可以通过分情况处理解决。
以上结合附图详细描述了本申请的优选实施方式,但是,本申请并不限于上述实施方式中的具体细节,在本申请的技术构思范围内,可以对本申请的技术方案进行多种简单变型,这些简单变型 均属于本申请的保护范围。例如,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合,为了避免不必要的重复,本申请对各种可能的组合方式不再另行说明。又例如,本申请的各种不同的实施方式之间也可以进行任意组合,只要其不违背本申请的思想,其同样应当视为本申请所公开的内容。又例如,在不冲突的前提下,本申请描述的各个实施例和/或各个实施例中的技术特征可以和现有技术任意的相互组合,组合之后得到的技术方案也应落入本申请的保护范围。
还应理解,在本申请的各种方法实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。此外,在本申请实施例中,术语“下行”、“上行”和“侧行”用于表示信号或数据的传输方向,其中,“下行”用于表示信号或数据的传输方向为从站点发送至小区的用户设备的第一方向,“上行”用于表示信号或数据的传输方向为从小区的用户设备发送至站点的第二方向,“侧行”用于表示信号或数据的传输方向为从用户设备1发送至用户设备2的第三方向。例如,“下行信号”表示该信号的传输方向为第一方向。另外,本申请实施例中,术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系。具体地,A和/或B可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
图5A是本申请实施例提供的无线通信装置的结构组成示意图一,应用于终端设备,如图5A所示,无线通信装置51包括:
第一确定单元501,配置为确定第一上行控制信道的目标功率调整量,所述目标功率调整量基于第一功率调整量和第二功率调整量确定,所述第一功率调整量为第一上行控制信息对应的功率调整量,所述第二功率调整量为第二上行控制信息对应的功率调整量,所述第一上行控制信道用于复用传输所述第一上行控制信息和所述第二上行控制信息,所述第一上行控制信息的优先级与所述第二上行控制信息的优先级不同。
在一些实施例中,装置500还包括:
第二确定单元,配置为确定第二上行控制信道和第三上行控制信道在时域上重叠的情况下,确定复用所述第一上行控制信道传输所述第一上行控制信息和所述第二上行控制信息,所述第二上行控制信道用于传输所述第一上行控制信息,所述第三上行控制信道用于传输所述第二上行控制信息。
在一些实施例中,所述目标功率调整量的包括以下至少之一:
所述第一功率调整量和所述第二功率调整量中的较小的;
所述第一功率调整量和所述第二功率调整量中的较大的。
在一些实施例中,所述第一功率调整量至少基于所述第一上行控制信息的码率确定。
在一些实施例中,在所述第一上行控制信息的比特数小于或等于第一比特数值的情况下,所述第一功率调整量基于第一数值和所述第一上行控制信息的码率确定,所述第一数值为常量。
在一些实施例中,在所述第一上行控制信息的比特数大于第一比特数值的情况下,所述第一功率调整量基于第二数值和所述第一上行控制信息的码率确定,所述第二数值为常量。
在一些实施例中,所述第二功率调整量至少基于所述第二上行控制信息的码率确定。
在一些实施例中,在所述第二上行控制信息的比特数小于或等于第二比特数值的情况下,所述第二功率调整量基于第一数值和所述第二上行控制信息的码率确定,所述第一数值为常量。
在一些实施例中,在所述第二上行控制信息的比特数大于第二比特数值的情况下,所述第二功率调整量基于第二数值和所述第二上行控制信息的码率确定,所述第二数值为常量。
在一些实施例中,所述第一上行控制信息的比特数和所述第二上行控制信息的比特数满足以下条件至少之一:
所述第一上行控制信息的比特数和所述第二上行控制信息的比特数均大于第三比特数值;
所述第一上行控制信息的比特数和所述第二上行控制信息的比特数均小于或等于第三比特数值。
在一些实施例中,所述目标功率调整量还包括以下至少之一:
第一优先级的上行控制信息对应的功率调整量,所述第一优先级的上行控制信息为所述第一上行控制信息或所述第二上行控制信息;
采用第一码率的上行控制信息对应的功率调整量,所述第一码率为所述第一上行控制信息的码率或所述第二上行控制信息的码率。
在一些实施例中,所述第一优先级为所述第一上行控制信息的优先级和所述第二上行控制信息的优先级中的较高的优先级或较低的优先级。
在一些实施例中,所述第一码率为所述第一上行控制信息的码率和所述第二上行控制信息的码 率中的较高的码率或较低的码率。
在一些实施例中,所述第一上行控制信息的比特数和所述第二上行控制信息的比特数满足以下条件:
所述第一上行控制信息的比特数和所述第二上行控制信息的比特数中,一个比特数大于第三比特数值,且另一个比特数小于或等于所述第三比特数值。
在一些实施例中,所述码率至少基于所述上行控制信息所占的资源元素RE的数目和所述上行控制信息中的以下至少一种信息的比特数确定:
混合自动重传请求-应答HARQ-ACK信息;
调度请求SR信息;
信道状态信息CSI;
循环冗余校验CRC信息。
在一些实施例中,在所述上行控制信息为第一上行控制信息,且所述第一上行控制信息的优先级高于所述第二上行控制信息的优先级的情况下,所述第一上行控制信息所占的RE的数目为第一数目,所述第一数目基于以下至少一种参数确定:
