WO2022244650A1 - Isocyanate-containing composition and two-part reaction type polyurethane resin composition - Google Patents

Isocyanate-containing composition and two-part reaction type polyurethane resin composition Download PDF

Info

Publication number
WO2022244650A1
WO2022244650A1 PCT/JP2022/019775 JP2022019775W WO2022244650A1 WO 2022244650 A1 WO2022244650 A1 WO 2022244650A1 JP 2022019775 W JP2022019775 W JP 2022019775W WO 2022244650 A1 WO2022244650 A1 WO 2022244650A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
isocyanate
containing composition
general formula
polyol
Prior art date
Application number
PCT/JP2022/019775
Other languages
French (fr)
Japanese (ja)
Inventor
七大 田部
欣範 山田
Original Assignee
第一工業製薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 第一工業製薬株式会社 filed Critical 第一工業製薬株式会社
Priority to CN202280034602.1A priority Critical patent/CN117295776A/en
Publication of WO2022244650A1 publication Critical patent/WO2022244650A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/10Metal compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/02Polyalkylene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/202Casings or frames around the primary casing of a single cell or a single battery
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a two-component reactive polyurethane resin composition and an isocyanate-containing composition used as a polyisocyanate component thereof.
  • Patent Document 1 discloses blending an inorganic filler, a plasticizer, and a phosphate ester into a polyurethane resin obtained by reacting a polyisocyanate and a polybutadiene polyol. Heat dissipation can be improved by containing it in a high compounding ratio.
  • the inorganic filler When blending an inorganic filler into a polyurethane resin composition, generally, the inorganic filler is blended with the polyol component, and the polyisocyanate component containing no inorganic filler is added and mixed to react the two components.
  • the polyol component containing an inorganic filler is difficult to mix with a polyisocyanate component containing no inorganic filler. If an inorganic filler is blended with the polyisocyanate component in order to improve the mixability of the two, the storage stability of the polyisocyanate component is lowered.
  • an embodiment of the present invention is a polyurethane resin composition containing an inorganic filler, while suppressing deterioration in storage stability of an isocyanate-containing composition used as a polyisocyanate component, polyol used as a polyol component
  • An object of the present invention is to provide an isocyanate-containing composition capable of improving miscibility with the containing composition.
  • R 1 represents OH or a group represented by the following general formula (2)
  • a compound in which R 1 is OH and R 1 is represented by general formula (2) It may be a mixture with a compound, and in general formula (3), k represents the number of 1 or 0, and X represents a linking group of —CH 2 —, —CO(CH 2 ) p — or —COCH ⁇ CH—.
  • R 2 and R 3 each independently represents a hydrocarbon group having 6 to 30 carbon atoms
  • a 1 O and A 3 O each independently represent an oxyalkylene group having 2 to 4 carbon atoms
  • m and n are the average addition of alkylene oxide.
  • the embodiment of the present invention it is possible to improve the miscibility with the polyol-containing composition while suppressing deterioration of the storage stability of the isocyanate-containing composition.
  • the two-liquid reactive polyurethane resin composition according to the present embodiment comprises a polyol-containing composition as a polyol component and an isocyanate-containing composition as a polyisocyanate component.
  • the isocyanate-containing composition contains a urethane prepolymer (a).
  • a urethane prepolymer
  • the average number of functional groups (average number of hydroxyl groups) of the polyol is 2.5 or less, the hardness of the polyurethane resin after curing can be kept low. When used as a gap filler to fill the gap, the reaction force generated against the external force can be reduced.
  • the average number of functional groups of the polyol is preferably 2.4 or less, more preferably 2.3 or less.
  • the lower limit of the average functional group number of the polyol is not particularly limited, and for example, the average functional group number may be 1.7 or more.
  • the above polyol preferably has hydroxyl groups at both ends, and therefore preferably has an average functional group number of 2.0 or more.
  • the storage stability of the isocyanate-containing composition can be improved.
  • the weight average molecular weight of the polyol is preferably 800 or more.
  • the upper limit of the weight average molecular weight of the polyol is not particularly limited. As used herein, the weight average molecular weight is a value calculated using a calibration curve based on standard polystyrene by GPC (gel permeation chromatography) measurement.
  • polyether polyols examples include polyether polyols, polyester polyols, polycarbonate polyols, polybutadiene polyols, polyisoprene polyols, etc., and these can be used singly or in combination of two or more.
  • polyether polyols include polyoxyalkylene polyols obtained by adding ethylene oxide or propylene oxide to polyhydric alcohols or polyamines.
  • Polyester polyols include those obtained by dehydration condensation of carboxylic acids such as adipic acid and phthalic acid and polyhydric alcohols such as ethylene glycol and 1,4-butanediol.
  • polybutadiene polyol those having hydroxyl groups at both ends of the polybutadiene structure are more preferable, and hydrogenated polybutadiene polyols may also be used. Among these, it is preferable to use polypropylene glycol and/or polybutadiene polyol.
  • the polyisocyanate is not particularly limited, and examples thereof include aliphatic diisocyanates, alicyclic diisocyanates, and aromatic diisocyanates.
  • aliphatic diisocyanates and alicyclic diisocyanates are used. They may be used together.
  • aliphatic diisocyanate examples include tetramethylene diisocyanate, dodecamethylene diisocyanate, hexamethylene diisocyanate (HDI), 2,2,4-trimethylhexamethylene diisocyanate, 2,4,4-trimethylhexamethylene diisocyanate, lysine diisocyanate, 2 -methylpentane-1,5-diisocyanate, 3-methylpentane-1,5-diisocyanate and the like. Moreover, you may use these in combination of 2 or more types.
  • HDI hexamethylene diisocyanate
  • 2,2,4-trimethylhexamethylene diisocyanate 2,4,4-trimethylhexamethylene diisocyanate
  • lysine diisocyanate 2 -methylpentane-1,5-diisocyanate
  • 3-methylpentane-1,5-diisocyanate 3-methylpentane-1,5-diisocyanate and the
  • alicyclic diisocyanates examples include isophorone diisocyanate, hydrogenated xylylene diisocyanate, 4,4′-dicyclohexylmethane diisocyanate, 1,4-cyclohexane diisocyanate, methylcyclohexylene diisocyanate, 1,3-bis(isocyanatomethyl)cyclohexane, and the like. is mentioned. Moreover, you may use these in combination of 2 or more types.
  • the urethane prepolymer (a) is obtained by reacting the above-mentioned polyol and polyisocyanate under the condition of excessive isocyanate groups.
  • the urethane prepolymer (a) is preferably a terminal isocyanate prepolymer having isocyanate groups at both ends.
  • the amount of the urethane prepolymer (a) is not particularly limited, but it is preferably 1.0 to 15% by mass, more preferably 1.5 to 10% by mass in 100% by mass of the isocyanate-containing composition. .
  • the isocyanate-containing composition contains an inorganic filler (b). By blending the inorganic filler (b), heat dissipation can be imparted to the cured polyurethane resin.
  • the inorganic filler (b) is not particularly limited, and examples thereof include metal oxides such as alumina and magnesium oxide, metal hydroxides such as aluminum hydroxide and magnesium hydroxide, and metal nitrides such as aluminum nitride and boron nitride. etc. These can be used either singly or in combination of two or more.
  • the content of the inorganic filler (b) is preferably 50 to 95% by mass in 100% by mass of the isocyanate-containing composition.
  • the compounding amount is 50% by mass or more, the heat dissipation property of the polyurethane resin can be improved.
  • the amount is 95% by mass or less, the storage stability of the isocyanate-containing composition can be improved.
  • the blending amount is more preferably 60% by mass or more, more preferably 70% by mass or more, still more preferably 80% by mass or more, and preferably 90% by mass or less.
  • the isocyanate-containing composition contains a plasticizer (c).
  • a plasticizer c
  • the storage stability of the isocyanate-containing composition can be improved, and the miscibility with the polyol-containing composition can be improved.
  • the plasticizer (c) is not particularly limited, and conventionally known ones blended in polyurethane resins can be used.
  • Adipic acid diesters such as diisononyl adipate, trimellitic acid esters such as trioctyl trimellitate and triisononyl trimellitate, pyromellitic acid esters such as tetraoctyl pyromellitate and tetraisononyl pyromellitate, tricresyl phosphate , trixylenyl phosphate, cresyl diphenyl phosphate, and the like, and phosphoric acid triesters and the like, and these can be used either singly or in combination of two or more.
  • phthalate diesters and/or adipate diesters are preferred as the plasticizer (c).
  • the amount of the plasticizer (c) is not particularly limited, and may be, for example, 1 to 40% by mass, 3 to 35% by mass, or 5 to 30% by mass in 100% by mass of the isocyanate-containing composition. It may be 10 to 20% by mass.
  • the isocyanate-containing composition contains at least one compound (hereinafter sometimes referred to as compound (d)) selected from the group consisting of compounds represented by general formula (1) and compounds represented by general formula (3). include.
  • compound (d) selected from the group consisting of compounds represented by general formula (1) and compounds represented by general formula (3).
  • the storage stability of the isocyanate-containing composition can be improved, and the miscibility with the polyol-containing composition can be improved.
  • compounds represented by the following general formula (1) are phosphate esters.
  • R 1 represents OH or a group represented by general formula (2) below.
  • the phosphate ester represented by formula (1) may be a compound (monoester) in which R 1 is OH, a compound (diester) in which R 1 is represented by general formula (2), or a mixture of both. good.
  • R 2 represents a hydrocarbon group having 6 to 30 carbon atoms, more preferably a hydrocarbon group having 8 to 20 carbon atoms.
  • the hydrocarbon group includes a linear or branched alkyl group, alkenyl group, aryl group, or aralkyl group, and these groups may have a substituent.
  • alkyl groups include hexyl, isohexyl, heptyl, isoheptyl, octyl, 2-ethylhexyl, isooctyl, nonyl, isononyl, decyl, isodecyl, undecyl, isoundecyl, and dodecyl.
  • alkenyl groups include hexenyl, heptenyl, octenyl, nonenyl, decenyl, undecenyl, dodecenyl, tetradecenyl, and oleyl groups.
  • aryl groups include phenyl, tolyl, xylyl, cumenyl, mesityl, ethylphenyl, propylphenyl, butylphenyl, pentylphenyl, hexylphenyl, heptylphenyl, and octylphenyl groups.
  • nonylphenyl group decylphenyl group, undecylphenyl group, dodecylphenyl group, styrenated phenyl group, p-cumylphenyl group, phenylphenyl group, benzylphenyl group, ⁇ -naphthyl group, ⁇ -naphthyl group and the like.
  • aralkyl groups include benzyl, phenethyl, styryl, cinnamyl, benzhydryl, and trityl groups.
  • a 1 O represents an oxyalkylene group having 2 to 4 carbon atoms.
  • m represents the average number of added moles of alkylene oxide, and is a number of 1 to 100, preferably a number of 3 to 50, more preferably a number of 5 to 30, more preferably a number of 7 to 20 is.
  • the oxyalkylene chain represented by (A 1 O) m has an oxyethylene group content of 20 mol % or more. That is, when the oxyethylene group is EO and the oxyalkylene group other than the oxyethylene group is AO, EO/AO (molar ratio) is 100/0 to 20/80.
  • the content of oxyethylene groups is preferably 50 mol % or more, more preferably 70 mol % or more, even more preferably 80 mol % or more, and may be 100 mol %.
  • the oxyalkylene chain consists of a plurality of types of oxyalkylene groups, the oxyalkylene groups may be added randomly or by block addition.
  • the phosphate ester represented by formula (1) can be obtained, for example, by adding an alkylene oxide to a monoalcohol or phenol having 6 to 30 carbon atoms by a known method, and then adding the alkylene oxide terminal of the resulting polyether monool. It can be produced by reacting a hydroxyl group with a phosphorylating agent such as phosphoric anhydride, orthophosphoric acid, polyphosphoric acid, and phosphoric acid chloride. Depending on the manufacturing method, a monoester type compound and a diester type compound may be obtained as a mixture, and these may be separated or used as a mixture as they are. Moreover, it can also be used by reacting in the presence of water to increase the content of the monoester type compound.
  • a phosphorylating agent such as phosphoric anhydride, orthophosphoric acid, polyphosphoric acid, and phosphoric acid chloride.
  • a monoester type compound and a diester type compound may be obtained as a mixture, and these may be separated or used
  • the compound represented by the following general formula (3) is a sulfate ester, a sulfonic acid or a carboxylic acid, and these may be used alone or in combination of two or more.
  • k represents the number of 1 or 0.
  • Z in formula (3) represents a carboxy group (--COOH), a sulfo group (--SO 3 H), or a salt thereof, and may be in a mixture of acid and salt forms.
  • Salts include, for example, alkali metal salts, alkaline earth metal salts, ammonium salts, and alkanolamine salts.
  • alkali metal salts include sodium salts, potassium salts, lithium salts and the like.
  • alkaline earth metal salts include calcium salts and magnesium salts.
  • alkanolamine salts include monoethanolamine salts, diethanolamine salts, triethanolamine salts, triisopropanolamine salts, and the like.
  • R 3 in formula (3) represents a hydrocarbon group having 6 to 30 carbon atoms, more preferably a hydrocarbon group having 8 to 20 carbon atoms.
  • the hydrocarbon group includes a linear or branched alkyl group, alkenyl group, aryl group, or aralkyl group, and these groups may have a substituent. Specific examples of the alkyl group, alkenyl group, aryl group, and aralkyl group are the same as those for R 2 .
  • a 3 O represents an oxyalkylene group having 2 to 4 carbon atoms.
  • n represents the average number of added moles of alkylene oxide, and is a number of 1 to 100, preferably a number of 3 to 50, more preferably a number of 5 to 30, more preferably a number of 7 to 20 is.
  • the oxyalkylene chain represented by (A 3 O) m has an oxyethylene group content of 20 mol % or more. That is, when the oxyethylene group is EO and the oxyalkylene group other than the oxyethylene group is AO, EO/AO (molar ratio) is 100/0 to 20/80.
  • the content of oxyethylene groups is preferably 50 mol % or more, more preferably 70 mol % or more, even more preferably 80 mol % or more, and may be 100 mol %.
  • the oxyalkylene chain consists of a plurality of types of oxyalkylene groups, the oxyalkylene groups may be added randomly or by block addition.
  • the compound represented by formula (3) is a carboxylic acid.
  • the carboxylic acid of formula (3) can be obtained, for example, by adding an alkylene oxide to a monoalcohol or phenol having 6 to 30 carbon atoms by a known method, and then using a monohalogenated acetic acid or a salt thereof, in the presence of a base.
  • it can be produced by a ring-opening reaction with an alkylene oxide terminal hydroxyl group using an acid anhydride.
  • a sulfate ester can be produced by adding an alkylene oxide to a monoalcohol or phenol having 6 to 30 carbon atoms by a known method, and then reacting sulfamic acid with a hydroxyl group at the end of the alkylene oxide.
  • a sulfonic acid can be produced by adding the above alkylene oxide and then reacting it with a hydroxyl group at the end of the alkylene oxide using a monohalogenated sulfonic acid or a salt thereof.
  • the amount of the compound (d) is not particularly limited, and may be, for example, 0.01 to 5% by mass, 0.03 to 2% by mass, or 0.05 to 1% in 100% by mass of the isocyanate-containing composition. % by mass may be used.
  • the urethane prepolymer (a) may be used alone as the polyisocyanate compound, or the urethane prepolymer (a) may be used in combination with another polyisocyanate compound.
  • polyisocyanate compounds are not particularly limited, and various polyisocyanate compounds having two or more isocyanate groups in one molecule can be used, for example, aliphatic polyisocyanates, alicyclic polyisocyanates, and Aromatic polyisocyanates, and modified and polynuclear compounds thereof may be mentioned, and any one of them may be used alone or two or more of them may be used in combination.
  • Specific examples of aliphatic polyisocyanates and alicyclic polyisocyanates include the above-mentioned aliphatic diisocyanates and alicyclic diisocyanates.
  • aromatic polyisocyanates examples include tolylene diisocyanate (TDI), diphenylmethane diisocyanate (MDI), 4,4′-dibenzyl diisocyanate, 1,5-naphthylene diisocyanate, xylylene diisocyanate (XDI), 1,3- phenylene diisocyanate, 1,4-phenylene diisocyanate, and the like.
  • Modified products of these polyisocyanate compounds include, for example, isocyanurate modified products, allophanate modified products, buret modified products, adduct modified products, and carbodiimide modified products.
  • polyisocyanate compounds it is preferable to use isocyanurate-modified polyisocyanate compounds, more preferably isocyanurate-modified aliphatic polyisocyanates.
  • the amount of the modified isocyanurate compounded is not particularly limited. % by mass.
  • the polyisocyanate compound preferably contains the urethane prepolymer (a) as a main component, and even when used in combination with other polyisocyanate compounds, the total polyisocyanate compound exceeds 50% by mass, more preferably 60% by mass.
  • the above is preferably the urethane prepolymer (a).
  • the isocyanate-containing composition contains various additives such as moisture absorbers, antioxidants, foam stabilizers, diluents, flame retardants, ultraviolet absorbers, and colorants. It can be added as long as it does not damage it.
  • the isocyanate value (NCOV) of the isocyanate-containing composition is not particularly limited, and may be 1.0 to 10 mgKOH/g, 1.5 to 8.0 mgKOH/g, or 2.0 to 7.5 mgKOH/g. .
  • the polyol-containing composition contains polyol (e).
  • the polyol (e) is not particularly limited, and examples thereof include polyether polyol, polyester polyol, polycarbonate polyol, polybutadiene polyol, polyisoprene polyol, etc., and these can be used singly or in combination of two or more. .
  • polybutadiene polyol is preferably used.
  • the polybutadiene polyol those having hydroxyl groups at both ends of the polybutadiene structure are more preferable, and hydrogenated polybutadiene polyols may also be used.
  • the average functionality of polybutadiene polyol is preferably 2.0 to 2.5, more preferably 2.1 to 2.4.
  • the amount of the polyol (e) is not particularly limited, but it is preferably 2 to 30% by mass, more preferably 3 to 25% by mass, and still more preferably 5 to 30% by mass in 100% by mass of the polyol-containing composition. 20% by mass.
  • the polyol-containing composition contains an inorganic filler (f).
  • an inorganic filler (f) By blending the inorganic filler (f), heat dissipation can be imparted to the cured polyurethane resin.
  • the inorganic filler (f) is not particularly limited, and examples thereof include metal oxides such as alumina and magnesium oxide, metal hydroxides such as aluminum hydroxide and magnesium hydroxide, and metal nitrides such as aluminum nitride and boron nitride. etc. These can be used either singly or in combination of two or more.
  • the content of the inorganic filler (f) is preferably 50 to 95% by mass, more preferably 60% by mass or more, and more preferably 70% by mass or more in 100% by mass of the polyol-containing composition. , more preferably 80% by mass or more, and preferably 90% by mass or less.
  • the polyol-containing composition may contain a plasticizer (g). By containing the plasticizer (g), the hardness of the cured polyurethane resin can be lowered.
  • the plasticizer (g) is not particularly limited, and includes the above-mentioned phthalate diesters, adipate diesters, trimellitate esters, pyromellitic acid esters, and phosphate triesters. The above can be used in combination. Among these, phthalate diesters and/or adipate diesters are preferred as the plasticizer (g).
  • the amount of the plasticizer (g) is not particularly limited, and may be, for example, 1 to 30% by mass, 3 to 25% by mass, or 5 to 20% by mass in 100% by mass of the polyol-containing composition. It may be 5 to 15% by mass.
  • the polyol-containing composition may contain a phosphate ester (h). By containing the phosphate ester (h), the viscosity of the polyol-containing composition (h) can be reduced. A compound represented by the above formula (1) is used as the phosphate ester (h).
  • the amount of the phosphate ester (h) is not particularly limited, and may be, for example, 0.01 to 5% by mass, 0.03 to 2% by mass, or 0.05% by mass in 100% by mass of the polyol-containing composition. It may be up to 1% by mass.
  • additives such as a moisture absorbent, a catalyst, an antioxidant, a foam stabilizer, a diluent, a flame retardant, an ultraviolet absorber, and a colorant may be added according to the present embodiment. It can be added as long as it does not impair the purpose.
  • metal catalysts such as organic tin catalysts, organic lead catalysts, and organic bismuth catalysts, and various urethane polymerization catalysts such as amine catalysts can be used.
  • the hydroxyl value (OHV) of the polyol-containing composition is not particularly limited, and may be 1.0-15 mgKOH/g or 2.0-10 mgKOH/g.
  • the two-component reactive polyurethane resin composition according to the present embodiment is usually composed of a first component that is a polyol-containing composition and a second component that is an isocyanate-containing composition.
  • the third liquid may contain any of the above-mentioned other components as optional components.
  • the two-component reactive polyurethane resin composition can be produced by preparing a polyol-containing composition and an isocyanate-containing composition, respectively. Anything is fine.
  • the polyol-containing composition and the isocyanate-containing composition, which are filled in separate containers, may be mixed at the time of use so that the polyol and the polyisocyanate react to form a polyurethane resin and cure. At that time, it may be cured by heating.
  • the two-liquid reactive polyurethane resin composition according to the embodiment may be obtained by mixing a polyol-containing composition and an isocyanate-containing composition, may be in a liquid state before curing, or may be in a cured state. .
  • the mixing ratio of the polyol-containing composition and the isocyanate-containing composition is not particularly limited.
  • the molar ratio NCO/OH (index) of may be from 0.5 to 1.2, or from 0.6 to 0.9.
  • NCO/OH is calculated as NCOV/OHV from the above isocyanate value (NCOV) and hydroxyl value (OHV).
  • the hardness of the two-liquid reactive polyurethane resin composition after curing is not particularly limited, but the shore C hardness is preferably 60 or less, and may be 30-60.
  • the thermal conductivity (JIS R2618) of the two-liquid reactive polyurethane resin composition after curing is not particularly limited, and may be, for example, 1.0 W/m ⁇ K or more, or 2.0 W/m ⁇ K or more. 0 to 3.0 W/m ⁇ K.
  • Two-liquid reactive polyurethane resin composition is not particularly limited, and can be used for various applications such as electrical and electronic parts and vehicles. It is suitable for use as a heat-dissipating material because it has heat-dissipating properties when an inorganic filler is added. As one embodiment, it is preferably used as a heat dissipation gap filler for a heat source such as a battery.
  • the two-liquid reactive polyurethane resin composition will be described in detail below based on Examples and Comparative Examples, but the present invention is not limited thereto.
  • Polyol ⁇ Polybutadiene polyol: "POLYVEST HT" manufactured by Evonik, average functionality 2.3
  • Polybutadiene polyol "POLYVEST HT” manufactured by Evonik, average functionality 2.3
  • Plasticizer ⁇ DUP: diundecyl phthalate
  • DOA di-2-ethylhexyl adipate
  • Prepolymer 1 In a four-necked flask equipped with a stirrer, a reflux condenser, a thermometer and a nitrogen blowing tube, 33 parts by mass of hexamethylene diisocyanate (HDI) (manufactured by Asahi Kasei Corporation "Duranate 50M") and polypropylene glycol (average functional group number 2.0, weight average molecular weight 700, hydroxyl value 160) (“EXENOL 720” manufactured by AGC Co., Ltd.) and 67 parts by mass of the isocyanate group-terminated urethane prepolymer (prepolymer 1) by reacting at 90°C for 2 hours. Obtained.
  • HDI hexamethylene diisocyanate
  • EXENOL 720 manufactured by AGC Co., Ltd.
  • Prepolymer 2 In a four-necked flask equipped with a stirrer, a reflux condenser, a thermometer and a nitrogen blowing tube, 26 parts by mass of hexamethylene diisocyanate (HDI) ("Duranate 50M” manufactured by Asahi Kasei Corporation) and polypropylene glycol (average functional group number 2.0, weight average molecular weight 1000, hydroxyl value 112) ("EXENOL 1020" manufactured by AGC Co., Ltd.) and 74 parts by mass of the isocyanate group-terminated urethane prepolymer (prepolymer 2) by reacting at 90°C for 2 hours. Obtained.
  • HDI hexamethylene diisocyanate
  • EXENOL 1020 manufactured by AGC Co., Ltd.
  • Prepolymer 3 10 parts by mass of hexamethylene diisocyanate (HDI) ("Duranate 50M” manufactured by Asahi Kasei Corporation) and polypropylene glycol (average functional group number 2.0, weight average molecular weight 3000, hydroxyl value 35) (“EXENOL 3020” manufactured by AGC Co., Ltd.) and 90 parts by mass of the isocyanate group-terminated urethane prepolymer (prepolymer 3) by reacting it at 120°C for 6 hours. Obtained.
  • HDI hexamethylene diisocyanate
  • EXENOL 3020 manufactured by AGC Co., Ltd.
  • Prepolymer 4 In a four-necked flask equipped with a stirrer, a reflux condenser, a thermometer and a nitrogen blowing tube, 31 parts by mass of isophorone diisocyanate (IPDI) ("IPDI” manufactured by EVONIK) and polypropylene glycol (average functionality: 2.0 , weight average molecular weight: 1000, hydroxyl value: 112) ("EXENOL 1020" manufactured by AGC) was reacted with 69 parts by mass at 90°C for 2 hours to obtain an isocyanate group-terminated urethane prepolymer (prepolymer 4).
  • IPDI isophorone diisocyanate
  • EVONIK polypropylene glycol
  • EXENOL 1020 manufactured by AGC
  • Prepolymer 5 In a four-necked flask equipped with a stirrer, a reflux condenser, a thermometer and a nitrogen blowing tube, 46 parts by mass of hexamethylene diisocyanate (HDI) (manufactured by Asahi Kasei Corporation "Duranate 50M") and polypropylene glycol (average functional group number 2.0, weight average molecular weight 400, hydroxyl value 281) ("EXENOL 420" manufactured by AGC Co., Ltd.) and 54 parts by mass of the isocyanate group-terminated urethane prepolymer (Prepolymer 5) by reacting it at 90°C for 2 hours. Obtained.
  • HDI hexamethylene diisocyanate
  • Duranate 50M polypropylene glycol
  • Prepolymer 6 12 parts by mass of hexamethylene diisocyanate (HDI) ("Duranate 50M” manufactured by Asahi Kasei Corporation) and polybutadiene polyol (average functional group number 2.3, weight average molecular weight 3000, hydroxyl value 46) ("POLYVEST HT” manufactured by EVONIK) and 88 parts by mass of the mixture were reacted at 90°C for 2 hours to obtain an isocyanate group-terminated urethane prepolymer (prepolymer 6). rice field.
  • HDI hexamethylene diisocyanate
  • POLYVEST HT polybutadiene polyol
  • Prepolymer 7 In a four-necked flask equipped with a stirrer, a reflux condenser, a thermometer and a nitrogen blowing tube, 33 parts by mass of hexamethylene diisocyanate (HDI) (“Duranate 50M” manufactured by Asahi Kasei Corporation) and castor oil (average functional group number of 2 .7, weight average molecular weight 941, hydroxyl value 161) ("URIC H30" manufactured by Ito Seiyu Co., Ltd.) and 68 parts by mass of the isocyanate group-terminated urethane prepolymer (prepolymer 7) were reacted at 90°C for 2 hours. Obtained.
  • HDI hexamethylene diisocyanate
  • Carboxylic acid 1 200 g (1.0 mol) of tridecyl alcohol and 5 g of potassium hydroxide as a catalyst were placed in an autoclave equipped with a temperature controller equipped with a stirrer, a thermometer, a nitrogen inlet tube, a raw material inlet tube, and a decompression exhaust tube. After charging, the atmosphere in the autoclave was replaced with nitrogen, and 440 g (10 mol) of ethylene oxide was successively introduced under the conditions of a pressure of 0.15 MPa and a temperature of 130° C., followed by neutralization with acetic acid.
  • Carboxylic acid 2 200 g (1.0 mol) of tridecyl alcohol and 5 g of potassium hydroxide as a catalyst were placed in an autoclave equipped with a temperature controller equipped with a stirrer, a thermometer, a nitrogen inlet tube, a raw material inlet tube, and a decompression exhaust tube. After charging, the atmosphere in the autoclave was replaced with nitrogen, and 440 g (10 mol) of ethylene oxide was successively introduced under the conditions of a pressure of 0.15 MPa and a temperature of 130° C., followed by neutralization with acetic acid. Then, 156 g (1 mol) of suberic anhydride is reacted at 120° C.
  • carboxylic acid 2 of general formula (3) (wherein R 3 : tridecyl, A 3 O: EO, n: 10, k : 1, X: -CO-(CH 2 ) 6 -, Z: -COOH).
  • [Weight average molecular weight and number average molecular weight] It is a value calculated from the elution time of a measurement sample using a calibration curve prepared from the molecular weight of standard polystyrene and the elution time measured by the GPC method (gel permeation chromatography method).
  • TSKgel Hxl Tosoh Corporation
  • the mobile phase was THF (tetrahydrofuran)
  • the mobile phase flow rate was 1.0 mL/min
  • the column temperature was 40°C
  • the sample injection volume was 50 ⁇ L
  • the sample concentration was Measurement was performed under the condition of 0.2% by mass.
  • the isocyanate content is measured according to A method of JIS K1603-1:2007, and the isocyanate value is calculated by the following formula from the obtained isocyanate content.
  • 56.11 Molecular weight of potassium hydroxide 1000: Conversion factor from g to mg 42.02: Molecular weight of NCO 100: Conversion factor from percentage to /g
  • Polyol-containing compositions A1-7 were prepared according to the formulations (% by mass) shown in Table 1 below, and isocyanate-containing compositions B1-21 were prepared according to the formulations (% by mass) shown in Table 2 below.
  • the isocyanate-containing compositions B1-21 were evaluated for storage stability.
  • polyol-containing compositions A1 to 7 and isocyanate-containing compositions B1 to 21 were mixed in the combinations and volume mixing ratios shown in Table 3 below, and the miscibility of the two was evaluated.
  • the hardness of the cured product was measured.
  • the storage stability, mixability, and hardness measurement/evaluation methods are as follows.
  • Comparative Example 1 the hardness of the cured product was high because the polyol constituting the isocyanate group-containing urethane prepolymer had a large average number of functional groups.
  • Comparative Example 2 since the weight-average molecular weight of the polyol constituting the isocyanate group-containing urethane prepolymer was small, the isocyanate-containing composition solidified after being stored at 60°C for one month, resulting in low storage stability.
  • Comparative Example 3 since the isocyanate-containing composition did not contain a compound (d) such as a phosphate ester or an ammonium sulfate salt, the storage stability was lowered.
  • Comparative Example 4 since the isocyanate-containing composition did not contain an inorganic filler, the isocyanate-containing composition and the polyol-containing composition were poorly mixed. In Comparative Example 5, since the isocyanate-containing composition did not contain a plasticizer, the storage stability was poor, and the miscibility with the polyol-containing composition was also poor.
  • the isocyanate-containing composition has excellent storage stability, has good miscibility with the polyol-containing composition, and has a hardness of 60 or less after curing, which is good. good results were obtained.

