WO2022246772A1 - 一种探测系统、终端设备及探测方法 - Google Patents

一种探测系统、终端设备及探测方法 Download PDF

Info

Publication number
WO2022246772A1
WO2022246772A1 PCT/CN2021/096556 CN2021096556W WO2022246772A1 WO 2022246772 A1 WO2022246772 A1 WO 2022246772A1 CN 2021096556 W CN2021096556 W CN 2021096556W WO 2022246772 A1 WO2022246772 A1 WO 2022246772A1
Authority
WO
WIPO (PCT)
Prior art keywords
sub
frequency
band signals
signal
band
Prior art date
Application number
PCT/CN2021/096556
Other languages
English (en)
French (fr)
Inventor
张慧
马莎
宋思达
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2021/096556 priority Critical patent/WO2022246772A1/zh
Priority to CN202180097931.6A priority patent/CN117295966A/zh
Publication of WO2022246772A1 publication Critical patent/WO2022246772A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/41Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section

Definitions

  • the present application relates to the field of detection technology, and in particular to a detection system, terminal equipment and detection method.
  • the radar in the sensing system is one of the current research hotspots because of its high reliability, long-distance and high-precision measurement performance for the external environment.
  • Range resolution is an important functional parameter of radar.
  • the distance resolution refers to the resolution of the distance dimension, that is, the minimum distance at which two targets can be distinguished, and the smaller the minimum distance at which two targets can be distinguished, the higher the distance resolution.
  • the range resolution of the radar is determined by the bandwidth of the transmitted signal, and high range resolution requires a large bandwidth of the transmitted signal.
  • transmitting signals with continuous large bandwidth is difficult to achieve and requires high cost; moreover, continuous large bandwidth requires complete continuous spectrum resources, which are difficult to guarantee due to the limitation of spectrum resource distribution policies.
  • One way to solve the broadband is to use multiple narrowband transceiver signals for processing to obtain the effect of equivalent large bandwidth, such as using frequency stepping radar or FM stepping radar.
  • the frequency interval between adjacent frequency sub-bands of the frequency step radar or FM step radar cannot be too large, otherwise the estimated maximum unambiguous distance range will be reduced.
  • the condition for not generating distance ambiguity is Or ⁇ f ⁇ B 0 , where ⁇ f is the frequency interval between adjacent uniformly stepped sub-bands, T p represents the duration of a single pulse signal, and B 0 represents the bandwidth of a chirp.
  • the maximum frequency interval between multiple sub-bands in this method is relatively small compared to the carrier frequency, which generally meets the narrow-band assumption range.
  • there are a large number of scattered spectrum resources and the frequency intervals of these scattered spectrum resources may be large, and the influence of these different sub-bands with large frequency intervals on the scattering characteristics of the target cannot be ignored.
  • the present application provides a detection system, a terminal device and a detection method, which are used for broadband synthesis using sparse sub-bands with a large frequency span to obtain target distance information with higher resolution.
  • the present application provides a detection system, and the detection system may include a transmitting module, a receiving module and a processing module.
  • the transmitting module is used to transmit the first signal, the first signal may include N first sub-band signals, and the frequency interval between at least two first sub-band signals among the N first sub-band signals is greater than the frequency threshold;
  • the receiving module The echo signal is used to receive the echo signal, the echo signal includes N second sub-band signals, the echo signal is the signal received by the detection system after the first signal is reflected by the target;
  • the processing module is used to determine the target according to the echo signal
  • the geometric factor of the scattering center is used to perform frequency compensation on the received N second sub-band signals according to the scattering center geometric factor, and the distance information of the target is determined according to the compensated N second sub-band signals.
  • the N first sub-band signals and the N second sub-band signals are one-to-one signals.
  • the target scattering characteristics of the N second sub-band signals can be consistent, and then according to the compensated N second The sub-band signal is used to determine the distance information of the target.
  • the processing module is specifically configured to multiply the nth second sub-band signal by the compensation factor in, is the geometric factor of the scattering center, the nth second subband signal is any one of the N second subband signals, ⁇ f n is the initial frequency of the nth second subband signal and the lowest frequency second subband signal The frequency interval between f 0 .
  • the ratio of any two first frequency intervals satisfies a prime number ratio, and the first frequency interval is the frequency interval between the first sub-band signal and the reference frequency band signal; wherein, the reference frequency band signal is N A first sub-band signal with the lowest frequency among the first sub-band signals.
  • the frequency interval between the ith first sub-band signal and the reference frequency band signal is equal to ni times the reference frequency step, and the i-th first sub-band signal is N first One of the sub-band signals; where the reference frequency step is inversely proportional to the maximum unambiguous distance.
  • the positions of the ambiguity distances corresponding to each first sub-band signal are different. There is no distance, only the real distance. In other words, when the first frequency interval ratio satisfies a prime number ratio, no additional distance ambiguity is generated.
  • the N first sub-band signals correspond to H sets, the set includes at least two first sub-band signals, and H is an integer greater than 1; wherein, the third frequency interval is equal to the second frequency interval (N k +1) times, the third frequency interval is the frequency interval between any adjacent two first sub-band signals in the k+1th set, and the second frequency interval is any adjacent frequency interval in the kth set.
  • the frequency interval between two first sub-frequency band signals, N k is the number of first sub-frequency bands included in the kth set.
  • the maximum unambiguous distance can be kept unchanged and a larger bandwidth can be obtained.
  • the processing module is specifically configured to: perform sum/difference processing on the compensated N second sub-band signals to obtain P virtual sub-band signals, where P is an integer greater than N; according to the P The virtual sub-band signal determines the distance information of the target.
  • N 1 is the number of first sub-band signals included in the first set
  • N 2 is the number of first sub-band signals included in the second set.
  • the virtual sub-band signals included in the P virtual sub-band signals are j times the reference frequency step amount, and j takes ⁇ -N 2 (N 1 +1)-1,...,N 2 (N 1 +1)-1 ⁇ integers.
  • Continuous and uniform P virtual sub-band signals can be obtained through sum/difference processing, and the continuous and uniform (that is, non-sparse) virtual sub-band signals can be used for distance estimation, so that the maximum unambiguous distance can be achieved. , The effect of increasing degrees of freedom and reducing side lobes.
  • the N first sub-band signals correspond to M sets, the sets include at least two first sub-band signals, and M is an integer greater than 1;
  • the mth set includes N m first sub-band signals Frequency band signal
  • the m+1th set includes N m+1 first sub-band signals
  • N m+1 and N m are coprime
  • the mth set and the m+1th set are two of the M sets set;
  • the fourth frequency interval is equal to N m+1 /p times of the reference frequency step amount, and the fourth frequency interval is the frequency interval between any adjacent two first sub-band signals in the mth set;
  • the step amount is inversely proportional to the maximum unambiguous distance;
  • the fifth frequency interval is equal to N m times of the reference frequency step amount, and the fifth frequency interval is between any adjacent two first sub-band signals in the m+1th set
  • the frequency interval of , p is a positive integer.
  • the maximum unambiguous distance can be kept unchanged and a larger bandwidth can be obtained.
  • the initial frequency of the first sub-band signal with the lowest frequency in the mth set coincides with the initial frequency of the first sub-band signal with the lowest frequency in the m+1th set.
  • the mth set and the m+1th set are any two adjacent sets in the M sets, and the first sub-band signal with the highest frequency in the mth set and the m+th set
  • the frequency interval between the first sub-band signals with the lowest frequency in one set is equal to L times the reference frequency step amount, where L is a positive integer.
  • L is the smallest value among N m and N m+1 .
  • the processing module is specifically configured to: perform sum/difference processing on the compensated N second sub-band signals to obtain Q virtual sub-band signals, where Q is an integer greater than N; according to the Q The virtual sub-band signal determines the distance information of the target.
  • Partially continuous and uniform virtual sub-band signals can be obtained through sum/difference processing, and the continuous and uniform (that is, non-sparse) virtual sub-band signals can be used for distance estimation, so that the maximum unambiguous distance can be achieved. , The effect of increasing degrees of freedom and reducing side lobes.
  • the transmitting module is a single transmitting antenna; the transmitting module is specifically configured to: transmit N first sub-frequency band signals at different times.
  • the transmitting module is a plurality of transmitting antennas; the transmitting module is specifically configured to: transmit N first sub-frequency band signals at the same time; or transmit N first sub-frequency band signals at different time Signal.
  • the present application provides a terminal device, including the detection system in any one of the first aspect or the first aspect, and a processor, where the processor is configured to process distance information determined by the detection system.
  • the present application provides a detection method, which includes receiving an echo signal; the echo signal includes N second sub-band signals, and the echo signal is received by the detection system after the first signal is reflected by the target
  • the first signal includes N first sub-band signals, and the frequency interval between at least two first sub-band signals in the N first sub-band signals is greater than the frequency threshold; the scattering center of the target is determined according to the echo signal Geometric factor; perform frequency compensation on the N second sub-frequency band signals according to the scattering center geometric factor; determine distance information of the target according to the compensated N second sub-frequency band signals.
  • the method may be executed by the above-mentioned first aspect or any one of the detection systems in the first aspect; or may also be executed by the above-mentioned second aspect or any one of the terminal devices in the first aspect.
  • the nth second sub-band signal is multiplied by the compensation factor n is an integer greater than 1; where, is the geometric factor of the scattering center of the target, the nth second subband signal is any one of the N second subband signals, ⁇ f n is the difference between the nth second subband signal and the lowest frequency second subband signal The frequency interval between the initial frequency f 0 .
  • any two first frequency interval ratios satisfy a prime number ratio, and the first frequency interval is the frequency interval between the first sub-band signal and the reference frequency band signal; wherein, the reference frequency band signal is the Nth A first sub-band signal with the lowest frequency among the sub-band signals.
  • the N first sub-band signals correspond to H sets, the set includes at least two first sub-band signals, and H is an integer greater than 1; wherein, the third frequency interval is equal to the second frequency interval (N k +1) times, the third frequency interval is the frequency interval between any adjacent two first sub-band signals in the k+1th set, and the third frequency interval is the frequency interval between any adjacent two sub-band signals in the kth set.
  • the frequency interval between the first sub-band signals, N k is the number of first sub-bands included in the kth set.
  • the N first sub-band signals correspond to M sets, the sets include at least two first sub-band signals, and M is an integer greater than 1;
  • the mth set includes N m first sub-band signals Frequency band signal
  • the m+1th set includes N m+1 first sub-band signals
  • N m+1 and N m are coprime
  • the mth set and the m+1th set are two of the M sets set;
  • the fourth frequency interval is equal to N m+1 /p times of the reference frequency step amount, and the fourth frequency interval is the frequency interval between any adjacent two first sub-band signals in the mth set;
  • the step amount is inversely proportional to the maximum unambiguous distance;
  • the fifth frequency interval is equal to N m times of the reference frequency step amount, and the fifth frequency interval is between any adjacent two first sub-band signals in the m+1th set
  • the frequency interval of , p is a positive integer.
  • sum/difference processing is performed on the compensated N second sub-band signals to obtain H virtual sub-band signals, where H is an integer greater than N; according to the H virtual sub-band signals, determine Target distance information.
  • the N first sub-frequency band signals are transmitted at different time points; or, the N first sub-frequency band signals are transmitted at the same time point.
  • the present application provides a computer-readable storage medium, in which computer programs or instructions are stored, and when the computer programs or instructions are executed by the detection system, the detection system is made to perform the above-mentioned third aspect or the first A method in any possible implementation of the three aspects.
  • the present application provides a computer program product, the computer program product includes a computer program or instruction, when the computer program or instruction is executed by the detection system, the detection system is made to perform any of the above-mentioned third aspect or the third aspect. method in a possible implementation.
  • FIG. 1 is a schematic diagram of a possible application scenario of a radar provided by the present application
  • Fig. 2 is a schematic diagram of a possible application scenario of another radar provided by the present application.
  • FIG. 3 is a schematic structural diagram of a detection system provided by the present application.
  • FIG. 4a is a schematic diagram of frequency distribution of N first sub-band signals provided by the present application.
  • FIG. 4b is a schematic diagram of frequency distribution of another N first sub-band signals provided by the present application.
  • FIG. 5a is a schematic diagram of the distribution of a time-division mode of N first sub-band signals provided by the present application
  • FIG. 5b is a schematic diagram of distribution of another time-division mode of N first sub-band signals provided by the present application.
  • FIG. 5c is a schematic diagram of distribution of frequency division modes of N first sub-band signals provided by the present application.
  • FIG. 5d is a schematic diagram of distribution of another frequency division mode of N first sub-band signals provided by the present application.
  • FIG. 6a is a schematic diagram of frequency distribution of N first sub-band signals provided by the present application.
  • FIG. 6b is a schematic diagram of frequency distribution of another N first sub-band signals provided by the present application.
  • FIG. 7a is a schematic diagram of the distribution of a time-division mode of N first sub-band signals provided by the present application.
  • FIG. 7b is a schematic diagram of another time-division mode distribution of N first sub-band signals provided by the present application.
  • FIG. 7c is a schematic diagram of distribution of another frequency division mode of N first sub-band signals provided by the present application.
  • FIG. 7d is a schematic diagram of the distribution of another frequency division mode of N first sub-band signals provided by the present application.
  • Fig. 8a is a schematic diagram of frequency distribution of N first sub-band signals provided by the present application.
  • FIG. 8b is a schematic diagram of frequency distribution of another N first sub-band signals provided by the present application.
  • FIG. 9a is a schematic diagram of the distribution of a time-division mode of N first sub-band signals provided by the present application.
  • FIG. 9b is a schematic diagram of another time-division pattern distribution of N first sub-band signals provided by the present application.
  • FIG. 9c is a schematic diagram of distribution of frequency division modes of N first sub-band signals provided by the present application.
  • FIG. 9d is a schematic diagram of distribution of another frequency division mode of N first sub-band signals provided by the present application.
  • FIG. 10a is a schematic diagram of the distribution of a time-division mode of N first sub-band signals provided by the present application.
  • FIG. 10b is a schematic diagram of distribution of time-division modes of another N first sub-band signals provided by the present application.
  • FIG. 10c is a schematic diagram of distribution of frequency division modes of N first sub-band signals provided by the present application.
  • FIG. 10d is a schematic diagram of distribution of another frequency division mode of N first sub-band signals provided by the present application.
  • FIG. 11 is a schematic structural diagram of a receiving module provided by the present application.
  • FIG. 12 is a schematic diagram of frequency distribution of N second sub-band signals provided by the present application.
  • FIG. 13 is a schematic diagram of frequency distribution of N second sub-band signals provided by the present application.
  • FIG. 14 is a schematic flowchart of a detection method provided by the present application.
  • Distance resolution refers to the resolution of the distance dimension, that is, the minimum distance between two targets that can be identified.
  • the echo signal as a pulse signal as an example
  • the trailing edge (falling edge) of the echo pulse of the closer target coincides with the leading edge (rising edge) of the echo of the far target, as the distinguishable limit
  • the two The distance between targets is the range resolution.
  • the range resolution of a radar is defined as the ability of the radar to distinguish between two close-range targets.
  • the distance resolution of the radar is related to the pulse width of the radar transmitted signal. The narrower the pulse width of the radar transmitted signal, the higher the distance resolution of the radar.
  • the range resolution of the radar can be expressed by ⁇ r , which can be referred to the following formula 1.
  • Be is the bandwidth of the radar transmitting signal. It can be seen from the above formula 1 that the larger the transmitted signal bandwidth is, the higher the distance resolution of the radar is.
  • the maximum unambiguous distance (r max ) means that when a pulse signal emitted by the radar encounters the backscattered wave (ie echo signal) reflected by the target at this distance and returns to the radar, the next pulse signal is just sent out. That is to say, the pulse signal transmitted by the radar propagates to the target at the maximum unambiguous distance, and then the time it takes for the echo signal to return to the radar is exactly the time interval between two pulse signals.