所述第一上行控制信道能够承载的信息的比特数;
不包括CRC信息的所述第一上行控制信息的比特数;
CRC信息的比特数;
为所述第一上行控制信息配置的码率;
所述第一上行控制信道的调制方式;
所述第一上行控制信道的扩频数。
在一些实施例中,在所述上行控制信息为第二上行控制信息,且所述第二上行控制信息的优先级低于所述第一上行控制信息的优先级的情况下,所述第二上行控制信息所占的RE的数目为第二数目,所述第二数目基于以下至少一种参数确定:
所述第一上行控制信道上可用的RE的数量;
第一数目,所述第一数目为所述第一上行控制信息所占的RE的数目。
在一些实施例中,在所述上行控制信息为第二上行控制信息,且所述第二上行控制信息的优先级低于所述第一上行控制信息的优先级的情况下,所述第二上行控制信息所占的RE的数目为第二数目,所述第二数目基于以下至少一种参数确定:
所述第二上行控制信道能够承载的信息的比特数;
包括CRC信息的所述第二上行控制信息的比特数;
不包括CRC信息的所述第二上行控制信息的比特数;
CRC信息的比特数;
为所述第二上行控制信息配置的码率;
所述第一上行控制信道的调制方式;
所述第一上行控制信道的扩频数。
可选地,无线通信装置51还包括发送单元,配置为通过第一上行控制信道复用传输第一上行控制信息和第二上行控制信息。
图5B是本申请实施例提供的无线通信装置的结构组成示意图二,应用于网络设备,如图5B所示,所述无线通信装置52包括:
接收单元502,配置为接收终端设备复用第一上行控制信道传输的第一上行控制信息和第二上行控制信息,第一上行控制信道传输第一上行控制信息和第二上行控制信息对应的目标功率调整量是基于第一功率调整量和第二功率调整量确定,所述第一功率调整量为第一上行控制信息对应的功率调整量,所述第二功率调整量为第二上行控制信息对应的功率调整量,所述第一上行控制信息的优先级与所述第二上行控制信息的优先级不同。
在一些实施例中,所述目标功率调整量的包括以下至少之一:
所述第一功率调整量和所述第二功率调整量中的较小的;
所述第一功率调整量和所述第二功率调整量中的较大的。
在一些实施例中,所述第一功率调整量至少基于所述第一上行控制信息的码率确定。
在一些实施例中,在所述第一上行控制信息的比特数小于或等于第一比特数值的情况下,所述第一功率调整量基于第一数值和所述第一上行控制信息的码率确定,所述第一数值为常量。
在一些实施例中,在所述第一上行控制信息的比特数大于第一比特数值的情况下,所述第一功率调整量基于第二数值和所述第一上行控制信息的码率确定,所述第二数值为常量。
在一些实施例中,所述第二功率调整量至少基于所述第二上行控制信息的码率确定。
在一些实施例中,在所述第二上行控制信息的比特数小于或等于第二比特数值的情况下,所述第二功率调整量基于第一数值和所述第二上行控制信息的码率确定,所述第一数值为常量。
在一些实施例中,在所述第二上行控制信息的比特数大于第二比特数值的情况下,所述第二功率调整量基于第二数值和所述第二上行控制信息的码率确定,所述第二数值为常量。
在一些实施例中,所述第一上行控制信息的比特数和所述第二上行控制信息的比特数满足以下条件至少之一:
所述第一上行控制信息的比特数和所述第二上行控制信息的比特数均大于第三比特数值;
所述第一上行控制信息的比特数和所述第二上行控制信息的比特数均小于或等于第三比特数值。
在一些实施例中,所述目标功率调整量还包括以下至少之一:
第一优先级的上行控制信息对应的功率调整量,所述第一优先级的上行控制信息为所述第一上行控制信息或所述第二上行控制信息;
采用第一码率的上行控制信息对应的功率调整量,所述第一码率为所述第一上行控制信息的码率或所述第二上行控制信息的码率。
在一些实施例中,所述第一优先级为所述第一上行控制信息的优先级和所述第二上行控制信息的优先级中的较高的优先级或较低的优先级。
在一些实施例中,所述第一码率为所述第一上行控制信息的码率和所述第二上行控制信息的码率中的较高的码率或较低的码率。
在一些实施例中,所述第一上行控制信息的比特数和所述第二上行控制信息的比特数满足以下条件:
所述第一上行控制信息的比特数和所述第二上行控制信息的比特数中,一个比特数大于第三比特数值,且另一个比特数小于或等于所述第三比特数值。
在一些实施例中,所述码率至少基于所述上行控制信息所占的资源元素RE的数目和所述上行控制信息中的以下至少一种信息的比特数确定:
混合自动重传请求-应答HARQ-ACK信息;
调度请求SR信息;
信道状态信息CSI;
循环冗余校验CRC信息。
在一些实施例中,在所述上行控制信息为第一上行控制信息,且所述第一上行控制信息的优先级高于所述第二上行控制信息的优先级的情况下,所述第一上行控制信息所占的RE的数目为第一数目,所述第一数目基于以下至少一种参数确定:
所述第一上行控制信道能够承载的信息的比特数;
不包括CRC信息的所述第一上行控制信息的比特数;
CRC信息的比特数;
为所述第一上行控制信息配置的码率;
所述第一上行控制信道的调制方式;
所述第一上行控制信道的扩频数。
在一些实施例中,在所述上行控制信息为第二上行控制信息,且所述第二上行控制信息的优先级低于所述第一上行控制信息的优先级的情况下,所述第二上行控制信息所占的RE的数目为第二数目,所述第二数目基于以下至少一种参数确定:
所述第一上行控制信道上可用的RE的数量;
第一数目,所述第一数目为所述第一上行控制信息所占的RE的数目。