Abstract

The present invention improves, in a polyurethane resin composition containing an inorganic filler, the miscibility of an isocyanate-containing composition with respect to a polyol-containing composition while suppressing the reduction in storage stability of the isocyanate-containing composition. An isocyanate-containing composition according to an embodiment of the present invention is to be used as a polyisocyanate component for a two-part reaction type polyurethane resin composition, and contains: an isocyanate group-containing urethane prepolymer obtained by causing a reaction between a polyisocyanate and a polyol having an average functional group number of 2.5 or less and a weight average molecular weight of 700 or more; an inorganic filler; a plasticizing agent; and at least one selected from the group consisting of compounds represented by general formula (1) and/or compounds represented by general formula (3).

Description

イソシアネート含有組成物および2液反応型ポリウレタン樹脂組成物Isocyanate-containing composition and two-component reactive polyurethane resin composition
 本発明は、2液反応型ポリウレタン樹脂組成物、およびそのポリイソシアネート成分として用いられるイソシアネート含有組成物に関する。 The present invention relates to a two-component reactive polyurethane resin composition and an isocyanate-containing composition used as a polyisocyanate component thereof.
 ポリウレタン樹脂組成物に無機充填剤を配合することにより放熱性を付与することが知られている。例えば、特許文献1には、ポリイソシアネートとポリブタジエンポリオールとの反応により得られるポリウレタン樹脂中に、無機充填剤と、可塑剤と、リン酸エステルを配合することが開示されており、無機充填剤を高い配合比率で含有させることにより放熱性を高めることができる。  It is known to add heat dissipation to a polyurethane resin composition by adding an inorganic filler. For example, Patent Document 1 discloses blending an inorganic filler, a plasticizer, and a phosphate ester into a polyurethane resin obtained by reacting a polyisocyanate and a polybutadiene polyol. Heat dissipation can be improved by containing it in a high compounding ratio.
特開2010-150473号公報JP 2010-150473 A
 ポリウレタン樹脂組成物に無機充填剤を配合する場合、一般に、ポリオール成分に無機充填剤を配合しておき、これに無機充填剤を含まないポリイソシアネート成分を加えて混合し、両成分を反応させている。しかしながら、無機充填剤を含むポリオール成分は、無機充填剤を含まないポリイソシアネート成分と混合しにくいという問題がある。両者の混合性を向上するために、ポリイソシアネート成分に無機充填剤を配合すると、ポリイソシアネート成分の貯蔵安定性が低下する。 When blending an inorganic filler into a polyurethane resin composition, generally, the inorganic filler is blended with the polyol component, and the polyisocyanate component containing no inorganic filler is added and mixed to react the two components. there is However, there is a problem that a polyol component containing an inorganic filler is difficult to mix with a polyisocyanate component containing no inorganic filler. If an inorganic filler is blended with the polyisocyanate component in order to improve the mixability of the two, the storage stability of the polyisocyanate component is lowered.
 本発明の実施形態は、以上の点に鑑み、無機充填剤を含むポリウレタン樹脂組成物において、ポリイソシアネート成分として用いられるイソシアネート含有組成物の貯蔵安定性の低下を抑えながら、ポリオール成分として用いられるポリオール含有組成物との混合性を向上することができる、イソシアネート含有組成物を提供することを目的とする。 In view of the above points, an embodiment of the present invention is a polyurethane resin composition containing an inorganic filler, while suppressing deterioration in storage stability of an isocyanate-containing composition used as a polyisocyanate component, polyol used as a polyol component An object of the present invention is to provide an isocyanate-containing composition capable of improving miscibility with the containing composition.
 本発明は以下に示される実施形態を含む。
[1] 2液反応型ポリウレタン樹脂組成物のポリイソシアネート成分として用いられるイソシアネート含有組成物であって、平均官能基数が2.5以下かつ重量平均分子量が700以上のポリオールとポリイソシアネートとを反応させて得られるイソシアネート基含有ウレタンプレポリマー、無機充填剤、可塑剤、および、下記一般式(1)で表される化合物および下記一般式(3)で表される化合物からなる群から選択される少なくとも一種を含み、一般式(1)において、RはOHまたは下記一般式(2)に示す基を表し、RがOHで表される化合物とRが一般式(2)で表される化合物との混合物でもよく、一般式(3)において、kは1または0の数を表し、Xは-CH-、-CO(CH-または-COCH=CH-である連結基を表し、ここでpは2~6の整数を表し、Zはカルボキシ基、スルホ基またはこれらの塩を表し、一般式(1)、一般式(2)および一般式(3)において、RおよびRはそれぞれ独立に炭素数6~30の炭化水素基を表し、AOおよびAOはそれぞれ独立に炭素数2~4のオキシアルキレン基を表し、mおよびnはアルキレンオキシドの平均付加モル数であってそれぞれ独立に1~100の数を表し、(AO)および(AO)はそれぞれ独立にオキシエチレン基の含有量が20モル%以上である、イソシアネート含有組成物。
Figure JPOXMLDOC01-appb-C000002
The present invention includes embodiments shown below.
[1] An isocyanate-containing composition used as a polyisocyanate component of a two-liquid reactive polyurethane resin composition, wherein a polyol having an average functional group number of 2.5 or less and a weight average molecular weight of 700 or more is reacted with a polyisocyanate. At least selected from the group consisting of an isocyanate group-containing urethane prepolymer, an inorganic filler, a plasticizer, and a compound represented by the following general formula (1) and a compound represented by the following general formula (3) In general formula (1), R 1 represents OH or a group represented by the following general formula (2), and a compound in which R 1 is OH and R 1 is represented by general formula (2) It may be a mixture with a compound, and in general formula (3), k represents the number of 1 or 0, and X represents a linking group of —CH 2 —, —CO(CH 2 ) p — or —COCH═CH—. where p represents an integer of 2 to 6, Z represents a carboxy group, a sulfo group or a salt thereof, and in general formula (1), general formula (2) and general formula (3), R 2 and R 3 each independently represents a hydrocarbon group having 6 to 30 carbon atoms, A 1 O and A 3 O each independently represent an oxyalkylene group having 2 to 4 carbon atoms, and m and n are the average addition of alkylene oxide. an isocyanate-containing composition, wherein the number of moles each independently represents a number from 1 to 100, and (A 1 O) m and (A 3 O) n each independently have an oxyethylene group content of 20 mol % or more; thing.
Figure JPOXMLDOC01-appb-C000002
[2] 前記ポリイソシアネートが、脂肪族ジイソシアネートおよび/または脂環式ジイソシアネートである、[1]に記載のイソシアネート含有組成物。
[3] 前記イソシアネート含有組成物100質量%中に前記無機充填剤を50~95質量%含有する、[1]または[2]に記載のイソシアネート含有組成物。
[4] 前記可塑剤がフタル酸ジエステルおよび/またはアジピン酸ジエステルである、[1]~[3]のいずれか1項に記載のイソシアネート含有組成物。
[5] [1]~[4]のいずれか1項に記載のイソシアネート含有組成物と、ポリオールおよび無機充填剤を含むポリオール含有組成物と、を備える、2液反応型ポリウレタン樹脂組成物。
[6] 放熱材料として用いられる[5]に記載の2液反応型ポリウレタン樹脂組成物。
[2] The isocyanate-containing composition according to [1], wherein the polyisocyanate is an aliphatic diisocyanate and/or an alicyclic diisocyanate.
[3] The isocyanate-containing composition according to [1] or [2], which contains 50 to 95% by mass of the inorganic filler in 100% by mass of the isocyanate-containing composition.
[4] The isocyanate-containing composition according to any one of [1] to [3], wherein the plasticizer is a diester phthalate and/or diester adipic acid.
[5] A two-component reactive polyurethane resin composition comprising the isocyanate-containing composition according to any one of [1] to [4], and a polyol-containing composition containing a polyol and an inorganic filler.
[6] The two-component reactive polyurethane resin composition according to [5], which is used as a heat dissipation material.
 本発明の実施形態によれば、イソシアネート含有組成物の貯蔵安定性の低下を抑えながら、ポリオール含有組成物との混合性を向上することができる。 According to the embodiment of the present invention, it is possible to improve the miscibility with the polyol-containing composition while suppressing deterioration of the storage stability of the isocyanate-containing composition.
 本実施形態に係る2液反応型ポリウレタン樹脂組成物は、ポリオール成分としてのポリオール含有組成物と、ポリイソシアネート成分としてのイソシアネート含有組成物と、を備える。 The two-liquid reactive polyurethane resin composition according to the present embodiment comprises a polyol-containing composition as a polyol component and an isocyanate-containing composition as a polyisocyanate component.
 <イソシアネート含有組成物>
 [ウレタンプレポリマー(a)]
 イソシアネート含有組成物は、ウレタンプレポリマー(a)を含む。ウレタンプレポリマー(a)として、本実施形態では、平均官能基数が2.5以下かつ重量平均分子量が700以上のポリオールと、ポリイソシアネートと、を構成成分とするイソシアネート基含有ウレタンプレポリマーが用いられる。
<Isocyanate-containing composition>
[Urethane prepolymer (a)]
The isocyanate-containing composition contains a urethane prepolymer (a). As the urethane prepolymer (a), in the present embodiment, an isocyanate group-containing urethane prepolymer containing a polyol having an average functional group number of 2.5 or less and a weight average molecular weight of 700 or more and a polyisocyanate as constituent components is used. .
 上記ポリオールの平均官能基数(平均水酸基数)が2.5以下であることにより、硬化後のポリウレタン樹脂の硬度を低く抑えることができ、例えば、2液反応型ポリウレタン樹脂組成物をバッテリー周りの隙間を埋めるギャップフィラーとして用いたときに、外力に対して発生する反力を低減することができる。上記ポリオールの平均官能基数は、2.4以下であることが好ましく、より好ましくは2.3以下である。上記ポリオールの平均官能基数の下限は特に限定されず、例えば平均官能基数は1.7以上でもよい。上記ポリオールは両末端に水酸基を持つことが好ましく、従って平均官能基数は2.0以上であることが好ましい。 When the average number of functional groups (average number of hydroxyl groups) of the polyol is 2.5 or less, the hardness of the polyurethane resin after curing can be kept low. When used as a gap filler to fill the gap, the reaction force generated against the external force can be reduced. The average number of functional groups of the polyol is preferably 2.4 or less, more preferably 2.3 or less. The lower limit of the average functional group number of the polyol is not particularly limited, and for example, the average functional group number may be 1.7 or more. The above polyol preferably has hydroxyl groups at both ends, and therefore preferably has an average functional group number of 2.0 or more.
 上記ポリオールの重量平均分子量(Mw)が700以上であることにより、イソシアネート含有組成物の貯蔵安定性を向上することができる。ポリオールの重量平均分子量は、800以上であることが好ましい。ポリオールの重量平均分子量の上限は、特に限定されず、例えば重量平均分子量は10000以下でもよく、5000以下でもよい。本明細書において重量平均分子量は、GPC法(ゲルパーミエーションクロマトグラフィー法)の測定により、標準ポリスチレンによる検量線を用いて算出される値である。 When the weight average molecular weight (Mw) of the polyol is 700 or more, the storage stability of the isocyanate-containing composition can be improved. The weight average molecular weight of the polyol is preferably 800 or more. The upper limit of the weight average molecular weight of the polyol is not particularly limited. As used herein, the weight average molecular weight is a value calculated using a calibration curve based on standard polystyrene by GPC (gel permeation chromatography) measurement.
 上記ポリオールとしては、特に限定されず、例えば、ポリエーテルポリオール、ポリエステルポリオール、ポリカーボネートポリオール、ポリブタジエンポリオール、ポリイソプレンポリオールなどが挙げられ、これらはいずれか一種または二種以上組み合わせて用いることができる。ポリエーテルポリオールとしては、例えば、多価アルコールやポリアミンにエチレンオキシドやプロピレンオキシドを付加させて得られたポリオキシアルキレンポリオールが挙げられる。ポリエステルポリオールとしては、アジピン酸やフタル酸などのカルボン酸と、エチレングリコール、1,4-ブタンジオールなどの多価アルコールを脱水縮合して得られるものが挙げられる。ポリブタジエンポリオールとしては、ポリブタジエン構造の両末端にそれぞれ水酸基を有するものがより好ましく、水素添加したものでもよい。これらの中でも、ポリプロピレングリコールおよび/またはポリブタジエンポリオールを用いることが好ましい。 The above polyols are not particularly limited, and examples include polyether polyols, polyester polyols, polycarbonate polyols, polybutadiene polyols, polyisoprene polyols, etc., and these can be used singly or in combination of two or more. Examples of polyether polyols include polyoxyalkylene polyols obtained by adding ethylene oxide or propylene oxide to polyhydric alcohols or polyamines. Polyester polyols include those obtained by dehydration condensation of carboxylic acids such as adipic acid and phthalic acid and polyhydric alcohols such as ethylene glycol and 1,4-butanediol. As the polybutadiene polyol, those having hydroxyl groups at both ends of the polybutadiene structure are more preferable, and hydrogenated polybutadiene polyols may also be used. Among these, it is preferable to use polypropylene glycol and/or polybutadiene polyol.
 上記ポリイソシアネートとしては、特に限定されず、例えば、脂肪族ジイソシアネート、脂環式ジイソシアネート、芳香族ジイソシアネートなどが挙げられるが、好ましくは、脂肪族ジイソシアネート、脂環式ジイソシアネートを用いることであり、両者を併用してもよい。 The polyisocyanate is not particularly limited, and examples thereof include aliphatic diisocyanates, alicyclic diisocyanates, and aromatic diisocyanates. Preferably, aliphatic diisocyanates and alicyclic diisocyanates are used. They may be used together.
 上記脂肪族ジイソシアネートとしては、例えば、テトラメチレンジイソシアネート、ドデカメチレンジイソシアネート、ヘキサメチレンジイソシアネート(HDI)、2,2,4-トリメチルヘキサメチレンジイソシアネート、2,4,4-トリメチルヘキサメチレンジイソシアネート、リジンジイソシアネート、2-メチルペンタン-1,5-ジイソシアネート、3-メチルペンタン-1,5-ジイソシアネートなどが挙げられる。また、これらを2種以上組み合わせて使用してもよい。 Examples of the aliphatic diisocyanate include tetramethylene diisocyanate, dodecamethylene diisocyanate, hexamethylene diisocyanate (HDI), 2,2,4-trimethylhexamethylene diisocyanate, 2,4,4-trimethylhexamethylene diisocyanate, lysine diisocyanate, 2 -methylpentane-1,5-diisocyanate, 3-methylpentane-1,5-diisocyanate and the like. Moreover, you may use these in combination of 2 or more types.
 脂環式ジイソシアネートとしては、例えば、イソホロンジイソシアネート、水添キシリレンジイソシアネート、4,4’-ジシクロヘキシルメタンジイソシアネート、1,4-シクロヘキサンジイソシアネート、メチルシクロヘキシレンジイソシアネート、1,3-ビス(イソシアネートメチル)シクロヘキサンなどが挙げられる。また、これらを2種以上組み合わせて使用してもよい。 Examples of alicyclic diisocyanates include isophorone diisocyanate, hydrogenated xylylene diisocyanate, 4,4′-dicyclohexylmethane diisocyanate, 1,4-cyclohexane diisocyanate, methylcyclohexylene diisocyanate, 1,3-bis(isocyanatomethyl)cyclohexane, and the like. is mentioned. Moreover, you may use these in combination of 2 or more types.