  • the radar determines this There is no ambiguity in the distance information of the target. If the first pulse signal is reflected by the target at 400m, the radar has already sent the second pulse signal at this time, and the echo signal for the first pulse signal is received by the radar. At this time, the radar has no other additional information. Under the premise, it is impossible to determine whether the received echo signal is the echo signal of the first pulse signal or the echo signal of the second pulse signal, that is, there is ambiguity when the radar determines the distance information of the target, that is, a The distance is blurred.
  • the reference frequency step amount may be a reference value for measuring the frequency offset of each sub-band signal relative to the reference frequency band signal.
  • the frequency band refers to the frequency resource occupied by the signal, which can be described by the initial frequency (or called the lowest frequency) and frequency bandwidth of the occupied spectrum resource, or by the center frequency and frequency bandwidth of the occupied spectrum resource.
  • the frequency bandwidth is the bandwidth.
  • the bandwidth refers to the difference between the highest frequency and the lowest frequency of the frequency resource.
  • the initial frequency is the lowest frequency in the frequency band.
  • Chirp is a term in communication technology related to coded pulse technology, which means that when the pulse is coded, its carrier frequency increases linearly within the pulse duration. Generally, the phenomenon that the center wavelength shifts during pulse transmission is called "chirp".
  • It consists of a series of transmit pulse signals with carrier frequency linearly hopping.
  • the single transmit pulse signal in the frequency step signal is a linear frequency modulation signal (ie, chirp signal), so the frequency modulation step signal has the advantages of both the linear frequency modulation and the frequency step signal.
  • the detection system is taken as an example of radar to introduce the possible application scenarios of the detection system.
  • FIG. 1 it is a schematic diagram of a possible application scenario of a radar provided in this application.
  • the radar transmits signals in a certain direction. If there is a target within a certain distance along the signal's transmitting direction, the target can reflect the received signal back to the radar (called an echo signal), and the radar can determine the target's location according to the echo signal. Information, such as the distance of the target, the moving speed of the target, the attitude of the target or the point cloud image, etc.
  • the radar can be deployed in various positions of the vehicle, for example, it can be deployed in four directions of front, rear, left and right of the vehicle, so as to realize all-round capture of the surrounding environment of the vehicle.
  • the radar deployed at the front end of the vehicle is taken as an example.
  • the radar can sense the fan-shaped area shown by the dotted line box, and the fan-shaped area can be called the detection area of the radar.
  • This application scenario can be applied to areas such as unmanned driving, automatic driving, assisted driving, intelligent driving, and connected vehicles.
  • the radar can be installed on a vehicle (such as an unmanned vehicle, a smart vehicle, an electric vehicle, a digital vehicle, etc.) as a vehicle-mounted radar.
  • Vehicle-mounted radar can obtain measurement information such as longitude, latitude, speed, orientation, and distance of surrounding objects of the detected vehicle in real time or periodically, and then realize vehicle detection based on these measurement information combined with advanced driving assistant system (advanced driving assistant system, ADAS).
  • advanced driving assistant system advanced driving assistant system
  • ADAS advanced driving assistant system
  • Assisted driving or unmanned driving etc.
  • the radar can also be mounted on the UAV as an airborne radar.
  • the radar can also be installed on roadside traffic equipment (such as a roadside unit (RSU)) (see Figure 2) as a roadside traffic radar, so as to realize intelligent vehicle-road coordination.
  • RSU roadside unit
  • radar can also be applied in various other possible scenarios, and are not limited to the above example scenarios.
  • radar can also be applied to terminal equipment or set in components of terminal equipment.
  • Terminal equipment can be, for example, smartphones, smart home equipment, intelligent manufacturing equipment, robots, drones, or intelligent transportation equipment (such as automatic guided transport vehicles). (automated guided vehicle, AGV) or unmanned transport vehicles, etc.), etc.
  • AGV trolley refers to a transport vehicle equipped with automatic navigation devices such as electromagnetic or optical, capable of driving along a prescribed navigation path, and having safety protection and various transfer functions.
  • LRR long range radar
  • MRR middle range radar
  • SRR short range radar
  • LRR has ranging and anti-collision functions, and is widely used in adaptive cruise control (adaptive cruise control, ACC), forward collision warning (forward collision warning, FCW), automatic emergency braking (automatic emergency brake, AEB) and other fields .
  • the LRR can be installed at the very center of the front bumper of the vehicle, the azimuth angle is 0°, and the elevation angle can be set to 1.5° when the height is lower than 50cm; the elevation angle can be set to 0° when the height exceeds 50cm, so that 150 meters for trucks, 100 meters for cars, and 60 meters for pedestrians.
  • LRR's ACC, FCW, AEB and other functions have a significant safety reminder effect when the driver is distracted, tired and sleepy, or fails to notice the situation ahead when using a mobile phone.
  • MRR and SRR have blind spot detection (blind spot detection, BSD), lane change assistance (lane change assistance, LCA), rear cross traffic alert (rear cross traffic alert, RCTA), door opening assistance (exit sistant function, EAF), Forward cross traffic alert (FCTA) and other functions can accurately detect targets within a certain range of the vehicle, front, rear, left, and right.
  • BSD blind spot detection
  • LCA lassion assistance
  • RCTA rear cross traffic alert
  • EAF exit sistant function
  • FCTA Forward cross traffic alert
  • FCTA Forward cross traffic alert
  • the present application proposes a detection system.
  • the detection system proposed in this application will be described in detail below in conjunction with accompanying drawings 3 to 12 .
  • the detection system may include a transmitting module 301 , a receiving module 302 and a processing module 303 .
  • the transmitting module 301 is used to transmit the first signal
  • the first signal includes N first sub-band signals
  • the frequency interval between at least two first sub-band signals among the N first sub-band signals is greater than the frequency threshold
  • the frequency threshold is related to the initial frequency of the first sub-band signal, and the greater the initial frequency, the greater the frequency threshold.
  • the ratio of the frequency threshold to the initial frequency can be represented by a preset value, and the preset value can be a positive number greater than 0.1, such as 0.5, 0.8, 1, 1.2, 1.5, 2, etc.
  • the receiving module 302 is configured to receive an echo signal, the echo signal includes N second sub-band signals, and the echo signal is a signal received by the radar after the target reflects the first signal.
  • the processing module 303 is used to determine the geometric factor of the scattering center of the target according to the echo signal According to the scattering center geometry factor Frequency compensation is performed on the received N second sub-frequency band signals, and distance information of the target is determined according to the compensated N second sub-frequency band signals. in, It is related to the geometric structure of the target, usually an integer multiple of 1/2.
  • performing frequency compensation on the received N second sub-band signals includes: performing frequency compensation on the second sub-band signals whose frequency interval is greater than a frequency threshold among the received N second sub-band signals, and for The second sub-band signals whose frequency interval is not greater than the frequency threshold can be compensated; or, frequency compensation is performed on the second sub-band signals whose frequency interval is greater than the frequency threshold among the received N second sub-band signals, and the frequency interval is not greater than The second frequency sub-band signal of the frequency threshold is not processed.
  • the N second sub-band signals after compensation may be partially compensated second sub-band signals, or may be all compensated second sub-band signals.
  • the geometry factor of the scattering center based on the target Frequency compensation is performed on the second sub-frequency band signals, so that the target scattering characteristics of the N second sub-frequency band signals are consistent, and then the distance information of the target can be determined according to the compensated N second sub-frequency band signals.
  • the N first sub-band signals may be emitted by the same radar, or may be emitted by different radars.
  • both may be transmitted by 77 gigahertz (GHz) radars, both may be transmitted by 140 GHz radars, or both may be transmitted by 77 GHz radars and 140 GHz radars.
  • the detection system may comprise a single radar, or may comprise a combination of several radars.
  • Each functional module shown in FIG. 2 is introduced and described below to give an exemplary specific implementation solution.
  • the transmitting module, receiving module and processing module in the following are not marked.
  • the transmitting module may be configured to transmit a first signal to the detection area, where the first signal may include sparse N first sub-frequency band signals.
  • the N first sub-band signals are nested.
  • the N first sub-band signals correspond to H sets, H is an integer greater than 1, and each set includes at least two first sub-band signals; two sets in the H sets Take the k+1th set and the kth set as an example, the third frequency interval between any two adjacent first sub-band signals in the k+1th set is equal to any phase in the kth set (N k +1) times the second frequency interval between adjacent two first sub-band signals, where N k is the number of first sub-band signals included in the kth set.
  • the frequency difference between the first sub-band signal with the lowest frequency in the k+1th set and the first sub-band with the highest frequency in the kth set is equal to the second frequency interval.
  • each set includes the first sub-frequency band signals of uniform frequency step or uniform frequency modulation step.
  • the frequency interval between any two adjacent sets is different, and the frequency interval between two adjacent sets can also be understood as the difference between the first sub-band signal with the highest frequency in the previous set and the frequency interval in the latter set. The interval between the lowest frequency first subband signals.
  • the N first sub-frequency band signals are a two-level nested set, and the two-level set may allocate the N first sub-frequency band signals based on the following relationship.
  • N 1 is the number of first sub-band signals included in the first-level set
  • N 2 is the number of first sub-band signals included in the second-level set.
  • FIG. 4a it is another schematic diagram of frequency distribution of N first sub-frequency bands provided by the present application.
  • Figure 4a takes two levels of nesting as an example, that is, a first-level collection and a second-level collection as an example.
  • the second frequency interval ⁇ f 1 between any two adjacent first sub-band signals in the first-level set, the number of first sub-band signals included in the first-level set is N 1
  • the number of first sub-band signals included in the second-level set is N 2 .
  • the frequency difference between the lowest frequency first subband signal in stage 1 and the highest frequency first subband signal in stage 2 is equal to the second frequency interval ⁇ f 1 .
  • FIG. 4a is an example of frequency modulation step, and frequency step may also be used, as shown in FIG. 4b.
  • the N first sub-band signals shown in Figure 4a can be distributed in a time-division mode (see Figure 5a), or can also be distributed in a frequency-division mode (can be See Figure 5c).
  • the N first sub-band signals shown in Figure 4b can be distributed in a time-division mode (see Figure 5b), or can also be distributed in a frequency-division mode (see Figure 5d).
  • each first sub-frequency band in the first-level set is represented by Indicates that the initial frequency or center frequency or end frequency of each first sub-band in the second-level nested set is represented by
  • the N first sub-band signals are prime number type II.
  • the N first sub-band signals correspond to M sets, each set includes at least two first sub-band signals, and M is an integer greater than 1.
  • the m th set includes N m first sub-frequency band signals
  • the m+1 th set includes N m+1 first sub-frequency band signals
  • N m+1 and N m are relatively prime.
  • the fourth frequency interval between any adjacent two first sub-band signals in the mth set is equal to N m+1 /p times of the reference frequency step
  • any adjacent two first sub-band signals in the m+1th set is equal to N m times of the reference frequency step
  • p is a positive integer.
  • the mth set includes N m first sub-band signals
  • the m+1th set includes N m+1 first sub-band signals
  • N m+1 and N m are relatively prime.
  • the fourth frequency interval between any adjacent two first sub-band signals in the mth set is equal to N m+1 times of the reference frequency step
  • any adjacent two first sub-band signals in the m+1th set The fifth frequency interval between the band signals is equal to N m times the reference frequency step amount.
  • FIG. 6 a it is a schematic diagram of frequency distribution of N first sub-frequency band signals provided by the present application.
  • Set 1 includes N 1 first sub-band signals
  • set 2 includes N 2 first sub-band signals
  • N 1 and N 2 are relatively prime
  • f 1 and f 1 ′ coincide, that is, the set
  • the initial frequency f 1 of the lowest-frequency first sub-band signal in 1 coincides with the initial frequency f 1 ′ of the lowest-frequency first sub-band signal in set 2 .
  • FIG. 6a is an example of a frequency step, and it may also be a frequency modulation step. Refer to FIG. 6b.
  • the N first sub-band signals shown in Figure 6a can be distributed in a time-division mode (see Figure 7a), or can also be distributed in a frequency-division mode (can be See Figure 7c).
  • the N first sub-band signals shown in Figure 6b can be distributed in a time-division mode (see Figure 7b), or can also be distributed in a frequency-division mode (see Figure 7d).
  • the frequency interval between the first sub-band signal with the highest frequency in the mth set and the first sub-band signal with the lowest frequency in the m+1th set is equal to L times the reference frequency step amount, where L is positive integer.
  • the mth set and the m+1th set are any two adjacent sets among the M sets. Further, optionally, L ⁇ min ⁇ N m , N m+1 ⁇ , that is, L takes the minimum value among N m and N m+1 . In this way, a larger number of continuous virtual sub-band signals can be obtained.
  • N first sub-band signals correspond to two sets (respectively set 3 and set 4), set 3 includes N 1 first sub-band signals, and set 4 includes N 2
  • the frequency interval between a sub-band signal and the first sub-band signal with the lowest frequency in the set 4 is equal to L times the reference frequency step.
  • Fig. 8a is an example of frequency stepping, which may also be frequency modulation stepping, see Fig. 8b.
  • the N first sub-band signals shown in Figure 8a can be distributed in a time-division mode (see Figure 9a), or can also be distributed in a frequency-division mode (can be See Figure 9c).
  • the N first sub-band signals shown in Figure 8b can be distributed in a time-division mode (refer to Figure 9b), or can also be distributed in a frequency-division mode (refer to Figure 9d).
  • the N first sub-band signals are of type I prime number.
  • a first frequency interval ratio between any two first sub-band signals except the reference frequency band signal among the N first sub-frequency band signals and the reference frequency band signal satisfies a prime number ratio.
  • the reference frequency band signal is the first sub-frequency band signal with the lowest frequency among the N first sub-frequency band signals.
  • the i-th first sub-band signal The first frequency interval between the reference frequency band signal is equal to n i times of the reference frequency step amount ⁇ f, and the first frequency interval between the jth first sub-band signal and the reference frequency band signal is equal to n of the reference frequency step amount j times, n i and n j are relatively prime, 1 ⁇ i ⁇ N, 1 ⁇ j ⁇ N, i ⁇ j.
  • the first frequency interval between the i-th first sub-frequency band signal and the reference frequency-band signal may also be referred to as an offset of the i-th first sub-frequency band signal.
  • the first frequency interval between the j-th first sub-frequency band signal and the reference frequency-band signal may also be referred to as an offset of the j-th first sub-frequency band signal.
  • FIG. 10 a it is a schematic diagram of distribution of a time-division mode of N first frequency sub-band signals provided by the present application.
  • This example takes a frequency step signal as an example.
  • the reference frequency band signal is the first sub-band signal f1 with the lowest frequency
  • the first frequency interval between the first sub-band signal f2 and the reference frequency band signal f1 is equal to n2 times of the reference frequency step amount ⁇ f
  • the first frequency interval between the first sub-band signal f1 and the reference frequency band signal f1 is equal to n 3 times of the reference frequency step amount ⁇ f
  • the first frequency interval between the first sub-band signal f N and the reference frequency band signal f1 is equal to the reference frequency step n N times the amount of ⁇ f
  • n 2 and n 3 are relatively prime
  • n N and n 3 are relatively prime
  • n N and n 2 are relatively prime.
  • FIG. 10 b it is a schematic diagram of distribution of another time-division mode of N first sub-band signals provided by the present application.
  • This example uses an FM step signal as an example.
  • the reference frequency band signal is the first sub-band signal f1 with the lowest frequency
  • the first frequency interval between the first sub-band signal f2 and the reference frequency band signal f1 is equal to n2 times of the reference frequency step amount ⁇ f
  • the first frequency interval between the first sub-band signal f1 and the reference frequency band signal f1 is equal to n 3 times of the reference frequency step amount ⁇ f
  • the first frequency interval between the first sub-band signal f N and the reference frequency band signal f1 is equal to the reference frequency step n N times the amount of ⁇ f
  • n 2 and n 3 are relatively prime
  • n N and n 3 are relatively prime
  • n N and n 2 are relatively prime.
  • FIG. 10 c it is a schematic diagram of distribution of frequency division modes of N first sub-frequency band signals provided by the present application.
  • the reference frequency band signal is the first sub-band signal f1 with the lowest frequency
  • the first frequency interval between the first sub-band signal f2 and the reference frequency band signal f1 is equal to n2 times of the reference frequency step amount ⁇ f
  • the first sub-band signal f3 The first frequency interval between the reference frequency band signal f1 is equal to n3 times of the reference frequency step amount ⁇ f
  • the first frequency interval between the first sub-band signal f N and the reference frequency band signal f1 is equal to the reference frequency step amount ⁇ f n N times
  • n 2 and n 3 are relatively prime
  • n N and n 3 are relatively prime
  • n N and n 2 are relatively prime.
  • FIG. 10d it is a schematic diagram of distribution of another frequency division mode of N first sub-band signals provided by the present application.
  • the frequency modulation step signal is taken as an example.
  • the first frequency interval ratio between any two first sub-band signals except the reference frequency band signal among the N first sub-frequency band signals and the reference frequency band signal satisfies the prime number ratio.
  • Figure 10b which is not described here Let me repeat.