在一些实施例中,在所述上行控制信息为第二上行控制信息,且所述第二上行控制信息的优先级低于所述第一上行控制信息的优先级的情况下,所述第二上行控制信息所占的RE的数目为第二数目,所述第二数目基于以下至少一种参数确定:
所述第二上行控制信道能够承载的信息的比特数;
包括CRC信息的所述第二上行控制信息的比特数;
不包括CRC信息的所述第二上行控制信息的比特数;
CRC信息的比特数;
为所述第二上行控制信息配置的码率;
所述第一上行控制信道的调制方式;
所述第一上行控制信道的扩频数。
可选地,无线通信装置52还包括第三确定单元,配置为确定终端设备复用第一上行控制信道传输第一上行控制信息和第二上行控制信息对应的功率调整量或发射功率。
本领域技术人员应当理解,本申请实施例的上述无线通信装置的相关描述可以参照本申请实施例的无线通信方法的相关描述进行理解。
图6是本申请实施例提供的一种通信设备600示意性结构图。该通信设备可以终端设备,也可以是网络设备。图6所示的通信设备600包括处理器610,处理器610可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图6所示,通信设备600还可以包括存储器620。其中,处理器610可以从存储器620中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器620可以是独立于处理器610的一个单独的器件,也可以集成在处理器610中。
可选地,如图6所示,通信设备600还可以包括收发器630,处理器610可以控制该收发器630与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器630可以包括发射机和接收机。收发器630还可以进一步包括天线,天线的数量可以为一个或多个。
可选地,该通信设备600具体可为本申请实施例的网络设备,并且该通信设备600可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该通信设备600具体可为本申请实施例的移动终端/终端设备,并且该通信设备600可以实现本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
图7是本申请实施例的芯片的示意性结构图。图7所示的芯片700包括处理器710,处理器710可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图7所示,芯片700还可以包括存储器720。其中,处理器710可以从存储器720中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器720可以是独立于处理器710的一个单独的器件,也可以集成在处理器710中。
可选地,该芯片700还可以包括输入接口730。其中,处理器710可以控制该输入接口730与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
可选地,该芯片700还可以包括输出接口740。其中,处理器710可以控制该输出接口840与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
可选地,该芯片可应用于本申请实施例中的网络设备,并且该芯片可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该芯片可应用于本申请实施例中的移动终端/终端设备,并且该芯片可以实现本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
图8是本申请实施例提供的一种通信系统800的示意性框图。如图8所示,该通信系统800包括终端设备810和网络设备820。
其中,该终端设备810可以用于实现上述方法中由终端设备实现的相应的功能,以及该网络设备820可以用于实现上述方法中由网络设备实现的相应的功能为了简洁,在此不再赘述。
应理解,本申请实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供了一种计算机可读存储介质,用于存储计算机程序。
可选地,该计算机可读存储介质可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机可读存储介质可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序产品,包括计算机程序指令。
可选地,该计算机程序产品可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序产品可应用于本申请实施例中的网络设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序。
可选地,该计算机程序可应用于本申请实施例中的移动终端/终端设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序可应用于本申请实施例中的网络设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,)ROM、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (36)

  1. 一种无线通信方法,所述方法包括:
    终端设备确定第一上行控制信道的目标功率调整量,所述目标功率调整量基于第一功率调整量和第二功率调整量确定,所述第一功率调整量为第一上行控制信息对应的功率调整量,所述第二功率调整量为第二上行控制信息对应的功率调整量,所述第一上行控制信道用于复用传输所述第一上行控制信息和所述第二上行控制信息,所述第一上行控制信息的优先级与所述第二上行控制信息的优先级不同。
  2. 根据权利要求1所述的方法,其中,所述方法还包括:
    终端设备确定第二上行控制信道和第三上行控制信道在时域上重叠的情况下,确定复用所述第一上行控制信道传输所述第一上行控制信息和所述第二上行控制信息,所述第二上行控制信道用于传输所述第一上行控制信息,所述第三上行控制信道用于传输所述第二上行控制信息。
  3. 根据权利要求1或2所述的方法,其中,所述目标功率调整量包括以下至少之一:
    所述第一功率调整量和所述第二功率调整量中的较小的;
    所述第一功率调整量和所述第二功率调整量中的较大的。
  4. 根据权利要求1至3中任一项所述的方法,其中,所述第一功率调整量至少基于所述第一上行控制信息的码率确定。
  5. 根据权利要求4所述的方法,其中,在所述第一上行控制信息的比特数小于或等于第一比特数值的情况下,所述第一功率调整量基于第一数值和所述第一上行控制信息的码率确定,所述第一数值为常量。
  6. 根据权利要求4所述的方法,其中,在所述第一上行控制信息的比特数大于第一比特数值的情况下,所述第一功率调整量基于第二数值和所述第一上行控制信息的码率确定,所述第二数值为常量。
  7. 根据权利要求1至6中任一项所述的方法,其中,所述第二功率调整量至少基于所述第二上行控制信息的码率确定。
  8. 根据权利要求7所述的方法,其中,在所述第二上行控制信息的比特数小于或等于第二比特数值的情况下,所述第二功率调整量基于第一数值和所述第二上行控制信息的码率确定,所述第一数值为常量。
  9. 根据权利要求7所述的方法,其中,在所述第二上行控制信息的比特数大于第二比特数值的情况下,所述第二功率调整量基于第二数值和所述第二上行控制信息的码率确定,所述第二数值为常量。
  10. 根据权利要求1至9中任一项所述的方法,其中,所述第一上行控制信息的比特数和所述第二上行控制信息的比特数满足以下条件至少之一:
    所述第一上行控制信息的比特数和所述第二上行控制信息的比特数均大于第三比特数值;
    所述第一上行控制信息的比特数和所述第二上行控制信息的比特数均小于或等于第三比特数值。
  11. 根据权利要求1至10中任一项所述的方法,其中,所述目标功率调整量还包括以下至少之一:
    第一优先级的上行控制信息对应的功率调整量,所述第一优先级的上行控制信息为所述第一上行控制信息或所述第二上行控制信息;
    采用第一码率的上行控制信息对应的功率调整量,所述第一码率为所述第一上行控制信息的码率或所述第二上行控制信息的码率。
  12. 根据权利要求11所述的方法,其中,所述第一优先级为所述第一上行控制信息的优先级和所述第二上行控制信息的优先级中较高的优先级或较低的优先级。
  13. 根据权利要求11所述的方法,其中,所述第一码率为所述第一上行控制信息的码率和所述第二上行控制信息的码率中较高的码率或较低的码率。
  14. 根据权利要求11至13中任一项所述的方法,其中,所述第一上行控制信息的比特数和所述第二上行控制信息的比特数中的一个比特数大于第三比特数值且另一个比特数小于或等于所述第三比特数值。
  15. 根据权利要求4至9、11、13中任一项所述的方法,其中,所述码率基于以下至少之一确定:
    所述上行控制信息所占的资源元素RE的数目;
    所述上行控制信息中的第一信息的比特数确定,其中,所述第一信息包括以下至少之一:
    混合自动重传请求-应答HARQ-ACK信息;
    调度请求SR信息;
    信道状态信息CSI;