 ウレタンプレポリマー(a)は、上記ポリオールとポリイソシアネートとを、イソシアネート基過剰条件で反応させることにより得られる。ウレタンプレポリマー(a)を得るために用いるイソシアネート基と水酸基の割合(モル比)は、特に限定されないが、イソシアネート基:水酸基=1.5~2.5:1であることが好ましく、より好ましくは1.7~2.3:1である。ウレタンプレポリマー(a)は、好ましくは両末端にイソシアネート基を有する末端イソシアネートプレポリマーである。 The urethane prepolymer (a) is obtained by reacting the above-mentioned polyol and polyisocyanate under the condition of excessive isocyanate groups. The ratio (molar ratio) between the isocyanate group and the hydroxyl group used to obtain the urethane prepolymer (a) is not particularly limited, but the isocyanate group:hydroxyl group=1.5 to 2.5:1 is preferred, and more preferred. is 1.7-2.3:1. The urethane prepolymer (a) is preferably a terminal isocyanate prepolymer having isocyanate groups at both ends.
 ウレタンプレポリマー(a)の配合量は、特に限定されないが、イソシアネート含有組成物100質量%中に1.0~15質量%であることが好ましく、より好ましくは1.5~10質量%である。 The amount of the urethane prepolymer (a) is not particularly limited, but it is preferably 1.0 to 15% by mass, more preferably 1.5 to 10% by mass in 100% by mass of the isocyanate-containing composition. .
 [無機充填剤(b)]
 イソシアネート含有組成物は、無機充填剤(b)を含む。無機充填剤(b)を配合することにより、硬化後のポリウレタン樹脂に放熱性を付与することができる。
[Inorganic filler (b)]
The isocyanate-containing composition contains an inorganic filler (b). By blending the inorganic filler (b), heat dissipation can be imparted to the cured polyurethane resin.
 無機充填剤(b)としては、特に限定されず、例えば、アルミナ、酸化マグネシウムなどの金属酸化物、水酸化アルミニウム、水酸化マグネシウムなどの金属水酸化物、窒化アルミニウム、窒化ホウ素などの金属窒化物などが挙げられる。これらはいずれか一種または二種以上組み合わせて用いることができる。 The inorganic filler (b) is not particularly limited, and examples thereof include metal oxides such as alumina and magnesium oxide, metal hydroxides such as aluminum hydroxide and magnesium hydroxide, and metal nitrides such as aluminum nitride and boron nitride. etc. These can be used either singly or in combination of two or more.
 無機充填剤(b)の配合量は、イソシアネート含有組成物100質量%中に50~95質量%であることが好ましい。該配合量が50質量%以上であることにより、ポリウレタン樹脂の放熱性を向上することができる。該配合量が95質量%以下であることにより、イソシアネート含有組成物の貯蔵安定性を向上することができる。該配合量は、より好ましくは60質量%以上であり、より好ましくは70質量%以上であり、更に好ましくは80質量%以上であり、また90質量%以下であることが好ましい。 The content of the inorganic filler (b) is preferably 50 to 95% by mass in 100% by mass of the isocyanate-containing composition. When the compounding amount is 50% by mass or more, the heat dissipation property of the polyurethane resin can be improved. When the amount is 95% by mass or less, the storage stability of the isocyanate-containing composition can be improved. The blending amount is more preferably 60% by mass or more, more preferably 70% by mass or more, still more preferably 80% by mass or more, and preferably 90% by mass or less.
 [可塑剤(c)]
 イソシアネート含有組成物は、可塑剤(c)を含む。後述する(d)成分とともに可塑剤(c)を配合することで、イソシアネート含有組成物の貯蔵安定性が向上し、またポリオール含有組成物との混合性を向上することができる。
[Plasticizer (c)]
The isocyanate-containing composition contains a plasticizer (c). By blending the plasticizer (c) together with the component (d) described below, the storage stability of the isocyanate-containing composition can be improved, and the miscibility with the polyol-containing composition can be improved.
 可塑剤(c)としては、特に限定されず、ポリウレタン樹脂に配合される従来公知のものを使用することができ、例えば、ジオクチルフタレート、ジイソノニルフタレート、ジウンデシルフタレートなどのフタル酸ジエステル、ジオクチルアジペート、ジイソノニルアジペートなどのアジピン酸ジエステル、トリオクチルトリメリテート、トリイソノニルトリメリテートなどのトリメリット酸エステル、テトラオクチルピロメリテート、テトライソノニルピロメリテートなどのピロメリット酸エステル、トリクレジルホスフェート、トリキシレニルホスフェート、クレジルジフェニルホスフェートなどリン酸トリエステルなどが挙げられ、これらはいずれか一種または二種以上組み合わせて用いることができる。これらの中でも、可塑剤(c)としては、フタル酸ジエステルおよび/またはアジピン酸ジエステルが好ましい。 The plasticizer (c) is not particularly limited, and conventionally known ones blended in polyurethane resins can be used. Adipic acid diesters such as diisononyl adipate, trimellitic acid esters such as trioctyl trimellitate and triisononyl trimellitate, pyromellitic acid esters such as tetraoctyl pyromellitate and tetraisononyl pyromellitate, tricresyl phosphate , trixylenyl phosphate, cresyl diphenyl phosphate, and the like, and phosphoric acid triesters and the like, and these can be used either singly or in combination of two or more. Among these, phthalate diesters and/or adipate diesters are preferred as the plasticizer (c).
 可塑剤(c)の配合量は、特に限定されず、例えば、イソシアネート含有組成物100質量%中に1~40質量%でもよく、3~35質量%でもよく、5~30質量%でもよく、10~20質量%でもよい。 The amount of the plasticizer (c) is not particularly limited, and may be, for example, 1 to 40% by mass, 3 to 35% by mass, or 5 to 30% by mass in 100% by mass of the isocyanate-containing composition. It may be 10 to 20% by mass.
 [化合物(d)]
 イソシアネート含有組成物は、一般式(1)で表される化合物および一般式(3)で表される化合物からなる群から選択される少なくとも一種(以下、化合物(d)ということがある。)を含む。化合物(d)を可塑剤(c)とともに配合することにより、イソシアネート含有組成物の貯蔵安定性が向上し、またポリオール含有組成物との混合性を向上することができる。
[Compound (d)]
The isocyanate-containing composition contains at least one compound (hereinafter sometimes referred to as compound (d)) selected from the group consisting of compounds represented by general formula (1) and compounds represented by general formula (3). include. By blending the compound (d) together with the plasticizer (c), the storage stability of the isocyanate-containing composition can be improved, and the miscibility with the polyol-containing composition can be improved.
 化合物(d)のうち下記一般式(1)で表される化合物は、リン酸エステルである。
Figure JPOXMLDOC01-appb-C000003
Among compounds (d), compounds represented by the following general formula (1) are phosphate esters.
Figure JPOXMLDOC01-appb-C000003
 式(1)中、RはOHまたは下記一般式(2)に示す基を表す。式(1)で表されるリン酸エステルは、RがOHで表される化合物(モノエステル)でも、Rが一般式(2)で表される化合物(ジエステル)でも、両者の混合物でもよい。
Figure JPOXMLDOC01-appb-C000004
In formula (1), R 1 represents OH or a group represented by general formula (2) below. The phosphate ester represented by formula (1) may be a compound (monoester) in which R 1 is OH, a compound (diester) in which R 1 is represented by general formula (2), or a mixture of both. good.
Figure JPOXMLDOC01-appb-C000004
 式(1)および式(2)において、Rは、炭素数6~30の炭化水素基を表し、より好ましくは炭素数8~20の炭化水素基を表す。炭化水素基としては、直鎖又は分岐のアルキル基、又はアルケニル基、又はアリール基、又はアラルキル基が挙げられ、これらの基は置換基を有していてもよい。 In formulas (1) and (2), R 2 represents a hydrocarbon group having 6 to 30 carbon atoms, more preferably a hydrocarbon group having 8 to 20 carbon atoms. The hydrocarbon group includes a linear or branched alkyl group, alkenyl group, aryl group, or aralkyl group, and these groups may have a substituent.
 アルキル基の具体例としては、ヘキシル基、イソヘキシル基、ヘプチル基、イソヘプチル基、オクチル基、2-エチルヘキシル基、イソオクチル基、ノニル基、イソノニル基、デシル基、イソデシル基、ウンデシル基、イソウンデシル基、ドデシル基、イソドデシル基、トリデシル基、イソトリデシル基、テトラデシル基、イソテトラデシル基、ペンタデシル基、イソペンタデシル基、ヘキサデシル基、イソヘキサデシル基、2-ヘキシルデシル基、ヘプタデシル基、イソヘプタデシル基、オクタデシル基、イソオクタデシル基、2-オクチルデシル基、2-ヘキシルドデシル基、ノナデシル基、イソノナデシル基、エイコシル基、イソエイコシル基、ヘンエイコシル基、イソヘンエイコシル基、ドコシル基、イソドコシル基、トリコシル基、イソトリコシル基、テトラコシル基、イソテトラコシル基、ペンタコシル基、イソペンタコシル基、ヘキサコシル基、イソヘキサコシル基、ヘプタコシル基、イソヘプタコシル基等が挙げられる。 Specific examples of alkyl groups include hexyl, isohexyl, heptyl, isoheptyl, octyl, 2-ethylhexyl, isooctyl, nonyl, isononyl, decyl, isodecyl, undecyl, isoundecyl, and dodecyl. group, isododecyl group, tridecyl group, isotridecyl group, tetradecyl group, isotetradecyl group, pentadecyl group, isopentadecyl group, hexadecyl group, isohexadecyl group, 2-hexyldecyl group, heptadecyl group, isoheptadecyl group, octadecyl group, Isooctacyl group, 2-octyldecyl group, 2-hexyldodecyl group, nonadecyl group, isononadecyl group, eicosyl group, isoeicosyl group, heneicosyl group, isoheneicosyl group, docosyl group, isodocosyl group, tricosyl group, isotricosyl group, tetracosyl group group, isotetracosyl group, pentacosyl group, isopentacosyl group, hexacosyl group, isohexacosyl group, heptacosyl group, isoheptacosyl group and the like.
 アルケニル基の具体例としては、ヘキセニル基、ヘプテニル基、オクテニル基、ノネニル基、デセニル基、ウンデセニル基、ドデセニル基、テトラデセニル基、オレイル基等が挙げられる。 Specific examples of alkenyl groups include hexenyl, heptenyl, octenyl, nonenyl, decenyl, undecenyl, dodecenyl, tetradecenyl, and oleyl groups.
 アリール基の具体例としては、フェニル基、トリル基、キシリル基、クメニル基、メシチル基、エチルフェニル基、プロピルフェニル基、ブチルフェニル基、ペンチルフェニル基、ヘキシルフェニル基、ヘプチルフェニル基、オクチルフェニル基、ノニルフェニル基、デシルフェニル基、ウンデシルフェニル基、ドデシルフェニル基、スチレン化フェニル基、p-クミルフェニル基、フェニルフェニル基、ベンジルフェニル基、α-ナフチル基、β-ナフチル基等が挙げられる。 Specific examples of aryl groups include phenyl, tolyl, xylyl, cumenyl, mesityl, ethylphenyl, propylphenyl, butylphenyl, pentylphenyl, hexylphenyl, heptylphenyl, and octylphenyl groups. , nonylphenyl group, decylphenyl group, undecylphenyl group, dodecylphenyl group, styrenated phenyl group, p-cumylphenyl group, phenylphenyl group, benzylphenyl group, α-naphthyl group, β-naphthyl group and the like.
 アラルキル基の具体例としては、ベンジル基、フェネチル基、スチリル基、シンナミル基、ベンズヒドリル基、トリチル基等が挙げられる。 Specific examples of aralkyl groups include benzyl, phenethyl, styryl, cinnamyl, benzhydryl, and trityl groups.
 式(1)および式(2)において、AOは炭素数2~4のオキシアルキレン基を表す。mは、アルキレンオキシドの平均付加モル数を表し、1~100の数であり、好ましくは3~50の数であり、より好ましくは5~30の数であり、更に好ましくは7~20の数である。(AO)で表されるオキシアルキレン鎖は、オキシエチレン基の含有量が20モル%以上である。すなわち、オキシエチレン基をEOとし、オキシエチレン基以外のオキシアルキレン基をAOとしたとき、EO/AO(モル比)=100/0~20/80である。オキシエチレン基の含有量は50モル%以上であることが好ましく、70モル%以上であることがより好ましく、80モル%以上であることが更に好ましく、100モル%でもよい。オキシアルキレン鎖が複数種のオキシアルキレン基からなる場合、オキシアルキレン基はランダム付加でもよく、ブロック付加でもよい。 In formulas (1) and (2), A 1 O represents an oxyalkylene group having 2 to 4 carbon atoms. m represents the average number of added moles of alkylene oxide, and is a number of 1 to 100, preferably a number of 3 to 50, more preferably a number of 5 to 30, more preferably a number of 7 to 20 is. The oxyalkylene chain represented by (A 1 O) m has an oxyethylene group content of 20 mol % or more. That is, when the oxyethylene group is EO and the oxyalkylene group other than the oxyethylene group is AO, EO/AO (molar ratio) is 100/0 to 20/80. The content of oxyethylene groups is preferably 50 mol % or more, more preferably 70 mol % or more, even more preferably 80 mol % or more, and may be 100 mol %. When the oxyalkylene chain consists of a plurality of types of oxyalkylene groups, the oxyalkylene groups may be added randomly or by block addition.
 式(1)で表されるリン酸エステルは、例えば、炭素数6~30のモノアルコールやフェノール類に公知の方法によりアルキレンオキシドを付加した後、得られたポリエーテルモノオールのアルキレンオキシド末端の水酸基に、無水リン酸、オルトリン酸、ポリリン酸、オキシ塩化リン酸等のリン酸化剤を反応させることにより製造することができる。製造方法によってはモノエステル型の化合物とジエステル型の化合物が混合体として得られるが、これらは分離してもよいし、そのまま混合物として使用してもよい。また、水の存在下で反応させ、モノエステル型の化合物の含有割合を高めて使用することもできる。 The phosphate ester represented by formula (1) can be obtained, for example, by adding an alkylene oxide to a monoalcohol or phenol having 6 to 30 carbon atoms by a known method, and then adding the alkylene oxide terminal of the resulting polyether monool. It can be produced by reacting a hydroxyl group with a phosphorylating agent such as phosphoric anhydride, orthophosphoric acid, polyphosphoric acid, and phosphoric acid chloride. Depending on the manufacturing method, a monoester type compound and a diester type compound may be obtained as a mixture, and these may be separated or used as a mixture as they are. Moreover, it can also be used by reacting in the presence of water to increase the content of the monoester type compound.
 化合物(d)のうち下記一般式(3)で表される化合物は、硫酸エステル、スルホン酸またはカルボン酸であり、これらはいずれか一種でも二種以上併用してもよい。
Figure JPOXMLDOC01-appb-C000005
Among the compounds (d), the compound represented by the following general formula (3) is a sulfate ester, a sulfonic acid or a carboxylic acid, and these may be used alone or in combination of two or more.
Figure JPOXMLDOC01-appb-C000005
 式(3)中、kは、1または0の数を表す。Xは、-CH-、-CO(CH-または-COCH=CH-である連結基を表し、ここでpは2~6の整数を表す。 In formula (3), k represents the number of 1 or 0. X represents a linking group of -CH 2 -, -CO(CH 2 ) p - or -COCH=CH-, where p represents an integer of 2-6.
 式(3)中のZは、カルボキシ基(-COOH)、スルホ基(-SOH)、またはこれらの塩を表し、酸型と塩型が混在してもよい。塩としては、例えば、アルカリ金属塩、アルカリ土類金属塩、アンモニウム塩、アルカノールアミン塩が挙げられる。アルカリ金属塩の例としては、ナトリウム塩、カリウム塩、リチウム塩等が挙げられる。アルカリ土類金属塩の例としては、カルシウム塩及びマグネシウム塩等が挙げられる。アルカノールアミン塩の例としては、モノエタノールアミン塩、ジエタノールアミン塩、トリエタノールアミン塩、トリイソプロパノールアミン塩等が挙げられる。 Z in formula (3) represents a carboxy group (--COOH), a sulfo group (--SO 3 H), or a salt thereof, and may be in a mixture of acid and salt forms. Salts include, for example, alkali metal salts, alkaline earth metal salts, ammonium salts, and alkanolamine salts. Examples of alkali metal salts include sodium salts, potassium salts, lithium salts and the like. Examples of alkaline earth metal salts include calcium salts and magnesium salts. Examples of alkanolamine salts include monoethanolamine salts, diethanolamine salts, triethanolamine salts, triisopropanolamine salts, and the like.
 式(3)中のRは、炭素数6~30の炭化水素基を表し、より好ましくは炭素数8~20の炭化水素基を表す。炭化水素基としては、直鎖又は分岐のアルキル基、又はアルケニル基、又はアリール基、又はアラルキル基が挙げられ、これらの基は置換基を有していてもよい。アルキル基、アルケニル基、アリール基、アラルキル基の具体例については、Rと同様である。 R 3 in formula (3) represents a hydrocarbon group having 6 to 30 carbon atoms, more preferably a hydrocarbon group having 8 to 20 carbon atoms. The hydrocarbon group includes a linear or branched alkyl group, alkenyl group, aryl group, or aralkyl group, and these groups may have a substituent. Specific examples of the alkyl group, alkenyl group, aryl group, and aralkyl group are the same as those for R 2 .
 式(3)において、AOは炭素数2~4のオキシアルキレン基を表す。nは、アルキレンオキシドの平均付加モル数を表し、1~100の数であり、好ましくは3~50の数であり、より好ましくは5~30の数であり、更に好ましくは7~20の数である。(AO)で表されるオキシアルキレン鎖は、オキシエチレン基の含有量が20モル%以上である。すなわち、オキシエチレン基をEOとし、オキシエチレン基以外のオキシアルキレン基をAOとしたとき、EO/AO(モル比)=100/0~20/80である。オキシエチレン基の含有量は50モル%以上であることが好ましく、70モル%以上であることがより好ましく、80モル%以上であることが更に好ましく、100モル%でもよい。オキシアルキレン鎖が複数種のオキシアルキレン基からなる場合、オキシアルキレン基はランダム付加でもよく、ブロック付加でもよい。 In formula (3), A 3 O represents an oxyalkylene group having 2 to 4 carbon atoms. n represents the average number of added moles of alkylene oxide, and is a number of 1 to 100, preferably a number of 3 to 50, more preferably a number of 5 to 30, more preferably a number of 7 to 20 is. The oxyalkylene chain represented by (A 3 O) m has an oxyethylene group content of 20 mol % or more. That is, when the oxyethylene group is EO and the oxyalkylene group other than the oxyethylene group is AO, EO/AO (molar ratio) is 100/0 to 20/80. The content of oxyethylene groups is preferably 50 mol % or more, more preferably 70 mol % or more, even more preferably 80 mol % or more, and may be 100 mol %. When the oxyalkylene chain consists of a plurality of types of oxyalkylene groups, the oxyalkylene groups may be added randomly or by block addition.
 上記Zがカルボキシ基の場合、式(3)で表される化合物はカルボン酸である。その場合、式(3)のカルボン酸は、例えば、炭素数6~30のモノアルコールやフェノール類に公知の方法によりアルキレンオキシドを付加した後、モノハロゲン化酢酸またはその塩を用い、塩基存在下でアルキレンオキシド末端の水酸基と反応させることにより製造することができる。あるいはまた、酸無水物を用いてアルキレンオキシド末端の水酸基との開環反応による方法により製造することができる。モノハロゲン化酢酸またはその塩を用いる場合、式(3)において、k=1、Xが-CH-、ZがCOOHまたはその塩であるカルボン酸が得られる。また、酸無水物を用いた場合、k=1、Xが-CO(CH
-または-COCH=CH-、ZがCOOHであるカルボン酸が得られる。
When Z is a carboxy group, the compound represented by formula (3) is a carboxylic acid. In that case, the carboxylic acid of formula (3) can be obtained, for example, by adding an alkylene oxide to a monoalcohol or phenol having 6 to 30 carbon atoms by a known method, and then using a monohalogenated acetic acid or a salt thereof, in the presence of a base. can be produced by reacting with a hydroxyl group at the end of an alkylene oxide. Alternatively, it can be produced by a ring-opening reaction with an alkylene oxide terminal hydroxyl group using an acid anhydride. When a monohalogenated acetic acid or a salt thereof is used, a carboxylic acid of formula (3) is obtained in which k=1, X is —CH 2 —, and Z is COOH or a salt thereof. Also, when using an acid anhydride, k = 1, X is —CO(CH 2 ) p
- or -COCH=CH-, carboxylic acids where Z is COOH are obtained.
 上記Zがスルホ基の場合、式(3)で表される化合物は、k=0であれば硫酸エステルであり、k=1であればスルホン酸である。例えば、硫酸エステルについては、炭素数6~30のモノアルコールやフェノール類に公知の方法によりアルキレンオキシドを付加した後、スルファミン酸をアルキレンオキシド末端の水酸基と反応させることにより製造することができる。また、例えば、スルホン酸については、上記のアルキレンオキシドを付加した後、モノハロゲン化スルホン酸またはその塩を用いてアルキレンオキシド末端の水酸基と反応させることにより製造することができる。 When Z is a sulfo group, the compound represented by formula (3) is a sulfate ester if k=0, and a sulfonic acid if k=1. For example, a sulfate ester can be produced by adding an alkylene oxide to a monoalcohol or phenol having 6 to 30 carbon atoms by a known method, and then reacting sulfamic acid with a hydroxyl group at the end of the alkylene oxide. Further, for example, a sulfonic acid can be produced by adding the above alkylene oxide and then reacting it with a hydroxyl group at the end of the alkylene oxide using a monohalogenated sulfonic acid or a salt thereof.
 化合物(d)の配合量は、特に限定されず、例えば、イソシアネート含有組成物100質量%中に0.01~5質量%でもよく、0.03~2質量%でもよく、0.05~1質量%でもよい。 The amount of the compound (d) is not particularly limited, and may be, for example, 0.01 to 5% by mass, 0.03 to 2% by mass, or 0.05 to 1% in 100% by mass of the isocyanate-containing composition. % by mass may be used.
 [その他の成分]
 イソシアネート含有組成物において、ポリイソシアネート化合物としては、上記ウレタンプレポリマー(a)単独でもよいが、ウレタンプレポリマー(a)とともに他のポリイソシアネート化合物を併用してもよい。
[Other ingredients]
In the isocyanate-containing composition, the urethane prepolymer (a) may be used alone as the polyisocyanate compound, or the urethane prepolymer (a) may be used in combination with another polyisocyanate compound.
 他のポリイソシアネート化合物としては、特に限定されず、1分子中に2つ以上のイソシアネート基を有する種々のポリイソシアネート化合物を用いることができ、例えば、脂肪族ポリイソシアネート、脂環式ポリイソシアネート、および芳香族ポリイソシアネート、ならびにこれらの変性体および多核体が挙げられ、いずれか1種用いても2種以上併用してもよい。脂肪族ポリイソシアネートおよび脂環式ポリイソシアネートの具体例としては、上述した脂肪族ジイソシアネートおよび脂環式ジイソシアネートが挙げられる。芳香族ポリイソシアネートとしては、例えば、トリレンジイソシアネート(TDI)、ジフェニルメタンジイソシアネート(MDI)、4,4’-ジベンジルジイソシアネート、1,5-ナフチレンジイソシアネート、キシリレンジイソシアネート(XDI)、1,3-フェニレンジイソシアネート、1,4-フェニレンジイソシアネートなどが挙げられる。これらのポリイソシアネート化合物の変性体としては、例えば、イソシアヌレート変性体、アロファネート変性体、ビュレット変性体、アダクト変性体、カルボジイミド変性体などが挙げられる。 Other polyisocyanate compounds are not particularly limited, and various polyisocyanate compounds having two or more isocyanate groups in one molecule can be used, for example, aliphatic polyisocyanates, alicyclic polyisocyanates, and Aromatic polyisocyanates, and modified and polynuclear compounds thereof may be mentioned, and any one of them may be used alone or two or more of them may be used in combination. Specific examples of aliphatic polyisocyanates and alicyclic polyisocyanates include the above-mentioned aliphatic diisocyanates and alicyclic diisocyanates. Examples of aromatic polyisocyanates include tolylene diisocyanate (TDI), diphenylmethane diisocyanate (MDI), 4,4′-dibenzyl diisocyanate, 1,5-naphthylene diisocyanate, xylylene diisocyanate (XDI), 1,3- phenylene diisocyanate, 1,4-phenylene diisocyanate, and the like. Modified products of these polyisocyanate compounds include, for example, isocyanurate modified products, allophanate modified products, buret modified products, adduct modified products, and carbodiimide modified products.
 これらの中でも、他のポリイソシアネート化合物としては、上記ポリイソシアネート化合物のイソシアヌレート変性体を用いることが好ましく、より好ましくは脂肪族ポリイソシアネートのイソシアヌレート変性体である。その場合、該イソシアヌレート変性体の配合量は、特に限定されないが、例えば、イソシアネート含有組成物100質量%中に0.05~5質量%であることが好ましく、より好ましくは0.1~2質量%である。なお、ポリイソシアネート化合物は、上記ウレタンプレポリマー(a)を主成分とすることが好ましく、他のポリイソシアネート化合物を併用する場合でも、ポリイソシアネート化合物全体の50質量%超、より好ましくは60質量%以上が上記ウレタンプレポリマー(a)であることが好ましい。 Among these, as other polyisocyanate compounds, it is preferable to use isocyanurate-modified polyisocyanate compounds, more preferably isocyanurate-modified aliphatic polyisocyanates. In that case, the amount of the modified isocyanurate compounded is not particularly limited. % by mass. The polyisocyanate compound preferably contains the urethane prepolymer (a) as a main component, and even when used in combination with other polyisocyanate compounds, the total polyisocyanate compound exceeds 50% by mass, more preferably 60% by mass. The above is preferably the urethane prepolymer (a).
 イソシアネート含有組成物には、上記成分の他、例えば、吸湿剤、酸化防止剤、整泡剤、希釈剤、難燃剤、紫外線吸収剤、着色剤などの各種添加剤を、本実施形態の目的を損なわない範囲で加えることができる。 In addition to the above components, the isocyanate-containing composition contains various additives such as moisture absorbers, antioxidants, foam stabilizers, diluents, flame retardants, ultraviolet absorbers, and colorants. It can be added as long as it does not damage it.
 イソシアネート含有組成物のイソシアネート価(NCOV)は、特に限定されず、1.0~10mgKOH/gでもよく、1.5~8.0mgKOH/gでもよく、2.0~7.5mgKOH/gでもよい。 The isocyanate value (NCOV) of the isocyanate-containing composition is not particularly limited, and may be 1.0 to 10 mgKOH/g, 1.5 to 8.0 mgKOH/g, or 2.0 to 7.5 mgKOH/g. .
 <ポリオール含有組成物>
 [ポリオール(e)]
 ポリオール含有組成物は、ポリオール(e)を含む。ポリオール(e)としては、特に限定されず、例えば、ポリエーテルポリオール、ポリエステルポリオール、ポリカーボネートポリオール、ポリブタジエンポリオール、ポリイソプレンポリオールなどが挙げられ、これらはいずれか一種または二種以上組み合わせて用いることができる。これらの中でも、ポリブタジエンポリオールを用いることが好ましい。ポリブタジエンポリオールとしては、ポリブタジエン構造の両末端にそれぞれ水酸基を有するものがより好ましく、水素添加したものでもよい。ポリブタジエンポリオールの平均官能基数は2.0~2.5であることが好ましく、より好ましくは2.1~2.4である。
<Polyol-containing composition>
[Polyol (e)]
The polyol-containing composition contains polyol (e). The polyol (e) is not particularly limited, and examples thereof include polyether polyol, polyester polyol, polycarbonate polyol, polybutadiene polyol, polyisoprene polyol, etc., and these can be used singly or in combination of two or more. . Among these, polybutadiene polyol is preferably used. As the polybutadiene polyol, those having hydroxyl groups at both ends of the polybutadiene structure are more preferable, and hydrogenated polybutadiene polyols may also be used. The average functionality of polybutadiene polyol is preferably 2.0 to 2.5, more preferably 2.1 to 2.4.
 ポリオール(e)の配合量は、特に限定されないが、ポリオール含有組成物100質量%中に2~30質量%であることが好ましく、より好ましくは3~25質量%であり、更に好ましくは5~20質量%である。 The amount of the polyol (e) is not particularly limited, but it is preferably 2 to 30% by mass, more preferably 3 to 25% by mass, and still more preferably 5 to 30% by mass in 100% by mass of the polyol-containing composition. 20% by mass.
 [無機充填剤(f)]
 ポリオール含有組成物は、無機充填剤(f)を含む。無機充填剤(f)を配合することにより、硬化後のポリウレタン樹脂に放熱性を付与することができる。無機充填剤(f)としては、特に限定されず、例えば、アルミナ、酸化マグネシウムなどの金属酸化物、水酸化アルミニウム、水酸化マグネシウムなどの金属水酸化物、窒化アルミニウム、窒化ホウ素などの金属窒化物などが挙げられる。これらはいずれか一種または二種以上組み合わせて用いることができる。
[Inorganic filler (f)]
The polyol-containing composition contains an inorganic filler (f). By blending the inorganic filler (f), heat dissipation can be imparted to the cured polyurethane resin. The inorganic filler (f) is not particularly limited, and examples thereof include metal oxides such as alumina and magnesium oxide, metal hydroxides such as aluminum hydroxide and magnesium hydroxide, and metal nitrides such as aluminum nitride and boron nitride. etc. These can be used either singly or in combination of two or more.
 無機充填剤(f)の配合量は、ポリオール含有組成物100質量%中に50~95質量%であることが好ましく、より好ましくは60質量%以上であり、より好ましくは70質量%以上であり、更に好ましくは80質量%以上であり、また90質量%以下であることが好ましい。
 [可塑剤(g)]
 ポリオール含有組成物は、可塑剤(g)を含んでもよい。可塑剤(g)を含むことにより、硬化後のポリウレタン樹脂の硬度を下げることができる。可塑剤(g)としては、特に限定されず、上述のフタル酸ジエステル、アジピン酸ジエステル、トリメリット酸エステル、ピロメリット酸エステル、リン酸トリエステルなどが挙げられ、これらはいずれか一種または二種以上組み合わせて用いることができる。これらの中でも、可塑剤(g)としては、フタル酸ジエステルおよび/またはアジピン酸ジエステルが好ましい。
The content of the inorganic filler (f) is preferably 50 to 95% by mass, more preferably 60% by mass or more, and more preferably 70% by mass or more in 100% by mass of the polyol-containing composition. , more preferably 80% by mass or more, and preferably 90% by mass or less.
[Plasticizer (g)]
The polyol-containing composition may contain a plasticizer (g). By containing the plasticizer (g), the hardness of the cured polyurethane resin can be lowered. The plasticizer (g) is not particularly limited, and includes the above-mentioned phthalate diesters, adipate diesters, trimellitate esters, pyromellitic acid esters, and phosphate triesters. The above can be used in combination. Among these, phthalate diesters and/or adipate diesters are preferred as the plasticizer (g).
 可塑剤(g)の配合量は、特に限定されず、例えば、ポリオール含有組成物100質量%中に1~30質量%でもよく、3~25質量%でもよく、5~20質量%でもよく、5~15質量%でもよい。
 [リン酸エステル(h)]
 ポリオール含有組成物は、リン酸エステル(h)を含んでもよい。リン酸エステル(h)を含むことにより、ポリオール含有組成物(h)の粘度を低減することができる。リン酸エステル(h)としては上記式(1)で表される化合物が用いられる。
The amount of the plasticizer (g) is not particularly limited, and may be, for example, 1 to 30% by mass, 3 to 25% by mass, or 5 to 20% by mass in 100% by mass of the polyol-containing composition. It may be 5 to 15% by mass.
[Phosphate ester (h)]
The polyol-containing composition may contain a phosphate ester (h). By containing the phosphate ester (h), the viscosity of the polyol-containing composition (h) can be reduced. A compound represented by the above formula (1) is used as the phosphate ester (h).
 リン酸エステル(h)の配合量は、特に限定されず、例えば、ポリオール含有組成物100質量%中に0.01~5質量%でもよく、0.03~2質量%でもよく、0.05~1質量%でもよい。 The amount of the phosphate ester (h) is not particularly limited, and may be, for example, 0.01 to 5% by mass, 0.03 to 2% by mass, or 0.05% by mass in 100% by mass of the polyol-containing composition. It may be up to 1% by mass.
 [その他の成分]
 ポリオール含有組成物には、上記成分の他、例えば、吸湿剤、触媒、酸化防止剤、整泡剤、希釈剤、難燃剤、紫外線吸収剤、着色剤などの各種添加剤を、本実施形態の目的を損なわない範囲で加えることができる。
[Other ingredients]
In the polyol-containing composition, in addition to the above components, various additives such as a moisture absorbent, a catalyst, an antioxidant, a foam stabilizer, a diluent, a flame retardant, an ultraviolet absorber, and a colorant may be added according to the present embodiment. It can be added as long as it does not impair the purpose.
 触媒としては、例えば、有機スズ触媒、有機鉛触媒、有機ビスマス触媒などの金属触媒、アミン触媒などの各種ウレタン重合触媒を用いることができる。 As the catalyst, for example, metal catalysts such as organic tin catalysts, organic lead catalysts, and organic bismuth catalysts, and various urethane polymerization catalysts such as amine catalysts can be used.
 ポリオール含有組成物の水酸基価(OHV)は、特に限定されず、1.0~15mgKOH/gでもよく、2.0~10mgKOH/gでもよい。 The hydroxyl value (OHV) of the polyol-containing composition is not particularly limited, and may be 1.0-15 mgKOH/g or 2.0-10 mgKOH/g.
 <2液反応型ポリウレタン樹脂組成物>
 本実施形態に係る2液反応型ポリウレタン樹脂組成物は、通常は、ポリオール含有組成物である第1液とイソシアネート含有組成物である第2液とで構成されるが、ポリオール含有組成物およびイソシアネート含有組成物の他に、任意成分としての上記その他の成分を含むものを第3液として備えてもよい。
<Two-liquid reactive polyurethane resin composition>
The two-component reactive polyurethane resin composition according to the present embodiment is usually composed of a first component that is a polyol-containing composition and a second component that is an isocyanate-containing composition. In addition to the contained composition, the third liquid may contain any of the above-mentioned other components as optional components.
 2液反応型ポリウレタン樹脂組成物は、ポリオール含有組成物とイソシアネート含有組成物をそれぞれ調製することにより製造することができ、すなわち、ポリオール含有組成物とイソシアネート含有組成物はそれぞれ別の容器に充填されたものでもよい。別々の容器に充填されたポリオール含有組成物とイソシアネート含有組成物は、使用時に混合されることによりポリオールとポリイソシアネートが反応してポリウレタン樹脂が形成され、硬化してもよい。その際、加熱により硬化させてもよい。実施形態に係る2液反応型ポリウレタン樹脂組成物は、ポリオール含有組成物とイソシアネート含有組成物を混合して得られたものであってもよく、硬化前の液状でもよく、硬化していてもよい。 The two-component reactive polyurethane resin composition can be produced by preparing a polyol-containing composition and an isocyanate-containing composition, respectively. Anything is fine. The polyol-containing composition and the isocyanate-containing composition, which are filled in separate containers, may be mixed at the time of use so that the polyol and the polyisocyanate react to form a polyurethane resin and cure. At that time, it may be cured by heating. The two-liquid reactive polyurethane resin composition according to the embodiment may be obtained by mixing a polyol-containing composition and an isocyanate-containing composition, may be in a liquid state before curing, or may be in a cured state. .
 2液反応型ポリウレタン樹脂組成物において、ポリオール含有組成物とイソシアネート含有組成物との混合比は、特に限定されず、例えば、ポリオール含有組成物に含まれる水酸基に対するイソシアネート含有組成物に含まれるイソシアネート基のモル比NCO/OH(インデックス)が0.5~1.2でもよく、0.6~0.9でもよい。ここで、NCO/OHは、上記のイソシアネート価(NCOV)と水酸基価(OHV)から、NCOV/OHVとして算出される。 In the two-component reactive polyurethane resin composition, the mixing ratio of the polyol-containing composition and the isocyanate-containing composition is not particularly limited. The molar ratio NCO/OH (index) of may be from 0.5 to 1.2, or from 0.6 to 0.9. Here, NCO/OH is calculated as NCOV/OHV from the above isocyanate value (NCOV) and hydroxyl value (OHV).
 2液反応型ポリウレタン樹脂組成物において、ポリオール含有組成物とイソシアネート含有組成物との容量配合比は、特に限定されないが、ポリオール含有組成物/イソシアネート含有組成物=30/70~70/30であることが好ましく、より好ましくは40/60~60/40であり、更に好ましくは45/55~55/45である。 In the two-liquid reactive polyurethane resin composition, the mixing ratio by volume of the polyol-containing composition and the isocyanate-containing composition is not particularly limited, but is polyol-containing composition/isocyanate-containing composition=30/70 to 70/30. is preferred, more preferably 40/60 to 60/40, still more preferably 45/55 to 55/45.
 2液反応型ポリウレタン樹脂組成物の硬化後の硬度は、特に限定されないが、ショア(shore)Cの硬度が60以下であることが好ましく、30~60でもよい。 The hardness of the two-liquid reactive polyurethane resin composition after curing is not particularly limited, but the shore C hardness is preferably 60 or less, and may be 30-60.
 2液反応型ポリウレタン樹脂組成物の硬化後の熱伝導率(JIS R2618)は、特に限定されず、例えば1.0W/m・K以上でもよく、2.0W/m・K以上でもよく、2.0~3.0W/m・Kでもよい。 The thermal conductivity (JIS R2618) of the two-liquid reactive polyurethane resin composition after curing is not particularly limited, and may be, for example, 1.0 W/m·K or more, or 2.0 W/m·K or more. 0 to 3.0 W/m·K.
 <2液反応型ポリウレタン樹脂組成物の用途>
 本実施形態に係る2液反応型ポリウレタン樹脂組成物の用途は、特に限定されず、電気電子部品や車載向けなどの様々な用途に用いることができる。無機充填剤を配合することで放熱性を持つことから放熱材料として好適に用いられる。一実施形態として、バッテリー等の熱源に対する放熱性のギャップフィラーとして好適に用いられる。
<Application of two-liquid reactive polyurethane resin composition>
Applications of the two-liquid reactive polyurethane resin composition according to the present embodiment are not particularly limited, and can be used for various applications such as electrical and electronic parts and vehicles. It is suitable for use as a heat-dissipating material because it has heat-dissipating properties when an inorganic filler is added. As one embodiment, it is preferably used as a heat dissipation gap filler for a heat source such as a battery.
 以下、実施例及び比較例に基づいて、2液反応型ポリウレタン樹脂組成物について詳細に説明するが、本発明はこれにより限定されない。 The two-liquid reactive polyurethane resin composition will be described in detail below based on Examples and Comparative Examples, but the present invention is not limited thereto.
 実施例及び比較例において使用した原料を以下に示す。
 [無機充填剤]
・水酸化アルミニウム:住友化学株式会社製「CW-350」(密度2.4g/cm
・アルミナ1:デンカ株式会社製「DAW-45」(密度4.0g/cm
・アルミナ2:デンカ株式会社製「DAW-03」(密度4.0g/cm
Raw materials used in Examples and Comparative Examples are shown below.
[Inorganic filler]
・ Aluminum hydroxide: "CW-350" manufactured by Sumitomo Chemical Co., Ltd. (density 2.4 g / cm 3 )
・Alumina 1: “DAW-45” manufactured by Denka Co., Ltd. (density 4.0 g/cm 3 )
・Alumina 2: “DAW-03” manufactured by Denka Co., Ltd. (density 4.0 g/cm 3 )
 [ポリオール]
・ポリブタジエンポリオール:エボニック社製「POLYVEST HT」、平均官能基数2.3
 [可塑剤]
・DUP:フタル酸ジウンデシル
・DOA:アジピン酸ジ2-エチルヘキシル
[Polyol]
· Polybutadiene polyol: "POLYVEST HT" manufactured by Evonik, average functionality 2.3
[Plasticizer]
・DUP: diundecyl phthalate ・DOA: di-2-ethylhexyl adipate
 [ポリイソシアネート化合物]
・イソシアヌレート:イソシアヌレート変性HDI、万華化学製「HT600」
 [吸湿剤]
・吸湿剤:ユニオン昭和株式会社製「モレキュラーシーブ3AB」
[Polyisocyanate compound]
・Isocyanurate: Isocyanurate-modified HDI, Wanhua Chemical "HT600"
[Moisture absorbent]
・Moisture absorbent: "Molecular sieve 3AB" manufactured by Union Showa Co., Ltd.
 実施例および比較例で使用したイソシアネート基含有ウレタンプレポリマーであるプレポリマー1~7の合成例を以下に示す。 Synthesis examples of prepolymers 1 to 7, which are isocyanate group-containing urethane prepolymers used in Examples and Comparative Examples, are shown below.
 [プレポリマー1]
 撹拌機、還流冷却管、温度計及び窒素吹き込み管を備えた4つ口フラスコ内で、ヘキサメチレンジイソシアネート(HDI)(旭化成株式会社製「デュラネート50M」)33質量部と、ポリプロピレングリコール(平均官能基数2.0、重量平均分子量700、水酸基価160)(AGC株式会社製「エクセノール720」)67質量部とを90℃で2時間反応させることにより、イソシアネート基末端ウレタンプレポリマー(プレポリマー1)を得た。
[Prepolymer 1]
In a four-necked flask equipped with a stirrer, a reflux condenser, a thermometer and a nitrogen blowing tube, 33 parts by mass of hexamethylene diisocyanate (HDI) (manufactured by Asahi Kasei Corporation "Duranate 50M") and polypropylene glycol (average functional group number 2.0, weight average molecular weight 700, hydroxyl value 160) (“EXENOL 720” manufactured by AGC Co., Ltd.) and 67 parts by mass of the isocyanate group-terminated urethane prepolymer (prepolymer 1) by reacting at 90°C for 2 hours. Obtained.
 [プレポリマー2]
 撹拌機、還流冷却管、温度計及び窒素吹き込み管を備えた4つ口フラスコ内で、ヘキサメチレンジイソシアネート(HDI)(旭化成株式会社製「デュラネート50M」)26質量部と、ポリプロピレングリコール(平均官能基数2.0、重量平均分子量1000、水酸基価112)(AGC株式会社製「エクセノール1020」)74質量部とを90℃で2時間反応させることにより、イソシアネート基末端ウレタンプレポリマー(プレポリマー2)を得た。
[Prepolymer 2]
In a four-necked flask equipped with a stirrer, a reflux condenser, a thermometer and a nitrogen blowing tube, 26 parts by mass of hexamethylene diisocyanate (HDI) ("Duranate 50M" manufactured by Asahi Kasei Corporation) and polypropylene glycol (average functional group number 2.0, weight average molecular weight 1000, hydroxyl value 112) ("EXENOL 1020" manufactured by AGC Co., Ltd.) and 74 parts by mass of the isocyanate group-terminated urethane prepolymer (prepolymer 2) by reacting at 90°C for 2 hours. Obtained.
 [プレポリマー3]
 撹拌機、還流冷却管、温度計及び窒素吹き込み管を備えた4つ口フラスコ内で、ヘキサメチレンジイソシアネート(HDI)(旭化成株式会社製「デュラネート50M」)10質量部と、ポリプロピレングリコール(平均官能基数2.0、重量平均分子量3000、水酸基価35)(AGC株式会社製「エクセノール3020」)90質量部とを120℃で6時間反応させることにより、イソシアネート基末端ウレタンプレポリマー(プレポリマー3)を得た。
[Prepolymer 3]
10 parts by mass of hexamethylene diisocyanate (HDI) ("Duranate 50M" manufactured by Asahi Kasei Corporation) and polypropylene glycol (average functional group number 2.0, weight average molecular weight 3000, hydroxyl value 35) (“EXENOL 3020” manufactured by AGC Co., Ltd.) and 90 parts by mass of the isocyanate group-terminated urethane prepolymer (prepolymer 3) by reacting it at 120°C for 6 hours. Obtained.
 [プレポリマー4]
 撹拌機、還流冷却管、温度計及び窒素吹き込み管を備えた4つ口フラスコ内で、イソホロンジイソシアネート(IPDI)(EVONIK社製「IPDI」)31質量部と、ポリプロピレングリコール(平均官能基数2.0、重量平均分子量1000、水酸基価112)(AGC株式会社製「エクセノール1020」)69質量部とを90℃で2時間反応させることにより、イソシアネート基末端ウレタンプレポリマー(プレポリマー4)を得た。
[Prepolymer 4]
In a four-necked flask equipped with a stirrer, a reflux condenser, a thermometer and a nitrogen blowing tube, 31 parts by mass of isophorone diisocyanate (IPDI) ("IPDI" manufactured by EVONIK) and polypropylene glycol (average functionality: 2.0 , weight average molecular weight: 1000, hydroxyl value: 112) ("EXENOL 1020" manufactured by AGC) was reacted with 69 parts by mass at 90°C for 2 hours to obtain an isocyanate group-terminated urethane prepolymer (prepolymer 4).
 [プレポリマー5]
 撹拌機、還流冷却管、温度計及び窒素吹き込み管を備えた4つ口フラスコ内で、ヘキサメチレンジイソシアネート(HDI)(旭化成株式会社製「デュラネート50M」)46質量部と、ポリプロピレングリコール(平均官能基数2.0、重量平均分子量400、水酸基価281)(AGC株式会社製「エクセノール420」)54質量部とを90℃で2時間反応させることにより、イソシアネート基末端ウレタンプレポリマー(プレポリマー5)を得た。
[Prepolymer 5]
In a four-necked flask equipped with a stirrer, a reflux condenser, a thermometer and a nitrogen blowing tube, 46 parts by mass of hexamethylene diisocyanate (HDI) (manufactured by Asahi Kasei Corporation "Duranate 50M") and polypropylene glycol (average functional group number 2.0, weight average molecular weight 400, hydroxyl value 281) ("EXENOL 420" manufactured by AGC Co., Ltd.) and 54 parts by mass of the isocyanate group-terminated urethane prepolymer (Prepolymer 5) by reacting it at 90°C for 2 hours. Obtained.
 [プレポリマー6]
 撹拌機、還流冷却管、温度計及び窒素吹き込み管を備えた4つ口フラスコ内で、ヘキサメチレンジイソシアネート(HDI)(旭化成株式会社製「デュラネート50M」)12質量部と、ポリブタジエンポリオール(平均官能基数2.3、重量平均分子量3000、水酸基価46)(EVONIK社製「POLYVEST HT」)88質量部とを90℃で2時間反応させることにより、イソシアネート基末端ウレタンプレポリマー(プレポリマー6)を得た。
[Prepolymer 6]
12 parts by mass of hexamethylene diisocyanate (HDI) ("Duranate 50M" manufactured by Asahi Kasei Corporation) and polybutadiene polyol (average functional group number 2.3, weight average molecular weight 3000, hydroxyl value 46) ("POLYVEST HT" manufactured by EVONIK) and 88 parts by mass of the mixture were reacted at 90°C for 2 hours to obtain an isocyanate group-terminated urethane prepolymer (prepolymer 6). rice field.
 [プレポリマー7]
 撹拌機、還流冷却管、温度計及び窒素吹き込み管を備えた4つ口フラスコ内で、ヘキサメチレンジイソシアネート(HDI)(旭化成株式会社製「デュラネート50M」)33質量部と、ひまし油(平均官能基数2.7、重量平均分子量941、水酸基価161)(伊藤製油株式会社製「URIC H30」)68質量部とを90℃で2時間反応させることにより、イソシアネート基末端ウレタンプレポリマー(プレポリマー7)を得た。
[Prepolymer 7]
In a four-necked flask equipped with a stirrer, a reflux condenser, a thermometer and a nitrogen blowing tube, 33 parts by mass of hexamethylene diisocyanate (HDI) (“Duranate 50M” manufactured by Asahi Kasei Corporation) and castor oil (average functional group number of 2 .7, weight average molecular weight 941, hydroxyl value 161) ("URIC H30" manufactured by Ito Seiyu Co., Ltd.) and 68 parts by mass of the isocyanate group-terminated urethane prepolymer (prepolymer 7) were reacted at 90°C for 2 hours. Obtained.
 実施例および比較例で使用した化合物(d)であるリン酸エステル1~3、硫酸アンモニウム塩、カルボン酸1~3の合成例を以下に示す。 Synthesis examples of phosphate esters 1 to 3, ammonium sulfate salts, and carboxylic acids 1 to 3, which are compounds (d) used in Examples and Comparative Examples, are shown below.
 [リン酸エステル1]
 撹拌機、温度計、窒素導入管、原料仕込用導入管、及び減圧用排気管を備えた温度調節機付きのオートクレーブに、トリデシルアルコール200g(1.0モル)、触媒として水酸化カリウム5gを仕込み、オートクレーブ内の雰囲気を窒素で置換し、圧力0.15MPa、温度130℃の条件下でエチレンオキサイド440g(10モル)を逐次導入して反応させた後、酢酸で中和した。次いで、得られたエチレンオキシド10モル付加体に無水リン酸47g(0.33モル)を80℃で5時間反応させることで一般式(1)のリン酸エステル1(式中、R:トリデシル、AO:EO、m:10、モノエステルとジエステルのモル比1:1の混合物)を得た。
[Phosphate ester 1]
200 g (1.0 mol) of tridecyl alcohol and 5 g of potassium hydroxide as a catalyst were placed in an autoclave equipped with a temperature controller equipped with a stirrer, a thermometer, a nitrogen inlet tube, a raw material inlet tube, and a decompression exhaust tube. After charging, the atmosphere in the autoclave was replaced with nitrogen, and 440 g (10 mol) of ethylene oxide was successively introduced under the conditions of a pressure of 0.15 MPa and a temperature of 130° C., followed by neutralization with acetic acid. Next, 47 g (0.33 mol) of phosphoric anhydride was reacted with the resulting 10 mol adduct of ethylene oxide at 80° C. for 5 hours to obtain a phosphoric acid ester 1 of general formula (1) (wherein R 2 : tridecyl, A 1 O:EO, m:10, a mixture of mono- and diesters in a molar ratio of 1:1).
 [リン酸エステル2]
 撹拌機、温度計、窒素導入管、原料仕込用導入管、及び減圧用排気管を備えた温度調節機付きのオートクレーブに、ラウリル186g(1.0モル)、触媒として水酸化カリウム5gを仕込み、オートクレーブ内の雰囲気を窒素で置換し、圧力0.15MPa、温度130℃の条件下でエチレンオキサイド815g(18.5モル)を逐次導入して反応させた後、酢酸で中和した。次いで、得られたエチレンオキシド18.5モル付加体に無水リン酸47g(0.33モル)を80℃で5時間反応させることで一般式(1)のリン酸エステル2(式中、R:ラウリル、AO:EO、m:18.5、モノエステルとジエステルのモル比1:1の混合物)を得た。
[Phosphate ester 2]
186 g (1.0 mol) of lauryl and 5 g of potassium hydroxide as a catalyst are charged into an autoclave equipped with a temperature controller equipped with a stirrer, a thermometer, a nitrogen inlet tube, a raw material inlet tube, and a decompression exhaust tube, The atmosphere in the autoclave was replaced with nitrogen, and 815 g (18.5 mol) of ethylene oxide was successively introduced under conditions of a pressure of 0.15 MPa and a temperature of 130° C., followed by neutralization with acetic acid. Next, 47 g (0.33 mol) of phosphoric anhydride was reacted with the obtained 18.5 mol adduct of ethylene oxide at 80° C. for 5 hours to give the phosphoric acid ester 2 of general formula (1) (wherein R 2 : Lauryl, A 1 O:EO, m: 18.5, a mixture of mono- and diesters in a molar ratio of 1:1).
 [リン酸エステル3]
 撹拌機、温度計、窒素導入管、原料仕込用導入管、及び減圧用排気管を備えた温度調節機付きのオートクレーブに、トリデシルアルコール200g(1.0モル)、触媒として水酸化カリウム5gを仕込み、オートクレーブ内の雰囲気を窒素で置換し、圧力0.15MPa、温度130℃の条件下でエチレンオキサイド264g(6モル)とプロピレンオキシド290g(5モル)を同時に反応させた後、酢酸で中和した。次いで、得られたエチレンオキシドおよびプロピレンオキシド付加体に無水リン酸47g(0.33モル)を80℃で5時間反応させることで一般式(1)のリン酸エステル3(式中、R:トリデシル、(AO):EO/PO(オキシプロピレン基)=6/5(モル比)のランダム付加体、m:11、モノエステルとジエステルのモル比1:1の混合物)を得た。
[Phosphate ester 3]
200 g (1.0 mol) of tridecyl alcohol and 5 g of potassium hydroxide as a catalyst were placed in an autoclave equipped with a temperature controller equipped with a stirrer, a thermometer, a nitrogen inlet tube, a raw material inlet tube, and a decompression exhaust tube. After charging, the atmosphere in the autoclave was replaced with nitrogen, and 264 g (6 mol) of ethylene oxide and 290 g (5 mol) of propylene oxide were simultaneously reacted under conditions of a pressure of 0.15 MPa and a temperature of 130°C, and then neutralized with acetic acid. did. Then, the resulting ethylene oxide and propylene oxide adduct was reacted with 47 g (0.33 mol) of phosphoric anhydride at 80° C. for 5 hours to obtain a phosphoric acid ester 3 of general formula (1) (wherein R 2 : tridecyl). , (A 1 O) m : EO/PO (oxypropylene group) = 6/5 (molar ratio) random adduct, m: 11, mixture of monoester and diester molar ratio 1:1).
 [硫酸アンモニウム塩]
 撹拌機、温度計、還流管を備えた反応容器に、スチレン化フェノール(モノスチレン化フェノール:ジスチレン化フェノール:トリスチレン化フェノール=80:19:1(質量比)の混合物)220g(1.0モル)をオートクレーブに移し、触媒として水酸化カリウムを用いて、圧力0.15MPa、温度130℃の条件にて、エチレンオキサイド792g(18モル)を付加反応させることにより、ポリオキシエチレンスチレン化フェニルエーテルを得た。続いて、得られたポリオキシエチレンスチレン化フェニルエーテルを、撹拌器、温度計及び窒素導入管を備えた反応容器に移し、窒素雰囲気下、温度120℃の条件にてスルファミン酸97g(1モル)を反応させた。その後、モノエタノールアミンを添加して1質量%水溶液におけるpHが7.5となるように調整し、一般式(3)の硫酸アンモニウム塩(式中、R:スチレン化フェニル、AO:EO、n:18、k:0、Z:-SONH)を得た。
[Ammonium sulfate]
220 g (1.0 mol) is transferred to an autoclave, and using potassium hydroxide as a catalyst, 792 g (18 mol) of ethylene oxide is subjected to an addition reaction at a pressure of 0.15 MPa and a temperature of 130 ° C. to give polyoxyethylene styrenated phenyl ether. got Subsequently, the obtained polyoxyethylene styrenated phenyl ether was transferred to a reaction vessel equipped with a stirrer, a thermometer and a nitrogen inlet tube, and 97 g (1 mol) of sulfamic acid was added under a nitrogen atmosphere at a temperature of 120°C. reacted. Thereafter, monoethanolamine is added to adjust the pH in a 1% by mass aqueous solution to 7.5, and the ammonium sulfate salt of general formula (3) (wherein R 3 : styrenated phenyl, A 3 O: EO , n: 18, k: 0, Z: —SO 3 NH 4 ).
 [カルボン酸1]
 撹拌機、温度計、窒素導入管、原料仕込用導入管、及び減圧用排気管を備えた温度調節機付きのオートクレーブに、トリデシルアルコール200g(1.0モル)、触媒として水酸化カリウム5gを仕込み、オートクレーブ内の雰囲気を窒素で置換し、圧力0.15MPa、温度130℃の条件下でエチレンオキサイド440g(10モル)を逐次導入して反応させた後、酢酸で中和した。次いで、トルエン溶媒中に、上記エチレンオキシド付加物及びモノクロロ酢酸ナトリウム151g(1.3モル)を反応器にとり、均一になるよう撹拌した。その後、反応系の温度が60℃の条件で、水酸化ナトリウム52g(1.3モル)を添加した後、反応系の温度を80℃に昇温させ、3時間反応させた。反応後、98質量%硫酸120g(1.2モル)を滴下することにより、白色懸濁溶液を得た。次いで、この白色懸濁溶液を蒸留水で洗浄し、溶媒を減圧留去することにより、一般式(3)のカルボン酸1を得た(式中、R:トリデシル、AO:EO、n:10、k:1、X:-CH-、Z:-COOH)。
[Carboxylic acid 1]
200 g (1.0 mol) of tridecyl alcohol and 5 g of potassium hydroxide as a catalyst were placed in an autoclave equipped with a temperature controller equipped with a stirrer, a thermometer, a nitrogen inlet tube, a raw material inlet tube, and a decompression exhaust tube. After charging, the atmosphere in the autoclave was replaced with nitrogen, and 440 g (10 mol) of ethylene oxide was successively introduced under the conditions of a pressure of 0.15 MPa and a temperature of 130° C., followed by neutralization with acetic acid. Next, the above ethylene oxide adduct and 151 g (1.3 mol) of sodium monochloroacetate were placed in a reactor in a toluene solvent and stirred until uniform. After that, 52 g (1.3 mol) of sodium hydroxide was added under the condition that the temperature of the reaction system was 60° C., and then the temperature of the reaction system was raised to 80° C., and the reaction was carried out for 3 hours. After the reaction, 120 g (1.2 mol) of 98% by mass sulfuric acid was added dropwise to obtain a white suspension solution. Subsequently, this white suspension was washed with distilled water, and the solvent was distilled off under reduced pressure to obtain carboxylic acid 1 of general formula (3) (wherein R 3 : tridecyl, A 3 O: EO, n: 10, k: 1, X: —CH 2 —, Z: —COOH).
 [カルボン酸2]
 撹拌機、温度計、窒素導入管、原料仕込用導入管、及び減圧用排気管を備えた温度調節機付きのオートクレーブに、トリデシルアルコール200g(1.0モル)、触媒として水酸化カリウム5gを仕込み、オートクレーブ内の雰囲気を窒素で置換し、圧力0.15MPa、温度130℃の条件下でエチレンオキサイド440g(10モル)を逐次導入して反応させた後、酢酸で中和した。次いで、スベリン酸無水物156g(1モル)を120℃で2時間反応させることで一般式(3)のカルボン酸2(式中、R:トリデシル、AO:EO、n:10、k:1、X:-CO-(CH-、Z:-COOH)。
[Carboxylic acid 2]
200 g (1.0 mol) of tridecyl alcohol and 5 g of potassium hydroxide as a catalyst were placed in an autoclave equipped with a temperature controller equipped with a stirrer, a thermometer, a nitrogen inlet tube, a raw material inlet tube, and a decompression exhaust tube. After charging, the atmosphere in the autoclave was replaced with nitrogen, and 440 g (10 mol) of ethylene oxide was successively introduced under the conditions of a pressure of 0.15 MPa and a temperature of 130° C., followed by neutralization with acetic acid. Then, 156 g (1 mol) of suberic anhydride is reacted at 120° C. for 2 hours to give carboxylic acid 2 of general formula (3) (wherein R 3 : tridecyl, A 3 O: EO, n: 10, k : 1, X: -CO-(CH 2 ) 6 -, Z: -COOH).
 [カルボン酸3]
 撹拌機、温度計、窒素導入管、原料仕込用導入管、及び減圧用排気管を備えた温度調節機付きのオートクレーブに、トリデシルアルコール200g(1.0モル)、触媒として水酸化カリウム5gを仕込み、オートクレーブ内の雰囲気を窒素で置換し、圧力0.15MPa、温度130℃の条件下でエチレンオキサイド440g(10モル)を逐次導入して反応させた後、酢酸で中和した。次いで、無水マレイン酸198g(1モル)を120℃で2時間反応させることで一般式(3)のカルボン酸3を得た(式中、R:トリデシル、AO:EO、n:10、k:1、X:-CO-CH=CH-、Z:-COOH)。
[Carboxylic acid 3]
200 g (1.0 mol) of tridecyl alcohol and 5 g of potassium hydroxide as a catalyst were placed in an autoclave equipped with a temperature controller equipped with a stirrer, a thermometer, a nitrogen inlet tube, a raw material inlet tube, and a decompression exhaust tube. After charging, the atmosphere in the autoclave was replaced with nitrogen, and 440 g (10 mol) of ethylene oxide was successively introduced under the conditions of a pressure of 0.15 MPa and a temperature of 130° C., followed by neutralization with acetic acid. Subsequently, 198 g (1 mol) of maleic anhydride was reacted at 120° C. for 2 hours to obtain carboxylic acid 3 of general formula (3) (wherein R 3 : tridecyl, A 3 O: EO, n: 10 , k: 1, X: —CO—CH 2 =CH 2 —, Z: —COOH).
 平均官能基数、重量平均分子量、水酸基価、およびイソシアネート価の測定方法は以下のとおりである。
 [平均官能基数]
 平均官能基数は、GPC(ゲルパーミエーションクロマトグラフィー)により数平均分子量(Mn)を測定し、JIS K1557-1:2007のA法に準じて水酸基価(mgKOH/g)を測定して下記式より算出される値である。
 平均官能基数={(水酸基価)×(Mn)}/(56.11×1000)
Methods for measuring the average functional group number, weight average molecular weight, hydroxyl value, and isocyanate value are as follows.
[Average number of functional groups]
The average number of functional groups, GPC (gel permeation chromatography) to measure the number average molecular weight (Mn), according to the A method of JIS K1557-1: 2007 to measure the hydroxyl value (mgKOH / g) from the following formula It is a calculated value.
Average functionality = {(hydroxyl value) x (Mn)}/(56.11 x 1000)
 [重量平均分子量および数平均分子量]
 GPC法(ゲルパーミエーションクロマトグラフィー法)で測定し、標準ポリスチレンの分子量と溶出時間から作成した検量線を用いて、測定試料の溶出時間から算出した値である。測定条件に関し、カラムにTSKgel Hxl(東ソー株式会社)を用いて、移動相はTHF(テトラヒドロフラン)、移動相流量は1.0mL/min、カラム温度は40℃、試料注入量は50μL、試料濃度は0.2質量%の条件で測定を行った。
[Weight average molecular weight and number average molecular weight]
It is a value calculated from the elution time of a measurement sample using a calibration curve prepared from the molecular weight of standard polystyrene and the elution time measured by the GPC method (gel permeation chromatography method). Regarding the measurement conditions, TSKgel Hxl (Tosoh Corporation) was used for the column, the mobile phase was THF (tetrahydrofuran), the mobile phase flow rate was 1.0 mL/min, the column temperature was 40°C, the sample injection volume was 50 µL, and the sample concentration was Measurement was performed under the condition of 0.2% by mass.
 [水酸基価]
 JIS K1557-1:2007のA法に準じて測定。
[Hydroxyl value]
Measured according to A method of JIS K1557-1:2007.
 [イソシアネート価]
 イソシアネート含有率をJIS K1603-1:2007のA法に準拠して測定し、求めたイソシアネート含有率から下記式によりイソシアネート価を算出される値である。
Figure JPOXMLDOC01-appb-M000006
 56.11:水酸化カリウムの分子量
 1000:gからmgへの変換係数
 42.02:NCOの分子量
 100:百分率から/gへの変換係数
[Isocyanate value]
The isocyanate content is measured according to A method of JIS K1603-1:2007, and the isocyanate value is calculated by the following formula from the obtained isocyanate content.
Figure JPOXMLDOC01-appb-M000006
56.11: Molecular weight of potassium hydroxide 1000: Conversion factor from g to mg 42.02: Molecular weight of NCO 100: Conversion factor from percentage to /g
 [実施例1~16および比較例1~5]
 下記表1に示す配合(質量%)に従い、ポリオール含有組成物A1~7を調製するとともに、下記表2に示す配合(質量%)に従い、イソシアネート含有組成物B1~21を調製した。イソシアネート含有組成物B1~21については、貯蔵安定性を評価した。また、下記表3に示す組合せおよび容量配合比にてポリオール含有組成物A1~7とイソシアネート含有組成物B1~21を混合し、両者の混合性を評価した。また、混合し硬化させた後に硬化物の硬度を測定した。貯蔵安定性、混合性、および硬度の測定・評価方法は以下のとおりである。
[Examples 1 to 16 and Comparative Examples 1 to 5]
Polyol-containing compositions A1-7 were prepared according to the formulations (% by mass) shown in Table 1 below, and isocyanate-containing compositions B1-21 were prepared according to the formulations (% by mass) shown in Table 2 below. The isocyanate-containing compositions B1-21 were evaluated for storage stability. In addition, polyol-containing compositions A1 to 7 and isocyanate-containing compositions B1 to 21 were mixed in the combinations and volume mixing ratios shown in Table 3 below, and the miscibility of the two was evaluated. Moreover, after mixing and curing, the hardness of the cured product was measured. The storage stability, mixability, and hardness measurement/evaluation methods are as follows.
 [貯蔵安定性]
 調製したイソシアネート含有組成物を60℃で1か月貯蔵した後の性状を評価し、液体のままの場合を「液体」、液体から固化した場合を「固化」と表3に示した。
[Storage stability]
The properties of the prepared isocyanate-containing composition after being stored at 60° C. for one month were evaluated.
 [混合性]
 自転公転ミキサーを用いて、ポリオール含有組成物とイソシアネート含有組成物を、常温下、2000rpmで30分間攪拌し、それにより混合が可能であった場合を「〇」、混合できなかった場合「×」と表3に示した。
[Mixability]
Using a rotation/revolution mixer, the polyol-containing composition and the isocyanate-containing composition were stirred at room temperature and 2000 rpm for 30 minutes, and "O" was obtained when mixing was possible, and "X" was obtained when mixing was not possible. and shown in Table 3.
 [硬度]
 ポリオール含有組成物とイソシアネート含有組成物を常温下で混合して硬化させ、常温にて7日間経過後の硬度(ショアC)をJIS K7312:1996(スプリング硬さ試験タイプC)により測定した。
[hardness]
The polyol-containing composition and the isocyanate-containing composition were mixed and cured at room temperature, and the hardness (Shore C) after 7 days at room temperature was measured according to JIS K7312:1996 (spring hardness test type C).
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 結果は表3に示すとおりである。比較例1では、イソシアネート基含有ウレタンプレポリマーを構成するポリオールの平均官能基数が大きいため、硬化物の硬度が高かった。比較例2では、イソシアネート基含有ウレタンプレポリマーを構成するポリオールの重量平均分子量が小さいため、イソシアネート含有組成物は60℃×1か月の貯蔵で固まってしまい、貯蔵安定性が低かった。比較例3では、イソシアネート含有組成物にリン酸エステルや硫酸アンモニウム塩等の化合物(d)を配合していないため、貯蔵安定性が低下した。比較例4では、イソシアネート含有組成物に無機充填剤を配合していないため、イソシアネート含有組成物とポリオール含有組成物との混合性が悪かった。比較例5では、イソシアネート含有組成物に可塑剤を配合していないため、貯蔵安定性に劣っており、また、ポリオール含有組成物との混合性にも劣っていた。 The results are shown in Table 3. In Comparative Example 1, the hardness of the cured product was high because the polyol constituting the isocyanate group-containing urethane prepolymer had a large average number of functional groups. In Comparative Example 2, since the weight-average molecular weight of the polyol constituting the isocyanate group-containing urethane prepolymer was small, the isocyanate-containing composition solidified after being stored at 60°C for one month, resulting in low storage stability. In Comparative Example 3, since the isocyanate-containing composition did not contain a compound (d) such as a phosphate ester or an ammonium sulfate salt, the storage stability was lowered. In Comparative Example 4, since the isocyanate-containing composition did not contain an inorganic filler, the isocyanate-containing composition and the polyol-containing composition were poorly mixed. In Comparative Example 5, since the isocyanate-containing composition did not contain a plasticizer, the storage stability was poor, and the miscibility with the polyol-containing composition was also poor.
 これに対し、実施例1~16であると、イソシアネート含有組成物の貯蔵安定性に優れるとともに、ポリオール含有組成物との混合性も良好であり、また硬化後の硬度も60以下であり、良好な結果が得られた。 On the other hand, in Examples 1 to 16, the isocyanate-containing composition has excellent storage stability, has good miscibility with the polyol-containing composition, and has a hardness of 60 or less after curing, which is good. good results were obtained.
 以上、本発明のいくつかの実施形態を説明したが、これら実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその省略、置き換え、変更などは、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。 Although several embodiments of the present invention have been described above, these embodiments are presented as examples and are not intended to limit the scope of the invention. These embodiments can be implemented in various other forms, and various omissions, replacements, and modifications can be made without departing from the scope of the invention. These embodiments, their omissions, replacements, modifications, etc., are included in the invention described in the scope of claims and equivalents thereof, as well as being included in the scope and gist of the invention.

Claims (6)

  1.  2液反応型ポリウレタン樹脂組成物のポリイソシアネート成分として用いられるイソシアネート含有組成物であって、
     平均官能基数が2.5以下かつ重量平均分子量が700以上のポリオールとポリイソシアネートとを反応させて得られるイソシアネート基含有ウレタンプレポリマー、
     無機充填剤、
     可塑剤、および、
     下記一般式(1)で表される化合物および下記一般式(3)で表される化合物からなる群から選択される少なくとも一種を含み、
     一般式(1)において、RはOHまたは下記一般式(2)に示す基を表し、RがOHで表される化合物とRが一般式(2)で表される化合物との混合物でもよく、
     一般式(3)において、kは1または0の数を表し、Xは-CH-、-CO(CH-または-COCH=CH-である連結基を表し、ここでpは2~6の整数を表し、Zはカルボキシ基、スルホ基またはこれらの塩を表し、
     一般式(1)、一般式(2)および一般式(3)において、RおよびRはそれぞれ独立に炭素数6~30の炭化水素基を表し、AOおよびAOはそれぞれ独立に炭素数2~4のオキシアルキレン基を表し、mおよびnはアルキレンオキシドの平均付加モル数であってそれぞれ独立に1~100の数を表し、(AO)および(AO)はそれぞれ独立にオキシエチレン基の含有量が20モル%以上である、
     イソシアネート含有組成物。
    Figure JPOXMLDOC01-appb-C000001
    An isocyanate-containing composition used as a polyisocyanate component of a two-pack reactive polyurethane resin composition,
    An isocyanate group-containing urethane prepolymer obtained by reacting a polyol having an average functional group number of 2.5 or less and a weight average molecular weight of 700 or more with a polyisocyanate,
    inorganic fillers,
    a plasticizer, and
    At least one selected from the group consisting of compounds represented by the following general formula (1) and compounds represented by the following general formula (3),
    In general formula (1), R 1 represents OH or a group represented by the following general formula (2), and a mixture of a compound in which R 1 is OH and a compound in which R 1 is represented by general formula (2) But it's okay,
    In general formula (3), k represents the number of 1 or 0, X represents a linking group of -CH 2 -, -CO(CH 2 ) p - or -COCH=CH-, where p is 2 represents an integer of ~6, Z represents a carboxy group, a sulfo group or a salt thereof,
    In general formula (1), general formula (2) and general formula (3), R 2 and R 3 each independently represent a hydrocarbon group having 6 to 30 carbon atoms, and A 1 O and A 3 O each independently represents an oxyalkylene group having 2 to 4 carbon atoms, m and n are the average number of moles of alkylene oxide added and each independently represents a number of 1 to 100, (A 1 O) m and (A 3 O) n each independently has an oxyethylene group content of 20 mol% or more;
    An isocyanate-containing composition.
    Figure JPOXMLDOC01-appb-C000001
  2.  前記ポリイソシアネートが、脂肪族ジイソシアネートおよび/または脂環式ジイソシアネートである、請求項1に記載のイソシアネート含有組成物。 The isocyanate-containing composition according to claim 1, wherein the polyisocyanate is an aliphatic diisocyanate and/or an alicyclic diisocyanate.
  3.  前記イソシアネート含有組成物100質量%中に前記無機充填剤を50~95質量%含有する、請求項1または2に記載のイソシアネート含有組成物。 The isocyanate-containing composition according to claim 1 or 2, which contains 50 to 95% by mass of the inorganic filler in 100% by mass of the isocyanate-containing composition.
  4.  前記可塑剤がフタル酸ジエステルおよび/またはアジピン酸ジエステルである、請求項1~3のいずれか1項に記載のイソシアネート含有組成物。 The isocyanate-containing composition according to any one of claims 1 to 3, wherein the plasticizer is a phthalate diester and/or an adipate diester.
  5.  請求項1~4のいずれか1項に記載のイソシアネート含有組成物と、 ポリオールおよび無機充填剤を含むポリオール含有組成物と、を備える、2液反応型ポリウレタン樹脂組成物。 A two-liquid reactive polyurethane resin composition comprising the isocyanate-containing composition according to any one of claims 1 to 4, and a polyol-containing composition containing a polyol and an inorganic filler.
  6.  放熱材料として用いられる請求項5に記載の2液反応型ポリウレタン樹脂組成物。

     
    6. The two-liquid reactive polyurethane resin composition according to claim 5, which is used as a heat dissipation material.

PCT/JP2022/019775 2021-05-17 2022-05-10 Isocyanate-containing composition and two-part reaction type polyurethane resin composition WO2022244650A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280034602.1A CN117295776A (en) 2021-05-17 2022-05-10 Isocyanate-containing composition and two-part reaction type polyurethane resin composition

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021083460 2021-05-17
JP2021-083460 2021-05-17
JP2021-159946 2021-09-29
JP2021159946A JP7053936B1 (en) 2021-05-17 2021-09-29 Isocyanate-containing composition and two-component reaction type polyurethane resin composition

Publications (1)

Publication Number Publication Date
WO2022244650A1 true WO2022244650A1 (en) 2022-11-24

Family

ID=81260050

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/019775 WO2022244650A1 (en) 2021-05-17 2022-05-10 Isocyanate-containing composition and two-part reaction type polyurethane resin composition

Country Status (4)

Country Link
JP (1) JP7053936B1 (en)
CN (1) CN117295776A (en)
TW (1) TW202246371A (en)
WO (1) WO2022244650A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6932872B1 (en) * 2020-01-06 2021-09-08 富士高分子工業株式会社 Thermally conductive silicone gel composition

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008222773A (en) * 2007-03-09 2008-09-25 Auto Kagaku Kogyo Kk Polyurethane-based curable resin composition and coating material comprising the same
JP2016008301A (en) * 2014-06-26 2016-01-18 東ソー株式会社 Polyurethane elastomer-formable composition to be used in industrial mechanical component member, and industrial mechanical component obtained by using the composition

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008222773A (en) * 2007-03-09 2008-09-25 Auto Kagaku Kogyo Kk Polyurethane-based curable resin composition and coating material comprising the same
JP2016008301A (en) * 2014-06-26 2016-01-18 東ソー株式会社 Polyurethane elastomer-formable composition to be used in industrial mechanical component member, and industrial mechanical component obtained by using the composition

Also Published As

Publication number Publication date
JP2022176868A (en) 2022-11-30
TW202246371A (en) 2022-12-01
JP7053936B1 (en) 2022-04-12
CN117295776A (en) 2023-12-26

Similar Documents

Publication Publication Date Title
JP5663478B2 (en) Aromatic polyester, polyol blend containing the same, and product obtained therefrom
US9505871B2 (en) Isocyanate-containing prepolymer and method for making the same
EP3728373B1 (en) A composition with reduced aldehyde emission
JP7095453B2 (en) Polyurethane resin-forming composition for membrane sealant, and membrane sealant and membrane module using the same.
JP4136721B2 (en) Urethane elastomer forming composition and sealing material
WO2022244650A1 (en) Isocyanate-containing composition and two-part reaction type polyurethane resin composition
RU2621733C2 (en) Isocyanate-based prepolymer
CN102655929A (en) Polyurethane-resin-formable composition for film-sealing material, and film-sealing material for module using hollow or flat-film-like fibrous separation film comprising the formable composition
JP2006348099A (en) Polyurethane foaming stock solution and low-density polyurethane heat-insulating material
WO2023053970A1 (en) Isocyanate-containing composition and two-pack type reactive polyurethane resin composition
EP3368585B1 (en) Polyurethane foam from high functionality polyisocyanate
JP2019006957A (en) Polyurethane resin composition for cutting work
JP2012097200A (en) Polyurethane resin composition
JP7119472B2 (en) Polyalkylene oxide composition and method for producing same, and polyurethane-forming composition containing said polyalkylene oxide composition
US5310851A (en) Spin-labelled thickeners
JP2006070186A (en) Curing agent and two-pack type curable resin composition
JPH09169828A (en) Polyurethane elastomer composition for casting and product of casting thereof
JP2015042719A (en) Coating material for protection of ground surface
EP3763721B1 (en) Divalent phosphazenium salt and polyalkylene oxide composition containing same, and polyurethane-forming composition containing said polyalkylene oxide composition
US6303732B1 (en) Diol blends and methods for making and using the same
JP2010254879A (en) Urethane elastomer-forming composition containing isocyanurate group
JP2006002054A (en) Terminal isocyanate group-containing prepolymer, method for producing polyurethane by using the same, and polyurethane for roll
JP2012140553A (en) Composition for forming polyisocyanurate foam, and polyisocyanurate foam
JP6286085B1 (en) Polyurethane resin composition and sealing material
JP7135367B2 (en) Polyalkylene oxide composition and polyurethane-forming composition comprising said polyalkylene oxide composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22804563

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE