WO2022244417A1 - 電力取引システム及びプログラム - Google Patents

電力取引システム及びプログラム Download PDF

Info

Publication number
WO2022244417A1
WO2022244417A1 PCT/JP2022/011267 JP2022011267W WO2022244417A1 WO 2022244417 A1 WO2022244417 A1 WO 2022244417A1 JP 2022011267 W JP2022011267 W JP 2022011267W WO 2022244417 A1 WO2022244417 A1 WO 2022244417A1
Authority
WO
WIPO (PCT)
Prior art keywords
bid information
renewable energy
supply
demand
power
Prior art date
Application number
PCT/JP2022/011267
Other languages
English (en)
French (fr)
Inventor
民圭 曹
良和 石井
直 齋藤
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to EP22804336.0A priority Critical patent/EP4343669A1/en
Publication of WO2022244417A1 publication Critical patent/WO2022244417A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q30/00Commerce
    • G06Q30/02Marketing; Price estimation or determination; Fundraising
    • G06Q30/0201Market modelling; Market analysis; Collecting market data
    • G06Q30/0202Market predictions or forecasting for commercial activities
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q30/00Commerce
    • G06Q30/06Buying, selling or leasing transactions
    • G06Q30/08Auctions
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q40/00Finance; Insurance; Tax strategies; Processing of corporate or income taxes
    • G06Q40/04Trading; Exchange, e.g. stocks, commodities, derivatives or currency exchange

Definitions

  • the present invention relates to an electric power trading system and program.
  • distributed power sources are becoming more popular.
  • distributed power sources such as photovoltaic power generation, cogeneration systems, storage batteries, and heat pumps.
  • RE100 declaration on the electricity demand side, there is a movement such as the RE100 declaration that all electricity consumption will be generated from renewable energy sources. Since the amount of renewable energy is not yet sufficient, RE50, in which 50% of the power consumption is generated from renewable energy, is also conceivable. The percentage of power consumption to be generated from renewable energy is called the RE ratio.
  • the RE ratio required by the demand side is not universal, and it is thought that it will diversify according to the needs of the demand side.
  • the supply side and the demand side of power generation and storage trade power through the power trading system There are existing power trading systems such as JEPX (Japan Election Power eXchange), but in Europe, power trading systems that trade power within the region are also emerging. It is also necessary to consider the power trading system.
  • the existing power trading system trades renewable energy power and non-renewable energy power without distinction as types of power. It also does not give sufficient consideration to the trading of power supply capacity from storage batteries and the like.
  • the transaction unit is also mainly determined in units of 30 minutes or the like in many cases. In this type of power trading system, power is traded in a standardized form, so the trading itself is efficient, but the problem is that it is not possible to reflect all the needs of the power demand side and the power supply side.
  • Patent Document 1 describes a contract rate, which is the ratio of contracts on the power selling side or the power buying side, as an electric power trading device that aims to provide a power trading device or the like that can provide trading opportunities to a large number of users.
  • 1 shows an electric power trading apparatus comprising contract rate determination means for determining
  • Patent Document 1 does not describe a transaction that can reflect various needs on the demand side and the supply side. If there are always enough bids that meet the matching conditions of the demand side and the supply side in the trading system, the bid price and bid volume can be used as the main parameters of the trading system to carry out matching. However, if the matching conditions are diversified, the number of bids will not be sufficient, and it is possible that there will always be no applicable bids. A similar situation also arises when there are few demand or supply sides participating in the trading system.
  • an object of the present invention is to provide an electric power trading system that can appropriately trade electric power.
  • one aspect of the present invention is a matching-related data acquisition unit that acquires demand bid information and supply bid information with priority, and obtains a predicted occurrence rate of the demand bid information and the supply bid information.
  • FIG. 1 is a configuration diagram of a system related to an electric power trading system according to Example 1 of the present invention
  • FIG. It is a hardware block diagram of the electric power trading system which concerns on Example 1 of this invention.
  • 1 is a functional block diagram of a power trading system according to Example 1 of the present invention;
  • FIG. It is a figure which shows the example of the demand bidding information used with the power trading system which concerns on Example 1 of this invention.
  • It is a graph of demand bidding information related to the power trading system according to the first embodiment of the present invention.
  • It is a figure which shows the example of the supply bid information used with the power trading system which concerns on Example 1 of this invention.
  • It is a graph of supply bid information regarding the power trading system according to the first embodiment of the present invention.
  • FIG. 1 is a configuration diagram of a system related to the power trading system according to the first embodiment.
  • the power trading system 10 here includes a demand side system 1 on the power demand side and a demand facility 11 as its facility. It also has a supply side system 2 on the power supply side and a supply facility 21 as its facility. Each demand facility 11 and each supply facility 21 are connected by a power supply line 3 .
  • the demand side system 1 and the supply side system 2 are connected to the power trading system 10 via the communication network 4 .
  • the demand side system 1 and the supply side system 2 are connected to the demand facility 11 and the supply facility 21 through the communication network 4, respectively.
  • Electricity trading system 10 may be connected to demand equipment 11 and supply equipment 21 via communication network 4 .
  • the demand side system 1 acquires demand information such as power consumption from the demand facility 11 and creates demand bidding information for trading power in the power trading system 10 .
  • the supply side system 2 acquires supply information such as the amount of power generation from the supply facility 21 and creates supply bidding information for trading power in the power trading system 10 .
  • the power trading system 10 is a system that acquires demand bid information and supply bid information and matches demand and supply.
  • FIG. 2 is a hardware configuration diagram of the power trading system 10.
  • the functions of the power trading system 10 are realized by electronic computers (and their peripherals) such as general-purpose computers and servers.
  • the power trading system 10 has a hardware configuration of a CPU 811 (Central Processing Unit), a memory 812, a storage 813, an input device 814, a communication interface 815, a display device 816, is composed of
  • the CPU 811 executes predetermined arithmetic processing based on programs stored in the memory 812 and storage 813 .
  • Memory 812 includes RAM (Random Access Memory) for temporarily storing data.
  • As the storage 813 for example, an HDD (Hard Disk Drive) or SSD (Solid State Drive) is used.
  • a program 817 is set up in the storage 813, and based on this program 817, the power trading system 10 executes various processes described below.
  • the input device 814 is for inputting data by user's operation.
  • a keyboard, a mouse, a touch panel, or the like is used.
  • a keyboard or mouse of the management personal computer may be used.
  • the communication interface 815 conforms to a predetermined protocol when data is exchanged via the communication network 4 between the power trading system 10, the demand side system 1, the supply side system 2, the demand equipment 11, and the supply equipment 21. perform data conversion based on
  • a communication interface 815 communicates with an external device via the communication network 4 .
  • the display device 816 is, for example, a liquid crystal display, and displays calculation results of the CPU 811 and the like. As the display device 816, a display of a management personal computer may be used.
  • the power trading system 10 may be configured with one device (server or the like), or may have a configuration in which a plurality of devices (not shown) are connected in a predetermined manner via a communication line or network. good too.
  • FIG. 3 is a functional block diagram of the power trading system 10.
  • the power trading system 10 has the functions of a matching-related data acquisition unit 100 , an occurrence rate prediction unit 200 , a contract rate prediction unit 300 , a matching unit 400 and a transaction management unit 500 .
  • Matching-related data is acquired by a matching-related data acquiring unit 100
  • an occurrence rate and a contract rate are predicted by an occurrence rate prediction unit 200 and a contract rate prediction unit 300, and based on this, a matching unit 400 matches supply and demand bids.
  • the matching result of the matching section 400 is managed by the transaction management section 500 .
  • the matching-related data acquisition unit 100 acquires data including demand bid information, supply bid information, weather forecast, and past matching history. Demand bid information and supply bid information may be collectively called bid information.
  • the demand bid information is information including matching conditions on the power demand side, and includes a demand bid ID, a demand bid individual ID, the date and time of the desired power purchase, the type of power desired to purchase, the power desired to purchase (kW), and the amount of power desired to purchase (kWh). ), desired purchase price, desired block bid, desired power location, and priority information.
  • FIG. 4 is an example of demand bid information.
  • the demand bid ID is an identification mark of demand bid information and is automatically assigned by the power trading system 10 .
  • a demand bid individual ID is an identification mark given to each of a plurality of matching conditions in the same demand bid ID.
  • One demand bid individual ID out of a plurality of demand bid individual IDs is matched in one demand bid ID.
  • the desired power purchase date and time is information regarding when the purchased power is to be used.
  • the type of power to be purchased is classified into renewable energy (renewable energy), non-renewable energy (non-renewable energy), and the like, and is in the form of selecting the power type defined in the power trading system 10 .
  • renewable energy is electric power generated from renewable energy.
  • Non-renewable energy is not renewable energy, but electric power generated using fossil fuels or the like.
  • renewable energy is expressed as an example, but it may be detailed such as photovoltaic power generation and wind power generation.
  • the desired power to purchase is the power desired to purchase
  • the desired power amount to purchase is the amount of power desired to purchase.
  • the desired power amount to be purchased and the desired power to be purchased are combined with the amount integrated over time described in the date and time of the desired power to be purchased.
  • the desired purchase price is the price for the desired power to purchase or the amount of power to purchase.
  • the block bid request is information regarding whether or not matching is performed in a divided form of the demand bid individual ID.
  • Fig. 5 is a graph of demand bidding information.
  • the power (kW) of the desired power consumption (kWh) is shown on the vertical axis, and the time is shown on the horizontal axis.
  • the power demand side can bid on the demand bid ID (indicated by D100) by dividing it into individual demand bid IDs as in the block D101.
  • the demand bid ID indicated by D100
  • the block bidding request is "x”
  • the bidding is not divided into blocks.
  • the block bid request is " ⁇ " it will be divided into blocks and matched.
  • This division follows the method of division determined in advance by the power trading system 10 .
  • the vertical and horizontal lengths of D101 in FIG. 5 are standardized to values determined by the power trading system 10.
  • the desired power purchase point is information on where to purchase the generated power.
  • the name of the spot or the ID of the spot is determined by the power trading system 10 . If the desired power purchase location is not relevant anywhere, it will be named nationwide or any.
  • the priority is the priority of each demand bid individual ID in the same demand bid ID.
  • the method of assigning priority should follow the rule of assigning priority determined by the power trading system 10 . For example, it is conceivable to set 1 as the highest priority, and then lower the priority in order of 2, 3, 4, and so on.
  • Supply bid information (FIG. 6) is basically similar to demand bid information.
  • the supply bid information is information including matching conditions on the power supply side, and includes a supply bid ID, a supply bid individual ID, the date and time of the desired power to be sold, the type of power to be sold, the desired power to be sold (kW), and the amount of power to be sold (kWh). ), suggested selling price, block bid request, power supply location, and priority information.
  • FIG. 6 is an example of supply bid information.
  • the supply bid ID is an identification mark of supply bid information, and is automatically given by the power trading system 10 .
  • a supply bid individual ID is an identification mark given to each of a plurality of matching conditions in the same supply bid ID. Each one supply bid individual ID among a plurality of supply bid individual IDs is matched among the supply bid IDs.
  • the date and time of desired power to be sold is information regarding when to use the power to be sold.
  • the type of power desired to be sold is classified into renewable energy, non-renewable energy, etc., and the type of power defined in the power trading system 10 is selected.
  • renewable energy is electric power generated from renewable energy.
  • Non-renewable energy is not renewable energy, but electric power generated using fossil fuels or the like.
  • renewable energy is used as an example, but renewable energy such as solar power generation and wind power generation may be detailed.
  • the desired power to sell is the power that you wish to purchase, and the desired power to sell is the amount of power that you wish to sell.
  • the amount of power desired to be sold and the desired power to be sold are combined with the amount integrated over time described in the date and time of the desired power to be sold.
  • the desired sales price is the price for the desired sales power or the desired sales amount of power.
  • the block bid request is information about whether or not to match in a form divided into sales bid individual IDs.
  • FIG. 7 is a graphical representation of supply bid information.
  • the power (kW) of the desired sales power (kWh) is shown on the vertical axis and the time on the horizontal axis.
  • the power demand side can bid on the supply bid ID (indicated by D200) by dividing it into individual supply bid IDs as in the block D201. If the block bid request is "x" in the supply bid information, no split bid is made. If the block bid request is " ⁇ ", it will be divided into blocks and matched. This division follows the method of division determined in advance by the power trading system 10 . For example, the vertical and horizontal lengths of D201 in FIG. 5 are standardized to values determined by the power trading system 10.
  • the power supply point is information about where the power is generated.
  • the name of the spot or the ID of the spot is determined by the power trading system 10 .
  • the priority will be the priority of each supply bid individual ID in the same supply bid ID. All that is necessary is to follow the rules for assigning priorities determined by the power trading system 10 . For example, 1 is the highest priority, and then 2, 3, 4, and so on.
  • the weather forecast is information including history data of past weather forecasts and future weather forecasts, and is information for each location.
  • Past matching history is information that includes information on demand bid information, supply bid information, and matching history of past trading systems.
  • the occurrence rate prediction unit 200 obtains the predicted occurrence rate of each piece of demand bid information and supply bid information.
  • the occurrence rate for demand bid information is the probability that supply bid information corresponding to demand bid information appears at each time.
  • the predicted occurrence rate for supply bid information is the probability that demand bid information corresponding to supply bid information appears at each time. For example, compute the probability of encountering supply bid information that matches demand bid information.
  • FIG. 8 shows the search results along the time axis.
  • supply bid information A (S10) and supply bid information B (S20) are retrieved as supply bid information corresponding to demand bid information. It is assumed that supply bid information A appears on the trading system at time t1, and supply bid information B appears on the trading system at time t10. Supply bid information appeared at t1 and t10 for the total number of days Ttotal in the past matching history.
  • a formula for calculating the predicted incidence rate can be calculated, for example, as follows.
  • Tu is the total number of days on which the supply bid information corresponding to the demand bid information to be predicted appeared at the target time.
  • the predicted occurrence rate at time t1 is 1/Ttotal. From time t2 to time t9, if the supply bid information is not matched and there are bids remaining, the predicted occurrence rate takes the same value as the predicted occurrence rate at time t1. If the supply bid information A is matched at time t2, the predicted occurrence rate is 0 from time t3 to time t9. At time t10, if the supply bid information is not matched and bids remain, the predicted occurrence rate is 2/Ttotal. If supply bid information A is matched at time t2, then 1/Ttotal.
  • Ttotal is the total number of days on the trading system
  • the predicted occurrence of demand bid information and supply bid information is also seasonal. It is also conceivable to assign a seasonal section as a reference and use the past demand bid information and supply bid information in that section. For example, the seasons are divided into spring, summer, autumn, and winter. Spring is March through May, summer is June through August, autumn is September through November, and winter is December through February. Demand bid information and supply bid information are separated according to this classification. The information divided in this way is used to predict the expected incidence. Furthermore, since it is possible to assume that the form of demand differs between weekdays and weekends, it is conceivable to divide demand bid information and supply bid information into weekdays and weekends for each season. It is also conceivable to divide demand bid information and supply bid information for each weather.
  • a method of prediction using a neural network is also conceivable.
  • past occurrence rates are calculated using demand bid information and supply bid information.
  • the prediction accuracy can be further improved by using the seasons, weekends/weekdays, and weather as explained above as explanatory variables.
  • the contract rate prediction unit 300 obtains a predicted contract rate for each piece of demand bid information and supply bid information.
  • the predicted occurrence rate is an index of whether or not there is a demand bid or supply bid that can be matched at a certain time, while the predicted contract rate is an index of how much power is demanded or supplied.
  • Nj is the sum of past demand bid information to be predicted
  • Ni is the sum of past supply bid information to be predicted. This is the case where the prediction target is power demand, but it is the inverse of this in the case of power supply.
  • the method is not limited to this method.
  • a method of prediction using a neural network is also conceivable. For example, a past predicted contract rate is calculated using demand bid information and supply bid information. Using this data, it is possible to predict using a neural network as supervised learning. Furthermore, if the seasons, weekends/weekdays, and weather explained above are used as explanatory variables, it is thought that the prediction accuracy will be further improved. In addition to the past matching history, it is conceivable to obtain the contract rate from demand bidding information and supply bidding information existing in the transaction system at the present time in the same manner as described above, and use the value as an explanatory variable.
  • the matching unit 400 performs matching between each piece of demand bid information and each piece of supply bid information.
  • FIG. 9 is a flow chart showing the processing of the matching section.
  • step S401 a corresponding bid is submitted to the power trading system 10 as the start of matching.
  • step S402 matching is tried using demand bid information with a high priority.
  • step S402 the situation is grasped whether the bids for which matching was tried were matched.
  • step S403 switching of matching priority is determined based on the predicted occurrence rate and predicted contract rate calculated by the occurrence rate prediction unit 200 and the contract rate prediction unit 300, respectively.
  • the product of the occurrence rate and the contract rate is calculated for each priority bid, and if the state where matching is not possible continues, the product of the occurrence rate and the contract rate is calculated from the next lower priority bid. If the bid becomes lower, it is possible to switch to a bid with a lower priority. Furthermore, it is conceivable to set a certain period of time during which no matching is possible, and to maintain the bid of the corresponding priority during this period.
  • the demand bid information and the supply bid information are matched. Items having the same demand bid information and supply bid information are matched. If there are multiple pieces of demand bid information or multiple pieces of supply bid information with the same content, the matching rule is basically to match on a first-come, first-served basis.
  • the transaction management unit 500 acquires the matching result from the matching unit 400 and updates the demand bid information and the supply bid information matched by the matching unit 400 . Those that have been successfully matched as a result of the matching are flagged as having been matched, and are removed from the demand bid information and the supply bid information to be matched by the matching unit 400 . According to the power trading system 10 described above, by presenting a plurality of matching conditions in one power demand or supply bid, the demand bid information and supply bid information in the power trading system 10 can be increased. Easier to match.
  • the predicted occurrence rate and predicted contract rate are predicted, and based on the values, the priority is switched. You can try to match and if the odds of a match are getting low you can switch to the next priority bid.
  • the predicted occurrence rate and predicted contract rate are predicted, and since the bid is maintained for a certain period of time, the bid with the highest priority is maintained as much as possible. be able to.
  • Example 1 giving priority to each bid was described.
  • Bid information is a fixed value.
  • setting a certain range to the value of bid information instead of a fixed value will be described.
  • the desired purchase price is set at 90 yen to 110 yen.
  • FIG. 10 is a functional block diagram of the power trading system 10 according to the third embodiment.
  • the supplied power is calculated as renewable energy stable amount, renewable energy fluctuation amount, renewable energy charging/discharging capacity, renewable energy discharging capacity, non-renewable energy, non-renewable energy
  • a power supply classification unit 600 for classifying charging/discharging capacity and non-renewable energy discharging capacity is added to the first embodiment (FIG. 3).
  • Example 1 we proposed that renewable energy or non-renewable energy be used as the power type, and that renewable energy should be detailed and divided into solar power and wind power.
  • the power type can be set to renewable energy stable amount, renewable energy fluctuation amount, renewable energy charging/discharging capacity, renewable energy discharging capacity, non-renewable energy, non-renewable energy charging/discharging capacity, non-renewable energy discharging capacity.
  • the stable renewable energy amount and the variable renewable energy amount are the amount of power generation with a high degree of certainty that renewable energy can be provided and the amount of power generation with a low degree of certainty.
  • the demand side that wants to secure stable renewable energy power generation purchases the stable amount of renewable energy
  • the demand side that wants to purchase unstable but cheap renewable energy purchases the fluctuating amount of renewable energy. It will be.
  • Renewable energy charging/discharging capacity and non-renewable energy charging/discharging capacity are the capacities for charging/discharging a storage battery by classifying the power to be charged/discharged to the storage battery into renewable energy and non-renewable energy.
  • the renewable energy or renewable energy is discharged from the storage battery in a certain time period, or It is the ability to charge renewable energy or renewable energy from storage batteries in the belt.
  • Non-renewable energy is electric power generated from fossil fuel or the like, as explained in the first embodiment.
  • the power supply classification unit 600 performs processing to divide the power generation amount of renewable energy into stable renewable energy amount and variable renewable energy amount. As a method of dividing the renewable energy power generation amount into the renewable energy stable amount and the renewable energy fluctuation amount, there is a method using a confidence interval. Get the forecast value of renewable energy for the period you want to sell from the supplier.
  • Fig. 11 is an example of the predicted value of renewable energy.
  • G402 is the average value of predicted values, and G401 and G403 are predicted values in certain confidence intervals. Reliability can be obtained by using the prediction error obtained by comparing past predicted values and actual values.
  • Renewable energy stable portion and renewable energy variable portion are divided based on the output probability.
  • the standard probability may take any arbitrary value, for example, when G401 and G403 are 3 ⁇ ( ⁇ is the standard deviation) assuming a normal distribution, and the power generation amount of G403 or less is the stable component can be divided into stable renewable energy and fluctuating renewable energy based on an output probability of 99.7%.
  • the desired sales power date and time, the desired sales power type, the desired sales power, and the desired sales power amount of the supply bid information are classified by the power supply classification unit. 600 processing results are automatically entered. This value is then updated when update data for the predicted value of renewable energy is input.
  • the prediction of the predicted occurrence rate and the predicted contract rate is basically the same as in the first embodiment, but the supply power classification unit 600 and the matching related data acquisition unit 100A update the renewable energy stable amount and renewable energy fluctuation amount. If so, the predicted occurrence rate and predicted contract rate described in Example 1 are updated based on the updated supply bid information.
  • the renewable energy power generation amount by dividing the renewable energy power generation amount using a confidence interval, it is divided into a renewable energy stable portion with a high supply probability and a renewable energy fluctuation portion with a low supply probability, and matching is performed. be able to.
  • Example 1 it is conceivable that there will be a large amount of demand bidding information at a certain point in time. For example, it is conceivable that power consumption varies depending on the temperature, and many demands seek supply from the power trading system 10 in order to procure that power. Alternatively, it is conceivable that bids for a specific power type will be concentrated. In addition, it is conceivable that renewable energy will not be generated due to the weather, and there will be no supply bidding information that can be matched by the power trading system 10 .
  • renewable energy charging and discharging capabilities can be utilized. That is, renewable energy charging/discharging capacity availability information is added as a matching condition for demand bidding information. If the renewable energy charging/discharging capacity availability information is available, before switching to the matching condition of the demand bid individual ID of the next priority in the matching unit 400, renewable energy stable or renewable energy outside the desired purchase time zone Matching is performed by searching for a combination of bidding information for supply of variable energy and renewable energy charging/discharging capacity. At that time, the conditions other than the desired power purchase date and time must match. For example, in the case of the first embodiment, the sum of the supply bid information for the variable amount of renewable energy to be set and the desired supply price for the renewable energy charging/discharging capacity needs to match the desired purchase price. In the case of Example 2, it is necessary to be within the set range. The renewable energy stable amount or renewable energy variable amount is charged using the renewable energy charging/discharging capability. Then, the amount charged at the desired power purchase date and time in the demand bidding information is provided.
  • the present invention is not limited to the above-described embodiments, and includes various modifications.
  • the above-described embodiments have been described in detail in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the described configurations.
  • it is possible to replace part of the configuration of one embodiment with the configuration of another embodiment and it is also possible to add the configuration of another embodiment to the configuration of one embodiment.
  • each of the above configurations, functions, processing units, processing means, etc. may be realized in hardware, for example, by designing a part or all of them with an integrated circuit. Further, each of the above configurations, functions, etc. may be realized by software by a processor interpreting and executing a program for realizing each function. Information such as programs, tables, and files that implement each function can be stored in a recording device such as a memory, a hard disk, an SSD (Solid State Drive), or a recording medium such as an IC card, SD card, or DVD.
  • a recording device such as a memory, a hard disk, an SSD (Solid State Drive), or a recording medium such as an IC card, SD card, or DVD.
  • control lines and information lines indicate what is considered necessary for explanation, and not all control lines and information lines are necessarily indicated on the product. In practice, it may be considered that almost all configurations are interconnected.

Landscapes

  • Business, Economics & Management (AREA)
  • Engineering & Computer Science (AREA)
  • Strategic Management (AREA)
  • Economics (AREA)
  • Finance (AREA)
  • Accounting & Taxation (AREA)
  • Development Economics (AREA)
  • Physics & Mathematics (AREA)
  • Marketing (AREA)
  • General Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Human Resources & Organizations (AREA)
  • Health & Medical Sciences (AREA)
  • Game Theory and Decision Science (AREA)
  • Tourism & Hospitality (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Technology Law (AREA)
  • Water Supply & Treatment (AREA)
  • Primary Health Care (AREA)
  • Operations Research (AREA)
  • Quality & Reliability (AREA)
  • Data Mining & Analysis (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

優先度付きの需要入札情報と供給入札情報を取得するマッチング関連データ取得部(100)と、前記需要入札情報と前記供給入札情報の予測発現率を求める発現率予測部(200)と、前記需要入札情報と前記供給入札情報の予測約定率を求める約定率予測部(300)と、前記予測発現率及び前記予測約定率に基づいて優先度を切り替えながら前記需要入札情報と前記供給入札情報をマッチングさせるマッチング部(400)とを備える。

Description

電力取引システム及びプログラム
 本発明は、電力取引システム及びプログラムに関する。
 従来の火力発電などの集中型電源だけではなく、分散型電源が普及しつつある。分散型電源は、発電型の太陽光発電やコジェネレーションシステム、蓄電型の蓄電池やヒートポンプなど、多様な種類がある。一方で、電力の需要側では、消費電力をすべて再生可能エネルギーからの発電量とするRE100宣言などの動きがある。まだ再生可能エネルギーの量が十分ではないため、消費電力のうち50%を再生可能エネルギーからの発電量とするRE50も考えられる。消費電力のうちどのくらいの割合を再生可能エネルギーからの発電量とするかをRE比率と呼ぶ。需要側が求めるRE比率は一概ではなく、需要側のニーズによって多様化すると考えられる。
 発電や蓄電などの供給側と需要側とが電力取引システムを介して電力を取引する。JEPX(Japan Election Power eXchange)など既存の電力取引システムがあるが、欧州では地域内で電力を取引する電力取引システムなども出現しているため、既存の電力取引システムだけではなく、新たな形の電力取引システムも考える必要がある。
 既存の電力取引システムは、電力の種類として、再生可能エネルギー電力と非再生可能エネルギー電力とを区分なく取引する。そして蓄電池などからの電力供給能力の取引も十分に顧慮していない。取引単位も主に30分単位などで決まっていることが多い。このような電力取引システムは、電力を一種類に標準化した形で取引するため、取引自体は効率よく可能ではあるが、電力の需要側と供給側のニーズのすべてを反映することはできないという問題がある。
 供給側と需要側のそれぞれの本来の電力へのニーズを考えてみる。供給側の発電型設備がコジェネレーションシステムの場合、定格運転をしたら一番効率がいい。したがって、ある一定時間と量で構成されるブロックごと売るほうがいい。または、ブロックの中の一定部分を自家消費することが決まった場合は、でこぼこのような形のブロックを売るほうがいい。
 再生可能エネルギーの場合は、予測をしても実際の出力は、予測値と異なったりする。したがって、電力の需要側に安定的に電力を供給することが難しい。一方で需要側は、安定的な再生可能エネルギーを求めるニーズがあるが、再生可能エネルギーの余剰電力で水素を生産するなど、クリーンで安く、出力の不確実性が高くていいという供給へのニーズもある。このように多様なニーズに対応するためには、多様なマッチング条件で取引できることが望ましい。供給側と需要側の多様なニーズは取引上の多様な条件で現れる。ここで供給と需要が示す多様なマッチング条件には、電力の種類、取引希望条件がある。取引形態としてはザラバ方式を想定する。
 特許文献1には、取引機会を多数のユーザに与えることができる電力取引装置等を提供することを目的とする電力取引装置として、売電側又は買電側での約定の割合である約定率を決定する約定率決定手段を備える電力取引装置を示している。
特開2020-71776号公報
 しかし、特許文献1には、需要側と供給側の多様なニーズを反映できる取引に関する記載はない。
 取引システム上で需要側と供給側のマッチング条件に該当する入札が常に十分ある場合は、入札価格と入札量を取引システムの主なパラメータとして用いて、マッチングを実施すればいい。しかし、マッチング条件が多様化すると入札が十分ではなく、常に該当する入札がない場合が想定できる。また、取引システムに参加する需要側または供給側が少ない場合も、同様の状況となる。
 そこで、本発明の課題は、電力を適切に取引することができる電力取引システムを提供することである。
 上記課題を解決するため、本発明の一形態は、優先度付きの需要入札情報と供給入札情報を取得するマッチング関連データ取得部と、前記需要入札情報と前記供給入札情報の予測発現率を求める発現率予測部と、前記需要入札情報と前記供給入札情報の予測約定率を求める約定率予測部と、前記予測発現率及び前記予測約定率に基づいて優先度を切り替えながら前記需要入札情報と前記供給入札情報をマッチングさせるマッチング部とを備えることを特徴とする。
 本発明によれば、電力を適切に取引することができる電力取引システムを提供することができる。
 上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
本発明の実施例1に係る電力取引システムに関わるシステムの構成図である。 本発明の実施例1に係る電力取引システムのハードウェア構成図である。 本発明の実施例1に係る電力取引システムの機能ブロック図である。 本発明の実施例1に係る電力取引システムで用いる需要入札情報の例を示す図である。 本発明の実施例1に係る電力取引システムに関し需要入札情報をグラフ化したものである。 本発明の実施例1に係る電力取引システムで用いる供給入札情報の例を示す図である。 本発明の実施例1に係る電力取引システムに関し供給入札情報をグラフ化したものである。 本発明の実施例1に係る電力取引システムに関し検索の結果を時間軸で表した図である。 本発明の実施例1に係る電力取引システムのマッチング部の処理を示すフローチャートである。 本発明の実施例3に係る電力取引システムの機能ブロック図である。 再生可能エネルギーの予測値の例を示すグラフである。
 以下、本発明の実施例について複数例説明する。
 図1は、実施例1に係る電力取引システムに関わるシステムの構成図である。電力取引システム10は、ここでは、電力の需要側である需要側システム1と、その設備である需要設備11とを備えている。また、電力の供給側である供給側システム2と、その設備である供給設備21とを備えている。各需要設備11と各供給設備21は電力供給ライン3で接続されている。
 需要側システム1と供給側システム2とは通信ネットワーク4を介して電力取引システム10と接続されている。需要側システム1と供給側システム2とは通信ネットワーク4を介してそれぞれ需要設備11と供給設備21と接続している。電力取引システム10が通信ネットワーク4を介して需要設備11や供給設備21と接続していてもよい。需要側システム1は、需要設備11から電力消費量などの需要情報を取得して電力取引システム10で電力を取引する需要入札情報を作成する。供給側システム2は、供給設備21から発電量などの供給情報を取得して電力取引システム10で電力を取引する供給入札情報を作成する。電力取引システム10は、需要入札情報と供給入札情報を取得して、需要と供給をマッチングさせるシステムである。
 図2は、電力取引システム10のハードウェア構成図である。電力取引システム10の機能は、汎用コンピュータやサーバ等の電子計算機(及びその周辺機器)によって実現される。図2に示すように、電力取引システム10は、そのハードウェア構成として、CPU811(Central Processing Unit)と、メモリ812と、ストレージ813と、入力装置814と、通信インターフェース815と、表示装置816と、を含んで構成されている。CPU811は、メモリ812やストレージ813に記憶されているプログラムに基づいて、所定の演算処理を実行する。メモリ812は、データを一時的に記憶するRAM(Random Access Memory)を含んでいる。ストレージ813として、例えば、HDD(Hard Disk Drive)やSSD(Solid State Drive)が用いられる。
 ストレージ813には、プログラム817がセットアップされていて、このプログラム817に基づいて電力取引システム10は以下に説明する各種処理を実行する。
 入力装置814は、ユーザの操作によって、データの入力を行うものである。このような入力装置814として、キーボードやマウスの他、タッチパネル等が用いられる。なお、入力装置814として、管理用パソコンのキーボードやマウスが用いられてもよい。通信インターフェース815は、電力取引システム10と需要側システム1、供給側システム2、需要設備11、供給設備21との間で、通信ネットワーク4を介してデータのやり取りが行われる際、所定のプロトコルに基づくデータ変換を行う。
 通信インターフェース815は、通信ネットワーク4を介して外部の機器と通信を行う。
 表示装置816は、例えば、液晶ディスプレイであり、CPU811の演算結果等を表示する。なお、表示装置816として、管理用パソコンのディスプレイが用いられてもよい。電力取引システム10は、1つの装置(サーバ等)で構成されていてもよいし、また、通信線やネットワークを介して、複数の装置(図示せず)が所定に接続された構成であってもよい。
 図3は、電力取引システム10の機能ブロック図である。電力取引システム10は、マッチング関連データ取得部100、発現率予測部200、約定率予測部300、マッチング部400、取引管理部500の機能を備えている。マッチング関連データをマッチング関連データ取得部100で取得し、発現率予測部200と約定率予測部300で発現率と約定率を予測し、それに基づいてマッチング部400で需要と供給の入札をマッチングさせる。マッチング部400のマッチング結果は取引管理部500で管理する。
 <マッチング関連データ取得部>
 マッチング関連データ取得部100では、需要入札情報、供給入札情報、天気予報、過去のマッチング履歴を含むデータを取得する。需要入札情報、供給入札情報を併せて入札情報と呼ぶ場合もある。
 需要入札情報は、電力の需要側のマッチング条件を含む情報であり、需要入札ID、需要入札個別ID、購入希望電力日時、購入希望電力種類、購入希望電力(kW)、購入希望電力量(kWh)、購入希望価格、ブロック入札希望、購入希望電力地点、優先度の情報を含む。図4は需要入札情報の例である。
 需要入札IDは、需要入札情報の識別標識であり、電力取引システム10で自動的に付与される。
 需要入札個別IDは、同じ需要入札IDにおいて複数のマッチング条件に対してそれぞれ付与される識別標識である。一つの需要入札IDの中で複数の需要入札個別IDのうち各一つの需要入札個別IDがマッチングされる。
 購入希望電力日時は、いつ購入電力を使用するかに関する情報である。
 購入希望電力種類は、再生可能エネルギー(再エネ)、非再生可能エネルギー(非再エネ)などの区分で、電力取引システム10で定義された電力種類を選択する形となる。ここで再生可能エネルギーは再生可能エネルギーから発電された電力である。非再生可能エネルギーは再生可能エネルギーではなく、化石燃料等を用いて発電された電力である。ここでは例として再生可能エネルギーと表現したが、太陽光発電、風力発電など詳細化してもよい。
 購入希望電力は、購入を希望する電力であり、購入希望電力量は購入を希望する電力量である。購入希望電力量と購入希望電力を購入希望電力日時で記載した時間積分した量と合わせる。
 購入希望価格は、購入希望電力や購入希望電力量に対する価格である。ブロック入札希望は、需要入札個別IDを分割した形でマッチングするかしないかに関する情報である。
 図5は、需要入札情報をグラフ化したものである。購入希望電力量(kWh)の電力(kW)を縦軸、時間を横軸として表している。電力の需要側は需要入札ID(D100を示す)に対して、D101のブロックのように需要入札個別IDに分割した形で入札することもできる。前記の需要入札情報でブロック入札希望が“×”な場合はブロックに分割した入札はしない。ブロック入札希望が“〇”な場合は、ブロックに分割してマッチングする。この分割は電力取引システム10で予め決めた分割の仕方に従う。例えば図5のD101の縦と横の長さを、電力取引システム10が決めた値に規格化する。
 購入希望電力地点は、どこで発電された電力を購入するかに関する情報である。電力取引システム10で決めて地点の名称または地点のIDとなる。購入希望電力地点がどこでも関係ない場合は、全国またはanyのような名称となる。
 優先度は、同じ需要入札IDにおいて各需要入札個別IDの優先度となる。優先度の付け方は、電力取引システム10が決めた優先度の付け方のルールに従えばいい。たとえば、1を一番優先度が高いものとし、次に2、3,4のような順番で優先度を下げることが考えられる。
 供給入札情報(図6)は、基本的に需要入札情報と類似する。供給入札情報は、電力の供給側のマッチング条件を含む情報であり、供給入札ID、供給入札個別ID、販売希望電力日時、販売希望電力種類、販売希望電力(kW)、販売希望電力量(kWh)、販売希望価格、ブロック入札希望、供給電力地点、優先度の情報を含む。図6は供給入札情報の例である。
 供給入札IDは、供給入札情報の識別標識であり、電力取引システム10で自動的に付与される。
 供給入札個別IDは、同じ供給入札IDにおいて複数のマッチング条件に対してそれぞれ付与される識別標識である。供給入札IDの中で複数の供給入札個別IDのうち各一つの供給入札個別IDがマッチングされる。
 販売希望電力日時は、いつ販売電力を使用するかに関する情報である。
 販売希望電力種類は、再生可能エネルギー、非再生可能エネルギーなどの区分であり、電力取引システム10で定義された電力種類を選択する形となる。ここで再生可能エネルギーは再生可能エネルギーから発電された電力である。非再生可能エネルギーは再生可能エネルギーではなく、化石燃料等を用いて発電された電力である。ここでは例として再生可能エネルギーと表現したが、太陽光発電、風力発電など再生可能エネルギーを詳細化してもいい。
 販売希望電力は、購入を希望する電力であり、販売希望電力量は、販売を希望する電力量である。販売希望電力量と販売希望電力を販売希望電力日時で記載した時間積分した量と合わせる。販売希望価格は、販売希望電力や販売希望電力量に対する価格である。
 ブロック入札希望は、販売入札個別IDに分割した形でマッチングするかしないかに関する情報である。図7は供給入札情報をグラフ化したものである。販売希望電力量(kWh)の電力(kW)を縦軸、時間を横軸として表している。電力の需要側は供給入札ID(D200を示す)に対して、D201のブロックのように供給入札個別IDに分割した形で入札することもできる。前記の供給入札情報でブロック入札希望が“×”な場合は分割した入札はしない。ブロック入札希望が“〇”な場合は、ブロックに分割してマッチングする。この分割は電力取引システム10で予め決めた分割の仕方に従う。例えば図5のD201の縦と横の長さを、電力取引システム10が決めた値に規格化する。
 供給電力地点は、どこで発電された電力なのかに関する情報である。電力取引システム10で決めて地点の名称または地点のIDとなる。
 優先度は、同じ供給入札IDにおいて各供給入札個別IDの優先度となる。電力取引システム10が決めた優先度の付け方のルールに従えばいい。たとえば、1を一番優先度の高いものとし、次に2、3,4のような順番で優先度を下げることが考えられる。
 天気予報は、過去の天気予報の履歴データと将来の天気予報を含む情報であり、各地点の情報である。
 過去のマッチング履歴は、過去の取引システムの需要入札情報、供給入札情報、マッチング履歴の情報を含む情報である。
 <発現率予測部>
 発現率予測部200は、各需要入札情報と供給入札情報の予測発現率を求める。需要入札情報に対する発現率は、需要入札情報に該当する供給入札情報が各時刻で現れる確率である。供給入札情報に対する予測発現率は、供給入札情報に該当する需要入札情報が各時刻で現れる確率である。たとえば、需要入札情報と一致する供給入札情報が現れる確率を計算する。
 予測方法としては、過去のマッチング履歴を用いて予測をする。たとえば、予測対象の需要入札情報に該当する過去の供給入札情報を検索する。図8は検索の結果を時間軸で表したものである。需要入札情報に該当する供給入札情報として供給入札情報A(S10)と供給入札情報B(S20)が検索されたとする。供給入札情報Aはt1時刻で取引システム上に現れて、供給入札情報Bはt10時刻で取引システム上に現れたとする。過去のマッチング履歴の全日数Ttotalに対して、t1とt10において供給入札情報が現れたことになる。予測発現率の計算式は、例えば、以下のように計算できる。
 “各時刻での予測発現率Zt=Tu/Ttotal”
 ここで、Tuは予測対象の需要入札情報に該当する供給入札情報が対象時刻に現れた日数の合計となる。
 供給入札情報が全日数において1日だけt1時刻で現れた場合、t1時刻での予測発現率は1/Ttotalとなる。t2からt9時刻までは、供給入札情報がマッチングされずに入札が残っている場合は、予測発現率がt1時刻での予測発現率と同じ値をとる。もし供給入札情報Aがt2時刻でマッチングされた場合は、t3時刻からt9時刻での予測発現率は0となる。t10時刻においては、供給入札情報がマッチングされずに入札が残っている場合は、予測発現率は2/Ttotalとなる。もし供給入札情報Aがt2時刻でマッチングされた場合は、1/Ttotalとなる。
 Ttotalが取引システム上の全日数という例で説明したが、需要入札情報と供給入札情報の予測発現は季節的な要因もあるため、季節区間を設定して、需要入札情報の購入希望電力日時を基準に季節区間を割当、その区間内の過去の需要入札情報と供給入札情報を用いることも考えられる。たとえば、季節として春、夏、秋、冬と区分する。区分の仕方は、春は3月から5月、夏は6月から8月、秋は9月から11月、冬は12月から2月と区分すればいい。このような区分で需要入札情報と供給入札情報を分ける。このように分けた情報を用いて予測発現率を予測する。さらに、平日と週末によって需要の形態が異なることも想定できるため、季節ごとに平日と週末の区分で需要入札情報と供給入札情報を分けることも考えられる。そして天候ごとに需要入札情報と供給入札情報を分けることも考えられる。
 ここでは、統計処理による予測について説明したが、この手法だけに制限するものではない。ニューラルネットワークを用いて予測する方法も考えられる。例えば、需要入札情報、供給入札情報を用いて過去の発現率を算出しておく。このデータを用いて教師あり学習としてニューラルネットワークを用いて予測することが可能である。さらに前記で説明した季節や週末・平日、天候を説明変数として用いればさらに予測精度が高まると考えられる。また、過去のマッチング履歴以外に現時刻で取引システムに存在する需要入札情報と供給入札情報から発現率を前記と同様に求めて、その値を説明変数とすることも考えられる。
 <約定率予測部>
 約定率予測部300は、各需要入札情報と供給入札情報の予測約定率を求める。予測発現率は、ある時刻にマッチング可能な需要入札または供給入札があるかないかの指標であるが、予測約定率は、電力の需要または供給がどの程度の量があるかの指標である。予測約定率の計算式は、例えば、以下のようになる。
 “各時刻での予測約定率Ct=Ni/Nj”
 ここで、Njは予測対象の過去の需要入札情報の合計であり、Niは予測対象の過去の供給入札情報の合計となる。これは予測対象が電力の需要の場合であるが、供給の場合はこの逆数となる。
 予測約定率の予測においても予測発現率の予測と同じく、季節的要因を想定して、約定率予測に用いる需要入札情報と供給入札情報を季節ごとに区分することも考えられる。さらに週末や平日と区分することも考えられる。そして天候ごとに需要入札情報と供給入札情報を分けることも考えられる。
 ここでは、統計処理による予測について説明したが、この手法だけに制限するものではない。ニューラルネットワークを用いて予測する方法も考えられる。例えば、需要入札情報、供給入札情報を用いて過去の予測約定率を算出しておく。このデータを用いて教師あり学習としてニューラルネットワークを用いて予測することが可能である。さらに上記で説明した季節や週末・平日、天候を説明変数として用いれば、さらに予測精度が高まると考えられる。また、過去のマッチング履歴以外に現時刻で取引システムに存在する需要入札情報と供給入札情報から約定率を上記と同様に求めて、その値を説明変数とすることも考えられる。
 <マッチング部>
 マッチング部400では各需要入札情報と各供給入札情報とのマッチングを行う。図9はマッチング部の処理を示すフローチャートである。
 処理S401ではマッチングの開始として電力取引システム10上に該当する入札を提出する。そして、まず、優先度が高い需要入札情報でマッチングを試す。S402では、マッチングを試した入札がマッチングできたか状況把握する。S403では発現率予測部200と約定率予測部300で算出した予測発現率と予測約定率に基づいてマッチングの優先度の切り替えを判断する。切り替えの基準としては、各優先度の入札に対して、発現率と約定率の積を計算し、マッチングができない状態が続き、次の一段下の優先度の入札より発現率と約定率の積が低くなる場合、その一段下の優先度の入札に切り替えることが考えられる。さらにマッチングができない状態が続く時間を一定期間設定して、この期間の間では該当優先度の入札を維持することも考えられる。
 S404では、需要入札情報と供給入札情報をマッチングさせる。需要入札情報と供給入札情報が同じもの同士でマッチングさせる。同じ内容の複数の需要入札情報や複数の供給入札情報がある場合は、マッチングのルールとしては、基本的に先着順でマッチングさせる。
 <取引管理部>
 取引管理部500は、マッチングの結果をマッチング部400より取得して、マッチング部400でマッチングする需要入札情報と供給入札情報を更新する。マッチングの結果によりマッチングできたものは、マッチング済みフラグを付けてマッチング部400でマッチングする需要入札情報と供給入札情報から除く処理をする。
 以上説明した電力取引システム10によれば、一つの電力の需要または供給の入札において複数のマッチング条件を提示することで、電力取引システム10内の需要入札情報と供給入札情報を増やすことができ、マッチングがしやすくなる。
 また、電力取引システム10によれば、複数の優先度を持つ入札に対して、予測発現率と予測約定率を予測し、その値に基づいて、優先度を切り替えるため、優先度が高い入札からマッチングを試し、もし、マッチングができる確率が低くなる際には次の優先度の入札に切り変えることができる。
 さらに、電力取引システム10によれば、複数の優先度を持つ入札に対して、予測発現率と予測約定率を予測し、一定時間入札を維持するため、できるだけ、優先度の高い入札を維持することができる。
 したがって、本実施例1によれば、電力を適切に取引することができる電力取引システム10を提供することができる。
 以下の実施例では、実施例1と共通の技術事項については省略して説明する。
 実施例1では、各入札に対して優先度を付与することについて記述した。入札情報は固定の値である。本実施例2では、固定の値ではなく、入札情報の値に一定の範囲を設定することについて説明する。例えば、需要入札情報の購入希望価格は、一定の範囲を各優先度の入札に付与することが考えられる、実施例1で購入希望価格が100円だとすると、±10%の範囲を付与して、90円から110円を購入希望価格とする。供給入札情報に対しても同様の処理をすることで、マッチング条件を緩和することができ、各入札に対して対応する需要入札情報または供給入札情報を増やすことができる。
 図10は、実施例3に係る電力取引システム10の機能ブロック図である。ここでは、供給側の予測値情報を集めて、供給電力を再生可能エネルギー安定分、再生可能エネルギー変動分、再生可能エネルギー充放電能力、再生可能エネルギー放電能力、非再生可能エネルギー、非再生可能エネルギー充放電能力、非再生可能エネルギー放電能力と分類する供給電力分類部600を実施例1(図3)に追加している。
 実施例1では、電力種類として再生可能エネルギーまたは非再生可能エネルギー、再生可能エネルギーを詳細化して太陽光、風力として電力種類を分けることを提案した。しかし他の観点で電力種類を分けることも考えられる。たとえば、電力種類を、再生可能エネルギー安定分、再生可能エネルギー変動分、再生可能エネルギー充放電能力、再生可能エネルギー放電能力、非再生可能エネルギー、非再生可能エネルギー充放電能力、非再生可能エネルギー放電能力として区分することが考えられる。再生可能エネルギーは発電量が予測値と異なったりするため、取引は事前にしたものの、出力に変動があり、実際には取引した発電量を提供できなかったりする。再生可能エネルギー安定分と再生可能エネルギー変動分は、再生可能エネルギーの発電量を、提供できる確度が高い発電量と確度が低い発電量である。こうすることで、安定的に再生可能エネルギーの発電量を確保したい需要側は再生可能エネルギー安定分を購入し、不安定でも安く再生可能エネルギーを購入したい需要側は再生可能エネルギー変動分を購入することになる。再生可能エネルギー充放電能力、非再生可能エネルギー充放電能力は、蓄電池に充放電する電力を再生可能エネルギーと非再生可能エネルギーで区分をして、蓄電池に充放電できる能力である。蓄電池の能力を使うため、ある決まった時刻でしか使えない再生可能エネルギー安定分と再生可能エネルギー変動分とは異なり、ある時間帯で蓄電池から再生可能エネルギーまたは再生可能エネルギーを放電、または、ある時間帯で蓄電池から再生可能エネルギーまたは再生可能エネルギーを充電できる能力である。非再生可能エネルギーは実施例1でも説明したように化石燃料等から発電した電力である。
 供給電力分類部600では、再生可能エネルギーの発電量を、再生可能エネルギー安定分と再生可能エネルギー変動分とに分ける処理を行う。再生可能エネルギーの発電量を、再生可能エネルギー安定分と再生可能エネルギー変動分とに分ける方法としては、信頼区間を用いる方法がある。供給側から販売を希望する期間の再生可能エネルギーの予測値を取得する。
 図11は再生可能エネルギーの予測値の例である。G402が予測値の平均値であり、G401、G403がある信頼区間での予測値である。信頼度の求め方は、過去の予測値と実績値を比較したその予測誤差を用いて求めればいい。再生可能エネルギー安定分と再生可能エネルギー変動分は出力確率に基づいて分ける。その基準となる確率は、ある任意の値をとればよくて、たとえば、G401とG403が正規分布を前提とした3σ(σは標準偏差)であり、G403以下の発電量を安定分とする場合は、99.7%の出力確率を基準として、再生可能エネルギー安定分と再生可能エネルギー変動分が分けられる。
 マッチング関連データ取得部100Aでは、再生可能エネルギー安定分と再生可能エネルギー変動分の場合は、供給入札情報の販売希望電力日時、販売希望電力種類と販売希望電力と販売希望電力量は供給電力分類部600の処理結果が自動的に記入される。そしてこの値は、再生可能エネルギーの予測値の更新データが入力される場合は、更新される。
 予測発現率と予測約定率の予測では、基本的に実施例1と同じであるが、供給電力分類部600とマッチング関連データ取得部100Aにより再生可能エネルギー安定分と再生可能エネルギー変動分が更新される場合は、実施例1で説明した予測発現率と予測約定率が、更新された供給入札情報に基づいて、更新される。
 本実施例3によれば、再生可能エネルギーの発電量を、信頼区間を用いて分けることにより、供給確率が高い再生可能エネルギー安定分と供給確率が低い再生可能エネルギー変動分に分け、マッチングをすることができる。
 実施例1において、ある時点に需要入札情報が多くなることも考えられる。たとえば、気温によって電力消費量が変化し、その電力の調達のため、多くの需要が電力取引システム10で供給を求めることが考えられる。または、特定の電力種類への入札が集中することが考えられる。そして、天候によって再生可能エネルギーが発電せず、電力取引システム10でマッチングできる供給入札情報がなくなることも考えられる。
 このような場合、再生可能エネルギー充放電能力を活用できる。すなわち、需要入札情報のマッチング条件として再生可能エネルギー充放電能力活用可能情報を追加する。再生可能エネルギー充放電能力活用可能情報が可の場合は、マッチング部400において、次の優先度の需要入札個別IDのマッチング条件に切り替える前に、購入希望時間帯以外の再生可能エネルギー安定分または再生可能エネルギー変動分の供給入札情報と再生可能エネルギー充放電能力の組み合わせを検索してマッチングをする。その際に購入希望電力日時以外の条件は一致する必要がある。例えば、実施例1の場合、セットにする再生可能エネルギー変動分の供給入札情報と再生可能エネルギー充放電能力の供給希望価格の合計が購入希望価格と一致する必要がある。実施例2の場合は、設定した範囲内となる必要がある。再生可能エネルギー安定分または再生可能エネルギー変動分を、再生可能エネルギー充放電能力を用いて充電する。そして需要入札情報の購入希望電力日時の時刻に充電した量を提供する。
 なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることも可能である。
 また、上記の各構成、機能、処理部、処理手段等は、それらの一部又は全部を、例えば集積回路で設計する等によりハードウェアで実現してもよい。また、上記の各構成、機能等は、プロセッサがそれぞれ機能を実現するプログラムを解釈し、実行することによりソフトウェアで実現してもよい。各機能を実現するプログラム、テーブル、ファイル等の情報は、メモリや、ハードディスク、SSD(Solid State Drive)等の記録装置、又はICカード、SDカード、DVD等の記録媒体に置くことができる。
 また、制御線や情報線は説明上必要と考えられるものを示しており、製品上必ずしも全ての制御線や情報線を示しているとは限らない。実際には殆ど全ての構成が相互に接続されていると考えてよい。
 10  電力取引システム
 100,100A マッチング関連データ取得部
 200 発現率予測部
 300 約定率予測部
 400 マッチング部
 817 プログラム

Claims (6)

  1.  優先度付きの需要入札情報と供給入札情報を取得するマッチング関連データ取得部と、
     前記需要入札情報と前記供給入札情報の予測発現率を求める発現率予測部と、
     前記需要入札情報と前記供給入札情報の予測約定率を求める約定率予測部と、
     前記予測発現率及び前記予測約定率に基づいて優先度を切り替えながら前記需要入札情報と前記供給入札情報をマッチングさせるマッチング部とを備えることを特徴とする電力取引システム。
  2.  需要入札情報及び、又は前記供給入札情報の値に範囲を設定することを特徴とする請求項1に記載の電力取引システム。
  3.  供給電力を、再生可能エネルギー安定分、再生可能エネルギー変動分、再生可能エネルギー充放電能力、再生可能エネルギー放電能力、非再生可能エネルギー、非再生可能エネルギー充放電能力、非再生可能エネルギー放電能力に区分して、それぞれの供給電力において前記発現率予測部と前記約定率予測部が前記予測発現率と前記予測約定率を予測することを特徴とする請求項1に記載の電力取引システム。
  4.  前記再生可能エネルギー安定分、前記再生可能エネルギー変動分を再エネの予測値と実績値に基づく信頼度区間を算出し、天候変動の場合、変動後の天候に基づく信頼度区間と予測値を用いて前記予測発現率と前記予測約定率を更新することを特徴とする請求項3に記載の電力取引システム。
  5.  前記マッチング部は、次の優先度のマッチング条件に切り替える前に、再生可能エネルギー安定分または再生可能エネルギー変動分と再生可能エネルギー充放電能力の組み合わせを検索して、その組み合わせによる前記供給入札情報と前記需要入札情報とが一致する場合にマッチングさせることを特徴とする請求項3に記載の電力取引システム。
  6.  優先度付きの需要入札情報と供給入札情報を取得するマッチング関連データ取得部と、
     前記需要入札情報と前記供給入札情報の予測発現率を求める発現率予測部と、
     前記需要入札情報と前記供給入札情報の予測約定率を求める約定率予測部と、
     前記予測発現率及び前記予測約定率に基づいて優先度を切り替えながら前記需要入札情報と前記供給入札情報をマッチングさせるマッチング部とをコンピュータに実行させることを特徴とするプログラム。
PCT/JP2022/011267 2021-05-17 2022-03-14 電力取引システム及びプログラム WO2022244417A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22804336.0A EP4343669A1 (en) 2021-05-17 2022-03-14 Power transaction system and program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021083021A JP2022176535A (ja) 2021-05-17 2021-05-17 電力取引システム及びプログラム
JP2021-083021 2021-05-17

Publications (1)

Publication Number Publication Date
WO2022244417A1 true WO2022244417A1 (ja) 2022-11-24

Family

ID=84140496

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/011267 WO2022244417A1 (ja) 2021-05-17 2022-03-14 電力取引システム及びプログラム

Country Status (3)

Country Link
EP (1) EP4343669A1 (ja)
JP (1) JP2022176535A (ja)
WO (1) WO2022244417A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016033801A (ja) * 2014-07-31 2016-03-10 国立大学法人 筑波大学 電力取引支援装置、電力取引支援方法およびプログラム
JP2020071776A (ja) * 2018-11-01 2020-05-07 東京瓦斯株式会社 電力取引装置、プログラム
JP2021056666A (ja) * 2019-09-27 2021-04-08 Kddi株式会社 需要家の電力取引を制御する電力取引制御装置、プログラム及び方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016033801A (ja) * 2014-07-31 2016-03-10 国立大学法人 筑波大学 電力取引支援装置、電力取引支援方法およびプログラム
JP2020071776A (ja) * 2018-11-01 2020-05-07 東京瓦斯株式会社 電力取引装置、プログラム
JP2021056666A (ja) * 2019-09-27 2021-04-08 Kddi株式会社 需要家の電力取引を制御する電力取引制御装置、プログラム及び方法

Also Published As

Publication number Publication date
EP4343669A1 (en) 2024-03-27
JP2022176535A (ja) 2022-11-30

Similar Documents

Publication Publication Date Title
US10430898B2 (en) Method and system for facilitating electricity services
Richter et al. A profit-based unit commitment GA for the competitive environment
Guan et al. An ordinal optimization based bidding strategy for electric power suppliers in the daily energy market
US9134353B2 (en) Comfort-driven optimization of electric grid utilization
Li et al. Distributed smart-home decision-making in a hierarchical interactive smart grid architecture
Mengelkamp et al. Intelligent agent strategies for residential customers in local electricity markets
Lu et al. Interactive game vector: A stochastic operation-based pricing mechanism for smart energy systems with coupled-microgrids
Jia et al. A bilevel model for optimal bidding and offering of flexible load aggregator in day-ahead energy and reserve markets
US20190279239A1 (en) Power Trading Assistance Device and Market Price Prediction Information Generation Method
JP2013059241A (ja) 蓄電池貸出容量決定装置および蓄電池貸出容量決定方法
Vasin Game-theoretic study of electricity market mechanisms
Yazdaninejad et al. Risk‐minimizing stochastic self‐scheduling model for microgrid in day‐ahead electricity market
Chuang et al. Deep reinforcement learning based pricing strategy of aggregators considering renewable energy
Dai et al. A robust biobjective optimization approach for operating a shared energy storage under price uncertainty
Guan et al. Integrated resource scheduling and bidding in the deregulated electric power market: New challenges
WO2022244417A1 (ja) 電力取引システム及びプログラム
CN110648164A (zh) 一种节点边际电价区间的确定方法和装置
Wang et al. Network-constrained energy consumption game for dynamic pricing markets
CN114154670A (zh) 一种结合区块链技术的混合能源交易调度方法及应用
Khodadadi et al. Optimal operation of energy hub systems under resiliency response options
JP7351342B2 (ja) 制御装置、制御方法及びプログラム
CN112581210A (zh) 一种分布式电源交易系统
Yu et al. Electricity purchasing strategy for the regional power grid considering wind power accommodation
Miyamoto et al. Distributed day‐ahead scheduling of community energy management system group considering uncertain market prices using stochastic optimization
Carvalho et al. A mixed-integer linear approach for assessing the impact of bilateral contracts in a combined energy market operating under payment minimization

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22804336

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18561779

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2022804336

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022804336

Country of ref document: EP

Effective date: 20231218