    循环冗余校验CRC信息。
  16. 根据权利要求15所述的方法,其中,在所述上行控制信息为第一上行控制信息,且所述第一上行控制信息的优先级高于所述第二上行控制信息的优先级的情况下,所述第一上行控制信息所占的RE的数目为第一数目,所述第一数目基于以下至少一种参数确定:
    所述第一上行控制信道能承载的信息的比特数;
    不包括CRC信息的所述第一上行控制信息的比特数;
    CRC信息的比特数;
    为所述第一上行控制信息配置的码率;
    所述第一上行控制信道的调制方式;
    所述第一上行控制信道的扩频数。
  17. 根据权利要求15所述的方法,其中,在所述上行控制信息为第二上行控制信息,且所述第二上行控制信息的优先级低于所述第一上行控制信息的优先级的情况下,所述第二上行控制信息所占的RE的数目为第二数目,所述第二数目基于以下至少一种参数确定:
    所述第一上行控制信道上可用的RE的数量;
    第一数目,所述第一数目为所述第一上行控制信息所占的RE的数目。
  18. 根据权利要求15所述的方法,其中,在所述上行控制信息为第二上行控制信息,且所述第二上行控制信息的优先级低于所述第一上行控制信息的优先级的情况下,所述第二上行控制信息所占的RE的数目为第二数目,所述第二数目基于以下至少一种参数确定:
    所述第二上行控制信道能承载的信息的比特数;
    包括CRC信息的所述第二上行控制信息的比特数;
    不包括CRC信息的所述第二上行控制信息的比特数;
    CRC信息的比特数;
    为所述第二上行控制信息配置的码率;
    所述第一上行控制信道的调制方式;
    所述第一上行控制信道的扩频数。
  19. 一种无线通信装置,包括:
    第一确定单元,配置为确定第一上行控制信道的目标功率调整量,所述目标功率调整量基于第一功率调整量和第二功率调整量确定,所述第一功率调整量为第一上行控制信息对应的功率调整量,所述第二功率调整量为第二上行控制信息对应的功率调整量,所述第一上行控制信道用于复用传输所述第一上行控制信息和所述第二上行控制信息,所述第一上行控制信息的优先级与所述第二上行控制信息的优先级不同。
  20. 根据权利要求19所述的装置,其中,所述目标功率调整量的包括以下至少之一:
    所述第一功率调整量和所述第二功率调整量中的较小的;
    所述第一功率调整量和所述第二功率调整量中的较大的。
  21. 根据权利要求19或20所述的装置,其中,所述第一功率调整量至少基于所述第一上行控制信息的码率确定。
  22. 根据权利要求19或20所述的装置,其中,所述第二功率调整量至少基于所述第二上行控制信息的码率确定。
  23. 根据权利要求19至22中任一项所述的装置,其中,所述第一上行控制信息的比特数和所述第二上行控制信息的比特数满足以下条件至少之一:
    所述第一上行控制信息的比特数和所述第二上行控制信息的比特数均大于第三比特数值;
    所述第一上行控制信息的比特数和所述第二上行控制信息的比特数均小于或等于第三比特数值。
  24. 根据权利要求19至23中任一项所述的装置,其中,所述目标功率调整量还包括以下至少之一:
    第一优先级的上行控制信息对应的功率调整量,所述第一优先级的上行控制信息为所述第一上行控制信息或所述第二上行控制信息;
    采用第一码率的上行控制信息对应的功率调整量,所述第一码率为所述第一上行控制信息的码率或所述第二上行控制信息的码率。
  25. 根据权利要求24所述的装置,其中,所述第一优先级为所述第一上行控制信息的优先级和所述第二上行控制信息的优先级中的较高的优先级或较低的优先级。
  26. 根据权利要求25所述的装置,其中,所述第一码率为所述第一上行控制信息的码率和所述第二上行控制信息的码率中的较高的码率或较低的码率。
  27. 根据权利要求24至26中任一项所述的装置,其中,所述第一上行控制信息的比特数和所述第二上行控制信息的比特数满足以下条件:所述第一上行控制信息的比特数和所述第二上行控制信息的比特数中,一个比特数大于第三比特数值,且另一个比特数小于或等于所述第三比特数值。
  28. 根据权利要求21、22、24、26中任一项所述的装置,其中,所述码率至少基于所述上行控制信息所占的资源元素RE的数目和所述上行控制信息中的以下至少一种信息的比特数确定:
    混合自动重传请求-应答HARQ-ACK信息;
    调度请求SR信息;
    信道状态信息CSI;
    循环冗余校验CRC信息。
  29. 根据权利要求28所述的装置,其中,在所述上行控制信息为第一上行控制信息,且所述第一上行控制信息的优先级高于所述第二上行控制信息的优先级的情况下,所述第一上行控制信息所占的RE的数目为第一数目,所述第一数目基于以下至少一种参数确定:
    所述第一上行控制信道能够承载的信息的比特数;
    不包括CRC信息的所述第一上行控制信息的比特数;
    CRC信息的比特数;
    为所述第一上行控制信息配置的码率;
    所述第一上行控制信道的调制方式;
    所述第一上行控制信道的扩频数。
  30. 根据权利要求28所述的装置,其中,在所述上行控制信息为第二上行控制信息,且所述第二上行控制信息的优先级低于所述第一上行控制信息的优先级的情况下,所述第二上行控制信息所占的RE的数目为第二数目,所述第二数目基于以下至少一种参数确定:
    所述第一上行控制信道上可用的RE的数量;
    第一数目,所述第一数目为所述第一上行控制信息所占的RE的数目。
  31. 根据权利要求28所述的装置,其中,在所述上行控制信息为第二上行控制信息,且所述第二上行控制信息的优先级低于所述第一上行控制信息的优先级的情况下,所述第二上行控制信息所占的RE的数目为第二数目,所述第二数目基于以下至少一种参数确定:
    所述第二上行控制信道能够承载的信息的比特数;
    包括CRC信息的所述第二上行控制信息的比特数;
    不包括CRC信息的所述第二上行控制信息的比特数;
    CRC信息的比特数;
    为所述第二上行控制信息配置的码率;
    所述第一上行控制信道的调制方式;
    所述第一上行控制信道的扩频数。
  32. 一种终端设备,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求1至18中任一项所述的方法。
  33. 一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至18中任一项所述的方法。
  34. 一种计算机可读存储介质,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1至18中任一项所述的方法。
  35. 一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1至18中任一项所述的方法。
  36. 一种计算机程序,所述计算机程序使得计算机执行如权利要求1至18中任一项所述的方法。
PCT/CN2021/113364 2021-08-18 2021-08-18 一种无线通信方法及装置、终端设备 WO2023019490A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2021/113364 WO2023019490A1 (zh) 2021-08-18 2021-08-18 一种无线通信方法及装置、终端设备
CN202180097896.8A CN117280780A (zh) 2021-08-18 2021-08-18 一种无线通信方法及装置、终端设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/113364 WO2023019490A1 (zh) 2021-08-18 2021-08-18 一种无线通信方法及装置、终端设备

