WO2022242472A1 - 一种超高温超高压再热干熄焦余热发电系统及方法 - Google Patents

一种超高温超高压再热干熄焦余热发电系统及方法 Download PDF

Info

Publication number
WO2022242472A1
WO2022242472A1 PCT/CN2022/091419 CN2022091419W WO2022242472A1 WO 2022242472 A1 WO2022242472 A1 WO 2022242472A1 CN 2022091419 W CN2022091419 W CN 2022091419W WO 2022242472 A1 WO2022242472 A1 WO 2022242472A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
temperature
steam
ultra
ultrahigh
Prior art date
Application number
PCT/CN2022/091419
Other languages
English (en)
French (fr)
Inventor
李令新
李桦
金基浩
逄俊杰
Original Assignee
中冶焦耐(大连)工程技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中冶焦耐(大连)工程技术有限公司 filed Critical 中冶焦耐(大连)工程技术有限公司
Publication of WO2022242472A1 publication Critical patent/WO2022242472A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D17/00Arrangements for using waste heat; Arrangements for using, or disposing of, waste gases
    • F27D17/004Systems for reclaiming waste heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • F01K7/16Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type
    • F01K7/22Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type the turbines having inter-stage steam heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • F01K7/34Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being of extraction or non-condensing type; Use of steam for feed-water heating
    • F01K7/38Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being of extraction or non-condensing type; Use of steam for feed-water heating the engines being of turbine type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B33/00Steam-generation plants, e.g. comprising steam boilers of different types in mutual association
    • F22B33/18Combinations of steam boilers with other apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22GSUPERHEATING OF STEAM
    • F22G5/00Controlling superheat temperature
    • F22G5/12Controlling superheat temperature by attemperating the superheated steam, e.g. by injected water sprays
    • F22G5/123Water injection apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D17/00Arrangements for using waste heat; Arrangements for using, or disposing of, waste gases
    • F27D17/004Systems for reclaiming waste heat
    • F27D2017/006Systems for reclaiming waste heat using a boiler
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27MINDEXING SCHEME RELATING TO ASPECTS OF THE CHARGES OR FURNACES, KILNS, OVENS OR RETORTS
    • F27M2001/00Composition, conformation or state of the charge
    • F27M2001/04Carbon-containing material
    • F27M2001/045Coke
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
    • Y02P80/15On-site combined power, heat or cool generation or distribution, e.g. combined heat and power [CHP] supply

Definitions

  • the present application relates to the technical field of coke quenching waste heat power generation, in particular, the present application relates to an ultra-high temperature and ultra-high pressure reheat CDQ waste heat power generation system and method.
  • high-temperature and high-pressure dry-quenching boilers are usually used in coking enterprises to generate electricity with waste heat from coke CDQ.
  • the CDQ coke waste heat power generation technology using ultra-high temperature and ultra-high pressure CDQ boilers matched with ultra-high temperature and ultra-high pressure steam turbine generators has not yet been put into production.
  • the waste heat power generation technology of CDQ continues to improve, and the level of equipment manufacturing continues to improve.
  • the ultra-high temperature and ultra-high pressure power generation technology of CDQ needs to be developed urgently. Further accelerate the transformation and upgrading of the coking industry, promote the technological progress of the coking industry, improve the comprehensive utilization rate of resources and the level of energy conservation and environmental protection, and promote the high-quality development of the coking industry.
  • This application provides an ultra-high temperature and ultra-high pressure reheat CDQ waste heat power generation system and method, which realizes a major breakthrough in the CDQ waste heat power generation technology of ultra-high temperature and ultra-high pressure CDQ boilers equipped with ultra-high temperature and ultra-high pressure steam turbine generator sets.
  • the breakthrough can protect the reheater by effectively preventing dry burning of the reheater, and at the same time can maximize the power generation of CDQ waste heat, create good economic benefits, and reduce the energy consumption of the enterprise per ton of coke.
  • Some embodiments of the present application provide an ultra-high temperature and ultra-high pressure reheat CDQ waste heat power generation system.
  • the ultra-high temperature and ultra-high pressure dry quenching boiler includes a dry quenching boiler drum, a primary superheater, a secondary superheater, a primary reheater, and
  • the secondary reheater, the ultra-high temperature and ultra-high pressure turbo-generator set consists of a high-pressure cylinder, a medium-low pressure cylinder, and a turbo-generator;
  • the multi-stage temperature and pressure reduction device includes a primary temperature and pressure reduction device, a secondary Temperature and pressure reduction devices, three-stage temperature and pressure reduction devices, four-stage temperature and pressure reduction devices, and five-stage temperature and pressure reduction devices.
  • the saturated steam outlet of the CDQ boiler drum is connected to the primary superheater through a confluence pipe, the primary superheater is connected to the secondary superheater through a superheated steam spray desuperheater, and the superheated steam outlet of the secondary superheater is passed through a superheated steam
  • the pipeline is connected to the high-pressure cylinder; the exhaust port of the high-pressure cylinder is connected to the primary reheater through the high-pressure steam bypass pipeline, and the primary reheater is connected to the secondary reheater through the reheat steam spray desuperheater, and the secondary reheater
  • the reheat steam outlet of the device is connected to the medium and low pressure cylinder through the reheat steam pipeline; the medium and low pressure cylinder is connected to the condenser through the low pressure steam bypass pipeline, and the condenser is provided with a three-stage temperature and pressure reduction device;
  • the superheated steam pipeline and the high-pressure steam bypass pipeline are connected through the first connecting pipeline, and a first-stage temperature and
  • the medium-pressure steam outlet is connected to the outgoing medium-pressure steam pipeline downstream of the fourth-stage temperature and pressure reduction device; the connecting pipeline 2 is connected to the external low-pressure steam pipe network through the external low-pressure steam pipeline, and the low-pressure steam outlet of the medium-low pressure cylinder is connected to The outgoing low-pressure steam pipeline downstream of the five-stage desuperheating and decompression device.
  • the rated steam temperature of the ultra-high temperature and ultra-high pressure CDQ boiler is 570° C., and the rated steam pressure is 13.7 MPa.
  • the rated steam temperature of the ultra-high temperature and ultra-high pressure turbo-generator set is 570°C
  • the rated steam pressure is 13.2MPa
  • the rated exhaust temperature of the high-pressure cylinder is 350°C
  • the rated exhaust pressure is 3.1MPa.
  • the ultra-high temperature, ultra-high pressure reheat CDQ waste heat power generation method includes the following steps:
  • the steam discharged from the high-pressure cylinder with a temperature below 350°C and a pressure below 3.1MPa is sent to the ultra-high temperature and ultra-high pressure CDQ
  • the primary reheater of the boiler exchanges heat between the steam and the high-temperature inert circulating gas to increase the temperature of the steam.
  • the steam After the temperature of the steam is adjusted to the set temperature through the reheat steam spray desuperheater, the steam enters the secondary
  • the secondary reheater exchanges heat with the high-temperature inert circulating gas, thereby raising the temperature of the steam, so that the reheated steam with a final temperature above 570°C and a pressure above 2.8MPa all enters the medium and low pressure cylinders of the ultra-high temperature, ultra-high pressure turbogenerator set generate electricity;
  • the superheated steam with a temperature above 570°C and a pressure above 13.7MPa is reduced to a temperature below 350°C and a pressure of 3.1MPa or lower, it is sent to the primary reheater, and the steam exchanges heat with the high-temperature inert circulating gas to increase the temperature of the steam.
  • the secondary reheater to exchange heat with the high-temperature inert circulating gas, so that the temperature of the steam is raised, and the reheated steam with a final temperature above 570°C and a pressure above 2.8MPa is reduced to After the temperature is below 190°C and the pressure is below 0.8MPa, it enters the three-stage temperature and pressure reduction device installed on the condenser, and the steam reduced to a temperature below 60°C and a pressure below 0.02MPa enters the condenser to recover the working fluid;
  • the high-pressure cylinder when exhausted steam after power generation enters the condenser, extracts medium-pressure steam and merges the middle-Asian steam into the medium-pressure steam pipe network for use by medium-pressure steam users; the medium-low pressure cylinder extracts low-pressure steam and Incorporate low-pressure steam into the low-pressure steam pipe network for use by low-pressure steam users.
  • the superheated steam with a temperature of 570°C or higher and a pressure of 13.7MPa or higher is reduced in temperature and pressure by a first-stage temperature and pressure reduction device and by a four-stage temperature and pressure reduction device.
  • the medium-pressure steam pipe network for use by medium-pressure steam users or, the steam reduced to a temperature below 190°C and a pressure below 0.8MPa by the second-stage temperature and pressure reduction device is then reduced by the fifth-stage temperature and pressure reduction device. After temperature and decompression, it is merged into the low-pressure steam pipe network for use by low-pressure steam users.
  • the beneficial effects of the present application are at least:
  • the main steam By setting up the high-pressure steam bypass system, when the generator set is started or the load is shedding, the main steam enters the reheater after being reduced in temperature and pressure, which effectively prevents the reheater from dry burning and realizes the purpose of protecting the reheater; At the same time, the main steam can also be sent to the external medium-pressure steam pipe network after decompression and decompression to meet the gas demand of medium-pressure steam users, so that the shutdown does not stop the furnace, and the gas supply is not interrupted;
  • the reheated steam enters the condenser after being reduced in temperature and pressure, which can effectively prevent energy waste caused by the release of the main steam, and can recycle desalted water
  • the reheated steam can also be sent to the external low-pressure steam pipe network after decompression and decompression to meet the gas demand of low-pressure steam users, so that the shutdown does not stop the furnace, and the gas supply is not interrupted.
  • Fig. 1 is a schematic structural diagram of an ultra-high temperature, ultra-high pressure reheat CDQ waste heat power generation system described in this application.
  • the ultra-high temperature ultra-high pressure reheat CDQ waste heat power generation system includes Boiler, ultra-high temperature and ultra-high pressure turbogenerator set, multi-stage temperature and pressure reduction device, and condenser 10;
  • the ultra-high temperature and ultra-high pressure CDQ boiler includes a CDQ boiler drum 1, a primary superheater 2, a secondary A superheater 4, a primary reheater 6, and a secondary reheater 8.
  • the ultra-high temperature and ultra-high pressure turbogenerator set includes a high-pressure cylinder 5, a medium-low pressure cylinder 9, and a turbogenerator 16;
  • the temperature and pressure reduction device includes a first-level temperature and pressure reduction device 11, a second-level temperature and pressure reduction device 12, a third-level temperature and pressure reduction device 13, a fourth-level temperature and pressure reduction device 14, and a fifth-level temperature and pressure reduction device 15 .
  • the saturated steam outlet of the dry coke quenching boiler drum 1 is connected to the primary superheater 2 through a confluence pipe, and the primary superheater 2 is connected to the secondary superheater 4 through the superheated steam spray desuperheater 3, and the secondary superheater 4
  • the superheated steam outlet is connected to the high-pressure cylinder 5 through the superheated steam pipeline;
  • the exhaust port of the high-pressure cylinder 5 is connected to the primary reheater 6 through the high-pressure steam bypass pipeline, and the primary reheater 6 is connected to the reheated steam spray desuperheater 7
  • the reheat steam outlet of the secondary reheater 8 is connected to the medium and low pressure cylinder 9 through the reheat steam pipeline;
  • the medium and low pressure cylinder 9 is connected to the condenser 10 through the low pressure steam bypass pipeline, so
  • the condenser 10 is provided with a three-stage temperature and pressure reduction device 13; the superheated steam pipeline and the high-pressure steam bypass pipeline are connected through a
  • the rated steam temperature of the ultra-high temperature and ultra-high pressure CDQ boiler is 570° C., and the rated steam pressure is 13.7 MPa.
  • the rated steam temperature of the ultra-high temperature and ultra-high pressure turbo-generator set is 570°C
  • the rated steam pressure is 13.2MPa
  • the rated exhaust temperature of the high-pressure cylinder is 350°C
  • the rated exhaust pressure is 3.1MPa.
  • the ultra-high temperature, ultra-high pressure reheat CDQ waste heat power generation method includes the following steps:
  • the primary reheater 6 of the ultra-high pressure CDQ boiler exchanges heat between the steam and the high-temperature inert circulating gas to increase the temperature of the steam, and the temperature of the steam is then adjusted to the set value through the reheat steam spray desuperheater 7 After the temperature is reached, the steam enters the secondary reheater 8 to exchange heat with the high-temperature inert circulating gas, thereby raising the temperature of the steam, so that all the reheated steam with a final temperature above 570°C and a pressure above 2.8MPa enters the ultra-high temperature and ultra-high pressure
  • the middle and low pressure cylinders 9 of the turbogenerator set generate electricity; and
  • the superheated steam with a temperature above 570°C and a pressure above 13.7MPa is reduced to a temperature below 350°C through the first-stage temperature and pressure reduction device 11, After the pressure is below 3.1MPa, it is sent to the primary reheater 6, and the steam exchanges heat with the high-temperature inert circulating gas to increase the temperature of the steam, and then the steam temperature is adjusted to the set temperature by the reheat steam spray desuperheater 7 , the steam enters the secondary reheater 8 to exchange heat with the high-temperature inert circulating gas, so that the temperature of the steam is raised, and the reheated steam with a final temperature of 570°C or higher and a pressure of 2.8MPa or higher is passed through the series of two-stage decompression and decompression After the device 12 reduces the temperature below 190°C and the pressure below 0.8MPa, it enters the three-stage temperature
  • the high-pressure cylinder 5 extracts the medium-pressure steam and merges the medium-pressure steam into the medium-pressure steam pipe network for use by the medium-pressure steam user and the medium-low pressure cylinder 9 extracts the medium-pressure steam.
  • the reheated steam with a final temperature above 570°C and a pressure above 2.8MPa all enters the medium-low pressure cylinder of the ultra-high temperature and ultra-high pressure turbogenerator unit for processing. generate electricity.
  • the superheated steam with a temperature of 570°C or higher and a pressure of 13.7MPa or higher is reduced in temperature and pressure through a first-stage temperature and pressure reduction device and through a four-stage temperature and pressure reduction device 14. Afterwards, it is merged into the medium-pressure steam pipe network for use by medium-pressure steam users; or, the steam reduced to a temperature below 190°C and a pressure below 0.8MPa through the second-stage temperature and pressure reduction device 12 is then passed through the fifth-stage temperature and pressure reduction device 15 After reducing temperature and decompression, it is merged into the low-pressure steam pipe network for use by low-pressure steam users.
  • the ultra-high temperature and ultra-high pressure steam turbine generator set is an ultra-high temperature, ultra-high pressure coaxial turbine generator set with primary reheating, and the ultra-high temperature, ultra-high pressure CDQ boiler is also equipped with an economizer, a membrane water wall and an evaporation Devices such as devices are conventional settings, and will not be described in detail here.
  • the superheated steam produced by the ultra-high temperature and ultra-high pressure dry quenching boiler described in this application can be supplied to medium-pressure steam users through a high-pressure bypass, and can also be sent to the condenser through a series low-pressure bypass.
  • the reheated steam generated by the ultra-high temperature and ultra-high pressure dry quenching boiler can be sent to the condenser through the low-pressure bypass, and can also be supplied to the low-pressure steam user after being reduced in temperature and pressure. Both the high-voltage bypass and the low-voltage bypass are capable of full load.
  • the present application discloses an ultra-high temperature and ultra-high pressure reheat CDQ waste heat power generation system and method.
  • the ultra-high temperature ultra-high pressure reheat CDQ waste heat power generation system includes Turbine generator set, multi-stage temperature reduction and pressure reduction device, and condenser;
  • the ultra-high temperature and ultra-high pressure CDQ boiler includes a CDQ boiler drum, a primary superheater, a secondary superheater, a primary reheater, and a secondary
  • the secondary reheater, the ultra-high temperature and ultra-high pressure turbo-generator set includes a high-pressure cylinder, a medium-low pressure cylinder, and a turbo-generator;
  • the multi-stage temperature and pressure reduction device includes a first-stage temperature and pressure reduction device, a Temperature and pressure reduction device, three-stage temperature and pressure reduction device, four-stage temperature and pressure reduction device, and five-stage temperature and pressure reduction device; this application realizes ultra-high temperature, ultra-high pressure CDQ boiler supporting ultra-high temperature and ultra-
  • the ultra-high temperature, ultra-high pressure reheat CDQ waste heat power generation system and method of the present application are reproducible and can be used in various industrial applications.
  • the ultra-high temperature and ultra-high pressure reheat CDQ waste heat power generation system and method of the present application can be used in the technical field of coke quenching waste heat power generation.

Abstract

本申请涉及一种超高温超高压再热干熄焦余热发电系统及方法,所述超高温超高压再热干熄焦余热发电系统包括超高温超高压干熄焦锅炉、超高温超高压汽轮发电机组、多级减温减压装置、以及冷凝器;所述超高温超高压干熄焦锅炉包括干熄焦锅炉汽包、一次过热器、二次过热器、一次再热器、以及二次再热器,所述超高温超高压汽轮发电机组包括高压缸、中低压缸、以及汽轮发电机;所述多级减温减压装置包括一级减温减压装置、二级减温减压装置、三级减温减压装置、四级减温减压装置、以及五级减温减压装置;本申请实现了超高温超高压干熄焦锅炉配装超高温超高压汽轮发电机组的干熄焦余热发电技术的重大突破,能够通过有效防止再热器干烧来保护再热器,同时能够最大限度地提高干熄焦余热发电量,创造良好的经济效益,降低企业吨焦能耗。

Description

一种超高温超高压再热干熄焦余热发电系统及方法
相关申请的交叉引用
本申请要求于2021年05月20日提交中国国家知识产权局的申请号为202110551240.0、名称为“一种超高温超高压再热干熄焦余热发电系统及工艺”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及熄焦余热发电技术领域,特别地,本申请涉及一种超高温超高压再热干熄焦余热发电系统及方法。
背景技术
目前,焦化企业干熄焦余热发电通常采用高温高压干熄焦锅炉配套高温高压汽轮发电机组,投产业绩众多。但是,采用超高温超高压干熄焦锅炉配套超高温超高压汽轮发电机组的干熄焦余热发电技术尚无投产业绩。随着大容积焦炉技术的突破,焦化企业大型化、集中化趋势越发明显,同时干熄焦余热发电技术不断进步,设备制造水平不断提高,干熄焦超高温超高压发电技术亟待发展,以进一步加快焦化行业转型升级,促进焦化行业技术进步,提升资源综合利用率和节能环保水平,推动焦化行业高质量发展。
发明内容
本申请提供了一种超高温超高压再热干熄焦余热发电系统及方法,实现了超高温超高压干熄焦锅炉配装超高温超高压汽轮发电机组的干熄焦余热发电技术的重大突破,能够通过有效防止再热器干烧来保护再热器,同时能够最大限度地提高干熄焦余热发电量,创造良好的经济效益,降低企业吨焦能耗。
本申请的一些实施例提供了一种超高温超高压再热干熄焦余热发电系统,该超高温超高压再热干熄焦余热发电系统包括超高温超高压干熄焦锅炉、超高温超高压汽轮发电机组、多级减温减压装置、以及冷凝器;所述超高温超高压干熄焦锅炉包括干熄焦锅炉汽包、一次过热器、二次过热器、一次再热器、以及二次再热器,所述超高温超高压汽轮发电机组由高压缸、中低压缸、以及汽轮发电机;所述多级减温减压装置包括一级减温减压装置、二级减温减压装置、三级减温减压装置、四级减温减压装置、以及五级减温减压装置。所述干熄焦锅炉汽包的饱和蒸汽出口通过汇流管连接至一次过热器,一次过热器通过过热蒸汽喷水减温器连接至二次过热器,二次过热器的过热蒸汽出口通过过热蒸汽管道连接至高压缸;高压缸的排汽口通过高压蒸汽旁路管道连接至一次再热器,一次再热器通过再热蒸汽喷水减温器连接至二次再热器,二次再热器的再热蒸汽出口通过再热蒸汽管道连接至中低压缸;所述中低压缸通过低压蒸汽旁路管道连接至冷凝器,所述冷凝器上设置有三级减温减压装置;所述过热蒸汽管道与高压蒸汽旁路管道通过连接管道一相连接,连接管道一 上设置有一级减温减压装置;所述再热蒸汽管道与冷凝器通过连接管道二相连接,连接管道二上设置有二级减温减压装置;所述过热蒸汽管道通过外送中压蒸汽管道连接至外部中压蒸汽管网,外送中压蒸汽管道上设置有四级减温减压装置,高压缸的中压蒸汽出口连接至四级减温减压装置下游的外送中压蒸汽管道;所述连接管道二通过外送低压蒸汽管道连接至外部低压蒸汽管网,中低压缸的低压蒸汽出口连接至五级减温减压装置下游的外送低压蒸汽管道。通过本申请所提供的超高温超高压再热干熄焦余热发电系统,至少能够实现先前所提到的预期目的。
所述超高温超高压干熄焦锅炉的额定蒸汽温度为570℃,额定蒸汽压力为13.7MPa。
所述超高温超高压汽轮发电机组的额定蒸汽温度为570℃,额定蒸汽压力为13.2MPa,高压缸的额定排汽温度为350℃,额定排汽压力为3.1MPa。
本申请的另一些实施例提供了一种超高温超高压再热干熄焦余热发电方法,该超高温超高压再热干熄焦余热发电方法包括如下步骤:
1)使干熄焦锅炉汽包产生的饱和蒸汽通过汇流管进入一次过热器,蒸汽在一次过热器内与高温惰性循环气体进行换热,从而使蒸汽的温度上升,在蒸汽的温度再经过热蒸汽喷水减温器而被调整至设定温度后,使蒸汽进入二次过热器以与高温惰性循环气体进行换热,从而使蒸汽升温,使最终温度为570℃以上、压力为13.7MPa以上的过热蒸汽全部进入超高温超高压汽轮发电机组的高压缸进行发电,做功后,将高压缸所排放的温度为350℃以下、压力为3.1MPa以下的蒸汽送至超高温超高压干熄焦锅炉的一次再热器,使蒸汽与高温惰性循环气体进行换热以使蒸汽温度上升,在蒸汽的温度再经再热蒸汽喷水减温器而被调整至设定温度后,使蒸汽进入二次再热器以与高温惰性循环气体进行换热,从而使蒸汽升温,使最终温度为570℃以上、压力为2.8MPa以上的再热蒸汽全部进入超高温超高压汽轮发电机组的中低压缸进行发电;以及
2)在超高温超高压汽轮发电机组启动或甩负荷工况下,温度为570℃以上、压力为13.7MPa以上的过热蒸汽经一级减温减压装置而减至温度350℃以下、压力3.1MPa以下后被送至一次再热器,蒸汽与高温惰性循环气体进行换热以使蒸汽的温度上升,再经再热蒸汽喷水减温器将蒸汽温度调整至设定温度后,使蒸汽进入二次再热器而与高温惰性循环气体进行换热,从而使蒸汽升温,最终温度达到570℃以上、压力达到2.8MPa以上的再热蒸汽经串联的二级减温减压装置而减至温度190℃以下、压力0.8MPa以下后进入设置在冷凝器上的三级减温减压装置,减至温度60℃以下、压力0.02MPa以下的蒸汽进入冷凝器回收工质;
所述步骤1)中,发电后的乏汽进入冷凝器时,高压缸抽出中压蒸汽并将中亚蒸汽并入中压蒸汽管网以供中压蒸汽用户使用以及中低压缸抽出低压蒸汽并将低压蒸汽并入低压蒸 汽管网以供低压蒸汽用户使用。
所述步骤2)中,温度为570℃以上、压力为13.7MPa以上的过热蒸汽在经一级减温减压装置进行减温减压以及经四级减温减压装置进行减温减压后并入中压蒸汽管网,以供中压蒸汽用户使用;或者,经二级减温减压装置减至温度190℃以下、压力0.8MPa以下的蒸汽再经五级减温减压装置进行减温减压后并入低压蒸汽管网,以供低压蒸汽用户使用。
与相关技术相比,本申请的有益效果至少是:
1)通过采用超高温超高压汽轮发电机组进行发电,最大限度地提高了余热利用率,降低企业吨焦能耗,节能降耗效果显著;
2)与传统高温高压汽轮发电机组相比,通过采用超高温超高压汽轮发电机组进行发电,提高发电量约7%,经济效益显著;
3)通过设置高压蒸汽旁路系统,在发电机组启动或甩负荷工况下,主蒸汽经减温减压后进入再热器,有效防止再热器干烧,实现保护再热器的目的;同时,主蒸汽也可经减温减压后送至外部的中压蒸汽管网,满足中压蒸汽用户用气需求,做到停机不停炉,供气不中断;
4)通过设置低压蒸汽旁路系统,在发电机组启动或甩负荷工况下,再热蒸汽经减温减压后进入冷凝器,有效防止主蒸汽放散造成的能源浪费,并可回收除盐水工质;同时,再热蒸汽也可经减温减压后送至外部的低压蒸汽管网,满足低压蒸汽用户用气需求,做到停机不停炉,供气不中断。
附图说明
图1是本申请所述一种超高温超高压再热干熄焦余热发电系统的结构示意图。
图中:1.干熄焦锅炉汽包 2.一次过热器 3.过热蒸汽喷水减温器 4.二次过热器 5.高压缸 6.一次再热器 7.再热蒸汽喷水减温器 8.二次再热器 9.中低压缸 10.冷凝器 11.一级减温减压装置 12.二级减温减压装置 13.三级减温减压装置 14.四级减温减压装置 15.五级减温减压装置 16.汽轮发电机。
具体实施方式
下面结合附图对本申请的具体实施方式作进一步说明:
如图1所示,本申请的一些实施例提供了一种超高温超高压再热干熄焦余热发电系统,该超高温超高压再热干熄焦余热发电系统包括超高温超高压干熄焦锅炉、超高温超高压汽轮发电机组、多级减温减压装置、以及冷凝器10;所述超高温超高压干熄焦锅炉包括干熄焦锅炉汽包1、一次过热器2、二次过热器4、一次再热器6、以及二次再热器8,所述超高温超高压汽轮发电机组包括高压缸5、中低压缸9、以及汽轮发电机16;所述多级减温减压装置包括一级减温减压装置11、二级减温减压装置12、三级减温减压装置13、四级 减温减压装置14、以及五级减温减压装置15。
所述干熄焦锅炉汽包1的饱和蒸汽出口通过汇流管连接至一次过热器2,一次过热器2通过过热蒸汽喷水减温器3连接至二次过热器4,二次过热器4的过热蒸汽出口通过过热蒸汽管道连接至高压缸5;高压缸5的排汽口通过高压蒸汽旁路管道连接至一次再热器6,一次再热器6通过再热蒸汽喷水减温器7连接至二次再热器8,二次再热器8的再热蒸汽出口通过再热蒸汽管道连接至中低压缸9;所述中低压缸9通过低压蒸汽旁路管道连接至冷凝器10,所述冷凝器10上设置有三级减温减压装置13;所述过热蒸汽管道与高压蒸汽旁路管道通过连接管道一相连接,连接管道一上设置有一级减温减压装置11;所述再热蒸汽管道与冷凝器10通过连接管道二相连接,连接管道二上设置有二级减温减压装置12;所述过热蒸汽管道通过外送中压蒸汽管道连接至外部中压蒸汽管网,外送中压蒸汽管道上设置有四级减温减压装置14,高压缸5的中压蒸汽出口连接至四级减温减压装置14下游的外送中压蒸汽管道;所述连接管道二通过外送低压蒸汽管道连接至外部低压蒸汽管网,中低压缸9的低压蒸汽出口连接至五级减温减压装置15下游的外送低压蒸汽管道。
所述超高温超高压干熄焦锅炉的额定蒸汽温度为570℃,额定蒸汽压力为13.7MPa。
所述超高温超高压汽轮发电机组的额定蒸汽温度为570℃,额定蒸汽压力为13.2MPa,高压缸的额定排汽温度为350℃,额定排汽压力为3.1MPa。
本申请的另一些实施例提供了一种超高温超高压再热干熄焦余热发电方法,超高温超高压再热干熄焦余热发电方法包括如下步骤:
1)使干熄焦锅炉汽包1产生的饱和蒸汽通过汇流管进入一次过热器2,蒸汽在一次过热器2内与高温惰性循环气体进行换热,从而使蒸汽的温度上升,蒸汽的温度再经过热蒸汽喷水减温器3而被调整至设定温度后,使蒸汽进入二次过热器4以与高温惰性循环气体进行换热,从而使蒸汽升温,使最终温度为570℃以上、压力为13.7MPa以上的过热蒸汽全部进入超高温超高压汽轮发电机组的高压缸5进行发电,做功后,将高压缸所排放的温度为350℃以下、压力为3.1MPa以下的蒸汽送至超高温超高压干熄焦锅炉的一次再热器6,使蒸汽与高温惰性循环气体进行换热以使蒸汽温度上升,在蒸汽的温度再经再热蒸汽喷水减温器7而被调整至设定温度后,使蒸汽进入二次再热器8以与高温惰性循环气体进行换热,从而使蒸汽升温,使最终温度为570℃以上、压力为2.8MPa以上的再热蒸汽全部进入超高温超高压汽轮发电机组的中低压缸9进行发电;以及
2)在超高温超高压汽轮发电机组启动或甩负荷工况下,温度为570℃以上、压力为13.7MPa以上的过热蒸汽经一级减温减压装置11而减至温度350℃以下、压力3.1MPa以下后被送至一次再热器6,蒸汽与高温惰性循环气体进行换热以使蒸汽的温度上升,再经 再热蒸汽喷水减温器7将蒸汽温度调整至设定温度后,使蒸汽进入二次再热器8而与高温惰性循环气体进行换热,从而使蒸汽升温,最终温度达到570℃以上、压力达到2.8MPa以上的再热蒸汽经串联的二级减温减压装置12而减至温度190℃以下、压力0.8MPa以下后进入设置在冷凝器10上的三级减温减压装置13,减至温度60℃以下、压力0.02MPa以下的蒸汽进入冷凝器10回收工质;
所述步骤1)中,发电后的乏汽进入冷凝器10时,高压缸5抽出中压蒸汽并将中压蒸汽并入中压蒸汽管网以供中压蒸汽用户使用以及中低压缸9抽出低压蒸汽并将低压蒸汽并入低压蒸汽管网以供低压蒸汽用户使用,最终温度为570℃以上、压力为2.8MPa以上的再热蒸汽全部进入超高温超高压汽轮发电机组的中低压缸进行发电。
所述步骤2)中,温度为570℃以上、压力为13.7MPa以上的过热蒸汽在经一级减温减压装置进行减温减压以及经四级减温减压装置14进行减温减压后并入中压蒸汽管网,以供中压蒸汽用户使用;或者,经二级减温减压装置12减至温度190℃以下、压力0.8MPa以下的蒸汽再经五级减温减压装置15进行减温减压后并入低压蒸汽管网,供低压蒸汽用户使用。
所述超高温超高压汽轮发电机组为超高温超高压带一次再热同轴汽轮发电机组,所述超高温超高压干熄焦锅炉内还设有省煤器、膜式水冷壁及蒸发器等装置,均为常规设置,在此不做详细阐述。
本申请所述的超高温超高压干熄焦锅炉产生的过热蒸汽可通过高压旁路供给中压蒸汽用户,也可经串联的低压旁路送至冷凝器。超高温超高压干熄焦锅炉产生的再热蒸汽可经低压旁路送至冷凝器,也可经减温减压后供给低压蒸汽用户。所述高压旁路与低压旁路均为全负荷能力。
以上所述,仅为本申请较佳的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,根据本申请的技术方案及其发明构思加以等同替换或改变,都应涵盖在本申请的保护范围之内。
工业实用性
本申请公开了一种超高温超高压再热干熄焦余热发电系统及方法,所述超高温超高压再热干熄焦余热发电系统包括超高温超高压干熄焦锅炉、超高温超高压汽轮发电机组、多级减温减压装置、以及冷凝器;所述超高温超高压干熄焦锅炉包括干熄焦锅炉汽包、一次过热器、二次过热器、一次再热器、以及二次再热器,所述超高温超高压汽轮发电机组包括高压缸、中低压缸、以及汽轮发电机;所述多级减温减压装置包括一级减温减压装置、二级减温减压装置、三级减温减压装置、四级减温减压装置、以及五级减温减压装置;本 申请实现了超高温超高压干熄焦锅炉配套超高温超高压汽轮发电机组的干熄焦余热发电技术的重大突破,能够通过有效防止再热器干烧来保护再热器,同时能够最大限度地提高干熄焦余热发电量,创造良好的经济效益,降低企业吨焦能耗。
此外,可以理解的是,本申请的超高温超高压再热干熄焦余热发电系统及方法是可以重现的,并且可以用在多种工业应用中。例如,本申请的超高温超高压再热干熄焦余热发电系统及方法可以用在熄焦余热发电技术领域中。

Claims (6)

  1. 一种超高温超高压再热干熄焦余热发电系统,其特征在于,所述超高温超高压再热干熄焦余热发电系统包括超高温超高压干熄焦锅炉、超高温超高压汽轮发电机组、多级减温减压装置、以及冷凝器;所述超高温超高压干熄焦锅炉包括干熄焦锅炉汽包、一次过热器、二次过热器、一次再热器、以及二次再热器,所述超高温超高压汽轮发电机组包括高压缸、中低压缸、以及汽轮发电机;所述多级减温减压装置包括一级减温减压装置、二级减温减压装置、三级减温减压装置、四级减温减压装置、以及五级减温减压装置;
    所述干熄焦锅炉汽包的饱和蒸汽出口通过汇流管连接至一次过热器,一次过热器通过过热蒸汽喷水减温器连接至二次过热器,二次过热器的过热蒸汽出口通过过热蒸汽管道连接至高压缸;高压缸的排汽口通过高压蒸汽旁路管道连接至一次再热器,一次再热器通过再热蒸汽喷水减温器连接至二次再热器,二次再热器的再热蒸汽出口通过再热蒸汽管道连接至中低压缸;所述中低压缸通过低压蒸汽旁路管道连接至冷凝器,所述冷凝器上设置有三级减温减压装置;所述过热蒸汽管道与高压蒸汽旁路管道通过连接管道一相连接,连接管道一上设置有一级减温减压装置;所述再热蒸汽管道与冷凝器通过连接管道二相连接,连接管道二上设置有二级减温减压装置;所述过热蒸汽管道通过外送中压蒸汽管道连接至外部中压蒸汽管网,外送中压蒸汽管道上设置有四级减温减压装置,高压缸的中压蒸汽出口连接至四级减温减压装置下游的外送中压蒸汽管道;所述连接管道二通过外送低压蒸汽管道连接至外部低压蒸汽管网,中低压缸的低压蒸汽出口连接至五级减温减压装置下游的外送低压蒸汽管道。
  2. 根据权利要求1所述的超高温超高压再热干熄焦余热发电系统,其特征在于,所述超高温超高压干熄焦锅炉的额定蒸汽温度为570℃,额定蒸汽压力为13.7MPa。
  3. 根据权利要求1或2所述的超高温超高压再热干熄焦余热发电系统,其特征在于,所述超高温超高压汽轮发电机组的额定蒸汽温度为570℃,额定蒸汽压力为13.2MPa,高压缸的额定排汽温度为350℃,额定排汽压力为3.1MPa。
  4. 一种基于根据权利要求1至3中的任一项所述的超高温超高压再热干熄焦余热发电系统的超高温超高压再热干熄焦余热发电方法,其特征在于,所述超高温超高压再热干熄焦余热发电方法包括如下步骤:
    1)使干熄焦锅炉汽包产生的饱和蒸汽通过汇流管进入一次过热器,蒸汽在一次过热器内与高温惰性循环气体进行换热,从而使蒸汽的温度上升,在蒸汽的温度再经过热蒸汽喷水减温器而被调整至设定温度后,使蒸汽进入二次过热器以与高温惰性循环气体进行换热,从而使蒸汽升温,使最终温度为570℃以上、压力为13.7MPa以上的过热蒸汽全部进入超高温超高压汽轮发电机组的高压缸进行发电,做功后,将高压缸所排放的温度为350℃以 下、压力为3.1MPa以下的蒸汽送至超高温超高压干熄焦锅炉的一次再热器,使蒸汽与高温惰性循环气体进行换热以使蒸汽温度上升,在蒸汽的温度再经再热蒸汽喷水减温器而被调整至设定温度后,使蒸汽进入二次再热器以与高温惰性循环气体进行换热,从而使蒸汽升温,使最终温度为570℃以上、压力为2.8MPa以上的再热蒸汽全部进入超高温超高压汽轮发电机组的中低压缸进行发电;以及
    2)在超高温超高压汽轮发电机组启动或甩负荷工况下,温度为570℃以上、压力为13.7MPa以上的过热蒸汽经一级减温减压装置而减至温度350℃以下、压力3.1MPa以下后被送至一次再热器,蒸汽与高温惰性循环气体进行换热以使蒸汽的温度上升,再经再热蒸汽喷水减温器将蒸汽温度调整至设定温度后,使蒸汽进入二次再热器而与高温惰性循环气体进行换热,从而使蒸汽升温,最终温度达到570℃以上、压力达到2.8MPa以上的再热蒸汽经串联的二级减温减压装置而减至温度190℃以下、压力0.8MPa以下后进入设置在冷凝器上的三级减温减压装置,减至温度60℃以下、压力0.02MPa以下的蒸汽进入冷凝器回收工质。
  5. 根据权利要求4所述的超高温超高压再热干熄焦余热发电方法,其特征在于,所述步骤1)中,发电后的乏汽进入冷凝器时,高压缸抽出中压蒸汽并将中压蒸汽并入中压蒸汽管网以供中压蒸汽用户使用以及中低压缸抽出低压蒸汽并将低压蒸汽并入低压蒸汽管网以供低压蒸汽用户使用。
  6. 根据权利要求4或5所述的超高温超高压再热干熄焦余热发电方法,其特征在于,所述步骤2)中,温度为570℃以上、压力为13.7MPa以上的过热蒸汽在经一级减温减压装置进行减温减压以及经四级减温减压装置进行减温减压后并入中压蒸汽管网,以供中压蒸汽用户使用;或者,经二级减温减压装置减至温度190℃以下、压力0.8MPa以下后的蒸汽再经五级减温减压装置进行减温减压后并入低压蒸汽管网,以供低压蒸汽用户使用。
PCT/CN2022/091419 2021-05-20 2022-05-07 一种超高温超高压再热干熄焦余热发电系统及方法 WO2022242472A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110551240.0 2021-05-20
CN202110551240.0A CN113251811A (zh) 2021-05-20 2021-05-20 一种超高温超高压再热干熄焦余热发电系统及工艺

Publications (1)

Publication Number Publication Date
WO2022242472A1 true WO2022242472A1 (zh) 2022-11-24

Family

ID=77182969

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/091419 WO2022242472A1 (zh) 2021-05-20 2022-05-07 一种超高温超高压再热干熄焦余热发电系统及方法

Country Status (2)

Country Link
CN (1) CN113251811A (zh)
WO (1) WO2022242472A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116625131A (zh) * 2023-06-08 2023-08-22 连云港中宇环保科技有限公司 一种富氧熔炼余热回收装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113251811A (zh) * 2021-05-20 2021-08-13 中冶焦耐(大连)工程技术有限公司 一种超高温超高压再热干熄焦余热发电系统及工艺
CN113669719A (zh) * 2021-08-27 2021-11-19 中国核动力研究设计院 一种过热蒸汽温度和压力自动调控系统及方法
CN114719237B (zh) * 2022-04-28 2024-04-23 中冶焦耐(大连)工程技术有限公司 超高温、超高压、干熄焦余热发电多级减温水工艺

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05140562A (ja) * 1991-11-19 1993-06-08 Nkk Corp コークス乾式消火設備における蒸気回収方法
JPH08253770A (ja) * 1995-03-17 1996-10-01 Nkk Corp コークス乾式消火装置ボイラーの廃熱回収方法
CN207262971U (zh) * 2017-09-11 2018-04-20 西安华江环保科技股份有限公司 一种干熄焦超高温超高压蒸汽再热发电系统
CN110455088A (zh) * 2019-08-14 2019-11-15 西安华江环保科技股份有限公司 一种干熄焦超高温超高压凝气式发电机组余热供暖装置及方法
CN110529834A (zh) * 2019-09-18 2019-12-03 西安华江环保科技股份有限公司 一种干熄焦超高温超高压参数热电联产系统及方法
CN210638530U (zh) * 2019-08-14 2020-05-29 西安华江环保科技股份有限公司 一种干熄焦超高温超高压凝气式发电机组余热供暖装置
CN112594667A (zh) * 2020-12-30 2021-04-02 中冶焦耐(大连)工程技术有限公司 高温超高压再热干熄焦锅炉再热蒸汽温度调节系统及方法
CN113251811A (zh) * 2021-05-20 2021-08-13 中冶焦耐(大连)工程技术有限公司 一种超高温超高压再热干熄焦余热发电系统及工艺

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05140562A (ja) * 1991-11-19 1993-06-08 Nkk Corp コークス乾式消火設備における蒸気回収方法
JPH08253770A (ja) * 1995-03-17 1996-10-01 Nkk Corp コークス乾式消火装置ボイラーの廃熱回収方法
CN207262971U (zh) * 2017-09-11 2018-04-20 西安华江环保科技股份有限公司 一种干熄焦超高温超高压蒸汽再热发电系统
CN110455088A (zh) * 2019-08-14 2019-11-15 西安华江环保科技股份有限公司 一种干熄焦超高温超高压凝气式发电机组余热供暖装置及方法
CN210638530U (zh) * 2019-08-14 2020-05-29 西安华江环保科技股份有限公司 一种干熄焦超高温超高压凝气式发电机组余热供暖装置
CN110529834A (zh) * 2019-09-18 2019-12-03 西安华江环保科技股份有限公司 一种干熄焦超高温超高压参数热电联产系统及方法
CN112594667A (zh) * 2020-12-30 2021-04-02 中冶焦耐(大连)工程技术有限公司 高温超高压再热干熄焦锅炉再热蒸汽温度调节系统及方法
CN113251811A (zh) * 2021-05-20 2021-08-13 中冶焦耐(大连)工程技术有限公司 一种超高温超高压再热干熄焦余热发电系统及工艺

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116625131A (zh) * 2023-06-08 2023-08-22 连云港中宇环保科技有限公司 一种富氧熔炼余热回收装置
CN116625131B (zh) * 2023-06-08 2023-10-27 连云港中宇环保科技有限公司 一种富氧熔炼余热回收装置

Also Published As

Publication number Publication date
CN113251811A (zh) 2021-08-13

Similar Documents

Publication Publication Date Title
WO2022242472A1 (zh) 一种超高温超高压再热干熄焦余热发电系统及方法
CN103696819B (zh) 汽轮机高低压两级工业抽汽供热装置
CN112594667A (zh) 高温超高压再热干熄焦锅炉再热蒸汽温度调节系统及方法
CN212154886U (zh) 一种应用于燃煤供汽机组停机不停炉模式下的工业蒸汽余压梯级利用系统
CN113175367B (zh) 一种提升机组调峰能力和灵活性的母管制系统及运行方法
CN210264838U (zh) 一种喷水减温的热电联产机组热电解耦运行系统
CN206144612U (zh) 一种利用超临界机组实现高压缸抽汽供热热电联产系统
CN111237735A (zh) 一种实现大型燃煤发电机组停机不停炉的应急工业供汽系统
CN217464397U (zh) 一种基于锅炉过热蒸汽分流的热电解耦系统
CN111139090A (zh) 一种干熄焦系统超低负荷运行方法
CN215261221U (zh) 一种超高温超高压再热干熄焦余热发电系统
CN211174241U (zh) 基于母管制的热回收焦炉余热发电系统
CN111206968A (zh) 钢铁厂亚临界余能余热回收发电系统及其工作方法
CN113107621A (zh) 一种650℃高效超(超)临界燃煤发电系统
CN203584485U (zh) 汽轮机高低压两级工业抽汽供热装置
CN110630345A (zh) 基于母管制的热回收焦炉余热发电系统
CN112082147A (zh) 余热锅炉的低压过热器系统
CN211900717U (zh) 钢铁厂亚临界余能余热回收发电系统
Zhang et al. FCB system analysis and performance test results of 1000MW ultra supercritical coal fired power station
CN110925730A (zh) 一种基于燃煤发电机组停机不停炉的应急工业供热系统
CN113236382B (zh) 一种二次再热650℃超超临界机组系统
CN110805923A (zh) 一种基于能量梯级利用的蒸汽空气预热器系统
CN217152055U (zh) 400吨/小时级超临界锅炉带中间一次再热背压发电机组
CN215444170U (zh) 增强直流锅炉工业供汽能力的冷段蒸汽多级利用系统
CN206681807U (zh) 一种基于中温中压余热、余能发电系统改造的发电装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22803796

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE