WO2022242433A1 - 频点测量方法及装置、芯片、设备、存储介质 - Google Patents

频点测量方法及装置、芯片、设备、存储介质 Download PDF

Info

Publication number
WO2022242433A1
WO2022242433A1 PCT/CN2022/089282 CN2022089282W WO2022242433A1 WO 2022242433 A1 WO2022242433 A1 WO 2022242433A1 CN 2022089282 W CN2022089282 W CN 2022089282W WO 2022242433 A1 WO2022242433 A1 WO 2022242433A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
measurement
frequency point
measured
configuration information
Prior art date
Application number
PCT/CN2022/089282
Other languages
English (en)
French (fr)
Inventor
李大国
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Publication of WO2022242433A1 publication Critical patent/WO2022242433A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the embodiments of the present application relate to communication technologies, and relate to but are not limited to frequency measurement methods and devices, chips, equipment, and storage media.
  • RRC Radio Resource Control
  • the measurement mechanism based on the measurement gap may affect the downlink service flow of the UE, and even cause call drop and disconnection of the UE.
  • the frequency point measurement method, device, chip, device, and storage medium provided by the embodiments of the present application can improve the overall measurement efficiency, thereby reducing the impact on the downlink service flow of the UE, and reducing the UE's call drop and disconnection.
  • the frequency point measurement method and device, chip, equipment, and storage medium provided in the embodiments of the present application are implemented in this way:
  • the frequency point measurement method includes: receiving first measurement configuration information for inter-frequency measurement or inter-system measurement; wherein, the first measurement configuration information includes information about at least one frequency point to be measured; determining Other frequency points to be measured supported by front-end radio frequency resources that can be measured in parallel with the current frequency point to be tested, so as to obtain a combination of frequency points including the current frequency point to be measured and the other frequency points to be measured; in the same gap The multiple frequency points in the frequency point combination are measured in parallel.
  • a frequency measurement device provided in an embodiment of the present application includes: a receiving module configured to receive first measurement configuration information for inter-frequency measurement or inter-system measurement; wherein the first measurement configuration information includes at least one The information of the frequency measurement point; the determination module is used to determine other frequency points to be measured that can be measured in parallel with the current frequency point to be measured supported by the front-end radio frequency resources, so as to obtain the frequency points including the current frequency point to be measured and the other frequency points to be measured.
  • a frequency point combination of frequency measurement points a measurement module, configured to measure multiple frequency points in the frequency point combination in parallel in the same gap.
  • a baseband chip provided in an embodiment of the present application includes: a protocol stack, a PHY measurement control module, a radio frequency front-end control module, and an RFIC; wherein the protocol stack is configured to receive a measurement frequency point list issued by a network device, and The measurement frequency point list is sent to the PHY measurement control module; the measurement frequency point list includes a different frequency frequency point list or a different system frequency point list; the PHY measurement control module is configured to receive the measurement frequency point list, After preprocessing the measurement frequency point list, notify the radio frequency front-end control module to establish an EN-DC link or a continuous CA link; the radio frequency front-end control module is configured to reconfigure the measurement frequency point list , controlling the RFIC to establish the EN-DC link or the continuous CA link; the PHY measurement control module is further configured to receive data of different frequency bands of the EN-DC received by the RFIC or the continuous CA link CA data of multiple CCs, and calculate the measurement results according to the received data; report the measurement results to the protocol stack; and notify the
  • the user equipment provided by the embodiment of the present application includes a memory and a processor, the memory stores a computer program that can run on the processor, and the processor implements the method described in the embodiment of the present application when executing the program.
  • the computer-readable storage medium provided by the embodiment of the present application has a computer program stored thereon, and when the computer program is executed by a processor, the method described in the embodiment of the present application is implemented.
  • the frequency points to be measured in the first measurement configuration information are not directly measured in series, but first Preprocess the first measurement configuration information, that is, determine whether there are other frequency points to be measured supported by the front-end radio frequency resources that can be measured in parallel with the current frequency point to be measured; if there are, these frequency points are measured in parallel ;
  • the measurement efficiency can be improved under the premise of obtaining accurate measurement results, especially when the number of frequency points to be measured is large, the effect is particularly obvious.
  • the improvement of measurement efficiency reduces the number of measurements to a certain extent, thereby reducing the number or time of interrupting current services, thereby reducing the impact on downlink service traffic, and reducing the probability of UE dropping calls and going offline.
  • FIG. 1 is a schematic diagram of a network architecture that may be applicable to an embodiment of the present application
  • Fig. 2 is a schematic diagram of the principle of inter-frequency measurement in the related art
  • Fig. 3 is a schematic diagram of the measurement principle of different systems in the related art
  • FIG. 4 is a schematic diagram of the measurement interaction process of each subsystem in the related art
  • FIG. 5 is a schematic diagram of the implementation flow of the frequency point measurement method provided by the embodiment of the present application.
  • FIG. 6A is a schematic diagram of a principle of inter-frequency measurement in an embodiment of the present application.
  • FIG. 6B is a schematic diagram of the principle of different system measurement in the embodiment of the present application.
  • FIG. 7 is a schematic diagram of the implementation flow of another frequency point measurement method provided by the embodiment of the present application.
  • FIG. 8 is a schematic diagram of the implementation flow of another frequency point measurement method provided by the embodiment of the present application.
  • FIG. 9 is a schematic diagram of the implementation flow of different system measurement in the embodiment of the present application.
  • FIG. 10 is a schematic diagram of an implementation flow of inter-frequency measurement according to an embodiment of the present application.
  • FIG. 11 is a schematic diagram of the measurement interaction process of each subsystem of the embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of a frequency measurement device according to an embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of a user equipment provided in an embodiment of the present application.
  • first ⁇ second ⁇ third involved in the embodiment of this application is used to distinguish similar or different objects, and does not represent a specific ordering of objects. Understandably, “first ⁇ second ⁇ third The specific order or sequence of "three” can be interchanged where permitted so that the embodiments of the application described herein can be practiced in other orders than those illustrated or described herein.
  • the network architecture and business scenarios described in the embodiments of the present application are for more clearly illustrating the technical solutions of the embodiments of the present application, and do not constitute limitations on the technical solutions provided by the embodiments of the present application. Those skilled in the art know that with the evolution of the network architecture and the emergence of new service scenarios, the technical solutions provided in the embodiments of the present application are also applicable to similar technical problems.
  • FIG. 1 shows a network architecture to which this embodiment of the present application may apply.
  • the network architecture provided by this embodiment includes: a network device 101 and a UE 102.
  • the UE involved in the embodiment of the present application may include various handheld devices (such as mobile phones), vehicle-mounted devices, wearable devices, computing devices or other processing devices connected to wireless modems with wireless communication functions, as well as various forms of user Terminal device (terminal device) or mobile station (Mobile Station, MS) and so on.
  • the network device involved in the embodiment of the present application is a device deployed in a radio access network to provide a wireless communication function for a user equipment.
  • the network device may be, for example, the base station shown in FIG. 1 , and the base station may include various forms of macro base stations, micro base stations, relay stations, or access points.
  • the LTE communication module and the NR communication module in the UE need to support the following measurements in the RRC connection state:
  • Intra-frequency measurements including identification and cell measurement of intra-frequency cells
  • Inter-frequency measurements including inter-frequency cell identification and cell measurement;
  • Inter-RAT measurements including identification and cell measurement of inter-RAT cells.
  • the Cell Reference Signal (CRS) and Measurement Gap (Measurement Gap) are defined in the LTE system for measurement, and the NR system defines the following:
  • Synchronization signal block (SSB) measurement configurations (SSB measurement timing configurations, SMTC): The time position, length and period of the SSB measurement.
  • the period of the synchronization signal block (SS/PBCH Block) measurement configuration can be configured as 5ms, 10ms, 20ms, 40ms, 80ms or 160ms, etc.
  • Measurement Gap configuration the time position, length and period of the measurement gap.
  • the period of the measurement gap can be configured as 20ms, 40ms, 80ms or 160ms, etc. In most cases, the period of the measurement gap will be greater than the period of the SSB measurement configuration.
  • the UE works at the first frequency point.
  • the UE stops working at the first frequency point, interrupts receiving the carrier signal of the frequency point, so as to complete the measurement task in the allocated measurement gap, after the measurement is completed, resume receiving the first frequency point carrier signal.
  • each subsystem includes a protocol stack, a physical layer (PHY) measurement control module, radio frequency front-end control module and radio frequency chip (RFIC) and other devices;
  • PHY physical layer
  • RFIC radio frequency chip
  • Step 401 the protocol stack receives the measurement frequency point list issued by the network device, and sends it to the PHY measurement control module;
  • Step 402 the PHY measurement control module determines whether the measurement frequency point list contains a different frequency point or a different system frequency point; if yes, then notify the radio frequency front-end control module to close the front-end resources of this frequency (or this system);
  • the RF front-end control module is notified to close the front-end resources of this frequency; if the measurement frequency point list is a different-system frequency point list, the RF front-end control module is notified to close the system front-end resources.
  • the so-called local frequency refers to the frequency point where the UE is currently working, that is, the frequency point involved in serving the current service, and the present system refers to the communication system used to serve the current service.
  • Step 403 the radio frequency front-end control module shuts down and releases the radio frequency front-end resources (i.e. devices such as RFIC) of the frequency (or the system);
  • the radio frequency front-end resources i.e. devices such as RFIC
  • Step 404 the PHY measurement control module notifies the radio frequency front-end control module to open the front-end resources of different frequencies (or different systems) for receiving and measuring;
  • Step 405 the RF front-end control module opens front-end resources of different frequencies (or different systems);
  • Step 406 the PHY measurement control module receives the downlink signal received by the front-end resource, and samples the downlink signal, and determines the measurement result (such as received signal strength and/or received signal power, etc.) according to the sampled value;
  • Step 407 the PHY measurement control module reports the measurement result to the protocol stack; the protocol stack reports the measurement result to the network device;
  • Step 408 the PHY measurement control module notifies the radio frequency front-end control module to close the front-end resources of different frequencies (or different systems);
  • Step 409 the RF front-end control module closes and releases front-end resources of different frequencies (or different systems);
  • Step 410 the PHY measurement control module notifies the radio frequency front-end control module to open the front-end resources of this frequency (or this system);
  • Step 411 the radio frequency front-end control module restores the radio frequency channel of the local frequency (or the local system).
  • the LTE communication module of the UE when the LTE system starts NR measurement, the LTE communication module of the UE is required to interrupt the current service and allocate a measurement gap to the NR measurement frequency point for inter-system measurement; when the LTE system or NR system starts inter-frequency measurement , the UE needs to interrupt the current intra-frequency service and allocate measurement gaps for inter-frequency points to perform measurement.
  • the number of frequency points for intra-frequency measurement is the number of carriers for intra-frequency measurements (Intra-frequency measurements carriers), the number of frequency points for inter-frequency measurements is the number of carriers for inter-frequency measurements (Inter-frequency measurements carriers), and the number of frequency points for inter-frequency measurements is the number of inter-system measurements Carrier number (Inter-frequency measurements carriers).
  • Figure 5 is a schematic diagram of the implementation flow of the frequency point measurement method provided by the embodiment of the present application, as shown in Figure 5, the method may include the following steps 501 to 503:
  • Step 501 UE receives first measurement configuration information for inter-frequency measurement or inter-system measurement; wherein, the first measurement configuration information includes information of at least one frequency point to be measured.
  • the network device When inter-frequency measurement is required, the network device issues the first measurement configuration information including the inter-frequency frequency point list to the UE; when inter-system measurement is required, the network device issues the first measurement configuration information including the inter-system frequency point list to the UE .
  • the list of different frequency points includes information of at least one frequency point to be tested, that is, information of the different frequency points to be tested.
  • the list of different system frequency points includes information of at least one frequency point to be tested, that is, information of the frequency point of the different system to be tested.
  • the frequency point may be a center frequency point of a corresponding carrier.
  • the UE determines other frequency points to be tested that are supported by the front-end radio frequency resources and can be measured in parallel with the frequency point to be tested currently, so as to obtain a combination of frequency points including the frequency point to be measured currently and the other frequency points to be measured .
  • the so-called frequency point to be measured currently refers to the frequency point to be measured this time in the first measurement configuration information.
  • the other frequency points to be measured may or may not be the frequency points in the first measurement configuration information.
  • the frequency points to be measured included in the first measurement configuration information are inter-frequency frequency points, and the other frequency points to be measured may include inter-frequency frequency points, or may include same-frequency frequency points to be measured.
  • the frequency points to be measured included in the first measurement configuration information are frequency points of different systems (such as NR frequency points), and these other frequency points to be measured may include frequency points of different systems. points, may also include different frequency points and/or same frequency points of the LTE system.
  • the UE may determine other frequency points to be measured that are supported by the front-end radio frequency resources and measured in parallel with the current frequency point to be measured according to the bandwidth processing capability supported by the front-end radio frequency resources. For example, for different system measurement scenarios, the UE determines other frequency points to be tested that can form an EN-DC frequency band combination with the current frequency point to be tested according to the supported EN-DC (EUTRA-NR Dual Connection) frequency band combination.
  • the frequency points to be tested may include frequency points of different systems, frequency points of the same frequency, or frequency points of different frequencies.
  • the combination of frequency points may also be a combination of NE-DC frequency bands.
  • EN-DC the difference between EN-DC and NE-DC is that in EN-DC, the LTE cell is the primary cell, and the NR cell is the secondary cell; in NE-DC, the NR cell is the primary cell, and the LTE cell is the secondary cell. district.
  • the UE determines other frequency points to be measured that can form CA with the current frequency point to be measured according to the supported carrier aggregation (Carrier Aggregation, CA), and these other frequency points to be measured may include Different frequency points may also include same frequency points.
  • CA Carrier Aggregation
  • the combination of frequency points may be any type of combination, as long as the front-end radio frequency resources of the UE support parallel measurement of the frequency points in the combination.
  • the combination of frequency points includes all other frequency points to be tested that can be measured in parallel with the current frequency point to be tested.
  • the UE may implement step 502 according to step 703 and step 704 of the following embodiment to obtain the frequency combination; for the inter-system measurement scenario, the UE may implement step 705 and step 704 of the following embodiment Step 706 implements step 502 to obtain frequency point combinations.
  • Step 503 the UE measures multiple frequency points in the frequency point combination in parallel in the same gap.
  • the number of frequency points when the UE measures the frequency points in the frequency point combination in parallel in the same gap is not limited, which is related to the capability of front-end radio frequency resources.
  • the front-end radio frequency resources support the measurement of up to 3 frequency points at the same time. If the frequency point combination includes more than 3 frequency points, the UE can perform the measurement on the 3 frequency points in the frequency point combination in parallel in one gap. measurement, and measure the remaining frequency points in the frequency point combination in parallel in the next gap. That is to say, when the UE measures multiple frequency points in the frequency point combination in parallel in the same gap, the multiple frequency points may be part or all of the frequency points in the frequency point combination.
  • the UE when the UE measures multiple frequency points in the frequency point combination, it is not limited to the measurement gaps for inter-frequency measurement or inter-system measurement, and can implement frequency point combination in other gaps.
  • frequency measurement For example, for inter-frequency measurement, the UE can measure multiple frequency points in the frequency point combination in parallel in the measurement gap configured for inter-frequency measurement, and can also flexibly schedule other time slot resources to achieve measurement, as shown in Figure 6A
  • the frequency point combination includes the center frequency points of CC0, CC1, and CC2. Among them, CC0 is the same-frequency carrier, and CC1 and CC2 are different-frequency carriers.
  • the UE can flexibly schedule slot resources, and perform parallel measurement on each frequency point in the frequency point combination without being limited by the measurement gap used for inter-frequency measurement.
  • the UE does not need to stop working at the center frequency of CC0, that is, it does not need to interrupt receiving CC0, but opens the radio frequency channels for receiving CC1 and CC2, so that UE can measure different frequency components in parallel when measuring CC0 Carrier CC1 and inter-frequency component carrier CC2; after the measurement is completed, turn off the radio frequency channels used to receive CC1 and CC2, so as to switch back to the local frequency state; in this way, since there is no need to interrupt the current connection state, that is, there is no need to interrupt the connection to CC0 Therefore, the measurement efficiency of the same-frequency measurement can be improved; moreover, multiple different-frequency frequency points can be measured in parallel, or can be measured in parallel with the same-frequency frequency point, without being limited to the dedicated measurement gap
  • the UE can measure multiple frequency points in the frequency point combination in parallel in the measurement gap configured for inter-system measurement, and can also flexibly schedule other time slot resources to achieve measurement.
  • the UE does not need to interrupt the LTE connection state, but Open the radio frequency channel for receiving the carrier of the NR frequency point, so that the UE measures the NR frequency point in parallel while measuring the second frequency point;
  • the second frequency point can be regarded as a master cell set (Master Cell Group, MGC)
  • the NR frequency point can be regarded as a secondary cell group (Secondary Cell Group, SCG); after the measurement is completed, switch back to the state of the system, and close the radio frequency channel used to receive the carrier of the NR frequency point; thus, since there is no need Interrupting the current
  • the NR frequency point can also be measured in parallel while the second frequency point is measured. Therefore, it can not only improve the measurement efficiency of the same frequency, but also improve the performance Measure efficiency.
  • the frequency point combination includes NR frequency points and inter-frequency points in the LTE connection state. At this time, it is necessary to disconnect the LTE connection state, and then schedule the front-end radio frequency resources in the dedicated measurement gap of the NR frequency point or in the inter-frequency frequency point. These frequency points are measured in parallel in the dedicated measurement gap of the point; in this way, the efficiency of inter-frequency measurement and inter-system measurement can also be improved, and correspondingly, the measurement efficiency of co-frequency measurement will also be indirectly improved. This is because the improvement of the efficiency of inter-frequency measurement and inter-system measurement means that the number of measurements is reduced, and the resulting impact is that the number of times of interrupting the same-frequency measurement is also reduced accordingly.
  • the UE after receiving the first measurement configuration information for inter-frequency measurement or inter-system measurement, the UE does not directly measure the frequencies to be measured in the first measurement configuration information serially, but first Preprocessing the first measurement configuration information, that is, determining whether there are other frequency points to be measured supported by front-end radio frequency resources that can be measured in parallel with the current frequency point to be measured; if they exist, these frequency points are measured in parallel; In this way, while ensuring accurate measurement results, the measurement efficiency can be improved, especially when there are many frequency points to be measured, the effect is particularly obvious.
  • the improvement of measurement efficiency reduces the number of measurements to a certain extent, thereby reducing the number of interruptions to current services, thereby reducing the impact on the downlink service flow of the UE, and reducing the probability of the UE being dropped or disconnected from the network.
  • the UE can perform the frequency point measurement method of the embodiment of the present application in the connected state, and can also perform the frequency point measurement method of the embodiment of the present application in the idle state.
  • the former can reduce the impact on the downlink traffic of the UE and reduce the UE Probability of dropped calls and disconnections.
  • FIG. 7 is a schematic diagram of the implementation flow of another frequency point measurement method provided in the embodiment of the present application. As shown in FIG. 7, the method may include the following steps 701 to 707:
  • Step 701 UE receives first measurement configuration information; wherein, the first measurement configuration information includes information of at least one frequency point to be measured and a measurement gap for measuring the frequency point to be measured.
  • the network device does not need to configure the measurement gap for the UE to measure inter-frequency measurement or inter-system measurement, and the UE can flexibly schedule time slots The resource performs parallel measurement on each frequency point in the frequency point combination.
  • step 702 the UE determines whether the first measurement configuration information is used for inter-frequency measurement or inter-system measurement; if it is used for inter-frequency measurement, perform step 703; if it is for inter-system measurement, perform step 705.
  • the first measurement configuration information includes information indicating a measurement type, and the UE can determine whether it is an inter-frequency measurement or an inter-system measurement according to the information. In some other embodiments, the UE may also determine whether it is inter-frequency measurement or inter-system measurement according to the frequency points to be measured carried in the first measurement configuration information. In a word, there is no limitation on the manner in which the UE determines the measurement type.
  • Step 703 the UE acquires second measurement configuration information for same-frequency measurement; wherein, the second measurement configuration information includes information of at least one same-frequency frequency point to be measured;
  • Step 704 From the first measurement configuration information and/or the second measurement configuration information, the UE screens out other frequency points to be measured that are supported by front-end radio frequency resources and can be measured in parallel with the current frequency point to be measured, so that Obtain a combination of frequency points including the current frequency point to be tested and the other frequency points to be tested; then go to step 707 .
  • the UE selects other frequency points to be measured that can be measured in parallel with the current frequency point to be measured from the first measurement configuration information, and based on this, performs parallel measurement on each frequency point in the obtained frequency point combination measurement; in this way, the measurement efficiency of inter-frequency measurement can be improved, thereby reducing the number of measurements of inter-frequency measurement. Since the same-frequency frequency point is not included in the frequency point combination, the current service needs to be interrupted to release the front-end radio frequency resources of the current service during inter-frequency measurement.
  • this method reduces the number of inter-frequency measurement measurements, it is equivalent to reducing interruptions
  • the number of current services therefore, on the one hand, correspondingly reduces the situation that the UE's downlink service flow is affected, thereby reducing the probability of UE dropping calls and disconnecting from the network; on the other hand, indirectly improving the efficiency of co-frequency measurement.
  • the UE selects other frequency points to be measured that can be measured in parallel with the current frequency point to be measured from the second measurement configuration information, and based on this, performs parallel measurement on each frequency point in the obtained frequency point combination Measurement: Since the frequency point combination includes the same frequency point, there is no need to interrupt the current service. In the UE connected state, while measuring the same frequency point, the current frequency point to be measured is measured; thus, since there is no need The current service is interrupted.
  • the network device can not only reduce the impact of the downlink service flow of the UE, reduce the probability of the UE dropping the call and disconnecting from the network, but also improve the efficiency of co-frequency measurement; and, while measuring the co-frequency point, the current The frequency point to be measured (that is, the different frequency point to be measured), therefore, it is not necessary for the network device to configure a dedicated measurement gap for the current frequency point to be measured, and the efficiency and flexibility of measurement scheduling are improved.
  • the UE may also filter out the other frequency points to be measured from the first measurement configuration information and the second measurement configuration information. That is to say, the UE searches for other frequency points to be measured that can be measured in parallel with the current frequency point to be measured from the set of different frequency points to be tested and the set of same frequency points to be tested, so as to form a frequency point combination; thus, The combination of frequency points may include other frequency points of different frequencies to be tested, and may also include other frequency points of the same frequency to be tested, so as to obtain the aforementioned technical effect, which will not be repeated here.
  • the first measurement configuration information and/or the second measurement configuration information from the first measurement configuration information and/or the second measurement configuration information, other frequency points to be measured that can form the CA supported by the UE with the current frequency point to be measured are selected.
  • the CA composed of frequency points in the frequency point combination can be in-band continuous CA, that is, the frequency point in the frequency point combination is the center frequency point of continuous component carriers in the same frequency band (band); the frequency point composition in the frequency point combination
  • the CA can also be in-band non-continuous CA, that is, the frequency point in the frequency point combination is the center frequency point of the non-continuous component carrier in the same frequency point combination;
  • the CA composed of frequency points in the frequency point combination can also be Inter-band CA, that is, the frequency points in the frequency point combination are the central frequency points of component carriers in different frequency bands (bands).
  • the CA type supported by the UE there is no limitation on the CA type supported by the UE.
  • Step 705 the UE obtains the second measurement configuration information for intra-frequency measurement and/or the third measurement configuration information for inter-frequency measurement; wherein, the second measurement configuration information includes at least one intra-frequency frequency point to be measured Information, the third measurement configuration information includes information about at least one inter-frequency point to be measured.
  • frequency points to be measured there may be other frequency points to be measured that can be measured in parallel with the current frequency point to be measured (that is, the frequency point of a different system to be measured) in the second measurement configuration information and the third measurement configuration information here, That is, the frequency points that front-end RF resources can measure in parallel; the "other frequency points to be measured” described here are to distinguish them from the "current frequency points to be measured”, and other frequency points to be measured are different from the current frequency points to be measured point, other frequency points to be tested may be same frequency points or different frequency points to be tested, or other frequency points of different systems to be tested.
  • Step 706 From the first measurement configuration information, the second measurement configuration information and/or the third measurement configuration information, the UE screens out the front-end radio frequency resources that can be measured in parallel with the current frequency point to be measured. other frequency points to be tested, so as to obtain a combination of frequency points including the current frequency point to be tested and the other frequency points to be tested; then go to step 707.
  • the UE can search for a frequency point that can be measured in parallel with the current frequency point to be measured from at least one of the following frequency point sets to be measured: a different system frequency point set (that is, the frequency point included in the first measurement configuration information point set), same-frequency frequency point set (that is, the frequency point set included in the second measurement configuration information), and different-frequency frequency point set (that is, the frequency point set included in the third measurement configuration information); in this way, the overall measurement efficiency can be improved, thereby Improve the UE's mobility measurement performance and management efficiency, thereby improving communication performance.
  • a different system frequency point set that is, the frequency point included in the first measurement configuration information point set
  • same-frequency frequency point set that is, the frequency point set included in the second measurement configuration information
  • different-frequency frequency point set that is, the frequency point set included in the third measurement configuration information
  • the UE determines from the first measurement configuration information, the second measurement configuration information and/or the third measurement configuration information that it can be combined with the current frequency point to be measured. other frequency points to be tested in the dual-connection frequency band combination supported by the above-mentioned front-end radio frequency resources.
  • the dual connectivity frequency band combination includes at least one of the following: EN-DC combination and NE-DC combination.
  • the EN-DC combination supported by the UE may be one or more combinations of the EN-DC combination list in the protocol TS38-101.
  • Designers can design one or more EN-DC combinations supported by UE according to specific requirements.
  • Step 707 UE measures multiple frequency points in the frequency point combination in parallel in the measurement gap or in other gaps other than the measurement gap.
  • the UE can perform corresponding frequency point measurement within the measurement gap configured by the network device for inter-frequency measurement or inter-system measurement; the UE can also perform frequency point measurement in parallel in other measurement gaps.
  • Each frequency point is measured without being limited to a dedicated measurement gap; in this way, the flexibility of the measurement can be improved, thereby improving the measurement efficiency.
  • the UE can measure other frequency points in the frequency point combination in parallel in the time slot used to measure the same frequency point; for another example, for the different system scenario, If the frequency point combination includes different frequency points or the same frequency point, the UE may measure other frequency points in the frequency point combination in the time slot used to measure the same frequency point or in the time slot used to measure the different frequency point combination.
  • FIG. 8 is a schematic diagram of the implementation flow of another frequency point measurement method provided in the embodiment of the present application. As shown in FIG. 8, the method may include the following steps 801 to 812:
  • Step 801 UE receives first measurement configuration information for inter-frequency measurement or inter-system measurement; wherein, the first measurement configuration information includes information of at least one frequency point to be measured;
  • Step 802 the UE determines whether there are other frequency points to be measured supported by front-end radio frequency resources that can be measured in parallel with the current frequency point to be measured; if yes, perform step 803; otherwise, perform step 810;
  • the UE does not directly interrupt the current service, and measures the current frequency point to be measured (that is, the frequency point to be measured this time) in the first measurement configuration information, but first determines whether there is a other frequency points to be measured that can be measured in parallel at the frequency point to be tested; if there are other frequency points to be measured that can be measured in parallel, then perform step 803; if there are no other frequency points to be measured that can be measured in parallel with the current frequency point to be measured point, the current service will be interrupted (that is, the opened radio frequency channel will be closed, and the current connection state of the UE will be disconnected), and the radio frequency channel that supports the measurement of the current frequency point to be measured will be opened, so as to perform the measurement in the configured measurement gap.
  • the current frequency point to be measured is measured; in this way, the number of interruptions to the current service can be reduced, thereby reducing the impact on the downlink service flow of the UE, and reducing the probability of the UE being dropped and disconnected from the network.
  • Step 803 using the current frequency point to be tested and the other frequency points to be measured as a frequency point combination, if the frequency point combination includes the same frequency point that the opened radio frequency channel supports measurement, perform step 804; otherwise, If the same-frequency frequency point is not included in the frequency point combination, perform step 807;
  • Step 804 opening a radio frequency channel that supports measurement of non-same-frequency frequency points in the frequency point combination
  • Step 805 using the opened radio frequency channel to measure multiple frequency points in the frequency point combination in parallel in the same gap; then, enter step 806;
  • the frequency point combination includes the same frequency point to be tested, there is no need to close the radio frequency channel used to measure the same frequency point at this time, but directly open the radio frequency that supports the measurement of non-same frequency points in the frequency point combination Only one channel is enough, so as to realize the parallel measurement of multiple frequency points.
  • the frequency point combination includes the center frequency points of component carriers CC0, CC1 and CC2, where CC0 is the carrier serving the current service, that is, the center frequency point of CC0 is the same frequency of the current service point, the center frequency points of CC1 and CC2 are different frequency points.
  • CC0, CC1 and CC2 can be measured in parallel in the time slot for measuring CC0, CC0 and CC2 can be measured in parallel in the measurement gap of CC1, and CC0 and CC1 can also be measured in parallel in the measurement gap of CC2.
  • Step 806 after the measurement of the frequency point combination is completed, close the radio frequency channel that supports the measurement of the non-same-frequency frequency points; in this way, on the one hand, power consumption can be saved, and on the other hand, the signal reception of the same-frequency frequency points can also be reduced quality impact.
  • Step 807 close the radio frequency channel that supports the measurement of the same frequency point, and open the radio frequency channel that supports the measurement of the frequency point in the frequency point combination, and enter step 808;
  • Step 808 using the opened radio frequency channel to measure multiple frequency points in the frequency point combination in parallel in the same gap; then, enter step 809;
  • the same-frequency frequency point is not included in the frequency point combination, that is, when there is no same-frequency frequency point that can be measured in parallel with the current frequency point to be measured, it is necessary to close the radio frequency channel that supports the measurement of the same-frequency frequency point, that is Release front-end radio frequency resources for scheduling when measuring frequency point combinations.
  • CC0 is the same-frequency carrier
  • CC1 and CC2 are different-frequency carriers
  • the frequency point combination includes the center frequency point of CC1 and CC2
  • the same is true for different system measurement scenarios, and no examples are given here.
  • Step 809 after the measurement of the frequency point combination is completed, enable the radio frequency channel supporting the measurement of the frequency point of the same frequency, and close the radio frequency channel supporting the measurement of the frequency point in the frequency point combination.
  • Step 810 close the opened radio frequency channel
  • Step 811 open the radio frequency channel that supports the measurement of the current frequency point to be measured, so as to measure the current frequency point to be measured in the measurement gap; then, enter step 812;
  • Step 812 open the radio frequency channel closed in step 810, and close the radio frequency channel opened in step 811, so as to resume the interrupted service.
  • scenario a master mode LTE initiates measurement of slave mode NR (that is, inter-system measurement)
  • scenario b LTE or NR each perform inter-frequency measurement
  • a measurement preprocessing method is provided, namely A round of screening is performed on the configured set of frequency points to be tested and the local frequency point or the system frequency point.
  • the same frequency point in the connection state or other LTE frequency points to be tested can be regarded as the MCG of the EN-DC combination, and the NR frequency point to be tested can be regarded as the EN-DC combination
  • the LTE co-frequency or inter-frequency adjacent cell can be measured at the same time in the measurement gap, which can be compared with the LTE
  • the measurement of the NR inter-frequency adjacent cells composed of EN-DC with local frequency or inter-frequency is no longer restricted to be performed within the measurement gap, thereby improving measurement efficiency and flexibility.
  • the different frequency points to be tested are the same as the current frequency point or the same frequency point, they can form an in-band continuous CA, or the different frequency points to be tested can form an in-band CA.
  • the group of frequency points is regarded as the primary carrier (Primary Carrier Component, PCC) and secondary carrier (Secondary Carrier Component, SCC) of the continuous CA respectively.
  • PCC Primary Carrier Component
  • SCC Secondary Carrier Component
  • the number of these carriers is more than one, and the establishment process of multiplexed in-band continuous CA , as shown in FIG. 6A , the continuous CA is established and the radio frequency channel is opened, and the frequency points constituting the continuous CA can be measured.
  • Step 901 the UE reads the system configuration in the RRC_CONNECTED state, performs measurement scheduling, and obtains the list of frequency points to be measured configured by the system for the LTE communication module of the UE (that is, the set of frequency points to be measured in the first measurement configuration information);
  • Step 902 the measurement module or subsystem of the LTE communication module selects the frequency point for this measurement (ie the current frequency point to be measured) from the configured frequency point list to be measured according to the regulations;
  • Step 903 determine whether there is a frequency point that forms an EN-DC combination with the frequency point measured this time in the list of frequency points to be measured and this frequency point; if it exists, perform step 905; otherwise, perform step 904;
  • Step 904 measure the frequency point of this measurement in the measurement gap configured by the system; that is, execute the conventional IRAT frequency point measurement process, allocate a measurement gap for it, and measure the current frequency point in the measurement gap Measure the frequency point of the second measurement;
  • Step 905 multiplex the SCG adding process of EN-DC, and establish the front-end EN-DC link;
  • Step 906 determine the measurement result according to the received signal value obtained by sampling
  • Step 907 perform EN-DC SGC deconfiguration; so far, the measurement task of the frequency point of this measurement is completed, that is, the measurement of the frequency point of the inter-system (IRAT) is completed.
  • IRAT inter-system
  • scenario b that is, an example of inter-frequency measurement under LTE or NR services, as shown in Figure 10, may include the following steps 1001 to 1007:
  • Step 1001 the UE reads the system configuration in the RRC_CONNECTED state, performs measurement scheduling, and obtains the frequency point list to be measured configured by the system for the UE's LTE communication module or NR communication module (that is, the frequency point set to be measured in the first measurement configuration information );
  • Step 1002 the measurement module or subsystem of the LTE communication module selects the frequency point for this measurement (ie the current frequency point to be measured) from the configured frequency point list to be measured according to the regulations;
  • Step 1003 determine whether there is a frequency point in the frequency point list to be tested and this frequency point that constitutes continuous CA in the band with the frequency point measured this time; if it exists, perform step 1005; otherwise, perform step 1004;
  • Step 1004 measure the frequency point of this measurement in the measurement gap configured by the system; that is, perform a conventional inter-frequency measurement process, and allocate a measurement gap for the frequency point of this measurement. point to measure;
  • Step 1005 execute the SCC configuration process of in-band continuous CA, and establish the front-end link of in-band continuous CA;
  • Step 1006 determine the measurement result according to the received signal value obtained by sampling
  • Step 1007 perform the SCC deconfiguration of the in-band continuous CA; so far, the measurement task of the frequency point measured this time is completed, that is, the measurement of the different frequency point is completed.
  • each subsystem of the UE includes a protocol stack, Physical layer (PHY) measurement control module, radio frequency front-end control module and radio frequency chip (RFIC) and other devices;
  • PHY Physical layer
  • RFIC radio frequency chip
  • Step 1101 the protocol stack receives the measurement frequency point list sent by the network device, and sends the measurement frequency point list to the PHY measurement control module;
  • Step 1102 after preprocessing, the PHY measurement control module notifies the radio frequency front-end control module to establish a front-end EN-DC or continuous CA link;
  • the measurement frequency point list is a different-frequency frequency point list, then notify the RF front-end control module to control the front-end to establish a continuous CA link; if the measurement frequency point list is a different-system frequency point list, then notify the RF front-end control module to control The front end establishes an EN-DC link.
  • Step 1103 the radio frequency front-end control module performs reconfiguration, and controls RFIC and other devices to establish EN-DC or continuous CA channel;
  • the PHY measurement control module receives EN-DC data in different frequency bands (band) or continuous CA multi-CC received by front-end RFIC and other devices, and calculates the measurement result according to the received data.
  • the received data may be sampled, and a measurement result may be calculated based on the sampled data
  • Step 1105 the PHY measurement control module reports the measurement result to the protocol stack; the protocol stack reports the measurement result to the network device;
  • Step 1106 the PHY measurement control module notifies the radio frequency front-end control module that the measurement is completed, so that the radio frequency front-end module restores the local frequency channel;
  • Step 1107 the RF front-end control module controls devices such as RFIC to release SCG or SCC resources, and switch back to the local frequency channel.
  • a pre-processing method before measurement is adopted, that is, the UE identifies and judges the frequency point to be measured that forms EN-DC or in-band continuous CA with its own frequency, and multiplexes the corresponding link establishment process to complete the measurement ; After the measurement is completed, the UE adjusts back to the original frequency downlink receiving state. Satisfying the above-mentioned a and b measurement scenarios described in this scheme is no longer limited to limited measurement gaps, allowing inter-frequency frequency points or inter-system frequency points to be measured in non-measurement gaps, improving measurement scheduling efficiency and flexibility, and enhancing measurement performance. Improve UE mobility measurement performance and management efficiency.
  • the solutions provided by the embodiments of the present application are not limited to terminal products, but are also applicable to other access devices. This technical solution is also applicable to a combination scenario where the local frequency and the frequency point to be tested can form the NE-DC supported by the UE.
  • this embodiment of the present application provides a frequency point measurement device, which includes each module included, and each unit included in each module, which can be implemented by a processor; of course, it can also be implemented by specific logic Circuit implementation; during implementation, the processor may be a central processing unit (CPU), a microprocessor (MPU), a digital signal processor (DSP) or a field programmable gate array (FPGA).
  • the processor may be a central processing unit (CPU), a microprocessor (MPU), a digital signal processor (DSP) or a field programmable gate array (FPGA).
  • Fig. 12 is a schematic structural diagram of a frequency measurement device according to an embodiment of the present application. As shown in Fig. 12, the device 12 includes a receiving module 121, a determining module 122 and a measuring module 123, wherein:
  • the receiving module 121 is configured to receive first measurement configuration information for inter-frequency measurement or inter-system measurement; wherein the first measurement configuration information includes information about at least one frequency point to be measured;
  • the determining module 122 is configured to determine other frequency points to be measured that are supported by front-end radio frequency resources and can be measured in parallel with the frequency point to be measured at present, so as to obtain frequency points including the frequency point to be measured currently and the other frequency points to be measured. point combination;
  • the measuring module 123 is configured to measure multiple frequency points in the frequency point combination in parallel in the same gap.
  • the determination module 122 is configured to: in the case that the first measurement configuration information is used for inter-frequency measurement, from the first measurement configuration information and/or the second measurement used for intra-frequency measurement In the configuration information, other supported frequency points to be measured that can be measured in parallel with the current frequency point to be measured are screened out; wherein, the second measurement configuration information includes information about at least one same-frequency frequency point to be measured.
  • the determination module 122 is configured to: from the first measurement configuration information and/or the second measurement configuration information, filter out the Other frequency points to be tested for CA supported by front-end radio frequency resources.
  • the CA is one of the following: intra-band continuous CA, intra-band non-continuous CA, and inter-band CA.
  • the determination module 122 is configured to: in the case that the first measurement configuration information is used for inter-system measurement, from the first measurement configuration information, the second measurement configuration information used for intra-frequency measurement And/or in the third measurement configuration information used for inter-frequency measurement, other frequency points to be measured that are supported by the front-end radio frequency resources and can be measured in parallel with the current frequency point to be measured are selected; wherein, the second measurement The configuration information includes information of at least one same-frequency frequency point to be measured, and the third measurement configuration information includes information of at least one different-frequency frequency point to be measured.
  • the determining module 122 is configured to: from the first measurement configuration information, the second measurement configuration information and/or the third measurement configuration information, determine The frequency points to be tested constitute other frequency points to be tested in the dual connection frequency band combination supported by the front-end radio frequency resources.
  • the dual connectivity frequency band combination includes one of the following: EN-DC frequency band combination, NE-DC frequency band combination.
  • the measurement module 123 is configured to: enable the measurement of non-same-frequency frequency points in the frequency point combination in the case that the frequency point combination includes the same-frequency frequency point that the opened radio frequency channel supports measurement radio frequency channel, so as to measure multiple frequency points in the frequency point combination in parallel in the same gap; if the frequency point combination does not include the frequency point of the same frequency, turn off the support for the frequency point of the same frequency
  • the radio frequency channel for the measurement of the frequency point, and the radio frequency channel that supports the measurement of the frequency point in the frequency point combination is turned on, so that the multiple frequency points in the frequency point combination are measured in parallel in the same gap; wherein, the The non-same-frequency frequency point refers to a frequency point in the frequency point combination that is different from the same-frequency frequency point.
  • the measurement module 123 is further configured to: in the case that the same-frequency frequency point is included in the frequency point combination, after the measurement of the frequency point combination is completed, turn off supporting the non-same-frequency frequency points The measured radio frequency channel; in the case that the same frequency frequency point is not included in the frequency point combination, after the measurement of the frequency point combination is completed, open the radio frequency channel that supports the measurement of the same frequency frequency point, and close A radio frequency channel that supports measurement of the frequency points in the frequency point combination.
  • the first measurement configuration information further includes a measurement gap for measuring the frequency point to be measured; the measurement module 123 is configured to: within the measurement gap or outside the measurement gap In other intervals, multiple frequency points in the frequency point combination are measured in parallel.
  • the first measurement configuration information also includes a measurement gap for measuring the frequency point to be measured; the measurement module 123 is further configured to: in other measurement gaps that are not measured in parallel with the current frequency point to be measured In the case of the frequency point to be measured, close the opened radio frequency channel; open the radio frequency channel that supports the measurement of the current frequency point to be measured, so as to measure the current frequency point to be measured in the measurement gap.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or physically exist separately, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units can be implemented in the form of hardware or in the form of software functional units. It can also be implemented in the form of a combination of software and hardware.
  • the technical solution of the embodiment of the present application is essentially or the part that contributes to the related technology can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including several instructions for making The user equipment executes all or part of the methods described in various embodiments of the present application.
  • the aforementioned storage medium includes: various media that can store program codes such as U disk, mobile hard disk, read-only memory (Read Only Memory, ROM), magnetic disk or optical disk.
  • embodiments of the present application are not limited to any specific combination of hardware and software.
  • FIG. 13 is a schematic diagram of a hardware entity of the user equipment according to an embodiment of the present application.
  • the user equipment 13 includes a memory 131 and a processor 132, and the memory 131 stores a A computer program that can run on the processor 132, and the processor 132 implements the steps in the methods provided in the above-mentioned embodiments when executing the program.
  • the memory 131 is configured to store instructions and applications executable by the processor 132, and may also cache data to be processed or processed by the processor 132 and modules in the electronic device 13 (for example, image data, audio data, etc.) , voice communication data and video communication data), can be implemented by flash memory (FLASH) or random access memory (Random Access Memory, RAM).
  • FLASH FLASH
  • RAM Random Access Memory
  • An embodiment of the present application provides a computer-readable storage medium, on which a computer program is stored, and when the computer program is executed by a processor, the steps provided in the foregoing method embodiments are implemented.
  • the embodiments of the present application provide a computer program product including instructions, which, when run on a computer, cause the computer to execute the steps provided in the foregoing method embodiments.
  • An embodiment of the present application provides a baseband chip (modem), and the baseband chip is used to execute the steps provided in the foregoing method embodiments.
  • the baseband chip includes the protocol stack, PHY measurement control module, radio frequency front-end control module, RFIC and other devices described in the above embodiments. That is to say, the baseband chip includes related modules from receiving downlink signals at the front end to baseband processing of the downlink signals at the back end.
  • references throughout the specification to "one embodiment” or “an embodiment” or “some embodiments” or “other embodiments” or examples mean specific features, structures or characteristics related to the embodiments. Included in at least one embodiment of the present application. Thus, appearances of "in one embodiment” or “in one embodiment” or “in some embodiments” or “in other embodiments” or examples throughout this specification do not necessarily refer to the same implementation. example. Furthermore, the particular features, structures or characteristics may be combined in any suitable manner in one or more embodiments.
  • sequence numbers of the above-mentioned processes do not mean the order of execution, and the execution order of the processes should be determined by their functions and internal logic, and should not be used in the embodiments of the present application.
  • the implementation process constitutes any limitation.
  • the serial numbers of the above embodiments of the present application are for description only, and do not represent the advantages and disadvantages of the embodiments.
  • the above descriptions of the various embodiments tend to emphasize the differences between the various embodiments, the same or similar points can be referred to each other, and for the sake of brevity, details are not repeated herein.
  • the disclosed devices and methods may be implemented in other ways.
  • the above-described embodiments are only illustrative.
  • the division of the modules is only a logical function division.
  • the mutual coupling, or direct coupling, or communication connection between the various components shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or modules may be in electrical, mechanical or other forms of.
  • modules described above as separate components may or may not be physically separated, and the components displayed as modules may or may not be physical modules; they may be located in one place or distributed to multiple network units; Part or all of the modules can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional module in each embodiment of the present application can be integrated into one processing unit, or each module can be used as a single unit, or two or more modules can be integrated into one unit; the above-mentioned integration
  • the modules can be implemented in the form of hardware, or in the form of hardware plus software functional units.
  • the above-mentioned integrated units of the present application are realized in the form of software function modules and sold or used as independent products, they can also be stored in a computer-readable storage medium.
  • the technical solution of the embodiment of the present application is essentially or the part that contributes to the related technology can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including several instructions for making The user equipment executes all or part of the methods described in various embodiments of the present application.
  • the aforementioned storage medium includes various media capable of storing program codes such as removable storage devices, ROMs, magnetic disks or optical disks.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Measuring Frequencies, Analyzing Spectra (AREA)

Abstract

本申请实施例公开了频点测量方法及装置、芯片、设备、存储介质;其中,所述方法包括:接收用于异频测量或异系统测量的第一测量配置信息;其中,所述第一测量配置信息包括至少一个待测频点的信息;确定前端射频资源支持的能够与当前所述待测频点并行测量的其他待测频点,从而得到包括当前所述待测频点和所述其他待测频点的频点组合;在同一间隙中并行地对所述频点组合中的多个频点进行测量。

Description

频点测量方法及装置、芯片、设备、存储介质
相关申请的交叉引用
本申请基于申请号为202110540171.3、申请日为2021年05月18日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此以全文引入的方式引入本申请。
技术领域
本申请实施例涉及通信技术,涉及但不限于频点测量方法及装置、芯片、设备、存储介质。
背景技术
用户设备(User Equipment,UE)中的长期演进(Long Term Evolution,LTE)通信模块和新空口(New Radio,NR)通信模块在无线资源控制(Radio Resource Control,RRC)连接(RRC_CONNECTED)态下需要支持同频测量、异频测量和异系统测量。为了支持上述测量,LTE系统和NR系统均定义了测量间隙供测量使用。
然而,在相关技术中,基于测量间隙的测量机制,可能会导致UE的下行业务流量受影响,甚至出现UE掉话和脱网等现象。
发明内容
有鉴于此,本申请实施例提供的频点测量方法及装置、芯片、设备、存储介质,能够提高整体的测量效率,从而减少UE的下行业务流量受影响的情况,降低UE掉话和脱网的概率。本申请实施例提供的频点测量方法及装置、芯片、设备、存储介质是这样实现的:
本申请实施例提供的频点测量方法,包括:接收用于异频测量或异系统测量的第一测量配置信息;其中,所述第一测量配置信息包括至少一个待测频点的信息;确定前端射频资源支持的能够与当前所述待测频点并行测量的其他待测频点,从而得到包括当前所述待测频点和所述其他待测频点的频点组合;在同一间隙中并行地对所述频点组合中的多个频点进行测量。
本申请实施例提供的一种频点测量装置,包括:接收模块,用于接收用于异频测量或异系统测量的第一测量配置信息;其中,所述第一测量配置信息包括至少一个待测频点的信息;确定模块,用于确定前端射频资源支持的能够与当前所述待测频点并行测量的其他待测频点,从而得到包括当前所述待测频点和所述其他待测频点的频点组合;测量模块,用于在同一间隙中并行地对所述频点组合中的多个频点进行测量。
本申请实施例提供的一种基带芯片,包括:协议栈、PHY测量控制模块、射频前端控制模块和RFIC;其中,所述协议栈,配置为接收网络设备下发的测量频点列表,并将所述测量频点列表发送给所述PHY测量控制模块;所述测量频点列表包括异频频点列表或异系统频点列表;所述PHY测量控制模块,配置 为接收所述测量频点列表,对所述测量频点列表经过预处理后,通知所述射频前端控制模块建立EN-DC链路或连续CA链路;所述射频前端控制模块,配置为对所述测量频点列表进行重配置,控制所述RFIC建立所述EN-DC链路或所述连续CA链路;所述PHY测量控制模块,还配置为接收所述RFIC接收的所述EN-DC不同频带的数据或所述连续CA多个CC的数据,并根据接收的数据计算得到测量结果;上报所述测量结果给所述协议栈;以及通知所述射频前端控制模块测量结束,恢复本频通道;所述射频前端控制模块,还配置为控制所述RFIC释放SCG或SCC资源,切回本频通道。
本申请实施例提供的用户设备,包括存储器和处理器,所述存储器存储有可在处理器上运行的计算机程序,所述处理器执行所述程序时实现本申请实施例所述的方法。
本申请实施例提供的计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现本申请实施例所述的方法。
在本申请实施例中,在接收用于异频测量或异系统测量的第一测量配置信息之后,不是直接对第一测量配置信息中的待测频点串行地进行测量的,而是先对第一测量配置信息进行预处理,即确定是否存在前端射频资源支持的能够与当前所述待测频点可以并行测量的其他待测频点;如果存在,则将这些频点并行地进行测量;如此,在获得准确测量结果的前提下能够提高测量效率,尤其在待测频点数较多的情况下效果尤其明显。而测量效率的提高,在一定程度上减少了测量次数,从而减少了中断当前业务的次数或时间,进而减少了下行业务流量受影响的情况,以及降低了UE掉话和脱网的概率。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,这些附图示出了符合本申请的实施例,并与说明书一起用于说明本申请的技术方案。
图1为本申请实施例可能适用的一种网络架构示意图;
图2为相关技术中异频测量原理示意图;
图3为相关技术中异系统测量原理示意图;
图4为相关技术中各个子系统的测量交互过程示意图;
图5为本申请实施例提供的频点测量方法的实现流程示意图;
图6A为本申请实施例中异频测量的一原理示意图;
图6B为本申请实施例中异系统测量的一原理示意图;
图7为本申请实施例提供的另一频点测量方法的实现流程示意图;
图8为本申请实施例提供的又一频点测量方法的实现流程示意图;
图9为本申请实施例异系统测量的实现流程示意图;
图10为本申请实施例异频测量的实现流程示意图;
图11为本申请实施例各个子系统的测量交互过程示意图;
图12为本申请实施例频点测量装置的结构示意图;
图13为本申请实施例提供的用户设备的结构示意图。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请的具体技术方案做进一步详细描述。以下实施例用于说明本申请,但不用来限制本申请的范围。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中所使用的术语只是为了描述本申请实施例的目的,不是旨在限制本申请。
在以下的描述中,涉及到“一些实施例”,其描述了所有可能实施例的子集,但是可以理解,“一些实施例”可以是所有可能实施例的相同子集或不同子集,并且可以在不冲突的情况下相互结合。
需要指出,本申请实施例所涉及的术语“第一\第二\第三”用于区别类似或不同的对象,不代表针对对象的特定排序,可以理解地,“第一\第二\第三”在允许的情况下可以互换特定的顺序或先后次序,以使这里描述的本申请实施例能够以除了在这里图示或描述的以外的顺序实施。
本申请实施例描述的网络架构以及业务场景是为了更加清楚地说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定。本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
图1示出了本申请实施例可能适用的一种网络架构。如图1所示,本实施例提供的网络架构包括:网络设备101和UE 102。本申请实施例所涉及到的UE可以包括各种具有无线通信功能的手持设备(例如手机)、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其他处理设备,以及各种形式的用户终端设备(terminal device)或移动台(Mobile Station,MS)等等。本申请实施例所涉及到的网络设备是一种部署在无线接入网中用于为用户设备提供无线通信功能的设备。在本申请实施例中,该网络设备例如可以为图1所示的基站,该基站可以包括各种形式的宏基站、微基站、中继站或接入点等。
可以理解地,UE中的LTE通信模块和NR通信模块在RRC连接态下需要支持以下测量:
同频测量(Intra-frequency measurements):包括同频小区的识别和小区测量;
异频测量(Inter-frequency measurements):包括异频小区的识别和小区测量;
异系统测量(Inter-RAT measurements):包括异系统小区的识别和小区测量。
为了支持上述测量,LTE系统中定义了小区参考信号(Cell Reference Signal,CRS)和测量间隙(Measurement Gap)供测量使用,NR系统定义了以下内容:
同步信号块(SSB)的测量配置(SSB measurement timing configurations,SMTC):SSB测量的时间位置、长度和周期。同步信号块(SS/PBCH Block)测量配置的周期可配置为5ms、10ms、20ms、40ms、80ms或160ms等。
测量间隙(Measurement Gap)的配置:测量间隙的时间位置、长度和周期。测量间隙的周期可配置为20ms、40ms、80ms或160ms等。绝大多数情况下,测量间隙的周期会大于SSB测量配置的周期。
在一些实施例中,对于异频测量,如图2所示,UE工作在第一频点,当接收到网络设备配置的用于异频测量的测量间隙时,需要在该测量间隙内进行异频频点的测量,在该测量间隙内,UE停止工作在第一频点,中断接收该频点的载波信号,从而在分配的测量间隙中完成测量任务,测量完成之后,恢复接收第一频点的载波信号。在LTE(主模式)连接态下需要测量NR(从模式)时,例如图3所示,需要在LTE连接态下分配测量间隙(Measurement GAP)用于测量NR邻区,也就是异系统测量,此时UE需要 中断LTE RRC连接态,中断之后,在测量间隙中完成测量任务,测量完成之后,恢复LTE RRC连接态。可见,这两种测量,都需要UE中断当前业务,释放前端射频资源,转而进行异频测量或异系统测量。
在一些实施例中,对于异频测量或异系统测量,UE中的各个子系统的测量交互过程如图4所示,包括如下步骤401至步骤411;其中,各个子系统包括协议栈、物理层(PHY)测量控制模块、射频前端控制模块和射频芯片(RFIC)等器件;
步骤401,协议栈接收网络设备下发的测量频点列表,并给PHY测量控制模块;
步骤402,PHY测量控制模块确定所述测量频点列表中包含的是否是异频频点或异系统频点;如果是,则通知射频前端控制模块关闭本频(或本系统)的前端资源;
需要说明的是,若测量频点列表是异频频点列表,则通知射频前端控制模块关闭本频的前端资源;若测量频点列表是异系统频点列表,则通知射频前端控制模块关闭本系统的前端资源。
所谓本频,是指UE当前工作的频点,即服务于当前业务涉及的频点,本系统是指服务于当前业务所使用的通信系统。
步骤403,射频前端控制模块关闭并释放本频(或本系统)的射频前端资源(即RFIC等器件);
步骤404,PHY测量控制模块通知射频前端控制模块打开异频(或异系统)的前端资源进行接收测量;
步骤405,射频前端控制模块打开异频(或异系统)的前端资源;
步骤406,PHY测量控制模块接收前端资源接收的下行信号,并对下行信号进行采样,根据采样值确定测量结果(例如接收信号强度和/或接收信号功率等);
步骤407,PHY测量控制模块上报测量结果给协议栈;由协议栈将测量结果上报给网络设备;
步骤408,PHY测量控制模块通知射频前端控制模块关闭异频(或异系统)的前端资源;
步骤409,射频前端控制模块关闭并释放异频(或异系统)的前端资源;
步骤410,PHY测量控制模块通知射频前端控制模块打开本频(或本系统)的前端资源;
步骤411,射频前端控制模块恢复本频(或本系统)的射频通道。
在一些实施例中,当LTE系统启动NR测量时,需要UE的LTE通信模块中断当前的业务,并分配测量间隙给NR测量频点进行异系统测量;当LTE系统或NR系统启动异频测量时,UE需要中断当前的同频业务,并分配测量间隙供异频频点进行测量。然而,当系统配置的同频测量频点数、异频测量频点数和/或异系统测量频点数较多时,由于受限于测量间隙,如果在该测量间隙中没有完成配置的测量频点的测量,则需要在下一测量间隙到来时继续进行测量,这样UE测量所有频点的时间会被大大加长,从而导致UE下行业务流量受影响,甚至造成UE掉话和脱网,影响用户体验;其中,同频测量频点数即为同频测量载波数(Intra-frequency measurements carriers),异频测量频点数即为异频测量载波数(Inter-frequency measurements carriers),异系统测量频点数即为异系统测量载波数(Inter-frequency measurements carriers)。
有鉴于此,本申请实施例提供的频点测量方法,图5为本申请实施例提供的频点测量方法的实现流程示意图,如图5所示,该方法可以包括以下步骤501至步骤503:
步骤501,UE接收用于异频测量或异系统测量的第一测量配置信息;其中,所述第一测量配置信息包括至少一个待测频点的信息。
在需要异频测量时,网络设备给UE下发包括异频频点列表的第一测量配置信息;在需要异系统测量时,网络设备给UE下发包括异系统频点列表的第一测量配置信息。异频频点列表包括至少一个待测频点的信息,也即待测的异频频点的信息。异系统频点列表包括至少一个待测频点的信息,也即待测的异系统频点的信息。在本申请实施例中,频点可以是对应载波的中心频点。
步骤502,UE确定前端射频资源支持的能够与当前所述待测频点并行测量的其他待测频点,从而得到包括当前所述待测频点和所述其他待测频点的频点组合。
所谓当前所述待测频点是指第一测量配置信息中的本次待测量的频点。而所述其他待测频点可能是第一测量配置信息中的频点,也可能不是。例如,对于异频测量场景,第一测量配置信息包括的待测频点为异频频点,所述其他待测频点可能包括异频频点,也可能包括待测的同频频点。又如,对于异系统测量场景,假设UE处于LTE连接态,第一测量配置信息包括的待测频点为异系统频点(例如NR频点),这些其他待测频点可能包括异系统频点,也可能包括LTE系统的异频频点和/或同频频点。
在实现时,UE可以根据前端射频资源所支持的带宽处理能力,确定前端射频资源支持的与当前所述待测频点并行测量的其他待测频点。例如,对于异系统测量场景,UE根据支持的EN-DC(EUTRA-NR Dual Connection)频段组合,确定与当前所述待测频点能够组成EN-DC频段组合的其他待测频点,这些其他待测频点可能包括异系统频点,也可能包括同频频点,还可能包括异频频点。在一些实施例中,对于异系统测量,频点组合还可以是NE-DC频段组合。可以理解地,EN-DC和NE-DC的区别在于,EN-DC中是以LTE小区为主小区,以NR小区为辅小区;NE-DC是以NR小区为主小区,以LTE小区为辅小区。
又如,对于异频测量场景,UE根据支持的载波聚合(Carrier Aggregation,CA)情况,确定与当前所述待测频点能够组成CA的其他待测频点,这些其他待测频点可能包括异频频点,也可能包括同频频点。当然,频点组合可以是任意类型的组合,是UE的前端射频资源支持并行测量该组合中的频点即可。
确定出的所述其他待测频点可能是一个,也可能是多个。在一些实施例中,频点组合中包括与当前所述待测频点能够并行测量的所有其他待测频点。
在一些实施例中,对于异频测量场景,UE可以根据如下实施例的步骤703和步骤704实现步骤502,得到频点组合;对于异系统测量场景,UE可以根据如下实施例的步骤705和步骤706实现步骤502,得到频点组合。
步骤503,UE在同一间隙中并行地对所述频点组合中的多个频点进行测量。
在本申请实施例中,不限定UE在同一间隙中并行地对所述频点组合中的频点进行测量时的频点数目,这与前端射频资源的能力相关。比如,前端射频资源支持最多同时对3个频点测量,如果频点组合中包括多于3个的频点,则UE可以在一个间隙中并行地对该频点组合中的3个频点进行测量,在下一间隙中再并行地对该频点组合中的剩余频点进行测量。也就是说,UE在同一间隙中并行地对频点组合中的多个频点进行测量时,这多个频点可能是频点组合中的部分或全部频点。
在本申请实施例中,UE在对频点组合中的多个频点进行测量时,可以不受限于用于异频测量或异系统测量的测量间隙,可以在其他间隙实现频点组合中的频点测量。举例来说,对于异频测量,UE可以在针对异频测量配置的测量间隙中并行地对频点组合中的多个频点进行测量,也可以灵活调度其他时隙资源实现测量,比如图6A所示,频点组合中包括CC0、CC1和CC2的中心频点,其中,CC0为同频载波,CC1和CC2为异频载波,由于频点组合中包括同频频点,因此UE可以灵活调度时隙资源,对频点组合 中的各个频点进行并行测量,而无需受限于用于异频测量的测量间隙。例如图6A所示,UE无需停止在CC0的中心频点工作,也就是无需中断接收该CC0,而是开启用于接收CC1和CC2的射频通道,以使UE在测量CC0时并行测量异频分量载波CC1和异频分量载波CC2;在测量结束之后,再关闭用于接收CC1和CC2的射频通道,从而切回本频状态;如此,由于不需要中断当前连接态,也即无需中断对CC0的测量,因此可以提高同频测量的测量效率;并且,可以并行测量多个异频频点,或者与同频频点并行测量,无需受限于针对异频频点测量的专用测量间隙,因此能够提高异频测量的测量效率。
类似地,对于异系统测量,UE可以在针对异系统测量配置的测量间隙中并行地对频点组合中的多个频点进行测量,也可以灵活调度其他时隙资源实现测量。比如图6B所示,假设LTE系统启动NR测量,UE处于LTE RRC连接态,频点组合中包括NR频点和LTE连接态下的第二频点,那么UE可以无需中断LTE连接态,而是开启用于接收该NR频点的载波的射频通道,以使UE在测量第二频点的同时并行地测量该NR频点;其中,第二频点可以视作主小区集合(Master Cell Group,MGC),NR频点可以视作辅助小区集合(Secondary Cell Group,SCG);在测量结束之后,再切回本系统状态,关闭用于接收该NR频点的载波的射频通道;如此,由于无需中断当前业务,即无需延迟对第二频点的测量,在对第二频点进行测量的同时还可以并行测量该NR频点,因此,既能够提高同频测量效率,也能够提高异系统的测量效率。又如,频点组合中包括NR频点和LTE连接态下的异频频点,此时则需要断开LTE连接态,再调度前端射频资源在该NR频点的专用测量间隙或者在该异频频点的专用测量间隙中并行地对这些频点进行测量;如此,也能够提高异频测量效率和异系统测量效率,相应地,也会间接提升同频测量的测量效率。这是因为异频测量效率和异系统测量效率的提升,意味着测量次数的减少,随之带来的影响是中断同频测量的次数也相应减少。
在本申请实施例中,UE在接收用于异频测量或异系统测量的第一测量配置信息之后,不是直接对第一测量配置信息中的待测频点串行地进行测量,而是先对第一测量配置信息进行预处理,即确定是否存在前端射频资源支持的可以与当前所述待测频点并行测量的其他待测频点;如果存在,则将这些频点并行地进行测量;如此,能够在确保获得准确的测量结果的同时,提高测量效率,尤其在待测频点数较多的情况下效果尤其明显。而测量效率的提高,在一定程度上减少了测量次数,从而减少了中断当前业务的次数,进而减少了UE的下行业务流量受影响的情况,以及降低了UE掉话和脱网的概率。
需要说明的是,在本申请中,不限定UE实施本申请任意实施例的技术方案的前提条件。UE可以在连接态下执行本申请实施例的频点测量方法,还可以在空闲态下执行本申请实施例的频点测量方法,前者能够减少UE的下行业务流量受影响的情况,以及降低UE掉话和脱网的概率。
本申请实施例再提供一种频点测量方法,图7为本申请实施例提供的另一频点测量方法的实现流程示意图,如图7所示,该方法可以包括以下步骤701至步骤707:
步骤701,UE接收第一测量配置信息;其中,所述第一测量配置信息包括至少一个待测频点的信息和用于测量所述待测频点的测量间隙。
当然,在本申请实施例中,在频点组合中包括同频频点的情况下,网络设备也可以无需给UE配置用于测量异频测量或异系统测量的测量间隙,UE可以灵活调度时隙资源对频点组合中的各个频点进行并行测量。
步骤702,UE确定第一测量配置信息是用于异频测量还是用于异系统测量;如果是用于异频测量,则执行步骤703;如果是用于异系统测量,则执行步骤705。
在一些实施例中,第一测量配置信息中包括用于指示测量类型的信息,UE可以根据该信息确定是异频测量还是异系统测量。在另一些实施例中,UE还可以根据第一测量配置信息携带的待测频点,确定是异频测量还是异系统测量。总之,对于UE确定测量类型的方式不做限定。
步骤703,UE获取用于同频测量的第二测量配置信息;其中,所述第二测量配置信息包括至少一个待测的同频频点的信息;
步骤704,UE从所述第一测量配置信息和/或所述第二测量配置信息中,筛选出前端射频资源支持的能够与当前所述待测频点并行测量的其他待测频点,从而得到包括当前所述待测频点和所述其他待测频点的频点组合;然后进入步骤707。
在异频测量场景下,UE从第一测量配置信息中筛选出能够与当前所述待测频点并行测量的其他待测频点,基于此对得到的频点组合中的各个频点进行并行测量;如此,能够提高异频测量的测量效率,从而减少异频测量的测量次数。而由于频点组合中不包括同频频点,因此,在进行异频测量时,需要中断当前业务,释放当前业务的前端射频资源,由于该方法减少了异频测量的测量次数,相当于减少中断当前业务的次数,因此,一方面相应减少了UE的下行业务流量受影响的情况,从而降低了UE掉话和脱网的概率;另一方面,间接地提高了同频测量的效率。
在异频测量场景下,UE从第二测量配置信息中筛选出能够与当前所述待测频点并行测量的其他待测频点,基于此对得到的频点组合中的各个频点进行并行测量;由于频点组合中包括同频频点,因此无需中断当前业务,在UE连接态下,在对该同频频点进行测量的同时,对当前所述待测频点进行测量;如此,由于无需中断当前业务,因此,既可以减少UE的下行业务流量受影响的情况,降低UE掉话和脱网的概率,又可以提高同频测量效率;并且,在测量该同频频点的同时测量了当前所述待测频点(即待测的异频频点),因此,无需网络设备必须要给当前所述待测频点配置专用的测量间隙,测量调度效率和灵活性得到提高。
在异频测量场景下,UE还可以从第一测量配置信息和第二测量配置信息中,筛选出所述其他待测频点。也就是说,UE从待测的异频频点集合和待测的同频频点集合中,查找能够与当前所述待测频点并行测量的其他待测频点,从而组成频点组合;如此,频点组合中可能包括其他待测的异频频点,还可能包括其他待测的同频频点,从而获得前述的技术效果,在此不再赘述。
可以理解地,无论是同频测量效率的提高,还是异频测量效率或异系统效率的提高,均是对UE的移动性测量性能和管理效率的提升,相应地,也是对通信性能的提升。
在一些实施例中,从所述第一测量配置信息和/或所述第二测量配置信息中,筛选出能够与当前所述待测频点组成UE支持的CA的其他待测频点。
频点组合中的频点组成的CA可以是带内连续CA,即频点组合中的频点为同一频带(band)内的连续的分量载波的中心频点;频点组合中的频点组成的CA还可以是带内非连续CA,即频点组合中的频点为同一频带(band)内的非连续的分量载波的中心频点;频点组合中的频点组成的CA还可以是带间CA,即频点组合中的频点为不同频带(band)内的分量载波的中心频点。总之,在本申请实施例中,对于UE支持的CA类型不做限定。
可以理解地,UE支持的CA所对应的频点可能是两个,也可能是更多个,如此,能够大大提高异频测量的测量效率,从而提升UE的移动性测量性能和管理效率,进而提升通信性能。
步骤705,UE获取用于同频测量的第二测量配置信息和/或用于异频测量的第三测量配置信息;其中,所述第二测量配置信息包括至少一个待测的同频频点的信息,所述第三测量配置信息包括至少一个待测的异频频点的信息。
可以理解地,这里的第二测量配置信息和第三测量配置信息中均可能存在与当前所述待测频点(即当前待测的异系统频点)能够并行测量的其他待测频点,即前端射频资源能够并行测量的频点;这里描述的“其他待测频点”是为了与“当前所述待测频点”区别开来,其他待测频点不同于当前所述待测频点,其他待测频点可能是待测的同频频点或异频频点,也可能是其他待测的异系统频点。
步骤706,UE从所述第一测量配置信息、所述第二测量配置信息和/或所述第三测量配置信息中,筛选出前端射频资源支持的能够与当前所述待测频点并行测量的其他待测频点,从而得到包括当前所述待测频点和所述其他待测频点的频点组合;然后进入步骤707。
也就是说,UE可以从以下待测的频点集合的至少之一中查找能够与当前所述待测频点并行测量的频点:异系统频点集合(即第一测量配置信息包括的频点集合)、同频频点集合(即第二测量配置信息包括的频点集合)、异频频点集合(即第三测量配置信息包括的频点集合);如此,能够提高整体的测量效率,从而提升UE的移动性测量性能和管理效率,进而提升通信性能。对于频点组合中是否包括同频频点这两种情况相应的技术效果可以参考前文异频测量场景的相关描述理解。
进一步地,在一些实施例中,UE从所述第一测量配置信息、所述第二测量配置信息和/或所述第三测量配置信息中,确定能够与当前所述待测频点组成所述前端射频资源支持的双连接频段组合的其他待测频点。
更进一步地,在一些实施例中,所述双连接频段组合包括以下至少之一:EN-DC组合、NE-DC组合。
具体地,UE支持的EN-DC组合可以为协议TS38-101中EN-DC组合列表的一个或多个组合。设计者可以根据具体需求设计UE支持的一个或多个EN-DC组合。
步骤707,UE在所述测量间隙中或者在所述测量间隙之外的其他间隙中,并行地对所述频点组合中的多个频点进行测量。
在本申请实施例中,UE可以在网络设备配置的用于异频测量或异系统测量的测量间隙内进行相应的频点测量;UE还可以在其他测量间隙中并行地对频点组合中的各个频点进行测量,即无需受限于专用的测量间隙;如此,能够提高测量的灵活性,进而提高测量效率。例如,对于异频测量场景,如果频点组合中包括同频频点,UE可以在用以测量该同频频点的时隙并行测量频点组合中的其他频点;又如,对于异系统场景,如果频点组合中包括异频频点或同频频点,UE可以在用以测量该同频频点的时隙或在用以测量该异频频点的时隙测量频点组合中的其他频点。
本申请实施例再提供一种频点测量方法,图8为本申请实施例提供的又一频点测量方法的实现流程示意图,如图8所示,该方法可以包括以下步骤801至步骤812:
步骤801,UE接收用于异频测量或异系统测量的第一测量配置信息;其中,所述第一测量配置信息包括至少一个待测频点的信息;
步骤802,UE确定是否有前端射频资源支持的能够与当前所述待测频点并行测量的其他待测频点;如果有,执行步骤803;否则,执行步骤810;
在本申请实施例中,UE并非直接中断当前业务,对第一测量配置信息中的当前所述待测频点(即本次待测频点)进行测量,而是先确定是否有与当前所述待测频点能够并行测量的其他待测频点;如果有可以并行测量的其他待测频点,则执行步骤803;如果没有与当前所述待测频点可以并行测量的其他待测频点,才会中断当前业务(也就是关闭已开启的射频通道,断开UE当前的连接态),并开启支持当前所述待测频点的测量的射频通道,从而在配置的测量间隙中对当前所述待测频点进行测量;如此,能够减少中断当前业务的次数,从而减少UE的下行业务流量受影响的情况,降低UE掉话和脱网的概率。
步骤803,将当前所述待测频点和所述其他待测频点作为频点组合,若所述频点组合中包括已开启的射频通道支持测量的同频频点,执行步骤804;否则,若所述频点组合中未包括所述同频频点,执行步骤807;
步骤804,开启支持所述频点组合中非同频频点的测量的射频通道;
步骤805,利用已开启的射频通道,在同一间隙中并行地对所述频点组合中的多个频点进行测量;然后,进入步骤806;
可以理解地,若频点组合中包括待测的同频频点,此时则无需关闭用于测量该同频频点的射频通道,而是直接开启支持频点组合中非同频频点的测量的射频通道即可,从而实现多个频点的并行测量。举例来说,对于异频测量场景,假设频点组合中包括分量载波CC0、CC1和CC2的中心频点,其中CC0是服务于当前业务的载波,即CC0的中心频点为当前业务的同频频点,CC1和CC2的中心频点为异频频点,此时无需关闭用于接收CC0的射频通道,直接开启用于接收CC1和CC2的射频通道即可;此时,利用开启的这些射频通道,既可以在测量CC0的时隙中并行地测量CC0、CC1和CC2,也可以在CC1的测量间隙并行测量CC0和CC2,还可以在CC2的测量间隙中并行测量CC0和CC1。
步骤806,在完成所述频点组合的测量之后,关闭支持所述非同频频点的测量的射频通道;如此,一方面能够节约功耗,另一方面还可以降低对同频频点的信号接收质量的影响。
步骤807,关闭支持所述同频频点的测量的射频通道,以及开启支持所述频点组合中的频点的测量的射频通道,进入步骤808;
步骤808,利用已开启的射频通道,在同一间隙中并行地对所述频点组合中的多个频点进行测量;然后,进入步骤809;
可以理解地,若频点组合中未包括同频频点,也就是没有与当前所述待测频点能够并行测量的同频频点时,需要关闭支持所述同频频点的测量的射频通道,即释放前端射频资源,以供测量频点组合时能够调度使用。举例来说,假设CC0是同频载波,CC1和CC2是异频载波,频点组合中包括CC1和CC2的中心频点,此时则需要关闭用于接收CC0的射频通道,开启用于接收CC1和CC2的射频通道,从而实现对这些分量载波的并行测量。对于异系统测量场景亦是如此,这里不再举例说明。
步骤809,在完成所述频点组合的测量之后,开启支持所述同频频点的测量的射频通道,以及关闭支持所述频点组合中的频点的测量的射频通道。
步骤810,关闭已开启的射频通道;
步骤811,开启支持当前所述待测频点的测量的射频通道,从而在所述测量间隙中对当前所述待测频 点进行测量;然后,进入步骤812;
步骤812,开启步骤810中关闭的射频通道,以及关闭步骤811中开启的射频通道,从而恢复被中断的业务。
下面将说明本申请实施例在一个实际的应用场景中的示例性应用。
在本申请实施例中,针对a场景:主模式LTE发起对从模式NR的测量(即异系统测量),以及b场景:LTE或NR各自进行异频测量,提供一种测量预处理方法,即对配置的待测频点集合与本频频点或本系统频点进行一轮筛选。
针对a场景:根据UE所支持的EN-DC频段组合情况,如果待测NR频点列表(即第一配置测量信息中的待测频点集合)中存在与当前LTE业务的同频频点或其他LTE待测异频频点可以组成EN-DC频段组合的待测NR频点,则对于该待测NR频点的测量,可以复用EN-DC的建立流程,如图6B所示,假设UE工作在LTE的RRC连接态,那么可以将该连接态下的同频频点或其他LTE待测异频频点视作该EN-DC组合的MCG,将该待测NR频点视作该EN-DC组合中的SCG进行添加,打开该待测NR频点的射频通道进行该NR异频邻区的测量,通过该方式,测量间隙内可同时进行LTE同频或异频邻区的测量,能够与LTE业务本频或异频组成EN-DC的NR异频邻区的测量也不再受限于在测量间隙内进行,从而提升测量效率和灵活性。
针对b场景:根据UE射频通道所支持的带宽处理能力,如果待测异频频点同当前本频频点或同频频点可以构成带内连续CA,或者,待测异频频点之间可以构成带内连续CA,将该组频点分别视作该连续CA的主载波(Primary Carrier Component,PCC)和辅载波(Sencondary Carrier Component,SCC),这些载波数目不止一个,复用带内连续CA的建立过程,如图6A所示,建立该连续CA并打开射频通道,可对组成该连续CA的各频点进行测量。通过该方式将在测量间隙内并行测量多个待测频点,与LTE业务本频或同频组成连续CA的待测频点,且也不再受限于在测量间隙内测量,从而提升测量效率和灵活性。
对于a场景,即异系统(IRAT)测量的一种示例,如图9所示,可以包括以下步骤901至步骤907:
步骤901,UE在RRC_CONNECTED状态下读取系统配置,进行测量调度,获得系统为UE的LTE通信模块配置的待测频点列表(即第一测量配置信息中的待测频点集合);
步骤902,LTE通信模块的测量模块或子系统根据规程从配置的待测频点列表中选取本次测量的频点(即当前所述待测频点);
步骤903,确定待测频点列表和本频频点中是否存在与所述本次测量的频点构成EN-DC组合的频点;如果存在,则执行步骤905;否则,执行步骤904;
步骤904,按照上述相关技术,在系统配置的测量间隙中对所述本次测量的频点进行测量;即,执行常规IRAT频点测量流程,为其分配测量间隙,在该测量间隙中对本次测量的频点进行测量;
步骤905,复用EN-DC的SCG添加流程,建立前端EN-DC链路;
步骤906,根据采样得到的接收信号值,确定测量结果;
步骤907,执行EN-DC SGC去配置;至此,所述本次测量的频点的测量任务完成,即该异系统(IRAT)频点的测量完成。
对于b场景,即LTE或NR业务下的异频测量的一种示例,如图10所示,可以包括以下步骤1001 至步骤1007:
步骤1001,UE在RRC_CONNECTED状态下读取系统配置,进行测量调度,获得系统为UE的LTE通信模块或者NR通信模块配置的待测频点列表(即第一测量配置信息中的待测频点集合);
步骤1002,LTE通信模块的测量模块或子系统根据规程从配置的待测频点列表中选取本次测量的频点(即当前所述待测频点);
步骤1003,确定待测频点列表和本频频点中是否存在与所述本次测量的频点构成带内连续CA的频点;如果存在,则执行步骤1005;否则,执行步骤1004;
步骤1004,按照上述相关技术,在系统配置的测量间隙中对所述本次测量的频点进行测量;即,执行常规的异频测量流程,为其分配测量间隙用于对本次测量的频点进行测量;
步骤1005,执行带内连续CA的SCC配置流程,建立带内连续CA的前端链路;
步骤1006,根据采样得到的接收信号值,确定测量结果;
步骤1007,执行带内连续CA的SCC去配置;至此,所述本次测量的频点的测量任务完成,即该异频频点的测量完成。
测量完成后,执行带内连续CA的SCC去配置,关闭带内连续CA的前端链路,从而将射频前端调整回本频或本系统状态。
在本申请实施例中,对于异频测量或异系统测量,UE的各个子系统的测量交互过程如图11所示,包括如下步骤1101至步骤1111;其中,UE的各个子系统包括协议栈、物理层(PHY)测量控制模块、射频前端控制模块和射频芯片(RFIC)等器件;
步骤1101,协议栈接收网络设备下发的测量频点列表,并将测量频点列表下发给PHY测量控制模块;
步骤1102,PHY测量控制模块经过预处理,通知射频前端控制模块建立前端EN-DC或连续CA链路;
这里需要说明的是,若测量频点列表是异频频点列表,则通知射频前端控制模块控制前端建立连续CA链路;若测量频点列表是异系统频点列表,则通知射频前端控制模块控制前端建立EN-DC链路。
步骤1103,射频前端控制模块进行重配置,控制RFIC等器件建立EN-DC或连续CA通道;
步骤1104,PHY测量控制模块接收前端RFIC等器件接收的EN-DC不同频带(band)或连续CA多CC的数据,并根据接收的数据计算得到测量结果。
在一些实施例中,可以对接收的数据进行采样,基于采样的数据计算得到测量结果;
步骤1105,PHY测量控制模块上报测量结果给协议栈;由协议栈将测量结果上报给网络设备;
步骤1106,PHY测量控制模块通知射频前端控制模块测量结束,以使射频前端模块恢复本频通道;
步骤1107,射频前端控制模块控制RFIC等器件释放SCG或SCC资源,切回本频通道。
在本申请实施例中,采用一种测量前的预处理方法,即UE识别判断出与本频组成EN-DC或带内连续CA的待测频点,复用相应的链路建立流程完成测量;测量完成后UE调整回原本频下行接收状态。满足该方案所描述的上述a和b测量场景不再受限于有限的测量间隙,允许异频频点或异系统频点在非测量间隙内测量,测量调度效率和灵活性提高,测量性能增强,提升UE的移动性测量性能和管理效率。
本申请实施例提供的方案不仅局限于终端产品,也适用于其它接入设备。该技术方案同样适用于本频与待测频点可以组成UE支持的NE-DC的组合场景。
基于前述的实施例,本申请实施例提供一种频点测量装置,该装置包括所包括的各模块、以及各模块所包括的各单元,可以通过处理器来实现;当然也可通过具体的逻辑电路实现;在实施的过程中,处理器可以为中央处理器(CPU)、微处理器(MPU)、数字信号处理器(DSP)或现场可编程门阵列(FPGA)等。
图12为本申请实施例频点测量装置的结构示意图,如图12所示,所述装置12包括接收模块121、确定模块122和测量模块123,其中:
接收模块121,配置为接收用于异频测量或异系统测量的第一测量配置信息;其中,所述第一测量配置信息包括至少一个待测频点的信息;
确定模块122,配置为确定前端射频资源支持的能够与当前所述待测频点并行测量的其他待测频点,从而得到包括当前所述待测频点和所述其他待测频点的频点组合;
测量模块123,配置为在同一间隙中并行地对所述频点组合中的多个频点进行测量。
在一些实施例中,确定模块122,配置为:在所述第一测量配置信息用于异频测量的情况下,从所述第一测量配置信息和/或用于同频测量的第二测量配置信息中,筛选出支持的能够与当前所述待测频点并行测量的其他待测频点;其中,所述第二测量配置信息包括至少一个待测的同频频点的信息。
进一步地,在一些实施例中,确定模块122,配置为:从所述第一测量配置信息和/或所述第二测量配置信息中,筛选出能够与当前所述待测频点组成所述前端射频资源支持的CA的其他待测频点。
更进一步地,在一些实施例中,所述CA为以下之一:带内连续CA、带内非连续CA、带间CA。
在一些实施例中,确定模块122,配置为:在所述第一测量配置信息用于异系统测量的情况下,从所述第一测量配置信息、用于同频测量的第二测量配置信息和/或用于异频测量的第三测量配置信息中,筛选出所述前端射频资源支持的能够与当前所述待测频点并行测量的其他待测频点;其中,所述第二测量配置信息包括至少一个待测的同频频点的信息,所述第三测量配置信息包括至少一个待测的异频频点的信息。
进一步地,在一些实施例中,确定模块122,配置为:从所述第一测量配置信息、所述第二测量配置信息和/或所述第三测量配置信息中,确定能够与当前所述待测频点组成所述前端射频资源支持的双连接频段组合的其他待测频点。
更进一步地,在一些实施例中,所述双连接频段组合包括以下之一:EN-DC频段组合、NE-DC频段组合。
在一些实施例中,测量模块123,配置为:在所述频点组合中包括已开启的射频通道支持测量的同频频点的情况下,开启支持所述频点组合中非同频频点的测量的射频通道,从而在同一间隙中并行地对所述频点组合中的多个频点进行测量;在所述频点组合中未包括所述同频频点的情况下,关闭支持所述同频频点的测量的射频通道,以及开启支持所述频点组合中的频点的测量的射频通道,从而在同一间隙中并行地对所述频点组合中的多个频点进行测量;其中,所述非同频频点是指所述频点组合中不同于所述同频频点的频点。
在一些实施例中,测量模块123,还配置为:在所述频点组合中包括所述同频频点的情况下,在完成所述频点组合的测量之后,关闭支持所述非同频频点的测量的射频通道;在所述频点组合中未包括所述同频频点的情况下,在完成所述频点组合的测量之后,开启支持所述同频频点的测量的射频通道,以及 关闭支持所述频点组合中的频点的测量的射频通道。
在一些实施例中,所述第一测量配置信息还包括用于测量所述待测频点的测量间隙;测量模块123,配置为:在所述测量间隙中或者在所述测量间隙之外的其他间隙中,并行地对所述频点组合中的多个频点进行测量。
在一些实施例中,所述第一测量配置信息还包括用于测量所述待测频点的测量间隙;测量模块123,还配置为:在没有与当前所述待测频点并行测量的其他待测频点的情况下,关闭已开启的射频通道;开启支持当前所述待测频点的测量的射频通道,从而在所述测量间隙中对当前所述待测频点进行测量。
以上装置实施例的描述,与上述方法实施例的描述是类似的,具有同方法实施例相似的有益效果。对于本申请装置实施例中未披露的技术细节,请参照本申请方法实施例的描述而理解。
需要说明的是,本申请实施例中图12所示的频点测量装置对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。也可以采用软件和硬件结合的形式实现。
需要说明的是,本申请实施例中,如果以软件功能模块的形式实现上述的方法,并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请实施例的技术方案本质上或者说对相关技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用于使得用户设备执行本申请各个实施例所述方法的全部或部分。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read Only Memory,ROM)、磁碟或者光盘等各种可以存储程序代码的介质。这样,本申请实施例不限制于任何特定的硬件和软件结合。
本申请实施例提供一种用户设备,图13为本申请实施例的用户设备的硬件实体示意图,如图13所示,所述用户设备13包括存储器131和处理器132,所述存储器131存储有可在处理器132上运行的计算机程序,所述处理器132执行所述程序时实现上述实施例中提供的方法中的步骤。
需要说明的是,存储器131配置为存储由处理器132可执行的指令和应用,还可以缓存待处理器132以及电子设备13中各模块待处理或已经处理的数据(例如,图像数据、音频数据、语音通信数据和视频通信数据),可以通过闪存(FLASH)或随机访问存储器(Random Access Memory,RAM)实现。
本申请实施例提供一种计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现上述方法实施例中提供的步骤。
本申请实施例提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述方法实施例提供的步骤。
本申请实施例提供一种基带芯片(modem),该基带芯片用于执行上述方法实施例提供的步骤。在一些实施例中,该基带芯片包括上述实施例所述的协议栈、PHY测量控制模块、射频前端控制模块和RFIC等器件。也就是说,基带芯片包括自前端接收下行信号到后端对下行信号的基带处理等相关模块。
这里需要指出的是:以上存储介质、设备实施例和芯片实施例的描述,与上述方法实施例的描述是类似的,具有同方法实施例相似的有益效果。对于本申请存储介质、存储介质、设备实施例和芯片实施例中未披露的技术细节,请参照本申请方法实施例的描述而理解。
应理解,说明书通篇中提到的“一个实施例”或“一实施例”或“一些实施例”或“另一些实施例”或举例等意味着与实施例有关的特定特征、结构或特性包括在本申请的至少一个实施例中。因此,在整个说明书各处出现的“在一个实施例中”或“在一实施例中”或“在一些实施例中”或“在另一些实施例中”或举例等未必一定指相同的实施例。此外,这些特定的特征、结构或特性可以任意适合的方式结合在一个或多个实施例中。应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。上述本申请实施例序号仅仅为了描述,不代表实施例的优劣。上文对各个实施例的描述倾向于强调各个实施例之间的不同之处,其相同或相似之处可以互相参考,为了简洁,本文不再赘述。
本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如对象A和/或对象B,可以表示:单独存在对象A,同时存在对象A和对象B,单独存在对象B这三种情况。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者设备中还存在另外的相同要素。
在本申请所提供的几个实施例中,应该理解到,所揭露的设备和方法,可以通过其它的方式实现。以上所描述的实施例仅仅是示意性的,例如,所述模块的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,如:多个模块或组件可以结合,或可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的各组成部分相互之间的耦合、或直接耦合、或通信连接可以是通过一些接口,设备或模块的间接耦合或通信连接,可以是电性的、机械的或其它形式的。
上述作为分离部件说明的模块可以是、或也可以不是物理上分开的,作为模块显示的部件可以是、或也可以不是物理模块;既可以位于一个地方,也可以分布到多个网络单元上;可以根据实际的需要选择其中的部分或全部模块来实现本实施例方案的目的。
另外,在本申请各实施例中的各功能模块可以全部集成在一个处理单元中,也可以是各模块分别单独作为一个单元,也可以两个或两个以上模块集成在一个单元中;上述集成的模块既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
本领域普通技术人员可以理解:实现上述方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成,前述的程序可以存储于计算机可读取存储介质中,该程序在执行时,执行包括上述方法实施例的步骤;而前述的存储介质包括:移动存储设备、只读存储器(Read Only Memory,ROM)、磁碟或者光盘等各种可以存储程序代码的介质。
或者,本申请上述集成的单元如果以软件功能模块的形式实现并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请实施例的技术方案本质上或者说对相关技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用于使得用户设备执行本申请各个实施例所述方法的全部或部分。而前述的存储介质包括:移动存储设备、ROM、磁碟或者光盘等各种可以存储程序代码的介质。
本申请所提供的几个方法实施例中所揭露的方法,在不冲突的情况下可以任意组合,得到新的方法 实施例。
本申请所提供的几个产品实施例中所揭露的特征,在不冲突的情况下可以任意组合,得到新的产品实施例。
本申请所提供的几个方法或设备实施例中所揭露的特征,在不冲突的情况下可以任意组合,得到新的方法实施例或设备实施例。
以上所述,仅为本申请的实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (20)

  1. 一种频点测量方法,所述方法包括:
    接收用于异频测量或异系统测量的第一测量配置信息;其中,所述第一测量配置信息包括至少一个待测频点的信息;
    确定前端射频资源支持的能够与当前所述待测频点并行测量的其他待测频点,从而得到包括当前所述待测频点和所述其他待测频点的频点组合;
    在同一间隙中并行地对所述频点组合中的多个频点进行测量。
  2. 根据权利要求1所述的方法,其中,所述确定前端射频资源支持的能够与当前所述待测频点并行测量的其他待测频点,包括:
    在所述第一测量配置信息用于异频测量的情况下,从所述第一测量配置信息和/或用于同频测量的第二测量配置信息中,筛选出所述前端射频资源支持的能够与当前所述待测频点并行测量的其他待测频点;其中,所述第二测量配置信息包括至少一个待测的同频频点的信息。
  3. 根据权利要求2所述的方法,其中,所述从所述第一测量配置信息和/或用于同频测量的第二测量配置信息中,筛选出所述前端射频资源支持的能够与当前所述待测频点并行测量的其他待测频点,包括:
    从所述第一测量配置信息和/或所述第二测量配置信息中,筛选出能够与当前所述待测频点组成所述前端射频资源支持的CA的其他待测频点。
  4. 根据权利要求3所述的方法,其中,所述CA为以下之一:带内连续CA、带内非连续CA、带间CA。
  5. 根据权利要求1所述的方法,其中,所述确定前端射频资源支持的能够与当前所述待测频点并行测量的其他待测频点,包括:
    在所述第一测量配置信息用于异系统测量的情况下,从所述第一测量配置信息、用于同频测量的第二测量配置信息和/或用于异频测量的第三测量配置信息中,筛选出所述前端射频资源支持的能够与当前所述待测频点并行测量的其他待测频点;
    其中,所述第二测量配置信息包括至少一个待测的同频频点的信息,所述第三测量配置信息包括至少一个待测的异频频点的信息。
  6. 根据权利要求5所述的方法,其中,所述从所述第一测量配置信息、所述第二测量配置信息和/或所述第三测量配置信息中,筛选出所述前端射频资源支持的能够与当前所述待测频点并行测量的其他待测频点,包括:
    从所述第一测量配置信息、所述第二测量配置信息和/或所述第三测量配置信息中,确定能够与当前所述待测频点组成所述前端射频资源支持的双连接频段组合的其他待测频点。
  7. 根据权利要求6所述的方法,其中,所述双连接频段组合包括以下之一:EN-DC频段组合、NE-DC频段组合。
  8. 根据权利要求1所述的方法,其中,所述在同一间隙中并行地对所述频点组合中的多个频点进行测量,包括:
    在所述频点组合中包括已开启的射频通道支持测量的同频频点的情况下,开启支持所述频点组合中 非同频频点的测量的射频通道,从而在同一间隙中并行地对所述频点组合中的多个频点进行测量;其中,所述非同频频点是指所述频点组合中不同于所述同频频点的频点;
    在所述频点组合中未包括所述同频频点的情况下,关闭支持所述同频频点的测量的射频通道,以及开启支持所述频点组合中频点的测量的射频通道,从而在同一间隙中并行地对所述频点组合中的多个频点进行测量。
  9. 根据权利要求8所述的方法,其中,所述方法还包括:
    在所述频点组合中包括所述同频频点的情况下,在完成所述频点组合的测量之后,关闭支持所述非同频频点的测量的射频通道;
    在所述频点组合中未包括所述同频频点的情况下,在完成所述频点组合的测量之后,开启支持所述同频频点的测量的射频通道,以及关闭支持所述频点组合中频点的测量的射频通道。
  10. 根据权利要求1至9任一项所述的方法,其中,所述第一测量配置信息还包括用于测量所述待测频点的测量间隙;
    所述在同一间隙中并行地对所述频点组合中的多个频点进行测量,包括:
    在所述测量间隙中或者在所述测量间隙之外的其他间隙中,并行地对所述频点组合中的多个频点进行测量。
  11. 根据权利要求1至9任一项所述的方法,其中,所述第一测量配置信息还包括用于测量所述待测频点的测量间隙;所述方法还包括:
    在没有与当前所述待测频点并行测量的其他待测频点的情况下,关闭已开启的射频通道;以及
    开启支持当前所述待测频点的测量的射频通道;在所述测量间隙中对当前所述待测频点进行测量。
  12. 一种频点测量装置,包括:
    接收模块,配置为接收用于异频测量或异系统测量的第一测量配置信息;其中,所述第一测量配置信息包括至少一个待测频点的信息;
    确定模块,配置为确定前端射频资源支持的能够与当前所述待测频点并行测量的其他待测频点,从而得到包括当前所述待测频点和所述其他待测频点的频点组合;
    测量模块,配置为在同一间隙中并行地对所述频点组合中的多个频点进行测量。
  13. 根据权利要求12所述的装置,其中,所述确定模块,配置为:
    在所述第一测量配置信息用于异频测量的情况下,从所述第一测量配置信息和/或用于同频测量的第二测量配置信息中,筛选出前端射频资源支持的能够与当前所述待测频点并行测量的其他待测频点;其中,所述第二测量配置信息包括至少一个待测的同频频点的信息。
  14. 根据权利要求13所述的装置,其中,所述确定模块,配置为:
    从所述第一测量配置信息和/或所述第二测量配置信息中,筛选出能够与当前所述待测频点组成所述前端射频资源支持的CA的其他待测频点。
  15. 根据权利要求12所述的装置,其中,所述确定模块,配置为:
    在所述第一测量配置信息用于异系统测量的情况下,从所述第一测量配置信息、用于同频测量的第二测量配置信息和/或用于异频测量的第三测量配置信息中,筛选出所述前端射频资源支持的能够与当前所述待测频点并行测量的其他待测频点;
    其中,所述第二测量配置信息包括至少一个待测的同频频点的信息,所述第三测量配置信息包括至少一个待测的异频频点的信息。
  16. 根据权利要求15所述的装置,其中,所述确定模块,配置为:
    从所述第一测量配置信息、所述第二测量配置信息和/或所述第三测量配置信息中,确定能够与当前所述待测频点组成所述前端射频资源支持的双连接频段组合的其他待测频点。
  17. 根据权利要求12所述的装置,其中,所述测量模块,配置为:
    在所述频点组合中包括已开启的射频通道支持测量的同频频点的情况下,开启支持所述频点组合中非同频频点的测量的射频通道,从而在同一间隙中并行地对所述频点组合中的多个频点进行测量;其中,所述非同频频点是指所述频点组合中不同于所述同频频点的频点;
    在所述频点组合中未包括所述同频频点的情况下,关闭支持所述同频频点的测量的射频通道,以及开启支持所述频点组合中频点的测量的射频通道,从而在同一间隙中并行地对所述频点组合中的多个频点进行测量。
  18. 一种基带芯片,包括:协议栈、PHY测量控制模块、射频前端控制模块和RFIC;其中,
    所述协议栈,配置为接收网络设备下发的测量频点列表,并将所述测量频点列表发送给所述PHY测量控制模块;所述测量频点列表包括异频频点列表或异系统频点列表;
    所述PHY测量控制模块,配置为接收所述测量频点列表,对所述测量频点列表经过预处理后,通知所述射频前端控制模块建立EN-DC链路或连续CA链路;
    所述射频前端控制模块,配置为对所述测量频点列表进行重配置,控制所述RFIC建立所述EN-DC链路或所述连续CA链路;
    所述PHY测量控制模块,还配置为接收所述RFIC接收的所述EN-DC不同频带的数据或所述连续CA的多个CC的数据,并根据接收的数据计算得到测量结果;上报所述测量结果给所述协议栈;以及通知所述射频前端控制模块测量结束,恢复本频通道;
    所述射频前端控制模块,还配置为控制所述RFIC释放SCG或SCC资源,切回本频通道。
  19. 一种用户设备,包括存储器和处理器,所述存储器存储有可在处理器上运行的计算机程序,所述处理器执行所述程序时实现权利要求1至11任一项所述的方法。
  20. 一种计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现如权利要求1至11任一项所述的方法。
PCT/CN2022/089282 2021-05-18 2022-04-26 频点测量方法及装置、芯片、设备、存储介质 WO2022242433A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110540171.3 2021-05-18
CN202110540171.3A CN113329421B (zh) 2021-05-18 2021-05-18 频点测量方法及装置、芯片、设备、存储介质

Publications (1)

Publication Number Publication Date
WO2022242433A1 true WO2022242433A1 (zh) 2022-11-24

Family

ID=77415891

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/089282 WO2022242433A1 (zh) 2021-05-18 2022-04-26 频点测量方法及装置、芯片、设备、存储介质

Country Status (2)

Country Link
CN (1) CN113329421B (zh)
WO (1) WO2022242433A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113329421B (zh) * 2021-05-18 2022-09-06 Oppo广东移动通信有限公司 频点测量方法及装置、芯片、设备、存储介质
CN114040481B (zh) * 2021-11-23 2023-07-14 Oppo广东移动通信有限公司 频点调度方法、装置、计算机设备和存储介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101873646A (zh) * 2009-04-27 2010-10-27 大唐移动通信设备有限公司 一种多载波聚合系统的测量间隙的配置方法及装置
CN104811993A (zh) * 2014-01-29 2015-07-29 联芯科技有限公司 频点测量方法
CN105472638A (zh) * 2014-09-04 2016-04-06 中国移动通信集团公司 一种异频测量方法及装置
CN107509208A (zh) * 2016-06-14 2017-12-22 联发科技(新加坡)私人有限公司 异频测量或跨无线接入技术的测量方法
CN109151884A (zh) * 2017-06-16 2019-01-04 中国移动通信有限公司研究院 一种测量配置方法、终端和基站
CN109982371A (zh) * 2017-12-27 2019-07-05 展讯通信(上海)有限公司 基于载波聚合的异频测量方法及装置、存储介质、终端
CN113329421A (zh) * 2021-05-18 2021-08-31 Oppo广东移动通信有限公司 频点测量方法及装置、芯片、设备、存储介质

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105592495B (zh) * 2014-10-24 2020-08-04 南京中兴软件有限责任公司 异频测量门限配置方法及装置
CN106535215B (zh) * 2015-09-11 2019-10-15 中国移动通信集团公司 一种载波聚合下的增强测量方法和装置
CN111565412B (zh) * 2019-02-14 2022-02-11 华为技术有限公司 一种测量方法、终端设备及网络设备
CN112312429B (zh) * 2019-08-02 2022-05-10 华为技术有限公司 一种提升终端设备测量能力的方法、芯片以及终端设备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101873646A (zh) * 2009-04-27 2010-10-27 大唐移动通信设备有限公司 一种多载波聚合系统的测量间隙的配置方法及装置
CN104811993A (zh) * 2014-01-29 2015-07-29 联芯科技有限公司 频点测量方法
CN105472638A (zh) * 2014-09-04 2016-04-06 中国移动通信集团公司 一种异频测量方法及装置
CN107509208A (zh) * 2016-06-14 2017-12-22 联发科技(新加坡)私人有限公司 异频测量或跨无线接入技术的测量方法
CN109151884A (zh) * 2017-06-16 2019-01-04 中国移动通信有限公司研究院 一种测量配置方法、终端和基站
CN109982371A (zh) * 2017-12-27 2019-07-05 展讯通信(上海)有限公司 基于载波聚合的异频测量方法及装置、存储介质、终端
CN113329421A (zh) * 2021-05-18 2021-08-31 Oppo广东移动通信有限公司 频点测量方法及装置、芯片、设备、存储介质

Also Published As

Publication number Publication date
CN113329421B (zh) 2022-09-06
CN113329421A (zh) 2021-08-31

Similar Documents

Publication Publication Date Title
WO2022242433A1 (zh) 频点测量方法及装置、芯片、设备、存储介质
US9119211B2 (en) RF chain management in a carrier aggregation capable wireless communication device
CN112312429B (zh) 一种提升终端设备测量能力的方法、芯片以及终端设备
EP3360365B1 (en) Arrangement of measurement reporting groups
US9307481B2 (en) Selective system information reading
EP4040849A1 (en) Measurement configuration method and device
WO2021249001A1 (zh) 一种小区测量方法及装置
KR20140007320A (ko) 무선 통신 시스템에서 idc 간섭 회피를 위한 셀 재선택 우선 순위 조정 방법 및 이를 위한 장치
US20220191757A1 (en) Resolving Frequency Conflicts Among Multiple Network Operators
WO2021104039A1 (zh) 一种测量配置方法及装置
US20180332512A1 (en) Secondary Cell Transmission
US20180302891A1 (en) Enabling carrier aggregation receiver chains of a user equipment
WO2021036774A1 (zh) 小区重选方法及设备
WO2021104038A1 (zh) 一种测量配置方法及装置
WO2022257564A1 (zh) 一种通信方法及装置
US20220248325A1 (en) Status conversion method and apparatus, and communication device
US12082028B2 (en) Apparatus, method for user equipment, user equipment and method for network element to configure measurement gap (MG) patterns
US20230362697A1 (en) Method for network element, network element, method for user equipment, user equipment and apparatus
CN115150957A (zh) Bwp切换方法、装置、终端、存储介质及产品
JP2023534993A (ja) 無線通信システムにおけるリアルタイム処理
CN115334530A (zh) 测量配置方法和装置
JP6191740B2 (ja) 無線端末、無線基地局、無線通信システムおよび無線通信方法
WO2024094117A1 (zh) 通信方法、装置和系统,以及计算机相关产品
CN118235451A (zh) 用户装置、控制方法、记录介质和通信系统
CN114667697A (zh) 用于未授权nr的小区检测和测量的装置、系统和方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22803757

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22803757

Country of ref document: EP

Kind code of ref document: A1