Publications (1)

Publication Number Publication Date
WO2023019490A1 true WO2023019490A1 (zh) 2023-02-23

Family

ID=85239372

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/113364 WO2023019490A1 (zh) 2021-08-18 2021-08-18 一种无线通信方法及装置、终端设备

Country Status (2)

Country Link
CN (1) CN117280780A (zh)
WO (1) WO2023019490A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017049744A1 (zh) * 2015-09-25 2017-03-30 华为技术有限公司 上行控制信道功率控制方法及装置
US20190090258A1 (en) * 2016-03-02 2019-03-21 Samsung Electronics Co., Ltd. Method and device for transmitting, by terminal, uplink control information in communication system
CN109996323A (zh) * 2017-12-29 2019-07-09 中兴通讯股份有限公司 传输的功率确定方法及装置、传输的解调方法及装置
CN111567123A (zh) * 2018-01-02 2020-08-21 三星电子株式会社 通信系统中发信令通知控制信息
CN111629429A (zh) * 2019-02-27 2020-09-04 华为技术有限公司 一种上行功率的调整方法和相关设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017049744A1 (zh) * 2015-09-25 2017-03-30 华为技术有限公司 上行控制信道功率控制方法及装置
US20190090258A1 (en) * 2016-03-02 2019-03-21 Samsung Electronics Co., Ltd. Method and device for transmitting, by terminal, uplink control information in communication system
CN109996323A (zh) * 2017-12-29 2019-07-09 中兴通讯股份有限公司 传输的功率确定方法及装置、传输的解调方法及装置
CN111567123A (zh) * 2018-01-02 2020-08-21 三星电子株式会社 通信系统中发信令通知控制信息
CN111629429A (zh) * 2019-02-27 2020-09-04 华为技术有限公司 一种上行功率的调整方法和相关设备

Also Published As

Publication number Publication date
CN117280780A (zh) 2023-12-22

Similar Documents

Publication Publication Date Title
US11570786B2 (en) Wireless communication method and device
WO2021238676A1 (zh) 数据传输方法及装置
US10772076B2 (en) Communication method, terminal device, and network device
US20230199799A1 (en) Wireless communication method, terminal device and network device
WO2020173437A1 (zh) 一种上行功率的调整方法和相关设备
WO2023019490A1 (zh) 一种无线通信方法及装置、终端设备
US20230246745A1 (en) Communication system
WO2022117102A1 (zh) 上行控制信息传输方法、接收方法、终端和网络设备
TW202037126A (zh) 確定上行控制訊息傳輸資源個數的方法、裝置及程式
WO2023131067A1 (zh) 一种频域资源配置方法及装置、通信设备
WO2022246825A1 (zh) 混合自动重传反馈码本的确定方法、装置及设备
WO2022267022A1 (zh) 无线通信方法、终端设备和网络设备
WO2022155924A1 (zh) 无线通信方法、终端设备和网络设备
US20240163812A1 (en) Method for determining power adjustment component, terminal, medium, and chip
WO2023000232A1 (zh) 无线通信方法、终端设备和网络设备
WO2023155377A1 (zh) 无线通信方法、装置、设备、存储介质及程序产品
WO2023283958A1 (zh) 信息处理方法、装置、设备及存储介质
WO2022267020A1 (zh) 无线通信方法、终端设备和网络设备
WO2023097622A1 (zh) 上行信号传输方法、设备、芯片、介质、产品及程序
WO2023279390A1 (zh) 一种资源指示方法及装置、终端设备
WO2022247888A1 (zh) 一种通信方法及装置
WO2024055242A1 (zh) 一种通信方法及装置、通信设备、融合组网架构
WO2023000146A1 (zh) 一种配置载波的方法及装置、终端设备、网络设备
WO2021072961A1 (zh) 一种优先级配置方法及装置、终端设备
US20200169915A1 (en) Uplink Data Transmission Method, Timer Configuration Method, and Related Device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21953737

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180097896.8

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE