WO2024094117A1 - 通信方法、装置和系统,以及计算机相关产品 - Google Patents

通信方法、装置和系统,以及计算机相关产品 Download PDF

Info

Publication number
WO2024094117A1
WO2024094117A1 PCT/CN2023/129316 CN2023129316W WO2024094117A1 WO 2024094117 A1 WO2024094117 A1 WO 2024094117A1 CN 2023129316 W CN2023129316 W CN 2023129316W WO 2024094117 A1 WO2024094117 A1 WO 2024094117A1
Authority
WO
WIPO (PCT)
Prior art keywords
measurement
configuration
cell
ltm
communication method
Prior art date
Application number
PCT/CN2023/129316
Other languages
English (en)
French (fr)
Inventor
毛颖超
李秉肇
李娇娇
强鹂
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024094117A1 publication Critical patent/WO2024094117A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0011Control or signalling for completing the hand-off for data sessions of end-to-end connection
    • H04W36/0033Control or signalling for completing the hand-off for data sessions of end-to-end connection with transfer of context information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • H04W36/00835Determination of neighbour cell lists
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/08Reselecting an access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • H04W36/30Reselection being triggered by specific parameters by measured or perceived connection quality data

Definitions

  • the present application relates to the field of wireless communication technology, and in particular to a communication method, device and system, and computer-related products.
  • mobility management is achieved by changing the service cell of user equipment (UE) so that UE can enjoy network services no matter how it moves within the network coverage.
  • UE user equipment
  • the mobility of the connection state is achieved through switching.
  • the fifth-generation (5G) radio access network (RAN) architecture considers the use of independent deployment of centralized units (CU) and distributed units (DU) for base stations to better meet the needs of various scenarios and applications.
  • the 5G system considers the use of low-layer-based switching, which can be achieved through the layer 1 and/or layer 2 triggered mobility (L1/L2triggered mobility, LTM) process.
  • L1/L2triggered mobility, LTM layer 1 and/or layer 2 triggered mobility
  • the main idea of the LTM process is that the base station provides the UE with pre-configured information of one or more candidate cells based on the measurement report reported by the UE (for example, radio resource management (RRM) measurement report or layer 3 measurement report).
  • RRM radio resource management
  • the UE After receiving the pre-configured information from the base station, the UE sends a measurement report (for example, layer 1 measurement report) to the base station, and the source DU decides to trigger the LTM switching based on the measurement report reported by the UE.
  • the source DU sends an LTM handover command to the UE through layer 1 signaling and/or layer 2 signaling, so that the UE performs a handover process based on an instruction in the handover command.
  • the base station may first handover the UE from cell 1 to cell 2 based on the layer 1 measurement results. Then, the base station may also determine that the signal quality of cell 1 is higher than the signal quality of cell 2 based on the RRM measurement results, and handover the UE from cell 2 back to cell 1, resulting in frequent ping-pong handovers.
  • the embodiments of the present application provide a communication method, device and system, and computer-related products, which can reduce unnecessary measurements or reporting of measurement results and save power consumption.
  • the present application provides a first communication method, which can be applied to a terminal device, or to a device in the terminal device (for example, a chip, or a chip system, or a circuit), or a device that can be used in combination with the terminal device.
  • the method is described below using the application to a terminal device as an example.
  • the method may include: the terminal device receives a first configuration from the network device; the terminal device receives a second configuration from the network device; if the first cell detected according to the measurement object configuration is an LTM candidate cell, the terminal device does not perform the first behavior for the first cell; and/or if the first cell detected according to the measurement object configuration is not an LTM candidate cell, the terminal device performs the first behavior for the first cell.
  • the first configuration includes information about an LTM candidate cell, and the LTM candidate cell can be determined by a network device based on a measurement report (e.g., a layer 3 measurement report, etc.) reported by a terminal device.
  • a measurement report e.g., a layer 3 measurement report, etc.
  • the present application does not limit the number of LTM candidate cells and the information about LTM candidate cells, and the number of LTM candidate cells can be one or more.
  • the information about the LTM candidate cell can include the physical cell identities (PCI) of the LTM candidate cell, and can also include configuration information of the LTM candidate cell.
  • PCI physical cell identities
  • the second configuration includes a first measurement configuration, and the first measurement configuration includes a measurement object configuration.
  • the present application does not limit the type of the first measurement and the content of the first measurement configuration.
  • the first measurement may include a layer 3 measurement or a radio resource management (RRM) measurement.
  • the first measurement configuration may include a measurement object configuration, and the measurement object configuration may include parameters of the measurement object, for example, frequency information of the measurement object, so that the terminal device can scan the measurement results of the measurement object (cell) to be measured based on the frequency information.
  • the first behavior includes at least one of the following: a first measurement, and reporting of a measurement report of the first measurement.
  • the first measurement is a layer 3 measurement
  • the measurement report of the first measurement may be a layer 3 measurement report.
  • the first measurement is an RRM measurement
  • the measurement report of the first measurement may be an RRM measurement report.
  • the fact that the terminal device does not perform the first behavior for the first cell may be understood as the terminal device performing the first behavior not being applicable to the LTM in the first cell. If the first cell detected by the terminal device is an LTM candidate cell, the terminal device may not correlate the PCI of the first cell, and thus will not perform the first measurement, nor report the measurement result of the first measurement.
  • the terminal device receives the first configuration and the second configuration from the network device. If the first cell detected according to the measurement object configuration in the second configuration is an LTM candidate cell, the terminal device does not perform the first behavior for the first cell, so that the first measurement may not be performed on the LTM candidate cell, or the measurement result of the first measurement on the LTM candidate cell may not be reported, which can reduce unnecessary measurements, save power consumption, further reduce switching conflicts, avoid frequent switching, and improve LTM switching performance.
  • the first behavior may be performed for the first cell, so that the first measurement may be performed on the non-LTM candidate cell, and the measurement result of the first measurement of the non-LTM candidate cell may be reported.
  • the network device can trigger layer 3 switching based on the measurement results of these reported cells, thereby improving switching performance and improving the communication quality of the terminal device.
  • the first measurement is not performed on the LTM candidate cell in the cell detected based on the measurement object, and the measurement report of the first measurement of the LTM candidate cell is not reported. Only the first behavior is performed on the first cell that does not belong to the LTM candidate cell. This can reduce measurements, save power consumption, reduce the air interface overhead of measurement reporting, avoid frequent switching, avoid frequent ping-pong switching, and improve LTM switching performance.
  • the first configuration may also include the first information or the second information.
  • the first information and the second information may be included in the same indication.
  • the first indication is a 1-bit indication information
  • the value of the first indication may be 0 or 1, when the value of the first indication is 0, it indicates that the first indication is used to indicate the first information, when the value of the first indication is 1, it indicates that the first indication is used to indicate the second information; or when the value of the first indication is 1, it indicates that the first indication is used to indicate the first information, when the value of the first indication is 0, it indicates that the first indication is used to indicate the second information.
  • the first indication may be true or false, when the value of the first indication is true, it indicates that the first indication is used to indicate the first information, when the value of the first indication is false, it indicates that the first indication is used to indicate the second information; or when the value of the first indication is false, it indicates that the first indication is used to indicate the first information, when the value of the first indication is true, it indicates that the first indication is used to indicate the second information, etc.
  • the first information and the second information may be included in different indications.
  • the first information is a field
  • the second information is a second field. If the network device is configured with the first field, the terminal device may perform the behavior indicated by the first information, and if the network device is configured with the second field, the terminal device may perform the behavior indicated by the second information.
  • the first information is used to indicate: if the first cell is not an LTM candidate cell, the first behavior is performed for the first cell; and/or if the first cell is an LTM candidate cell, the first behavior is not performed for the first cell. That is, the first information is used to instruct the terminal device to perform the first behavior for the first cell that is not an LTM candidate cell, or is also used to instruct the terminal device not to perform the first behavior for the first cell that is an LTM candidate cell. It can be understood that the first information is used to instruct the terminal device to perform the steps after receiving the first configuration and the second configuration in the first aspect.
  • the second information is used to indicate that the first behavior is executed for the first cell. That is to say, regardless of whether the first cell is an LTM candidate cell, the first behavior must be executed for the first cell. It can be understood that the second information is used to indicate that the terminal device does not execute the first aspect after receiving the first configuration and the second configuration, and it can also be understood that the terminal device executes the first behavior according to the existing method. By executing the first information, compared to executing the second information in the prior art, the first behavior is not executed for the LTM candidate cell in the cell detected based on the measurement object, which can reduce unnecessary measurements, save power consumption, and further avoid frequent ping-pong switching, thereby improving LTM switching performance.
  • the first configuration may further include a second measurement configuration
  • the communication method may further include: the terminal device performs a second measurement according to the second measurement configuration.
  • the second measurement configuration may be understood as configuration information for the second measurement.
  • the present application does not limit the type of the second measurement and the content of the second measurement configuration.
  • the second measurement may include at least one of the following: layer 1 measurement, SSB measurement, CSI-RS measurement.
  • the second measurement configuration may include one or more of the following: measurement period, measurement resource (e.g., SSB or CSI-RS), measurement quantity configuration, measurement interval, measurement identifier, S measurement configuration.
  • the first configuration also includes a second measurement configuration
  • a second measurement can be performed according to the second measurement configuration, and the measurement result of the second measurement can also be reported, so that the network device can make a switching decision based on the measurement result of the second measurement.
  • the terminal device can execute the LTM switching process, thereby improving the switching efficiency.
  • the terminal device performing the first behavior for the first cell includes: the terminal device performing the first behavior for the first cell according to the first measurement configuration.
  • the first measurement configuration may also include at least one of the following: a measurement identifier, a reporting configuration, a measurement amount configuration, a measurement interval configuration, and an S configuration. It can be understood that performing the first behavior according to these parameters in the first measurement configuration can improve the accuracy of performing the first behavior, which is conducive to improving the switching performance.
  • the terminal device performs a first action for the first cell including: if the timer of the measurement period times out or the measurement event meets the measurement report triggering condition, reporting the measurement result of the first measurement for the first cell. In this way, when the timer of the measurement period times out or the measurement event meets the measurement report triggering condition, the measurement result of the first measurement of the non-LTM candidate cell can be reported, and the network device can trigger the layer 3 switching based on the measurement results of these reported cells to ensure the performance of the switching.
  • the present application provides a second communication method, which can be applied to a terminal device, or to a device in a terminal device (e.g., a chip, or a chip system, or a circuit), or a device that can be used in combination with a terminal device, and is described below by taking the application to a terminal device as an example.
  • a terminal device e.g., a chip, or a chip system, or a circuit
  • the method may include: the terminal device receives a third configuration from a network device; the terminal device receives a second configuration from a network device; if the first cell detected according to the measurement object configuration is a cell in the first list, the terminal device does not perform the first behavior for the first cell; and/or if the first cell detected according to the measurement object configuration is not a cell in the first list, the terminal device performs the first behavior for the first cell.
  • the third configuration includes a first list, and the first list includes at least one cell.
  • the third configuration and the first configuration may be included in the same message, or the third configuration and the first configuration may be included in different messages.
  • the cells in the first list do not perform the first behavior, and the first behavior includes reporting of the first measurement and/or the measurement result of the first measurement.
  • the cells in the first list include LTM candidate cells.
  • the LTM candidate cells here may be all LTM candidate cells, or may include some LTM candidate cells.
  • the cells in the first list include some candidate cells. It can be understood that reporting the measurement results of the first measurement of some cells can save power consumption and air interface resources.
  • the network device can configure the terminal device not to perform the first behavior in the cell through a list, and improve the flexibility of configuration through network configuration.
  • the terminal device performs the first behavior according to the first measurement configuration and the first list of the network configuration, and does not perform the first behavior for some LTM candidate cells, thereby reducing the measurement power consumption of the terminal device and saving air interface resources for measurement reporting.
  • the network device needs to perform functions such as carrier management or LTM candidate cell management, and can also configure LTM candidate cells that do not belong to the first list, so that the terminal device performs the first measurement on these LTM candidate cells that do not belong to the first list, thereby realizing cell management or carrier management functions.
  • the terminal device executing the first behavior for the first cell includes: the terminal device executing the first behavior for the first cell according to the first measurement configuration.
  • the first measurement configuration may also include at least one of the following: a measurement identifier, a reporting configuration, a measurement amount configuration, a measurement interval configuration, and an S configuration. It can be understood that executing the first behavior according to these parameters in the first measurement configuration can improve the accuracy of executing the first behavior, which is conducive to improving the switching performance.
  • the terminal device performs a first action for the first cell including: if the timer of the measurement period times out or the measurement event meets the measurement report triggering condition, reporting the measurement result of the first measurement for the first cell. In this way, when the timer of the measurement period times out or the measurement event meets the measurement report triggering condition, the measurement result of the first measurement of the non-LTM candidate cell can be reported, and the network device can trigger the layer 3 switching based on the measurement results of these reported cells to ensure the performance of the switching.
  • the present application provides a third communication method, which can be applied to a terminal device, or to a device in a terminal device (e.g., a chip, or a chip system, or a circuit), or a device that can be used with a terminal device, and is described below by taking the application to a terminal device as an example.
  • the method may include: the terminal device receives a fourth configuration from a network device.
  • the fourth configuration includes third information, and the third information indicates the type of measurement event that allows or prohibits reporting of measurement results.
  • the fourth configuration may be information in the first configuration, or may be information different from the first configuration.
  • the present application does not limit the type of measurement event that allows or prohibits reporting of measurement results, and may be the measurement event type of the measurement event.
  • the type of measurement event that allows reporting of measurement results is the measurement event type of the A1 measurement event
  • the type of measurement event that prohibits reporting of measurement results is the measurement event type of the A3 measurement event, etc.
  • the terminal device receives the fourth configuration from the network device, and determines the measurement event type that allows or prohibits the measurement result reporting according to the third information in the fourth configuration, so that the terminal device can report or not report the results related to the measurement event based on each event type, which can reduce the reporting of measurement results based on each event, saving power consumption and air interface resources.
  • the network device includes the A3 event in the second list indicating the prohibition of measurement result reporting, the UE does not report the measurement result of the A3 event based on the second list, and the network device does not receive the measurement result of the A3 event, so it will not make a switching decision based on the A3 event, thereby avoiding the conflict between layer 1 and layer 3 switching, avoiding frequent ping-pong switching, and improving the LTM switching performance.
  • the third information may include a second list, the second list including at least one measurement event type. If the measurement event type included in the second list is a measurement event type that allows measurement result reporting, the third information is used to indicate the measurement event type that allows measurement result reporting. If the measurement event type included in the second list is a measurement event type that prohibits measurement result reporting, the third information is used to indicate the measurement event type that prohibits measurement result reporting. It can be understood that by configuring the measurement event type that allows or prohibits measurement result reporting through a list, configuration resources can be saved.
  • the network device sends a second configuration to the terminal device; if the first cell detected according to the measurement object configuration is an LTM candidate cell, when the measurement result of the first cell meets the measurement reporting trigger condition of the measurement event type that allows measurement result reporting, the measurement result is reported; and/or if the first cell detected according to the measurement object configuration is an LTM candidate cell, when the measurement event type of the first cell meets the measurement event type that prohibits measurement result reporting, the measurement result is not reported.
  • the second configuration includes a first measurement configuration
  • the first measurement configuration includes a measurement object configuration.
  • the method includes: the network device sends a first configuration to the terminal device. It can be understood that the terminal device detects the first cell according to the measurement object configuration in the second configuration from the network device. If the first cell is an LTM candidate cell, the measurement result of the first cell satisfies the measurement report triggering condition of the measurement event type that allows the measurement result to be reported, and the measurement result can be reported. When the first cell is an LTM candidate cell, but the measurement event type of the first cell is a measurement event type that prohibits the measurement result from being reported, even if the measurement result of the first cell meets the measurement report triggering condition, the measurement report is not reported.
  • the measurement results of non-LTM candidate cells in the first cell can be reported.
  • the measurement results of non-LTM candidate cells can be reported when they meet the preset measurement report triggering condition.
  • the first measurement configuration may also include a first measurement cycle
  • the communication method may also include the following steps: the network device sends a fifth configuration to the terminal device; if the first cell is an LTM candidate cell, perform a first measurement on the first cell based on the second measurement cycle; or if the first cell is not an LTM candidate cell, perform a first measurement on the first cell based on the first measurement cycle.
  • the second measurement period is greater than the first measurement period.
  • the first measurement period is applicable to non-LTM candidate cells in the first cell detected according to the measurement object configuration, and the second measurement period is applicable to LTM candidate cells in the first cell. That is to say, when the first cell is a non-LTM candidate cell, the first measurement can be performed on the first cell based on the first measurement period. And when the first cell is an LTM candidate cell, the first measurement can be performed on the first cell based on the second measurement period.
  • the measurement period (or measurement window) of the LTM candidate cell can be greater than the measurement period of the non-LTM candidate cell to reduce the first measurement of the LTM candidate cell, thereby reducing the reporting of the measurement results, which can save power consumption and air interface resources, and is conducive to improving the LTM switching performance.
  • the present application provides a fourth communication method, which can be applied to a terminal device, or to a device in a terminal device (e.g., a chip, or a chip system, or a circuit), or a device that can be used in combination with a terminal device, and is described below using the application to a terminal device as an example.
  • a terminal device e.g., a chip, or a chip system, or a circuit
  • the method may include: the terminal device receives a second configuration from a network device; the terminal device receives a fifth configuration from the network device; if the first cell detected according to the measurement object configuration is an LTM candidate cell, the terminal device performs a first measurement on the first cell based on the second measurement period; and/or if the first cell detected according to the measurement object configuration is not an LTM candidate cell, the terminal device performs a first measurement on the first cell based on the first measurement period.
  • the second configuration includes a first measurement configuration
  • the first measurement configuration includes a measurement object configuration and a first measurement period.
  • the fifth configuration includes a second measurement period, and the second measurement period is greater than the first measurement period.
  • the first measurement period is applicable to non-LTM candidate cells in the first cell detected according to the measurement object configuration
  • the second measurement period is applicable to LTM candidate cells in the first cell.
  • the terminal device receives the second configuration and the fifth configuration sent by the network device, and can determine the first cell according to the measurement object configuration in the second configuration, and when the first cell is a non-LTM candidate cell, perform a first measurement on the first cell based on the first measurement period.
  • the first measurement can be performed on the first cell based on the second measurement period.
  • the measurement period (or measurement window) of the LTM candidate cell can be greater than the measurement period of the non-LTM candidate cell to reduce the first measurement for the LTM candidate cell, thereby reducing the reporting of the measurement results, which can save power consumption and air interface resources, and is conducive to improving the LTM switching performance.
  • the present application provides a fifth communication method, which can be applied to a network device, or to a device in a network device (e.g., a chip, or a chip system, or a circuit), or a device that can be used in combination with a network device, and is described below using the application to a network device as an example.
  • the method may include: the network device sends a third configuration to the terminal device; wherein the third configuration includes a first list, the first list includes at least one cell, the cell in the first list does not perform a first behavior, and the first behavior includes at least one of the following: a first measurement, and reporting of a measurement result of the first measurement.
  • the cells in the first list include LTM candidate cells.
  • the executor of the fifth aspect can be a network device, and the specific content of the fifth aspect corresponds to the content of the second aspect.
  • the corresponding features of the fifth aspect and the beneficial effects achieved can refer to the description of the second aspect. To avoid repetition, the detailed description is appropriately omitted here.
  • the present application provides a sixth communication method, which can be applied to a network device, or to a device in a network device (e.g., a chip, or a chip system, or a circuit), or a device that can be used in combination with a network device, and is described below using the application to a network device as an example.
  • the method may include: the network device sends a fourth configuration to the terminal device; wherein the fourth configuration includes third information, and the third information indicates a measurement event type that allows or prohibits triggering the reporting of measurement results.
  • the third information includes a second list, and the second list includes at least one measurement event type.
  • the executor of the sixth aspect can be a network device, and the specific content of the sixth aspect corresponds to the content of the third aspect.
  • the corresponding features of the sixth aspect and the beneficial effects achieved can refer to the description of the third aspect. To avoid repetition, the detailed description is appropriately omitted here.
  • the present application provides a third communication method, which can be applied to a network device, or to a device in a network device (for example, a chip, or a chip system, or a circuit), or a device that can be used in conjunction with a network device.
  • the following description takes the application to a network device as an example.
  • the method may include: the network device sends a second configuration to the terminal device; the network device sends a fifth configuration to the terminal device; wherein the second configuration includes a first measurement configuration, and the first measurement configuration includes a measurement object configuration and a first measurement period.
  • the fifth configuration includes a second measurement cycle, the second measurement cycle is greater than the first measurement cycle, the first measurement cycle is applicable to non-LTM candidate cells in the first cell detected according to the measurement object configuration, and the second measurement cycle is applicable to LTM candidate cells in the first cell.
  • the executor of the seventh aspect can be a network device, and the specific content of the seventh aspect corresponds to the content of the fourth aspect.
  • the corresponding features of the seventh aspect and the beneficial effects achieved can refer to the description of the fourth aspect. To avoid repetition, the detailed description is appropriately omitted here.
  • the first configuration, the second configuration, the third configuration, the fourth configuration and the fifth configuration mentioned above may be included in the same message, such as an RRC reconfiguration message, or in different messages.
  • an embodiment of the present application provides a first communication device, which may be a terminal device or a device in a terminal device (for example, a chip, or a chip system, or a circuit).
  • the communication device includes: a transceiver unit for receiving a first configuration from a network device; wherein the first configuration includes information about an LTM candidate cell; and receiving a second configuration from a network device; wherein the second configuration includes a first measurement configuration, and the first measurement configuration includes a measurement object configuration; a processing unit for executing a first behavior for the first cell if the first cell detected according to the measurement object configuration is not an LTM candidate cell; and/or not executing the first behavior for the first cell if the first cell detected according to the measurement object configuration is an LTM candidate cell; wherein the first behavior includes at least one of the following: a first measurement, and reporting of the measurement result of the first measurement.
  • the first configuration also includes first information or second information, the first information is used to indicate: if the first cell is not an LTM candidate cell, perform the first behavior for the first cell; and/or if the first cell is an LTM candidate cell, do not perform the first behavior for the first cell; the second information is used to indicate to perform the first behavior for the first cell.
  • the first measurement includes a layer 3 measurement or an RRM measurement.
  • the first configuration also includes a second measurement configuration
  • the processing unit 1202 is further used to perform a second measurement according to the second measurement configuration; wherein the second measurement includes at least one of the following: layer 1 measurement, SSB measurement, CSI-RS measurement.
  • the processing unit is specifically used to perform a first behavior for a first cell according to a first measurement configuration; wherein the first measurement configuration also includes at least one of the following: a measurement identifier, a reporting configuration, a measurement quantity configuration, a measurement interval configuration, and an S measurement configuration.
  • the processing unit is specifically used to report the measurement result of the first measurement for the first cell if the timer of the measurement period times out or the measurement event meets the measurement reporting trigger condition.
  • the executor of the eighth aspect can be a terminal device, and the specific content of the eighth aspect corresponds to the content of the first aspect.
  • the corresponding features of the eighth aspect and the beneficial effects achieved can refer to the description of the first aspect. In order to avoid repetition, the detailed description is appropriately omitted here.
  • an embodiment of the present application provides a second communication device, which can be a terminal device or a device in a terminal device (for example, a chip, a chip system, or a circuit).
  • the communication device includes: a transceiver unit for receiving a third configuration from a network device; wherein the third configuration includes a first list, and the first list includes at least one cell; and receiving a second configuration from the network device; wherein the second configuration includes a first measurement configuration, and the first measurement configuration includes a measurement object configuration; a processing unit for executing a first behavior for the first cell if the first cell detected according to the measurement object configuration is not a cell in the first list; and/or if the first cell detected according to the measurement object configuration is a cell in the first list, not executing the first behavior for the first cell; wherein the first behavior includes at least one of the following: a first measurement, and reporting of the measurement result of the first measurement.
  • the cells in the first list include LTM candidate cells.
  • the processing unit is specifically used to perform a first behavior for a first cell according to a first measurement configuration; wherein the first measurement configuration also includes at least one of the following: a measurement identifier, a reporting configuration, a measurement quantity configuration, a measurement interval configuration, and an S measurement configuration.
  • the processing unit is specifically used to report the measurement result of the first measurement performed on the first cell if the timer of the measurement period times out or the measurement event meets the measurement reporting trigger condition.
  • the executor of the ninth aspect can be a terminal device, and the specific content of the ninth aspect corresponds to the content of the second aspect.
  • the corresponding features of the ninth aspect and the beneficial effects achieved can refer to the description of the second aspect. To avoid repetition, the detailed description is appropriately omitted here.
  • an embodiment of the present application provides a third communication device, which may be a terminal device or a device in a terminal device (e.g., a chip, or a chip system, or a circuit).
  • the communication device includes: a transceiver unit for receiving a fourth configuration from a network device; wherein the fourth configuration includes third information, and the third information indicates a measurement event type for allowing or prohibiting measurement result reporting.
  • the third information includes a second list, and the second list includes at least one measurement event type.
  • the transceiver unit is also used to receive a second configuration from the network device; wherein the second configuration includes a first measurement configuration, and the first measurement configuration includes a measurement object configuration; the processing unit is used to report the measurement result if the first cell detected according to the measurement object configuration is an LTM candidate cell, when the measurement result of the first cell meets the measurement reporting trigger condition of the measurement event type that allows measurement result reporting; and/or if the first cell detected according to the measurement object configuration is an LTM candidate cell, the measurement result of the measurement event type that prohibits measurement result reporting is not reported for the first cell.
  • the first measurement configuration further includes a first measurement period
  • the transceiver unit is further configured to receive a fifth measurement period from the network device.
  • Configuration wherein the fifth configuration includes a second measurement period, which is greater than the first measurement period; the processing unit is also used to perform a first measurement on the first cell based on the second measurement period if the first cell is an LTM candidate cell; and/or if the first cell is not an LTM candidate cell, perform a first measurement on the first cell based on the first measurement period.
  • the measurement result of the first cell includes the signal quality of the first cell
  • the processing unit is also used to determine that the signal quality of the first cell meets the measurement reporting trigger condition of the measurement event type that allows measurement result reporting if the signal quality of the first cell is less than a signal quality threshold.
  • the executor of the tenth aspect can be a terminal device, and the specific content of the tenth aspect corresponds to the content of the third aspect.
  • the corresponding features of the tenth aspect and the beneficial effects achieved can refer to the description of the third aspect. In order to avoid repetition, the detailed description is appropriately omitted here.
  • an embodiment of the present application provides a fourth communication device, which may be a terminal device or a device in a terminal device (for example, a chip, or a chip system, or a circuit).
  • the communication device includes: a transceiver unit for receiving a second configuration from a network device; and receiving a fifth configuration from a network device; a processing unit for, if the first cell detected according to the measurement object configuration is an LTM candidate cell, the terminal device performs a first measurement on the first cell based on a second measurement period; and/or if the first cell detected according to the measurement object configuration is not an LTM candidate cell, the terminal device performs a first measurement on the first cell based on a first measurement period.
  • the second configuration includes a first measurement configuration
  • the first measurement configuration includes a measurement object configuration and a first measurement period.
  • the fifth configuration includes a second measurement period, and the second measurement period is greater than the first measurement period.
  • the executor of the eleventh aspect can be a terminal device, and the specific content of the eleventh aspect corresponds to the content of the fourth aspect.
  • the corresponding features of the eleventh aspect and the beneficial effects achieved can refer to the description of the fourth aspect. In order to avoid repetition, the detailed description is appropriately omitted here.
  • an embodiment of the present application provides a fifth communication device, which may be a network device or a device in a network device (e.g., a chip, or a chip system, or a circuit).
  • the communication device includes: a transceiver unit is used to send a third configuration to the network device; wherein the third configuration includes a first list, the first list includes at least one cell, the cell in the first list does not perform a first behavior, and the first behavior includes at least one of the following: a first measurement, and reporting of a measurement result of the first measurement.
  • the cells in the first list include LTM candidate cells.
  • the executor of the twelfth aspect can be a network device
  • the specific content of the eleventh aspect corresponds to the content of the fifth aspect
  • the corresponding features of the twelfth aspect and the beneficial effects achieved can refer to the description of the fifth aspect. To avoid repetition, the detailed description is appropriately omitted here.
  • an embodiment of the present application provides a sixth communication device, which may be a network device or a device in a network device (e.g., a chip, or a chip system, or a circuit).
  • the communication device includes: a transceiver unit for sending a fourth configuration to the network device; wherein the fourth configuration includes third information, and the third information indicates a measurement event type that allows or prohibits triggering measurement result reporting.
  • the third information includes a second list, and the second list includes at least one measurement event type.
  • the transceiver unit is further used to send a second configuration to the terminal device; wherein the second configuration includes a first measurement configuration, and the first measurement configuration includes a measurement object configuration.
  • the first measurement configuration also includes a first measurement cycle
  • the transceiver unit is also used to send a fifth configuration to the terminal device; wherein the fifth configuration includes a second measurement cycle, the second measurement cycle is greater than the first measurement cycle, the first measurement cycle is applicable to non-LTM candidate cells in the first cell detected according to the measurement object configuration, and the second measurement cycle is applicable to LTM candidate cells in the first cell.
  • the executor of the thirteenth aspect may be a network device, and the specific content of the thirteenth aspect corresponds to the content of the sixth aspect.
  • the corresponding features of the thirteenth aspect and the beneficial effects achieved can refer to the description of the sixth aspect. To avoid repetition, the detailed description is appropriately omitted here.
  • an embodiment of the present application provides a seventh communication device, which may be a network device or a device in a network device (for example, a chip, or a chip system, or a circuit).
  • the communication device includes: a transceiver unit for sending a second configuration to a terminal device; and sending a fifth configuration to the terminal device; wherein the second configuration includes a first measurement configuration, and the first measurement configuration includes a measurement object configuration and a first measurement period.
  • the fifth configuration includes a second measurement period, and the second measurement period is greater than the first measurement period.
  • the first measurement period is applicable to non-LTM candidate cells in the first cell detected according to the measurement object configuration, and the second measurement period is applicable to LTM candidate cells in the first cell.
  • the executor of the fourteenth aspect may be a network device, and the specific content of the fourteenth aspect corresponds to the content of the seventh aspect.
  • the corresponding features of the fourteenth aspect and the beneficial effects achieved can refer to the description of the seventh aspect. To avoid repetition, the detailed description is appropriately omitted here.
  • an embodiment of the present application provides an eighth communication device, which may be a terminal device or a device in a terminal device (e.g., a chip, or a chip system, or a circuit).
  • the communication device may include a processor and a storage medium, the storage medium storing instructions, and when the instructions are executed by the processor, the communication method described in the first aspect, the second aspect, the third aspect, the fourth aspect, or any feasible example thereof is implemented.
  • the communication device further includes one or more of a memory and a transceiver, wherein the transceiver is used to transmit and receive data and/or signaling.
  • the embodiment of the present application provides an eighth communication device, which may be a network device or a device in a network device (e.g., a chip, or a chip system, or a circuit).
  • the communication device may include a processor and a storage medium, the storage medium stores instructions, and when the instructions are executed by the processor, the communication method described in the fifth aspect, the sixth aspect, or the seventh aspect or any feasible example thereof is implemented.
  • the communication device further includes one or more of a memory and a transceiver, wherein the transceiver is used to transmit and receive data and/or signaling.
  • the present application provides a communication system, which includes at least one terminal device and at least one network device.
  • a communication system which includes at least one terminal device and at least one network device.
  • the present application provides a computer-readable storage medium having instructions stored thereon.
  • the instructions are executed by a processor, the communication method described in the first aspect, the second aspect, the third aspect, the fourth aspect, the fifth aspect, the sixth aspect, the seventh aspect or any feasible example thereof is executed.
  • the present application provides a computer program product, which includes instructions.
  • the instructions are executed by a processor, the communication method described in the first aspect, the second aspect, the third aspect, the fourth aspect, the fifth aspect, the sixth aspect, the seventh aspect or any feasible example thereof is executed.
  • the present application provides another communication method, including the communication method described in the first aspect, the second aspect, the third aspect, the fourth aspect, the fifth aspect, the sixth aspect, the seventh aspect or any feasible example thereof.
  • FIG1 is a schematic diagram of a network architecture provided in an embodiment of the present application.
  • FIG2 is a schematic diagram of a network architecture of a network device provided in an embodiment of the present application.
  • FIG3A is a schematic diagram of a control plane protocol stack in a CU-DU separation architecture provided in an embodiment of the present application
  • FIG3B is a schematic diagram of a user plane protocol stack in a CU-DU separation architecture provided in an embodiment of the present application
  • FIG4 is a schematic diagram of a flow chart of a layer 3 switching method provided in an embodiment of the present application.
  • FIG5 is a flow chart of a method for L1/L2 switching between DUs within a CU provided in an embodiment of the present application
  • FIG6 is a schematic flow chart of a method for switching L1/L2 within a CU and within a DU provided in an embodiment of the present application;
  • FIG7 is a schematic diagram of a flow chart of a first communication method provided in an embodiment of the present application.
  • FIG8 is a schematic diagram of a flow chart of a second communication method provided in an embodiment of the present application.
  • FIG9 is a schematic flow chart of a third communication method provided in an embodiment of the present application.
  • FIG10 is a schematic flow chart of a fourth communication method provided in an embodiment of the present application.
  • FIG11 is a schematic flow chart of a fifth communication method provided in an embodiment of the present application.
  • FIG12 is a schematic diagram of the structure of a first communication device provided in an embodiment of the present application.
  • FIG. 13 is a schematic diagram of the structure of a second communication device provided in an embodiment of the present application.
  • FIG14 is a schematic diagram of the structure of a third communication device provided in an embodiment of the present application.
  • FIG. 15 is a schematic diagram of the structure of a terminal device provided in an embodiment of the present application.
  • the network architecture may include a terminal device 101, a network device 102, and a core network device 103.
  • the terminal device 101 can be connected to the network device 102 in a wireless manner, and can be connected to the core network device 103 through the network device 102.
  • the terminal device 101 can be fixed or movable.
  • GSM global system for mobile communication
  • CDMA code division multiple access
  • WCDMA wideband code division multiple access
  • GPRS general packet radio service
  • LTE long term evolution
  • TDD LTE time division duplex
  • UMTS universal mobile telecommunications system
  • EDGE enhanced data rate for GSM evolution
  • PLMN public land mobile network
  • LTE advanced, LTE-A advanced long term evolution
  • 5G fifth generation
  • NR new radio
  • M2M machine to machine
  • the terminal device 101 may be an entity on the user side for receiving or transmitting signals, such as user equipment, access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or user device.
  • the terminal device may also be a mobile phone, a cellular phone, a cordless phone, a session initiation protocol (SIP) phone, a tablet computer (Pad), a computer with wireless transceiver function, a virtual reality (VR) terminal device, an augmented reality (AR) terminal device, a wireless terminal in industrial control (industrial control), a wireless local loop (WLL) station, a personal digital assistant (PDA), a handheld device with wireless communication function, a computing device or a connection Other processing devices to wireless modems, vehicle-mounted devices, wireless terminals in self-driving, wireless terminals in remote medical, wireless terminals in smart grids, wireless terminals in transportation safety, wireless terminals in smart cities, wireless terminals in smart homes, wearable devices (such as smart watches
  • the terminal can also be a wearable device.
  • Wearable devices can also be called wearable smart devices, which are a general term for wearable devices that are intelligently designed and developed by applying wearable technology to daily wear, such as glasses, gloves, watches and shoes.
  • Wearable devices can be worn directly on the body or integrated into the user's clothes or accessories.
  • Wearable devices are not only hardware devices, but also powerful functions achieved through software support, data interaction, and cloud interaction.
  • wearable smart devices include full-featured, large-size, and can achieve complete or partial functions without relying on smartphones, such as smart watches or smart glasses, and only focus on a certain type of application function, and need to be used with other devices such as smartphones, such as various types of smart bracelets and smart jewelry for vital sign monitoring.
  • the terminal can also be a terminal in the Internet of Things (IoT) system.
  • IoT is an important part of the future development of information technology. Its main technical feature is to connect objects to the network through communication technology, thereby realizing an intelligent network of human-machine interconnection and object-to-object interconnection.
  • IOT technology can achieve massive connections, deep coverage, and terminal power saving through narrowband (NB) technology, for example.
  • the terminal may also include sensors such as smart printers, train detectors, and gas stations, and its main functions include collecting data (partial terminals), receiving control information and downlink data of network devices, and sending electromagnetic waves to transmit uplink data to network devices.
  • the network device 102 may be an entity for transmitting or receiving signals, or may be a device for communicating with a terminal device.
  • the network device may be a base station (base transceiver station, BTS) in a global system for mobile communications (GSM) system or code division multiple access (CDMA), or a base station (NodeB, NB) in a wideband code division multiple access (WCDMA) system, or an evolved NodeB (eNB or eNodeB) in an LTE system, or a wireless controller in a cloud radio access network (CRAN) scenario, or the network device may be a relay station, an access point, an on-board device, a wearable device, a network device in a 5G network, or a network device in a future evolved PLMN network, etc., and the embodiments of the present application are not limited thereto.
  • the network device may be a device in a wireless network, such as a radio access network (RAN) node that connects a terminal to a wireless network.
  • RAN radio access network
  • some examples of RAN nodes are: base station, next-generation base station gNB, transmission reception point (TRP), evolved Node B (eNB), home base station, baseband unit (BBU), or access point (AP) in WiFi system.
  • TRP transmission reception point
  • eNB evolved Node B
  • BBU baseband unit
  • AP access point
  • Network equipment can also be called access network equipment (radio access network, RAN).
  • the protocol stack architecture and functions of traditional access network equipment can be divided into two parts, one part is called a centralized unit (central unit, CU), and the other part is called a distributed unit (distributed unit, DU).
  • This type of network equipment can be called a RAN device including a CU node and a DU node.
  • the division of CU and DU can be based on the protocol stack.
  • One possible way is to deploy the radio resource control (RRC) layer, service data adaptation protocol (SDAP) layer and packet data convergence protocol (PDCP) layer in the CU, and the remaining radio link control (RLC) layer, medium access control (MAC) layer and physical (PHY) layer in the DU.
  • RRC radio resource control
  • SDAP service data adaptation protocol
  • PDCP packet data convergence protocol
  • RLC radio link control
  • MAC medium access control
  • PHY physical
  • a CU can be connected to a DU, or a CU can be connected to multiple DUs, which can save costs and facilitate network expansion.
  • the access network equipment can be composed of a CU and one or more DUs.
  • the CU and DU are connected through the F1 interface.
  • the CU and the core network are connected via a next generation (NG) interface.
  • NG next generation
  • FIG. 2 is a schematic diagram of the network architecture of a network device provided in an embodiment of the present application.
  • a 5G core network (5G core network, 5GC) is used as a core network device
  • NG-RAN is used as a network device for example.
  • NG-RAN may include one or more gNBs, and the gNB and 5GC may be connected via an NG interface, and the gNBs and gNBs may be connected via an Xn-C interface.
  • the gNB may be composed of a gNB-CU and one or more gNB-DUs, and an F1 interface is established between the gNB-CU and each gNB-DU, and an NG interface is established between the gNB-CU and the 5GC.
  • the CU may be in a form where the user plane (UP) (hereinafter referred to as CU-UP) and the control plane (CP) (hereinafter referred to as CU-CP) are separated. That is, the CU may be composed of the CU-CP and the CU-UP.
  • UP user plane
  • CP control plane
  • the terminal can access the CU through the DU, wherein the RLC layer, MAC layer and PHY layer equivalent to the UE are located on the DU, and the PDCP layer, SDAP layer and PDCP layer corresponding to the UE are located on the CU.
  • the following is a description of the protocol stack of the control plane and the protocol stack of the user plane under the CU-DU separation architecture in conjunction with Figures 3A and 3B.
  • Figure 3A is a schematic diagram of the protocol stack of the control plane under the CU-DU separation architecture provided in an embodiment of the present application
  • Figure 3B is a schematic diagram of the protocol stack of the user plane under the CU-DU separation architecture provided in an embodiment of the present application.
  • a peer RRC layer and PDCP layer are established between the UE and the CU.
  • the UE and the DU are connected through a user equipment (user equipment) interface (which may be referred to as a Uu interface), and a peer RLC layer, MAC layer and PHY layer are established between the UE and the DU;
  • the DU and the CU are connected through an F1 control plane (F1-control plane, F1-C) interface, and a peer F1 application protocol (F1application protocol, F1AP) layer, stream control transmission protocol (stream control transmission protocol, SCTP) layer, internet protocol (internet protocol, IP) layer, layer 1 (layer 1, L1) and layer 2 (layer 2, L2) are established between the DU and the CU.
  • layer 1 may include a PHY layer
  • layer 2 may include an RLC layer, a MAC layer and a PDCP layer.
  • a peer SDAP layer and PDCP layer are established between the UE and the CU.
  • the UE and the DU are connected through the Uu interface, and a peer RLC layer, MAC layer and PHY layer are established between the UE and the DU; the DU and the CU are connected through the F1 user plane (F1-user plane, F1-U) interface, and a peer general packet radio service (GPRS) tunneling protocol-user plane (GPRS tunneling protocol-user plane, GTP-U) layer, user datagram protocol (UDP) layer, IP layer, layer 1 and layer 2 are established between the DU and the CU.
  • GPRS general packet radio service
  • the terminal device or network device includes a hardware layer, an operating system layer running on the hardware layer, and an application layer running on the operating system layer.
  • the hardware layer includes hardware such as a central processing unit (CPU), a memory management unit (MMU), and a memory (also called main memory).
  • the operating system can be any one or more computer operating systems that implement business processing through a process, such as a Linux operating system, a Unix operating system, an Android operating system, an iOS operating system, or a Windows operating system.
  • the application layer includes applications such as a browser, an address book, a word processing software, and an instant messaging software.
  • the embodiment of the present application does not specifically limit the specific structure of the execution subject of the method provided in the embodiment of the present application.
  • the execution subject of the method provided in the embodiment of the present application can be a terminal device or a network device, or a functional module in the terminal device or the network device that can call and execute a program.
  • computer-readable media may include, but are not limited to: magnetic storage devices (e.g., hard disks, floppy disks or tapes, etc.), optical disks (e.g., compact discs (CDs), digital versatile discs (DVDs), etc.), smart cards and flash memory devices (e.g., erasable programmable read-only memory (EPROM), cards, sticks or key drives, etc.).
  • the various storage media described herein may represent one or more devices and/or other machine-readable media for storing information.
  • machine-readable medium may include, but is not limited to, wireless channels and various other media capable of storing, containing and/or carrying instructions and/or data.
  • network devices, terminal devices, and core network devices included in the network architecture shown in Figure 1 are merely examples, and the embodiments of the present application are not limited to this.
  • more or fewer terminal devices that communicate with network devices may also be included, for example, more or fewer core network devices that communicate with network devices may also be included.
  • core network devices For the sake of simplicity, they are not described one by one in the accompanying drawings.
  • network devices, terminal devices, and core network devices are shown, the application scenario may not be limited to network devices, terminal devices, and core network devices.
  • devices for carrying virtualized network functions may also be included.
  • Measurement which can be divided into beam-level measurement and cell-level measurement.
  • Beam-level measurement means that the network can configure the UE to measure and report information related to one or more beams of the cell, such as beam identifiers and/or beam measurement results.
  • Cell-level measurement means that the UE measures one or more beams of a cell according to the network configuration, and averages the measurement results (for example, power values) to obtain the measurement results of the cell.
  • layer 1 filtering can be performed. After layer 1 filtering, the cell quality is obtained through multiple beams at the RRC layer, and layer 3 filtering can be performed.
  • Layer 1 measurement usually refers to beam-level measurement.
  • Beam-level measurement includes at least one of the following: synchronization signal and physical broadcast channel (PBCH) block (synchronization signal and PBCH block, SSB) measurement, channel state information-reference signal (CSI-RS).
  • PBCH physical broadcast channel
  • SSB synchronization signal and PBCH block
  • CSI-RS channel state information-reference signal
  • PSS primary synchronization signals
  • SSS secondary synchronization signals
  • PBCH physical broadcast channel
  • layer 3 measurements refer to radio resource management (RRM) measurements.
  • RRM radio resource management
  • layer 3 measurements are cell-level measurements.
  • RRM measurements can be understood as layer 3 measurements.
  • the measurement event may include at least one of the following: A1 measurement event, A2 measurement event, A3 measurement event, A4 measurement event, A5 measurement event, B1 measurement event and B2 measurement event.
  • the trigger condition of the A1 measurement event is that the signal quality of the serving cell is higher than a threshold.
  • the A1 measurement event can be used to turn off the measurement function of certain cells.
  • the trigger condition of the A2 measurement event is that the signal quality of the serving cell is lower than a threshold.
  • operations such as switching may occur, which can be used to turn on the measurement function of the cell that meets the trigger condition.
  • the trigger condition of the A3 measurement event is that the quality of the same frequency/different frequency neighboring cell is higher than the quality of the serving cell by an offset.
  • the A3 measurement event can be used to determine whether the terminal device switches to the neighboring cell.
  • the trigger condition of the A4 measurement event is that the quality of the neighboring cell is higher than a threshold.
  • the trigger condition of the A5 measurement event is that the quality of the serving cell is lower than a threshold, and the quality of the neighboring cell is higher than a threshold.
  • the trigger condition of the A6 measurement event is that the neighboring cell is higher than the serving cell (e.g., scell) by an offset.
  • the trigger condition of the B1 measurement event is that the quality of the heterogeneous system neighboring cell is higher than the threshold of the serving cell.
  • the trigger condition of the B2 measurement event is that the quality of the serving cell is lower than threshold 1, and the quality of the neighboring cell of the heterogeneous system is higher than threshold 2.
  • the present application does not limit the measurement event, the size of each threshold (threshold) involved in the above-mentioned measurement event, and the measurement report trigger condition for reporting the measurement result of the measurement event.
  • the measurement report trigger can be a periodic trigger or an event trigger.
  • Handover is to ensure service continuity.
  • the change of the serving cell of a UE in an RRC connected state during movement can also be called mobility.
  • Figure 4 is a flowchart of a handover method provided by an embodiment of the present application.
  • the handover can be controlled by layer 3 (RRC layer).
  • the handover method may include the following steps S400 to S408, wherein:
  • Step S400 The source base station sends a measurement configuration to the UE.
  • the measurement configuration is a layer 3 measurement.
  • the layer 3 measurement configuration may be generated by the CU, wherein the layer 3 measurement configuration may be configured to the UE via measConfig.
  • the layer 3 measurement configuration may include the following parameters: measurement objective (MO), reporting configuration, measurement identities, quantity configuration, measurement gap, and S-Measure, wherein:
  • the MO parameter may provide a list of objects for which the UE needs to perform measurements.
  • Layer 3 measurements may be performed at a per MO granularity. That is, for the frequency associated with the MO, the L3 measurement configuration for all cells on the frequency is the same.
  • the UE measures and reports the measurement results of the serving cell, listed cells and/or detected cells.
  • a network device may configure a MO to include the following three types of lists:
  • the first category is a cell-related list, which may include a cell identifier and a cell-specific offset for event-triggered reporting.
  • the second category is the blacklisted cell list.
  • the cells in the blacklist cannot be used for event evaluation or measurement reporting.
  • the third category is the whitelisted cell list.
  • the cells in the whitelist are the only cells that can be used for event evaluation or measurement reporting.
  • the reporting configuration parameters can provide a reporting configuration list.
  • Each MO can have one or more reporting configurations.
  • Each reporting configuration includes the reporting criteria that triggers the UE to send a measurement report, the reference signal (RS) type that the UE can use for beam and cell measurement, and the reporting format.
  • RS reference signal
  • the reporting criteria for triggering the UE to send a measurement report can be a periodic trigger or a single event trigger.
  • the triggered event can meet the triggering condition of the aforementioned measurement event.
  • the reporting criteria can be a global cell identifier (cell global identifier, CGI) report (reportCGI) or a system frame number (system frame number, SFN) and frame boundary timing difference report (SFN and frame timing difference, reportSFTD).
  • reportCGI is used to detect the CGI of the cell.
  • reportSFTD is used to detect the primary cell (primary The SFN and frame boundary timing difference results between the PCell) and the target cell.
  • RS types may include SSB or CSI-RS, etc.
  • the reporting format is used to indicate the type of measurement quantity for each cell and each beam included in the measurement report by the UE (for example, RSRP, reference signal received quality (RSRQ), etc.), as well as other related information (for example, the maximum number of cells that can be reported and the maximum number of beams per cell, etc.).
  • RSRP reference signal received quality
  • RSS reference signal received quality
  • the measurement identifier parameter provides a list of measurement identifiers, where each measurement identifier is associated with an MO with a reporting configuration. By configuring multiple measurement identifiers, multiple MOs can be associated with the same reporting configuration, or multiple reporting configurations can be associated with the same MO.
  • the UE will include the corresponding measurement identifier in the measurement report that triggers the report as a reference to the network.
  • the measurement configuration parameters define the measurement filter configuration for event-triggered and periodic reporting measurements.
  • the measurement interval configuration parameter indicates the time period that the UE may use to perform measurements.
  • the S measurement parameter provides a threshold control for the quality of the NR serving cell SpCell and may include a threshold value related to the quality of the NR SpCell. For example, after configuring the S measurement, the UE will start measuring non-serving cells only when the quality of the SpCell is lower than the set threshold.
  • Step S401 The UE sends a measurement report to a source base station.
  • the measurement report in step S401 is a layer 3 measurement report or a layer 3 measurement result.
  • the layer 3 measurement report may include the signal quality of the serving cell and the neighboring cell.
  • Step S402 The source base station executes a handover decision.
  • the source base station may make a handover decision based on the measurement results of the layer 3 measurement report and/or its own handover algorithm. For example, if the signal quality of the source cell is poor, but the signal quality of the target cell is good, the base station may decide to trigger a handover.
  • Step S403 The source base station sends a handover request to the target base station.
  • the source base station If the source base station decides to trigger the handover, the source base station sends a handover request to the target cell, which may include the target cell identifier (ID), a key, the UE ID in the source cell, the configuration of the access layer, and the like.
  • ID target cell identifier
  • the source base station sends a handover request to the target cell, which may include the target cell identifier (ID), a key, the UE ID in the source cell, the configuration of the access layer, and the like.
  • ID target cell identifier
  • the source base station sends a handover request to the target cell, which may include the target cell identifier (ID), a key, the UE ID in the source cell, the configuration of the access layer, and the like.
  • Step S404 The target base station performs admission control.
  • Admission control can be performed by the target base station. If slice information is sent to the target base station, slice-aware admission control should be performed. If a protocol data unit (PDU) session is associated with an unsupported slice, the target base station should reject such PDU session.
  • PDU protocol data unit
  • Step S405 The target base station sends a handover request confirmation message to the source base station.
  • the switching request confirmation message can be included in the confirmation message in the form of an RRC container.
  • Step S406 The source base station sends a handover command to the UE.
  • the switching command can be sent through the RRC reconfiguration message.
  • the switching command may include the information required for accessing the target cell, including at least the target cell identifier, the new UE ID, the security algorithm identifier of the target base station, and may also carry a dedicated random access channel (RACH) resource for accessing the target cell.
  • RACH dedicated random access channel
  • the UE disconnects from the source cell.
  • Step S407 The UE performs a synchronization process with the target base station.
  • the synchronization process may be implemented through a RACH process to access the target cell, and subsequently the UE may transmit data with the target cell.
  • Step S408 The UE sends an RRC reconfiguration complete message to the target cell.
  • the RRC reconfiguration complete message may be used to confirm successful completion of the RRC reconfiguration process.
  • L1/L2 switching is a switching method that aims to reduce switching delay and interruption time and improve the user experience and service continuity of terminal devices.
  • L1/L2 switching can trigger terminal devices to perform switching through L1 signaling (such as downlink control information (DCI)) and/or L2 signaling (such as medium access control control element (MAC CE)).
  • L1 signaling such as downlink control information (DCI)
  • MAC CE medium access control control element
  • L1/L2 switching can also be called low-layer switching, or layer 1 and/or layer 2 triggered mobility (L1/L2triggered mobility, LTM) or low-layer triggered switching.
  • the main idea of the LTM process is that the base station configures one or more candidate cells based on the measurement report reported by the UE (for example, RRM measurement report or layer 3 (Layer 3, L3) measurement report), and provides the UE with pre-configuration information of one or more candidate cells (which can be called LTM candidate cells) through RRC messages.
  • the UE sends a measurement report (for example, layer 1 measurement report) to the base station, and the source DU decides to trigger LTM switching based on the measurement report reported by the UE.
  • the source DU sends an LTM switching command to the UE through layer 1 signaling and/or layer 2 signaling to enable the UE to perform the switching process.
  • the LTM process can be a switching process within the same CU.
  • the LTM process includes a variety of switching scenarios, and the following are exemplified, among which:
  • Scenario 1 LTM process between DUs within a CU (intra-CU inter-DU).
  • FIG. 5 is a schematic diagram of a flow chart of an intra-CU inter-DU LTM process provided by an embodiment of the present application, wherein the source DU and the target DU in the LTM switching process are different DUs.
  • the intra-CU inter-DU L1/L2 switching method may include the following steps S500 to S511, wherein:
  • Step S500 The CU sends a measurement configuration to the UE.
  • the measurement configuration may be a layer 3 measurement configuration, and reference may be made to the description of step S400, which will not be repeated here.
  • Step S501 UE reports a first measurement report.
  • the UE reports a first measurement report to the CU.
  • the first measurement report may be a layer 3 measurement report.
  • the measurement result in the first measurement report may be obtained by measuring according to the measurement configuration in step S500.
  • Step S502 CU makes a switching decision.
  • Step S503 The CU sends a UE context establishment request to the DU.
  • the CU requests LTM from one or more candidate cells belonging to one or more candidate DUs.
  • the CU may send a UE context establishment request message to the candidate cell, or may send an LTM request message.
  • the CU may determine the added candidate cell by referring to the measurement report reported by the UE and/or its own switching algorithm.
  • Step S504 The candidate DU performs admission control.
  • Step S505 The candidate DU sends a UE context request confirmation message to the CU.
  • the candidate DU may send a UE context establishment request confirmation message or an LTM request confirmation message to the CU, wherein the UE context establishment request confirmation message may include configuration information of the candidate cell.
  • Step S506 The CU sends an RRC reconfiguration message to the UE.
  • the RRC reconfiguration message includes LTM configuration information.
  • the LTM configuration information can also be called L1/L2 switching (pre) configuration information or LTM candidate cell configuration information, etc.
  • the LTM configuration information may include (pre) configuration information of one or more candidate cells (referred to as LTM candidate cells in this article).
  • the configuration information of the candidate cell is configured through cell group configuration or RRC reconfiguration.
  • the RRC reconfiguration message may also include configuration information of the source cell, or may include L1 measurement configuration or layer 1 measurement reporting configuration. The UE does not disconnect from the source cell after receiving the RRC reconfiguration message.
  • Step S507 The UE sends an RRC reconfiguration complete message.
  • the UE sends an RRC reconfiguration complete message to the CU.
  • the RRC reconfiguration complete message may be sent to a source cell in a source DU.
  • the RRC reconfiguration complete message is used to indicate that the RRC reconfiguration message has been successfully received.
  • Step S508 The UE reports a second measurement report.
  • the UE sends a second measurement report to the source DU, wherein the second measurement report may include an L1 measurement report, and the second measurement report may be obtained by measuring based on the L1 measurement configuration in step S506.
  • the second measurement report may include an L1 measurement report
  • the second measurement report may be obtained by measuring based on the L1 measurement configuration in step S506.
  • Step S509 The source DU sends a handover command to the UE.
  • the source DU can make a switching decision based on the second measurement result reported by the UE. If the source DU decides to trigger the LTM process, a switching command can be sent to the UE. Accordingly, the UE receives a switching command from the source DU.
  • the switching command can be an LTM switching command, or an L1/L2 switching command, or an LMT cell switching command, which is only used as an example and the name is not limited.
  • the switching command can be carried in MAC layer signaling (MAC CE) or physical layer signaling (DCI).
  • the LTM switching command is used to indicate information about the target cell to which the UE switches, such as a target cell index, or a target cell PCI (the target cell can be included in the above-mentioned candidate cells), or indicates the configuration information of the target cell.
  • the LTM switching command can also include beam information.
  • Step S510 The UE performs an access process to the target cell.
  • the UE performs a synchronization process with the target DU.
  • the synchronization process may be implemented through a RACH process.
  • the access process can be implemented through the RACH process or through RACH-less.
  • the UE after receiving the handover command, the UE performs a random access process to the target cell, or if the UE has obtained the timing advance before receiving the handover command, the UE sends a handover completion confirmation to the target cell on the pre-configured resources after receiving the handover command.
  • the UE can initiate access to the target DU where the target cell is located based on the target cell indicated in the L1/L2 handover command, and the UE can subsequently transmit data with the target cell.
  • step S511 the UE sends a switching completion message to the target DU.
  • the handover completion message may be sent to the target cell indicated in the L1/L2 handover command.
  • Scenario 2 LTM process within CU and DU (intra-CU intra-DU).
  • FIG. 6 is a schematic diagram of a flow chart of an LTM process within a DU within a CU provided by an embodiment of the present application, wherein the source DU and the target DU in the LTM switching process are the same DU.
  • the L1/L2 switching method within a DU within a CU may include the following steps S600 to S610, wherein:
  • Step S600 The CU sends measurement configuration to the UE.
  • the measurement configuration may be a layer 3 measurement configuration, and reference may be made to the description of step S400, which will not be repeated here.
  • Step S601 UE reports a first measurement report.
  • the UE sends a first measurement report to the CU.
  • the first measurement report may be a layer 3 measurement report.
  • the measurement result in the first measurement report may be obtained by measuring according to the measurement configuration in step S600.
  • Step S602 The CU sends a UE context modification request message to the DU.
  • the UE context modification request may be used to obtain modified UE context information.
  • the CU may determine the candidate cell to be added according to the measurement report reported by the UE and/or its own switching algorithm.
  • Step S603 DU performs admission control.
  • step S604 may be performed: the DU sends a UE context modification request confirmation message to the CU.
  • the DU sends a LTM request confirmation message to the CU.
  • the UE context modification request confirmation message may include configuration information of the candidate cell.
  • Step S605 The CU sends an RRC reconfiguration message to the UE.
  • Step S606 The UE sends an RRC reconfiguration complete message.
  • the UE sends an RRC reconfiguration completion message to the CU.
  • Step S607 The UE reports a second measurement report.
  • the UE sends a second measurement report to the DU.
  • Step S608 The DU sends a handover command to the UE.
  • Step S609 The UE performs an access process to the target cell.
  • step S610 the UE sends a switching completion message to the target DU.
  • step S603 to step S610 can refer to the description of step S504 and step S511 in Figure 5 respectively, and will not be repeated here.
  • the UE For cells configured as LTM candidate cells, the UE needs to perform layer 1 measurements on these cells. If the UE also needs to perform layer 3 measurements on these cells, since layer 1 measurements are beam-level measurement results, while layer 3 measurements are cell-level measurement results, the UE reports a measurement report containing the measurement results.
  • the target cells for the network to trigger handover based on the layer 1 measurement report and the layer 3 measurement report may be different, resulting in frequent handovers and affecting the LTM handover performance. For example, the base station can first handover the UE from cell 1 to cell 2 based on the layer 1 measurement results.
  • the base station can also determine that the signal quality of cell 1 is higher than the signal quality of cell 2 based on the layer 3 measurement results, and thus handover the UE from cell 2 back to cell 1 through layer 3 handover, resulting in frequent ping-pong handovers.
  • the UE reporting layer 3 measurement results may be useless to the network, and the UE sending layer 3 measurement reports related to these cells will report the waste of air interface resources, and the network processing these layer 3 measurement reports will increase the processing burden of the base station.
  • the present application proposes a communication method, which will be described below through the following embodiments.
  • Some of these communication methods are only for part of the process in the cell switching, and some can be applied to any one or more processes in the cell switching. It should be understood that these communication methods can be used in combination with each other. For example, one process in the cell switching may use one method and another process may use another method, or one process in the cell switching may use both one method and another method.
  • the terminal device in the embodiment of the present application may be a terminal device in the network architecture shown in Figure 1, and the functions performed by the terminal device in this embodiment may be performed by a device in the terminal device (for example, a chip, or a chip system, or a circuit).
  • the network device in this embodiment may be a network device in the network architecture shown in Figure 1, and the functions performed by the network device in this embodiment may be performed by a device in the network device (for example, a chip, or a chip system, or a circuit).
  • the embodiments of the present application are uniformly described here and will not be described in detail later.
  • FIG. 7 is a flow chart of the first communication method provided by an embodiment of the present application.
  • the communication method may include steps S701 to S703, wherein:
  • Step S701 The network device sends a first configuration to the terminal device; wherein the first configuration includes information of LTM candidate cells.
  • the terminal device receives the first configuration from the network device.
  • the first configuration may be included in an RRC message, such as an RRC reconfiguration message.
  • the RRC reconfiguration message may refer to the description of step S504 and will not be described in detail here.
  • the first configuration includes information about the LTM candidate cell.
  • the LTM candidate cell may be provided by the network.
  • the network device determines the LTM candidate cells according to the measurement report (e.g., layer 3 measurement report, etc.) reported by the terminal device.
  • the present application does not limit the number of LTM candidate cells and the information of LTM candidate cells, and the number of LTM candidate cells may be one or more.
  • the information of LTM candidate cells may include the physical cell identities (PCI) of the LTM candidate cells, and may also include the configuration information of the LTM candidate cells.
  • PCI physical cell identities
  • Step S702 The network device sends a second configuration to the terminal device; wherein the second configuration includes a first measurement configuration, and the first measurement configuration includes a measurement object configuration.
  • the terminal device receives the second configuration from the network device.
  • the second configuration may be included in an RRC message, such as an RRC reconfiguration message.
  • the first configuration and the second configuration may be included in the same RRC message, or may be included in different RRC messages.
  • the second configuration includes a first measurement configuration, which may be configuration information for the first measurement.
  • the present application does not limit the type of the first measurement and the content of the first measurement configuration.
  • the first measurement may be a layer 3 measurement, or may be an RRM measurement.
  • the first measurement configuration may include a measurement object configuration, and the measurement object configuration may include parameters of the measurement object, for example, frequency information of the measurement object, so that the terminal device can scan the measurement results of the measurement object (cell) to be measured based on the frequency information.
  • the first measurement may also include parameters such as measurement identification, reporting configuration, measurement quantity configuration, measurement interval configuration and S measurement configuration.
  • the reporting configuration may include configuration information of the measurement event to be reported, and the measurement event may include the aforementioned A1 measurement event to A6 measurement event, B1 measurement event and B2 measurement event.
  • the reporting type of the measurement event may include periodic reporting and event-type reporting, wherein periodic reporting means that when the timer of the measurement period times out, the terminal device triggers the measurement report.
  • the timer may count or count down based on the time threshold set in advance for the measurement period, and when the timing time is the time threshold or the countdown time is 0, it is confirmed that the timer of the measurement period has timed out.
  • Event-type reporting means that when the measurement result meets the measurement report triggering condition of the measurement event, the terminal device reports the measurement result.
  • the measurement reporting event of the event-type reporting may include at least one of the following: A1 measurement event, A2 measurement event, A3 measurement event, A4 measurement event, A5 measurement event, B1 measurement event, B2 measurement event.
  • the trigger condition of the A1 measurement event is that the signal quality of the serving cell is higher than the signal quality threshold
  • the measurement report trigger condition is that the trigger condition of the A1 measurement event is met and the duration exceeds the time threshold. If the duration that the signal quality of cell A is higher than the signal quality threshold exceeds the time threshold, the measurement result of cell A is reported. If the duration that the signal quality of cell A is higher than the signal quality threshold does not exceed the time threshold, the measurement result of cell A is not reported. Before reporting the measurement result of cell A, the measurement result of cell A can be added to the triggering cell list. After reporting the measurement result of cell A, if the duration that the signal quality of cell A is lower than the signal quality threshold exceeds the time threshold, cell A in the triggering cell list can be deleted.
  • the measurement reporting trigger conditions may include the trigger conditions of the aforementioned various types of measurement reporting events, and may also include other trigger conditions, for example, whether the measurement object in the first measurement configuration is a preset object, specifically whether the measurement cell is an LTM candidate cell; whether the trigger event of the measurement cell is a target event; measurement cycles defined for different cells, etc., which are not limited in this application.
  • Step S703 If the first cell detected according to the measurement object configuration is an LTM candidate cell, the terminal device does not perform the first behavior for the first cell.
  • the first behavior includes at least one of the following: a first measurement, and reporting of a measurement report of the first measurement.
  • the first measurement is a layer 3 measurement
  • the measurement report of the first measurement may be a layer 3 measurement report.
  • the first measurement is an RRM measurement
  • the measurement report of the first measurement may be an RRM measurement report.
  • the terminal device may detect the first cell according to relevant parameters in the measurement object configuration. For example, the terminal device detects the first cell according to the frequency information in the measurement object configuration in step S702, and the terminal device determines whether the first cell is an LTM candidate cell according to the information of the LTM candidate cell configured in step S701.
  • the first measurement and the reporting configuration of the first measurement may refer to the description of step S702, which will not be repeated here.
  • the fact that the terminal device does not perform the first behavior for the first cell may be understood as the first behavior not being applicable to the LTM candidate cell in the first cell.
  • the terminal device may not correlate with the PCI of the first cell, and thus will not perform the first measurement, nor will it report the measurement result of the first measurement.
  • the terminal device receives the first configuration and the second configuration from the network device, and if the first cell detected according to the measurement object configuration in the second configuration is an LTM candidate cell, the terminal device does not perform the first behavior for the first cell. In this way, for the LTM candidate cell, the first behavior may not be performed, so that the first measurement may not be performed on the LTM candidate cell, or the measurement result of the first measurement on the LTM candidate cell may not be reported, which can avoid frequent switching and improve the LTM switching performance.
  • FIG. 8 is a flow chart of a second communication method provided in an embodiment of the present application. It should be understood that the terminology explanations of different embodiments in the present application can refer to each other, and in order to avoid redundant descriptions, different embodiments may not repeat the same terminology. As shown in FIG. 8 , the communication method may include steps S801 to S803, wherein:
  • Step S801 The network device sends a first configuration to the terminal device; wherein the first configuration includes information of LTM candidate cells.
  • the terminal device receives the first configuration from the network device.
  • Step S802 The network device sends a second configuration to the terminal device; wherein the second configuration includes a first measurement configuration, and the first measurement configuration includes a measurement object configuration.
  • the terminal device receives the second configuration from the network device.
  • Step S803 If the first cell detected according to the measurement object configuration is not an LTM candidate cell, the terminal device performs a first action for the first cell.
  • the first behavior includes at least one of the following: reporting of the first measurement and the measurement report of the first measurement.
  • Step S801 can refer to the description of step S701
  • step S802 can refer to the description of step S702, which will not be repeated here.
  • a cell that is not an LTM candidate cell can be referred to as a non-LTM candidate cell, but this is not limited to this.
  • the terminal device receives a first configuration and a second configuration from a network device. If the first cell detected according to the measurement object configuration in the second configuration is not an LTM candidate cell, the first behavior can be performed for the first cell. In this way, for cells configured as non-LTM candidate cells, the first behavior can be performed, so that the first measurement can be performed on the non-LTM candidate cells, and the measurement results of the first measurement of the non-LTM candidate cells can also be reported.
  • the network device can trigger layer 3 switching based on the measurement results of these reported cells, thereby improving the switching performance and facilitating the improvement of the communication quality of the terminal device.
  • the first measurement is not performed for the LTM candidate cells in the cells detected based on the measurement objects, and the measurement report of the first measurement of the candidate cells is not reported.
  • the first behavior is only performed for the first cell that does not belong to the LTM candidate cell, which can avoid frequent ping-pong switching and improve the LTM switching performance.
  • step S802 it may also include: if the first cell detected according to the measurement object configuration is an LTM candidate cell, the terminal device does not perform the first behavior for the first cell. In this way, the first behavior may not be performed for the LTM candidate cell while the measurement result of the non-LTM candidate cell is reported, so that the first measurement may not be performed on the LTM candidate cell, or the measurement result of the first measurement on the LTM candidate cell may not be reported, which may avoid frequent ping-pong switching and improve LTM switching performance.
  • the first configuration may also include the first information or the second information.
  • the first information and the second information may be included in the same indication.
  • one of the first information and the second information is included in the first indication, which can be understood as the first indication being used to indicate the first information or the second information.
  • the first indication is 1-bit indication information, and the value of the first indication may be 0 or 1.
  • the value of the first indication When the value of the first indication is 0, it indicates that the first indication is used to indicate the first information, and when the value of the first indication is 1, it indicates that the first indication is used to indicate the second information; or when the value of the first indication is 1, it indicates that the first indication is used to indicate the first information, and when the value of the first indication is 0, it indicates that the first indication is used to indicate the second information.
  • the first indication may be true or false, and when the value of the first indication is true, it indicates that the first indication is used to indicate the first information, and when the value of the first indication is flase, it indicates that the first indication is used to indicate the second information; or when the value of the first indication is false, it indicates that the first indication is used to indicate the first information, and when the value of the first indication is true, it indicates that the first indication is used to indicate the second information, etc.
  • the first information and the second information may be included in different indications.
  • the first information is a field
  • the second information is a second field. If the network device is configured with the first field, the terminal device may perform the behavior indicated by the first information, and if the network device is configured with the second field, the terminal device may perform the behavior indicated by the second information.
  • the first information is used to indicate: if the first cell is not an LTM candidate cell, the first behavior is performed for the first cell; and/or if the first cell is an LTM candidate cell, the first behavior is not performed for the first cell.
  • the first information is used to instruct the terminal device to perform the first behavior for the first cell that is not an LTM candidate cell, or is also used to instruct the terminal device not to perform the first behavior for the first cell that is an LTM candidate cell. It can be understood that the first information is used to instruct the terminal device to perform step S703 and/or step S803.
  • the second information is used to indicate that the first behavior is executed for the first cell. That is, regardless of whether the first cell is an LTM candidate cell, the first behavior can be executed for the first cell. It can be understood that the second information is used to instruct the terminal device not to execute step S703 and step S803, and it can also be understood that the terminal device executes the first behavior according to the existing method. By executing the first information, compared with executing the second information in the prior art, the first behavior is not executed for the LTM candidate cell in the cell detected based on the measurement object, which can avoid frequent ping-pong switching and improve the LTM switching performance.
  • the first configuration may further include a second measurement configuration
  • the communication method shown in FIG. 7 and FIG. 8 may further include: the terminal device performs a second measurement according to the second measurement configuration.
  • the second measurement configuration can be understood as configuration information for the second measurement.
  • This application does not limit the type of the second measurement and the content of the second measurement configuration.
  • the second measurement may include at least one of the following: layer 1 measurement, SSB measurement, CSI-RS measurement.
  • the second measurement configuration may include one or more of the following: measurement period, measurement resource (for example, SSB or CSI-RS), measurement quantity configuration, measurement interval, measurement identifier, S measurement configuration.
  • the second measurement can be performed according to the second measurement configuration, and the measurement result of the second measurement can also be reported, so that the network device makes a switching decision based on the measurement result of the second measurement.
  • the terminal The end device can execute the LTM switching process, which improves the switching efficiency.
  • the terminal device performing the first behavior for the first cell may include: the terminal device performing the first behavior for the first cell according to the first measurement configuration.
  • the first measurement configuration may further include at least one of the following parameters: measurement identifier, reporting configuration, measurement amount configuration, measurement interval configuration, and S configuration. It can be understood that executing the first behavior according to these parameters in the first measurement configuration can improve the accuracy of executing the first behavior and help improve the switching performance.
  • the reporting of the measurement report of the first measurement needs to satisfy that the first cell is an LTM candidate cell, and can also be reported based on the reporting configuration of the first measurement.
  • executing the first behavior for the first cell may include: if the timer of the measurement period times out or the measurement event meets the measurement report triggering condition, the terminal device reports the measurement result of the first measurement for the first cell. That is to say, in the case where the first cell is a non-LTM candidate cell, if the timer of the measurement period times out, the first behavior is executed, that is, the measurement result of the first measurement is reported for the first cell.
  • the first cell is a non-LTM candidate cell
  • the first behavior is executed, that is, the measurement result of the first measurement is reported for the first cell.
  • the measurement result of the first measurement of the non-LTM candidate cell can be reported, and the network device can trigger layer 3 switching based on the measurement results of these reported cells to ensure the performance of the switching.
  • FIG. 9 is a flow chart of a third communication method provided in an embodiment of the present application. It should be understood that the terminology explanations of different embodiments in the present application can refer to each other, and in order to avoid redundant descriptions, different embodiments may not repeat the same term. As shown in FIG. 9, the communication method may include steps S901 to S904, wherein:
  • Step S901 The network device sends a third configuration to the terminal device; wherein the third configuration includes a first list, and the first list includes at least one cell.
  • the terminal device receives the third configuration from the network device.
  • the third configuration and the first configuration may be included in the same message, or the third configuration and the first configuration may be included in different messages.
  • the cells in the first list do not perform the first behavior, and the first behavior includes reporting the first measurement and/or the measurement result of the first measurement.
  • the cells in the first list include LTM candidate cells.
  • the LTM candidate cells here may be all LTM candidate cells, or may include some LTM candidate cells.
  • the cells in the first list include some candidate cells. It can be understood that reporting the measurement results of the first measurement of some cells can save power consumption and air interface resources.
  • the first list and the blacklist cell list can be two separate lists.
  • the cells listed in the blacklist are used to prohibit the terminal device from performing the first measurement on the cell.
  • the cells in the blacklist list can include LTM cells and non-LTM cells.
  • the cells in the first list are used to prohibit the execution of the first behavior, and the first list contains some or all of the LTM candidate cells.
  • the terminal device will not perform the first measurement on the cell, and the terminal device can perform the second measurement for LTM switching.
  • Step S902 The network device sends a second configuration to the terminal device; wherein the second configuration includes a first measurement configuration, and the first measurement configuration includes a measurement object configuration.
  • the terminal device receives the second configuration from the network device.
  • the second configuration can refer to the description of step S701, which will not be repeated here.
  • step S903 the terminal device detects the first cell according to the measurement object configuration.
  • Step S904 The terminal device executes the first behavior according to the first list.
  • the terminal device determines whether the first cell is a cell in the first list.
  • the terminal device performs the first behavior according to the first list, and is implemented in one of the following implementations:
  • Mode 1 if the first cell is not a cell in the first list, the terminal device performs the first behavior for the first cell, and if the first cell is a cell in the first list, the terminal device does not perform the first behavior for the first cell;
  • Mode 2 If the first cell is not a cell in the first list, the terminal device performs the first behavior for the first cell. It can be understood that the terminal device only performs the first behavior for cells that are not in the first list;
  • Method 3 If the first cell is a cell in the first list, the terminal device does not perform the first behavior for the first cell.
  • the terminal device receives a second configuration and a third configuration from the network device. If the first cell detected according to the measurement object configuration in the second configuration is a cell in the first list in the third configuration, the terminal device may not perform the first behavior for the first cell. If the first cell is not a cell in the first list, the first behavior may be performed for the first cell. In this way, the network device can configure the cell in which the terminal device does not perform the first behavior through a list, thereby improving the flexibility of the configuration through network configuration.
  • the terminal device performs the first behavior according to the first measurement configuration and the first list of the network configuration, and does not perform the first behavior for some LTM candidate cells, thereby reducing the measurement power consumption of the terminal device and saving air interface resources for measurement reporting.
  • the network device needs to perform Functions such as carrier management or LTM candidate cell management can also configure LTM candidate cells that do not belong to the first list, so that the terminal device performs the first measurement on these LTM candidate cells that do not belong to the first list, thereby realizing cell management or carrier management functions.
  • FIG. 10 is a flow chart of the fourth communication method provided in an embodiment of the present application. It should be understood that the terminology explanations of different embodiments in the present application can refer to each other, and in order to avoid redundant descriptions, different embodiments may not repeat the same term. As shown in FIG. 10, the communication method may include S1001, wherein:
  • Step S1001 the network device sends a fourth configuration to the terminal device; wherein the fourth configuration includes third information, and the third information indicates a measurement event type for allowing or prohibiting measurement result reporting.
  • the terminal device receives the fourth configuration from the network device.
  • the fourth configuration and the first configuration may be included in the same message, or the fourth configuration and the first configuration may be included in different messages.
  • the fourth configuration may include third information, and the third information may be used to indicate the measurement event type for which measurement result reporting is allowed, or to indicate the measurement event type for which measurement result reporting is prohibited.
  • the third information may include a second list, and the second list includes at least one measurement event type. If the measurement event type included in the second list is a measurement event type for which measurement result reporting is allowed, the third information is used to indicate the measurement event type for which measurement result reporting is allowed. If the measurement event type included in the second list is a measurement event type for which measurement result reporting is prohibited, the third information is used to indicate the measurement event type for which measurement result reporting is prohibited.
  • the present application does not limit the measurement event type that allows or prohibits the measurement result reporting, which can be the measurement event type of the aforementioned measurement event.
  • the measurement event type that allows the measurement result reporting is the measurement event type of the A1 measurement event
  • the measurement event type that prohibits the measurement result reporting is the measurement event type of the A3 measurement event, etc.
  • the following steps may also be included: when the measurement result of the first cell meets the measurement report trigger condition of the measurement event type that allows measurement result reporting, reporting the measurement result; and/or when the measurement result of the first cell meets the measurement report trigger condition of the measurement event type that prohibits measurement result reporting, not reporting the measurement result.
  • the first cell is a cell detected according to the measurement object configuration.
  • the third information may be applicable to any cell.
  • the measurement event type included in the second list is a measurement event type that allows measurement result reporting
  • the third information is applicable to the first cell; or when the measurement event type included in the second list is a measurement event type that prohibits measurement result reporting, the third information is not applicable to the first cell.
  • the measurement event type included in the second list is a measurement event type that allows measurement result reporting
  • the measurement events in the second list are applicable to the first cell; or when the measurement event type included in the second list is a measurement event type that prohibits measurement result reporting, the measurement events in the second list are not applicable to the first cell.
  • the terminal device receives the fourth configuration from the network device, and determines the measurement event type that allows or prohibits the measurement result reporting according to the third information in the fourth configuration, so that the terminal device can report or not report the results related to the measurement event based on each event type, which can reduce the reporting of the measurement results based on each event, saving power consumption and air interface resources.
  • the network device includes the A3 event in the second list indicating the prohibition of measurement result reporting, the UE does not report the measurement result of the A3 event based on the second list, and the network device does not receive the measurement result of the A3 event, so it will not make a switching decision based on the A3 event, thereby avoiding the conflict between layer 1 and layer 3 switching, avoiding ping-pong switching, and improving the LTM switching performance.
  • the network device sends a second configuration to the terminal device.
  • the second configuration includes a first measurement configuration
  • the first measurement configuration includes a measurement object configuration.
  • the first configuration and the second configuration may refer to the description of the embodiments of Figures 7 and 8, which will not be repeated here. This application does not limit the execution order of the first configuration, the second configuration, and the fourth configuration.
  • it may also include: if the first cell detected according to the measurement object configuration is an LTM candidate cell, when the measurement result of the first cell meets the measurement reporting trigger condition of the measurement event type that allows measurement result reporting, reporting the measurement result; and/or if the first cell detected according to the measurement object configuration is an LTM candidate cell, the measurement result of the measurement event type that prohibits measurement result reporting is not reported for the first cell.
  • the third information is applicable to the LTM candidate cell in the first cell; when the measurement event type included in the second list is a measurement event type that prohibits measurement result reporting, the third information is not applicable to the LTM candidate cell in the first cell.
  • the measurement event type included in the second list is a measurement event type that allows measurement result reporting
  • the measurement event in the second list is applicable to the LTM candidate cell in the first cell; or when the measurement event type included in the second list is a measurement event type that prohibits measurement result reporting
  • the measurement events in the second list are not applicable to the LTM candidate cells in the first cell.
  • the measurement result of the first cell satisfies the measurement reporting trigger condition of the measurement event type that allows measurement result reporting, which may include that the measurement event involved in the measurement result of the first cell is a measurement event type that allows measurement result reporting, and the measurement result of the first cell satisfies the trigger condition of the measurement event, for example, the duration of the measurement event exceeds a preset time threshold, etc.
  • the measurement result of the first cell satisfies the measurement report triggering condition of the measurement event type that allows the measurement result to be reported, or may include that the measurement parameter in the measurement result of the first cell satisfies a preset parameter threshold.
  • the measurement result of the first cell includes the signal quality of the first cell. In some feasible examples, if the signal quality of the first cell is less than the signal quality threshold, it is determined that the signal quality of the first cell satisfies the measurement report triggering condition of the measurement event type that allows the measurement result to be reported.
  • the signal quality of the first cell when the signal quality of the first cell is less than the signal quality threshold, it indicates that the signal quality is poor, and further judgment is required whether to switch, so that the measurement result of the first cell can be used as the measurement report triggering condition that satisfies the measurement event type that allows the measurement result to be reported.
  • the accuracy of the switching decision can be improved, which is conducive to reducing the number of switching times and improving the switching performance.
  • the terminal device detects the first cell according to the measurement object configuration in the second configuration from the network device. If the first cell is an LTM candidate cell, the measurement result of the first cell can be reported when it meets the measurement report trigger condition of the measurement event type that allows the measurement result to be reported. When the first cell is an LTM candidate cell, but the measurement event type of the first cell is a measurement event type that prohibits the measurement result from being reported, even if the measurement result of the first cell meets the measurement report trigger condition, the measurement report is not reported. In this way, by filtering the measurement results to be reported by the measurement event type and the measurement report trigger condition, unnecessary measurement reports can be avoided, power consumption and air interface resources can be saved, and switching performance can be improved.
  • the measurement results of non-LTM candidate cells in the first cell can be reported. Or the measurement results of non-LTM candidate cells can be reported when they meet the preset measurement report trigger condition.
  • the first measurement configuration may also include a first measurement cycle
  • the communication method may also include the following steps: the network device sends a fifth configuration to the terminal device; if the first cell is an LTM candidate cell, perform a first measurement on the first cell based on the second measurement cycle; or if the first cell is not an LTM candidate cell, perform a first measurement on the first cell based on the first measurement cycle.
  • the second measurement period is greater than the first measurement period.
  • the first measurement period is applicable to non-LTM candidate cells in the first cell detected according to the measurement object configuration, and the second measurement period is applicable to LTM candidate cells in the first cell. That is to say, when the first cell is a non-LTM candidate cell, the first measurement can be performed on the first cell based on the first measurement period. And when the first cell is an LTM candidate cell, the first measurement can be performed on the first cell based on the second measurement period.
  • the measurement period (or measurement window) of the LTM candidate cell can be greater than the measurement period of the non-LTM candidate cell to reduce the first measurement of the LTM candidate cell, thereby reducing the reporting of the measurement results, which can save power consumption and air interface resources, and is conducive to improving the LTM switching performance.
  • FIG. 11 is a flowchart of the fifth communication method provided by an embodiment of the present application. It should be understood that the terminology explanations of different embodiments in the present application can refer to each other, and in order to avoid redundant descriptions, different embodiments may not repeat the same term. As shown in FIG. 11, the communication method may include steps S1101 to S1106, wherein:
  • Step S1101 The network device sends a second configuration to the terminal device; wherein the second configuration includes a first measurement configuration, and the first measurement configuration includes a measurement object configuration and a first measurement period.
  • the terminal device receives the second configuration from the network device.
  • Step S1102 The network device sends a fifth configuration to the terminal device; wherein the fifth configuration includes a second measurement period, and the second measurement period is greater than the first measurement period.
  • the terminal device receives the fifth configuration from the network device.
  • step S1103 the terminal device detects the first cell according to the measurement object configuration.
  • step S1104 the terminal device determines whether the first cell is an LTM candidate cell.
  • step S1105 is executed: the terminal device performs a first measurement on the first cell based on the second measurement cycle. If the first cell is not an LTM candidate cell, step S1106 is executed: the terminal device performs a first measurement on the first cell based on the first measurement cycle.
  • step S1103 and step S1104 can be performed according to whether the first cell is an LTM candidate cell. If there is a first cell that is an LTM candidate cell and there is a first cell that is not an LTM candidate cell, both step S1103 and step S1104 are performed.
  • the terminal device receives the second configuration and the fifth configuration sent by the network device, and can determine the first cell according to the measurement object configuration in the second configuration, and when the first cell is a non-LTM candidate cell, perform the first measurement on the first cell based on the first measurement period.
  • the first cell is an LTM candidate cell
  • the first measurement can be performed on the first cell based on the second measurement period.
  • the measurement period (or measurement window) of the LTM candidate cell can be greater than the measurement period of the non-LTM candidate cell to reduce Reporting the measurement results of LTM candidate cells can save power consumption and air interface resources, and is conducive to improving LTM handover performance.
  • the communication device 1200 includes a transceiver unit 1201 and a processing unit 1202.
  • the communication device 1200 can be a terminal device, or can be a device in a terminal device (for example, a chip, or a chip system, or a circuit).
  • the communication device 1200 as a terminal device can include the following three aspects.
  • the transceiver unit 1201 is configured to receive a first configuration from a network device; wherein the first configuration includes information of an LTM candidate cell; receive a second configuration from the network device; wherein the second configuration includes a first measurement configuration, and the first measurement configuration includes a measurement object configuration;
  • Processing unit 1202 is used to execute the first behavior for the first cell if the first cell detected according to the measurement object configuration is not an LTM candidate cell; and/or not execute the first behavior for the first cell if the first cell detected according to the measurement object configuration is an LTM candidate cell; wherein the first behavior includes at least one of the following: a first measurement, and reporting of the measurement result of the first measurement.
  • the first configuration further includes first information or second information, where the first information is used to indicate:
  • the first cell is not an LTM candidate cell, performing a first action for the first cell;
  • the first action is not performed for the first cell
  • the second information is used to instruct to perform a first action on the first cell.
  • the first measurement includes a layer 3 measurement or an RRM measurement.
  • the first configuration also includes a second measurement configuration
  • the processing unit 1202 is further used to perform a second measurement according to the second measurement configuration; wherein the second measurement includes at least one of the following: layer 1 measurement, SSB measurement, CSI-RS measurement.
  • the processing unit 1202 is specifically used to perform a first behavior for the first cell according to a first measurement configuration; wherein the first measurement configuration also includes at least one of the following: a measurement identifier, a reporting configuration, a measurement quantity configuration, a measurement interval configuration, and an S measurement configuration.
  • the processing unit 1202 is specifically configured to report the measurement result of the first measurement for the first cell if the timer of the measurement period times out or the measurement event satisfies the measurement reporting trigger condition.
  • the transceiver unit 1201 is used to receive a third configuration from a network device; wherein the third configuration includes a first list, and the first list includes at least one cell; receive a second configuration from the network device; wherein the second configuration includes a first measurement configuration, and the first measurement configuration includes a measurement object configuration;
  • the processing unit 1202 is used to execute the first behavior for the first cell if the first cell detected according to the measurement object configuration is not a cell in the first list; and/or if the first cell detected according to the measurement object configuration is a cell in the first list, not execute the first behavior for the first cell; wherein the first behavior includes at least one of the following: a first measurement, and reporting of the measurement result of the first measurement.
  • the cells in the first list include LTM candidate cells.
  • the processing unit 1202 is specifically used to perform a first behavior for the first cell according to a first measurement configuration; wherein the first measurement configuration also includes at least one of the following: a measurement identifier, a reporting configuration, a measurement quantity configuration, a measurement interval configuration, and an S measurement configuration.
  • the processing unit 1202 is specifically used to report the measurement result of the first measurement performed on the first cell if the timer of the measurement period times out or the measurement event meets the measurement reporting trigger condition.
  • the transceiver unit 1201 is used to receive a fourth configuration from the network device; wherein the fourth configuration includes third information, and the third information indicates a measurement event type that allows or prohibits reporting of measurement results.
  • the third information includes a second list, and the second list includes at least one measurement event type.
  • the transceiver unit 1201 is further configured to receive a second configuration from the network device; wherein the second configuration includes a first measurement configuration, and the first measurement configuration includes a measurement object configuration;
  • Processing unit 1202 is used to report the measurement result if the first cell detected according to the measurement object configuration is an LTM candidate cell and when the measurement result of the first cell meets the measurement reporting trigger condition of the measurement event type that allows measurement result reporting; and/or if the first cell detected according to the measurement object configuration is an LTM candidate cell, the measurement result of the measurement event type that prohibits measurement result reporting is not reported for the first cell.
  • the first measurement configuration further includes a first measurement period
  • the transceiver unit 1201 is further configured to receive a fifth configuration from the network device; wherein the fifth configuration includes a second measurement period, and the second measurement period is greater than the first measurement period;
  • the processing unit 1202 is further configured to perform the first measurement on the first cell based on the second measurement cycle if the first cell is an LTM candidate cell; and/or perform the first measurement on the first cell based on the first measurement cycle if the first cell is not an LTM candidate cell.
  • the measurement result of the first cell includes the signal quality of the first cell
  • the processing unit 1202 is further configured to determine that the signal quality of the first cell meets the measurement event type that allows the measurement result to be reported if the signal quality of the first cell is less than the signal quality threshold. Measurement reporting trigger conditions.
  • transceiver unit 1201 For a more detailed description of the above-mentioned transceiver unit 1201 and the processing unit 1202, please directly refer to the relevant description of the terminal device in any method embodiment shown in Figures 7 to 11 above, and no further details will be given here.
  • the communication device 1300 includes a transceiver unit 1301.
  • the communication device 1300 can be a network device, or can be a device in a network device (for example, a chip, or a chip system, or a circuit).
  • the communication device 1300 as a terminal device can include the following two aspects.
  • the transceiver unit 1301 is used to send a third configuration to the network device; wherein the third configuration includes a first list, the first list includes at least one cell, the cell in the first list does not perform a first behavior, and the first behavior includes at least one of the following: a first measurement, and reporting of the measurement result of the first measurement.
  • the cells in the first list include LTM candidate cells.
  • the transceiver unit 1301 is used to send a fourth configuration to the network device; wherein the fourth configuration includes third information, and the third information indicates a measurement event type that allows or prohibits triggering measurement result reporting.
  • the third information includes a second list, and the second list includes at least one measurement event type.
  • the transceiver unit 1301 is also used to send a second configuration to the terminal device; wherein the second configuration includes a first measurement configuration, and the first measurement configuration includes a measurement object configuration.
  • the first measurement configuration also includes a first measurement cycle
  • the transceiver unit 1301 is also used to send a fifth configuration to the terminal device; wherein the fifth configuration includes a second measurement cycle, the second measurement cycle is greater than the first measurement cycle, the first measurement cycle is applicable to non-LTM candidate cells in the first cell detected according to the measurement object configuration, and the second measurement cycle is applicable to LTM candidate cells in the first cell.
  • transceiver unit 1301 For a more detailed description of the transceiver unit 1301, please refer to the relevant description of the network device in any of the method embodiments shown in FIG. 7 to FIG. 11, which will not be repeated here.
  • the communication device 1400 may include one or more processors 1401, and the processor 1401 may also be referred to as a processing unit, which can implement certain control functions.
  • Processor 1401 may be a general-purpose processor or a dedicated processor, etc.
  • it may be a baseband processor or a central processing unit.
  • the baseband processor can be used to process communication protocols and communication data
  • the central processing unit can be used to control communication devices (such as base stations, baseband chips, terminals, terminal chips, DUs or CUs, etc.), execute software programs, and process data of software programs.
  • the processor 1401 may also store instructions 1403 and/or data, and the instructions 1403 and/or data may be executed by the processor so that the device 1400 executes the method described in the above method embodiment.
  • the processor 1401 may include a transceiver unit for implementing the receiving and sending functions.
  • the transceiver unit may be a transceiver circuit, or an interface, or an interface circuit, or a communication interface.
  • the transceiver circuit, interface, or interface circuit for implementing the receiving and sending functions may be separate or integrated.
  • the above-mentioned transceiver circuit, interface, or interface circuit may be used for reading and writing code/data, or the above-mentioned transceiver circuit, interface, or interface circuit may be used for transmitting or delivering signals.
  • the communication device 1400 may include a circuit, and the circuit may implement the functions of sending, receiving, or communicating in the aforementioned method embodiments.
  • the communication device 1400 may include one or more memories 1402, on which instructions 1404 may be stored, and the instructions may be executed on the processor so that the communication device 1400 performs the method described in the above method embodiment.
  • data may also be stored in the memory.
  • instructions and/or data may also be stored in the processor.
  • the processor and the memory may be provided separately or integrated together. For example, the corresponding relationship described in the above method embodiment may be stored in the memory or in the processor.
  • the communication device 1400 may further include a transceiver 1405 and/or an antenna 1406.
  • the processor 1401 may be referred to as a processing unit, which controls the device 1400.
  • the transceiver 1405 may be referred to as a transceiver unit, a transceiver, a transceiver circuit, a transceiver device or a transceiver module, etc., which is used to implement the transceiver function.
  • the communication device 1400 can be used to execute any method described in Figures 7 to 11 in the embodiments of the present application.
  • the communication device 1400 may be a terminal device, or may be a device in a terminal device (e.g., a chip, or a chip system, or a circuit).
  • the processor 1401 is used to perform the operations performed by the processing unit 1202 in the above embodiment, or to perform the operations performed by the processing unit 1202 in the above embodiment.
  • the transceiver 1405 is used to perform the operations performed by the transceiver unit 1201 in the above embodiment, and the transceiver 1405 is also used to send information to other communication devices outside the communication device.
  • the above terminal device or the device in the terminal device may also be used to perform any method performed by the terminal device in the method embodiments of Figures 7 to 11, which will not be described in detail.
  • the communication device 1400 may be a network device, or a device in a network device (eg, a chip, or When the computer program instructions stored in the memory 1402 are executed, the processor 1401 is used to control the transceiver 1405 to perform the operations performed by the transceiver unit 1301 in the above embodiment, and the transceiver 1405 is also used to receive information from other communication devices other than the communication device.
  • the above network device or the device in the network device can also be used to perform any method performed by the network device in the method embodiments of Figures 7 to 11 above, which will not be repeated here.
  • the processor and transceiver described in the present application can be implemented in an integrated circuit (IC), an analog IC, a radio frequency interface chip (RFIC), a mixed signal IC, an application specific integrated circuit (ASIC), a printed circuit board (PCB), an electronic device, etc.
  • the processor and transceiver can also be manufactured using various IC process technologies, such as complementary metal oxide semiconductor (CMOS), N-type metal oxide semiconductor (NMOS), P-type metal oxide semiconductor (positive channel metal oxide semiconductor, PMOS), bipolar junction transistor (BJT), bipolar CMOS (BiCMOS), silicon germanium (SiGe), gallium arsenide (GaAs), etc.
  • CMOS complementary metal oxide semiconductor
  • NMOS N-type metal oxide semiconductor
  • PMOS P-type metal oxide semiconductor
  • BJT bipolar junction transistor
  • BiCMOS bipolar CMOS
  • SiGe silicon germanium
  • GaAs gallium arsenide
  • the communication device described in the above embodiments may be a terminal device or a network device, but the scope of the device described in the present application is not limited thereto, and the structure of the communication device may not be limited by FIG. 14.
  • the device may be an independent device or may be part of a larger device.
  • the communication device may be:
  • the IC set may also include a storage component for storing data and/or instructions;
  • ASIC such as modem (MSM)
  • Figure 15 is a structural diagram of a terminal device provided in an embodiment of the present application.
  • the terminal device 1500 includes a processor, a memory, a control circuit, an antenna, and an input-output device.
  • the processor is mainly used to process communication protocols and communication data, as well as to control the entire terminal, execute software programs, and process software program data.
  • the memory is mainly used to store software programs and data.
  • the radio frequency circuit is mainly used for conversion between baseband signals and radio frequency signals and processing radio frequency signals.
  • the antenna is mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input-output devices such as touch screens, display screens, keyboards, etc., are mainly used to receive data input by users and output data to users.
  • the processor can read the software program in the storage unit, parse and execute the instructions of the software program, and process the data of the software program.
  • the processor performs baseband processing on the data to be sent, and outputs the baseband signal to the RF circuit.
  • the RF circuit processes the baseband signal to obtain the RF signal and sends the RF signal outward in the form of electromagnetic waves through the antenna.
  • the RF circuit receives the RF signal through the antenna, and the RF signal is further converted into a baseband signal, and the baseband signal is output to the processor, and the processor converts the baseband signal into data and processes the data.
  • FIG15 shows only one memory and processor. In an actual terminal, there may be multiple processors and memories.
  • the memory may also be referred to as a storage medium or a storage device, etc., which is not limited in the embodiments of the present application.
  • the processor may include a baseband processor and a central processing unit, the baseband processor is mainly used to process the communication protocol and communication data, and the central processing unit is mainly used to control the entire terminal, execute the software program, and process the data of the software program.
  • the processor in Figure 15 integrates the functions of the baseband processor and the central processing unit.
  • the baseband processor and the central processing unit can also be independent processors, interconnected by technologies such as buses.
  • the terminal may include multiple baseband processors to adapt to different network formats, the terminal may include multiple central processing units to enhance its processing capabilities, and the various components of the terminal may be connected through various buses.
  • the baseband processor may also be described as a baseband processing circuit or a baseband processing chip.
  • the central processing unit may also be described as a central processing circuit or a central processing chip.
  • the function of processing the communication protocol and communication data may be built into the processor, or may be stored in the storage unit in the form of a software program, and the processor executes the software program to implement the baseband processing function.
  • the antenna and control circuit with transceiver functions can be regarded as the transceiver unit 1501 of the terminal device 1500, and the processor with processing function can be regarded as the processing unit 1502 of the terminal device 1500.
  • the terminal device 1500 includes a transceiver unit 1501 and a processing unit 1502.
  • the transceiver unit can also be called a transceiver, a transceiver, a transceiver device, etc.
  • the device used to implement the receiving function in the transceiver unit 1501 can be regarded as a receiving unit, and the device used to implement the sending function in the transceiver unit 1501 can be regarded as a sending unit, that is, the transceiver unit 1501 includes a receiving unit and a sending unit.
  • the receiving unit can also be called a receiver, a receiver, a receiving circuit, etc.
  • the sending unit can be called a transmitter, a transmitter or a transmitting circuit, etc.
  • the above-mentioned receiving unit and sending unit can be integrated together.
  • the receiving unit and the sending unit can be located in one geographical location or dispersed in multiple geographical locations.
  • the transceiver unit 1501 is used to perform the operations performed by the transceiver unit 1201 in the above embodiment, or to perform the operations performed by the transceiver unit 1301 in the above embodiment.
  • the processing unit 1502 is used to perform the operations performed by the processing unit 1202 in the above embodiment.
  • the terminal device 1500 can also be used to perform any method performed by the terminal device or the network device in the method embodiments of Figures 7 to 11 above, which will not be repeated here.
  • An embodiment of the present application also provides a computer-readable storage medium on which a computer program is stored.
  • the program When the program is executed by a processor, it can implement the process related to the terminal device in the communication method provided in the above method embodiment.
  • An embodiment of the present application also provides a computer-readable storage medium on which a computer program is stored.
  • the program When the program is executed by a processor, it can implement the process related to the network device in the communication method provided by the above method embodiment.
  • the embodiment of the present application also provides a computer program product, which, when executed on a computer or processor, enables the computer or processor to execute one or more steps in any of the above communication methods. If the components of the above-mentioned devices are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the embodiment of the present application also provides a chip system, including at least one processor and a communication interface, the communication interface and the at least one processor are interconnected by a line, and the at least one processor is used to run a computer program or instruction to execute part or all of the steps recorded in any one of the method embodiments corresponding to Figures 7 to 11 above.
  • the chip system can be composed of chips, or it can include chips and other discrete devices.
  • An embodiment of the present application also provides a communication system, which includes a terminal device and a network device.
  • a communication system which includes a terminal device and a network device.
  • the memory mentioned in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memories.
  • the non-volatile memory may be a hard disk drive (HDD), a solid-state drive (SSD), a read-only memory (ROM), a programmable read-only memory (PROM), an erasable programmable read-only memory (EPROM), an electrically erasable programmable read-only memory (EEPROM), or a flash memory.
  • the volatile memory may be a random access memory (RAM), which is used as an external cache.
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • SDRAM synchronous dynamic random access memory
  • DDR SDRAM double data rate synchronous dynamic random access memory
  • ESDRAM enhanced synchronous dynamic random access memory
  • SLDRAM synchronous link dynamic random access memory
  • DR RAM direct RAM bus random access memory
  • Memory is any other medium that can be used to carry or store desired program code in the form of instructions or data structures and can be accessed by a computer, but is not limited to this.
  • the memory in the embodiments of the present application can also be a circuit or any other device that can realize a storage function, used to store program instructions and/or data.
  • processors mentioned in the embodiments of the present application may be a central processing unit (CPU), or other general-purpose processors, digital signal processors (DSP), application-specific integrated circuits (ASIC), field programmable gate arrays (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • DSP digital signal processors
  • ASIC application-specific integrated circuits
  • FPGA field programmable gate arrays
  • a general-purpose processor may be a microprocessor or the processor may also be any conventional processor, etc.
  • processor is a general-purpose processor, DSP, ASIC, FPGA or other programmable logic device, discrete gate or transistor logic device, discrete hardware component, the memory (storage module) is integrated in the processor.
  • memory described herein is intended to include, without being limited to, these and any other suitable types of memory.
  • the size of the serial numbers of the above-mentioned processes does not mean the order of execution.
  • the execution order of each process should be determined by its function and internal logic, and should not constitute any limitation on the implementation process of the embodiments of the present application.
  • the disclosed systems, devices and methods can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of units is only a logical function division. There may be other divisions in actual implementation, for example, multiple units or components may be combined or integrated into another system, or some features may be ignored or not performed.
  • the coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, which may be electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place or distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer-readable storage medium.
  • the technical solution of the present application or the part that contributes to the technology or the part of the technical solution, can be embodied in the form of a software product, which is stored in a storage medium and includes several instructions for a computer device (which can be a personal computer, server, or network device, etc.) to perform all or part of the steps of the various embodiments of the present application.
  • the aforementioned storage medium includes: various media that can store program codes, such as USB flash drives, mobile hard drives, ROM, RAM, magnetic disks, or optical disks.
  • the steps in the method of the embodiment of the present application can be adjusted in order, combined and deleted according to actual needs.
  • the steps of each embodiment can be partially executed (for example, the terminal device may not execute the steps executed by the terminal device in the above embodiment).
  • the execution order of different steps can be changed.
  • the embodiments described herein can be combined with other embodiments, different embodiments can also be combined with each other, and different steps of different embodiments of this document can also be combined.
  • modules/units in the device of the embodiment of the present application can be combined, divided and deleted according to actual needs.
  • “include” can be an inclusion relationship or an equality relationship.
  • a includes B which means that A includes B and can also include other contents, or A and B are the same content.
  • At least one of a, b, or c can represent: a, b, c, a-b, a-c, b-c, or a-b-c, where a, b, c can be single or multiple.
  • the words “first” and “second” are used to distinguish the same or similar items with basically the same functions and effects. Those skilled in the art can understand that the words “first”, “second”, etc. do not limit the quantity and execution order, and the words “first”, “second”, etc. do not necessarily limit the differences.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种通信方法、装置和系统,以及计算机相关产品。其中,通信方法包括:接收来自网络设备的第一配置,第一配置包括层1和/或层2触发的移动性LTM候选小区的信息;接收来自网络设备的第二配置,第二配置包括第一测量配置,第一测量配置包括测量对象配置;如果第一小区是LTM候选小区,针对第一小区不执行第一行为,第一行为包括以下至少一项:第一测量、第一测量的测量结果的上报。通过本申请提供的技术方案,没有针对基于测量对象检测到的小区中的LTM候选小区执行第一测量,也没有上报该LTM候选小区的第一测量的测量报告,可以减少不必要的测量,节省了功耗,进一步避免频繁切换,减少切换冲突,提高了LTM切换性能。

Description

通信方法、装置和系统,以及计算机相关产品
本申请要求在2022年11月04日提交中国国家知识产权局、申请号为202211379663.X的中国专利申请的优先权,发明名称为“通信方法、装置和系统,以及计算机相关产品”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线通信技术领域,尤其涉及一种通信方法、装置和系统,以及计算机相关产品。
背景技术
在无线通信系统中,移动性管理是通过变更用户设备(user equipment,UE)的服务小区,使UE无论在网络覆盖范围内如何移动,都可以享受网络服务。为了保证UE通信的连续性,连接态的移动性是通过切换完成的。
目前,第五代移动通信技术(5th-generation,5G)无线接入网(radio access network,RAN)架构考虑基站采用集中单元(centralized unit,CU)和分布单元(distributed unit,DU)独立部署的方式,以更好地满足各场景和应用的需求。在CU-DU分离的基站部署下,为了减少切换时延,进一步增强业务连续性,5G系统考虑采用基于低层的切换,基于低层的切换可以通过层1和/或层2触发的移动性(L1/L2triggered mobility,LTM)过程实现。LTM过程的主要思想为:基站基于UE上报的测量报告(例如,无线资源管理(radio resource management,RRM)测量报告或层3测量报告)为UE提供一个或多个候选小区的预配置信息。UE接收到来自基站的预配置信息后,向基站发送测量报告(例如,层1测量报告),源DU基于UE上报的测量报告决定触发LTM切换。源DU通过层1信令和/或层2信令向UE发送LTM切换命令,以使UE基于该切换命令中的指示执行切换过程。
然而,对于配置为LTM的小区,如果UE既进行层1测量,上报层1测量结果,也会进行RRM测量,上报RRM的测量结果报告,可能导致频繁切换,影响LTM切换性能。例如,基站可以基于层1测量结果先将UE从小区1切换到小区2。然后基站还可以基于RRM的测量结果确定小区1的信号质量高于小区2的信号质量,将UE从小区2切换回小区1,导致了频繁的乒乓切换。
发明内容
本申请实施例提供一种通信方法、装置和系统,以及计算机相关产品,可以减少不必要的测量或者测量结果的上报,节省了功耗。
第一方面,本申请提供了第一种通信方法,该方法可以应用于终端设备,也可以应用于终端设备中的装置(例如,芯片,或者芯片系统,或者电路),或者是能够和终端设备匹配使用的装置,下面以应用于终端设备为例进行描述。
该方法可以包括:终端设备接收来自网络设备的第一配置;终端设备接收来自网络设备的第二配置;如果根据测量对象配置检测到的第一小区是LTM候选小区,终端设备针对第一小区不执行第一行为;和/或如果根据测量对象配置检测到的第一小区不是LTM候选小区,终端设备针对第一小区执行第一行为。
其中,第一配置包括LTM候选小区的信息,该LTM候选小区可以由网络设备根据终端设备上报的测量报告(例如,层3测量报告等)进行确定得到的。本申请对于LTM候选小区的数量和LTM候选小区的信息不做限定,LTM候选小区的数量可以为一个或多个。LTM候选小区的信息可以包括LTM候选小区的物理小区标识(physical cell identities,PCI),还可以包括LTM候选小区的配置信息。
第二配置包括第一测量配置,第一测量配置包括测量对象配置。本申请对于第一测量的类型和第一测量配置的内容不做限定,在一些可能的实现方式中,第一测量可以包括层3测量或无线资源管理(radio resource management,RRM)测量。第一测量配置可以包括测量对象配置,测量对象配置可以包括测量对象的参数,例如,测量对象的频点信息,从而终端设备可以基于频点信息扫描待测量的测量对象(小区)的测量结果。
第一行为包括以下至少一项:第一测量、第一测量的测量报告的上报。可选的,第一测量为层3测量,第一测量的测量报告可以为层3测量报告。第一测量为RRM测量,第一测量的测量报告可以为RRM测量报告。终端设备针对第一小区不执行第一行为可以理解为终端设备执行第一行为不适用于第一小区中的LTM 候选小区。如果终端设备检测到的第一小区是LTM候选小区之后,终端设备可以不对该第一小区的PCI进行相关,从而不会执行第一测量,也不会上报第一测量的测量结果。
在本申请提供的方案中,终端设备接收来自网络设备的第一配置和第二配置,如果根据第二配置中测量对象配置检测到的第一小区是LTM候选小区,则终端设备针对该第一小区不执行第一行为,从而可以不对LTM候选小区进行第一测量,或者还可以不上报针对LTM候选小区第一测量的测量结果,可以减少不必要的测量,节省了功耗,进一步减少切换冲突,可以避免频繁切换,提高LTM切换性能。如果根据第二配置中测量对象配置检测到的第一小区不是LTM候选小区,则可以针对该第一小区执行第一行为,从而可以对非LTM候选小区进行第一测量,还可以上报非LTM候选小区的第一测量的测量结果。网络设备可以基于这些上报的小区的测量结果触发层3切换,提高了切换性能,利于提高终端设备的通信质量。此外,相对于现有技术而言,没有针对基于测量对象检测到的小区中的LTM候选小区执行第一测量,也没有上报该LTM候选小区的第一测量的测量报告,仅对于不属于LTM候选小区的第一小区执行第一行为,可以减少测量,节省了功耗,减少测量上报的空口开销,可以避免频繁切换,可以避免频繁的乒乓切换,提高了LTM切换性能。
在一些可能的实现方式中,第一配置还可以包括第一信息或第二信息。其中,第一信息和第二信息可以包含于同一指示中。例如,第一信息和第二信息中的一个包含于第一指示中,第一指示为1比特的指示信息,第一指示的取值可以为0或1,当第一指示的取值为0时表示第一指示用于指示第一信息,当第一指示的取值为1时表示第一指示用于指示第二信息;或当第一指示的取值为1时表示第一指示用于指示第一信息,当第一指示的取值为0时表示第一指示用于指示第二信息。第一指示或者可以为true或false,当第一指示的取值为true时表示第一指示用于指示第一信息,当第一指示的取值为flase时表示第一指示用于指示第二信息;或第一指示的取值为false时表示第一指示用于指示第一信息,当第一指示的取值为true时表示第一指示用于指示第二信息等。
第一信息和第二信息或者可以包含于不同的指示中。例如,第一信息为一个字段,第二信息为第二字段,如果网络设备配置了第一字段,则终端设备可以执行第一信息指示的行为,如果网络设备配置了第二字段,则终端设备可以执行第二信息指示的行为。
第一信息用于指示:如果第一小区不是LTM候选小区,针对第一小区执行第一行为;和/或如果第一小区是LTM候选小区,针对第一小区不执行第一行为。也就是说,第一信息用于指示终端设备对于不是LTM候选小区的第一小区执行第一行为,或者还用于指示终端设备对于是LTM候选小区的第一小区不执行第一行为。可以理解为第一信息用于指示终端设备执行第一方面中接收到第一配置和第二配置之后的步骤。
第二信息用于指示针对第一小区执行第一行为。也就是说,无论第一小区是否为LTM候选小区,都需针对第一小区执行第一行为。可以理解为第二信息用于指示终端设备不执行第一方面中接收到第一配置和第二配置之后,还可以理解为终端设备按照现有方法执行第一行为。通过执行第一信息,相对于执行现有技术中的第二信息而言,没有针对基于测量对象检测到的小区中的LTM候选小区执行第一行为,可以减少不必要的测量,节省了功耗,进一步可以避免频繁的乒乓切换,提高了LTM切换性能。
在一些可能的实现方式中,第一配置还可以包括第二测量配置,该通信方法还可以包括:终端设备根据第二测量配置执行第二测量。其中,第二测量配置可以理解为针对第二测量的配置信息。本申请对于第二测量的类型和第二测量配置的内容不做限定,在一些可能的实现方式中,第二测量可以包括以下至少一项:层1测量、SSB测量、CSI-RS测量。第二测量配置可以包括以下一项或多项:测量周期、测量资源(例如,SSB或CSI-RS)、测量量配置、测量间隔、测量标识、S测量配置。
可以理解,在第一配置还包括第二测量配置的情况下,可以根据第二测量配置执行第二测量,还可以上报第二测量的测量结果,以使得网络设备基于第二测量的测量结果进行切换决策,在确认切换之后,终端设备可以执行LTM切换过程,提高了切换效率。
在一些可能的实现方式中,终端设备针对第一小区执行第一行为包括:终端设备根据第一测量配置针对第一小区执行第一行为。其中,第一测量配置还可以包括以下至少一项:测量标识、上报配置、测量量配置、测量间隔配置以及S配置等参数。可以理解,根据第一测量配置中的这些参数执行第一行为,可提高执行第一行为的准确率,利于提高切换性能。
在一些可能的实现方式中,终端设备针对第一小区执行第一行为包括:如果测量周期的定时器超时或测量事件满足测量上报触发条件,针对第一小区上报执一测量的测量结果。如此,可以在测量周期的定时器超时或测量事件满足测量上报触发条件时,对于非LTM候选小区的第一测量的测量结果进行上报,网络设备可以基于这些上报的小区的测量结果触发层3切换,保证切换的性能。
第二方面,本申请提供了第二种通信方法,该方法可以应用于终端设备,也可以应用于终端设备中的装置(例如,芯片,或者芯片系统,或者电路),或者是能够和终端设备匹配使用的装置,下面以应用于终端设备为例进行描述。该方法可以包括:终端设备接收来自网络设备的第三配置;终端设备接收来自网络设备的第二配置;如果根据测量对象配置检测到的第一小区是第一列表中的小区,终端设备针对第一小区不执行第一行为;和/或如果根据测量对象配置检测到的第一小区不是第一列表中的小区,终端设备针对第一小区执行第一行为。
其中,第三配置包括第一列表,第一列表包括至少一个小区。第三配置和第一配置可以包含于相同的消息中,或者第三配置和第一配置可以包含于不同的消息中。第一列表中的小区不执行第一行为,第一行为包括第一测量和/或第一测量的测量结果的上报。第一列表中的小区包括LTM候选小区。此处的LTM候选小区可以为全部的LTM候选小区,或者可以包括部分的LTM候选小区。在一种示例中,第一列表中的小区包括部分候选小区。可以理解,上报部分小区的第一测量的测量结果,可以节省功耗和空口资源。
可以理解,网络设备可以通过列表配置终端设备不执行第一行为的小区,通过网络配置的方式,提高了配置的灵活性。终端设备根据第一测量配置及网络配置的第一列表执行第一行为,针对部分LTM候选小区不执行第一行为,减少了终端设备的测量功耗,节省了测量上报的空口资源。此外,在一些网络部署中,网络设备需要进行载波管理或LTM候选小区管理等功能,还可以配置不属于第一列表的LTM候选小区,以使终端设备对这些不属于第一列表的LTM候选小区执行第一测量,实现了小区管理或载波管理功能。
在一些可能的实现方式中,终端设备针对第一小区执行第一行为包括:终端设备根据第一测量配置针对第一小区执行第一行为。其中,第一测量配置还可以包括以下至少一项:测量标识、上报配置、测量量配置、测量间隔配置以及S配置等参数。可以理解,根据第一测量配置中的这些参数执行第一行为,可提高执行第一行为的准确率,利于提高切换性能。
在一些可能的实现方式中,终端设备针对第一小区执行第一行为包括:如果测量周期的定时器超时或测量事件满足测量上报触发条件,针对第一小区上报执一测量的测量结果。如此,可以在测量周期的定时器超时或测量事件满足测量上报触发条件时,对于非LTM候选小区的第一测量的测量结果进行上报,网络设备可以基于这些上报的小区的测量结果触发层3切换,保证切换的性能。
第三方面,本申请提供了第三种通信方法,该方法可以应用于终端设备,也可以应用于终端设备中的装置(例如,芯片,或者芯片系统,或者电路),或者是能够和终端设备匹配使用的装置,下面以应用于终端设备为例进行描述。该方法可以包括:终端设备接收来自网络设备的第四配置。
其中,第四配置包括第三信息,第三信息指示允许或禁止测量结果上报的测量事件类型。第四配置可以为第一配置中的信息,或者可以为与第一配置不同的信息。本申请对于允许或禁止测量结果上报的测量事件类型不做限定,可以为测量事件的测量事件类型。例如,允许测量结果上报的测量事件类型为A1测量事件的测量事件类型,禁止测量结果上报的测量事件类型为A3测量事件的测量事件类型等。如此,在A1测量事件的测量结果满足A1测量事件的测量上报触发条件时,在A3测量事件的触发条件满足A3测量事件的测量上报触发条件时,也不上报A3测量事件得到的测量结果。
可以理解,终端设备接收来自网络设备的第四配置,根据第四配置中的第三信息确定允许或禁止测量结果上报的测量事件类型,从而终端设备可以基于每个事件类型上报或不上报该测量事件相关的结果,可以减少基于每个事件的测量结果的上报,节省了功耗和空口资源。例如,如果网络设备将A3事件包含在指示禁止测量结果上报的第二列表中,则UE基于第二列表不上报A3事件的测量结果,网络设备没有收到A3事件的测量结果,从而不会基于A3事件进行切换判决,这样就避免了层1和层3切换的冲突,避免了频繁的乒乓切换,可提高LTM切换性能。
在一些可能的实现方式中,第三信息可以包括第二列表,该第二列表包括至少一种测量事件类型。若第二列表包括的测量事件类型为允许测量结果上报的测量事件类型,则第三信息用于指示允许测量结果上报的测量事件类型。若第二列表包括的测量事件类型为禁止测量结果上报的测量事件类型,则第三信息用于指示禁止测量结果上报的测量事件类型。可以理解,通过列表配置允许或禁止测量结果上报的测量事件类型,可节省配置资源。
在一些可能的实现方式中,还可以包括以下步骤:网络设备向终端设备发送第二配置;如果根据测量对象配置检测到的第一小区是LTM候选小区,当第一小区的测量结果满足允许测量结果上报的测量事件类型的测量上报触发条件时,上报测量结果;和/或如果根据测量对象配置检测到的第一小区是LTM候选小区,当第一小区的测量事件类型满足禁止测量结果上报的测量事件类型时,不上报测量结果。
其中,第二配置包括第一测量配置,该第一测量配置包括测量对象配置。在一些可能的示例中,还可 以包括:网络设备向终端设备发送第一配置。可以理解,终端设备根据来自网络设备的第二配置中的测量对象配置检测第一小区,如果第一小区是LTM候选小区,第一小区的测量结果满足允许测量结果上报的测量事件类型的测量上报触发条件时,可以上报该测量结果。在第一小区是LTM候选小区,但第一小区的测量事件类型是禁止测量结果上报的测量事件类型时,即使第一小区的测量结果满足测量上报触发条件,也不上报该测量报告。如此,通过测量事件类型和测量上报触发条件筛选待上报的测量结果,可以避免不必要的测量上报,可节省功耗和空口资源,利于提高切换性能。可选的,针对第一小区中的非LTM候选小区的测量结果,可以上报。或者可以在非LTM候选小区的测量结果满足预设的测量上报触发条件时进行上报。
在一些可能的实现方式中,第一测量配置还可以包括第一测量周期,该通信方法还可以包括以下步骤:网络设备向终端设备发送第五配置;如果第一小区是LTM候选小区,基于第二测量周期针对第一小区执行第一测量;或如果第一小区不是LTM候选小区,基于第一测量周期针对第一小区执行第一测量。
其中,第二测量周期大于第一测量周期。第一测量周期适用于根据测量对象配置检测到的第一小区中的非LTM候选小区,第二测量周期适用于第一小区中的LTM候选小区。也就是说,在第一小区是非LTM候选小区时,可以基于第一测量周期针对第一小区执行第一测量。而在第一小区是LTM候选小区时,可以基于第二测量周期针对第一小区执行第一测量。如此,LTM候选小区的测量周期(或测量窗)可以大于非LTM候选小区的测量周期,以减小针对LTM候选小区的第一测量,从而减少测量结果的上报,可以节省功耗和空口资源,利于提高LTM切换性能。
第四方面,本申请提供了第四种通信方法,该方法可以应用于终端设备,也可以应用于终端设备中的装置(例如,芯片,或者芯片系统,或者电路),或者是能够和终端设备匹配使用的装置,下面以应用于终端设备为例进行描述。该方法可以包括:终端设备接收来自网络设备的第二配置;终端设备接收来自网络设备的第五配置;如果根据测量对象配置检测到的第一小区是LTM候选小区,终端设备基于第二测量周期针对第一小区执行第一测量;和/或如果根据测量对象配置检测到的第一小区不是LTM候选小区,终端设备基于第一测量周期针对第一小区执行第一测量。
其中,第二配置包括第一测量配置,第一测量配置包括测量对象配置和第一测量周期。第五配置包括第二测量周期,第二测量周期大于第一测量周期。第一测量周期适用于根据测量对象配置检测到的第一小区中的非LTM候选小区,第二测量周期适用于第一小区中的LTM候选小区。可以理解,终端设备接收来自网络设备发送的第二配置和第五配置,可以根据第二配置中的测量对象配置确定第一小区,在第一小区是非LTM候选小区时,基于第一测量周期针对第一小区执行第一测量。或者还可以在第一小区是LTM候选小区时,可以基于第二测量周期针对第一小区执行第一测量。如此,LTM候选小区的测量周期(或测量窗)可以大于非LTM候选小区的测量周期,以减小针对LTM候选小区的第一测量,从而减少测量结果的上报,可以节省功耗和空口资源,利于提高LTM切换性能。
第五方面,本申请提供了第五种通信方法,该方法可以应用于网络设备,也可以应用于网络设备中的装置(例如,芯片,或者芯片系统,或者电路),或者是能够和网络设备匹配使用的装置,下面以应用于网络设备为例进行描述。该方法可以包括:网络设备向终端设备发送第三配置;其中,第三配置包括第一列表,第一列表包括至少一个小区,第一列表中的小区不执行第一行为,第一行为包括以下至少一项:第一测量、第一测量的测量结果的上报。
在一些可能的实现方式中,第一列表中的小区包括LTM候选小区。
应理解,第五方面的执行主体可以为网络设备,第五方面的具体内容与第二方面的内容对应,第五方面相应特征以及达到的有益效果可以参考第二方面的描述,为避免重复,此处适当省略详细描述。
第六方面,本申请提供了第六种通信方法,该方法可以应用于网络设备,也可以应用于网络设备中的装置(例如,芯片,或者芯片系统,或者电路),或者是能够和网络设备匹配使用的装置,下面以应用于网络设备为例进行描述。该方法可以包括:网络设备向终端设备发送第四配置;其中,第四配置包括第三信息,第三信息指示允许或禁止触发测量结果上报的测量事件类型。
在一些可能的实现方式中,第三信息包括第二列表,第二列表包括至少一种测量事件类型。
应理解,第六方面的执行主体可以为网络设备,第六方面的具体内容与第三方面的内容对应,第六方面相应特征以及达到的有益效果可以参考第三方面的描述,为避免重复,此处适当省略详细描述。
第七方面,本申请提供了第三种通信方法,该方法可以应用于网络设备,也可以应用于网络设备中的装置(例如,芯片,或者芯片系统,或者电路),或者是能够和网络设备匹配使用的装置,下面以应用于网络设备为例进行描述。该方法可以包括:网络设备向终端设备发送第二配置;网络设备向终端设备发送第五配置;其中,第二配置包括第一测量配置,第一测量配置包括测量对象配置和第一测量周期。第五配 置包括第二测量周期,第二测量周期大于第一测量周期,第一测量周期适用于根据测量对象配置检测到的第一小区中的非LTM候选小区,第二测量周期适用于第一小区中的LTM候选小区。
应理解,第七方面的执行主体可以为网络设备,第七方面的具体内容与第四方面的内容对应,第七方面相应特征以及达到的有益效果可以参考第四方面的描述,为避免重复,此处适当省略详细描述。
上述的第一配置、第二配置、第三配置、第四配置和第五配置,这些配置两两之间可以包含在相同的消息中,例如RRC重配消息,也可以包含在不同的消息中。
第八方面,本申请实施例提供第一种通信装置,该通信装置可以为终端设备,也可以为终端设备中的装置(例如,芯片,或者芯片系统,或者电路)。该通信装置包括:收发单元用于接收来自网络设备的第一配置;其中,第一配置包括LTM候选小区的信息;以及接收来自网络设备的第二配置;其中,第二配置包括第一测量配置,第一测量配置包括测量对象配置;处理单元用于如果根据测量对象配置检测到的第一小区不是LTM候选小区,针对第一小区执行第一行为;和/或如果根据测量对象配置检测到的第一小区是LTM候选小区,针对第一小区不执行第一行为;其中,第一行为包括以下至少一项:第一测量、第一测量的测量结果的上报。
在一些可行的示例中,第一配置还包括第一信息或第二信息,第一信息用于指示:如果第一小区不是LTM候选小区,针对第一小区执行第一行为;和/或如果第一小区是LTM候选小区,针对第一小区不执行第一行为;第二信息用于指示针对第一小区执行第一行为。
在一些可行的示例中,第一测量包括层3测量或RRM测量。
在一些可行的示例中,第一配置还包括第二测量配置,处理单元1202还用于根据第二测量配置执行第二测量;其中,第二测量包括以下至少一项:层1测量、SSB测量、CSI-RS测量。
在一些可行的示例中,处理单元具体用于根据第一测量配置针对第一小区执行第一行为;其中,第一测量配置还包括以下至少一项:测量标识、上报配置、测量量配置、测量间隔配置和S测量配置。
在一些可行的示例中,处理单元具体用于如果测量周期的定时器超时或测量事件满足测量上报触发条件,针对第一小区上报第一测量的测量结果。
应理解,第八方面的执行主体可以为终端设备,第八方面的具体内容与第一方面的内容对应,第八方面相应特征以及达到的有益效果可以参考第一方面的描述,为避免重复,此处适当省略详细描述。
第九方面,本申请实施例提供第二种通信装置,该通信装置可以为终端设备,也可以为终端设备中的装置(例如,芯片,或者芯片系统,或者电路)。该通信装置包括:收发单元用于接收来自网络设备的第三配置;其中,第三配置包括第一列表,第一列表包括至少一个小区;以及接收来自网络设备的第二配置;其中,第二配置包括第一测量配置,第一测量配置包括测量对象配置;处理单元用于如果根据测量对象配置检测到的第一小区不是第一列表中的小区,针对第一小区执行第一行为;和/或如果根据测量对象配置检测到的第一小区是第一列表中的小区,针对第一小区不执行第一行为;其中,第一行为包括以下至少一项:第一测量、第一测量的测量结果的上报。
在一些可行的示例中,第一列表中的小区包括LTM候选小区。
在一些可行的示例中,处理单元具体用于根据第一测量配置针对第一小区执行第一行为;其中,第一测量配置还包括以下至少一项:测量标识、上报配置、测量量配置、测量间隔配置和S测量配置。
在一些可行的示例中,处理单元具体用于如果测量周期的定时器超时或测量事件满足测量上报触发条件,上报针对第一小区执行第一测量的测量结果。
应理解,第九方面的执行主体可以为终端设备,第九方面的具体内容与第二方面的内容对应,第九方面相应特征以及达到的有益效果可以参考第二方面的描述,为避免重复,此处适当省略详细描述。
第十方面,本申请实施例提供第三种通信装置,该通信装置可以为终端设备,也可以为终端设备中的装置(例如,芯片,或者芯片系统,或者电路)。该通信装置包括:收发单元用于接收来自网络设备的第四配置;其中,第四配置包括第三信息,第三信息指示允许或禁止测量结果上报的测量事件类型。
在一些可行的示例中,第三信息包括第二列表,第二列表包括至少一种测量事件类型。
在一些可行的示例中,收发单元还用于接收来自网络设备的第二配置;其中,第二配置包括第一测量配置,第一测量配置包括测量对象配置;处理单元用于如果根据测量对象配置检测到的第一小区是LTM候选小区,当第一小区的测量结果满足允许测量结果上报的测量事件类型的测量上报触发条件时,上报测量结果;和/或如果根据测量对象配置检测到的第一小区是LTM候选小区,针对第一小区不上报禁止测量结果上报的测量事件类型的测量事件的测量结果。
在一些可行的示例中,第一测量配置还包括第一测量周期,收发单元还用于接收来自网络设备的第五 配置;其中,第五配置包括第二测量周期,第二测量周期大于第一测量周期;处理单元还用于如果第一小区是LTM候选小区,基于第二测量周期针对第一小区执行第一测量;和/或如果第一小区不是LTM候选小区,基于第一测量周期针对第一小区执行第一测量。
在一些可行的示例中,第一小区的测量结果包括第一小区的信号质量,处理单元还用于如果第一小区的信号质量小于信号质量阈值,确定第一小区的信号质量满足允许测量结果上报的测量事件类型的测量上报触发条件。
应理解,第十方面的执行主体可以为终端设备,第十方面的具体内容与第三方面的内容对应,第十方面相应特征以及达到的有益效果可以参考第三方面的描述,为避免重复,此处适当省略详细描述。
第十一方面,本申请实施例提供第四种通信装置,该通信装置可以为终端设备,也可以为终端设备中的装置(例如,芯片,或者芯片系统,或者电路)。该通信装置包括:收发单元用于接收来自网络设备的第二配置;以及接收来自网络设备的第五配置;处理单元用于如果根据测量对象配置检测到的第一小区是LTM候选小区,终端设备基于第二测量周期针对第一小区执行第一测量;和/或如果根据测量对象配置检测到的第一小区不是LTM候选小区,终端设备基于第一测量周期针对第一小区执行第一测量。其中,第二配置包括第一测量配置,第一测量配置包括测量对象配置和第一测量周期。第五配置包括第二测量周期,第二测量周期大于第一测量周期。
应理解,第十一方面的执行主体可以为终端设备,第十一方面的具体内容与第四方面的内容对应,第十一方面相应特征以及达到的有益效果可以参考第四方面的描述,为避免重复,此处适当省略详细描述。
第十二方面,本申请实施例提供第五种通信装置,该通信装置可以为网络设备,也可以为网络设备中的装置(例如,芯片,或者芯片系统,或者电路)。该通信装置包括:收发单元用于向网络设备发送第三配置;其中,第三配置包括第一列表,第一列表包括至少一个小区,第一列表中的小区不执行第一行为,第一行为包括以下至少一项:第一测量、第一测量的测量结果的上报。
在一些可行的示例中,第一列表中的小区包括LTM候选小区。
应理解,第十二方面的执行主体可以为网络设备,第十一方面的具体内容与第五方面的内容对应,第十二方面相应特征以及达到的有益效果可以参考第五方面的描述,为避免重复,此处适当省略详细描述。
第十三方面,本申请实施例提供第六种通信装置,该通信装置可以为网络设备,也可以为网络设备中的装置(例如,芯片,或者芯片系统,或者电路)。该通信装置包括:收发单元用于向网络设备发送第四配置;其中,第四配置包括第三信息,第三信息指示允许或禁止触发测量结果上报的测量事件类型。
在一些可行的示例中,第三信息包括第二列表,第二列表包括至少一种测量事件类型。
在一些可行的示例中,收发单元还用于向终端设备发送第二配置;其中,第二配置包括第一测量配置,第一测量配置包括测量对象配置。
在一些可行的示例中,第一测量配置还包括第一测量周期,收发单元还用于向终端设备发送第五配置;其中,第五配置包括第二测量周期,第二测量周期大于第一测量周期,第一测量周期适用于根据测量对象配置检测到的第一小区中的非LTM候选小区,第二测量周期适用于第一小区中的LTM候选小区。
应理解,第十三方面的执行主体可以为网络设备,第十三方面的具体内容与第六方面的内容对应,第十三方面相应特征以及达到的有益效果可以参考第六方面的描述,为避免重复,此处适当省略详细描述。
第十四方面,本申请实施例提供第七种通信装置,该通信装置可以为网络设备,也可以为网络设备中的装置(例如,芯片,或者芯片系统,或者电路)。该通信装置包括:收发单元用于向终端设备发送第二配置;以及向终端设备发送第五配置;其中,第二配置包括第一测量配置,第一测量配置包括测量对象配置和第一测量周期。第五配置包括第二测量周期,第二测量周期大于第一测量周期。第一测量周期适用于根据测量对象配置检测到的第一小区中的非LTM候选小区,第二测量周期适用于第一小区中的LTM候选小区。
应理解,第十四方面的执行主体可以为网络设备,第十四方面的具体内容与第七方面的内容对应,第十四方面相应特征以及达到的有益效果可以参考第七方面的描述,为避免重复,此处适当省略详细描述。
第十五方面,本申请实施例提供了第八种通信装置,该通信装置可以为终端设备,也可以为终端设备中的装置(例如,芯片,或者芯片系统,或者电路)。该通信装置可以包括处理器和存储介质,存储介质存储有指令,指令被处理器运行时,使得第一方面、第二方面、第三方面、第四方面或其中的任一可行的示例中描述的通信方法被实现。
在一些可行的示例中,通信装置还包括存储器和收发器中的一项或多项,该收发器用于收发数据和/或信令。
第十六方面,本申请实施例提供了第八种通信装置,该通信装置可以为网络设备,也可以为网络设备中的装置(例如,芯片,或者芯片系统,或者电路)。该通信装置可以包括处理器和存储介质,存储介质存储有指令,指令被处理器运行时,使得第五方面、第六方面或第七方面或其中的任一可行的示例中描述的通信方法被实现。
在一些可行的示例中,通信装置还包括存储器和收发器中的一项或多项,该收发器用于收发数据和/或信令。
第十七方面,本申请提供了一种通信系统,该通信系统包括至少一个终端设备和至少一个网络设备,当至少一个前述的终端设备和至少一个前述的网络设备在该通信系统中运行时,用于执行上述第一方面至第七方面的任一种通信方法。
第十八方面,本申请提供了一种计算机可读存储介质,该计算机可读存储介质上存储有指令,当该指令被处理器运行时,使得上述第一方面、第二方面、第三方面、第四方面、第五方面、第六方面、第七方面或其中任一可行的示例描述中的通信方法被执行。
第十九方面,本申请提供了一种计算机程序产品,该计算机程序产品包括指令,当该指令被处理器运行时,使得上述第一方面、第二方面、第三方面、第四方面、第五方面、第六方面、第七方面或其中任一可行的示例中描述的通信方法被执行。
第二十方面,本申请提供了另一种通信方法,包括上述第一方面、第二方面、第三方面、第四方面、第五方面、第六方面、第七方面或其中任一可行的示例中描述的通信方法。
应理解的是,本申请上述多个方面的实现和有益效果可互相参考。
附图说明
以下对本申请实施例用到的附图进行介绍。
图1是本申请实施例提供的一种网络架构的示意图;
图2是本申请实施例提供的一种网络设备的网络架构示意图;
图3A是本申请实施例提供的CU-DU的分离架构下控制面协议栈的示意图;
图3B是本申请实施例提供的CU-DU的分离架构下用户面的协议栈的示意图;
图4是本申请实施例提供的一种层3切换方法的流程示意图;
图5是本申请实施例提供的一种CU内DU间L1/L2切换方法的流程示意图;
图6是本申请实施例提供的一种CU内DU内L1/L2切换方法的流程示意图;
图7是本申请实施例提供的第一种通信方法的流程示意图;
图8是本申请实施例提供的第二种通信方法的流程示意图;
图9是本申请实施例提供的第三种通信方法的流程示意图;
图10是本申请实施例提供的第四种通信方法的流程示意图;
图11是本申请实施例提供的第五种通信方法的流程示意图;
图12是本申请实施例提供的第一种通信装置的结构示意图;
图13是本申请实施例提供的第二种通信装置的结构示意图;
图14是本申请实施例提供的第三种通信装置的结构示意图;
图15是本申请实施例提供的一种终端设备的结构示意图。
具体实施方式
下面先对本申请实施例适用的网络架构进行举例描述。
请参阅图1,图1是本申请实施例提供的一种网络架构的示意图。如图1所示,该网络架构可以包括终端设备101、网络设备102和核心网设备103。其中,终端设备101可以通过无线方式与网络设备102相连,并可以通过网络设备102接入到核心网设备103中。终端设备101可以是固定位置的,也可以是可移动的。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通信系统(global system for mobile communication,GSM)系统、码分多址(code division multiple access,CDMA)系统、宽带码多分址(wideband code division multiple access,WCDMA)系统、通用分组无线业务(general packet radio service,GPRS)、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)系统、通用移动通信(universal mobile telecommunications system,UMTS)系统、增强型数据速率GSM演进(enhanced data rate for GSM evolution,EDGE)系统、全球互 联微波接入(worldwide interoperability for microwave access,WiMAX)系统。本申请实施例的技术方案还可以应用于其他通信系统,例如,公共陆地移动网络(public land mobile network,PLMN)系统,高级的长期演进(LTE advanced,LTE-A)系统、第五代(fifth generation,5G)移动通信技术、新空口技术(new radio,NR)系统、机器与机器通信(machine to machine,M2M)系统、或者未来演进的其它通信系统等,本申请实施例对此不作限定。
终端设备101,可以是用户侧的一种用于接收或发射信号的实体,如用户设备、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。终端设备还可以是手机(mobile phone)、蜂窝电话、无绳电话、会话启动协议(session initiationprotocol,SIP)电话、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端、可穿戴设备(例如智能手表、智能手环、计步器等),5G网络中的终端设备或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的终端设备等,本申请实施例对此并不限定。终端设备可以部署在陆地上,包括室内或室外、手持、穿戴或车载,也可以部署在水面(如轮船等),还可以部署在空中(例如飞机、气球和卫星上等)。
作为示例而非限定,在本申请实施例中,该终端还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表及鞋等。可穿戴设备可以直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。此外,在本申请实施例中,终端还可以是物联网(internet of things,IoT)系统中的终端,IoT是未来信息技术发展的重要组成部分,其主要技术特点是将物品通过通信技术与网络连接,从而实现人机互连,物物互连的智能化网络。在本申请实施例中,IOT技术可以通过例如窄带(narrow band,NB)技术,做到海量连接,深度覆盖,终端省电。此外,在本申请实施例中,终端还可以包括智能打印机、火车探测器、加油站等传感器,主要功能包括收集数据(部分终端)、接收网络设备的控制信息与下行数据,并发送电磁波,向网络设备传输上行数据。
网络设备102,可以是用于发射或接收信号的实体,可以是用于与终端设备通信的设备,该网络设备可以是全球移动通信(global system for mobile communications,GSM)系统或码分多址(code division multiple access,CDMA)中的基站(base transceiver station,BTS),也可以是宽带码分多址(wideband code division multiple access,WCDMA)系统中的基站(NodeB,NB),还可以是LTE系统中的演进型基站(evolved NodeB,eNB或eNodeB),还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器,或者该网络设备可以为中继站、接入点、车载设备、可穿戴设备以及5G网络中的网络设备或者未来演进的PLMN网络中的网络设备等,本申请实施例并不限定。网络设备可以是无线网络中的设备,例如将终端接入到无线网络的无线接入网(radio access network,RAN)节点。目前,一些RAN节点的举例为:基站、下一代基站gNB、发送接收点(transmission reception point,TRP)、演进型节点B(evolved Node B,eNB)、家庭基站、基带单元(baseband unit,BBU),或WiFi系统中的接入点(access point,AP)等。
网络设备还可以称为接入网设备(radio access network,RAN),可以将传统接入网设备的协议栈架构和功能分割为两部分,一部分称为集中式单元(central unit,CU),另一部分称为分布式单元(distributed unit,DU),这类网络设备可以称为包括CU节点和DU节点的RAN设备。
CU和DU的切分可以按照协议栈切分,其中一种可能的方式是将无线资源控制(radio resource control,RRC)层、服务数据映射协议(service data adaptation protocol,SDAP)层以及分组数据汇聚协议(packet data convergence protocol,PDCP)层部署在CU,其余的无线链路控制(radio link control,RLC)层、介质访问控制(media access control,MAC)层以及物理(physical,PHY)层部署在DU。
其中,一个CU可以连接一个DU,或者一个CU可以连接多个DU,这样可以节省成本,且易于网络扩展。也就是说,接入网设备可以由一个CU、以及一个或者多个DU组成。CU和DU通过F1接口相连, CU和核心网之间通过下一代(next generation,NG)接口相连。
示例性的,参见图2,图2是本申请实施例提供的一种网络设备的网络架构示意图。图2中以5G核心网(5G core network,5GC)作为核心网设备,以NG-RAN作为网络设备进行举例说明。如图2所示,NG-RAN中可以包括一个或多个gNB,gNB和5GC之间可以通过NG接口连接,gNB和gNB之间可以通过Xn-C接口连接。其中,gNB可以由一个gNB-CU和一个或多个gNB-DU组成,gNB-CU和每个gNB-DU建立有F1接口,gNB-CU和5GC之间建立有NG接口。
可选的,CU可以是用户面(user plane,UP)(本文中简称为CU-UP)和控制面(control plane,CP)(本文中简称为CU-CP)分离的形态。也就是说,CU可以由CU-CP和CU-UP组成。
在单空口的场景下,终端可以通过DU接入CU,其中,与UE对等的RLC层、MAC层和PHY层位于DU上,与UE对应的PDCP层、SDAP层和PDCP层位于CU上。下面结合图3A和图3B,对CU-DU的分离架构下控制面的协议栈和用户面的协议栈进行说明。图3A是本申请实施例提供的CU-DU的分离架构下控制面的协议栈的示意图,图3B是本申请实施例提供的CU-DU的分离架构下用户面的协议栈的示意图。
对于控制面而言,如图3A所示,UE与CU之间建立有对等的RRC层和PDCP层。UE与DU通过用户设备(user equipment)接口(可称为Uu接口)连接,UE与DU之间建立有对等的RLC层、MAC层和PHY层;DU与CU之间通过F1控制面(F1-control plane,F1-C)接口连接,DU与CU之间建立有对等的F1应用协议(F1application protocol,F1AP)层、流控制传输协议(stream control transmission protocol,SCTP)层、互联网协议(internet protocol,IP)层、层1(layer 1,L1)和层2(layer 2,L2)。其中,层1可以包括PHY层,层2可以包括RLC层、MAC层和PDCP层。
对于用户面而言,如图3B所示,UE与CU之间建立有对等的SDAP层和PDCP层。UE与DU通过Uu接口连接,UE与DU之间建立有对等的RLC层、MAC层和PHY层;DU与CU之间通过F1用户面(F1-user plane,F1-U)接口连接,DU与CU之间建立有对等的通用分组无线服务(general packet radio service,GPRS)隧道协议用户面(GPRS tunneling protocol-user plane,GTP-U)层、用户数据报协议(user datagram protocol,UDP)层、IP层、层1和层2。
在本申请实施例中,终端设备或网络设备包括硬件层、运行在硬件层之上的操作系统层,以及运行在操作系统层上的应用层。该硬件层包括中央处理器(central processing unit,CPU)、内存管理单元(memory management unit,MMU)和内存(也称为主存)等硬件。该操作系统可以是任意一种或多种通过进程(process)实现业务处理的计算机操作系统,例如,Linux操作系统、Unix操作系统、Android操作系统、iOS操作系统或windows操作系统等。该应用层包含浏览器、通讯录、文字处理软件、即时通信软件等应用。并且,本申请实施例并未对本申请实施例提供的方法的执行主体的具体结构特别限定,只要能够通过运行记录有本申请实施例的提供的方法的代码的程序,以根据本申请实施例提供的方法进行通信即可,例如,本申请实施例提供的方法的执行主体可以是终端设备或网络设备,或者,是终端设备或网络设备中能够调用程序并执行程序的功能模块。
另外,本申请的各个方面或特征可以实现成方法、装置或使用标准编程和/或工程技术的制品。本申请中使用的术语“制品”涵盖可从任何计算机可读器件、载体或介质访问的计算机程序。例如,计算机可读介质可以包括,但不限于:磁存储器件(例如,硬盘、软盘或磁带等),光盘(例如,压缩盘(compact disc,CD)、数字通用盘(digital versatile disc,DVD)等),智能卡和闪存器件(例如,可擦写可编程只读存储器(erasable programmable read-only memory,EPROM)、卡、棒或钥匙驱动器等)。另外,本文描述的各种存储介质可代表用于存储信息的一个或多个设备和/或其它机器可读介质。术语“机器可读介质”可包括但不限于,无线信道和能够存储、包含和/或承载指令和/或数据的各种其它介质。
需要说明的是,图1所示的网络架构中所包含的网络设备、终端设备和核心网设备的数量和类型仅仅是一种举例,本申请实施例并不限制于此。例如,还可以包括更多的或者更少的与网络设备进行通信的终端设备,例如,还可以包括更多的或者更少的与网络设备进行通信的核心网设备。为简明描述,不在附图中一一描述。此外,在如图1所示的网络架构中,尽管示出了网络设备、终端设备和核心网设备,但是该应用场景中可以并不限于包括网络设备、终端设备和核心网设备,例如还可以包括用于承载虚拟化网络功能的设备等,这些对于本领域技术人员而言是显而易见的,在此不再一一赘述。
为了便于理解本申请实施例,下面先给出本申请实施例可能出现的技术术语的定义。本申请的实施方式部分使用的术语仅用于对本申请的具体实施例进行解释,而非旨在限定本申请。
(1)测量,可以分为波束级测量和小区级测量。其中,波束级测量是指网络可以配置UE测量和上报小区的一个或多个波束相关的信息,例如,波束标识和/或波束测量结果。小区级测量是指UE按照网络的配置,通过测量某小区的一个或多个波束,对测量的结果(例如,功率值)将进行平均化处理以获取该小区测量结果。在连接态下,在物理层获得波束质量之后,可以进行层1滤波。在层1滤波之后,在RRC层上通过多个波束获得小区质量,可以进行层3滤波。
(a)层1测量:
层1测量通常是指波束级测量。波束级测量包括以下至少一项:同步信号和物理广播信道(physical boardcast channel,PBCH)块(synchronization signal and PBCH block,SSB)测量、信道状态信息参考信号(channel state information-reference signal,CSI-RS)。其中,SSB可以由主同步信号(primary synchronization signals,PSS)、辅同步信号(secondary synchronization signals,SSS)和PBCH三部分共同组成。
(b)层3测量:
在某些情况下,层3测量是指无线资源管理(radio resource management,RRM)测量。在一些情况下,层3测量是小区级测量。在某些情况下,RRM测量可以理解为层3测量。
(c)测量事件:
测量事件可以包括以下至少一项:A1测量事件、A2测量事件、A3测量事件、A4测量事件、A5测量事件、B1测量事件和B2测量事件。其中,A1测量事件的触发条件是服务小区的信号质量高于阈值。可选的,A1测量事件可以用于关闭某些小区的测量功能。A2测量事件的触发条件是服务小区的信号质量低于阈值。可选的,通常A2测量事件发生之后可能会发生切换等操作,可以用于开启满足触发条件的小区的测量功能。A3测量事件的触发条件是同频/异频邻区的质量比服务小区的质量高于一个偏移量,可选的,A3测量事件可以用于决定终端设备是否切换到邻区。A4测量事件的触发条件是邻区的质量高于阈值。A5测量事件的触发条件是服务小区的质量低于一个阈值,且邻区的质量高于一个阈值。A6测量事件的触发条件是邻小区比服务小区(例如scell)高于一个偏移量。B1测量事件的触发条件是异系统邻小区质量高于服务小区的门限。B2测量事件的触发条件是服务小区质量低于门限1,且异系统邻小区质量高于门限2。本申请对于测量事件、上述的测量事件中涉及的各个阈值(门限)的大小和上报测量事件的测量结果的测量上报触发条件不做限定。测量上报触发可以是周期性触发或事件型触发。
(2)切换,是为了保证业务连续,处于RRC连接态的UE在移动过程中发生的服务小区的变更,还可以称为移动性。请参阅图4,图4是本申请实施例提供的一种切换方法的流程示意图。一种可能的实现方式,切换可以通过层3(RRC层)来控制完成的。如图4所示,切换方法可以包括如下步骤S400至步骤S408,其中:
步骤S400:源基站向UE发送测量配置。
可选的,该测量配置为层3测量。层3测量配置可以由CU生成,其中,层3测量配置可以通过measConfig配置给UE。层3测量配置可以包括以下参数:测量对象(measurement objective,MO)、上报配置(reporting configuration)、测量标识(measurement identities)、测量量配置(quantity configuration)、测量间隔配置(measurement gap)和S测量(S-Measure),其中:
1、MO参数可提供一个对象列表,UE需要对该对象列表的对象执行测量。层3测量可以是per MO粒度执行的。也就是说,对于该MO关联的频点,该频点上的所有小区的L3测量配置是相同的。对于NR MO,UE测量并上报服务小区,列出的小区和/或检测到的小区的测量结果。
网络设备可能会给一个MO配置包括如下3类列表,其中:
第一类,小区相关的列表,该列表中可以包含小区标识和用于事件触发型上报的小区特定的偏移量。
第二类,黑名单小区列表(blacklisted cell),黑名单列表内的小区不能用于事件评估或者测量上报。
第三类,白名单小区列表(whitelisted cell),白名单内的小区是事件评估或者测量上报时仅可使用的小区。
2、上报配置参数可提供一个上报配置列表,每个MO可以有一个或多个上报配置。每一个上报配置中包括触发UE发送测量报告的上报准则、UE可用于波束和小区测量的参考信号(reference signal,RS)类型、上报格式。
其中,触发UE发送测量报告的上报准则,该上报准则可以是周期性触发,或者可以是单一事件触发。例如,触发的事件可以满足前述的测量事件的触发条件。该上报准则或者可以是全球小区标识(cell global identifier,CGI)报告(reportCGI)或系统帧号(system frame number,SFN)与帧边界定时差报告(SFN and frame timing difference,reportSFTD)。reportCGI用于检测小区的CGI。reportSFTD用于检测主小区(primary  cell,PCell)和目标小区之间的SFN与帧边界定时差结果。
RS类型可以包括SSB或CSI-RS等。
上报格式用于指示UE在测量报告中包含的每小区和每波束的测量量类型(例如,RSRP、参考信号接收质量(reference signal received quality,RSRQ)等),以及其他相关信息(例如,可上报的最大小区数量和每小区上的最大波束数量等)。
3、测量标识参数提供一个测量标识列表,其中,每一测量标识都与带有一种上报配置的一个MO相关联。通过配置多个测量标识,可以实现将多个MO关联到同一上报配置,或者可以将多种上报配置关联到同一MO。UE会在触发上报的测量报告中,包含相应的测量标识,作为给网络的一个参考。
4、测量量配置参数定义了事件触发型和周期性上报型测量的测量滤波配置。
5、测量间隔配置参数表示UE可能用于执行测量的时间段。
6、S测量参数提供了NR服务小区SpCell质量的门限控制,可以包含一个与NR SpCell质量相关的门限阈值。例如,在配置了S测量之后,当SpCell的质量低于设置的门限值时,UE才会开启对非服务小区的测量。
步骤S401:UE向源基站发送测量报告。
可选的,步骤S401中的测量报告为层3测量报告或层3测量结果。层3测量报告可以包括服务小区以及邻区的信号质量。
步骤S402:源基站执行切换判决。
源基站可以基于层3测量报告的测量结果和/或自身的切换算法进行切换判决。例如,源小区的信号质量较差,但是目标小区的信号质量较好,基站可以决定触发切换。
步骤S403:源基站向目标基站发送切换请求。
若源基站决定触发切换,源基站向目标小区发送切换请求。该切换请求中可以包括目标小区标识(identifier,ID)、密钥、UE在源小区的ID、接入层的配置等。
步骤S404:目标基站执行准入控制。
准入控制可以由目标基站执行。如果切片信息被发送到目标基站,则应执行切片感知准入控制。如果协议数据单元(protocol data unit,PDU)会话与不支持的切片关联,目标基站应拒绝此类PDU会话。
步骤S405:目标基站向源基站发送切换请求确认消息。
其中,切换请求确认消息可以以RRC容器(RRC container)的方式包含在确认消息中。
步骤S406:源基站向UE发送切换命令。
其中,切换命令可以通过RRC重配消息进行发送,该切换命令中可以包含了接入目标小区需要的信息,至少包括目标小区标识、新的UE ID、目标基站的安全算法标识,还有可能携带接入目标小区的专用随机接入信道(random access channel,RACH)资源等。
可选的,UE接收到切换命令后,断开与源小区的连接。
步骤S407:UE与目标基站执行同步过程。
其中,同步过程可以通过RACH过程实现,以接入到目标小区,后续UE可以与目标小区进行数据的传输。
步骤S408:UE向目标小区发送RRC重配完成消息。
其中,RRC重配完成消息可以用于确认成功完成RRC重配过程。
(3)层1和/或层2(Layer1/Layer2,L1/L2)切换,是为了降低切换时延和中断时间,提高终端设备的用户体验和业务的连续性的一种切换方法。L1/L2切换可通过L1信令(如下行控制信息(downlink control information,DCI))和/或L2信令(如媒体访问控制层控制单元(medium access control control element,MAC CE))来触发终端设备执行切换。
L1/L2切换还可以称为低层切换,或层1和/或层2触发的移动性(L1/L2triggered mobility,LTM)或低层触发的切换。LTM过程的主要思想为:基站基于UE上报的测量报告(例如,RRM测量报告或层3(Layer 3,L3)测量报告)配置一个或多个候选小区,并通过RRC消息向UE提供一个或多个候选小区(可称为LTM候选小区)的预配置信息。UE在接收到来自基站的预配置信息后,向基站发送测量报告(例如,层1测量报告),源DU基于UE上报的测量报告决定触发LTM切换。源DU通过层1信令和/或层2信令向UE发送LTM切换命令,以使UE执行切换过程。
LTM过程是可以是在同一CU内的切换过程。LTM过程包括多种切换场景,以下示例性的列举如下几种,其中:
场景一:CU内DU间(intra-CU inter-DU)的LTM过程。
请参阅图5,图5是本申请实施例提供的一种CU内DU间LTM过程的流程示意图,该LTM切换过程中的源DU和目标DU是不同的DU。如图5所示,CU内DU间L1/L2切换方法可以包括以下步骤S500至步骤S511,其中:
步骤S500:CU向UE发送测量配置。
可选的,该测量配置可以为层3测量配置,可参照步骤S400的描述,在此不再赘述。
步骤S501:UE上报第一测量报告。
可选的,UE向CU上报第一测量报告。其中,第一测量报告可以为层3测量报告。第一测量报告中的测量结果可以根据步骤S500中的测量配置进行测量得到。
步骤S502:CU进行切换决策。
步骤S503:CU向DU发送UE上下文建立请求。
如果CU决定执行LTM过程,CU向属于一个或多个候选DU的一个或多个候选小区请求LTM。CU可以向候选小区发送UE上下文建立请求消息,或者可以发送LTM请求消息。可选的,CU可以参考UE上报的测量报告和/或自身切换算法确定添加的候选小区。
步骤S504:候选DU执行准入控制。
步骤S505:候选DU向CU发送UE上下文请求确认消息。
如果候选DU决定添加LTM候选小区,则候选DU可以向CU发送UE上下文建立请求确认消息,或者LTM请求确认消息。其中,UE上下文建立请求确认消息可以包括候选小区的配置信息。
步骤S506:CU向UE发送RRC重配消息。
其中,RRC重配消息包括LTM配置信息。LTM配置信息还可以称为L1/L2切换(预)配置信息或LTM候选小区配置信息等。LTM配置信息可以包含一个或多个候选小区(本文中可称为LTM候选小区)的(预)配置信息。可选的,候选小区的配置信息是通过小区组配置或RRC重配进行配置的。可选的,RRC重配消息还可以包括源小区的配置信息,或者可以包括L1测量配置或层1测量上报配置。UE在接收到RRC重配消息后没有断开与源小区的连接。
步骤S507:UE发送RRC重配完成消息。
可选的,UE向CU发送RRC重配完成消息。其中,RRC重配完成消息可以发送给源DU中的源小区。该RRC重配完成用于指已经成功接收到RRC重配消息。
步骤S508:UE上报第二测量报告。
可选的,UE向源DU发送第二测量报告。其中,第二测量报告可以包括L1测量报告,第二测量报告可以基于步骤S506中的L1测量配置进行测量得到。
步骤S509:源DU向UE发送切换命令。
其中,源DU可以基于UE上报的第二测量结果进行切换决策。如果源DU决定触发LTM过程,可以向UE发送切换命令。相应地,UE接收来自源DU的切换命令。该切换命令可以为LTM切换命令,或者称为L1/L2切换命令,或者称为LMT小区切换命令,在此仅作为示例不对名称进行限制。该切换命令可以承载在MAC层信令(MAC CE)或物理层信令(DCI)。LTM切换命令用于指示UE切换的目标小区的信息,例如目标小区索引,或目标小区PCI,(目标小区可以包含在上述的候选小区中),或者指示了目标小区的配置信息。可选的,LTM切换命令中还可以包含波束信息。
步骤S510:UE向目标小区执行接入过程。
可选的,UE与目标DU执行同步过程。同步过程可以通过RACH过程实现。
接入过程可以通过RACH过程实现,或通过RACH-less实现。比如,UE收到切换命令后,向目标小区执行随机接入过程,或者UE如果在接收切换命令前已经获取了定时提前,则UE在接收到切换命令后在预配置的资源上向目标小区发送切换完成确认。UE可以基于L1/L2切换命令中指示的目标小区,向目标小区所在的目标DU发起接入,后续UE可以与目标小区进行数据的传输。
可选的,步骤S511:UE向目标DU发送切换完成消息。
其中,切换完成消息可以发送给L1/L2切换命令中指示的目标小区。
场景二:CU内DU内(intra-CU intra-DU)的LTM过程。
请参阅图6,图6是本申请实施例提供的一种CU内DU内的LTM过程的流程示意图,该LTM切换过程中的源DU和目标DU是同一个DU。如图6所示,CU内DU内L1/L2切换方法可以包括以下步骤S600至步骤S610,其中:
步骤S600:CU向UE发送测量配置。
其中,测量配置可以为层3测量配置,可参照步骤S400的描述,在此不再赘述。
步骤S601:UE上报第一测量报告。
可选的,UE向CU发送第一测量报告。
其中,第一测量报告可以为层3测量报告。第一测量报告中的测量结果可以根据步骤S600中的测量配置进行测量得到。
步骤S602:CU向DU发送UE上下文修改请求消息。
其中,UE上下文修改请求可以用于获得修改后的UE上下文信息。可选的,CU可以根据UE上报的测量报告和/或自身切换算法确定待添加的候选小区。
步骤S603:DU执行准入控制。
若DU允许UE接入,则可以执行步骤S604:DU向CU发送UE上下文修改请求确认消息。可选的,DU向CU发送LTM请求确认消息。UE上下文修改请求确认消息可以包括候选小区的配置信息。
步骤S605:CU向UE发送RRC重配消息。
步骤S606:UE发送RRC重配完成消息。
可选的,UE向CU发送RRC重配完成消息。
步骤S607:UE上报第二测量报告。
可选的,UE向DU发送第二测量报告。
步骤S608:DU向UE发送切换命令。
步骤S609:UE向目标小区执行接入过程。
可选的,步骤S610:UE向目标DU发送切换完成消息。
其中,步骤S603至步骤S610可分别参照图5中的步骤S504和步骤S511的描述,在此不再赘述。
对于配置为LTM候选小区的小区,UE需要对这些小区执行层1测量。如果UE还需要对这些小区进行层3测量,由于层1测量是波束级的测量结果,而层3测量是小区级的测量结果,UE上报包含测量结果的测量报告,网络基于层1测量报告和层3测量报告触发切换的目标小区可能会不同,导致频繁切换,影响LTM切换性能。例如,基站可以基于层1测量结果先将UE从小区1切换到小区2。然后基站还可以基于层3的测量结果确定小区1的信号质量高于小区2的信号质量,从而通过层3切换将UE从小区2切换回小区1,导致了频繁的乒乓切换。此外,如果网络不会针对LTM的小区的测量结果触发层3切换,则UE上报层3的测量结果对网络来说可能是没用的,UE发送这些小区相关的层3测量报告会报告浪费了空口资源,网络处理这些层3的测量报告会增加了基站的处理负担。
基于上述,本申请提出一种通信方法,下面将分别通过如下各实施例进行描述。这些通信方法有些仅针对小区切换中的部分流程,有些可以应用于小区切换中的任意一个或多个流程。应理解的是,这些通信方法可以相互结合使用,比如,可以是小区切换中的某一流程使用一种方法而另一流程使用另一种方法,还可以是小区切换中的某一流程既使用一种方法又使用另一种方法。
应理解的是,小区切换有可能会随着技术方案的演进而发生变化,本申请提供的技术方案并不限于下面描述的过程。进一步地,本申请实施例中对场景的描述仅为举例,并不限定本申请实施例的方案仅能运用为描述场景中,同样适用于存在类似问题的场景等。
本申请实施例(如下述图7-图11对应的实施例)中的终端设备可以是图1所示的网络架构中的终端设备,本实施例中由终端设备执行的功能或者可以由终端设备中的装置(例如,芯片,或者芯片系统,或者电路)来执行。本实施例中的网络设备可以是图1所示的网络架构中的网络设备,本实施例中由网络设备执行的功能或者可以由网络设备中的装置(例如,芯片,或者芯片系统,或者电路)来执行。本申请实施例在这里做统一说明,后续不再赘述。
结合上述的网络架构,下面对本申请实施例提供的一种通信方法进行描述。请参阅图7,图7是本申请实施例提供的第一种通信方法的流程示意图。如图7所示,该通信方法可以包括步骤S701至步骤S703,其中:
步骤S701:网络设备向终端设备发送第一配置;其中,第一配置包括LTM候选小区的信息。
相应地,终端设备接收来自网络设备的第一配置。
在本申请实施例中,第一配置可以包含在RRC消息中,例如RRC重配消息,该RRC重配消息可以参照步骤S504的描述,在此不再赘述。第一配置包括LTM候选小区的信息,该LTM候选小区可以由网 络设备根据终端设备上报的测量报告(例如,层3测量报告等)进行确定得到的。本申请对于LTM候选小区的数量和LTM候选小区的信息不做限定,LTM候选小区的数量可以为一个或多个。LTM候选小区的信息可以包括LTM候选小区的物理小区标识(physical cell identities,PCI),还可以包括LTM候选小区的配置信息。
步骤S702:网络设备向终端设备发送第二配置;其中,第二配置包括第一测量配置,第一测量配置包括测量对象配置。
相应地,终端设备接收来自网络设备的第二配置。
在本申请实施例中,第二配置可以包含在RRC消息中,例如RRC重配消息。第一配置和第二配置可以包含在同一个RRC消息中,或者可以包含在不同的RRC消息中。第二配置包括第一测量配置,该第一测量配置可以为针对第一测量的配置信息。本申请对于第一测量的类型和第一测量配置的内容不做限定。第一测量可以为层3测量,或者可以为RRM测量。第一测量配置可以包括测量对象配置,测量对象配置可以包括测量对象的参数,例如,测量对象的频点信息,从而终端设备可以基于频点信息扫描待测量的测量对象(小区)的测量结果。
第一测量还可以包括测量标识、上报配置、测量量配置、测量间隔配置和S测量配置等参数。其中,上报配置可以包括待上报的测量事件的配置信息,测量事件可以包括前述的A1测量事件至A6测量事件、B1测量事件和B2测量事件等。测量事件的上报类型可以包括周期型上报和事件型上报,其中,周期型上报是指在测量周期的定时器超时的情况下,终端设备触发测量上报。定时器可基于预先为测量周期设置的时间阈值进行计时或倒计时,在计时时间为时间阈值时或倒计时时间为0时,确认测量周期的定时器超时。事件型上报是指在测量结果满足测量事件的测量上报触发条件时,终端设备上报测量结果。事件型上报的测量上报事件可以包括以下至少一项:A1测量事件、A2测量事件、A3测量事件、A4测量事件、A5测量事件、B1测量事件、B2测量事件。
以A1测量事件进行举例说明,A1测量事件的触发条件是服务小区的信号质量高于信号质量阈值,测量上报触发条件为满足A1测量事件的触发条件,且持续时长超过时间阈值。如果小区A的信号质量高于信号质量阈值的持续时长超过时间阈值,则上报小区A的测量结果。如果小区A的信号质量高于信号质量阈值的持续时长且未超过时间阈值,则不上报小区A的测量结果。在上报小区A的测量结果之前,可以将小区A的测量结果添加至触发小区列表。在上报小区A的测量结果之后,如果小区A的信号质量低于信号质量阈值的持续时长超过时间阈值,则可以将触发小区列表中的小区A进行删除。
可选的,测量上报触发条件可以包括前述的各类测量上报事件的触发条件,还可以包括其他的触发条件,例如,第一测量配置中测量对象是否为预设对象,具体可以为测量小区是否为LTM候选小区;测量小区的触发事件是否为目标事件;针对不同小区定义的测量周期等,本申请对此不做限定。
步骤S703:如果根据测量对象配置检测到的第一小区是LTM候选小区,终端设备针对第一小区不执行第一行为。
其中,第一行为包括以下至少一项:第一测量、第一测量的测量报告的上报。可选的,第一测量为层3测量,第一测量的测量报告可以为层3测量报告。第一测量为RRM测量,第一测量的测量报告可以为RRM测量报告。
终端设备可以根据测量对象配置中的相关参数检测第一小区,例如,终端设备根据步骤S702中测量对象配置中的频点信息检测第一小区,终端设备根据步骤S701中配置的LTM候选小区的信息确定第一小区是否为LTM候选小区。第一测量和第一测量的上报配置可参照步骤S702的描述,在此不再赘述。终端设备针对第一小区不执行第一行为可以理解为该第一行为不适用于第一小区中的LTM候选小区。在一种终端设备的实现方式中,如果终端设备检测到的第一小区是LTM候选小区,终端设备可以不对该第一小区的PCI进行相关,从而不会执行第一测量,也不会上报第一测量的测量结果。
在图7所示的通信方法中,终端设备接收来自网络设备的第一配置和第二配置,如果根据第二配置中测量对象配置检测到的第一小区是LTM候选小区,则终端设备针对该第一小区不执行第一行为。如此,对于LTM候选小区,可以不执行第一行为,从而可以不对LTM候选小区进行第一测量,或者还可以不上报针对LTM候选小区第一测量的测量结果,可以避免频繁切换,可提高LTM切换性能。
结合图7的实施例,请参阅图8,图8是本申请实施例提供的第二种通信方法的流程示意图。应理解,本申请中不同实施例的术语解释可以互相参考,为避免描述冗余,不同实施例可以不对同一术语赘述。如图8所示,该通信方法可以包括S801至步骤S803,其中:
步骤S801:网络设备向终端设备发送第一配置;其中,第一配置包括LTM候选小区的信息。
相应地,终端设备接收来自网络设备的第一配置。
步骤S802:网络设备向终端设备发送第二配置;其中,第二配置包括第一测量配置,第一测量配置包括测量对象配置。
相应地,终端设备接收来自网络设备的第二配置。
步骤S803:如果根据测量对象配置检测到的第一小区不是LTM候选小区,终端设备针对第一小区执行第一行为。
其中,第一行为包括以下至少一项:第一测量、第一测量的测量报告的上报。步骤S801可以参照步骤S701的描述,步骤S802可以参照步骤S702的描述,在此不再赘述。在本申请实施例中,对于不是LTM候选小区的小区,可以称为非LTM候选小区,但不对此构成限定。
在图8所示的通信方法中,终端设备接收来自网络设备的第一配置和第二配置,如果根据第二配置中测量对象配置检测到的第一小区不是LTM候选小区,则可以针对该第一小区执行第一行为。如此,对于配置为非LTM候选小区,可以执行第一行为,从而可以对非LTM候选小区进行第一测量,还可以上报非LTM候选小区的第一测量的测量结果,网络设备可以基于这些上报的小区的测量结果触发层3切换,提高了切换性能,利于提高终端设备的通信质量。此外,相对于现有技术而言,没有针对基于测量对象检测到的小区中的LTM候选小区执行第一测量,也没有上报候选小区的第一测量的测量报告,仅对于不属于LTM候选小区的第一小区执行第一行为,可以避免频繁的乒乓切换,提高了LTM切换性能。
在一些可行的示例中,在步骤S802之后,还可以包括:如果根据测量对象配置检测到的第一小区是LTM候选小区,终端设备针对第一小区不执行第一行为。如此,可以在非LTM候选小区的测量结果上报的同时,对于LTM候选小区不执行第一行为,从而可以不对LTM候选小区进行第一测量,或者还可以不上报针对LTM候选小区第一测量的测量结果,可以避免频繁的乒乓切换,可提高LTM切换性能。
在一些可行的示例中,第一配置还可以包括第一信息或第二信息。第一信息和第二信息可以包含于同一指示中。例如,第一信息和第二信息中的一个包含于第一指示中,可以理解为第一指示用于指示第一信息或第二信息。示例性地,第一指示为1比特的指示信息,第一指示的取值可以为0或1,当第一指示的取值为0时表示第一指示用于指示第一信息,当第一指示的取值为1时表示第一指示用于指示第二信息;或当第一指示的取值为1时表示第一指示用于指示第一信息,当第一指示的取值为0时表示第一指示用于指示第二信息。第一指示或者可以为true或false,当第一指示的取值为true时表示第一指示用于指示第一信息,当第一指示的取值为flase时表示第一指示用于指示第二信息;或第一指示的取值为false时表示第一指示用于指示第一信息,当第一指示的取值为true时表示第一指示用于指示第二信息等。
第一信息和第二信息或者可以包含于不同的指示中。例如,第一信息为一个字段,第二信息为第二字段,如果网络设备配置了第一字段,则终端设备可以执行第一信息指示的行为,如果网络设备配置了第二字段,则终端设备可以执行第二信息指示的行为。
第一信息用于指示:如果第一小区不是LTM候选小区,针对第一小区执行第一行为;和/或如果第一小区是LTM候选小区,针对第一小区不执行第一行为。也就是说,第一信息用于指示终端设备对于不是LTM候选小区的第一小区执行第一行为,或者还用于指示终端设备对于是LTM候选小区的第一小区不执行第一行为。可以理解为第一信息用于指示终端设备执行步骤S703和/或步骤S803。
第二信息用于指示针对第一小区执行第一行为。也就是说,无论第一小区是否为LTM候选小区,都可针对第一小区执行第一行为。可以理解为第二信息用于指示终端设备不执行步骤S703和步骤S803,还可以理解为终端设备按照现有方法执行第一行为。通过执行第一信息,相对于执行现有技术中的第二信息而言,没有针对基于测量对象检测到的小区中的LTM候选小区执行第一行为,可以避免频繁的乒乓切换,提高了LTM切换性能。
在一些可行的示例中,第一配置还可以包括第二测量配置,图7和图8所示的通信方法还可以包括:终端设备根据第二测量配置执行第二测量。
其中,第二测量配置可以理解为针对第二测量的配置信息。本申请对于第二测量的类型和第二测量配置的内容不做限定,第二测量可以包括以下至少一项:层1测量、SSB测量、CSI-RS测量。第二测量配置可以包括以下一项或多项:测量周期、测量资源(例如,SSB或CSI-RS)、测量量配置、测量间隔、测量标识、S测量配置。
可以理解,在第一配置还包括第二测量配置的情况下,可以根据第二测量配置执行第二测量,还可以上报第二测量的测量结果,以使得网络设备基于第二测量的测量结果进行切换决策,在确认切换之后,终 端设备可以执行LTM切换过程,提高了切换效率。
在一些可行的示例中,终端设备针对第一小区执行第一行为可以包括:终端设备根据第一测量配置针对第一小区执行第一行为。
其中,第一测量配置还可以包括以下至少一项:测量标识、上报配置、测量量配置、测量间隔配置以及S配置等参数。可以理解,根据第一测量配置中的这些参数执行第一行为,可提高执行第一行为的准确率,利于提高切换性能。
第一测量的测量报告的上报需满足第一小区为LTM候选小区,还可以基于第一测量的上报配置进行上报。例如,在一些可行的示例中,针对第一小区执行第一行为可以包括:如果测量周期的定时器超时或测量事件满足测量上报触发条件,终端设备针对第一小区上报第一测量的测量结果。也就是说,可以在第一小区为非LTM候选小区的情况下,若测量周期的定时器超时,执行第一行为,即针对第一小区上报第一测量的测量结果。或者可以在第一小区为非LTM候选小区的情况下,若测量事件满足测量上报触发条件,执行第一行为,即针对第一小区上报第一测量的测量结果。如此,可以在测量周期的定时器超时或测量事件满足测量上报触发条件时,对于非LTM候选小区的第一测量的测量结果进行上报,网络设备可以基于这些上报的小区的测量结果触发层3切换,保证切换的性能。
结合上述的网络架构,请参阅图9,图9是本申请实施例提供的第三种通信方法的流程示意图。应理解,本申请中不同实施例的术语解释可以互相参考,为避免描述冗余,不同实施例可以不对同一术语赘述。如图9所示,该通信方法可以包括S901至步骤S904,其中:
步骤S901:网络设备向终端设备发送第三配置;其中,第三配置包括第一列表,第一列表包括至少一个小区。
相应地,终端设备接收来自网络设备的第三配置。
其中,第三配置和第一配置可以包含于相同的消息中,或者第三配置和第一配置可以包含于不同的消息中。第一列表中的小区不执行第一行为,第一行为包括第一测量和/或第一测量的测量结果的上报。第一列表中的小区包括LTM候选小区。此处的LTM候选小区可以为全部的LTM候选小区,或者可以包括部分的LTM候选小区。在一种示例中,第一列表中的小区包括部分候选小区。可以理解,上报部分的小区的第一测量的测量结果,可以节省功耗和空口资源。
应理解,第一列表可以与黑名单小区列表是两个单独的列表。黑名单中列表的小区用于禁止终端设备对该小区执行第一测量,黑名单列表中的小区可以包括LTM小区,还可以包括非LTM小区。而第一列表中的小区用于禁止执行第一行为,第一列表中包含部分或全部的LTM候选小区。对于被配置为第一列表中的小区,终端设备不会对该小区执行第一测量,终端设备可以执行第二测量,以用于LTM切换。
步骤S902:网络设备向终端设备发送第二配置;其中,第二配置包括第一测量配置,第一测量配置包括测量对象配置。
相应地,终端设备接收来自网络设备的第二配置。第二配置可以参照步骤S701的描述,在此不再赘述。
可选的,步骤S903:终端设备根据测量对象配置检测第一小区。
步骤S904:终端设备根据第一列表执行第一行为。
可选的,终端设备确定第一小区是否为第一列表中的小区。终端设备根据第一列表执行第一行为,通过如下实现方式中的一种实现:
方式1:如果第一小区不是第一列表中的小区,终端设备针对第一小区执行第一行为,且如果第一小区是第一列表中的小区,终端设备针对第一小区不执行第一行为;
方式2:如果第一小区不是第一列表中的小区,终端设备针对第一小区执行第一行为。可以理解为,终端设备仅对不属于第一列表的小区执行第一行为;
方式3:如果第一小区是第一列表中的小区,终端设备针对第一小区不执行第一行为。
在图9所示的通信方法中,终端设备接收来自网络设备的第二配置和第三配置,如果根据第二配置中测量对象配置检测到的第一小区是第三配置中第一列表中的小区,则终端设备可以针对该第一小区不执行第一行为。如果该第一小区不是第一列表中的小区,则可以针对该第一小区执行第一行为。如此,网络设备可以通过列表配置终端设备不执行第一行为的小区,通过网络配置的方式,提高了配置的灵活性。终端设备根据第一测量配置及网络配置的第一列表执行第一行为,针对部分LTM候选小区不执行第一行为,减少了终端设备的测量功耗,节省了测量上报的空口资源。此外,在一些网络部署中,网络设备需要进行 载波管理或LTM候选小区管理等功能,还可以配置不属于第一列表的LTM候选小区,以使终端设备对这些不属于第一列表的LTM候选小区执行第一测量,实现了小区管理或载波管理功能。
结合上述的网络架构,请参阅图10,图10是本申请实施例提供的第四种通信方法的流程示意图。应理解,本申请中不同实施例的术语解释可以互相参考,为避免描述冗余,不同实施例可以不对同一术语赘述。如图10所示,该通信方法可以包括S1001,其中:
步骤S1001:网络设备向终端设备发送第四配置;其中,第四配置包括第三信息,第三信息指示允许或禁止测量结果上报的测量事件类型。
相应地,终端设备接收来自网络设备的第四配置。
其中,第四配置和第一配置可以包含于相同的消息中,或者第四配置和第一配置可以包含于不同的消息中。第四配置可以包括第三信息,第三信息可用于指示允许测量结果上报的测量事件类型,或者用于指示禁止测量结果上报的测量事件类型。第三信息可以包括第二列表,该第二列表包括至少一种测量事件类型。若第二列表包括的测量事件类型为允许测量结果上报的测量事件类型,则第三信息用于指示允许测量结果上报的测量事件类型。若第二列表包括的测量事件类型为禁止测量结果上报的测量事件类型,则第三信息用于指示禁止测量结果上报的测量事件类型。
本申请对于允许或禁止测量结果上报的测量事件类型不做限定,可以为前述的测量事件的测量事件类型。例如,允许测量结果上报的测量事件类型为A1测量事件的测量事件类型,禁止测量结果上报的测量事件类型为A3测量事件的测量事件类型等。如此,在A1测量事件的测量结果满足A1测量事件的测量上报触发条件时,在A3测量事件的触发条件满足A3测量事件的测量上报触发条件时,不上报A3测量事件得到的测量结果。
在一些可行的示例中,还可以包括以下步骤:当第一小区的测量结果满足允许测量结果上报的测量事件类型的测量上报触发条件时,上报测量结果;和/或当第一小区的测量结果满足禁止测量结果上报的测量事件类型的测量上报触发条件时,不上报测量结果。
其中,第一小区为根据所述测量对象配置检测到的小区。
在一种理解中,第三信息可适用于任一小区。或者,在第二列表包括的测量事件类型为允许测量结果上报的测量事件类型的情况下,第三信息适用于第一小区;或在第二列表包括的测量事件类型为禁止测量结果上报的测量事件类型的情况下,第三信息不适用于第一小区。或者在另一种理解中,在第二列表包括的测量事件类型为允许测量结果上报的测量事件类型的情况下,第二列表中的测量事件适用于第一小区;或在第二列表包括的测量事件类型为禁止测量结果上报的测量事件类型,则第二列表中的测量事件不适用于第一小区。
在图10所示的通信方法中,终端设备接收来自网络设备的第四配置,根据第四配置中的第三信息确定允许或禁止测量结果上报的测量事件类型,从而终端设备可以基于每个事件类型上报或不上报该测量事件相关的结果,可以减少基于每个事件的测量结果的上报,节省了功耗和空口资源。例如,如果网络设备将A3事件包含在指示禁止测量结果上报的第二列表中,则UE基于第二列表不上报A3事件的测量结果,网络设备没有收到A3事件的测量结果,从而不会基于A3事件进行切换判决,这样就避免了层1和层3切换的冲突,避免了乒乓切换,可提高LTM切换性能。
在一些可行的示例中,还可以包括:网络设备向终端设备发送第二配置。其中,第二配置包括第一测量配置,第一测量配置包括测量对象配置。在一些可行的示例中,还可以包括:网络设备向终端设备发送第一配置。第一配置和第二配置可以参照图7和图8的实施例的描述,在此不再赘述。本申请对于第一配置、第二配置和第四配置的执行顺序不做限定。
在一些可行的示例中,还可以包括:如果根据测量对象配置检测到的第一小区是LTM候选小区,当第一小区的测量结果满足允许测量结果上报的测量事件类型的测量上报触发条件时,上报测量结果;和/或如果根据测量对象配置检测到的第一小区是LTM候选小区,针对第一小区不上报禁止测量结果上报的测量事件类型的测量事件的测量结果。
在一种理解中,在第二列表包括的测量事件类型为允许测量结果上报的测量事件类型的情况下,第三信息适用于第一小区中的LTM候选小区;在第二列表包括的测量事件类型为禁止测量结果上报的测量事件类型的情况下,第三信息不适用于第一小区中的LTM候选小区。或者在另一种理解中,在第二列表包括的测量事件类型为允许测量结果上报的测量事件类型的情况下,第二列表中的测量事件适用于第一小区中的LTM候选小区;或在第二列表包括的测量事件类型为禁止测量结果上报的测量事件类型的情况下, 第二列表中的测量事件不适用于第一小区中的LTM候选小区。
第一小区的测量结果满足允许测量结果上报的测量事件类型的测量上报触发条件,可以包括第一小区的测量结果中涉及的测量事件为允许测量结果上报的测量事件类型,且第一小区的测量结果满足测量事件的触发条件,例如,测量事件的持续时长超过预设的时间阈值等。
第一小区的测量结果满足允许测量结果上报的测量事件类型的测量上报触发条件,或者可以包括第一小区的测量结果中的测量参数满足预设的参数阈值。例如,第一小区的测量结果包括第一小区的信号质量,在一些可行的示例中,如果第一小区的信号质量小于信号质量阈值,确定第一小区的信号质量满足允许测量结果上报的测量事件类型的测量上报触发条件。也就是说,在第一小区的信号质量小于信号质量阈值时,表示信号质量较差,需要进一步判断是否切换,从而可以将第一小区的测量结果作为满足允许测量结果上报的测量事件类型的测量上报触发条件。通过上报第一小区的测量报告,可以提高切换判决的准确率,利于减小切换次数,提高切换性能。
可以理解,终端设备根据来自网络设备的第二配置中的测量对象配置检测第一小区,如果第一小区是LTM候选小区,第一小区的测量结果满足允许测量结果上报的测量事件类型的测量上报触发条件时,可以上报该测量结果。在第一小区是LTM候选小区,但第一小区的测量事件类型是禁止测量结果上报的测量事件类型时,即使第一小区的测量结果满足测量上报触发条件,也不上报该测量报告。如此,通过测量事件类型和测量上报触发条件筛选待上报的测量结果,可以避免不必要的测量上报,可节省功耗和空口资源,利于提高切换性能。可选的,针对第一小区中的非LTM候选小区的测量结果,可以上报。或者可以在非LTM候选小区的测量结果满足预设的测量上报触发条件时进行上报。
在一些可行的示例中,第一测量配置还可以包括第一测量周期,该通信方法还可以包括以下步骤:网络设备向终端设备发送第五配置;如果第一小区是LTM候选小区,基于第二测量周期针对第一小区执行第一测量;或如果第一小区不是LTM候选小区,基于第一测量周期针对第一小区执行第一测量。
其中,第二测量周期大于第一测量周期。第一测量周期适用于根据测量对象配置检测到的第一小区中的非LTM候选小区,第二测量周期适用于第一小区中的LTM候选小区。也就是说,在第一小区是非LTM候选小区时,可以基于第一测量周期针对第一小区执行第一测量。而在第一小区是LTM候选小区时,可以基于第二测量周期针对第一小区执行第一测量。如此,LTM候选小区的测量周期(或测量窗)可以大于非LTM候选小区的测量周期,以减小针对LTM候选小区的第一测量,从而减少测量结果的上报,可以节省功耗和空口资源,利于提高LTM切换性能。
采用第五配置进行切换控制的方法,可请参阅图11,图11是本申请实施例提供的第五种通信方法的流程示意图。应理解,本申请中不同实施例的术语解释可以互相参考,为避免描述冗余,不同实施例可以不对同一术语赘述。如图11所示,该通信方法可以包括步骤S1101至步骤S1106,其中:
步骤S1101:网络设备向终端设备发送第二配置;其中,第二配置包括第一测量配置,第一测量配置包括测量对象配置和第一测量周期。
相应地,终端设备接收来自网络设备的第二配置。
步骤S1102:网络设备向终端设备发送第五配置;其中,第五配置包括第二测量周期,第二测量周期大于第一测量周期。
相应地,终端设备接收来自网络设备的第五配置。
可选的,步骤S1103:终端设备根据测量对象配置检测第一小区。
可选的,步骤S1104:终端设备确定第一小区是否为LTM候选小区。
如果第一小区是LTM候选小区,则执行步骤S1105:终端设备基于第二测量周期针对第一小区执行第一测量。如果第一小区不是LTM候选小区,则执行步骤S1106:终端设备基于第一测量周期针对第一小区执行第一测量。
其中,步骤S1103和步骤S1104可以在LTM候选小区的数量为1时,根据第一小区是否为LTM候选小区执行其中的一个。若存在是LTM候选小区的第一小区,且存在不是LTM候选小区的第一小区,则步骤S1103和步骤S1104都执行。
在图11所示的通信方法中,终端设备接收来自网络设备发送的第二配置和第五配置,可以根据第二配置中的测量对象配置确定第一小区,在第一小区是非LTM候选小区时,基于第一测量周期针对第一小区执行第一测量。或者还可以在第一小区是LTM候选小区时,可以基于第二测量周期针对第一小区执行第一测量。如此,LTM候选小区的测量周期(或测量窗)可以大于非LTM候选小区的测量周期,以减小 LTM候选小区的测量结果的上报,可以节省功耗和空口资源,利于提高LTM切换性能。
上面描述了本申请实施例提供的方法实施例,下面对本申请实施例涉及的装置实施例进行描述。
请参阅图12,图12是本申请实施例提供的第一种通信装置的结构示意图。如图12所示,该通信装置1200包括收发单元1201和处理单元1202。该通信装置1200可以为终端设备,或者可以为终端设备中的装置(例如,芯片,或者芯片系统,或者电路)。作为终端设备的通信装置1200可以包括以下3个方面。
在第一方面,收发单元1201用于接收来自网络设备的第一配置;其中,第一配置包括LTM候选小区的信息;接收来自网络设备的第二配置;其中,第二配置包括第一测量配置,第一测量配置包括测量对象配置;
处理单元1202用于如果根据测量对象配置检测到的第一小区不是LTM候选小区,针对第一小区执行第一行为;和/或如果根据测量对象配置检测到的第一小区是LTM候选小区,针对第一小区不执行第一行为;其中,第一行为包括以下至少一项:第一测量、第一测量的测量结果的上报。
在一些可行的示例中,第一配置还包括第一信息或第二信息,第一信息用于指示:
如果第一小区不是LTM候选小区,针对第一小区执行第一行为;和/或
如果第一小区是LTM候选小区,针对第一小区不执行第一行为;
第二信息用于指示针对第一小区执行第一行为。
在一些可行的示例中,第一测量包括层3测量或RRM测量。
在一些可行的示例中,第一配置还包括第二测量配置,处理单元1202还用于根据第二测量配置执行第二测量;其中,第二测量包括以下至少一项:层1测量、SSB测量、CSI-RS测量。
在一些可行的示例中,处理单元1202具体用于根据第一测量配置针对第一小区执行第一行为;其中,第一测量配置还包括以下至少一项:测量标识、上报配置、测量量配置、测量间隔配置和S测量配置。
在一些可行的示例中,处理单元1202具体用于如果测量周期的定时器超时或测量事件满足测量上报触发条件,针对第一小区上报第一测量的测量结果。
第二方面,收发单元1201用于接收来自网络设备的第三配置;其中,第三配置包括第一列表,第一列表包括至少一个小区;接收来自网络设备的第二配置;其中,第二配置包括第一测量配置,第一测量配置包括测量对象配置;
处理单元1202用于如果根据测量对象配置检测到的第一小区不是第一列表中的小区,针对第一小区执行第一行为;和/或如果根据测量对象配置检测到的第一小区是第一列表中的小区,针对第一小区不执行第一行为;其中,第一行为包括以下至少一项:第一测量、第一测量的测量结果的上报。
在一些可行的示例中,第一列表中的小区包括LTM候选小区。
在一些可行的示例中,处理单元1202具体用于根据第一测量配置针对第一小区执行第一行为;其中,第一测量配置还包括以下至少一项:测量标识、上报配置、测量量配置、测量间隔配置和S测量配置。
在一些可行的示例中,处理单元1202具体用于如果测量周期的定时器超时或测量事件满足测量上报触发条件,上报针对第一小区执行第一测量的测量结果。
第三方面,收发单元1201用于接收来自网络设备的第四配置;其中,第四配置包括第三信息,第三信息指示允许或禁止测量结果上报的测量事件类型。
在一些可行的示例中,第三信息包括第二列表,第二列表包括至少一种测量事件类型。
在一些可行的示例中,收发单元1201还用于接收来自网络设备的第二配置;其中,第二配置包括第一测量配置,第一测量配置包括测量对象配置;
处理单元1202用于如果根据测量对象配置检测到的第一小区是LTM候选小区,当第一小区的测量结果满足允许测量结果上报的测量事件类型的测量上报触发条件时,上报测量结果;和/或如果根据测量对象配置检测到的第一小区是LTM候选小区,针对第一小区不上报禁止测量结果上报的测量事件类型的测量事件的测量结果。
在一些可行的示例中,第一测量配置还包括第一测量周期,收发单元1201还用于接收来自网络设备的第五配置;其中,第五配置包括第二测量周期,第二测量周期大于第一测量周期;
处理单元1202还用于如果第一小区是LTM候选小区,基于第二测量周期针对第一小区执行第一测量;和/或如果第一小区不是LTM候选小区,基于第一测量周期针对第一小区执行第一测量。
在一些可行的示例中,第一小区的测量结果包括第一小区的信号质量,处理单元1202还用于如果第一小区的信号质量小于信号质量阈值,确定第一小区的信号质量满足允许测量结果上报的测量事件类型的 测量上报触发条件。
有关上述收发单元1201和处理单元1202更详细的描述可以直接参考上述图7至图11所示的任一方法实施例中终端设备的相关描述,这里不加赘述。
请参阅图13,图13是本申请实施例提供的第二种通信装置的结构示意图。如图13所示,该通信装置1300包括收发单元1301。该通信装置1300可以为网络设备,或者可以为网络设备中的装置(例如,芯片,或者芯片系统,或者电路)。作为终端设备的通信装置1300可以包括以下2个方面。
第一方面,收发单元1301用于向网络设备发送第三配置;其中,第三配置包括第一列表,第一列表包括至少一个小区,第一列表中的小区不执行第一行为,第一行为包括以下至少一项:第一测量、第一测量的测量结果的上报。
在一些可行的示例中,第一列表中的小区包括LTM候选小区。
第二方面,收发单元1301用于向网络设备发送第四配置;其中,第四配置包括第三信息,第三信息指示允许或禁止触发测量结果上报的测量事件类型。
在一些可行的示例中,第三信息包括第二列表,第二列表包括至少一种测量事件类型。
在一些可行的示例中,收发单元1301还用于向终端设备发送第二配置;其中,第二配置包括第一测量配置,第一测量配置包括测量对象配置。
在一些可行的示例中,第一测量配置还包括第一测量周期,收发单元1301还用于向终端设备发送第五配置;其中,第五配置包括第二测量周期,第二测量周期大于第一测量周期,第一测量周期适用于根据测量对象配置检测到的第一小区中的非LTM候选小区,第二测量周期适用于第一小区中的LTM候选小区。
有关上述收发单元1301更详细的描述可以直接参考上述图7至图11所示的任一方法实施例中网络设备的相关描述,这里不加赘述。
基于上述网络架构,请参阅图14,图14是本申请实施例提供的第三种通信装置的结构示意图。如图14所示,该通信装置1400可以包括一个或多个处理器1401,处理器1401也可以称为处理单元,可以实现一定的控制功能。处理器1401可以是通用处理器或者专用处理器等。例如可以是基带处理器或中央处理器。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对通信装置(如,基站、基带芯片,终端、终端芯片,DU或CU等)进行控制,执行软件程序,处理软件程序的数据。
在一种可选的设计中,处理器1401也可以存有指令1403和/或数据,指令1403和/或数据可以被处理器运行,使得装置1400执行上述方法实施例中描述的方法。
在另一种可选的设计中,处理器1401中可以包括用于实现接收和发送功能的收发单元。例如该收发单元可以是收发电路,或者是接口,或者是接口电路,或者是通信接口。用于实现接收和发送功能的收发电路、接口或接口电路可以是分开的,也可以集成在一起。上述收发电路、接口或接口电路可以用于代码/数据的读写,或者,上述收发电路、接口或接口电路可以用于信号的传输或传递。
在又一种可能的设计中,通信装置1400可以包括电路,电路可以实现前述方法实施例中发送或接收或者通信的功能。
可选的,通信装置1400中可以包括一个或多个存储器1402,其上可以存有指令1404,指令可在处理器上被运行,使得通信装置1400执行上述方法实施例中描述的方法。可选的,存储器中还可以存储有数据。可选的,处理器中也可以存储指令和/或数据。处理器和存储器可以单独设置,也可以集成在一起。例如,上述方法实施例中所描述的对应关系可以存储在存储器中,或者存储在处理器中。
可选的,通信装置1400还可以包括收发器1405和/或天线1406。处理器1401可以称为处理单元,对装置1400进行控制。收发器1405可以称为收发单元、收发机、收发电路、收发装置或收发模块等,用于实现收发功能。
可选的,通信装置1400可以用于执行本申请实施例中图7至图11描述的任一方法。
在一个实施例中,该通信装置1400可以为终端设备,也可以为终端设备中的装置(例如,芯片,或者芯片系统,或者电路),存储器1402中存储的计算机程序指令被执行时,该处理器1401用于执行上述实施例中处理单元1202执行的操作,或者用于执行上述实施例中处理单元1202执行的操作。收发器1405用于执行上述实施例中收发单元1201执行的操作,该收发器1405还用于向该通信装置之外的其它通信装置发送信息。上述终端设备或者终端设备内的装置还可以用于执行上述图7至图11方法实施例中终端设备执行的任一方法,在此不再赘述。
在一个实施例中,该通信装置1400可以为网络设备,也可以为网络设备中的装置(例如,芯片,或 者芯片系统,或者电路),存储器1402中存储的计算机程序指令被执行时,该处理器1401用于控制收发器1405执行上述实施例中收发单元1301执行的操作,收发器1405还用于接收来自该通信装置之外的其它通信装置的信息。上述网络设备或者网络设备内的装置还可以用于执行上述图7至图11方法实施例中网络设备执行的任一方法,在此不再赘述。
本申请中描述的处理器和收发器可实现在集成电路(integrated circuit,IC)、模拟IC、射频集成电路(radiofrequencyinterfacechip,RFIC)、混合信号IC、专用集成电路(application specific integrated circuit,ASIC)、印刷电路板(printed circuit board,PCB)、电子设备等上。该处理器和收发器也可以用各种IC工艺技术来制造,例如互补金属氧化物半导体(complementary metal oxide semiconductor,CMOS)、N型金属氧化物半导体(nMetal-oxide-semiconductor,NMOS)、P型金属氧化物半导体(positive channel metal oxide semiconductor,PMOS)、双极结型晶体管(bipolar junction transistor,BJT)、双极CMOS(BiCMOS)、硅锗(SiGe)、砷化镓(GaAs)等。
以上实施例描述中的通信装置可以是终端设备或者网络设备,但本申请中描述的装置的范围并不限于此,而且通信装置的结构可以不受图14的限制。装置可以是独立的设备或者可以是较大设备的一部分。例如,通信装置可以是:
(1)独立的集成电路IC,或芯片,或芯片系统或子系统;
(2)具有一个或多个IC的集合,可选的,该IC集合也可以包括用于存储数据和/或指令的存储部件;
(3)ASIC,例如调制解调器(MSM);
(4)可嵌入在其他设备内的模块;
(5)接收机、终端、智能终端、蜂窝电话、无线设备、手持机、移动单元、车载设备、网络设备、云设备、人工智能设备、机器设备、家居设备、医疗设备、工业设备等等;
(6)其他等等。
请参阅图15,图15是本申请实施例提供的一种终端设备的结构示意图。为了便于说明,图15仅示出了终端设备的主要部件。如图15所示,终端设备1500包括处理器、存储器、控制电路、天线、以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对整个终端进行控制,执行软件程序,处理软件程序的数据。存储器主要用于存储软件程序和数据。射频电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。
当终端开机后,处理器可以读取存储单元中的软件程序,解析并执行软件程序的指令,处理软件程序的数据。当需要通过无线发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行处理后得到射频信号并将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端时,射频电路通过天线接收到射频信号,该射频信号被进一步转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。
为了便于说明,图15仅示出了一个存储器和处理器。在实际的终端中,可以存在多个处理器和存储器。存储器也可以称为存储介质或者存储设备等,本申请实施例对此不做限制。
作为一种可选的实现方式,处理器可以包括基带处理器和中央处理器,基带处理器主要用于对通信协议以及通信数据进行处理,中央处理器主要用于对整个终端进行控制,执行软件程序,处理软件程序的数据。图15中的处理器集成了基带处理器和中央处理器的功能,本领域技术人员可以理解,基带处理器和中央处理器也可以是各自独立的处理器,通过总线等技术互联。本领域技术人员可以理解,终端可以包括多个基带处理器以适应不同的网络制式,终端可以包括多个中央处理器以增强其处理能力,终端的各个部件可以通过各种总线连接。基带处理器也可以表述为基带处理电路或者基带处理芯片。中央处理器也可以表述为中央处理电路或者中央处理芯片。对通信协议以及通信数据进行处理的功能可以内置在处理器中,也可以以软件程序的形式存储在存储单元中,由处理器执行软件程序以实现基带处理功能。
在一个例子中,可以将具有收发功能的天线和控制电路视为终端设备1500的收发单元1501,将具有处理功能的处理器视为终端设备1500的处理单元1502。如图15所示,终端设备1500包括收发单元1501和处理单元1502。收发单元也可以称为收发器、收发机、收发装置等。可选的,可以将收发单元1501中用于实现接收功能的器件视为接收单元,将收发单元1501中用于实现发送功能的器件视为发送单元,即收发单元1501包括接收单元和发送单元。示例性的,接收单元也可以称为接收机、接收器、接收电路等,发送单元可以称为发射机、发射器或者发射电路等。可选的,上述接收单元和发送单元可以是集成在一起 的一个单元,也可以是各自独立的多个单元。上述接收单元和发送单元可以在一个地理位置,也可以分散在多个地理位置。
在一个实施例中,收发单元1501用于执行上述实施例中收发单元1201执行的操作,或者用于执行上述实施例中收发单元1301执行的操作。处理单元1502用于执行上述实施例中处理单元1202执行的操作。该终端设备1500还可以用于执行上述图7至图11方法实施例中终端设备或网络设备执行的任一方法,在此不再赘述。
本申请实施例还提供一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时可以实现上述方法实施例提供的通信方法中与终端设备相关的流程。
本申请实施例还提供一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时可以实现上述方法实施例提供的通信方法中与网络设备相关的流程。
本申请实施例还提供了一种计算机程序产品,当其在计算机或处理器上运行时,使得计算机或处理器执行上述任一个通信方法中的一个或多个步骤。上述所涉及的设备的各组成模块如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在计算机可读取存储介质中。
本申请实施例还提供一种芯片系统,包括至少一个处理器和通信接口,通信接口和至少一个处理器通过线路互联,至少一个处理器用于运行计算机程序或指令,以执行包括上述图7至图11对应的方法实施例中记载的任意一种的部分或全部步骤。该芯片系统,可以由芯片构成,也可以包含芯片和其他分立器件。
本申请实施例还提供一种通信系统,该系统包括终端设备和网络设备,具体描述可以参考图7至图11所示的任一通信方法。
应理解,本申请实施例中提及的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是硬盘(hard disk drive,HDD)、固态硬盘(solid-state drive,SSD)、只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static rAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous dRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。存储器是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。本申请实施例中的存储器还可以是电路或者其它任意能够实现存储功能的装置,用于存储程序指令和/或数据。
还应理解,本申请实施例中提及的处理器可以是中央处理单元(central processing unit,CPU),还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
需要说明的是,当处理器为通用处理器、DSP、ASIC、FPGA或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件时,存储器(存储模块)集成在处理器中。
应注意,本文描述的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所提供的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,单元的划分,仅仅为一种逻辑功能划分,实 际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
本申请实施例方法中的步骤可以根据实际需要进行顺序调整、合并和删减。每个实施例的步骤可以部分执行(比如,终端设备可以不执行上述实施例中由终端设备执行的步骤)。不同步骤的执行顺序可以变更。本文所描述的实施例可以与其它实施例相结合,不同实施例之间也可以相互结合,本文的不同实施例的不同步骤也可以结合。
本申请实施例装置中的模块/单元可以根据实际需要进行合并、划分和删减。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。
本申请实施例中的术语“第一”、“第二”、“第三”、“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
在本申请实施例中,“包括”可以是包含关系,也可以是相等关系。比如,A包括B,可以是A包含B之外还可以包含其他内容,或者,A和B为同一内容。
在本申请的描述中,除非另有说明,“/”表示前后关联的对象是一种“或”的关系,例如,A/B可以表示A或B;本申请中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况,其中A,B可以是单数或者复数。并且,在本申请的描述中,除非另有说明,“多个”是指两个或多于两个。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。另外,为了便于清楚描述本申请实施例的技术方案,在本申请的实施例中,采用了“第一”、“第二”等字样对功能和作用基本相同的相同项或相似项进行区分。本领域技术人员可以理解“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。
以上,以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (43)

  1. 一种通信方法,其特征在于,包括:
    接收来自网络设备的第一配置;其中,所述第一配置包括层1和/或层2触发的移动性LTM候选小区的信息;
    接收来自网络设备的第二配置;其中,所述第二配置包括第一测量配置,所述第一测量配置包括测量对象配置;
    如果根据所述测量对象配置检测到的第一小区不是所述LTM候选小区,针对所述第一小区执行第一行为;和/或
    如果根据所述测量对象配置检测到的第一小区是所述LTM候选小区,针对所述第一小区不执行第一行为;
    其中,所述第一行为包括以下至少一项:第一测量、所述第一测量的测量结果的上报。
  2. 根据权利要求1所述的通信方法,其特征在于,所述第一配置还包括第一信息或第二信息,所述第一信息用于指示:
    如果所述第一小区不是所述LTM候选小区,针对所述第一小区执行所述第一行为;和/或
    如果所述第一小区是所述LTM候选小区,针对所述第一小区不执行所述第一行为;
    所述第二信息用于指示针对所述第一小区执行所述第一行为。
  3. 根据权利要求1或2所述的通信方法,其特征在于,所述第一测量包括层3测量或无线资源管理RRM测量。
  4. 根据权利要求1-3中任一项所述的通信方法,其特征在于,所述第一配置还包括第二测量配置,所述通信方法还包括:
    根据所述第二测量配置执行第二测量;其中,所述第二测量包括以下至少一项:层1测量、同步信号和物理广播信道块SSB测量、信道状态指示参考信号CSI-RS测量。
  5. 根据权利要求1-4中任一项所述的通信方法,其特征在于,所述针对所述第一小区执行第一行为,包括:
    根据所述第一测量配置针对所述第一小区执行第一行为;其中,所述第一测量配置还包括以下至少一项:测量标识、上报配置、测量量配置、测量间隔配置和S测量配置。
  6. 根据权利要求1-5中任一项所述的通信方法,其特征在于,所述针对所述第一小区执行第一行为,包括:
    如果测量周期的定时器超时或测量事件满足测量上报触发条件,针对所述第一小区上报所述第一测量的测量结果。
  7. 一种通信方法,其特征在于,包括:
    接收来自网络设备的第三配置;其中,所述第三配置包括第一列表,所述第一列表包括至少一个小区;
    接收来自网络设备的第二配置;其中,所述第二配置包括第一测量配置,所述第一测量配置包括测量对象配置;
    如果根据所述测量对象配置检测到的第一小区不是所述第一列表中的小区,针对所述第一小区执行第一行为;和/或
    如果根据所述测量对象配置检测到的第一小区是所述第一列表中的小区,针对所述第一小区不执行第一行为;
    其中,所述第一行为包括以下至少一项:第一测量、所述第一测量的测量结果的上报。
  8. 根据权利要求7所述的通信方法,其特征在于,所述第一列表中的小区包括LTM候选小区。
  9. 一种通信方法,其特征在于,包括:
    接收来自网络设备的第四配置;其中,所述第四配置包括第三信息,所述第三信息指示允许或禁止测量结果上报的测量事件类型。
  10. 根据权利要求9所述的通信方法,其特征在于,所述第三信息包括第二列表,所述第二列表包括至少一种测量事件类型。
  11. 根据权利要求9或10所述的通信方法,其特征在于,还包括:
    接收来自网络设备的第二配置;其中,所述第二配置包括第一测量配置,所述第一测量配置包括测量对象配置;
    如果根据所述测量对象配置检测到的第一小区是LTM候选小区,当所述第一小区的测量结果满足所述允许测量结果上报的测量事件类型的测量上报触发条件时,上报所述测量结果;和/或
    如果根据所述测量对象配置检测到的第一小区是所述LTM候选小区,针对所述第一小区不上报所述禁止测量结果上报的测量事件类型的测量事件的测量结果。
  12. 根据权利要求11所述的通信方法,其特征在于,所述第一测量配置还包括第一测量周期,所述通信方法还包括:
    接收来自网络设备的第五配置;其中,所述第五配置包括第二测量周期,所述第二测量周期大于所述第一测量周期;
    如果所述第一小区是所述LTM候选小区,基于所述第二测量周期针对所述第一小区执行第一测量;和/或
    如果所述第一小区不是所述LTM候选小区,基于所述第一测量周期针对所述第一小区执行第一测量。
  13. 根据权利要求11或12所述的通信方法,其特征在于,所述第一小区的测量结果包括所述第一小区的信号质量,所述通信方法还包括:
    如果所述第一小区的信号质量小于信号质量阈值,确定所述第一小区的信号质量满足所述允许测量结果上报的测量事件类型的测量上报触发条件。
  14. 一种通信方法,其特征在于,包括:
    向终端设备发送第三配置;其中,所述第三配置包括第一列表,所述第一列表包括至少一个小区,所述第一列表中的小区不执行第一行为,所述第一行为包括以下至少一项:第一测量、所述第一测量的测量结果的上报。
  15. 根据权利要求14所述的通信方法,其特征在于,所述第一列表中的小区包括LTM候选小区。
  16. 一种通信方法,其特征在于,包括:
    向终端设备发送第四配置;其中,所述第四配置包括第三信息,所述第三信息指示允许或禁止触发测量结果上报的测量事件类型。
  17. 根据权利要求16所述的通信方法,其特征在于,所述第三信息包括第二列表,所述第二列表包括至少一种测量事件类型。
  18. 根据权利要求16或17所述的通信方法,其特征在于,还包括:
    向终端设备发送第二配置;其中,所述第二配置包括第一测量配置,所述第一测量配置包括测量对象配置。
  19. 根据权利要求18所述的通信方法,其特征在于,所述第一测量配置还包括第一测量周期,所述通信方法还包括:
    向终端设备发送第五配置;其中,所述第五配置包括第二测量周期,所述第二测量周期大于所述第一测量周期,所述第一测量周期适用于根据所述测量对象配置检测到的第一小区中的非LTM候选小区,所述第二测量周期适用于所述第一小区中的LTM候选小区。
  20. 一种通信装置,其特征在于,包括:
    收发单元,用于接收来自网络设备的第一配置;其中,所述第一配置包括层1和/或层2触发的移动性LTM候选小区的信息;
    所述收发单元还用于接收来自网络设备的第二配置;其中,所述第二配置包括第一测量配置,所述第一测量配置包括测量对象配置;
    处理单元,用于如果根据所述测量对象配置检测到的第一小区不是所述LTM候选小区,针对所述第一小区执行第一行为;和/或如果根据所述测量对象配置检测到的第一小区是所述LTM候选小区,针对所述第一小区不执行第一行为;其中,所述第一行为包括以下至少一项:第一测量、所述第一测量的测量结果的上报。
  21. 根据权利要求20所述的装置,其特征在于,所述第一配置还包括第一信息或第二信息,所述第一信息用于指示:
    如果所述第一小区不是所述LTM候选小区,针对所述第一小区执行所述第一行为;和/或
    如果所述第一小区是所述LTM候选小区,针对所述第一小区不执行所述第一行为;
    所述第二信息用于指示针对所述第一小区执行所述第一行为。
  22. 根据权利要求20或21所述的装置,其特征在于,所述第一测量包括层3测量或无线资源管理RRM测量。
  23. 根据权利要求20-22中任一项所述的装置,其特征在于,所述第一配置还包括第二测量配置,所述处理单元还用于根据所述第二测量配置执行第二测量;其中,所述第二测量包括以下至少一项:层1测量、同步信号和物理广播信道块SSB测量、信道状态指示参考信号CSI-RS测量。
  24. 根据权利要求20-23中任一项所述的装置,其特征在于,所述处理单元针对所述第一小区执行第一行为,具体用于:
    根据所述第一测量配置针对所述第一小区执行第一行为;其中,所述第一测量配置还包括以下至少一项:测量标识、上报配置、测量量配置、测量间隔配置和S测量配置。
  25. 根据权利要求20-24中任一项所述的装置,其特征在于,所述处理单元针对所述第一小区执行第一行为,具体用于:
    如果测量周期的定时器超时或测量事件满足测量上报触发条件,针对所述第一小区上报所述第一测量的测量结果。
  26. 一种通信装置,其特征在于,包括:
    收发单元,用于接收来自网络设备的第三配置;其中,所述第三配置包括第一列表,所述第一列表包括至少一个小区;
    所述收发单元还用于接收来自网络设备的第二配置;其中,所述第二配置包括第一测量配置,所述第一测量配置包括测量对象配置;
    处理单元,用于如果根据所述测量对象配置检测到的第一小区不是所述第一列表中的小区,针对所述第一小区执行第一行为;和/或如果根据所述测量对象配置检测到的第一小区是所述第一列表中的小区,针对所述第一小区不执行第一行为;其中,所述第一行为包括以下至少一项:第一测量、所述第一测量的测量结果的上报。
  27. 根据权利要求26所述的装置,其特征在于,所述第一列表中的小区包括LTM候选小区。
  28. 一种通信装置,其特征在于,包括:
    收发单元,用于接收来自网络设备的第四配置;其中,所述第四配置包括第三信息,所述第三信息指示允许或禁止测量结果上报的测量事件类型。
  29. 根据权利要求28所述的装置,其特征在于,所述第三信息包括第二列表,所述第二列表包括至少一种测量事件类型。
  30. 根据权利要求28或29所述的装置,其特征在于,所述收发单元还用于接收来自网络设备的第二配置;其中,所述第二配置包括第一测量配置,所述第一测量配置包括测量对象配置;
    所述装置还包括:
    处理单元,用于如果根据所述测量对象配置检测到的第一小区是LTM候选小区,当所述第一小区的测量结果满足所述允许测量结果上报的测量事件类型的测量上报触发条件时,上报所述测量结果;和/或
    如果根据所述测量对象配置检测到的第一小区是所述LTM候选小区,针对所述第一小区不上报所述禁止测量结果上报的测量事件类型的测量事件的测量结果。
  31. 根据权利要求30所述的装置,其特征在于,所述第一测量配置还包括第一测量周期,所述收发单元还用于接收来自网络设备的第五配置;其中,所述第五配置包括第二测量周期,所述第二测量周期大于所述第一测量周期;
    所述处理单元还用于如果所述第一小区是所述LTM候选小区,基于所述第二测量周期针对所述第一小区执行第一测量;和/或
    如果所述第一小区不是所述LTM候选小区,基于所述第一测量周期针对所述第一小区执行第一测量。
  32. 根据权利要求30或31所述的装置,其特征在于,所述第一小区的测量结果包括所述第一小区的信号质量,所述处理单元还用于如果所述第一小区的信号质量小于信号质量阈值,确定所述第一小区的信号质量满足所述允许测量结果上报的测量事件类型的测量上报触发条件。
  33. 一种通信装置,其特征在于,包括:
    收发单元,用于向终端设备发送第三配置;其中,所述第三配置包括第一列表,所述第一列表包括至少一个小区,所述第一列表中的小区不执行第一行为,所述第一行为包括以下至少一项:第一测量、所述第一测量的测量结果的上报。
  34. 根据权利要求33所述的装置,其特征在于,所述第一列表中的小区包括LTM候选小区。
  35. 一种通信装置,其特征在于,包括:
    收发单元,用于向终端设备发送第四配置;其中,所述第四配置包括第三信息,所述第三信息指示允许或禁止触发测量结果上报的测量事件类型。
  36. 根据权利要求35所述的装置,其特征在于,所述第三信息包括第二列表,所述第二列表包括至少一种测量事件类型。
  37. 根据权利要求35或36所述的装置,其特征在于,所述收发单元还用于向终端设备发送第二配置;其中,所述第二配置包括第一测量配置,所述第一测量配置包括测量对象配置。
  38. 根据权利要求37所述的装置,其特征在于,所述第一测量配置还包括第一测量周期,所述收发单元还用于向终端设备发送第五配置;其中,所述第五配置包括第二测量周期,所述第二测量周期大于所述第一测量周期,所述第一测量周期适用于根据所述测量对象配置检测到的第一小区中的非LTM候选小区,所述第二测量周期适用于所述第一小区中的LTM候选小区。
  39. 一种通信装置,其特征在于,所述通信装置包括处理器和存储介质,所述存储介质存储有指令,所述指令被所述处理器运行时,使得根据权利要求1-13中任意一项所述的通信方法被实现,或者使得根据权利要求14-19中任意一项所述的通信方法被实现。
  40. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质包括指令,当所述指令被处理器运行时,使得根据权利要求1-13中任意一项所述的通信方法被实现,或者使得根据权利要求14-19中任意一项所述的通信方法被实现。
  41. 一种计算机程序产品,其特征在于,所述计算机程序产品包括指令,当所述指令被处理器运行时,使得根据权利要求1-13中任意一项所述的通信方法被实现,或者使得根据权利要求14-19中任意一项所述的通信方法被实现。
  42. 一种通信方法,其特征在于,所述通信方法包括如权利要求1-13中任一项所述的通信方法和如权利要求14-19中任一项所述的通信方法。
  43. 一种通信系统,其特征在于,所述通信系统包括终端设备和网络设备,所述终端设备用于执行根据权利要求1-13中任一项所述的通信方法,所述网络设备用于执行根据权利要求14-19中任一项所述的通信方法。
PCT/CN2023/129316 2022-11-04 2023-11-02 通信方法、装置和系统,以及计算机相关产品 WO2024094117A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211379663.XA CN117998489A (zh) 2022-11-04 2022-11-04 通信方法、装置和系统,以及计算机相关产品
CN202211379663.X 2022-11-04

Publications (1)

Publication Number Publication Date
WO2024094117A1 true WO2024094117A1 (zh) 2024-05-10

Family

ID=90894189

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/129316 WO2024094117A1 (zh) 2022-11-04 2023-11-02 通信方法、装置和系统,以及计算机相关产品

Country Status (2)

Country Link
CN (1) CN117998489A (zh)
WO (1) WO2024094117A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110913422A (zh) * 2018-09-18 2020-03-24 华为技术有限公司 用于小区测量的方法和装置
CN111372293A (zh) * 2018-12-26 2020-07-03 华为技术有限公司 通信方法和通信装置
CN113453295A (zh) * 2020-03-27 2021-09-28 维沃移动通信有限公司 一种小区切换方法、设备及系统
CN113711640A (zh) * 2019-04-26 2021-11-26 夏普株式会社 条件切换和测量报告
CN114867038A (zh) * 2022-04-12 2022-08-05 展讯通信(上海)有限公司 一种小区测量方法、装置、芯片以及芯片模组
CN115278796A (zh) * 2022-07-19 2022-11-01 Oppo广东移动通信有限公司 一种小区切换方法、小区切换装置、终端设备和存储介质

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110913422A (zh) * 2018-09-18 2020-03-24 华为技术有限公司 用于小区测量的方法和装置
CN111372293A (zh) * 2018-12-26 2020-07-03 华为技术有限公司 通信方法和通信装置
CN113711640A (zh) * 2019-04-26 2021-11-26 夏普株式会社 条件切换和测量报告
CN113453295A (zh) * 2020-03-27 2021-09-28 维沃移动通信有限公司 一种小区切换方法、设备及系统
CN114867038A (zh) * 2022-04-12 2022-08-05 展讯通信(上海)有限公司 一种小区测量方法、装置、芯片以及芯片模组
CN115278796A (zh) * 2022-07-19 2022-11-01 Oppo广东移动通信有限公司 一种小区切换方法、小区切换装置、终端设备和存储介质

Also Published As

Publication number Publication date
CN117998489A (zh) 2024-05-07

Similar Documents

Publication Publication Date Title
EP4192110A1 (en) Condition-based secondary node or primary-secondary cell change method and device
WO2021027736A1 (zh) 历史信息的记录方法、装置及计算机可读存储介质
US20210321335A1 (en) Method and device for rrm measurement
WO2024045693A1 (zh) 基于异网漫游的接入方法和装置
CN112313988B (zh) 一种测量控制方法及装置、终端设备
WO2020154994A1 (zh) 小区切换方法、终端设备和网络设备
WO2021249001A1 (zh) 一种小区测量方法及装置
WO2019032037A1 (en) PROVIDING INSTRUCTIONS RELATED TO MEASUREMENTS BY A WIRELESS COMMUNICATION DEVICE ON A SIGNAL FROM A WIRELESS COMMUNICATION NETWORK
CN111465098B (zh) 一种信息传输方法及装置
EP4156850A1 (en) Measurement method and apparatus, terminal device and network device
WO2021159862A1 (zh) 一种添加辅小区组的方法、接入网设备和终端设备
US20230115662A1 (en) Method for neighboring cell measurement, terminal device and network device
WO2021159863A1 (zh) 一种多卡终端设备的通信参数测量方法、终端设备和接入网设备
WO2018202777A1 (en) Communication apparatus in dual connectivity, method and computer program
WO2021026747A1 (zh) 无线通信方法和终端设备
WO2021036774A1 (zh) 小区重选方法及设备
EP4106403A1 (en) Communication method and communication apparatus
US9838921B2 (en) Call re-establishment in a multi-layer heterogeneous network
WO2022036528A1 (zh) 双连接架构下实现最小化路测的方法、终端设备和网络设备
US20230106995A1 (en) Wireless communication method and terminal device
WO2024094117A1 (zh) 通信方法、装置和系统,以及计算机相关产品
WO2022057520A1 (zh) 一种配置载波的方法和装置
CN115334530A (zh) 测量配置方法和装置
WO2021026694A1 (zh) 无线通信方法、终端设备和网络设备
WO2021016970A1 (zh) 无线通信方法、终端设备和网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23885043

Country of ref document: EP

Kind code of ref document: A1