WO2022245023A1 - 3차원 자기장 측정 장치 및 자기장 매핑 시스템 - Google Patents

3차원 자기장 측정 장치 및 자기장 매핑 시스템 Download PDF

Info

Publication number
WO2022245023A1
WO2022245023A1 PCT/KR2022/006466 KR2022006466W WO2022245023A1 WO 2022245023 A1 WO2022245023 A1 WO 2022245023A1 KR 2022006466 W KR2022006466 W KR 2022006466W WO 2022245023 A1 WO2022245023 A1 WO 2022245023A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic field
axis
modules
measurement device
axis direction
Prior art date
Application number
PCT/KR2022/006466
Other languages
English (en)
French (fr)
Inventor
최홍수
황준선
김진영
아매드아웨스
아메드 아바시사마드
Original Assignee
재단법인대구경북과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 재단법인대구경북과학기술원 filed Critical 재단법인대구경북과학기술원
Priority to EP22804878.1A priority Critical patent/EP4343352A1/en
Priority to CN202280035504.XA priority patent/CN117460966A/zh
Publication of WO2022245023A1 publication Critical patent/WO2022245023A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/0206Three-component magnetometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/0005Geometrical arrangement of magnetic sensor elements; Apparatus combining different magnetic sensor types
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R13/00Arrangements for displaying electric variables or waveforms
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/0094Sensor arrays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/10Plotting field distribution ; Measuring field distribution
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/0047Housings or packaging of magnetic sensors ; Holders

Definitions

  • the present invention relates to a magnetic field measuring device, and more particularly, to a three-dimensional magnetic field measuring device capable of simultaneously measuring magnetic fields in each of the x-axis, y-axis, and z-axis through coupling between modules.
  • FIG. 1 is a schematic diagram of a conventional mobile mapping system and measurement method.
  • a measurement device composed of one magnetic sensor and one controller as shown in FIG. 1 is performed. It was measured by physically moving the points one by one.
  • measuring the magnetic field data in 3D space in this way takes a long measurement time because the device must be physically moved, and measurement reliability and precision cannot be guaranteed due to poor movement accuracy. There are problems that cannot be measured.
  • FIG. 2 is a diagram briefly showing a conventional magnetic field measuring device and measuring method.
  • a measuring device including a magnetic sensor in a two-dimensional array type is used to move an array area and a magnetic field in a three-dimensional space is moved. Data was measured.
  • measuring the magnetic field data in a 3-dimensional space in this way can shorten the time compared to the one-point measurement of the measuring device of FIG. 1, but, like the one-point measurement of the measuring device of FIG.
  • the present invention has been devised to solve the above problems, and it is possible to measure magnetic field data in a three-dimensional space in real time without moving the device, and the measurement area can be easily expanded and reduced, and the three-dimensional magnetic field can be miniaturized and lightweight. Its purpose is to provide a measuring device.
  • a 3D magnetic field measuring device includes a plurality of modules, each of the plurality of modules comprising: a circuit board; a plurality of magnetic field sensors mounted on the circuit board and arranged spaced apart from each other at a predetermined interval in the x-axis and y-axis directions; and a z-axis connection portion formed on the circuit board, wherein the plurality of modules are detachably connected in the z-axis direction by the z-axis connection portion, so that the x-axis, y-axis, and z-axis magnetic fields can be measured.
  • the z-axis connecting portion may include a z-axis insertion portion formed on one surface of the circuit board and a z-axis protrusion formed on the other surface of the circuit board and inserted into the first insertion portion of another module adjacent in the z-axis direction.
  • the z-axis connection unit may electrically connect power and signals of different modules.
  • Each of the plurality of modules may further include an x-axis connection unit for connecting different modules in the x-axis direction.
  • the x-axis connecting portion may include an x-axis insertion portion formed in the positive x-axis direction and an x-axis protrusion formed in the negative x-axis direction and inserted into the x-axis insertion portion of another module adjacent to the x-axis direction.
  • the circuit boards formed in each of the different modules may be in close contact without space apart in the x-axis direction.
  • Each of the plurality of modules may further include a y-axis connection unit that connects different modules in the y-axis direction.
  • the y-axis connecting portion may include a y-axis insertion portion formed in a negative y-axis direction and a y-axis protrusion formed in a positive y-axis direction and inserted into a y-axis insertion portion of another module adjacent to the y-axis direction.
  • the circuit boards formed in each of the different modules may be brought into close contact without space apart in the y-axis direction.
  • SPI communication may be performed between the microcontroller formed on the circuit board and the plurality of magnetic field sensors, and I 2 C communication may be performed between the microcontrollers formed on different modules.
  • a magnetic field mapping system includes the aforementioned 3D magnetic field measuring device; and an output device receiving the magnetic field data of the plurality of modules from the 3D magnetic field measuring device and generating a 3D magnetic field graph in real time.
  • the 3D magnetic field measuring device may further include a master module electrically connected to power and signals between the plurality of modules, connected to any one of the plurality of modules, and connected to the output device.
  • the output device sets spatial information of the plurality of magnetic field sensors based on an arrangement interval of the plurality of magnetic field sensors of the 3D magnetic field measurement device and a connection interval between the plurality of modules, and obtains the 3D magnetic field graph.
  • the 3D magnetic field measuring device of the present invention has the advantage of being able to measure the 3D magnetic field at the current position of the device without moving the device and at the same time measure magnetic field data in real time.
  • the real-time measurement capability of the 3D magnetic field measurement device of the present invention with AI-enhanced learning, it is possible to derive optimal conditions for magnetic field control and operation of a magnetic field controllable microrobot, based on permanent magnets and electromagnets.
  • the magnetic field characteristic evaluation and inspection of the system can be efficiently performed, and through this, the magnetic field manufacturing company can evaluate the performance of the developed magnetic field system more quickly and accurately.
  • the 3D magnetic field measuring device 100 of the present invention can be manufactured at a lower price than similar conventional products, and can be used as a device for developing a magnetic field control system or a device for magnetic field education in companies and educational institutions.
  • FIG. 1 is a diagram briefly illustrating a conventional mobile mapping system and measurement method.
  • FIG. 2 is a diagram briefly showing a conventional magnetic field measuring device and measuring method.
  • FIG. 3 is an exploded view of a 3D magnetic field measurement device according to an embodiment of the present invention.
  • FIG. 4 is a combined view of FIG. 3 .
  • 5 is a rear view of one module viewed from the bottom.
  • 6 is a plan view of one module viewed from above.
  • FIG. 7 is an exploded view of a 3D magnetic field measuring device according to another example of the present invention.
  • FIG. 8 is a combined view of FIG. 7 .
  • FIG. 9 is an operating block diagram of a 3D magnetic field measuring device system according to an example of the present invention.
  • FIG. 10 is a configuration diagram briefly illustrating a magnetic field mapping system according to an example of the present invention.
  • FIG. 11 is a diagram showing a real picture of a 3D magnetic field measuring device and a graph of 3D magnetic field strength and direction data according to an example of the present invention.
  • FIG. 12 is a diagram showing a graph of an actual photograph of evaluation of characteristics of an electromagnet-based magnetic field control system and a graph of 3-dimensional magnetic field strength and direction data according to an example of the present invention.
  • FIG. 13 is a flowchart of magnetic field data transmission and reception of a magnetic field mapping system according to an embodiment of the present invention.
  • FIG. 14 is a flowchart illustrating transmission and reception of magnetic field data of a master module according to an example of the present invention.
  • 15 is a flowchart of magnetic field data transmission and reception of a module according to an example of the present invention.
  • FIG. 3 is an exploded view of a three-dimensional magnetic field measurement device according to an example of the present invention
  • FIG. 4 is a combined view of FIG. 3
  • FIG. 5 is a rear view of one module viewed from the bottom
  • FIG. 6 is one module This is a plan view from above.
  • the three-dimensional magnetic field measuring device 100 of the present invention includes a plurality of modules 100A, 100B, and 100C, and each of the plurality of modules 100A, 100B, and 100C is composed of at least two or more .
  • Figures 3 and 4 show a device consisting of three modules.
  • Each of the plurality of modules 100A, 100B, and 100C is mounted on the circuit board 110 and the circuit board 110, and each is spaced apart from each other in the x-axis and y-axis directions.
  • each of the plurality of modules 100A, 100B, 100C is detachably connected in the z-axis direction through the z-axis connection unit 130 of each module, so that the x-axis, y-axis, and z-axis magnetic fields can be measured. have.
  • connection between each module (100A, 100B, 100C) is preferably adopted in a way that facilitates assembly and disassembly.
  • a connection method that requires additional configuration or equipment for assembly and disassembly, such as bolting or welding may be excluded.
  • a plurality of magnetic field sensors 120 are sensors for detecting a magnetic field and are mounted on the circuit board 110. At this time, as the plurality of magnetic field sensors 120 are spaced apart from each other in the x-axis and y-axis, each The modules 100A, 100B and 100C may measure the magnetic field in the xy plane.
  • the plurality of modules 100A, 100B, and 100C are connected in the z-axis direction by the z-axis connection portion 130 of each module 100A, 100B, and 100C , the magnetic field of the x-axis, y-axis, and z-axis spaces can be measured in real time without moving the device.
  • the 3D magnetic field measurement device 100 of the present invention can measure a 3D magnetic field at the current location of the device without moving the device, and at the same time measure magnetic field data in real time.
  • the real-time measurement capability of the 3D magnetic field measuring device 100 of the present invention with AI-enhanced learning, it is possible to derive optimal conditions for magnetic field control and driving of a magnetic field controllable microrobot, and permanent magnets. And it is possible to efficiently evaluate and inspect the magnetic field characteristics of the electromagnet-based system, and through this, the manufacturer of the magnetic field system can more quickly and accurately evaluate the performance of the developed magnetic field system.
  • the 3D magnetic field measuring device 100 of the present invention can be manufactured at a lower price than similar conventional products, and can be used as a device for developing a magnetic field control system or a device for magnetic field education in companies and educational institutions.
  • the z-axis connection portion 130 of each module is a z-axis insertion portion 131 formed on one surface (eg, upper surface) of the circuit board 110
  • the z-axis protrusion 132 formed on the other surface (eg, lower surface) of the circuit board 110 and inserted into the z-axis insertion part 131 of another module (eg, 100A) adjacent in the z-axis direction can include
  • the z-axis connection unit 130 is a configuration for connecting each module 100A, 100B, and 100C in the z-axis direction, and the z-axis of any one module 100A among two adjacent modules (eg, 100A, 100B)
  • the protrusion 132 is configured to be inserted into the first insertion portion 131 of the other module 100B, a plurality of modules 100A, 100B, and 100C are stacked in the z-axis direction.
  • the z-axis connecting portion 130 is formed of the z-axis inserting portion 131 and the z-axis protruding portion 132, when the plurality of modules 100A, 100B, and 100C are connected to each other in the z-axis direction, each module 100A and 100B , 100C) can be minimized in the z-axis direction. Accordingly, it is possible to more densely measure the magnetic field formed in the z-axis, thereby increasing measurement reliability and accuracy.
  • the z-axis connector 130 may electrically connect power and signals of the different modules 100A, 100B, and 100C. That is, the z-axis connection unit 130 is configured to electrically as well as physically connect each module 100A, 100B, and 100C in the z-axis direction, thereby providing power and signal between the plurality of modules 100A, 100B, and 100C. transfer may be possible.
  • FIG. 7 is an exploded view of a 3D magnetic field measuring device according to another example of the present invention
  • FIG. 8 is a combined view of FIG. 7 .
  • each module 100A, 100B, and 100C may further include an x-axis connection unit 140 connecting different modules 100A, 100B, and 100C in the x-axis direction. That is, modules adjacent to each other in the x-axis direction (eg, 100A and 100B) may be connected to each other by extending in the x-axis direction through the x-axis connection unit 140 . Accordingly, the 3D magnetic field measurement apparatus 100 of the present invention expands the measurement range in the x-axis direction through the x-axis connection unit 140 without moving the modules 100A, 100B, and 100C according to the measurement range to measure real-time Magnetic field data can be acquired. At this time, the x-axis connection unit 140 may not only physically connect the two adjacent modules 100A and 100B in the x-axis direction, but also electrically connect power and signals of the two adjacent modules 100A and 100B.
  • the x-axis connection part 140 of each module (eg, 100B) is formed in the x-axis insertion part 141 formed in the positive x-axis direction and the x-axis negative direction, and adjacent other modules (eg For example, it may include an x-axis protrusion 142 inserted into the insertion portion 141 of 100A.
  • the x-axis insertion portion 141 and the x-axis protrusion 142 are formed in each module 100A, 100B, and 100C, and adjacent modules 100A and 100B in the x-axis direction are connected to the x-axis by the x-axis connecting portion 140. direction can be connected.
  • the x-axis insert 141 and the x-axis protrusion 142 are connected by fitting, and accordingly, the positions of the modules 100A and 100B are supported without the user's hands or additional equipment, and the modules 100A and 100B ) movement, it is possible to prevent data measurement reliability from deteriorating, and since the distance between the module 100A and the module 100B is formed at a constant interval, it is easy to set the measurement interval, thereby increasing measurement reliability.
  • the circuit board 110 formed in each of the two adjacent modules is It can be closely attached without spaced apart in the direction. That is, since the plurality of modules 100A and 100B are connected so that there is no gap between the modules connected by the x-axis connection unit 140, the durability of the 3D magnetic field measuring device 100 of the present invention is increased, and the x-axis Fatigue transmitted to the connection part can be reduced, and the distance between the plurality of magnetic field sensors 120 mounted on each circuit board 110 can be minimized to measure the magnetic field formed on the x-axis at closer intervals. .
  • each of the modules 100A, 100B, and 100C may further include a y-axis connection unit 150 connecting the different modules 100A, 100B, and 100C in the y-axis direction. That is, modules (eg, 100A, 100C) adjacent in the y-axis direction through the y-axis connection unit 150 may be extended and connected to each other in the y-axis direction. Accordingly, the 3D magnetic field measuring device 100 of the present invention does not move the modules 100A, 100B, and 100C according to the measurement range, and expands the measurement range in the y-axis direction through the y-axis connection unit 150 to measure real-time Magnetic field data can be acquired. At this time, the y-axis connection unit 150 may not only physically connect the two adjacent modules 100A and 100C in the y-axis direction, but also electrically connect power and signals of the two adjacent modules 100A and 100C.
  • the y-axis connecting portion 150 of each module (eg, 100A) is formed in the y-axis positive direction and the y-axis insertion portion 151 formed in the negative y-axis direction, and adjacent to other modules (eg For example, the y-axis protrusion 152 inserted into the insertion portion 151 of 100C may be included.
  • the y-axis insertion portion 151 and the y-axis protrusion 152 are formed in each module 100A, 100B, and 100C, and the modules 100A and 100C adjacent in the y-axis direction are connected to the y-axis by the y-axis connection portion 150. direction can be connected.
  • the y-axis insertion part 151 and the y-axis protrusion part 152 are connected by fitting, and accordingly, the position of each module 100A, 100B, 100C is supported without the user's hand or additional equipment, and the module 100A , 100C), it is possible to prevent data measurement reliability from deteriorating, and measurement reliability can be increased because the distance between the module 100A and the module 100C is formed at a constant interval so that it is easy to set the measurement interval.
  • the circuit board 110 formed in each of the two adjacent modules It can be closely attached without spaced apart in the direction. That is, since the plurality of modules 100A and 100C are connected so that there is no gap between the modules connected by the y-axis connection unit 150, the durability of the 3D magnetic field measuring device 100 of the present invention is increased, and the y-axis Fatigue transmitted to the connection part can be reduced, and the distance between the plurality of magnetic field sensors 120 mounted on each circuit board 110 can be minimized to measure the magnetic field formed on the y-axis at more dense intervals. .
  • each layer may consist of a structure in which a plurality of modules are connected in at least one direction of the x-axis and the y-axis. At this time Each layer may have the same structure (ie, the same number of modules and the same connection type between modules) or a different structure (ie, different number of modules or different connection type between modules).
  • FIG. 9 is an operating block diagram of a 3D magnetic field measuring device system according to an example of the present invention.
  • a microcontroller (MC) formed on a circuit board 110 and a plurality of magnetic field sensors 120 In SPI communication is made, and I 2 C communication may be made between microcontrollers (MCs) formed in different modules (100A, 100B, 100C).
  • the 3D magnetic field measurement device 100 of the present invention it is very important to select a communication protocol to minimize the number of physical and electrical connections in order to achieve miniaturization and light weight.
  • 2 C protocol can be used.
  • the magnetic field mapping system 1000 of the present invention includes the above-described 3D magnetic field measurement device 100 and the 3D magnetic field. It includes an output device 200 that receives magnetic field data of the plurality of modules 100A, 100B, and 100C from the measuring device 100 and generates a three-dimensional magnetic field graph in real time.
  • the magnetic field mapping system 1000 of the present invention through assembly or disassembly of a plurality of modules 100A, 100B, 100C of the 3D magnetic field measuring device 100, adjusts the magnetic field according to the size and shape of the region for which magnetic field data is to be obtained. is measured, and the output device 200 can flexibly map the magnetic field through the magnetic field data acquired by the 3D magnetic field measurement device 100.
  • power and signals are electrically connected between the plurality of modules 100A, 100B, and 100C, and connected to any one of the plurality of modules 100A, 100B, and 100C, and an output device ( 200) may further include a master module connected to.
  • the output device 200 includes a plurality of magnetic field sensors (based on the arrangement interval of the plurality of magnetic field sensors 120 of the three-dimensional magnetic field measurement device 100 and the connection interval between the plurality of modules 100A, 100B, and 100C). 120), it is possible to generate a 3D magnetic field graph by setting the spatial information. That is, the output device 200 may designate the positions of the plurality of magnetic field sensors 120 through spatial information, and may output a magnetic field graph in a 3D space based on this.
  • FIG. 11 is a diagram showing a graph of a 3D magnetic field measurement device and a graph of 3D magnetic field strength and direction data of a 3D magnetic field measuring device according to an example of the present invention
  • FIG. 12 is a characteristic evaluation of an electromagnet-based magnetic field control system according to an example of the present invention. It is a diagram showing a real picture of and a graph of 3-dimensional magnetic field strength and direction data.
  • the 3D magnetic field measurement device 100 measures 3D magnetic field data, and the 3D magnetic field measurement device 100 measures the 3D magnetic field data in the output device 200.
  • Magnetic field strength and direction data may be generated using one magnetic field data.
  • the magnetic field mapping system 1000 of the present invention may evaluate characteristics of an electromagnet-based magnetic field control system.
  • the 3D magnetic field measuring device 100 is arranged at different locations within a certain area of the magnetic field control system to measure the 3D magnetic field, and the output device 200 outputs the magnetic field data measured by the 3D magnetic field measuring device 100. It is possible to evaluate and inspect the characteristics of the magnetic field control system by outputting in 3D.
  • FIG. 13 is a magnetic field data transmission and reception sequence diagram of a magnetic field mapping system according to an example of the present invention
  • FIG. 14 is a magnetic field data transmission and reception sequence diagram of a master module according to an example of the present invention
  • FIG. 15 is an example of the present invention. Magnetic field data transmission and reception sequence diagram of the module according to the example.
  • each module has an address, and the address number is physically assigned to the case of each module.
  • a user arranges and configures modules by making them into tables.
  • the computer software communicates with the master module connected to any one of the plurality of modules and updates the graph.
  • Master module communicates with each module and stores data in computer software.
  • the master module sends data to all modules, the data is graphed on the computer screen.
  • spatial information generated based on physical information such as an arrangement interval of a plurality of magnetic field sensors and a connection interval between a plurality of modules, is set, and the location of each sensor can be known.
  • Steps 3 and 4 repeat infinitely and data can be obtained in real time.
  • the magnetic field data transmission and reception steps of the master module are described as follows. 1) The master module proceeds with the initial setting of I2C communication. 2) Check the number of modules and save the address of each module. 3) The address of each module is sent to the output device for arranging and configuring the module into a table. 4) Interrupt each module with the previously acquired address and save the magnetic field data. 5) Communicate with the output device to update the graph with the saved data. 6) Steps 4 and 5 are repeated.
  • each module receives a pre-specified unique address. I2C communication is initialized and started. 2) The module continuously acquires and updates data until an interrupt occurs. 3) When interrupted, the module sends data to the master module.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Measuring Magnetic Variables (AREA)

Abstract

본 발명은 복수의 모듈을 포함하고, 각 모듈이 x축, y축, 및 z축으로 연장가능하게 구성됨으로써, 3차원 공간의 자기장 데이터를 장치의 이동 없이 실시간으로 측정할 수 있으며, 측정 영역의 확장 및 축소가 용이하고, 전력 효율이 좋으며 소형화 및 경량화가 가능한 3차원 자기장 측정 장치에 관한 것이다.

Description

3차원 자기장 측정 장치 및 자기장 매핑 시스템
본 발명은 자기장 측정 장치에 관한 것으로, 더욱 상세하게는 모듈간의 결합을 통해 x축, y축, z축 각각의 자기장 측정이 동시에 가능한 3차원 자기장 측정 장치에 관한 것이다.
도 1은 종래의 모바일 매핑 시스템 및 측정 방법을 간략히 나타낸 도면으로서, 종래에는 3차원 공간에서의 자기장 데이터를 측정하기 위해 도 1과 같이 한 개의 자기 센서와 한 개의 조종기로 구성된 측정 장치를 이용하여 측정하는 점을 한 개씩 물리적으로 이동시켜가며 측정했다.
그러나 이러한 방법으로 3차원 공간의 자기장 데이터를 측정하는 것은 물리적으로 장치를 이동시켜야 했기 때문에 측정 시간이 오래 걸리고, 이동 정확성이 떨어져 측정 신뢰성과 정밀성을 담보할 수 없으며, 3차원 공간의 자기장을 실시간으로 측정할 수 없는 문제가 있다.
또한, 도 2는 종래의 자기장 측정 기기 및 측정 방법을 간략히 나타낸 도면으로서, 종래에는 도 2와 같이 2차원 어레이 형태의 자기 센서를 포함하는 측정 장치를 이용하여 어레이 영역을 옮겨가며 3차원 공간의 자기장 데이터를 측정하였다.
그러나, 이러한 방법으로 3차원 공간의 자기장 데이터를 측정하는 것은, 도 1의 측정 장치의 일 점 측정보다 시간을 단축시킬 수 있으나, 도 1의 측정 장치의 일 점 측정과 마찬가지로 장치를 옮겨가며 자기장 데이터를 측정해야 하므로 측정 속도가 느리고, 이동 정확성이 떨어져 측정 신뢰성과 정밀성을 여전히 담보할 수 없으며, 측정하는 면의 실시간 데이터를 확보할 수 있기는 하나, 그 이외의 면 또는 공간의 실시간 데이터 측정이 어려운 문제가 있다.
본 발명은 상기한 문제점을 해결하기 위하여 안출된 것으로, 3차원 공간의 자기장 데이터를 장치의 이동 없이 실시간으로 측정할 수 있으며, 측정 영역의 확장 및 축소가 용이하고, 소형화 및 경량화가 가능한 3차원 자기장 측정 장치를 제공하는 것에 그 목적이 있다.
본 발명의 일 예에 따른 3차원 자기장 측정 장치는, 복수개의 모듈을 포함하며, 상기 복수개의 모듈 각각은, 회로 기판; 상기 회로기판에 실장되며, 각각이 x축과 y축 방향으로 서로 일정 간격 이격되어 배열되는 복수개의 자기장 센서; 및 상기 회로기판 상에 형성되는 z축 연결부;를 포함하고, 상기 복수개의 모듈이 상기 z축 연결부에 의해 z축 방향으로 분리 가능하게 연결되어, x축, y축, 및 z축 자기장 측정이 가능할 수 있다.
상기 z축 연결부는, 상기 회로기판의 일면에 형성되는 z축 삽입부와, 상기 회로기판의 타면에 형성되고, z축 방향으로 인접한 다른 모듈의 제1 삽입부에 삽입되는 z축 돌출부를 포함할 수 있다.
상기 z축 연결부는 서로 다른 모듈들의 전원 및 신호를 전기적으로 연결할 수 있다.
상기 복수개의 모듈 각각은, 서로 다른 모듈들을 x축 방향으로 연결하는 x축 연결부;를 더 포함할 수 있다.
상기 x축 연결부는, x축 양의 방향에 형성되는 x축 삽입부와, x축 음의 방향에 형성되고, x축 방향으로 인접한 다른 모듈의 x축 삽입부에 삽입되는 x축 돌출부를 포함할 수 있다.
상기 x축 돌출부가 상기 x축 삽입부에 삽입되는 경우, 서로 다른 모듈 각각에 형성된 상기 회로기판이 x축 방향으로 이격된 공간 없이 밀착될 수 있다.
상기 복수개의 모듈 각각은, 서로 다른 모듈들을 y축 방향으로 연결하는 y축 연결부;를 더 포함할 수 있다.
상기 y축 연결부는, y축 음의 방향에 형성되는 y축 삽입부와, y축 양의 방향에 형성되고, y축 방향으로 인접한 다른 모듈의 y축 삽입부에 삽입되는 y축 돌출부를 포함할 수 있다.
상기 y축 돌출부가 상기 y축 삽입부에 삽입되는 경우, 서로 다른 모듈 각각에 형성된 상기 회로기판이 y축 방향으로 이격된 공간 없이 밀착될 수 있다.
상기 회로기판에 형성되는 마이크로컨트롤러와 상기 복수개의 자기장 센서 사이에는 SPI 통신이 이루어지고, 서로 다른 모듈에 형성되는 상기 마이크로컨트롤러 사이에는 I2C 통신이 이루어질 수 있다.
본 발명의 일 예에 따른 자기장 매핑 시스템은, 상술한 3차원 자기장 측정 장치; 및 상기 3차원 자기장 측정 장치로부터 상기 복수개의 모듈의 자기장 데이터를 수신하여 실시간으로 3차원 자기장 그래프를 생성하는 출력 장치;를 포함할 수 있다.
상기 3차원 자기장 측정 장치는 상기 복수개의 모듈간 전원 및 신호가 전기적으로 연결되고, 상기 복수개의 모듈 중 어느 하나와 연결되고, 상기 출력 장치와 연결되는 마스터 모듈;을 더 포함할 수 있다.
상기 출력 장치는, 상기 3차원 자기장 측정 장치의 상기 복수개의 자기장 센서의 배열 간격 및 상기 복수개의 모듈 간의 연결 간격을 기초로, 상기 복수개의 자기장 센서의 공간정보를 설정하여, 상기 3차원 자기장 그래프를 생성할 수 있다.
본 발명의 3차원 자기장 측정 장치는 장치를 이동시키지 않아도 장치의 현재 위치에서의 3차원 자기장 측정이 가능하며, 동시에 실시간 자기장 데이터 측정이 가능한 이점이 있다.
이에 따라, 본 발명의 3차원 자기장 측정 장치의 실시간 측정 능력을 인공지능 강화형 학습과 접목하여 자기장 제어 가능한 마이크로로봇의 자기장 제어 및 구동을 위한 최적의 조건을 도출해낼 수 있고, 영구자석 및 전자석 기반 시스템의 자기장 특성평가 및 검수를 효율적으로 수행할 수 있으며, 이를 통해 자기장 시스템을 제작하는 업체는 보다 빠르고 정확하게 개발한 자기장 시스템의 성능을 평가할 수 있다.
또한, 본 발명의 3차원 자기장 측정 장치(100)는 종래의 유사 제품에 비하여 더 낮은 가격으로 제작이 가능하여, 기업 및 교육기관에서 자기장 제어 시스템 개발용 장치 또는 자기장 교육용 장치로 사용할 수 있다.
도 1은 종래의 모바일 매핑 시스템 및 측정 방법을 간략히 나타낸 도면이다.
도 2는 종래의 자기장 측정 기기 및 측정 방법을 간략히 나타낸 도면이다.
도 3은 본 발명의 일 예에 따른 3차원 자기장 측정 장치의 분해도이다.
도 4는 도 3의 결합도이다.
도 5는 하나의 모듈을 하부에서 바라본 후면도이다.
도 6은 하나의 모듈을 상부에서 바라본 평면도이다.
도 7은 본 발명의 다른 예에 따른 3차원 자기장 측정 장치의 분해도이다.
도 8은 도 7의 결합도이다.
도 9는 본 발명의 일 예에 따른 3차원 자기장 측정 장치 시스템의 운용 블록도이다.
도 10은 본 발명의 일 예에 따른 자기장 매핑 시스템을 간략히 나타낸 구성도이다.
도 11은 본 발명의 일 예에 따른 3차원 자기장 측정 장치의 실제 사진, 및 3차원 자기장 세기와 방향 데이터의 그래프를 나타낸 도면이다.
도 12는 본 발명의 일 예에 따른 전자석 기반 자기장 제어 시스템 특성 평가의 실제 사진, 및 3차원 자기장 세기와 방향 데이터의 그래프를 나타낸 도면이다.
도 13은 본 발명의 일 예에 따른 자기장 매핑 시스템의 자기장 데이터 송신 및 수신 순서도이다.
도 14는 본 발명의 일 예에 따른 마스터 모듈의 자기장 데이터 송신 및 수신 순서도이다.
도 15는 본 발명의 일 예에 따른 모듈의 자기장 데이터 송신 및 수신 순서도이다.
이하, 본 발명의 기술적 사상을 첨부된 도면을 사용하여 더욱 구체적으로 설명한다.
도 3은 본 발명의 일 예에 따른 3차원 자기장 측정 장치의 분해도이고, 도 4는 도 3의 결합도이고, 도 5는 하나의 모듈을 하부에서 바라본 후면도이고, 도 6은 하나의 모듈을 상부에서 바라본 평면도이다.
도시된 바와 같이, 본 발명의 3차원 자기장 측정 장치(100)는 복수개의 모듈(100A, 100B, 100C)을 포함하며, 복수개의 모듈(100A, 100B, 100C) 각각은 적어도 두 개 이상으로 구성된다. 도 3, 4에서는 3개의 모듈로 이루어진 장치를 도시한다.
복수개의 모듈(100A, 100B, 100C) 각각은, 회로기판(110)과, 회로기판(110)에 실장되며 각각이 x축과 y축 방향으로 서로 일정 간격 이격되어 배열되는 복수개의 자기장 센서(120)와, 회로기판(110) 상에 구비되는 z축 연결부(130)를 포함한다.
이때, 복수개의 모듈(100A, 100B, 100C) 각각은 각 모듈의 z축 연결부(130)를 통해 z축 방향으로 분리 가능하게 연결되어, x축, y축, 및 z축 자기장 측정이 가능해질 수 있다.
각 모듈(100A, 100B, 100C)들 간의 연결은 결합 및 분해가 용이하게 이루어지는 방식을 채택하는 것이 바람직하며, 예를 들어 볼트 체결이나 용접과 같이 결합 및 분해에 추가 구성이나 장비가 필요한 연결 방식은 제외될 수 있다.
자기장 센서(120)는 자기장을 감지하는 센서로서 회로기판(110) 상에 복수개가 실장되며, 이때 복수의 자기장 센서(120)가 x축과 y축으로 서로 일정 간격 이격되어 배열됨에 따라, 각각의 모듈(100A, 100B, 100C)은 xy평면의 자기장을 측정할 수 있다. 또한, 본 발명의 3차원 자기장 측정 장치(100)는 각 모듈(100A, 100B, 100C)의 z축 연결부(130)에 의해서 복수개의 모듈(100A, 100B, 100C)이 z축 방향으로 연결됨에 따라, 장치의 이동 없이 x축, y축, 및 z축 공간의 자기장을 실시간으로 측정할 수 있다.
즉, 본 발명의 3차원 자기장 측정 장치(100)는 장치를 이동시키지 않아도 장치의 현재 위치에서의 3차원 자기장 측정이 가능하며, 동시에 실시간으로 자기장 데이터를 측정할 수 있다.
이에 따라, 본 발명의 3차원 자기장 측정 장치(100)의 실시간 측정 능력을 인공지능 강화형 학습과 접목하여 자기장 제어 가능한 마이크로로봇의 자기장 제어 및 구동을 위한 최적의 조건을 도출해낼 수 있고, 영구자석 및 전자석 기반 시스템의 자기장 특성평가 및 검수를 효율적으로 수행할 수 있으며, 이를 통해 자기장 시스템을 제작하는 업체는 보다 빠르고 정확하게 개발한 자기장 시스템의 성능을 평가할 수 있다.
또한, 본 발명의 3차원 자기장 측정 장치(100)는 종래의 유사 제품에 비하여 더 낮은 가격으로 제작이 가능하여, 기업 및 교육기관에서 자기장 제어 시스템 개발용 장치 또는 자기장 교육용 장치로 사용할 수 있다.
도 3, 4를 다시 참조하면, 각 모듈(예를 들어, 100B)의 z축 연결부(130)는 회로기판(110)의 일면(예를 들어, 상면)에 형성되는 z축 삽입부(131)와, 회로기판(110)의 타면(예를 들어, 하면)에 형성되어 z축 방향으로 인접한 다른 모듈(예를 들어, 100A)의 z축 삽입부(131)에 삽입되는 z축 돌출부(132)를 포함할 수 있다. z축 연결부(130)는 각 모듈(100A, 100B, 100C)을 z축 방향으로 연결하기 위한 구성으로서, 인접한 두 모듈(예를 들어, 100A, 100B) 중 어느 하나의 모듈(100A)의 z축 돌출부(132)가 다른 하나의 모듈(100B)의 제1 삽입부(131)에 삽입되게 구성됨에 따라, 복수개의 모듈(100A, 100B, 100C)이 z축 방향으로 적층되게 된다.
z축 연결부(130)가 z축 삽입부(131)와 z축 돌출부(132)로 형성됨으로써, 복수개의 모듈(100A, 100B, 100C)이 z축 방향으로 서로 연결될 때, 각 모듈(100A, 100B, 100C) 간의 z축 방향 사이 거리를 최소화할 수 있다. 이에 따라 z축에 형성된 자기장을 더욱 조밀하게 측정할 수 있게 되어 측정 신뢰도와 정확도를 높일 수 있다.
z축 연결부(130)는 서로 다른 모듈(100A, 100B, 100C)들의 전원 및 신호를 전기적으로 연결할 수 있다. 즉, z축 연결부(130)는 각 모듈(100A, 100B, 100C)을 z축 방향으로 물리적으로 연결할 뿐만 아니라 전기적으로도 연결하도록 구성됨으로써, 복수개의 모듈(100A, 100B, 100C) 간에 전원 및 신호 전달이 가능해질 수 있다.
도 7은 본 발명의 다른 예에 따른 3차원 자기장 측정 장치의 분해도이고, 도 8은 도 7의 결합도이다.
도 7, 8을 참조하면, 각 모듈(100A, 100B, 100C)은 서로 다른 모듈(100A, 100B, 100C)들을 x축 방향으로 연결하는 x축 연결부(140)를 더 포함할 수 있다. 즉, x축 연결부(140)를 통해서 x축 방향으로 인접한 모듈(예를 들어, 100A, 100B)은 서로 x축 방향으로 연장되어 연결될 수 있다. 이에 따라, 본 발명의 3차원 자기장 측정 장치(100)는 측정 범위에 따라서 모듈(100A, 100B, 100C)을 이동시키지 않고, x축 연결부(140)를 통해 측정 범위를 x축 방향으로 확장시켜 실시간 자기장 데이터를 획득할 수 있다. 이때, x축 연결부(140)는 인접한 두 모듈(100A, 100B)을 x축 방향으로 물리적으로 연결할 뿐만 아니라, 인접한 두 모듈(100A, 100B)의 전원 및 신호를 전기적으로 연결할 수도 있다.
이때, 각 모듈(예를 들어, 100B)의 x축 연결부(140)는 x축 양의 방향에 형성되는 x축 삽입부(141)와, x축 음의 방향에 형성되고, 인접한 다른 모듈(예를 들어, 100A)의 삽입부(141)에 삽입되는 x축 돌출부(142)를 포함할 수 있다.
x축 삽입부(141)와 x축 돌출부(142)는 각 모듈(100A, 100B, 100C)에 형성되며, x축 방향으로 인접한 모듈(100A, 100B)들이 x축 연결부(140)에 의해서 x축 방향으로 연결될 수 있다. 이때, x축 삽입부(141)와 x축 돌출부(142)는 끼움 결합에 의해 연결되고, 이에 따라 사용자의 손이나 추가 장비 없이 각 모듈(100A, 100B)들의 위치가 지지되어 모듈(100A, 100B)의 움직임에 의해 데이터 측정 신뢰도가 떨어지는 것을 방지할 수 있고, 모듈(100A)과 모듈(100B) 사이의 거리가 일정 간격을 이루어 측정 간격 설정이 용이하여 측정 신뢰성을 높일 수 있다.
x축 방향으로 인접한 두 모듈 중 어느 하나의 모듈의 x축 돌출부(142)가 다른 하나의 모듈의 x축 삽입부(141)에 삽입되면, 인접한 두 모듈 각각에 형성된 회로기판(110)이 x축 방향으로 이격된 공간 없이 밀착될 수 있다. 즉, x축 연결부(140)에 의해 연결되는 모듈들 사이에 틈이 없도록 복수개의 모듈(100A, 100B)이 연결됨으로써, 본 발명의 3차원 자기장 측정 장치(100)의 내구성이 증가되고, x축 연결부에 전달되는 피로도가 감소될 수 있으며, 각각의 회로기판(110)에 실장된 복수개의 자기장 센서(120)의 사이 거리를 최소화하여 더욱 조밀한 간격으로 x축에 형성되는 자기장을 측정할 수 있다.
도 7, 8을 다시 참조하면, 각 모듈(100A, 100B, 100C)은 서로 다른 모듈(100A, 100B, 100C)들을 y축 방향으로 연결하는 y축 연결부(150)를 더 포함할 수 있다. 즉, y축 연결부(150)를 통해서 y축 방향으로 인접한 모듈(예를 들어, 100A, 100C)은 서로 y축 방향으로 연장되어 연결될 수 있다. 이에 따라, 본 발명의 3차원 자기장 측정 장치(100)는 측정 범위에 따라서 모듈(100A, 100B, 100C)을 이동시키지 않고, y축 연결부(150)를 통해 측정 범위를 y축 방향으로 확장시켜 실시간 자기장 데이터를 획득할 수 있다. 이때, y축 연결부(150)는 인접한 두 모듈(100A, 100C)을 y축 방향으로 물리적으로 연결할 뿐만 아니라, 인접한 두 모듈(100A, 100C)의 전원 및 신호를 전기적으로 연결할 수도 있다.
이때, 각 모듈(예를 들어, 100A)의 y축 연결부(150)는 y축 음의 방향에 형성되는 y축 삽입부(151)와, y축 양의 방향에 형성되고, 인접한 다른 모듈(예를 들어, 100C)의 삽입부(151)에 삽입되는 y축 돌출부(152)를 포함할 수 있다.
y축 삽입부(151)와 y축 돌출부(152)는 각 모듈(100A, 100B, 100C)에 형성되며, y축 방향으로 인접한 모듈(100A, 100C)들이 y축 연결부(150)에 의해서 y축 방향으로 연결될 수 있다. 이때, y축 삽입부(151)와 y축 돌출부(152)는 끼움 결합에 의해 연결되고, 이에 따라 사용자의 손이나 추가 장비 없이 각 모듈(100A, 100B, 100C)들의 위치가 지지되어 모듈(100A, 100C)의 움직임에 의해 데이터 측정 신뢰도가 떨어지는 것을 방지할 수 있고, 모듈(100A)과 모듈(100C) 사이의 거리가 일정 간격을 이루어 측정 간격 설정이 용이하여 측정 신뢰성을 높일 수 있다.
y축 방향으로 인접한 두 모듈 중 어느 하나의 모듈의 y축 돌출부(152)가 다른 하나의 모듈의 y축 삽입부(151)에 삽입되면, 인접한 두 모듈 각각에 형성된 회로기판(110)이 y축 방향으로 이격된 공간 없이 밀착될 수 있다. 즉, y축 연결부(150)에 의해 연결되는 모듈들 사이에 틈이 없도록 복수개의 모듈(100A, 100C)이 연결됨으로써, 본 발명의 3차원 자기장 측정 장치(100)의 내구성이 증가되고, y축 연결부에 전달되는 피로도가 감소될 수 있으며, 각각의 회로기판(110)에 실장된 복수개의 자기장 센서(120)의 사이 거리를 최소화하여 더욱 조밀한 간격으로 y축에 형성되는 자기장을 측정할 수 있다.
한편, 도 7, 8의 각 모듈을 나타내는 부호 100A, 100B, 100C는 각각 서로 다른 모듈을 나타내기 위한 것으로, 도 3, 4에서 표시된 각 모듈을 나타내는 100A, 100B, 100C와 반드시 동일하게 대응되는 것은 아니며, 본 발명은 예를 들어 복수개의 모듈이 모여 3층의 적층 구조를 가진다 할 때, 각각의 층은 x축과 y축 중 적어도 하나의 방향으로 복수개의 모듈이 연결된 구조로 이루어질 수 있으며, 이때 각 층들은 서로 동일한 구조(즉, 동일한 모듈 개수 및 모듈들 간 동일한 연결 형태)로 이루어지거나, 또는 서로 상이한 구조(즉, 상이한 모듈 개수 또는 모듈들 간 상이한 연결 형태)로 이루어질 수 있다.
도 9는 본 발명의 일 예에 따른 3차원 자기장 측정 장치 시스템의 운용 블록도로서, 도 9를 참조하면, 회로기판(110)에 형성되는 마이크로컨트롤러(MC)와 복수개의 자기장 센서(120) 사이에서는 SPI 통신이 이루어지고, 서로 다른 모듈(100A, 100B, 100C)에 형성되는 마이크로컨트롤러(MC) 사이에서는 I2C 통신이 이루어질 수 있다.
본 발명의 3차원 자기장 측정 장치(100)는 소형화 및 경량화를 이루기 위하여 물리적 및 전기적 연결개수를 최소화하기 위한 통신 프로토콜(communication protocol)의 선택이 매우 중요한데, 본 발명에서는 이러한 레고식 연결 시스템에 적합한 I2C protocol이 사용될 수 있다.
도 10은 본 발명의 일 예에 따른 자기장 매핑 시스템을 간략히 나타낸 구성도로서, 도시된 바와 같이 본 발명의 자기장 매핑 시스템(1000)은, 상술한 3차원 자기장 측정 장치(100)와, 3차원 자기장 측정 장치(100)로부터 복수개의 모듈(100A, 100B, 100C)의 자기장 데이터를 수신하여 실시간으로 3차원 자기장 그래프를 생성하는 출력 장치(200)를 포함한다.
본 발명의 자기장 매핑 시스템(1000)은, 3차원 자기장 측정 장치(100)의 복수개의 모듈(100A, 100B, 100C)의 조립 또는 분해를 통해 자기장 데이터를 얻고자 하는 영역의 사이즈 및 모양에 맞게 자기장을 측정하고, 3차원 자기장 측정 장치(100)에서 획득한 자기장 데이터를 통해 출력 장치(200)가 자기장 매핑을 유연하게 할 수 있다.
또한, 3차원 자기장 측정 장치(100)는, 복수개의 모듈(100A, 100B, 100C)간 전원 및 신호가 전기적으로 연결되고, 복수개의 모듈100A, 100B, 100C) 중 어느 하나와 연결되고 출력 장치(200)와 연결되는 마스터 모듈을 더 포함할 수 있다.
또한, 출력 장치(200)는, 3차원 자기장 측정 장치(100)의 복수개의 자기장 센서(120)의 배열 간격 및 복수개의 모듈(100A, 100B, 100C)간의 연결 간격을 기초로 복수개의 자기장 센서(120)의 공간정보를 설정하여, 3차원 자기장 그래프를 생성할 수 있다. 즉, 출력 장치(200)는 공간정보를 통해 복수개의 자기장 센서(120)의 위치를 지정할 수 있고, 이를 기초로 3차원 공간의 자기장 그래프를 출력할 수 있다.
도 11은 본 발명의 일 예에 따른 3차원 자기장 측정 장치의 실제 사진과 3차원 자기장 세기와 방향 데이터의 그래프를 나타낸 도면이고, 도 12는 본 발명의 일 예에 따른 전자석 기반 자기장 제어 시스템 특성 평가의 실제 사진과 3차원 자기장 세기와 방향 데이터의 그래프를 나타낸 도면이다.
도 11을 참조하면, 본 발명의 자기장 매핑 시스템(1000)은, 3차원 자기장 측정 장치(100)가 3차원 자기장 데이터를 측정하고, 출력 장치(200)에서 3차원 자기장 측정 장치(100)가 측정한 자기장 데이터를 이용하여 자기장의 세기 및 방향 데이터를 생성할 수 있다.
도 12를 참조하면, 본 발명의 자기장 매핑 시스템(1000)은, 전자석 기반 자기장 제어 시스템의 특성을 평가할 수 있다. 3차원 자기장 측정 장치(100)가 자기장 제어 시스템의 일정 영역 내에서 서로 다른 위치에 배치되어 3차원 자기장을 측정하고, 출력 장치(200)가 3차원 자기장 측정 장치(100)에서 측정한 자기장 데이터를 3차원으로 출력하여 자기장 제어 시스템의 특성평가 및 검수가 가능하다.
도 13은 본 발명의 일 예에 따른 자기장 매핑 시스템의 자기장 데이터 송신 및 수신 순서도이고, 도 14는 본 발명의 일 예에 따른 마스터 모듈의 자기장 데이터 송신 및 수신 순서도이며, 도 15는 본 발명의 일 예에 따른 모듈의 자기장 데이터 송신 및 수신 순서도이다.
도 13을 참조하여 본 발명의 자기장 매핑 시스템(1000)의 자기장 데이터 송신 및 수신 단계를 설명하면 다음과 같다. 1) 각 모듈 마다 주소가 생기며 주소 숫자가 각 모듈의 케이스에 물리적으로 부여된다. 사용자(user)는 모듈을 테이블화 시켜 배열 및 구성(configuration)한다. 2) 배열이 끝나면, 컴퓨터 소프트웨어가 복수개의 모듈 중 어느 하나와 연결된 마스터 모듈과 통신하며 그래프를 업데이트 한다. 3) 마스터 모듈은 각 모듈과 통신하며 데이터를 컴퓨터 소프트웨어에 저장한다. 4) 마스터 모듈이 모든 모듈에 데이터를 보내고 나면, 데이터가 그래프로 컴퓨터 화면에 그려진다. 이때, 복수개의 자기장 센서의 배열 간격 및 복수개의 모듈간의 연결 간격 등의 물리적 정보를 기초로 생성된 공간정보가 설정되어 각 센서마다의 위치를 알 수 있다. 5) 단계 3,4가 무한 반복하며 실시간으로 데이터를 얻을 수 있다.
도 14를 참조하여 마스터 모듈의 자기장 데이터 송신 및 수신 단계를 설명하면 다음과 같다. 1) 마스터 모듈이 I2C 통신의 초기설정을 진행한다. 2) 모듈의 숫자를 확인하고 각 모듈의 주소를 저장한다. 3) 모듈의 테이블 화를 위한 배열 및 구성을 위해 각 모듈의 주소를 출력 장치에 보낸다. 4) 이전에 획득한 주소로 각 모듈을 인터럽트하며 자기장 데이터를 저장한다. 5) 저장한 데이터로 그래프 업데이트를 위해 출력 장치와 통신한다. 6) 단계 4, 5가 반복된다.
도 15를 참조하여 모듈의 자기장 데이터 송신 및 수신 단계를 설명하면 다음과 같다. 1) 각 모듈은 미리 지정된 고유 주소를 받는다. I2C 통신이 초기설정 및 시작된다. 2) 모듈은 인터럽트가 될 때까지 지속적으로 데이터를 얻고 업데이트한다. 3) 인터럽트되면 모듈은 데이터를 마스터 모듈로 보낸다.
본 발명은 상기한 실시예에 한정되지 아니하며, 적용범위가 다양함은 물론이고, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 다양한 변형 실시가 가능한 것은 물론이다.
[부호의 설명]
1000: 자기장 매핑 시스템
100: 3차원 자기장 측정 장치
100A, 100B, 100C: 모듈
110: 회로기판
120: 자기장 센서
130: z축 연결부
131: z축 삽입부
132: z축 돌출부
140: x축 연결부
141: x축 삽입부
142: x축 돌출부
150: y축 연결부
151 : y축 삽입부
152 : y축 돌출부
MC : 마이크로컨트롤러
200 : 출력 장치

Claims (13)

  1. 복수개의 모듈을 포함하며, 상기 복수개의 모듈 각각은,
    회로 기판;
    상기 회로기판에 실장되며, 각각이 x축과 y축 방향으로 서로 일정 간격 이격되어 배열되는 복수개의 자기장 센서; 및
    상기 회로기판 상에 형성되는 z축 연결부;를 포함하고,
    상기 복수개의 모듈이 상기 z축 연결부에 의해 z축 방향으로 분리 가능하게 연결되어, x축, y축, 및 z축 자기장 측정이 가능한,
    3차원 자기장 측정 장치.
  2. 제1항에 있어서,
    상기 z축 연결부는,
    상기 회로기판의 일면에 형성되는 z축 삽입부와,
    상기 회로기판의 타면에 형성되고, z축 방향으로 인접한 다른 모듈의 제1 삽입부에 삽입되는 z축 돌출부를 포함하는,
    3차원 자기장 측정 장치.
  3. 제1항에 있어서,
    상기 z축 연결부는 서로 다른 모듈들의 전원 및 신호를 전기적으로 연결하는,
    3차원 자기장 측정 장치.
  4. 제1항에 있어서,
    상기 복수개의 모듈 각각은,
    서로 다른 모듈들을 x축 방향으로 연결하는 x축 연결부;를 더 포함하는,
    3차원 자기장 측정 장치.
  5. 제4항에 있어서,
    상기 x축 연결부는,
    x축 양의 방향에 형성되는 x축 삽입부와,
    x축 음의 방향에 형성되고, x축 방향으로 인접한 다른 모듈의 x축 삽입부에 삽입되는 x축 돌출부를 포함하는,
    3차원 자기장 측정 장치.
  6. 제5항에 있어서,
    상기 x축 돌출부가 상기 x축 삽입부에 삽입되는 경우, 서로 다른 모듈 각각에 형성된 상기 회로기판이 x축 방향으로 이격된 공간 없이 밀착되는,
    3차원 자기장 측정 장치.
  7. 제1항에 있어서,
    상기 복수개의 모듈 각각은,
    서로 다른 모듈들을 y축 방향으로 연결하는 y축 연결부;를 더 포함하는,
    3차원 자기장 측정 장치.
  8. 제7항에 있어서,
    상기 y축 연결부는,
    y축 음의 방향에 형성되는 y축 삽입부와,
    y축 양의 방향에 형성되고, y축 방향으로 인접한 다른 모듈의 y축 삽입부에 삽입되는 y축 돌출부를 포함하는,
    3차원 자기장 측정 장치.
  9. 제8항에 있어서,
    상기 y축 돌출부가 상기 y축 삽입부에 삽입되는 경우, 서로 다른 모듈 각각에 형성된 상기 회로기판이 y축 방향으로 이격된 공간 없이 밀착되는,
    3차원 자기장 측정 장치.
  10. 제1항에 있어서,
    상기 회로기판에 형성되는 마이크로컨트롤러와 상기 복수개의 자기장 센서 사이에는 SPI 통신이 이루어지고,
    서로 다른 모듈에 형성되는 상기 마이크로컨트롤러 사이에는 I2C 통신이 이루어지는,
    3차원 자기장 측정 장치.
  11. 제1항의 3차원 자기장 측정 장치; 및
    상기 3차원 자기장 측정 장치로부터 상기 복수개의 모듈의 자기장 데이터를 수신하여 실시간으로 3차원 자기장 그래프를 생성하는 출력 장치;를 포함하는,
    자기장 매핑 시스템.
  12. 제11항에 있어서,
    상기 3차원 자기장 측정 장치는 상기 복수개의 모듈간 전원 및 신호가 전기적으로 연결되고,
    상기 복수개의 모듈 중 어느 하나와 연결되고, 상기 출력 장치와 연결되는 마스터 모듈;을 더 포함하는,
    자기장 매핑 시스템.
  13. 제11항에 있어서,
    상기 출력 장치는,
    상기 3차원 자기장 측정 장치의 상기 복수개의 자기장 센서의 배열 간격 및 상기 복수개의 모듈 간의 연결 간격을 기초로, 상기 복수개의 자기장 센서의 공간정보를 설정하여, 상기 3차원 자기장 그래프를 생성하는,
    자기장 매핑 시스템.
PCT/KR2022/006466 2021-05-17 2022-05-06 3차원 자기장 측정 장치 및 자기장 매핑 시스템 WO2022245023A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22804878.1A EP4343352A1 (en) 2021-05-17 2022-05-06 Three-dimensional magnetic field measurement device and magnetic field mapping system
CN202280035504.XA CN117460966A (zh) 2021-05-17 2022-05-06 三维磁场测量装置及磁场测绘系统

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020210063456A KR102554225B1 (ko) 2021-05-17 2021-05-17 3차원 자기장 측정 장치 및 자기장 매핑 시스템
KR10-2021-0063456 2021-05-17

Publications (1)

Publication Number Publication Date
WO2022245023A1 true WO2022245023A1 (ko) 2022-11-24

Family

ID=84140764

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/006466 WO2022245023A1 (ko) 2021-05-17 2022-05-06 3차원 자기장 측정 장치 및 자기장 매핑 시스템

Country Status (4)

Country Link
EP (1) EP4343352A1 (ko)
KR (1) KR102554225B1 (ko)
CN (1) CN117460966A (ko)
WO (1) WO2022245023A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060085570A (ko) * 2005-04-22 2006-07-27 가부시키가이샤 씨앤드엔 자기 센서의 제어 방법, 제어 장치 및 휴대 단말 장치
KR20120086843A (ko) * 2011-01-27 2012-08-06 주식회사 엘지생명과학 자기저항센서를 이용한 검출시스템
US20140225601A1 (en) * 2012-12-20 2014-08-14 Alstom Technology Ltd Device and method for measuring a magnetic field in an air-gap between a stator and a rotor of an electric machine
KR20150065998A (ko) * 2013-12-05 2015-06-16 매그나칩 반도체 유한회사 3차원 구조로 배치된 복수의 홀 센서를 이용한 센싱 시스템 및 이를 이용한 장치
KR102242113B1 (ko) * 2019-10-23 2021-04-20 재단법인대구경북과학기술원 3축 자기장 측정 장치

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5441429B2 (ja) * 2009-02-18 2014-03-12 有限会社パワーテック 三次元磁気測定装置
CA2999773A1 (en) * 2015-10-23 2017-04-27 Qualcomm Incorporated Apparatus and methods for timestamping in a system synchronizing controller and sensors
KR101700758B1 (ko) * 2016-03-14 2017-01-31 국방과학연구소 적층 구조를 갖는 가스 다중 감지 장치
JP2018054461A (ja) * 2016-09-29 2018-04-05 大同特殊鋼株式会社 3軸磁気センサ、連結モジュール、及びセンサプローブ
US10697800B2 (en) * 2016-11-04 2020-06-30 Analog Devices Global Multi-dimensional measurement using magnetic sensors and related systems, methods, and integrated circuits

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060085570A (ko) * 2005-04-22 2006-07-27 가부시키가이샤 씨앤드엔 자기 센서의 제어 방법, 제어 장치 및 휴대 단말 장치
KR20120086843A (ko) * 2011-01-27 2012-08-06 주식회사 엘지생명과학 자기저항센서를 이용한 검출시스템
US20140225601A1 (en) * 2012-12-20 2014-08-14 Alstom Technology Ltd Device and method for measuring a magnetic field in an air-gap between a stator and a rotor of an electric machine
KR20150065998A (ko) * 2013-12-05 2015-06-16 매그나칩 반도체 유한회사 3차원 구조로 배치된 복수의 홀 센서를 이용한 센싱 시스템 및 이를 이용한 장치
KR102242113B1 (ko) * 2019-10-23 2021-04-20 재단법인대구경북과학기술원 3축 자기장 측정 장치

Also Published As

Publication number Publication date
KR20220155775A (ko) 2022-11-24
CN117460966A (zh) 2024-01-26
KR102554225B1 (ko) 2023-07-12
EP4343352A1 (en) 2024-03-27

Similar Documents

Publication Publication Date Title
JP3859456B2 (ja) 拡張性バス構造及びモジュール式測定機器
WO2014069775A1 (ko) 모듈 형 회로소자의 개선된 구성 키트
US8832344B2 (en) Baseboard, extension module, and structure for connecting baseboard and extension module
EP2294362B1 (en) Data acquisition module and system
HRP20010721A2 (en) A system for monitoring connection pattern of data ports
WO2018212516A1 (ko) 카메라 모듈용 액츄에이터 이동감지 소자와 그들을 포함하는 카메라 모듈용 유연성 회로기판
JPH10185990A (ja) Icテスタ用テストボード
WO2022245023A1 (ko) 3차원 자기장 측정 장치 및 자기장 매핑 시스템
US20060206626A1 (en) Instrument and communications controller for instrument
WO2024117390A1 (ko) 전자장비용 시험계측기 확장 장치 및 방법
US20060132119A1 (en) Configurable test interface device
WO2014017791A1 (ko) 초음파 센서간 거리 조절이 가능한 초음파를 이용한 위치 추적 시스템
CN212381274U (zh) 结构光装置
WO2021085821A1 (ko) 스위치 모듈
CN205545608U (zh) 具有多柔性电路板的摄像头模组及摄像设备
WO2013176300A1 (ko) 범용 주변 장치 인터페이스, 인터페이싱 방법 및 이를 가지는 로봇용 제어 장치
WO2023136467A1 (ko) 무선커넥터를 구비하는 검사지그 및 검사장치
WO2023096043A1 (ko) 휴대용 거리 측정 장치
CN216351075U (zh) 一种模块化测试组件
CN214623002U (zh) 一种获取端口信息的装置
CN218916767U (zh) 显示模组测试设备和测试系统
CN220709290U (zh) 集成电路测试装置及系统
WO2013180353A1 (ko) 전자블록을 지지하는 구조물
JP3237718U (ja) マルチチャンネル冗長周波数カウントボード構造
EP4394415A1 (en) Stand-alone smart test module for wire harness testing systems

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22804878

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280035504.X

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2022804878

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022804878

Country of ref document: EP

Effective date: 20231218