  • f1, f2...f N can represent the initial frequency, center frequency or stop frequency of each first sub-band signal, and the above-mentioned Fig. 10a, Fig. 10b, Fig. 10c and Fig. 10d all represent the initial frequency of the first sub-band signal frequency as an example.
  • the maximum distance ambiguity (the maximum unambiguous distance is c/2 ⁇ f) can be eliminated due to the excessive first frequency band interval between two adjacent first sub-bands , and a larger equivalent bandwidth (ie (N-1) ⁇ f) can be obtained.
  • a larger equivalent bandwidth ie (N-1) ⁇ f
  • the distance-guided vector can be found in Equation 3 below.
  • the transmitting module may be configured to transmit the first signal to the detection area. Further, optionally, the transmitting module may include a waveform generator (waveform generation) and a transmitting antenna (transmit antenna).
  • the transmitting module may include a waveform generator (waveform generation) and a transmitting antenna (transmit antenna).
  • the waveform generator may generate a first signal in which the first sub-band increases with time, and the first signal may be a frequency-modulated continuous wave, or may also be a continuous wave or a pulse.
  • a transmit antenna is operable to transmit the first signal.
  • the single transmitting antenna may transmit the N first sub-frequency band signals at different times. If the detection system includes multiple transmitting antennas, when the number of transmitting antennas is greater than or equal to N, the multiple transmitting antennas can transmit N first sub-band signals at the same time; when the number of transmitting antennas is less than N and greater than 1 , some of the transmitting antennas may transmit the first sub-frequency band signals at different times, and some of the transmitting antennas may transmit the first sub-frequency band signals at the same time.
  • the transmitting module usually transmits the first signal of multiple frequency sweep periods within a continuous period of time.
  • the sweep cycle refers to the cycle of transmitting the first signal of a complete waveform, that is, the transmission of N first sub-band signals can be a sweep cycle, based on the first signal of a complete waveform, a distance information of the target can be obtained .
  • the receiving module may include a receiving antenna, a mixer, a filter, and an analog-to-digital converter (analog-to-digital converter, ADC).
  • ADC analog-to-digital converter
  • the receiving antenna is used to receive the echo signal transmitted by the target
  • the mixer is used to mix the echo signal received by the receiving antenna with the local oscillator signal to obtain an intermediate frequency signal
  • the intermediate frequency signal is passed through a low-pass filter to obtain a low frequency signal
  • the low-frequency analog signal is converted into a digital signal by the ADC, and then can enter the processing module for subsequent processing.
  • the echo signal can be regarded as a coherent superposition of finite strong scattering centers.
  • the geometric theory of diffraction (GTD) scattering center model of the target's backscattering electric field that is, the electric field of the echo signal
  • M represents the number of scattering centers
  • a m represents the scattering intensity of the m-th scattering center
  • r m represents the position of the m-th scattering center
  • f n f 0 + ⁇ f n
  • f 0 is the initial frequency (namely the reference The initial frequency of the frequency band)
  • ⁇ f n is the frequency difference between the frequency value f n and the initial frequency
  • c is the propagation speed of the electromagnetic wave
  • c 3 ⁇ 10 8 m/s.
  • ⁇ m represents the type of scattering corresponding to the m-th scattering center, which can be called the geometric factor of the scattering center.
  • Different values of ⁇ m are selected for different target structures (that is, ⁇ m is related to the geometric structure of the target).
  • the first three terms is the frequency-independent amplitude term; the fourth direction
  • the phase difference introduced for the frequency difference is used to determine (or estimate) the distance information of the target; the last item
  • the frequency error term introduced for the scattering characteristics of the target will affect the determination of the distance information of the target, so the last term needs to be preprocessed (or called compensation or correction) when determining the distance information of the target.
  • N first sub-band signals correspond to N second sub-band information one-to-one.
  • the error term to be compensated mainly depends on the target scattering center geometric factor (or called scattering coefficient) ⁇ m .
  • the processing module can be used to determine the geometric factor of the scattering center of the target according to the echo signal Further, according to the geometry factor of the scattering center Perform frequency compensation on the received N second sub-band signals.
  • the following exemplarily shows a method of estimating the geometric factor ⁇ m of the target scattering center.
  • Equation 9 the estimation of P m can be transformed into a classical spatial spectrum estimation problem, which can be estimated by classical spectral estimation algorithms such as the MUSIC algorithm and the rotation invariant subspace (ESPRIT) algorithm.
  • classical spectral estimation algorithms such as the MUSIC algorithm and the rotation invariant subspace (ESPRIT) algorithm.
  • ESPRIT rotation invariant subspace
  • Step 11 reconstruct a Hankel matrix X according to the scattered echo data, and calculate its covariance matrix R;
  • Step 12 perform eigenvalue decomposition on the covariance matrix R to obtain the signal subspace U s , remove the last row of U s to obtain U s1 , remove the first row of U s to obtain U s2 ;
  • Step 14 the estimated value of ⁇ m can be obtained according to the amplitude information of P m . .
  • the compensation factor of the nth second sub-band signal can be determined
  • the nth second sub-band signal is multiplied by the compensation factor That is, the last term in Formula 8 can be eliminated to obtain the nth second sub-band signal after supplementation, as shown in Formula 10 below.
  • the inconsistency of target scattering characteristics caused by different frequency sub-band signals between different sub-band signals is compensated, and the distance information of the target can be further estimated by using the compensated sub-band signals.
  • the processing module is further configured to perform sum/difference processing on the compensated N second sub-band signals to obtain P virtual sub-band signals, where P is an integer greater than N. Further, optionally, the processing module may determine the distance information of the target according to the P virtual sub-band signals.
  • the P virtual sub-band signals may be continuous virtual sub-band signals with uniform frequency steps. Based on the above structure 1, continuous and uniform virtual sub-band signals can be obtained through sum/difference processing, and the continuous and uniform (that is, non-sparse) virtual sub-band signals can be used for distance estimation, so that the maximum unambiguity can be achieved The effect of constant distance, increased degrees of freedom, and reduced side lobes.
  • the virtual sub-band signals included in the P virtual sub-band signals are equal to j times the reference frequency step amount, where j takes ⁇ -N 2 (N 1 +1)-1,...,N 2 Integers in (N 1 +1)-1 ⁇ .
  • P virtual sub-band signals form a virtual sub-band set, and the number of virtual sub-bands included in the virtual sub-band set is 2N 2 (N 1 +1)-1, that is, each virtual sub-band signal is j ⁇ f, j is an integer in ⁇ -N 2 (N 1 +1)-1,...,N 2 (N 1 +1)-1 ⁇ .
  • the N second sub-band signals after compensation can obtain 2N 2 (N 1 +1)-1 degrees of freedom.
  • the processing module can estimate the distance information for a larger number of targets.
  • N 6
  • the processing module may be used to perform sum/difference processing on the received compensated 6 second sub-band signals to obtain 23 uniformly distributed virtual sub-band signals, as shown in FIG. 12 .
  • These 23 virtual sub-band signals can form a virtual frequency signal set, namely ⁇ -11, -10, -9, -8, -7,, -6, -5, -4, -3, -2, -1 , 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 ⁇ .
  • the weight of each virtual sub-band signal is also included in FIG. 12 .
  • the weight corresponding to each virtual sub-band signal indicates the number of times the virtual sub-band signal is obtained by performing sum/difference processing on the 6 second sub-band signals. For example, the weight of f 0 is 6, which means that f 0 appears 6 times when the processing module performs sum/difference processing on the 6 second echo signals. Further, optionally, the processing module may determine the distance information of the target according to the 23 virtual sub-band signals obtained above.
  • the processing module may obtain a virtual sub-band signal by vectorizing the covariance matrix of the echo signal, and then perform distance estimation on the obtained virtual sub-band signal using a smoothing multiple signal classification (MUSIC) algorithm,
  • MUSIC smoothing multiple signal classification
  • Step 21 calculate the covariance matrix R XX of the echo signal (including the N second sub-band signals after compensation) (for the chirp signal, first need to perform pulse compression, get the peak signal after pulse compression), and perform Vectorization processing obtains vector z, sorts z and deletes redundancy (or performs redundant averaging), and obtains virtual sub-band signal zz;
  • Step 22 obtain the covariance matrix R zz of zz through spatial smoothing, and write out the steering vector a(r);
  • Step 23 using R zz to perform eigenvalue decomposition to obtain the noise subspace U N ;
  • Step 24 construct the MUSIC spectrum Different distance values are traversed, and the distance information of the target is obtained through spectral peak search.
  • the processing module is further configured to perform sum/difference processing on the compensated N second sub-band signals to obtain Q virtual sub-band signals, where Q is an integer greater than N.
  • the distance information of the target can be determined according to the Q virtual sub-band signals.
  • the Q virtual sub-band signals there may be some virtual sub-band signals that are continuous and have uniform frequency steps.
  • the processing module may be used to perform sum/difference processing on the received 7 second sub-band signals after compensation to obtain 17 virtual sub-band signals, as shown in FIG. 13 .
  • These 17 virtual sub-band signals can form a virtual frequency signal set, which is ⁇ -9, -8, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4 , 5, 6, 8, 9 ⁇ , among them, the 13 elements between -6 and 6 are continuous and evenly distributed.
  • the continuous and evenly distributed part of the virtual frequency signal set (ie ⁇ -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6 ⁇ ) can be selected To determine the distance information of the target. It can also be understood that the sum/difference processing is performed on the compensated N second sub-band signals to obtain a virtual sub-band signal set that is not completely uniform and continuous, and a value near 0 can be selected in the virtual sub-band signal set.
  • the continuous and evenly distributed parts carry the distance information of the target. In this way, the effect that the maximum unambiguous distance remains unchanged and the side lobes are reduced can be achieved. Moreover, the degree of freedom increases.
  • the processing module may determine the distance information of the target according to 13 continuous and evenly distributed virtual sub-band signals between -6 and 6.
  • the processing module can obtain the virtual frequency band signal by vectorizing the covariance matrix of the received signal, and then select the continuous uniform step part of the virtual frequency band signal, and use the smooth MUSIC algorithm for distance estimation.
  • the processing module can obtain the virtual frequency band signal by vectorizing the covariance matrix of the received signal, and then select the continuous uniform step part of the virtual frequency band signal, and use the smooth MUSIC algorithm for distance estimation.
  • the processing module may use the MUSIC algorithm to determine the distance information of the target by using the N second frequency sub-band signals after frequency compensation.
  • the processing module can determine the covariance matrix Rxx of the echo signal, and use the covariance matrix Rxx to perform eigenvalue decomposition to obtain the noise subspace U N ; Distance estimates are obtained by 1D spectral peak search.
  • the steering vector a(r) is determined by N sub-bands with coprime relationship in structure three,
  • the processing module may be a processor
  • the processor may be a central processing unit (central processing unit, CPU), and may also be other general-purpose processors, digital signal processors (digital signal processors, DSPs), application-specific integrated circuits ( application specific integrated circuit (ASIC), field programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, transistor logic devices, hardware components or any combination thereof.
  • a general-purpose processor can be a microprocessor, or any conventional processor.
  • the detection system may include a transmitting module, and the transmitting module may be used to transmit N first sub-band signals, and the N first sub-band signals may have the three possible structures exemplified above . That is to say, the transmitting module in the detection system is used to transmit N first sub-band signals, and the frequency interval between the N first sub-band signals is not limited, that is, any of the N first sub-band signals The frequency interval between the two first sub-band signals may not be greater than the frequency threshold or may also be greater than the frequency threshold, which is not limited.
  • the processing module Based on the detection system, if the frequency interval between any two first sub-band signals in the N first sub-band signals is not greater than the frequency threshold; correspondingly, the processing module does not need to compensate the N second sub-band signals , further, the distance information of the target may be determined based on the N second sub-band signals that do not need to be compensated.
  • the processing process of the processing module can refer to the above-mentioned related descriptions, and will not be repeated here.
  • the present application may further provide a terminal device, and the terminal device may include the detection system in any of the foregoing embodiments. Further, optionally, the terminal device may further include a route planning module, which may be used to plan the driving route of the terminal device according to the determined distance information of the target. For example, avoiding obstacles on the driving path, etc. Of course, the terminal device may also include other devices, such as memory and wireless communication devices.
  • the detection system may be, for example, a terminal device, and the terminal device may be, for example, a radar, a smart phone, a smart home device, a smart manufacturing device, a robot, a drone or a smart transportation device (such as an automated guided vehicle (automated guided vehicle) vehicle, AGV) or unmanned transport vehicles, etc.), etc.
  • a terminal device may be, for example, a radar, a smart phone, a smart home device, a smart manufacturing device, a robot, a drone or a smart transportation device (such as an automated guided vehicle (automated guided vehicle) vehicle, AGV) or unmanned transport vehicles, etc.), etc.
  • the present application provides a detection method, please refer to the introduction of FIG. 14 .
  • This detection method can be applied to the detection system shown in any one of the above-mentioned embodiments in FIG. 3 to FIG. 13 . It can also be understood that the detection method can be implemented based on the detection system shown in any one of the above-mentioned embodiments in FIG. 3 to FIG. 13 .
  • the detection method includes the following steps:
  • Step 1401 receiving an echo signal.
  • the echo signal includes N second sub-band signals
  • the echo signal is a signal received by the radar after the target reflects the first signal
  • the first signal includes N first sub-band signals
  • the N first sub-band signals There is a frequency interval between at least two first sub-band signals in the signal that is greater than a frequency threshold.
  • This step 1401 can be performed by the above-mentioned receiving module.
  • Step 1402 determine the geometric factor of the scattering center of the target according to the echo signal.
  • the geometric factor ⁇ m of the scattering center may be determined based on the GTD scattering center model. For details, please refer to the foregoing related description, which will not be repeated here.
  • Step 1403 perform frequency compensation on the N second sub-band signals according to the geometric factor of the scattering center.
  • the nth second sub-band signal can be multiplied by the compensation factor
  • n is an integer greater than 1
  • the nth second subband signal is any one of the N second subband signals
  • the ⁇ f n is the nth second subband signal The frequency separation from the initial frequency f 0 of the second lowest frequency sub-band signal.
  • Step 1404 determine distance information of the target according to the compensated N second sub-frequency band signals.
  • the N first sub-band signals are based on the above structure 1, sum/difference processing can be performed on the compensated N second sub-band signals to obtain P virtual sub-band signals, and the P virtual sub-band signals can be For continuous virtual sub-band signals with uniform frequency steps, further, the distance information of the target can be determined according to the P virtual sub-band signals, where P is an integer greater than N.
  • the N first sub-band signals are based on the above structure 2, perform sum/difference processing on the compensated N second sub-band signals to obtain Q virtual sub-band signals, among the Q virtual sub-band signals may There will be some virtual sub-band signals with continuous and uniform frequency steps; further, continuous and uniform virtual sub-band signals with frequency steps, and the distance information of the target is determined according to the selected continuous and uniform virtual sub-band signals , the Q is an integer greater than N.
  • step 1401 to step 1404 can be executed by the above processing module.
  • V2X vehicle to everything
  • LTE-V long term evolution-vehicle
  • V2V vehicle-to-everything
  • all or part of them may be implemented by software, hardware, firmware or any combination thereof.
  • software When implemented using software, it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product comprises one or more computer programs or instructions. When the computer program or instructions are loaded and executed on the computer, the processes or functions described in the embodiments of the present application are executed in whole or in part.
  • the computer may be a general purpose computer, a special purpose computer, a computer network, network equipment, user equipment, or other programmable devices.
  • the computer program or instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer program or instructions may be downloaded from a website, computer, A server or data center transmits to another website site, computer, server or data center by wired or wireless means.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device such as a server or a data center integrating one or more available media. Described usable medium can be magnetic medium, for example, floppy disk, hard disk, magnetic tape; It can also be optical medium, for example, digital video disc (digital video disc, DVD); It can also be semiconductor medium, for example, solid state drive (solid state drive) , SSD).
  • “uniform” does not refer to absolute uniformity, and certain engineering errors may be allowed.
  • “And/or” describes the association relationship of associated objects, indicating that there may be three types of relationships, for example, A and/or B, which can mean: A exists alone, A and B exist simultaneously, and B exists alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the contextual objects are an “or” relationship.
  • the character “/” indicates that the front and back related objects are in a “division” relationship.
  • the word “exemplarily” is used to mean an example, illustration or illustration.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

一种探测系统、终端设备、探测方法及计算机可读存储介质,可应用于自动驾驶或智能驾驶等领域。该探测系统可以为雷达,包括:发射模块(301),用于发射包括N个第一子频带信号的第一信号,N个第一子频带信号中存在至少两个第一子频带信号之间的频率间隔大于频率阈值;接收模块(302),用于接收经目标对第一信号反射后的回波信号,回波信号包括N个第二子频带信号;处理模块(303),用于根据回波信号确定目标的散射中心几何因子,根据散射中心几何因子对N个第二子频带信号进行频率补偿,从而可使得N个第二子频带信号目标散射特性是一致的,从而可根据补偿后的N个第二子频带信号确定目标的距离信息。探测方法还可应用于车联网,如车辆外联V2X、车辆-车辆V2V等。

Description

一种探测系统、终端设备及探测方法 技术领域
本申请涉及探测技术领域,尤其涉及一种探测系统、终端设备及探测方法。
背景技术
随着信息化的发展,智能终端逐步进入人们的日常生活。传感系统在智能终端上发挥着越来越重要的作用。传感系统中的雷达由于其具有对外界环境的高可靠长距离高精度测量性能,是目前研究的热点之一。
距离分辨率是雷达的较为重要的一个功能参数。其中,距离分辨率是指距离维度的分辨率,即两个目标能够被分辨的最小距离,两个目标能够被分辨的最小距离越小,距离分辨率越高。雷达的距离分辨率由发射的信号带宽决定,高距离分辨率需要发射信号具有较大的带宽。但是连续大带宽的发射信号较难实现且对成本要求较高;而且,连续大带宽需要完整的连续频谱资源,受限于频谱资源的发放政策,连续频谱资源较难得到保证。一种解决宽带的方法是,利用多个窄带收发信号进行处理,获得等效大带宽的效果,如采用频率步进雷达或调频步进雷达。但是频率步进雷达或调频步进雷达的相邻子频带之间的频率间隔不能太大,否则会导致估计的最大不模糊距离范围变小。具体地:不产生距离模糊的条件是
Figure PCTCN2021096556-appb-000001
或Δf≤B 0,其中,Δf为相邻均匀步进子频带之间的频率间隔,T p表示单个脉冲信号的持续时长,B 0表示一个啁啾(chirp)的带宽。同时,该方法中多个子频带之间的最大频率间隔相对载频而言较小,一般满足窄带假设范围。但是在实际中,存在大量的零散频谱资源,这些零散的频谱资源的频率间隔可能较大,频率间隔较大的这些不同子频带对目标散射特性的影响不可忽略。
综上,如何利用频率跨度较大的稀疏子频带进行宽带合成,以获得更高分辨率的目标距离信息是当前亟需解决的技术问题。
发明内容
本申请提供一种探测系统、终端设备及探测方法,用于利用频率跨度较大的稀疏子频带进行宽带合成,以获得更高分辨率的目标距离信息。
第一方面,本申请提供一种探测系统,该探测系统可包括发射模块、接收模块和处理模块。发射模块用于发射第一信号,第一信号可包括N个第一子频带信号,N个第一子频带信号中存在至少两个第一子频带信号之间的频率间隔大于频率阈值;接收模块用于接收回波信号,回波信号包括N个第二子频带信号,回波信号为所述第一信号经目标反射后被探测系统接收到的信号;处理模块用于根据回波信号确定目标的散射中心几何因子,根据散射中心几何因子对接收到的N个第二子频带信号进行频率补偿,并根据补偿后的N个第二子频带信号确定目标的距离信息。其中,所述N个第一子频带信号与所述N个第二子频 带信号一一信号。
基于该方案,通过根据目标的散射中心几何因子对第二子频带信号进行频率补偿,从而可使得N个第二子频带信号的目标散射特性是一致的,进而可根据补偿后的N个第二子频带信号来确定目标的距离信息。
在一种可能的实现方式中,处理模块具体用于对第n个第二子频带信号乘以补偿因子
Figure PCTCN2021096556-appb-000002
其中,
Figure PCTCN2021096556-appb-000003
为散射中心几何因子,第n个第二子频带信号为N个第二子频带信号中的任一个,Δf n为第n个第二子频带信号与频率最低的第二子频带信号的初始频率f 0之间的频率间隔。
通过对每个第二子频带信号乘以补偿因子
Figure PCTCN2021096556-appb-000004
从而可消除因目标散射特性对第二子频带信号的影响。
在一种可能的实现方式中,任意两个第一频率间隔比满足质数比,第一频率间隔为个第一子频带信号与参考频带信号之间的频率间隔;其中,参考频带信号为N个第一子频带信号中频率最低的第一子频带信号。
在一种可能的实现方式中,第i个第一子频带信号与参考频带信号之间的频率间隔等于参考频率步进量的n i倍,第i个第一子频带信号为N个第一子频带信号中的一个;其中,参考频率步进量与最大不模糊距离成反比。
由于第一频率间隔比满足质数比,因此,每个第一子频带信号对应的模糊距离的位置各不相同,当对所有的第一子频带信对应的距离估计结果求交集后,所有的模糊距离都不存在了,只剩下真实距离。换言之,当第一频率间隔比满足质数比,不产生额外的距离模糊。
在一种可能的实现方式中,N个第一子频带信号对应H个集合,集合包括至少两个第一子频带信号,H为大于1的整数;其中,第三频率间隔等于第二频率间隔的(N k+1)倍,第三频率间隔为第k+1个集合中任意相邻两个第一子频带信号之间的频率间隔,第二频率间隔为第k个集合中任意相邻两个第一子频带信号之间的频率间隔,N k为第k个集合中包括的第一子频带的数量。
通过设置具有上述特点的稀疏的N个第一子频带信号,可保持最大不模糊距离不变、且可获得较大的带宽。
在一种可能的实现方式中,处理模块具体用于:对补偿后的N个第二子频带信号进行和/差分处理,获得P个虚拟子频带信号,P为大于N的整数;根据P个虚拟子频带信号,确定目标的距离信息。
在一种可能的实现方式中,当H=2,k=1时:
Figure PCTCN2021096556-appb-000005
其中,N 1为第一个集合包括的第一子频带信号的数量,N 2为第二个集合包括的第一子频带信号的数量。
在一种可能的实现方式中,P个虚拟子频带信号包括的虚拟子频带信号为参考频率步进量的j倍,j取{-N 2(N 1+1)-1,….,N 2(N 1+1)-1}中的整数。
通过和/差分处理可获得连续且均匀的P个虚拟子频带信号,利用该连续且均匀(即可以看成是非稀疏)的虚拟子频带信号进行距离估计,从而可达到最大不模糊距离不变的、自由度增多、旁瓣减小的效果。
在一种可能的实现方式中,N个第一子频带信号对应M个集合,集合包括至少两个第一子频带信号,M为大于1的整数;第m个集合包括N m个第一子频带信号,第m+1个集合包括N m+1个第一子频带信号,N m+1和与N m互质,第m个集合和第m+1个集合为M个集合中两个集合;第四频率间隔等于参考频率步进量的N m+1/p,倍,第四频率间隔为第m个集合中任意相邻两个第一子频带信号之间的频率间隔;参考频率步进量与最大不模糊距离成反比;第五频率间隔等于参考频率步进量的N m倍,第五频率间隔为第m+1个集合中任意相邻两个第一子频带信号之间的频率间隔,p为正整数。
通过设置具有上述特点的稀疏的N个第一子频带信号,可保持最大不模糊距离不变、且可获得较大的带宽。
在一种可能的实现方式中,第m个集合中频率最低的第一子频带信号的初始频率与第m+1个集合中频率最低的第一子频带信号的初始频率重合。
在一种可能的实现方式中,第m个集合和第m+1个集合为M个集合中任意相邻的两个集合,第m个集合中最高频率的第一子频带信号与第m+1个集合中最低频率的第一子频带信号之间的频率间隔等于参考频率步进量的L倍,L为正整数。
在一种可能的实现方式中,L为N m和N m+1中的最小值。
通过L取N m和N m+1中的最小值,可获得更多数量的连续的虚拟子频带信号。
在一种可能的实现方式中,处理模块具体用于:对补偿后的N个第二子频带信号进行和/差分处理,获得Q个虚拟子频带信号,Q为大于N的整数;根据Q个虚拟子频带信号,确定目标的距离信息。
通过和/差分处理可获得部分连续且均匀的个虚拟子频带信号,利用其中连续且均匀(即可以看成是非稀疏)的虚拟子频带信号进行距离估计,从而可达到最大不模糊距离不变的、自由度增多、旁瓣减小的效果。
在一种可能的实现方式中,发射模块为单个发射天线;发射模块具体用于:在不同的时刻发射N个第一子频带信号。
在一种可能的实现方式中,述发射模块为多个发射天线;发射模块具体用于:在相同的时刻发射N个第一子频带信号;或者,在不同的时刻发射N个第一子频带信号。
第二方面,本申请提供一种终端设备,包括上述第一方面或第一方面中的任意一种的探测系统、及处理器,处理器用于对探测系统确定的距离信息进行处理。
第三方面,本申请提供一种探测方法,该方法包括接收回波信号;回波信号包括N个第二子频带信号,回波信号为所述第一信号经目标反射后被探测系统接收到的信号,第一信号包括N个第一子频带信号,N个第一子频带信号中存在至少两个第一子频带信号之间的频率间隔大于频率阈值;根据回波信号确定目标的散射中心几何因子;根据散射中心几何因子对N个第二子频带信号进行频率补偿;根据补偿后的N个第二子频带信号确定目标的距离信息。
该方法可由上述第一方面或第一方面中的任意一种探测系统执行;或者也可由上述第 二方面或第一方面中的任意一种终端设备执行。
在一种可能的实现方式中,对第n个第二子频带信号乘以补偿因子
Figure PCTCN2021096556-appb-000006
n为大于1的整数;其中,
Figure PCTCN2021096556-appb-000007
为目标的散射中心几何因子,第n个第二子频带信号为N个第二子频带信号中的任一个,Δf n为第n个第二子频带信号与频率最低的第二子频带信号的初始频率f 0之间的频率间隔。
在一种可能的实现方式中,任意两个第一频率间隔比满足质数比,第一频率间隔为第一子频带信号与参考频带信号之间的频率间隔;其中,参考频带信号为N个第一子频带信号中频率最低的第一子频带信号。
在一种可能的实现方式中,N个第一子频带信号对应H个集合,集合包括至少两个第一子频带信号,H为大于1的整数;其中,第三频率间隔等于第二频率间隔的(N k+1)倍,第三频率间隔为第k+1个集合中任意相邻两个第一子频带信号之间的频率间隔,三频率间隔为第k个集合中任意相邻两个第一子频带信号之间的频率间隔,N k为第k个集合中包括的第一子频带的数量。
在一种可能的实现方式中,N个第一子频带信号对应M个集合,集合包括至少两个第一子频带信号,M为大于1的整数;第m个集合包括N m个第一子频带信号,第m+1个集合包括N m+1个第一子频带信号,N m+1和与N m互质,第m个集合和第m+1个集合为M个集合中两个集合;第四频率间隔等于参考频率步进量的N m+1/p,倍,第四频率间隔为第m个集合中任意相邻两个第一子频带信号之间的频率间隔;参考频率步进量与最大不模糊距离成反比;第五频率间隔等于参考频率步进量的N m倍,第五频率间隔为第m+1个集合中任意相邻两个第一子频带信号之间的频率间隔,p为正整数。
在一种可能的实现方式中,对补偿后的N个第二子频带信号进行和/差分处理,获得H个虚拟子频带信号,H为大于N的整数;根据H个虚拟子频带信号,确定目标的距离信息。
进一步,可选地,对所述补偿后的N个第二子频带信号的协方差矩阵进行向量化处理,之后采用平滑多重信号分类MUSIC算法对所述H个虚拟子频带信号处理,获得所述目标的距离信息。
在一种可能的实现方式中,在不同的时刻发射N个第一子频带信号;或者,在相同的时刻发射N个第一子频带信号。
第四方面,本申请提供一种计算机可读存储介质,计算机可读存储介质中存储有计算机程序或指令,当计算机程序或指令被探测系统执行时,使得该探测系统执行上述第三方面或第三方面的任意可能的实现方式中的方法。
第五方面,本申请提供一种计算机程序产品,该计算机程序产品包括计算机程序或指令,当该计算机程序或指令被探测系统执行时,使得该探测系统执行上述第三方面或第三方面的任意可能的实现方式中的方法。
附图说明
图1为本申请提供的一种雷达的可能应用场景示意图;
图2为本申请提供的另一种雷达的可能应用场景示意图;
图3为本申请提供的一种探测系统的结构示意图;
图4a为本申请提供的一种N个第一子频带信号的频率分布示意图;
图4b为本申请提供的另一种N个第一子频带信号的频率分布示意图;
图5a为本申请提供的一种N个第一子频带信号的时分模式的分布示意图;
图5b为本申请提供的另一种N个第一子频带信号的时分模式的分布示意图;
图5c为本申请提供的一种N个第一子频带信号的频分模式的分布的示意图;
图5d为本申请提供的另一种N个第一子频带信号的频分模式的分布示意图;
图6a为本申请提供的一种N个第一子频带信号的频率分布示意图;
图6b为本申请提供的另一种N个第一子频带信号的频率分布示意图;
图7a为本申请提供的一种N个第一子频带信号的时分模式的分布示意图;
图7b为本申请提供的另一种N个第一子频带信号的时分模式的分布示意图;
图7c为本申请提供的另一种N个第一子频带信号的频分模式的分布示意图;
图7d为本申请提供的另一种N个第一子频带信号的频分模式的分布示意图;
图8a为本申请提供的一种N个第一子频带信号的频率分布示意图;
图8b为本申请提供的另一种N个第一子频带信号的频率分布示意图;
图9a为本申请提供的一种N个第一子频带信号的时分模式的分布示意图;
图9b为本申请提供的另一种N个第一子频带信号的时分模式的分布示意图;
图9c为本申请提供的一种N个第一子频带信号的频分模式的分布的示意图;
图9d为本申请提供的另一种N个第一子频带信号的频分模式的分布示意图;
图10a为本申请提供的一种N个第一子频带信号的时分模式的分布示意图;
图10b为本申请提供的另一种N个第一子频带信号的时分模式的分布的示意图;
图10c为本申请提供的一种N个第一子频带信号的频分模式的分布的示意图;
图10d为本申请提供的另一种N个第一子频带信号的频分模式的分布示意图;
图11为本申请提供的一种接收模块的结构示意图;
图12为本申请提供的一种N个第二子频带信号的频率分布示意图;
图13为本申请提供的一种N个第二子频带信号的频率分布示意图;
图14为本申请提供的一种探测方法的流程示意图。
具体实施方式
下面将结合附图,对本申请实施例进行详细描述。
以下,对本申请中的部分用语进行解释说明。需要说明的是,这些解释是为了便于本领域技术人员理解,并不是对本申请所要求的保护范围构成限定。
一、距离分辨率
距离分辨率是指距离维度的分辨率,即两个目标能够被辨识的最小距离。以回波信号为脉冲信号为例,当较近目标的回波脉冲的后沿(下降沿)与较远目标回波的前沿(上升沿)刚好重合时,作为可分辨的极限,此时两目标之间的距离即为距离分辨率。
在雷达图像中,当两个目标位于同一方位角、但与雷达的距离不同时,二者被雷达区分出来的最小距离即是距离分辨率。雷达的距离分辨率定义为雷达分辨两个近距离目标的能力。雷达的距离分辨率与雷达发射信号的脉冲宽度有关系,雷达发射信号的脉冲宽度越窄,雷达的距离分辨率越高。通常,雷达的距离分辨率可用ρ r来表示,可参见下述公式1。
ρ r=c/2B e公式1
其中,B e为雷达发射信号的带宽。由上述公式1可见,发射信号带宽越大,则雷达的距离分辨力越高。
二、最大不模糊距离
最大不模糊距离(r max)指当雷达发射的一个脉冲信号遇到该距离处的目标反射的后向散射波(即回波信号)返回到雷达时,下一个脉冲信号刚好发出。也就是说,雷达发射的脉冲信号传播到位于最大不模糊距离处的目标,然后其回波信号再返回雷达所用的时间刚好是两个脉冲信号之间的时间间隔。
示例性地,若雷达发射的第一个脉冲信号被200m处的目标反射后,且针对第一个脉冲信号的回波信号在第二个脉冲信号发射前被雷达接收到,此时雷达确定这个目标的距离信息不存在歧义。若第一个脉冲信号被400m处的目标反射后,此时雷达已经发射了第二脉冲信号,针对第一个脉冲信号的回波信号才被雷达接收到,此时,雷达在没有其它附加信息的前提下,是无法确定接收到的这个回波信号是针对第一个脉冲信号的回波信号还是针对第二脉冲信号的回波信号,即雷达确定这个目标的距离信息时存在歧义,即产生了距离模糊。
三、参考频率步进量
参考频率步进量可以是衡量各个子频带信号相对于参考频带信号的频率偏移量的基准值。
示例性地,参考频率步进量Δf与最大不模糊距离r max之间满足下述公式2。
r max=c/2Δf  公式2
四、频带
频带指信号所占据的频率资源,可以用所占据频谱资源的初始频率(或称为最低频率)和频带宽度描述,或者用占据频谱资源的中心频率和频带宽度描述。频带宽度即带宽,对于一段连续的频率资源,带宽指该段频率资源的最高频率与最低频率之差。其中,初始频率为频带中的最低频率。
五、啁啾(Chirp)
啁啾是通信技术有关编码脉冲技术中的一种术语,是指对脉冲进行编码时,其载频在脉冲持续时间内线性地增加。通常是指将脉冲传输时中心波长发生偏移的现象叫做“啁啾”。
六、频率步进信号
由一串载频线性跳变的发射脉冲信号组成。
七、调频步进
频率步进信号中的单个发射脉冲信号为线性调频信号(即chirp信号),因此调频步进信号兼具线性调频和频率步进信号的优点。
基于上述内容,下面介绍本申请可能的应用场景。需要说明的是,在下文的介绍中,以探测系统为雷达为例,对探测系统的可能应用场景进行介绍。
如图1所示,为本申请提供的一种雷达的可能应用场景示意图。该雷达以一定方向发射信号,若在沿信号的发射方向的一定距离内存在目标,目标可将接收到的信号反射回雷达(称为回波信号),雷达根据回波信号可确定出目标的信息,例如目标的距离、目标的移动速度、目标的姿态或点云图等。应理解,雷达可以部署于车辆的各个位置,例如,可部署于车辆前、后、左、右四个方向,以实现对车辆周围环境的全方位捕获。图1中是以部署于车辆前端的雷达示例的,该雷达可感知到如虚线框所示的扇形区域,该扇形区域可称为雷达的探测区域。
该应用场景可应用于可以为无人驾驶、自动驾驶、辅助驾驶、智能驾驶、网联车等领域。在该场景中,雷达可被安装在车辆(例如无人车、智能车、电动车、数字汽车等)上,作为车载雷达。车载雷达可以实时或周期性地获取探测到的车辆的经纬度、速度、朝向、周围物体的距离等测量信息,再根据这些测量信息并结合高级驾驶辅助系统(advanced driving assistant system,ADAS)实现车辆的辅助驾驶或无人驾驶等。例如,利用经纬度确定车辆的位置,或利用速度和朝向确定车辆在未来一段时间的行驶方向和目的地,或利用周围物体的距离确定车辆周围的障碍物数量、密度等。或者,该场景中,雷达也可被安装在无人机上,作为机载雷达。或者,雷达也可以安装在路边交通设备(如路侧单元(road side unit,RSU))上(可参见图2),作为路边交通雷达,从而可实现智能车路协同。
需要说明的是,如上应用场景只是举例,本申请所提供的雷达还可以应用在多种其它可能场景,而不限于上述示例出的场景。例如,雷达还可应用于终端设备或设置于终端设备的部件中,终端设备例如可以是智能手机、智能家居设备、智能制造设备、机器人、无人机或智能运输设备(如自动导引运输车(automated guided vehicle,AGV)或者无人运输车等)等。其中,AGV小车指装备有电磁或光学等自动导航装置,能够沿规定的导航路径行驶,具有安全保护以及各种移载功能的运输车。
在一种可能的实现方式中,雷达可基于不同的测量范围分为长距雷达(long range radar,LRR)、中距雷达(middle range radar,MRR)和短距雷达(short range radar,SRR)。其中,LRR具有测距与防碰撞功能,广泛应用于自适应巡航控制(adaptive cruise control,ACC)、前向碰撞警告(forward collision warning,FCW)、自动紧急刹车(automatic emergency brake,AEB)等领域。示例性地,LRR可安装在车辆前方保险杠的正中心位置,方位角为0°,当高度低于50cm时仰角可设置为1.5°;当高度超过50cm时仰角设置为0°,这样可以实现卡车150米,汽车100米,行人60米的运动目标检测能力。LRR的ACC、FCW、AEB等功能在驾驶者分神、疲劳犯困或者使用手机等未能注意到前方状况时具有显著的安全提示效果。MRR和SRR具有盲点检测(blind spot detection,BSD)、车道变换辅助(lane change assistance,LCA)、后向目标横穿警告(rear cross traffic alert,RCTA)、开门辅助(exit essistant function,EAF)、前向目标横穿警告(forward cross traffic alert,FCTA)等功能,能精确探测车辆前后左右一定范围内的目标。而作为ADAS系统中的典型应用,SRR在BSD、LCA等领域可以有效降低驾驶员在夜晚、雾天、大雨等气候恶劣条件下观察不便导致的危险系数,以及避免驾驶员在并道操作过程中,相邻车道和“视野”盲区可能碰撞的险境。
如背景技术介绍,当利用频率跨度较大的稀疏子频带进行宽带合成时,频率引入的目标散射特性不同,会影响估计的目标的距离信息。
鉴于此,本申请提出一种探测系统。下面结合附图3至附图12,对本申请提出的探测系统进行具体阐述。
如图3所示,为本申请提供的一种探测系统的结构示意图。该探测系统可包括发射模块301、接收模块302和处理模块303。其中,发射模块301用于发射第一信号,第一信号包括N个第一子频带信号,N个第一子频带信号中存在至少两个第一子频带信号之间的频率间隔大于频率阈值,频率阈值与第一子频带信号初始频率有关,初始频率越大,频率阈值越大。频率阈值与初始频率之比可以用预设值表示,预设值可为大于0.1的正数,例如可以取0.5、0.8、1、1.2,1.5、2等。接收模块302用于接收回波信号,回波信号包括N 个第二子频带信号,回波信号为目标对第一信号反射后被雷达接收的信号。处理模块303用于根据回波信号确定目标的散射中心几何因子
Figure PCTCN2021096556-appb-000008
根据散射中心几何因子
Figure PCTCN2021096556-appb-000009
对接收到的N个第二子频带信号进行频率补偿,并根据补偿后的N个第二子频带信号确定目标的距离信息。其中,
Figure PCTCN2021096556-appb-000010
与目标的几何结构相关,通常为1/2的整数倍。
需要说明的是,对接收到的N个第二子频带信号进行频率补偿包括:对接收到的N个第二子频带信号中频率间隔大于频率阈值的第二子频带信号进行频率补偿,且对于频率间隔不大于频率阈值的第二子频带信号可以补偿;或者,对接收到的N个第二子频带信号中频率间隔大于频率阈值的第二子频带信号进行频率补偿,且对于频率间隔不大于频率阈值的第二子频带信号不做处理。也可以理解为,补偿后的N个第二子频带信号可能是部分被补偿后的第二子频带信号,或者也可能是全部被补偿后的第二子频带信号。
基于上述探测系统,通过基于目标的散射中心几何因子
Figure PCTCN2021096556-appb-000011
对第二子频带信号进行频率补偿,从而可使得N个第二子频带信号目标散射特性是一致的,进而可根据补偿后的N个第二子频带信号来确定目标的距离信息。
在一种可能的实现方式中,上述N个第一子频带信号可以是相同的雷达发射的,也可以是不同的雷达发射。例如可以均是77吉赫兹(GHz)雷达发射的,也可以均是140GHz雷达发射的,或者也可以是77GHz雷达和140GHz雷达共同发射的。也就是说,探测系统可以包括单个雷达,或者也可以包括多个雷达的组合。
下面对图2所示的各个功能模块分别进行介绍说明,以给出示例性的具体实现方案。为方便说明,下文中的发射模块、接收模块和处理模块均未加标识。
一、发射模块。
在一种可能的实现方式中,发射模块可用于向探测区域发射第一信号,其中,第一信号可包括稀疏的N个第一子频带信号。
如下,示例性地的示出了稀疏的N个第一子频带信号的三种可能的结构。
结构一,N个第一子频带信号为嵌套型。
在一种可能的实现方式中,N个第一子频带信号对应H个集合,H为大于1的整数,每个集合包括至少两个第一子频带信号;以H个集合中的两个集合为例,即第k+1个集合和第k个集合为例,第k+1个集合中任意相邻两个第一子频带信号之间的第三频率间隔等于第k个集合中任意相邻两个第一子频带信号之间的第二频率间隔的(N k+1)倍,N k为第k个集合中包括的第一子频带信号的数量。第k+1个集合中的频率最低的第一子频带信号与第k个集合中频率最高的第一子频带之间的频率差等于第二频率间隔。
也可以理解为,第k个集合中任意相邻两个第一子频带信号之间的第二频率间隔为Δf k,第k个集合包括的第一子频带个数为N k,第k+1个集合中任意相邻两个第一子频带信号之间的第三频率间隔为(N k+1)×Δf k。其中,每个集合中包括均匀的频率步进或均匀的调频步进的第一子频带信号。
需要说明的是,任意相邻两个集合之间的频率间隔不同,相邻两个集合之间的频率间隔也可以理解为是前一个集合的最高频率的第一子频带信号与后一个集合中的最低频率的第一子频带信号之间的间隔。
如下,以N个第一子频带信号为两级嵌套为例,即H=2。
在一种可能的实现方式中,对于N个第一子频带信号为两级嵌套的集合,两级集合可 基于如下关系分配N个第一子频带信号。其中,N 1为第一级集合包括的第一子频带信号的数量,N 2为第二级集合包括的第一子频带信号的数量。
Figure PCTCN2021096556-appb-000012
如图4a所示,为本申请提供的又一种N个第一子频带的频率分布示意图。图4a以两级嵌套为例,即第1级集合和第2级集合为例。其中,第1级集合中的任意相邻两个第一子频带信号之间的第二频率间隔Δf 1,第1级集合中包括的第一子频带信号的数量为N 1,第2级集合中的任意相邻两个第一子频带信号之间的第三频率间隔Δf 2=(N 1+1)Δf 1,第2级集合中包括的第一子频带信号的数量为N 2。第1级中频率最低的第一子频带信号与第2级中频率最高的第一子频带之间的频率差等于第二频率间隔Δf 1
需要说明的是,上述图4a是以调频步进为例的,也可以是频率步进,可参见图4b。
当N个第一子频带信号为频率步进时,图4a所示的N个第一子频带信号可以是时分模式的分布(可参阅图5a),或者也可以是频分模式的分布(可参阅图5c)。当N个第一子频带信号为调频步进时,图4b所示N个第一子频带信号可以是时分模式的分布(可参阅图5b),或者也可以是频分模式的分布(可参阅图5d)。
需要说明的是,第1级集合中每个第一子频带的初始频率或中心频率或终止频率用
Figure PCTCN2021096556-appb-000013
Figure PCTCN2021096556-appb-000014
表示,第2级嵌套集合中每个第一子频带的初始频率或中心频率或终止频率用
Figure PCTCN2021096556-appb-000015
结构二,N个第一子频带信号为质数II型。
在一种可能的实现方式中,N个第一子频带信号对应M个集合,每集合包括至少两个第一子频带信号,M为大于1的整数。
以M个集合中的两个集合为例,即以第m个集合和第m+1个集合为例。第m个集合包括N m个第一子频带信号,第m+1个集合包括N m+1个第一子频带信号,N m+1和与N m互质。第m个集合中任意相邻两个第一子频带信号之间的第四频率间隔等于参考频率步进量的N m+1/p倍,第m+1个集合中任意相邻两个第一子频带信号之间的第五频率间隔等于参考频率步进量的N m倍,p为正整数。
当p=1时,第m个集合包括N m个第一子频带信号,第m+1个集合包括N m+1个第一子频带信号,N m+1和与N m互质。第m个集合中任意相邻两个第一子频带信号之间的第四频率间隔等于参考频率步进量的N m+1倍,第m+1个集合中任意相邻两个第一子频带信号之间的第五频率间隔等于参考频率步进量的N m倍。
基于第m个集合和第m+1个集合的位置关系,可分如下两种情形介绍。
情形一,第m个集合中频率最低的第一子频带信号的初始频率与第m+1个集合中频率最低的第一子频带信号的初始频率重合。
如图6a所示,为本申请提供的一种N个第一子频带信号的频率分布示意图。该示例中以M=2为例,即N个第一子频带信号对应2个集合(分别为集合1和集合2)。集合1包括N 1个第一子频带信号,集合2包括N 2个第一子频带信号,集合1中任意相邻两个第一子频带信号之间的第四频率间隔均为Δf 1=N 2Δf,集合2中任意相邻两个第一子频带信号之 间的第五频率间隔均为Δf 2=N 1Δf,N 1与N 2互质,f 1与f 1′重合,即集合1中频率最低的第一子频带信号的初始频率f 1与集合2中频率最低的第一子频带信号的初始频率f 1′重合。
需要说明的是,上述图6a是以频率步进为例的,也可以是调频步进的,可参见图6b。
当N个第一子频带信号为频率步进时,图6a所示的N个第一子频带信号可以是时分模式的分布(可参阅图7a),或者也可以是频分模式的分布(可参阅图7c)。当N个第一子频带信号为调频步进时,图6b所示N个第一子频带信号可以是时分模式的分布(可参阅图7b),或者也可以是频分模式的分布(可参阅图7d)。
情形二,第m个集合中最高频率的第一子频带信号与第m+1个集合中最低频率的第一子频带信号之间的频率间隔等于参考频率步进量的L倍,L为正整数。
基于该情形二,第m个集合和第m+1个集合为M个集合中任意相邻的两个集合。进一步,可选地,L≥min{N m,N m+1},即L取N m和N m+1中的最小值。如此,可获得更多数量的连续的虚拟子频带信号。
如图8a所示,为本申请提供的另一种N个第一子频带信号的频率分布示意图。该示例中以M=2为例,即N个第一子频带信号对应2个集合(分别为集合3和集合4),集合3包括N 1个第一子频带信号,集合4包括N 2个第一子频带信号,集合3中任意相邻两个第一子频带信号之间的第四频率间隔均为Δf 3=N 2Δf,集合4中任意相邻两个第一子频带信号之间的第五频率间隔均为Δf 4=N 1Δf,N 1与N 2互质,集合3与集合4之间的频率间隔等于参考频率步进量的L倍,即集合3中最高频率的第一子频带信号与集合4中最低频率的第一子频带信号之间的频率间隔等于参考频率步进量的L倍。
需要说明的是,图8a是以频率步进为例的,也可以是调频步进的,可参见图8b。
当N个第一子频带信号为频率步进时,图8a所示的N个第一子频带信号可以是时分模式的分布(可参阅图9a),或者也可以是频分模式的分布(可参阅图9c)。当N个第一子频带信号为调频步进时,图8b所示N个第一子频带信号可以是时分模式的分布(可参阅图9b),或者也可以是频分模式的分布(可参阅图9d)。
需要说明的是,上述结构二中的
Figure PCTCN2021096556-appb-000016
表示集合1中每个第一子频带信号的初始频率、中心频率或终止频率,
Figure PCTCN2021096556-appb-000017
表示集合2中每个第一子频带信号的初始频率、中心频率或终止频率。附图6a至附图9d均是以初始频率为例示例的。
结构三,N个第一子频带信号为质数I型。
在一种可能的实现方式中,N个第一子频带信号中除参考频带信号外的任意两个第一子频带信号与参考频带信号之间的第一频率间隔比满足质数比。其中,参考频带信号为N个第一子频带信号中频率最低的第一子频带信号。
以N个第一子频带信号中任意两个第一子频带信号为例,即以第i个第一子频带信号和第j个第一子频带信号为例,第i个第一子频带信号与参考频带信号之间的第一频率间隔等于参考频率步进量Δf的n i倍,第j个第一子频带信号与参考频带信号之间的第一频率间隔等于参考频率步进量的n j倍,n i与n j互质,1<i≤N,1<j≤N,i≠j。即n i∈(1,2,3,5,7,11,13,17,19,23,29,31,37,….),n j∈(1,2,3,5,7,11,13,17,19,23,29,31,37,….)。应理解,第i个第一子频带信号与参考频带信号之间的第一频率间隔也可称为第i个第一子频带信号的偏移量。第j个第一子频带信号与参考频带信号之间的第一频率间隔也可称为第j个第一子频带信号的偏移量。其中,参考频率步进量Δf 为最大不模糊距离对应的最小频率间隔,若最大不模糊距离为r max,则Δf=c/2r max
如图10a所示,为本申请提供的一种N个第一子频带信号的时分模式的分布示意图。该示例以频率步进信号为例。参考频带信号为频率最低的第一子频带信号f1,第一子频带信号f2与参考频带信号f1之间的第一频率间隔等于参考频率步进量Δf的n 2倍,第一子频带信号f3与参考频带信号f1之间的第一频率间隔等于参考频率步进量Δf的n 3倍,依次类推,第一子频带信号f N与参考频带信号f1之间的第一频率间隔等于参考频率步进量Δf的n N倍,n 2与n 3互质,n N与n 3互质,n N与n 2互质。
如图10b所示,为本申请提供的另一种N个第一子频带信号的时分模式的分布示意图。该示例以调频步进信号为例。参考频带信号为频率最低的第一子频带信号f1,第一子频带信号f2与参考频带信号f1之间的第一频率间隔等于参考频率步进量Δf的n 2倍,第一子频带信号f3与参考频带信号f1之间的第一频率间隔等于参考频率步进量Δf的n 3倍,依次类推,第一子频带信号f N与参考频带信号f1之间的第一频率间隔等于参考频率步进量Δf的n N倍,n 2与n 3互质,n N与n 3互质,n N与n 2互质。
如图10c所示,为本申请提供的一种N个第一子频带信号的频分模式的分布示意图。该示例以频率步进信号为例。参考频带信号为频率最低的第一子频带信号f1,第一子频带信号f2与参考频带信号f1之间的第一频率间隔等于参考频率步进量Δf的n 2倍,第一子频带信号f3与参考频带信号f1之间的第一频率间隔等于参考频率步进量Δf的n 3倍,第一子频带信号f N与参考频带信号f1之间的第一频率间隔等于参考频率步进量Δf的n N倍,,n 2与n 3互质,n N与n 3互质,n N与n 2互质。
如图10d所示,为本申请提供的另一种N个第一子频带信号的频分模式的分布示意图。该示例中以调频步进信号为例。N个第一子频带信号中除参考频带信号外的任意两个第一子频带信号与参考频带信号之间的第一频率间隔比满足质数比,具体可参见前述图10b的介绍,此处不再赘述。
需要说明的是,上述图10a和图10c所示的频率步进为非均匀步进,图10b和图10d所示的调频步进也为非均匀步进。另外,f1、f2…f N可表示每个第一子频带信号的初始频率、中心频率或终止频率,上述图10a、图10b、图10c和图10d均是以表示第一子频带信号的初始频率为例示例的。
当N个第一子频带信号满足该结构三时,可消除因相邻两个第一子频带之间的第一频带间隔过大而减小最大距离模糊(最大不模糊距离为c/2Δf),且可获得较大的等效带宽(即(N-1)×Δf)。下面该有益效果,结合公式进行详细说明。
距离导向矢量可参见下述公式3。
Figure PCTCN2021096556-appb-000018
其中r m表示第m个目标距离雷达的距离。当出现距离模糊时,即存在r′ m,使得α(r m)=α(r′ m),可参见下述公式4。
Figure PCTCN2021096556-appb-000019
化简上述公式4,可得到下述公式5。
Figure PCTCN2021096556-appb-000020
进一步化简上述公式5,可得到下述公式6。
Figure PCTCN2021096556-appb-000021
Figure PCTCN2021096556-appb-000022
为最大不模糊距离,代入上述公式6,可得到下述公式7。
Figure PCTCN2021096556-appb-000023
由于
Figure PCTCN2021096556-appb-000024
因此,k i<n i
Figure PCTCN2021096556-appb-000025
当n i互质时,ρ={ρ 2∩ρ 3∩ρ N}={0},即r i=r′ i
基于上述推导过程可以看出,当第一子频带信号与参考频带信号之间的第一频率间隔大于参考频率步进量Δf时,除了在真实距离处产生峰值外,还会在其他距离处产生峰值,这些位置可被称为模糊距离。不同的第一频率间隔下,产生的模糊距离的位置不同,进一步,对所有的第一子频带信对应的距离估计结果求交集,由于n i与n j互质,因此,每个第一子频带信号对应的模糊距离的位置各不相同,求交集后所有的模糊距离都不存在了,只剩下真实距离。换言之,当N个第一子频带信号满足该结构三时,不产生额外的距离模糊。
基于上述三种N个第一子频带信号可能的稀疏结构,可解决用有限数量的窄带信号获得大宽带收发时存在的距离模糊、旁瓣增大等问题。也就是说,通过设置具有一定特点的稀疏的N个第一子频带信号,可保持最大不模糊距离不变、且可获得较大的带宽。应理解,对频带稀疏可能会导致旁瓣增大。
在一种可能的实现方式中,发射模块可用于向探测区域发射第一信号。进一步,可选地,发射模块可包括波形生成器(waveform generation)和发射天线(transmit antenna)。
示例性地,波形生成器可产生第一子频带随时间增加的第一信号,该第一信号可以是调频连续波,或者也可以是连续波或脉冲。发射天线可用于发射第一信号。
进一步,可选地,若探测系统包括单个发射天线,单个发射天线可以在不同的时刻发射N个第一子频带信号。若探测系统包括多个发射天线,当发射天线的数量大于或等于N时,多个发射天线可在相同的时刻发射N个第一子频带信号;当发射天线的数量少于N且大于1时,可部分发射天线在不同的时刻发射第一子频带信号,部分发射天线在同一时刻发射第一子频带信号。
需要说明的是,发射模块通常会在一段连续的时长内进行多个扫频周期的第一信号发送。其中,扫频周期指进行一个完整波形的第一信号发射的周期,即发射N个第一子频带信号可为一个扫频周期,基于一个完整波形的第一信号,可获得目标的一个距离信息。
二、接收模块
在一种可能的实现方式中,接收模块可包括接收天线、混频器、滤波器、模数转换器(analog-to-digital converter,ADC),请参阅图11。其中,接收天线用于接收目标发射的回波信号,混频器用于将接收天线接收的回波信号与本振信号进行混频,获得中频信号,中频信号经低通滤波器后,得到低频信号,经ADC将低频的模拟信号转化为数字信号, 进而可进入处理模块进行后续处理。
三、处理模块
在一种可能的实现方式中,回波信号可以是看成有限个强散射中心的相干叠加。对于光学区(即目标尺寸远大于信号波长)的宽带信号,目标的后向散射电场(即回波信号的电场)的几何绕射理论(geometric theory of diffraction,GTD)散射中心模型可用下述公式8表示:
Figure PCTCN2021096556-appb-000026
其中,M表示散射中心的个数,A m表示第m个散射中心的散射强度,r m表示第m个散射中心的位置,f n=f 0+Δf n,f 0为初始频率(即参考频带的初始频率),Δf n为频率值f n与初始频率的频率差,c为电磁波的传播速度,c=3×10 8m/s。α m表示第m个散射中心对应的散射类型,可称为散射中心几何因子,不同的目标的结构α m选取不同的值(即α m与目标的几何结构相关)。
由上述公式8可以看出,前三项
Figure PCTCN2021096556-appb-000027
为与频率无关的幅度项;第四向
Figure PCTCN2021096556-appb-000028
为频率差引入的相位差,用于确定(或称为估计)目标的距离信息;最后一项
Figure PCTCN2021096556-appb-000029
为目标散射特性引入的频率误差项,会影响确定目标的距离信息,因此在确定目标的距离信息时需要对最后一项进行预处理(或称为补偿或校正)。
应理解,当N个第一子频带信号中任意相邻两个第一子频带信号之间的频率间隔均小于频率阈值时,上述公8中的最后一项可忽略不计。当N个第二子频带信号中存在至少两个第一子频带信号之间的频率间隔大于频率阈值时,上述公式8中的最后一项不能忽略不计。因此,处理模块在对N个第二子频带信号进行合成处理之前,可先对第二子频带信号进行频率补偿,以实现N个第二子频带信号对目标散射特性是一致的。
需要说明的是,即一个第一子频带信号被目标反射后得到一个第二子频带信号,换言之,N个第一子频带信号与N个第二子频带信息一一对应。
由上述公式8可以看出,待补偿的误差项主要依赖于目标散射中心几何因子(或称为散射系数)α m。在一种可能的实现方式中,处理模块可用于根据回波信号确定目标的散射中心几何因子
Figure PCTCN2021096556-appb-000030
进一步,可根据散射中心几何因子
Figure PCTCN2021096556-appb-000031
对接收到的N个第二子频带信号进行频率补偿。
如下,示例性地的示出了一种对目标散射中心几何因子α m的估计方式。
选择N个第二子频带中的N′个第二子频带,假设这些第二子频带的起始频率为f′ 0,这些第二子频带满足:所选N′个第二子频带中各第二子频带关于f′ 0的频率偏移量与f′ 0的比值远小于1。以N′个第二子频带为均匀步进为例,即f=f 0+kΔf,则此时,有:
Figure PCTCN2021096556-appb-000032
Figure PCTCN2021096556-appb-000033
其中,
Figure PCTCN2021096556-appb-000034
根据公式9,求出P m,即可得到α m的估计值。根据公式9,P m的估计可以转化为经典的空间谱估计问题,可以利用MUSIC算法、旋转不变子空间(ESPRIT)算法等经典谱估计算法进行估计。以ESPRIT算法为例,一种可能的估计α m过程如下:
步骤11,根据散射回波数据重构一个Hankel矩阵X,并计算其协方差矩阵R;
步骤12,协方差矩阵R进行特征值分解,得到信号子空间U s,将U s最后一行去掉获得U s1,将U s第一行去掉获得U s2
步骤13,计算
Figure PCTCN2021096556-appb-000035
获得P m=eig(ψ);
步骤14,根据P m的幅值信息可获得α m的估计值。。
以第n个第二子频带信号为例,可确定出第n个第二子频带信号的补偿因子
Figure PCTCN2021096556-appb-000036
第n个第二子频带信号乘以补偿因子
Figure PCTCN2021096556-appb-000037
即可消除公式8中的最后一项,得到补充后的第n个第二子频带信号,如下述公式10。
Figure PCTCN2021096556-appb-000038
基于上述补偿后的公式10,不同子频带信号之间由于频率不同导致的目标散射特性的不一致性被补偿,利用补偿后的各子频带信号可进一步进行后续估计目标的距离信息。
下面分别结合上述三种可能结构,对经过频率一致性补偿后的N个第二子频带信号进行聚合处理,从而可获得等效的大带宽的距离信息。
基于上述结构一
在一种可能的实现方式中,处理模块还可用于对补偿后的N个第二子频带信号进行和/差分处理,得到P个虚拟子频带信号,P为大于N的整数。进一步,可选地,处理模块可根据P个虚拟子频带信号,确定目标的距离信息。其中,P个虚拟子频带信号可为连续且频率步进均匀的虚拟子频带信号。基于上述结构一,通过和/差分处理可获得连续且均匀的虚拟子频带信号,并利用该连续且均匀(即可以看成是非稀疏)的虚拟子频带信号进行距离估计,从而可达到最大不模糊距离不变的、自由度增多、旁瓣减小的效果。
当H=2时,P个虚拟子频带信号包括的虚拟子频带信号等于参考频率步进量的j倍,其中,j取{-N 2(N 1+1)-1,….,N 2(N 1+1)-1}中的整数。也可以理解为,P个虚拟子频带信号组成一个虚拟子频带集合,该虚拟子频带集合包括的虚拟子频带的数量为2N 2(N 1+1)-1,即每个虚拟子频带信号为j×Δf,j取{-N 2(N 1+1)-1,….,N 2(N 1+1)-1}中的整数。也就是说,补偿后的N个第二子频带信号可获得2N 2(N 1+1)-1的自由度。换言之,N个第一子频带信号若是基于上述结构一的方式稀疏的,则处理模块可对更多数量的目标进行距离信息的估计。
结合上述图4a,以N 1=N 2=3为例,N=6,即回波信号包括6个第二子频带信号。处理 模块可用于对接收到的补偿后的6个第二子频带信号进行和/差分处理,得到23个均匀分布的虚拟子频带信号,可参见图12。这23个虚拟子频带信号可组成虚拟频率信号集,即为{-11,-10,-9,-8,-7,,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8,9,10,11}。应理解,图12中还包括每个虚拟子频带信号的权重。每个虚拟子频带信号对应的权重表示对这6个第二子频带信号进行和/差分处理得到该虚拟子频带信号的次数。例如,f 0的权重为6,表示处理模块在对这6个第二回波信号进行和/差分处理时,f 0出现了6次。进一步,可选地,处理模块可根据上述得到的23个虚拟子频带信号,确定目标的距离信息。
示例性地,处理模块可通过对回波信号的协方差矩阵进行向量化获得虚拟子频带信号,然后对获得的虚拟子频带信号利用平滑多重信号分类(multiple signal classification,MUSIC)算法进行距离估计,具体处理流程如下:
步骤21,计算回波信号(包括补偿后的N个第二子频带信号)(对于线性调频信号,首先需要进行脉冲压缩,取脉冲压缩后的峰值信号)的协方差矩阵R XX,对其进行向量化处理得到向量z,将z排序并删除冗余(或进行冗余平均),得到虚拟子频带信号zz;
步骤22,通过空间平滑获得zz的协方差矩阵R zz,并写出导向矢量a(r);
步骤23,利用R zz进行特征值分解,得到噪声子空间U N
步骤24,构造MUSIC谱
Figure PCTCN2021096556-appb-000039
遍历不同的距离值,通过谱峰搜索获得目标的距离信息。
基于上述结构二
在一种可能的实现方式中,处理模块还可用于对补偿后的N个第二子频带信号进行和/差分处理,得到Q个虚拟子频带信号,Q为大于N的整数。
进一步,可根据Q个虚拟子频带信号,确定目标的距离信息。其中,Q个虚拟子频带信号中可能会存在部分是连续且频率步进均匀的虚拟子频带信号。
结合上述图6a,以N 1=4,N 2=3为例,N=7,即回波信号包括补偿后的7个第二子频带信号。处理模块可用于对接收到的补偿后的7个第二子频带信号进行和/差分处理,得到17个虚拟子频带信号,可参阅图13。这17个虚拟子频带信号可组成虚拟频率信号集,即为{-9,-8,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,8,9},其中,-6~6之间的13个元素是连续均匀分布的。
进一步,可选取虚拟频率信号集中连续且均匀分布的部分(即{-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6})来确定目标的距离信息。也可以理解为,对于补偿后的N个第二子频带信号进行和/差分处理,得到虚拟子频带信号集包括不完全是均匀连续的情况下,可在虚拟子频带信号集中选择0值附近的连续且均匀分布的部分进行目标的距离信息。如此,可以实现最大不模糊距离不变,且旁瓣减小的效果。而且,自由度增多。示例性地,处理模块可根据-6~6之间的13个连续均匀分布的虚拟子频带信号,确定目标的距离信息。
基于上述结构二,处理模块可以通过对接收信号的协方差矩阵进行向量化获得虚拟频带信号,然后选择虚拟频带信号的连续均匀步进部分,并利用平滑MUSIC算法进行距离估计。具体的处理流程可参见前述基于结构一的确定过程,此处不再赘述。
基于上述结构三
在一种可能的实现方式中,处理模块可采用MUSIC算法,利用频率补偿后的N个第二子频带信号,确定目标的距离信息。
具体地:处理模块可确定回波信号的协方差矩阵Rxx,利用协方差矩阵Rxx进行特征值分解,得到噪声子空间U N;再构造
Figure PCTCN2021096556-appb-000040
通过一维谱峰搜索获得距离估计。其中导向矢量a(r)由结构三中N个具有互质关系的子频带决定,
Figure PCTCN2021096556-appb-000041
示例性地,处理模块可以是处理器,处理器可以是中央处理单元(central processing unit,CPU),还可以是其它通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现场可编程门阵列(field programmable gate array,FPGA)或者其它可编程逻辑器件、晶体管逻辑器件,硬件部件或者其任意组合。通用处理器可以是微处理器,也可以是任何常规的处理器。
本申请提供的另一个实施例中,探测系统可包括发射模块,该发射模块可用于发射N个第一子频带信号,这N个第一子频带信号可以是上述示例出的三种可能的结构。也就是说,该探测系统中的发射模块用于发射N个第一子频带信号,这N个第一子频带信号之间的频率间隔不做限定,即N个第一子频带信号中的任意两个第一子频带信号之间的频率间隔可以不大于频率阈值或者也可以大于频率阈值,对此不做限定。
基于该探测系统,若N个第一子频带信号中任意两个第一子频带信号之间的频率间隔不大于频率阈值;相应地,处理模块也不需要对N个第二子频带信号进行补偿,进一步,可基于不需要补偿的N个第二子频带信号确定目标的距离信息。
基于该探测系统,若N个第一子频带信号中任意两个第一子频带信号之间的频率间隔大于频率阈值;处理模块的处理过程可参见前述相关描述,此处不再赘述。
基于上述描述的探测系统的结构和功能原理,本申请还可以提供一种终端设备,该终端设备可以包括上述任一实施例中探测系统。进一步,可选地,该终端设备还可包括路径规划模块,该路径规划模块可用于根据确定出的目标的距离信息,对终端设备的行驶路径进行规划。例如躲避行驶路径上的障碍物等。当然,该终端设备还可以包括其他器件,例如存储器和无线通信装置等。
示例性地,该探测系统例如可以是终端设备,终端设备例如可以是雷达、智能手机、智能家居设备、智能制造设备、机器人、无人机或智能运输设备(如自动导引运输车(automated guided vehicle,AGV)或者无人运输车等)等。
基于上述内容和相同的构思,本申请提供一种探测方法,请参阅图14的介绍。该探测方法可应用于上述图3至图13任一实施例所示的探测系统。也可以理解为,可以基于上述图3至图13任一实施例所示的探测系统来实现探测方法。
该探测方法包括以下步骤:
步骤1401,接收回波信号。
此处,回波信号包括N个第二子频带信号,回波信号为目标对第一信号反射后被雷达接收的信号,第一信号包括N个第一子频带信号,N个第一子频带信号中存在至少两个第一子频带信号之间的频率间隔大于频率阈值。
该步骤1401可由上述接收模块执行,具体可参见前述接收模块的功能的介绍,第一回波信号可参见前述发射模块的功能的介绍,此处不再赘述。
步骤1402,根据回波信号确定目标的散射中心几何因子。
在一种可能的实现方式中,可基于GTD散射中心模型确定散射中心几何因子α m,具体可参见前述相关描述,此处不再赘述。
步骤1403,根据散射中心几何因子对N个第二子频带信号进行频率补偿。
在一种可能的实现方式中,可对第n个第二子频带信号乘以补偿因子
Figure PCTCN2021096556-appb-000042
其中,n为大于1的整数,
Figure PCTCN2021096556-appb-000043
为所述目标的散射中心几何因子,所述第n个第二子频带信号为所述N个第二子频带信号中的任一个,所述Δf n为所述第n个第二子频带信号与频率最低的第二子频带信号的初始频率f 0之间的频率间隔。
步骤1404,根据补偿后的N个第二子频带信号确定目标的距离信息。
若N个第一子频带信号是基于上述结构一,可对所述补偿后的N个第二子频带信号进行和/差分处理,获得P个虚拟子频带信号,P个虚拟子频带信号可为连续且频率步进均匀的虚拟子频带信号,进一步,可根据所述P个虚拟子频带信号,确定所述目标的距离信息,其中,所述P为大于N的整数。
若N个第一子频带信号是基于上述结构二的,对所述补偿后的N个第二子频带信号进行和/差分处理,获得Q个虚拟子频带信号,Q个虚拟子频带信号中可能会存在部分是连续且频率步进均匀的虚拟子频带信号;进一步,连续且频率步进均匀的虚拟子频带信号,并根据选择出的连续且均匀的虚拟子频带信号确定所述目标的距离信息,所述Q为大于N的整数。
需要说明的是,上述步骤1401至步骤1404均可由上述处理模块执行。
上述探测方法可应用于车联网,如车辆外联(vehicle to everything,V2X)、车间通信长期演进技术(long term evolution-vehicle,LTE-V)、车辆-车辆(vehicle to everything,V2V)等。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机程序或指令。在计算机上加载和执行所述计算机程序或指令时,全部或部分地执行本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、网络设备、用户设备或者其它可编程装置。所述计算机程序或指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机程序或指令可以从一个网站站点、计算机、服务器或数据中心通过有线或无线方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是集成一个或多个可用介质的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,例如,软盘、硬盘、磁带;也可以是光介质,例如,数字视频光盘(digital video disc,DVD);还可以是半导体介质,例如,固态硬盘(solid state drive,SSD)。
在本申请的各个实施例中,如果没有特殊说明以及逻辑冲突,不同的实施例之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例中的技术特征根据其内在的逻辑关系可以组合形成新的实施例。
本申请中,“均匀”不是指绝对的均匀,可以允许有一定工程上的误差。“和/或”,描 述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。在本申请的文字描述中,字符“/”,一般表示前后关联对象是一种“或”的关系。在本申请的公式中,字符“/”,表示前后关联对象是一种“相除”的关系。另外,在本申请中,“示例性地”一词用于表示作例子、例证或说明。本申请中被描述为“示例”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。或者可理解为,使用示例的一词旨在以具体方式呈现概念,并不对本申请构成限定。
可以理解的是,在本申请中涉及的各种数字编号仅为描述方便进行的区分,并不用来限制本申请的实施例的范围。上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定。术语“第一”、“第二”等类似表述,是用于分区别类似的对象,而不必用于描述特定的顺序或先后次序。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元。方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
尽管结合具体特征及其实施例对本申请进行了描述,显而易见的,在不脱离本申请的精神和范围的情况下,可对其进行各种修改和组合。相应地,本说明书和附图仅仅是所附权利要求所界定的方案进行示例性说明,且视为已覆盖本申请范围内的任意和所有修改、变化、组合或等同物。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本申请实施例的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (25)

  1. 一种探测系统,其特征在于,包括:
    发射模块,用于发射第一信号,所述第一信号包括N个第一子频带信号,所述N个第一子频带信号中存在至少两个第一子频带信号之间的频率间隔大于频率阈值;
    接收模块,用于接收回波信号,所述回波信号包括N个第二子频带信号,所述回波信号为所述第一信号经目标反射后被探测系统接收到的信号;
    处理模块,用于根据所述回波信号确定所述目标的散射中心几何因子,根据所述散射中心几何因子对所述N个第二子频带信号进行频率补偿,并根据补偿后的N个第二子频带信号确定所述目标的距离信息。
  2. 如权利要求1所述的系统,其特征在于,所述处理模块,具体用于:
    对第n个第二子频带信号乘以补偿因子
    Figure PCTCN2021096556-appb-100001
    其中,所述n为大于1的整数,
    Figure PCTCN2021096556-appb-100002
    为所述目标的散射中心几何因子,所述第n个第二子频带信号为所述N个第二子频带信号中的任一个,所述Δf n为所述第n个第二子频带信号与频率最低的第二子频带信号的初始频率f 0之间的频率间隔。
  3. 如权利要求1或2所述的系统,其特征在于,任意两个第一频率间隔比满足质数比,所述第一频率间隔为所述第一子频带信号与所述参考频带信号之间的频率间隔;
    其中,所述参考频带信号为所述N个第一子频带信号中频率最低的第一子频带信号。
  4. 如权利要求3所述的系统,其特征在于,第i个第一子频带信号与所述参考频带信号之间的频率间隔等于参考频率步进量的n i倍,所述第i个第一子频带信号为所述N个第一子频带信号中的一个;
    其中,所述参考频率步进量与最大不模糊距离成反比。
  5. 如权利要求1或2所述的系统,其特征在于,所述N个第一子频带信号对应H个集合,所述集合包括至少两个第一子频带信号,所述H为大于1的整数;
    其中,第三频率间隔等于第二频率间隔的(N k+1)倍,所述第三频率间隔为第k+1个所述集合中任意相邻两个第一子频带信号之间的频率间隔,所述第二频率间隔为第k个集合中任意相邻两个第一子频带信号之间的频率间隔,所述N k为所述第k个集合中包括的第一子频带的数量。
  6. 如权利要求5所述的系统,其特征在于,所述处理模块,具体用于:
    对所述补偿后的N个第二子频带信号进行和/差分处理,获得P个虚拟子频带信号,所述P为大于N的整数;
    根据所述P个虚拟子频带信号,确定所述目标的距离信息。
  7. 如权利要求6所述的系统,其特征在于,当所述H=2,所述k=1时;
    Figure PCTCN2021096556-appb-100003
    其中,所述N 1为第一个集合包括的第一子频带信号的数量,所述N 2为第二个集合包括的第一子频带信号的数量。
  8. 如权利要求7所述的系统,其特征在于,所述P个虚拟子频带信号包括的虚拟子频带信号为所述参考频率步进量的j倍,所述j取{-N 2(N 1+1)-1,….,N 2(N 1+1)-1}中的整数。
  9. 如权利要求1或2所述的系统,其特征在于,所述N个第一子频带信号对应M个集合,所述集合包括至少两个第一子频带信号,所述M为大于1的整数;
    第m个集合包括N m个第一子频带信号,第m+1个集合包括N m+1个第一子频带信号,所述N m+1和所述与N m互质,所述第m个集合和所述第m+1个集合为所述M个集合中两个集合;
    第四频率间隔等于参考频率步进量的N m+1/p倍,所述第四频率间隔为所述第m个集合中任意相邻两个第一子频带信号之间的频率间隔;所述参考频率步进量与所述最大不模糊距离成反比,所述p为正整数;
    第五频率间隔等于所述参考频率步进量的N m倍,所述第五频率间隔为所述第m+1个集合中任意相邻两个第一子频带信号之间的频率间隔。
  10. 如权利要求9所述的系统,其特征在于,所述第m个集合中频率最低的第一子频带信号的初始频率与所述第m+1个集合中频率最低的第一子频带信号的初始频率重合。
  11. 如权利要求9所述的系统,其特征在于,所述第m个集合和所述第m+1个集合为M个集合中任意相邻的两个集合,所述第m个集合中最高频率的第一子频带信号与所述第m+1个集合中最低频率的第一子频带信号之间的频率间隔等于所述参考频率步进量的L倍,所述L为正整数。
  12. 如权利要求11所述的系统,其特征在于,所述L为所述N m和所述N m+1中的最小值。
  13. 如权利要求9至12任一项所述的系统,其特征在于,所述处理模块,具体用于:
    对所述补偿后的N个第二子频带信号进行和/差分处理,获得Q个虚拟子频带信号,所述Q为大于N的整数;
    根据所述Q个虚拟子频带信号,确定所述目标的距离信息。
  14. 如权利要求1至13任一项所述的系统,其特征在于,所述发射模块为单个发射天线;
    所述发射模块,具体用于:
    在不同的时刻发射所述N个第一子频带信号。
  15. 如权利要求1至13任一项所述的系统,其特征在于,所述发射模块为多个发射天线;
    所述发射模块,具体用于:
    在相同的时刻发射所述N个第一子频带信号;或者,
    在不同的时刻发射所述N个第一子频带信号。
  16. 一种终端设备,其特征在于,包括如权利要求1~15任一项所述的探测系统、及处理器,所述处理器用于对所述探测系统确定的所述距离信息进行处理。
  17. 一种探测方法,其特征在于,包括:
    接收回波信号;所述回波信号包括N个第二子频带信号,所述回波信号为目标对第一信号反射后被雷达接收的信号,所述第一信号包括N个第一子频带信号,所述N个第一子频带信号中存在至少两个第一子频带信号之间的频率间隔大于频率阈值;
    根据所述回波信号确定目标的散射中心几何因子;
    根据所述散射中心几何因子对所述N个第二子频带信号进行频率补偿;
    根据补偿后的N个第二子频带信号确定所述目标的距离信息。
  18. 如权利要求17所述的方法,其特征在于,所述根据所述散射中心几何因子对所述N个第二子频带信号进行频率补偿,包括:
    对第n个第二子频带信号乘以补偿因子
    Figure PCTCN2021096556-appb-100004
    其中,所述n为大于1的整数,
    Figure PCTCN2021096556-appb-100005
    为所述目标的散射中心几何因子,所述第n个第二子频带信号为所述N个第二子频带信号中的任一个,所述Δf n为所述第n个第二子频带信号与频率最低的第二子频带信号的初始频率f 0之间的频率间隔。
  19. 如权利要求17或18所述的方法,其特征在于,任意两个第一频率间隔比满足质数比,所述第一频率间隔为所述第一子频带信号与所述参考频带信号之间的频率间隔;
    其中,所述参考频带信号为所述N个第一子频带信号中频率最低的第一子频带信号。
  20. 如权利要求17或18所述的方法,其特征在于,所述N个第一子频带信号对应H个集合,所述集合包括至少两个第一子频带信号,所述H为大于1的整数;
    其中,第三频率间隔等于第二频率间隔的(N k+1)倍,所述第三频率间隔为第k+1个所述集合中任意相邻两个第一子频带信号之间的频率间隔,所述第二频率间隔为第k个集合中任意相邻两个第一子频带信号之间的频率间隔,所述N k为所述第k个集合中包括的第一子频带的数量。
  21. 如权利要求17或18所述的方法,其特征在于,所述N个第一子频带信号对应M个集合,所述集合包括至少两个第一子频带信号,所述M为大于1的整数;
    第m个集合包括N m个第一子频带信号,第m+1个集合包括N m+1个第一子频带信号,所述N m+1和所述与N m互质,所述第m个集合和所述第m+1个集合为所述M个集合中两个集合;
    第四频率间隔等于参考频率步进量的N m+1/p倍,所述第四频率间隔为所述第m个集合中任意相邻两个第一子频带信号之间的频率间隔;所述参考频率步进量与所述最大不模糊距离成反比,所述p为正整数;
    第五频率间隔等于所述参考频率步进量的N m倍,所述第五频率间隔为所述第m+1个集合中任意相邻两个第一子频带信号之间的频率间隔。
  22. 如权利要求20或21所述的方法,其特征在于,所述根据补偿后的N个第二子频带信号确定所述目标的距离信息,包括:
    对所述补偿后的N个第二子频带信号进行和/差分处理,获得H个虚拟子频带信号,所述H为大于N的整数;
    根据所述H个虚拟子频带信号,确定所述目标的距离信息。
  23. 如权利要求22所述的方法,其特征在于,所述对所述补偿后的N个第二子频带信号进行和/差分处理,包括:
    对所述补偿后的N个第二子频带信号的协方差矩阵进行向量化处理;
    所述根据所述H个虚拟子频带信号,确定所述目标的距离信息,包括:
    采用平滑多重信号分类MUSIC算法对所述H个虚拟子频带信号处理,获得所述目标的距离信息。
  24. 如权利要求17至23任一项所述的方法,其特征在于,所述方法还包括:
    在不同的时刻发射所述N个第一子频带信号;或者,
    在相同的时刻发射所述N个第一子频带信号。
  25. 一种计算机可读存储介质,其特征在于,包括计算机指令,当所述计算机指令运行 时,使得所述探测系统执行如权利要求17~24任一项所述的方法。
PCT/CN2021/096556 2021-05-27 2021-05-27 一种探测系统、终端设备及探测方法 WO2022246772A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2021/096556 WO2022246772A1 (zh) 2021-05-27 2021-05-27 一种探测系统、终端设备及探测方法
CN202180097931.6A CN117295966A (zh) 2021-05-27 2021-05-27 一种探测系统、终端设备及探测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/096556 WO2022246772A1 (zh) 2021-05-27 2021-05-27 一种探测系统、终端设备及探测方法

Publications (1)

Publication Number Publication Date
WO2022246772A1 true WO2022246772A1 (zh) 2022-12-01

Family

ID=84229453

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/096556 WO2022246772A1 (zh) 2021-05-27 2021-05-27 一种探测系统、终端设备及探测方法

Country Status (2)

Country Link
CN (1) CN117295966A (zh)
WO (1) WO2022246772A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002065155A1 (en) * 2001-02-09 2002-08-22 Commonwealth Scientific And Industrial Research Organisation Lidar system and method
CN103439693A (zh) * 2013-08-16 2013-12-11 电子科技大学 一种线阵sar稀疏重构成像与相位误差校正方法
CN103529444A (zh) * 2013-09-27 2014-01-22 安徽师范大学 一种车载毫米波雷达动目标识别器及识别方法
CN103605116A (zh) * 2013-12-04 2014-02-26 西安电子科技大学 基于稀疏分析的成像雷达通道参数在线补偿方法
CN107390198A (zh) * 2017-08-15 2017-11-24 电子科技大学 一种高速运动目标的子带相关配准方法
CN107843875A (zh) * 2016-09-19 2018-03-27 南京理工大学 基于奇异值分解降噪的贝叶斯压缩感知雷达数据融合方法
CN112394326A (zh) * 2019-08-16 2021-02-23 华为技术有限公司 一种信号发射方法及装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002065155A1 (en) * 2001-02-09 2002-08-22 Commonwealth Scientific And Industrial Research Organisation Lidar system and method
CN103439693A (zh) * 2013-08-16 2013-12-11 电子科技大学 一种线阵sar稀疏重构成像与相位误差校正方法
CN103529444A (zh) * 2013-09-27 2014-01-22 安徽师范大学 一种车载毫米波雷达动目标识别器及识别方法
CN103605116A (zh) * 2013-12-04 2014-02-26 西安电子科技大学 基于稀疏分析的成像雷达通道参数在线补偿方法
CN107843875A (zh) * 2016-09-19 2018-03-27 南京理工大学 基于奇异值分解降噪的贝叶斯压缩感知雷达数据融合方法
CN107390198A (zh) * 2017-08-15 2017-11-24 电子科技大学 一种高速运动目标的子带相关配准方法
CN112394326A (zh) * 2019-08-16 2021-02-23 华为技术有限公司 一种信号发射方法及装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
WANG JING: "A Study on Radar Optical Region Target Scattering Center Extraction and Its Applications", CHINESE DOCTORAL DISSERTATIONS FULL-TEXT DATABASE, UNIVERSITY OF CHINESE ACADEMY OF SCIENCES, CN, no. 1, 15 January 2012 (2012-01-15), CN , XP093008770, ISSN: 1674-022X *
贾毅 (JIA, YI): "基于散射中心模型的复杂雷达目标回波信号的半实物仿真 (Hardware in the Loop Simulation of Complex Radar Target Echo Signal Based on Scattering Center Model)", 中国优秀博硕士学位论文全文数据库 (硕士) 信息科技辑 (CHINA MASTER'S THESES FULL-TEXT DATABASE, INFORMATION TECHNOLOGY), no. 02, 15 February 2019 (2019-02-15), ISSN: 1674-0246 *

Also Published As

Publication number Publication date
CN117295966A (zh) 2023-12-26

Similar Documents

Publication Publication Date Title
WO2020156084A1 (zh) 无线电信号发送方法和装置
CN112534299B (zh) 一种基于雷达信号的发射方法和装置
CN115524666A (zh) 用于检测和缓解汽车雷达干扰的方法和系统
US20220214425A1 (en) Radar apparatus, system, and method
Singh et al. Review on vehicular radar for road safety
WO2022246772A1 (zh) 一种探测系统、终端设备及探测方法
WO2022030560A1 (ja) 電子機器、電子機器の制御方法、及びプログラム
WO2020066497A1 (ja) 電子機器、電子機器の制御方法、及び電子機器の制御プログラム
WO2023032619A1 (ja) 電子機器、電子機器の制御方法、及びプログラム
WO2023032610A1 (ja) 電子機器、電子機器の制御方法、及びプログラム
EP4397998A1 (en) Electronic device, method for controlling electronic device, and program
JP7113878B2 (ja) 電子機器、電子機器の制御方法、及びプログラム
JP7223197B2 (ja) 電子機器、電子機器の制御方法、及びプログラム
JP7247413B2 (ja) 電子機器、電子機器の制御方法、及びプログラム
EP4397997A1 (en) Electronic device, electronic device control method, and program
WO2023032600A1 (ja) 電子機器、電子機器の制御方法、及びプログラム
WO2022091706A1 (ja) 電子機器、電子機器の制御方法、及びプログラム
JP7163342B2 (ja) 電子機器、電子機器の制御方法、及びプログラム
WO2023032620A1 (ja) 電子機器、電子機器の制御方法、及びプログラム
US20240103151A1 (en) Multiple-Target, Simultaneous Beamforming for Four-Dimensional Radar Systems
US20230077061A1 (en) Radar control device and method
EP4397996A1 (en) Electronic device, method for controlling electronic device, and program
EP4397995A1 (en) Electronic device, method for controlling electronic device, and program
WO2022113765A1 (ja) 電子機器、電子機器の制御方法、及びプログラム
JP2023063499A (ja) 電子機器、電子機器の制御方法、及びプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21942348

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180097931.6

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21942348

Country of ref document: EP

Kind code of ref document: A1