WO2022242722A1 - 空间太阳电池高空标定装置 - Google Patents

空间太阳电池高空标定装置 Download PDF

Info

Publication number
WO2022242722A1
WO2022242722A1 PCT/CN2022/093918 CN2022093918W WO2022242722A1 WO 2022242722 A1 WO2022242722 A1 WO 2022242722A1 CN 2022093918 W CN2022093918 W CN 2022093918W WO 2022242722 A1 WO2022242722 A1 WO 2022242722A1
Authority
WO
WIPO (PCT)
Prior art keywords
calibration
housing
calibration plate
calibration device
altitude
Prior art date
Application number
PCT/CN2022/093918
Other languages
English (en)
French (fr)
Inventor
徐国宁
唐宇
李永祥
蔡榕
杨燕初
李兆杰
Original Assignee
中国科学院空天信息创新研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院空天信息创新研究院 filed Critical 中国科学院空天信息创新研究院
Publication of WO2022242722A1 publication Critical patent/WO2022242722A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S50/00Monitoring or testing of PV systems, e.g. load balancing or fault identification
    • H02S50/10Testing of PV devices, e.g. of PV modules or single PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the application relates to the field of space technology and precision measurement technology, in particular to a high-altitude calibration device for space solar cells.
  • the high-altitude balloon calibration method refers to the use of a high-altitude balloon to send the solar cell to be calibrated to the height of the adjacent space, and measure the short-circuit current, open-circuit voltage, I-V characteristic curve, parameters such as temperature. After the measurement, the solar cell under test is recovered, and the measurement data is simply corrected to obtain the first-level AM0 (Atomic and Molecular Optics, atomic and molecular optics) standard sheet and the process of corresponding calibration data.
  • AM0 Atomic and Molecular Optics, atomic and molecular optics
  • the space solar cell high-altitude calibration device (hereinafter referred to as the calibration device) is a device that provides an installation plane for the solar cell to be calibrated, ensures that the surface of the solar cell faces the sun, measures the parameters of the solar cell, and protects the safe recovery of the solar cell after the measurement.
  • the current calibration devices all adopt a simple single-sided calibration plate structure, which does not fully consider the solar cell recycling protection mechanism, and has problems such as large volume and weight, fewer solar cells carried in a single flight, and the calibrated solar cells are easily damaged during recycling.
  • the casing of the high-altitude calibration device for space solar cells includes at least two symmetrically arranged outer surfaces, the calibration plate is arranged on the outer surfaces of the casing, and the overall structure of the calibration device is kept in balance.
  • the calibration plate is connected to the horizontal driving end of the transmission mechanism, and can be fastened to the outer surface of the housing, or can form a certain angle with the outer surface of the housing.
  • the calibration plate is fastened on the outer surface of the casing, which reduces damage to the solar battery on the calibration plate by the external environment and increases the safety of solar battery recovery.
  • the calibration device innovatively proposes a multi-face calibration structure, which reduces the volume and increases the number of calibration cells.
  • it innovatively proposes to pack the solar cells inside the tetrahedron during recycling, effectively protecting the solar cells.
  • the embodiment of this application provides a high-altitude calibration device for space solar cells, including:
  • the housing includes at least two symmetrically arranged outer surfaces, and an accommodating space is constructed in the housing;
  • the calibration plate control assembly includes a pitch drive motor and a transmission mechanism, the transmission mechanism includes a force end connected to the pitch drive motor and a drive end extending to the outer surface of the housing, and the drive end is arranged horizontally;
  • a calibration plate is connected to the driving end, and the calibration plate is provided with a battery installation mechanism
  • the data acquisition circuit is arranged in the housing and electrically connected to the battery installation mechanism;
  • a tracking control circuit electrically connected to the calibration board control assembly and the data acquisition circuit
  • the calibration plate control assembly is adapted to switch the calibration plate between a closed state and an open state
  • the angle between the calibration plate and the outer surface of the housing is 0°
  • an azimuth axis control assembly electrically connected to the tracking control circuit is also arranged in the housing;
  • the azimuth axis control assembly includes a pod connecting main shaft and an azimuth axis motor vertically penetrating through the housing, the azimuth axis motor is connected to the housing and the pod connecting main shaft, and the pod connecting main shaft Both ends extend to the outside of the housing.
  • a sun sensor is arranged on the calibration plate, and the sun sensor is electrically connected to the tracking control circuit.
  • a camera is arranged on the casing.
  • an electronic compass is arranged on the calibration plate.
  • the azimuth axis motor is coaxially arranged with the pitch drive motor.
  • the transmission mechanism is a two-stage bevel gear
  • the driving end is a bevel gear box
  • a pitching shaft is horizontally arranged in the bevel gear box.
  • the calibration plate is detachably connected to the driving end.
  • support columns are provided at positions where the outer surfaces of the housings are connected to each other.
  • an insulating layer is provided on the casing.
  • the space solar cell high-altitude calibration device includes a casing, a calibration board control assembly, a calibration board, a data acquisition circuit and a tracking control circuit.
  • the housing includes at least two symmetrically arranged outer surfaces, the calibration plate is arranged on the outer surfaces of the housing, and the overall structure of the calibration device is kept in balance.
  • the transmission mechanism of the calibration board control assembly extends to the outer surface of the casing to form a driving end, the driving end is arranged horizontally, and the calibration board is connected to the horizontally arranged driving end. Under the action of the pitch drive motor, the calibration plate switches between the closed state and the open state. In the closed state, the included angle between the calibration plate and the outer surface of the housing is 0°.
  • the calibration plates are arranged symmetrically on the outer surface of the casing, the overall structure of the calibration device is balanced, and multiple calibration plates can carry more solar cells.
  • the data acquisition circuit is used to collect various parameter information of the solar cell
  • the tracking control circuit is used to adjust the calibration plate and the angle between the solar cell on the calibration plate and the sun.
  • the calibration plate can adjust the opening angle according to the position of the sun so as to align with the sun.
  • the calibration plate is fastened on the outer surface of the casing, so as to prevent the external environment from causing damage to the solar cells on the calibration plate, and to realize the protection of the solar cells.
  • FIG. 1 is a perspective view of a high-altitude calibration device for space solar cells provided by an embodiment of the present application
  • Fig. 2 is a schematic structural diagram of the space solar cell high-altitude calibration device provided by the embodiment of the present application;
  • Fig. 3 is a schematic diagram of the high-altitude state of the space solar cell high-altitude calibration device provided by the embodiment of the present application;
  • Fig. 4 is the schematic diagram of the tracking control circuit of the space solar cell high-altitude calibration device provided by the embodiment of the application;
  • Fig. 5 is a working flow chart of the space solar cell high-altitude calibration device provided by the embodiment of the present application.
  • the pod is connected to the main shaft; 62.
  • connection and “connected” should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection, Or integrated connection; it can be mechanical connection or electrical connection; it can be direct connection or indirect connection through an intermediary.
  • connection should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection, Or integrated connection; it can be mechanical connection or electrical connection; it can be direct connection or indirect connection through an intermediary.
  • the first feature may be in direct contact with the first feature or the first feature and the second feature may pass through the middle of the second feature.
  • Media indirect contact Moreover, “above”, “above” and “above” the first feature on the second feature may mean that the first feature is directly above or obliquely above the second feature, or simply means that the first feature is higher in level than the second feature.
  • “Below”, “beneath” and “beneath” the first feature may mean that the first feature is directly below or obliquely below the second feature, or simply means that the first feature is less horizontally than the second feature.
  • the space solar cell high-altitude calibration device (hereinafter referred to as the calibration device) is a device that provides an installation plane for the solar cell to be calibrated, ensures that the surface of the solar cell faces the sun, measures the parameters of the solar cell, and protects the safe recovery of the solar cell after the measurement.
  • the current calibration devices all adopt a simple single-sided calibration plate structure, which does not fully consider the solar cell recycling protection mechanism, and has problems such as large volume, heavy weight, fewer solar cells carried in a single flight, and the calibrated solar cells are easily damaged during recycling. .
  • the embodiment of the present application provides a high-altitude calibration device for space solar cells, please refer to FIG. 1 to FIG.
  • the casing 1 includes at least two symmetrically arranged outer surfaces 11 .
  • the calibration plate 3 is arranged at the position of the outer surface 11, the overall structure of the casing 1 remains balanced.
  • the housing 1 is a regular quadrangular prism structure, and the regular quadrangular prism structure has four symmetrically arranged outer surfaces 11 .
  • the calibration plate 3 can be arranged on two symmetrically arranged outer surfaces 11 , or on four symmetrically arranged outer surfaces 11 , so as to maintain the balance and stability of the overall structure of the housing 1 .
  • the casing 1 may also be a regular hexagonal prism and equiaxed symmetrical structure.
  • the symmetrically arranged outer surfaces 11 include cases of central symmetry, rotational symmetry, and axial symmetry.
  • the calibration plate 3 on the outer surface 11 can also maintain balance.
  • the calibration plate 3 on the outer surface 11 can also maintain balance.
  • the housing types provided in the above embodiments can all ensure that the calibration plate 3 on the outer surface 11 is in a balanced position.
  • the regular quadrangular prism structure is taken as an example to illustrate related technical solutions and technical effects.
  • the calibration plate control assembly includes a pitch drive motor 21 and a transmission mechanism, and the transmission mechanism includes a force receiving end 221 connected to the pitch drive motor 21 and a drive end 222 for transmitting torque outward.
  • the driving end 222 extends to the outer surface 11 of the casing 1 and is arranged horizontally on the outer surface 11 .
  • the calibration plate 3 is connected to the driving end 222 arranged horizontally.
  • the driving end 222 rotates, the angle between the calibration plate 3 and the horizontal plane changes, and the height angle of the calibration plate 3 can be changed.
  • the number of the pitching drive motor 21 is one, and the pitching drive motor 21 and the transmission mechanism adopt a star-shaped distribution, so that the four transmission mechanisms and the calibration plate 3 move synchronously, and the balance of the calibration device is maintained during the movement .
  • the transmission mechanism adopts two-stage bevel gears
  • the driving end 222 is a bevel gear box
  • a pitch shaft 2221 is horizontally arranged in the bevel gear box
  • the calibration plate 3 is connected to the pitch shaft 2221 .
  • the pitch driving motor 21 rotates, and the pitch rotating shaft 2221 drives the calibration plate 3 to open or close at a certain angle, thereby changing the height angle of the calibration plate 3 .
  • the calibration plate 3 is provided with a battery installation mechanism, and the battery installation mechanism forms a fixing effect on the solar battery 33 .
  • the battery installation mechanism is also provided with electrodes connected to the solar battery 33 for receiving the current and voltage parameters of the solar battery 33 under sunlight.
  • a temperature sensor is also provided in the battery installation mechanism for measuring the temperature change of the solar battery 33 under sunlight.
  • Calibration plate 3 is provided with a plurality of battery installation mechanisms, can install a plurality of solar cells of the same model, also can install a plurality of solar cells of different models. In one calibration process, the calibration work of multiple solar cells is completed, thereby reducing the calibration cost of the solar cells.
  • the calibration plate 3 is detachably connected to the driving end 222 . Before measuring the solar cell, select a calibration plate 3 of a suitable model and specification. The installation and disassembly of the calibration plate 3 are relatively simple and convenient to use.
  • a data acquisition circuit 4 is installed in the casing 1, and the data acquisition circuit 4 is electrically connected to the battery installation mechanism, and can acquire various parameters of the solar battery 33 during measurement.
  • the data acquisition circuit 4 is provided with a memory card or a wireless communication module for storing measurement data or sending the data to the ground data center.
  • a tracking control circuit 5 is also installed in the housing 1 , and the tracking control circuit 5 is electrically connected to the calibration board control assembly and the data acquisition circuit 4 .
  • the tracking control circuit 5 includes a Freescale control chip, a sensor detection circuit, a power supply and distribution circuit, a host computer serial communication circuit, a storage circuit, and a motor drive circuit. 3 positions for automatic tracking control and remote control.
  • the control chip can also be chips produced by various other manufacturers, such as STM32, DSP, etc.
  • the calibration plate control assembly can adjust the angle between the calibration plate 3 and the outer surface 11 of the housing 1, so that the calibration plate 3 can be adjusted between the closed state and the open state. switch.
  • the angle between the calibration plate 3 and the outer surface 11 of the housing 1 is 0°, that is, the calibration plate 3 is buckled on the outer surface 11 .
  • the included angle is between 0° and 180°.
  • the calibration device is lifted into the air under the buoyancy of the high-altitude balloon, and the sun has a certain height.
  • the calibration plate 3 and the solar cells 33 on the calibration plate 3 need to face the position where the sun is located.
  • the opening angle between the calibration plate 3 and the outer surface 11 is adjusted so that the solar cell 33 is always facing the position of the sun.
  • the calibration plate 3 is fastened on the outer surface 11 of the casing 1 to prevent the external environment from damaging the solar cells 33 on the calibration plate 3 and to realize the protection of the solar cells.
  • the calibration plate 3 is mounted on the bottom of the outer side 11 .
  • the solar cell 33 can face the position of the sun.
  • the top of the calibration device 100 is connected to the high-altitude balloon 200 , and is lifted into the air under the buoyancy of the high-altitude balloon 200 .
  • a parachute 300 and a disconnection mechanism 400 are also connected to the calibration device.
  • a pod 500 is connected to the lower part of the calibration device, and various electrical components or sensors are installed in the pod 500 to cooperate with the calibration device 100 to work.
  • the orientation of the calibration board 3 is random, and there is a certain deviation from the direction where the sun is located.
  • an azimuth axis control assembly is further arranged in the housing 1 , and the azimuth axis control assembly is electrically connected to the tracking control circuit 5 . Under the unified control of the tracking control circuit 5, the azimuth of the calibration board 3 is adjusted.
  • the azimuth axis control assembly includes a pod connection main shaft 61 and an azimuth axis motor 62 , the pod connection main shaft 61 vertically penetrates the housing 1 and keeps rotating relative to the housing 1 .
  • the base of the azimuth axis motor 62 is connected to the inner wall of the housing 1 , and the rotating platform of the azimuth axis motor 62 is connected to the pod connecting main shaft 61 .
  • the azimuth axis motor 62 When in use, the azimuth axis motor 62 is started, and the casing 1 rotates around the pod connection main shaft 61, and at this time, the azimuth angle of the calibration plate 3 changes.
  • adjusting the azimuth and altitude of the calibration board 3 can make the calibration board 3 and the solar cell 33 always face the position of the sun and obtain the best measurement effect.
  • Both ends of the pod connection main shaft 61 extend to the outside of the housing 1, and one end of the pod connection main shaft 61 located at the top of the housing 1 is connected to the high-altitude balloon 200, the parachute 300 and the disconnecting mechanism 400 through cables, and the pod connection main shaft One end of 61 located at the bottom of the casing 1 is connected to the pod 500 .
  • the calibration device adopts a coaxial center layout form of elevation angle-azimuth angle dual-axis tracking.
  • the rotating shaft of the azimuth axis motor 62 is fixedly connected with the pod connecting main shaft 61, and the base of the azimuth axis motor 62 drives the housing 1 to rotate around the pod connecting main shaft 61 to realize the azimuth tracking of the calibration plate 3.
  • the pod connects the main shaft 61 to pass through the central through hole of the rotating platform of the pitching drive motor 21.
  • the torque output by the pitch drive motor 21 is transmitted to the pitch shafts 2221 on the four sides by the transmission mechanism, so as to drive the four-sided calibration plate 3 to rotate synchronously, so as to realize the height angle tracking of the calibration plate 3 .
  • the azimuth axis motor 62 and the pitch drive motor 21 are coaxially arranged, so that the calibration device is kept in balance at high altitude, and it is convenient to adjust the height angle and azimuth angle of the calibration plate 3 without considering the imbalance of the calibration device itself, which reduces the weight of the counterweight pieces, reducing the overall load.
  • a solar sensor 31 is installed on the calibration plate 3 , and the solar sensor 31 is arranged perpendicular to the calibration plate 3 .
  • the signal of the sun sensor 31 changes, and when the calibration board 3 is facing the position of the sun, the signal strength is the highest, thereby determining the elevation angle and azimuth angle of the calibration board 3.
  • a camera 7 is installed on the housing 1, and the camera 7 can capture the trajectory of the sun.
  • the position of the sun is tracked according to the solar movement track, and then the elevation angle and the azimuth angle of the calibration board 3 are adjusted according to the apparent solar movement track.
  • the photoelectric sensor and the apparent solar trajectory can be used to track/search the position of the sun at the same time, so as to obtain a stable sun positioning effect.
  • multiple calibration boards 3 use a time-division multiplexing tracking strategy to integrate the measurement data on multiple calibration boards 3 .
  • the calibration board 3 is provided with an electronic compass 32 , and the electronic compass 32 measures the elevation angle and azimuth angle of the calibration board 3 , and sends the data information to the data acquisition circuit 4 and the tracking control circuit 5 .
  • the tracking control circuit 5 adjusts the elevation angle and azimuth angle of the calibration board 3 according to the feedback information from the sun sensor 31 , the camera 7 and the electronic compass 32 .
  • the outer surface 11 of the housing 1 can be used to protect the calibration plate 3 and the solar cells 33 mounted on the calibration plate 3 .
  • the casing 1 is provided with a pitch drive motor 21 , an azimuth axis motor 62 , a data acquisition circuit 4 , a tracking control circuit 5 and the like. therefore.
  • the structural strength of the casing 1 needs to meet certain standards.
  • the housing 1 can be made of aluminum alloy material, which has high strength, light weight and good corrosion resistance.
  • the housing 1 can also be made of carbon fiber or high-strength plastic, which can achieve the same technical effect.
  • a support column 12 is provided at the position where the outer surfaces 11 of the housing 1 are connected to each other.
  • the support column 12 can increase the structural strength of the housing 1, increase the impact resistance of the housing 1, and prevent the housing 1 from Damage occurs when recovery lands.
  • the housing 1 is further provided with an insulating layer, which can ensure the normal operation of the devices and circuits in the housing 1 and increase the stability of the calibration device.
  • the thermal insulation layer can be arranged on the inside of the shell 1 or on the outside of the shell 1 .
  • the calibration device 100 is lifted into the air under the buoyancy of the high-altitude balloon 200, and the position of the calibration device will change with the influence of the airflow.
  • it is necessary to clarify the location of the calibration device to facilitate the staff to search and obtain the calibration device.
  • a positioning device is further provided in the casing 1, and the positioning device can help the staff quickly search for the position of the marking device.
  • a telemetry device 8 is also provided in the casing 1, and the telemetry device 8 is used to detect the status of the calibration device itself, and can also complete other related telemetry tasks.
  • the housing 1 is also provided with auxiliary devices such as a backup power supply 9 and a power distributor 10 to ensure the successful completion of the measurement task of the calibration device.
  • auxiliary devices such as a backup power supply 9 and a power distributor 10 to ensure the successful completion of the measurement task of the calibration device.
  • the space solar cell high-altitude calibration device includes a housing, a calibration board control assembly, a calibration board, a data acquisition circuit, and a tracking control circuit.
  • the housing includes at least two symmetrically arranged outer surfaces, the calibration plate is arranged on the outer surfaces of the housing, and the overall structure of the calibration device is kept in balance.
  • the transmission mechanism of the calibration board control assembly extends to the outer surface of the casing to form a driving end, the driving end is arranged horizontally, and the calibration board is connected to the horizontally arranged driving end. Under the action of the pitch drive motor, the calibration plate switches between the closed state and the open state. In the closed state, the included angle between the calibration plate and the outer surface of the housing is 0°.
  • the calibration plates are arranged symmetrically on the outer surface of the casing, the overall structure of the calibration device is balanced, and multiple calibration plates can carry more solar cells.
  • the data acquisition circuit is used to collect various parameter information of the solar cell
  • the tracking control circuit is used to adjust the calibration plate and the angle between the solar cell on the calibration plate and the sun.
  • the calibration plate can adjust the opening angle according to the position of the sun so as to align with the sun.
  • the calibration plate is fastened on the outer surface of the casing, so as to prevent the external environment from causing damage to the solar cells on the calibration plate, and the solar cells can be folded and protected.
  • the azimuth angle of the calibration board can be adjusted so that the solar cell on the calibration board is facing the position of the sun, so as to ensure the accuracy of the measurement data.
  • the sun sensor When the sun sensor is arranged on the calibration board, the sun sensor can track and search the position of the sun, so that the calibration board can be quickly aligned with the position of the sun.
  • the calibration device can track and search the position of the sun according to the solar trajectory, and can quickly align the calibration board with the position of the sun.
  • the position of the sun can be tracked and searched in the form of photoelectric induction combined with the solar trajectory, and the tracking control strategy of time-sharing multiplexing of multiple calibration boards can also be used.
  • the pitch drive motor and the azimuth axis motor are coaxially arranged, the balance of the calibration device in the high altitude can be maintained, unnecessary counterweight structures are reduced, the complexity of the adjustment of the height angle-azimuth angle of the calibration plate is reduced, and the overall load.

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

本申请提供一种空间太阳电池高空标定装置,包括:壳体,包括至少2个对称设置的外侧面,壳体内构造出容纳空间;标定板控制组件,包括俯仰驱动电机以及传动机构,传动机构包括连接于俯仰驱动电机的受力端以及延伸至所述壳体的外侧面的驱动端,所述驱动端水平设置;标定板,连接于所述驱动端,所述标定板上设有电池安装机构;数据采集电路,设置于所述壳体内且电连接于所述电池安装机构;跟踪控制电路,电连接于所述标定板控制组件以及所述数据采集电路。在测量时,标定板可以随着太阳的位置调整张开角度以便对准太阳。在回收标定装置时,标定板扣合在壳体的外侧面上,避免外部环境对标定板上的太阳电池造成破环,可以实现太阳电池的收拢保护。

Description

空间太阳电池高空标定装置
相关申请的交叉引用
本申请要求于2021年5月21日提交的申请号为2021105595206,发明名称为“空间太阳电池高空标定装置”的中国专利申请的优先权,其通过引用方式全部并入本文。
技术领域
本申请涉及空间技术和精密测量技术领域,特别是涉及一种空间太阳电池高空标定装置。
背景技术
近年来,随着空间科学和新能源技术的发展,新型空间太阳电池不断涌现,但需要精确标定和计量后才能用于空间飞行器能源系统设计和使用中,在所有空间太阳电池标定方法中,高空气球标定法以一次标定成本低,标定准确度高,标准片可回收等优点受到广泛关注和应用。高空气球标定法是指利用高空气球将待标定的太阳电池送往临近空间的高度,在太阳光无遮挡地垂直照射到太阳电池表面时,测量太阳电池的短路电流、开路电压、I-V特性曲线、温度等参数。测量结束后回收被测太阳电池,并对测量数据进行简单修正,从而获得一级AM0(Atomic and Molecular Optics,原子分子光学)标准片及相应标定数据的过程。
空间太阳电池高空标定装置(以下简称标定装置)是为待标定的太阳电池提供安装平面,保证太阳电池表面正对太阳,测量太阳电池参数,并在测量结束后保护太阳电池安全回收的装置。目前的标定装置都采用简单的单面标定板结构,未充分考虑太阳电池回收保护机制,存在体积和重量大、单次飞行携带太阳电池片较少、标定的太阳电池回收时容易损坏等问题。
发明内容
本申请旨在至少解决现有技术中存在的技术问题之一。为此,本申请 提出一种空间太阳电池高空标定装置。空间太阳电池高空标定装置的壳体包括至少2个对称设置的外侧面,标定板设置在壳体的外侧面处,标定装置的整体结构保持平衡。标定板连接于传动机构水平设置的驱动端,可以扣合在壳体的外侧面上,也可以与壳体的外侧面形成一定的夹角。回收标定装置时,标定板扣合在壳体的外侧面上,降低了外部环境对标定板上太阳电池的破环,增加了太阳电池回收时的安全性。
该标定装置一方面创新性的提出了多面标定的结构,减少了体积,增加了标定电池数量,另一方面创新型提出了回收时把太阳电池收拢在四面体内部,有效的保护了太阳电池。
本申请实施例提供了一种空间太阳电池高空标定装置,包括:
壳体,包括至少2个对称设置的外侧面,所述壳体内构造出容纳空间;
标定板控制组件,包括俯仰驱动电机以及传动机构,所述传动机构包括连接于所述俯仰驱动电机的受力端以及延伸至所述壳体的外侧面的驱动端,所述驱动端水平设置;
标定板,连接于所述驱动端,所述标定板上设有电池安装机构;
数据采集电路,设置于所述壳体内且电连接于所述电池安装机构;
跟踪控制电路,电连接于所述标定板控制组件以及所述数据采集电路;
所述标定板控制组件适于使所述标定板在闭合状态和张开状态之间切换;
在所述闭合状态,所述标定板与所述壳体的外侧面之间的夹角为0°;
在所述张开状态,所述标定板与所述壳体的外侧面之间具有夹角。
根据本申请的一个实施例,所述壳体内还设置有电连接于所述跟踪控制电路的方位轴控制组件;
方位轴控制组件包括竖直贯穿于所述壳体的吊舱连接主轴以及方位轴电机,所述方位轴电机连接于所述壳体以及所述吊舱连接主轴,所述吊舱连接主轴的两端均延伸至所述壳体的外侧。
根据本申请的一个实施例,所述标定板上设置有太阳敏感器,所述太阳敏感器电连接于所述跟踪控制电路。
根据本申请的一个实施例,所述壳体上设置有摄像头。
根据本申请的一个实施例,所述标定板上设置有电子罗盘。
根据本申请的一个实施例,所述方位轴电机与所述俯仰驱动电机同轴心设置。
根据本申请的一个实施例,所述传动机构为两级锥齿轮,所述驱动端为锥齿轮箱,所述锥齿轮箱内水平设置有俯仰转轴。
根据本申请的一个实施例,所述标定板与所述驱动端可拆卸连接。
根据本申请的一个实施例,所述壳体的外侧面相互连接的位置设置有支撑柱。
根据本申请的一个实施例,所述壳体上设置有保温层。
本申请中的上述一个或多个技术方案,至少具有如下技术效果之一:
空间太阳电池高空标定装置包括壳体、标定板控制组件、标定板、数据采集电路以及跟踪控制电路。壳体包括至少2个对称设置的外侧面,标定板设置在壳体的外侧面处,标定装置的整体结构保持平衡。标定板控制组件的传动机构延伸至壳体的外侧面形成驱动端,驱动端水平设置,标定板连接于水平设置的驱动端。在俯仰驱动电机的作用下,标定板在闭合状态和张开状态之间切换。在闭合状态下,标定板与壳体的外侧面之间的夹角为0°。在张开状态下,标定板与壳体的外侧面之间的具有夹角。标定板对称设置于壳体的外侧面处,标定装置的整体结构平衡,多个标定板可以携带更多的太阳电池。数据采集电路用以采集太阳电池的各项参数信息,跟踪控制电路用于调整标定板以及标定板上的太阳电池与太阳之间的角度。在对太阳电池的参数进行测量时,标定板可以随着太阳的位置调整张开角度以便对准太阳。在回收标定装置时,标定板扣合在壳体的外侧面上,避免外部环境对标定板上的太阳电池造成破坏,可以实现太阳电池的收拢保护。
附图说明
图1为本申请实施例提供的空间太阳电池高空标定装置的立体图;
图2为本申请实施例提供的空间太阳电池高空标定装置的结构示意图;
图3为本申请实施例提供的空间太阳电池高空标定装置的高空状态示意图;
图4为本申请实施例提供的空间太阳电池高空标定装置的跟踪控制电 路的示意图;
图5为本申请实施例提供的空间太阳电池高空标定装置的工作流程图。
附图标记:
100、标定装置;      200、高空气球;      300、降落伞;
400、断开机构;      500、吊舱;          1、壳体;
11、外侧面;         12、支撑柱;         21、俯仰驱动电机;
221、受力端;        222、驱动端;        2221、俯仰转轴;
3、标定板;          31、太阳敏感器;     32、电子罗盘;
33、太阳电池;       4、数据采集电路;    5、跟踪控制电路;
61、吊舱连接主轴;   62、方位轴电机;     7、摄像头;
8、遥测装置;        9、备用电源;        10、配电器;
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合本申请中的附图,对本申请中的技术方案进行清楚地描述,显然,所描述的实施例是发明一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在本申请实施例的描述中,需要说明的是,术语“中心”、“纵向”、“横向”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请实施例和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请实施例的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。
在本申请实施例的描述中,需要说明的是,除非另有明确的规定和限定,术语“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人 员而言,可以具体情况理解上述术语在本申请实施例中的具体含义。
在本申请实施例中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请实施例的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
空间太阳电池高空标定装置(以下简称标定装置)是为待标定的太阳电池提供安装平面,保证太阳电池表面正对太阳,测量太阳电池参数,并在测量结束后保护太阳电池安全回收的装置。目前的标定装置都采用简单的单面标定板结构,未充分考虑太阳电池回收保护机制,存在体积大、重量大、单次飞行携带太阳电池片较少、标定的太阳电池回收时容易损坏等问题。
本申请实施例提供了一种空间太阳电池高空标定装置,请参阅图1至图5,包括壳体1、标定板控制组件、标定板3、数据采集电路4以及跟踪控制电路5。
壳体1内部构造出容纳空间,用于放置控制机构以及控制电路,壳体1包括至少2个对称设置的外侧面11。标定板3设置在外侧面11的位置时,壳体1的整体结构保持平衡。
在一项实施例中,壳体1为正四棱柱结构,正四棱柱结构有四个对称设置的外侧面11。标定板3可以设置在两个对称设置的外侧面11的位置, 也可以设置在四个对称设置的外侧面11的位置,保持壳体1整体结构的平衡与稳定。
在另一项实施例中,壳体1也可以为正六棱柱等轴对称结构。
需要说明的是,对称设置的外侧面11,包括中心对称、旋转对称以及轴对称的情况。
在壳体1为正三棱柱、正五棱柱结构的情况下,外侧面11上的标定板3同样可以保持平衡。
在壳体1为正棱锥结构的情况下,外侧面11上的标定板3同样可以保持平衡。
以上实施例提供的壳体类型,均可以保证外侧面11上的标定板3处于平衡位置。本申请实施例中,以正四棱柱结构为例,阐释相关技术方案以及技术效果。
标定板控制组件包括俯仰驱动电机21以及传动机构,传动机构包括连接于俯仰驱动电机21的受力端221以及向外传递力矩的驱动端222。驱动端222延伸至壳体1的外侧面11上,在外侧面11上水平设置。
标定板3连接于水平设置的驱动端222,驱动端222转动时,标定板3与水平面之间的夹角发生变化,可以改变标定板3的高度角。
为了节省壳体1内的空间,俯仰驱动电机21的数量为一个,俯仰驱动电机21与传动机构采用星型分布,使四个传动机构以及标定板3同步运动,在运动中保持标定装置的平衡。
在一项实施例中,传动机构采用两级锥齿轮,驱动端222为锥齿轮箱,锥齿轮箱内水平设置有俯仰转轴2221,标定板3连接于俯仰转轴2221。
使用时,俯仰驱动电机21转动,俯仰转轴2221带动标定板3张开一定的角度或者闭合,进而改变标定板3的高度角。
标定板3上设置有电池安装机构,电池安装机构对太阳电池33形成固定作用。同时,电池安装机构上还设置有连接太阳电池33的电极,用于接收太阳电池33在阳光下的电流电压参数。
在一项实施例中,电池安装机构内还设置有温度传感器,用于测量太阳电池33在阳光下的温度变化情况。
标定板3上设置有多个电池安装机构,可以安装多个同型号的太阳电 池,也可以安装多个不同型号的太阳电池。在一次标定过程中,完成多个太阳电池的标定工作,降低了太阳电池的标定成本。
在一项实施例中,标定板3与驱动端222之间可拆卸连接。在对太阳电池进行测量前,选择合适型号和规格的标定板3。标定板3的安装与拆卸较为简单,使用时较为方便。
壳体1内安装有数据采集电路4,数据采集电路4电连接于电池安装机构,可以获取太阳电池33在测量时的各项参数。数据采集电路4内设置有存储卡或者无线通信模块,用于保留测量数据或者将数据发送至地面数据中心。
壳体1内还安装有跟踪控制电路5,跟踪控制电路5电连接于标定板控制组件以及数据采集电路4。
在一项实施例中,跟踪控制电路5包括飞思卡尔控制芯片、传感器检测电路、供配电电路、上位机串口通讯电路、存储电路以及电机驱动电路等,在标定装置飞行过程中对标定板3的位置进行自动跟踪控制和远程遥控。
控制芯片也可以是其他各类厂商生产的芯片,如STM32、DSP等。
由上述可知,在跟踪控制电路5的控制下,标定板控制组件可以调整标定板3与壳体1的外侧面11之间的夹角,使标定板3在闭合状态和张开状态之间进行切换。
在闭合状态下,标定板3与壳体1的外侧面11之间的夹角为0°,即标定板3扣合在外侧面11上。
在张开状态下,标定板3与壳体1的外侧面11之间具有夹角。在壳体1为正四棱柱结构的情况下,夹角的大小在0至180°之间。
标定装置在高空气球的浮力作用下升空,太阳具有一定的高度。为了获得最佳的照射效果,标定板3以及标定板3上的太阳电池33需要正对于太阳所在的位置。太阳的位置发生变化时,调整标定板3与外侧面11之间的张开夹角,使太阳电池33始终正对于太阳所在的位置。
在回收标定装置时,标定板3扣合在壳体1的外侧面11上,避免外部环境对标定板3上的太阳电池33造成破坏,可以实现太阳电池的收拢保护。
在一项实施例中,标定板3安装在外侧面11的底部。标定板3与外侧面11之间的夹角在90°至180°时,太阳电池33可以正对于太阳的位置。
空间太阳电池高空标定装置在升空时,标定装置100的顶部连接于高空气球200,在高空气球200的浮力作用下升空。为了保证标定装置可以回收,标定装置上还连接有降落伞300以及断开机构400。
同时,标定装置的下方连接有吊舱500,吊舱500内安装多种电器元件或者传感器,协同标定装置100进行工作。
标定装置100升空后,标定板3的方位是随机的,与太阳所在的方向存在一定的偏差。为了使标定板3以及标定板3上的太阳电池33正对于太阳的位置,需要在高空中调整标定板3的方位角。
根据本申请的一个实施例,壳体1内还设置有方位轴控制组件,方位轴控制组件电连接于跟踪控制电路5。在跟踪控制电路5的统一控制下,调整标定板3的方位角。
方位轴控制组件包括吊舱连接主轴61和方位轴电机62,吊舱连接主轴61竖直贯穿于壳体1,且与壳体1保持相对转动。方位轴电机62的基座连接于壳体1的内侧壁,方位轴电机62的转动平台连接于吊舱连接主轴61。
使用时,启动方位轴电机62,壳体1围绕吊舱连接主轴61转动,此时标定板3的方位角发生变化。
在跟踪控制电路5的精确控制下,调整标定板3的方位角和高度角,能够使标定板3以及太阳电池33始终正对于太阳所在的位置,获取最佳的测量效果。
吊舱连接主轴61的两端均延伸至壳体1的外侧,吊舱连接主轴61位于壳体1顶部的一端通过线缆连接于高空气球200、降落伞300以及断开机构400,吊舱连接主轴61位于壳体1底部的一端连接于吊舱500。
根据本申请的一个实施例,标定装置采用高度角-方位角双轴跟踪的同轴心布局形式。方位轴电机62的转动轴与吊舱连接主轴61固定联接,方位轴电机62的基座带动壳体1整体围绕吊舱连接主轴61转动,实现标定板3的方位角跟踪。
同时,吊舱连接主轴61贯穿于俯仰驱动电机21的转动平台的中心通 孔。俯仰驱动电机21输出的转矩由传动机构传递至四侧的俯仰转轴2221,从而带动四面标定板3同步转动,实现标定板3的高度角跟踪。
方位轴电机62与俯仰驱动电机21同轴心设置,使得标定装置在高空中保持平衡,方便调整标定板3的高度角和方位角,不需要考虑标定装置自身不平衡的问题,减少了配重组件,降低了整体荷载。
为了使标定板3正对于太阳的位置,需要定位太阳的所在位置,然后根据太阳的位置,调整标定板3的高度角与方位角。
根据本申请的一个实施例,标定板3上安装有太阳敏感器31,太阳敏感器31垂直于标定板3设置。在标定板3的调整过程中,太阳敏感器31的信号发生变化,标定板3正对于太阳的位置时,信号强度最高,由此确定标定板3的高度角和方位角。
在另一项实施例中,壳体1上还安装有摄像头7,摄像头7可以拍摄到太阳的轨迹。根据视日运动轨迹追踪太阳的位置,然后根据视日运动轨迹调整标定板3的高度角和方位角。
本申请实施例提供的空间太阳电池高空标定装置在使用时,可以同时使用光电传感器以及视日轨迹跟踪/搜寻太阳的位置,从而获得稳定的太阳定位效果。
在另一项实施例中,多个标定板3采用分时复用的跟踪策略,将多个标定板3上的测量数据进行整合。
调整标定板3的高度角与方位角之后,需要确认并记录标定板3的高度角以及方位角。
在一项实施例中,标定板3上设置有电子罗盘32,电子罗盘32实施测量标定板3的高度角以及方位角,并将数据信息发送至数据采集电路4以及跟踪控制电路5。跟踪控制电路5根据太阳敏感器31、摄像头7以及电子罗盘32的反馈信息,对标定板3的高度角以及方位角进行调整。
根据本申请实施例提供的空间太阳电池高空标定装置,壳体1的外侧面11可以用于保护标定板3以及标定板3上安装的太阳电池33。壳体1内设置有俯仰驱动电机21、方位轴电机62、数据采集电路4以及跟踪控制电路5等。因此。壳体1的结构强度需要满足一定的标准。
壳体1可以采用铝合金材料制作,铝合金材料强度较高,重量较轻, 耐腐蚀性较好。
壳体1也可以采用碳纤维或者高强度塑料制作,可以达到同样的技术效果。
在一项实施例中,壳体1的外侧面11相互连接的位置处设置有支撑柱12,支撑柱12可以增加壳体1的结构强度,增加壳体1的抗冲击能力,避免壳体1回收落地时发生损伤。
在另一项实施例中,壳体1上还设置有保温层,保温层可以确保壳体1内的装置和电路正常工作,增加标定装置的稳定性。保温层可以设置在壳体1的内侧,也可以设置在壳体1的外侧。
标定装置100在高空气球200的浮力作用下升空,随着气流的影响,标定装置的位置会发生变化。回收标定装置时,需要明确标定装置的位置,方便工作人员搜寻以及获取标定装置。
根据本申请的一个实施例,壳体1内还设置有定位装置,定位装置可以帮助工作人员快速搜寻标定装置的位置。
在一项实施例中,壳体1内还设置有遥测装置8,遥测装置8用于检测标定装置自身的状态,还可以完成其它相关的遥测任务。
在另一项实施例中,壳体1内还设置有备用电源9以及配电器10等辅助设置,确保标定装置测量任务的圆满完成。
综上所述,本申请实施例提供的空间太阳电池高空标定装置,包括壳体、标定板控制组件、标定板、数据采集电路以及跟踪控制电路。壳体包括至少2个对称设置的外侧面,标定板设置在壳体的外侧面处,标定装置的整体结构保持平衡。标定板控制组件的传动机构延伸至壳体的外侧面形成驱动端,驱动端水平设置,标定板连接于水平设置的驱动端。在俯仰驱动电机的作用下,标定板在闭合状态和张开状态之间切换。在闭合状态下,标定板与壳体的外侧面之间的夹角为0°。在张开状态下,标定板与壳体的外侧面之间的具有夹角。标定板对称设置于壳体的外侧面处,标定装置的整体结构平衡,多个标定板可以携带更多的太阳电池。数据采集电路用以采集太阳电池的各项参数信息,跟踪控制电路用于调整标定板以及标定板上的太阳电池与太阳之间的角度。在对太阳电池的参数进行测量时,标定板可以随着太阳的位置调整张开角度以便对准太阳。在回收标定装置时, 标定板扣合在壳体的外侧面上,避免外部环境对标定板上的太阳电池造成破坏,可以实现太阳电池的收拢保护。
在壳体内设置方位轴控制组件的情况下,可以调整标定板的方位角,使标定板上的太阳电池正对于太阳所在的位置,确保测量数据的准确性。
在标定板上设置有太阳敏感器的情况下,太阳敏感器可以跟踪搜寻太阳的位置,可以使标定板快速对准太阳所在的位置。
在壳体上设置摄像头的情况下,标定装置可以根据视日轨迹跟踪搜寻太阳的位置,可以使标定板快速对准太阳所在的位置。
在同时安装太阳敏感器和摄像头的情况下,可以采用光电感应结合视日轨迹的形式跟踪搜寻太阳的位置,还可以采用多个标定板分时复用的跟踪控制策略。
在俯仰驱动电机与方位轴电机同轴设置的情况下,可以保持标定装置在高空中的平衡性,减少不必要的配重结构,降低了标定板高度角-方位角调整的复杂性,降低了整体荷载。
以上所述仅为本申请的较佳实施例而已,并不用以限制本申请,凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (10)

  1. 一种空间太阳电池高空标定装置,包括:
    壳体,包括至少2个对称设置的外侧面,所述壳体内构造出容纳空间;
    标定板控制组件,包括俯仰驱动电机以及传动机构,所述传动机构包括连接于所述俯仰驱动电机的受力端以及延伸至所述壳体的外侧面的驱动端,所述驱动端水平设置;
    标定板,连接于所述驱动端,所述标定板上设有电池安装机构;
    数据采集电路,设置于所述壳体内且电连接于所述电池安装机构;
    跟踪控制电路,电连接于所述标定板控制组件以及所述数据采集电路;
    所述标定板控制组件适于使所述标定板在闭合状态和张开状态之间切换;
    在所述闭合状态,所述标定板与所述壳体的外侧面之间的夹角为0°;
    在所述张开状态,所述标定板与所述壳体的外侧面之间具有夹角。
  2. 根据权利要求1所述的空间太阳电池高空标定装置,其中,所述壳体内还设置有电连接于所述跟踪控制电路的方位轴控制组件;
    方位轴控制组件包括竖直贯穿于所述壳体的吊舱连接主轴以及方位轴电机,所述方位轴电机连接于所述壳体以及所述吊舱连接主轴,所述吊舱连接主轴的两端均延伸至所述壳体的外侧。
  3. 根据权利要求2所述的空间太阳电池高空标定装置,其中,所述标定板上设置有太阳敏感器,所述太阳敏感器电连接于所述跟踪控制电路。
  4. 根据权利要求3所述的空间太阳电池高空标定装置,其中,所述壳体上设置有摄像头。
  5. 根据权利要求2所述的空间太阳电池高空标定装置,其中,所述标定板上设置有电子罗盘。
  6. 根据权利要求2所述的空间太阳电池高空标定装置,其中,所述 方位轴电机与所述俯仰驱动电机同轴心设置。
  7. 根据权利要求1所述的空间太阳电池高空标定装置,其中,所述传动机构为两级锥齿轮,所述驱动端为锥齿轮箱,所述锥齿轮箱内水平设置有俯仰转轴。
  8. 根据权利要求1所述的空间太阳电池高空标定装置,其中,所述标定板与所述驱动端可拆卸连接。
  9. 根据权利要求1所述的空间太阳电池高空标定装置,其中,所述壳体的外侧面相互连接的位置设置有支撑柱。
  10. 根据权利要求1所述的空间太阳电池高空标定装置,其中,所述壳体上设置有保温层。
PCT/CN2022/093918 2021-05-21 2022-05-19 空间太阳电池高空标定装置 WO2022242722A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110559520.6 2021-05-21
CN202110559520.6A CN113489456A (zh) 2021-05-21 2021-05-21 空间太阳电池高空标定装置

Publications (1)

Publication Number Publication Date
WO2022242722A1 true WO2022242722A1 (zh) 2022-11-24

Family

ID=77932989

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/093918 WO2022242722A1 (zh) 2021-05-21 2022-05-19 空间太阳电池高空标定装置

Country Status (2)

Country Link
CN (1) CN113489456A (zh)
WO (1) WO2022242722A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113489456A (zh) * 2021-05-21 2021-10-08 中国科学院空天信息创新研究院 空间太阳电池高空标定装置
CN114826130B (zh) * 2022-06-23 2022-11-04 中国科学院空天信息创新研究院 太阳电池标定系统的对日跟踪方法及装置
CN115793721B (zh) * 2023-01-30 2023-06-27 中国科学院空天信息创新研究院 太阳追踪控制方法、装置、标定装置、设备及存储介质
CN116540789B (zh) * 2023-06-30 2023-09-15 中国科学院空天信息创新研究院 太阳电池标定装置的控制方法、系统、电子设备及介质

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1510800A1 (fr) * 2003-09-01 2005-03-02 Centre National D'etudes Spatiales Procédé de compensation des effets des flux par rayonnement sur un capteur de temperature
CN104007769A (zh) * 2014-04-30 2014-08-27 燕山大学 高空气球电池标定用太阳跟踪控制方法
CN204991658U (zh) * 2015-07-22 2016-01-20 陕西众森电能科技有限公司 一种太阳电池户外测试平台
CN207135068U (zh) * 2017-08-30 2018-03-23 米亚索乐装备集成(福建)有限公司 可变角度光伏组件户外测试装置
CN207800557U (zh) * 2018-01-31 2018-08-31 上海挪亚检测认证集团有限公司 一种用于测试太阳能组件辐照及温度的测试平台
CN108919080A (zh) * 2018-05-16 2018-11-30 中国科学院光电研究院 一种太阳电池性能测试系统及其测试方法
US20190052225A1 (en) * 2017-08-13 2019-02-14 The Aerospace Corporation Intelligent solar cell carrier system for flight and laboratory measurement applications
CN111416571A (zh) * 2020-02-24 2020-07-14 中国科学院光电研究院 一种用于平流层飞艇太阳电池的测试方法及系统
CN113489456A (zh) * 2021-05-21 2021-10-08 中国科学院空天信息创新研究院 空间太阳电池高空标定装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1510800A1 (fr) * 2003-09-01 2005-03-02 Centre National D'etudes Spatiales Procédé de compensation des effets des flux par rayonnement sur un capteur de temperature
CN104007769A (zh) * 2014-04-30 2014-08-27 燕山大学 高空气球电池标定用太阳跟踪控制方法
CN204991658U (zh) * 2015-07-22 2016-01-20 陕西众森电能科技有限公司 一种太阳电池户外测试平台
US20190052225A1 (en) * 2017-08-13 2019-02-14 The Aerospace Corporation Intelligent solar cell carrier system for flight and laboratory measurement applications
CN207135068U (zh) * 2017-08-30 2018-03-23 米亚索乐装备集成(福建)有限公司 可变角度光伏组件户外测试装置
CN207800557U (zh) * 2018-01-31 2018-08-31 上海挪亚检测认证集团有限公司 一种用于测试太阳能组件辐照及温度的测试平台
CN108919080A (zh) * 2018-05-16 2018-11-30 中国科学院光电研究院 一种太阳电池性能测试系统及其测试方法
CN111416571A (zh) * 2020-02-24 2020-07-14 中国科学院光电研究院 一种用于平流层飞艇太阳电池的测试方法及系统
CN113489456A (zh) * 2021-05-21 2021-10-08 中国科学院空天信息创新研究院 空间太阳电池高空标定装置

Also Published As

Publication number Publication date
CN113489456A (zh) 2021-10-08

Similar Documents

Publication Publication Date Title
WO2022242722A1 (zh) 空间太阳电池高空标定装置
CN104807444B (zh) 风机塔筒倾斜测量方法
CN105308854A (zh) 具有集成的倾斜度传感器的驱动器
US11637524B2 (en) Solar tracking apparatuses including one or more solar panels, systems including the same, and methods of using the same
CN114928819A (zh) 一种地质抛投一体化应急监测装置
CN104267737B (zh) 一种可对日跟踪型太阳能四旋翼飞行器
CN115675958A (zh) 基于无人机的抽水蓄能电站巡检装置
CN201621005U (zh) 风光互补发电设备的自动监控与保护装置
CN110877710A (zh) 一种可自动收展的系留旋翼无人机
CN214986069U (zh) 一种无人机遥感成像航拍无人机
CN114441202A (zh) 太阳电池高空标定装置地面评测系统、方法及电子设备
CN112357073B (zh) 一种电力线路巡检用多旋翼飞行器
CN212956206U (zh) 一种用于桥梁养护管理的智能路锥
CN213109778U (zh) 一种无人机旋翼机构及无人机
CN215679596U (zh) 一种基于风险评价的地质灾害预警装置
CN219044418U (zh) 一种巡检无人机及防坠机装置
CN112783212A (zh) 一种光伏发电巡检用无人机
CN221426837U (zh) 新能源汽车电池放电温度测试设备
CN110634377A (zh) 可实现立方星功能的地面教育卫星及其自上电模拟方法
CN217607974U (zh) 一种地质抛投一体化应急监测装置
CN219624747U (zh) 一种杆塔倾斜监测系统
CN220243549U (zh) 一种无人机频谱侦测设备
CN220535989U (zh) 无人机起落平台
CN214407504U (zh) 一种无人机磁罗盘校准装置
CN221794925U (zh) 一种长续航太阳能轻质无人机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22804042

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22804042

Country of ref document: EP

Kind code of ref document: A1