WO2022242215A1 - 用于细胞培养箱温度控制的电路、方法、装置及培养箱 - Google Patents

用于细胞培养箱温度控制的电路、方法、装置及培养箱 Download PDF

Info

Publication number
WO2022242215A1
WO2022242215A1 PCT/CN2022/073014 CN2022073014W WO2022242215A1 WO 2022242215 A1 WO2022242215 A1 WO 2022242215A1 CN 2022073014 W CN2022073014 W CN 2022073014W WO 2022242215 A1 WO2022242215 A1 WO 2022242215A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
current
cell culture
sampling
culture box
Prior art date
Application number
PCT/CN2022/073014
Other languages
English (en)
French (fr)
Inventor
陈欢
段泽鹏
陈海涛
胡伟
唐先双
徐志宏
王潘飞
鞠焕文
Original Assignee
青岛海尔生物医疗科技有限公司
青岛海尔生物医疗股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔生物医疗科技有限公司, 青岛海尔生物医疗股份有限公司 filed Critical 青岛海尔生物医疗科技有限公司
Publication of WO2022242215A1 publication Critical patent/WO2022242215A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/1927Control of temperature characterised by the use of electric means using a plurality of sensors
    • G05D23/193Control of temperature characterised by the use of electric means using a plurality of sensors sensing the temperaure in different places in thermal relationship with one or more spaces
    • G05D23/1931Control of temperature characterised by the use of electric means using a plurality of sensors sensing the temperaure in different places in thermal relationship with one or more spaces to control the temperature of one space
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/25Greenhouse technology, e.g. cooling systems therefor

Definitions

  • the present application relates to the technical field of intelligent incubators, such as circuits, methods, devices and incubators for temperature control of cell incubators.
  • the cell incubator can also be called a carbon dioxide incubator. It is a box that controls the temperature and the concentration of carbon dioxide.
  • the temperature and concentration of the main control are 37°C ⁇ 0.1, 5% ⁇ 0.1, and the humidity is above 90%. Therefore, Simulate the environment in the human body for cell culture.
  • the temperature control of the incubator is extremely strict, and it is required that there is no condensation on the inner wall of the incubator. Due to the high humidity in the box, slight fluctuations in temperature or uneven heat on the inner wall will cause condensation.
  • the temperature control of the carbon dioxide incubator is realized by controlling the heating of the heating wire.
  • the left and right sides, top, back, bottom, door and cabinet mouth of the box are equipped with heating wires of a certain power. In this way, all surfaces are heated. Arranged with heating wire, it will be easier to control the temperature without condensation.
  • the power distribution of each surface is not yet intelligent, and it is often difficult to coexist with stable temperature fluctuations and no condensation.
  • the critical value is often an empirical value. Most of the time, temperature fluctuations are sacrificed in exchange for no condensation on the inner wall. It can be seen , the temperature in the incubator is still relatively easy to fluctuate, and there is still a chance of condensation, and the stability of temperature control needs to be improved.
  • the embodiments of the present disclosure provide a circuit, method, device and incubator for temperature control of a cell culture box, so as to solve the technical problem of low stability of the temperature control of the cell culture box.
  • the circuit includes: a transformer, a rectifier circuit, a filter circuit, and a series voltage divider circuit, wherein,
  • the AC voltage of the power supply of the cell culture box is converted into a DC voltage through the rectifier circuit after passing through the transformer;
  • the DC voltage is filtered by a filter circuit, and then input to both ends of the series voltage divider circuit to obtain a sampling voltage on the first resistor in the series voltage divider circuit, and input to the device for temperature control of the cell culture box.
  • the method includes:
  • the device includes:
  • the acquisition module is configured to obtain the current sampling voltage matching the AC voltage powered by the cell culture box through the sampling circuit;
  • the determination module is configured to determine the current actual power supply voltage matching the current sampling voltage according to the stored correspondence between the sampling voltage and the actual power supply voltage;
  • the control module is configured to determine the current theoretical output power of the heating wires on each side of the cell culture box according to the current actual power supply voltage, and control the operation of the corresponding heating wires according to the current theoretical output power.
  • the device for temperature control of a cell culture box includes a processor and a memory storing program instructions, and the processor is configured to perform the above-mentioned method for cell culture when executing the program instructions. Box temperature control method.
  • the incubator includes the above-mentioned device for controlling the temperature of the cell incubator.
  • the circuit, method, device and incubator for temperature control of a cell incubator provided by the embodiments of the present disclosure can achieve the following technical effects:
  • the actual power supply voltage corresponding to the AC voltage of the cell incubator is obtained, and corrected to a stable theoretical output power, so that, according to the stable theoretical output power, the control parameters of the heating wires on each side of the incubator are determined, and then Controlling the start and stop of the heating wire makes the temperature of each side of the cell incubator constant, reduces the chance of condensation on the inner wall of the incubator, and improves the temperature stability of the incubator.
  • FIG. 1 is a schematic structural diagram of a sampling circuit for temperature control of a cell culture box provided by an embodiment of the present disclosure
  • FIG. 2 is a structural diagram of a sampling circuit used for temperature control of a cell culture box provided by an embodiment of the present disclosure
  • Fig. 3 is a schematic flowchart of a method for controlling the temperature of a cell culture box provided by an embodiment of the present disclosure
  • Fig. 4 is a schematic flowchart of a method for controlling the temperature of a cell culture box provided by an embodiment of the present disclosure
  • Fig. 5 is a schematic structural diagram of a temperature control device for a cell culture box provided by an embodiment of the present disclosure
  • Fig. 6 is a schematic structural diagram of a temperature control device for a cell culture box provided by an embodiment of the present disclosure.
  • A/B means: A or B.
  • a and/or B means: A or B, or, A and B, these three relationships.
  • the cell incubator is called the incubator for short, and the left and right sides, top, back, bottom, door and cabinet mouth of the box are all equipped with heating wires, that is, each surface of the incubator is equipped with heating wires with a certain resistance R.
  • the PWM wave is modulated by the pulse width to control the start and stop of the corresponding heating wire.
  • the power of the heating wire on each side must be stable.
  • the actual power supply voltage corresponding to the AC voltage supplied by the cell culture box can be obtained through the sampling circuit.
  • the power correction parameter value K can be obtained, so that the actual output power on each side of the cell culture box can be corrected according to the power correction parameter value K, and the theoretical output power of the heating wire can be obtained, and the pulse width modulation PWM wave can be determined according to the theoretical output power.
  • the corresponding duty cycle, and the PWM wave of the determined parameters controls the start and stop of the corresponding heating wire, so that the power of the corresponding heating wire can be relatively constant, that is, the temperature of each surface in the cell culture incubator is kept constant, and the generation on the inner wall of the incubator is reduced. The chance of condensation improves the stability of the incubator temperature.
  • FIG. 1 is a schematic structural diagram of a sampling circuit used for temperature control of a cell culture box provided by an embodiment of the present disclosure.
  • the sampling circuit includes: a transformer 100 , a rectification circuit 200 , a filter circuit 300 , and a series voltage divider circuit 400 .
  • the input of the transformer 100 can be the AC voltage signal of the power supply of the cell culture box, and can convert the high-voltage voltage signal of the mains power grid into a low-voltage voltage signal matched by the temperature control device of the cell culture box.
  • the high-voltage voltage signal of about 220v can be converted into a low-voltage voltage signal of about 24v, 12v, or 5v.
  • the obtained low-voltage voltage signal is still an AC signal, and may be converted into a low-voltage DC voltage signal by the rectifier circuit 200 . That is, the AC voltage signal of the power supply of the cell culture box is converted into a DC voltage signal through the transformer 100 and then through the rectifier circuit 200 .
  • the converted DC voltage signal can be filtered by the filter circuit 300, and input to both ends of the series voltage divider circuit 400, so that the voltage divided by the first resistor in the series voltage divider circuit 400 is the sampling voltage signal, and Acquisition was performed using a temperature-controlled device for cell culture incubators.
  • the rectification circuit 200 includes: a bridge rectification circuit composed of four diodes.
  • the series voltage divider circuit 400 divides the DC voltage signal, therefore, it includes at least two series connected resistors, a first resistor and a second resistor.
  • the second resistor may be a variable resistor, that is, the series voltage divider circuit 400 includes: a first resistor, and a voltage regulator connected in series with the first resistor.
  • the series voltage divider circuit 400 is required for voltage division, and the series voltage divider circuit 400 includes: a voltage regulator, which can improve the flexibility and applicability of sampling voltage signals.
  • Fig. 2 is a structural diagram of a sampling circuit used for temperature control of a cell culture box provided by an embodiment of the present disclosure.
  • the AC voltage signal between Lin-Nin of the AC fire neutral line of the cell incubator is stepped down by the transformer VT1, and then through the function of the diode rectifier bridge D9-D10-D11-D12.
  • the AC voltage signal is converted into a DC voltage signal.
  • the large-capacity capacitor E5 is used for filtering, that is, the filter circuit includes: capacitor E5, and according to the capacitance characteristics, the larger the capacitance, the smaller the filtering frequency. This capacitor can filter clutter at a frequency of 50Hz.
  • the sliding rheostat VR1 (also called a voltage regulator) is connected in parallel with the two resistors R112, and the two can be regarded as a whole resistor, that is, the second resistor, which is connected in series with the first resistor R111 to form a series voltage divider circuit.
  • the voltage division at both ends of R111 can be changed by changing the resistance of VR1.
  • the function of the resistor R110 is to limit the current
  • the device used for temperature control of the cell incubator can be a single-chip microcomputer, so the sampling voltage value sampled by the pin LN-OUT_AD of the single-chip microcomputer can be the voltage across R111.
  • the sampling voltage signal matching the AC voltage supplied by the cell incubator can be collected to obtain the corresponding sampling voltage, thereby obtaining the actual power supply voltage corresponding to the AC voltage supplied by the cell incubator, and then the power correction parameters can be obtained
  • the value K thus, determine the theoretical output power of the heating wire on each side of the cell culture box, and according to the theoretical output power, determine the corresponding duty cycle of the pulse width modulation PWM wave, and control the corresponding heating wire through the PWM wave of the determined parameter
  • the power of the corresponding heating wire can be relatively constant, that is, the temperature of each surface in the cell incubator can be kept constant, reducing the probability of condensation on the inner wall of the incubator, and improving the stability of the temperature of the incubator.
  • Fig. 3 is a schematic flowchart of a method for controlling the temperature of a cell culture box provided by an embodiment of the present disclosure. As shown in Figure 3, the process used for temperature control of the cell culture incubator includes:
  • Step 301 According to the current sampling voltage signal collected by the sampling circuit, the current sampling voltage matching the AC voltage supplied by the cell culture box is obtained.
  • a sampling voltage signal matching the AC voltage supplied by the cell culture box can be collected, thereby obtaining a corresponding sampling voltage.
  • Sampling can be performed regularly or in real time, and each sampling obtains the current sampling voltage signal and the current sampling voltage.
  • Step 302 According to the stored corresponding relationship between the sampled voltage and the actual power supply voltage, determine the current actual power supply voltage that matches the current sampled voltage.
  • the corresponding relationship between the sampling voltage and the actual supply voltage can be saved in advance.
  • the corresponding relationship between the output voltage of the sampling circuit and the input voltage can be obtained, and stored as the corresponding relationship between the sampling voltage and the actual supply voltage.
  • multiple input voltages of the sampling circuit and their corresponding output voltages are obtained through multiple experimental tests, and the corresponding relationship between the output voltage of the sampling circuit and the input voltage is obtained, and saved as the corresponding relationship between the sampling voltage and the actual power supply voltage.
  • multiple input voltages and their corresponding output voltage samples of the sampling circuit are obtained through network communication, experimental detection, or input values, etc., and then machine learning is performed to obtain and save the corresponding relationship between the sampling voltage and the actual power supply voltage.
  • Table 1 is a correspondence between a sampling voltage and an actual power supply voltage provided by an embodiment of the present disclosure.
  • the current sampling voltage obtained is consistent with AD3, then, according to Table 1, it can be determined that the current actual supply voltage is 47v. If the current sampling voltage is consistent with AD177, according to Table 1, it can be determined that the current actual supply voltage is 221v.
  • Step 303 Determine the current theoretical output power of the heating wires on each side of the cell culture box according to the current actual power supply voltage, and control the operation of the corresponding heating wires according to the current theoretical output power.
  • the incubator can be powered by the mains power grid.
  • the corresponding theoretical voltage of the mains power grid can be the effective voltage of the AC voltage of the mains power grid, which is 220v.
  • determining the current theoretical output power of the heating wire on each side of the cell culture box includes: obtaining the power correction parameter value according to the effective voltage of the AC voltage supplied by the cell culture box and the current actual power supply voltage; The current actual output power of the incubator and the power correction parameter value are used to obtain the current theoretical output power.
  • controlling the operation of the corresponding heating wire includes: according to the current theoretical output power, determining the current duty cycle of the pulse width modulation PWM wave; through the current duty cycle, determining the current PWM wave, and output to control the start and stop of the corresponding heating wire.
  • the actual power supply voltage corresponding to the AC voltage supplied by the cell incubator is obtained through the sampling circuit.
  • the power correction parameter can be obtained through the actual power supply voltage and the effective voltage of the AC voltage supplied by the cell incubator
  • the value K determine the theoretical output power of the heating wire on each side of the cell culture box, and according to the theoretical output power, determine the corresponding duty cycle of the pulse width modulation PWM wave, and control the corresponding heating wire through the PWM wave of the determined parameter so that the power of the corresponding heating wire has been matched with the theoretical output power, so that it can be relatively constant, that is, the temperature on each side of the cell incubator is kept constant, reducing the probability of condensation on the inner wall of the incubator and improving the cultivation Chamber temperature stability.
  • the incubator is powered by the mains power grid, and the corresponding effective voltage is 220v, and includes the sampling circuit as shown in Figure 2, and saves the difference between the sampling voltage and the actual power supply voltage as shown in Table 1. corresponding relationship.
  • Fig. 4 is a schematic flowchart of a method for controlling the temperature of a cell culture box provided by an embodiment of the present disclosure.
  • the process used in conjunction with Figure 4 for temperature control of the cell incubator includes:
  • Step 401 According to the current sampling voltage signal collected by the sampling circuit, the current sampling voltage matching the AC voltage supplied by the cell culture box is obtained.
  • Sampling can be performed at regular intervals, and each sampling corresponds to the current sampling voltage.
  • the current sampling voltage matching the AC voltage supplied by the cell culture box is obtained, such as AD170, AD176 and so on.
  • Step 402 According to the stored corresponding relationship between the sampled voltage and the actual supply voltage, determine the current actual supply voltage that matches the current sampled voltage.
  • Step 403 Obtain the power correction parameter value according to the effective voltage of the AC voltage supplied by the cell culture box and the current actual supply voltage.
  • Step 404 Obtain the current theoretical output power according to the current actual output power of the cell incubator and the power correction parameter value.
  • Step 405 Determine the current duty ratio of the PWM wave according to the current theoretical output power.
  • Step 406 Determine the current PWM wave according to the current duty cycle, and output and control the start and stop of the corresponding heating wire.
  • the actual power supply voltage corresponding to the AC voltage of the cell incubator is obtained, and corrected to a stable theoretical output power, so that, according to the stable theoretical output power, determine the Control the control parameters of the PWM wave of the heating wire, and then control the start and stop of the heating wire, so that the power of each surface in the cell incubator is close to the theoretical output power and is in a constant state, so that the temperature of the incubator is kept constant and the generation on the inner wall of the incubator is reduced.
  • the chance of condensation improves the stability of the incubator temperature.
  • a device for temperature control of a cell culture box can be constructed.
  • Fig. 5 is a schematic structural diagram of a temperature control device for a cell culture box provided by an embodiment of the present disclosure.
  • the temperature control device for a cell culture box includes: an acquisition module 510 , a determination module 520 , and a control module 530 .
  • the obtaining module 510 is configured to obtain the current sampling voltage matching the AC voltage of the cell culture box through the sampling circuit.
  • the determining module 520 is configured to determine the current actual power supply voltage that matches the current sampled voltage according to the stored correspondence between the sampled voltage and the actual power supply voltage.
  • the control module 530 is configured to determine the current theoretical output power of the heating wires on each side of the cell culture box according to the current actual power supply voltage, and control the operation of the corresponding heating wires according to the current theoretical output power.
  • the saving module is configured to obtain the corresponding relationship between the output voltage of the sampling circuit and the input voltage, and save it as a corresponding relationship between the sampling voltage and the actual power supply voltage.
  • control module 530 includes:
  • the correction determination unit is configured to obtain the power correction parameter value according to the effective voltage of the AC voltage supplied by the cell culture box and the current actual supply voltage;
  • the power determination unit is configured to obtain the current theoretical output power according to the current actual output power of the cell incubator and the power correction parameter value.
  • control module 530 includes:
  • a duty ratio determining unit configured to determine the current duty ratio of the pulse width modulated PWM wave according to the current theoretical output power
  • the output control unit is configured to determine the current PWM wave through the current duty cycle, and output and control the start and stop of the corresponding heating wire.
  • the device used for temperature control of the cell culture box can obtain the actual power supply voltage corresponding to the AC voltage supplied by the cell culture box through the sampling circuit, and correct it to a stable theoretical output power, so that, according to the stable theory
  • the output power determines the control parameters of the heating wire on each side of the incubator, and then controls the heating wire to start and stop, so that the temperature of each side in the cell incubator is constant, reducing the probability of condensation on the inner wall of the incubator, and improving the incubator. temperature stability.
  • An embodiment of the present disclosure provides a device for temperature control of a cell culture box, the structure of which is shown in Figure 6, including:
  • a processor (processor) 1000 and a memory (memory) 1001 may also include a communication interface (Communication Interface) 1002 and a bus 1003. Wherein, the processor 1000 , the communication interface 1002 , and the memory 1001 can communicate with each other through the bus 1003 . Communication interface 1002 may be used for information transfer.
  • the processor 1000 can call the logic instructions in the memory 1001 to execute the method for temperature control of the cell culture box of the above-mentioned embodiment.
  • the above logic instructions in the memory 1001 may be implemented in the form of software functional units and may be stored in a computer-readable storage medium when sold or used as an independent product.
  • the memory 1001 as a computer-readable storage medium, can be used to store software programs and computer-executable programs, such as program instructions/modules corresponding to the methods in the embodiments of the present disclosure.
  • the processor 1000 executes the program instructions/modules stored in the memory 1001 to execute functional applications and data processing, that is, to implement the method for temperature control of the cell culture box in the above method embodiment.
  • the memory 1001 may include a program storage area and a data storage area, wherein the program storage area may store an operating system and at least one application required by a function; the data storage area may store data created according to the use of the terminal incubator, and the like.
  • the memory 1001 may include a high-speed random access memory, and may also include a non-volatile memory.
  • An embodiment of the present disclosure provides a temperature control device for a cell culture box, including: a processor and a memory storing program instructions, and the processor is configured to execute a method for controlling the temperature of a cell culture box when executing the program instructions.
  • An embodiment of the present disclosure provides an incubator, including the above-mentioned temperature control device for a cell incubator.
  • An embodiment of the present disclosure provides a computer-readable storage medium, which stores computer-executable instructions, and the computer-executable instructions are configured to execute the above-mentioned method for controlling the temperature of a cell culture box.
  • An embodiment of the present disclosure provides a computer program product, the computer program product includes a computer program stored on a computer-readable storage medium, the computer program includes program instructions, and when the program instructions are executed by a computer, the The computer executes the above-mentioned method for controlling the temperature of the cell culture box.
  • the above-mentioned computer-readable storage medium may be a transitory computer-readable storage medium, or a non-transitory computer-readable storage medium.
  • the technical solutions of the embodiments of the present disclosure can be embodied in the form of software products, the computer software products are stored in a storage medium, and include one or more instructions to make a computer incubator (which can be a personal computer, a server, or network incubator, etc.) to perform all or part of the steps of the method described in the embodiments of the present disclosure.
  • the aforementioned storage medium can be a non-transitory storage medium, including: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disk or optical disc, etc.
  • a first element could be called a second element, and likewise, a second element could be called a first element, as long as all occurrences of "first element” are renamed consistently and all occurrences of "Second component” can be renamed consistently.
  • Both the first element and the second element are elements, but may not be the same element.
  • the terms used in the present application are used to describe the embodiments only and are not used to limit the claims. As used in the examples and description of the claims, the singular forms "a”, “an” and “the” are intended to include the plural forms as well unless the context clearly indicates otherwise .
  • the term “and/or” as used in this application is meant to include any and all possible combinations of one or more of the associated listed ones.
  • the term “comprise” and its variants “comprises” and/or comprising (comprising) etc. refer to stated features, integers, steps, operations, elements, and/or The presence of a component does not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components and/or groupings of these.
  • an element defined by the phrase “comprising a " does not exclude the presence of additional identical elements in the process, method or incubator comprising said element.
  • the disclosed methods and products can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units may only be a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined Or it can be integrated into another system, or some features can be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • each functional unit in the embodiments of the present disclosure may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • each block in a flowchart or block diagram may represent a module, program segment, or part of code that includes one or more Executable instructions.
  • the functions noted in the block may occur out of the order noted in the figures.
  • two blocks in succession may, in fact, be executed substantially concurrently, or they may sometimes be executed in the reverse order, depending upon the functionality involved.
  • the operations or steps corresponding to different blocks may also occur in a different order than that disclosed in the description, and sometimes there is no specific agreement between different operations or steps.
  • each block in the block diagrams and/or flowcharts, and combinations of blocks in the block diagrams and/or flowcharts can be implemented by a dedicated hardware-based system that performs the specified function or action, or can be implemented by dedicated hardware implemented in combination with computer instructions.

Abstract

一种用于细胞培养箱温度控制的电路、方法、装置及培养箱。该方法包括:根据通过采样电路采集的当前采样电压信号,得到与细胞培养箱供电的交流电压匹配的当前采样电压(301);根据保存的采样电压与实际供电电压之间的对应关系,确定与当前采样电压匹配的当前实际供电电压(302);根据当前实际供电电压,确定细胞培养箱每面上加热丝的当前理论输出功率,并根据当前理论输出功率,控制对应加热丝的运行(303)。实现了细胞培养箱的精准控温,减少培养箱内壁上产生凝露的几率,提高了培养箱温度的稳定性。

Description

用于细胞培养箱温度控制的电路、方法、装置及培养箱
本申请基于申请号为202110535782.9、申请日为2021年5月17日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及智能培养箱技术领域,例如涉及用于细胞培养箱温度控制的电路、方法、装置及培养箱。
背景技术
细胞培养箱也可称为二氧化碳培养箱,是一种控制温度与二氧化碳浓度的箱体,主要控制的温度和浓度分别是37℃±0.1,5%±0.1,而湿度在90%以上,从而,模拟人体内的环境进行细胞培养。培养箱对温度的控制异常严格,并且要求箱体内壁无任何凝露现象。由于箱体内的湿度非常大,温度稍有波动或者内胆壁热量不均匀都会导致凝露现象。
目前,二氧化碳培养箱的控温是通过控制加热丝加热来实现的,其中箱体的左右侧面,顶部,背部,底部,门体以及柜口都布有一定功率的加热丝,这样,所有面都布置有加热丝,会比较容易控温而不产生凝露现象。在控温过程中,如果某一面受热不均匀,为避免水汽遇冷凝结成露水,需增加这个面加热丝的功率。但是,每个面的功率分配目前还不能智能化,温度的波动平稳和无凝露现象往往难以共存,临界值往往是经验值,大多数时候会通过牺牲温度波动来换取内壁无凝露,可见,培养箱中的温度还比较容易产生波动,还存在产生凝露的几率,温度控制稳定性还有待提高。
发明内容
为了对披露的实施例的一些方面有基本的理解,下面给出了简单的概括。所述概括不是泛泛评述,也不是要确定关键/重要组成元素或描绘这些实施例的保护范围,而是作为后面的详细说明的序言。
本公开实施例提供了一种用于细胞培养箱温度控制的电路、方法、装置和培养箱,以解决细胞培养箱温度控制稳定性不高的技术问题。
在一些实施例中,所述电路包括:变压器、整流电路、滤波电路、串联分压电路,其中,
所述细胞培养箱的供电的交流电压,通过所述变压器后再经过所述整流电路转化为直流电压;
所述直流电压通过滤波电路滤波后,输入所述串联分压电路的两端,得到所述串联分压电路中第一电阻上的采样电压,并输入用于细胞培养箱温度控制的装置中。
在一些实施例中,所述方法包括:
通过所述采样电路,得到与所述细胞培养箱供电的交流电压匹配的当前采样电压;
根据保存的采样电压与实际供电电压之间的对应关系,确定与所述当前采样电压匹配的当前实际供电电压;
根据所述当前实际供电电压,确定所述细胞培养箱每面上加热丝的当前理论输出功率,并根据所述当前理论输出功率,控制对应加热丝的运行。
在一些实施例中,所述装置包括:
获取模块,被配置为通过所述采样电路,得到与所述细胞培养箱供电的交流电压匹配的当前采样电压;
确定模块,被配置为根据保存的采样电压与实际供电电压之间的对应关系,确定与所述当前采样电压匹配的当前实际供电电压;
控制模块,被配置为根据所述当前实际供电电压,确定所述细胞培养箱每面上加热丝的当前理论输出功率,并根据所述当前理论输出功率,控制对应加热丝的运行。
在一些实施例中,所述用于细胞培养箱温度控制的装置,包括处理器和存储有程序指令的存储器,所述处理器被配置为在执行所述程序指令时,执行上述用于细胞培养箱温度控制方法。
在一些实施例中,所述培养箱,包括上述用于细胞培养箱温度控制的装置。
本公开实施例提供的用于细胞培养箱温度控制的电路、方法、装置和培养箱,可以实现以下技术效果:
通过采样电路,得到细胞培养箱供电的交流电压对应的实际供电电压,并修正为稳定的理论输出功率,从而,根据稳定的理论输出功率,确定培养箱中每面上加热丝的控制参数,进而控制加热丝的开停,使得细胞培养箱中每面的温度恒定,减少培养箱内壁上产生凝露的几率,提高了培养箱温度的稳定性。
以上的总体描述和下文中的描述仅是示例性和解释性的,不用于限制本申请。
附图说明
一个或多个实施例通过与之对应的附图进行示例性说明,这些示例性说明和附图并不构成对实施例的限定,附图中具有相同参考数字标号的元件示为类似的元件,附图不构成比例限制,并且其中:
图1是本公开实施例提供的一种用于细胞培养箱温度控制的采样电路的结构示意图;
图2是本公开实施例提供的一种用于细胞培养箱温度控制的采样电路的结构图;
图3是本公开实施例提供的一种用于细胞培养箱温度控制方法的流程示意图;
图4是本公开实施例提供的一种用于细胞培养箱温度控制方法的流程示意图;
图5是本公开实施例提供的一种用于细胞培养箱温度控制装置的结构示意图;
图6是本公开实施例提供的一种用于细胞培养箱温度控制装置的结构示意图。
具体实施方式
为了能够更加详尽地了解本公开实施例的特点与技术内容,下面结合附图对本公开实施例的实现进行详细阐述,所附附图仅供参考说明之用,并非用来限定本公开实施例。在以下的技术描述中,为方便解释起见,通过多个细节以提供对所披露实施例的充分理解。然而,在没有这些细节的情况下,一个或多个实施例仍然可以实施。在其它情况下,为简化附图,熟知的结构和装置可以简化展示。
本公开实施例的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本公开实施例的实施例。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含。
除非另有说明,术语“多个”表示两个或两个以上。
本公开实施例中,字符“/”表示前后对象是一种“或”的关系。例如,A/B表示:A或B。
术语“和/或”是一种描述对象的关联关系,表示可以存在三种关系。例如,A和/或B,表示:A或B,或,A和B这三种关系。
细胞培养箱简称为培养箱,其中箱体的左右侧面,顶部,背部,底部,门体以及柜口都布有加热丝,即培养箱中每面上都布有阻值R一定的加热丝,通过脉冲宽度调制PWM 波,控制对应加热丝的开停,要实现培养箱的精准控温,就必须是的每面上加热丝的功率是稳定。但是,培养箱一般采用市电供电,器对应的电网电压往往是波动的,根据P=U 2/R,电压U变化了,在加热丝电阻R一定的情况下,对应的加热丝功率P也是变化了,因此,本公开实施例中,可通过采样电路,得到细胞培养箱供电的交流电压对应的实际供电电压,这样,通过实际供电电压,以及细胞培养箱供电的交流电压的有效电压,即可得到功率修正参数值K,从而,根据这个功率修正参数值K修正细胞培养箱每面上的实际输出功率,得到加热丝的理论输出功率,并根据理论输出功率,确定脉冲宽度调制PWM波的对应的占空比,并通过确定参数的PWM波控制对应加热丝的开停,从而使得对应加热丝的功率可比较恒定,即使得细胞培养箱中每面的温度恒定,减少培养箱内壁上产生凝露的几率,提高了培养箱温度的稳定性。
可见,在培养箱温控的过程中,需要通过采样电路,获取到细胞培养箱供电的交流电压匹配的当前采样电压。
图1是本公开实施例提供的一种用于细胞培养箱温度控制的采样电路的结构示意图。采样电路包括:变压器100、整流电路200、滤波电路300、串联分压电路400。
变压器100的输入可为细胞培养箱的供电的交流电压信号,并可将市电电网的高压电压信号,转换为细胞培养箱温度控制的装置匹配的低压电压信号。例如:可将220v左右的高压电压信号,转换为24v、12v、或5v左右的低压电压信号。
市电电网的高压电压信号经过变压器100转换后,得到的低压电压信号仍然是交流信号,则可能通过整流电路200,转换为低压直流电压信号。即细胞培养箱的供电的交流电压信号,通过变压器100后再经过整流电路200转化为直流电压信号。
当然,转换后的直流电压信号可通过滤波电路300进行滤波,并输入串联分压电路400的两端,从而,串联分压电路400中第一电阻上的分的电压即为采样电压信号,并被用于细胞培养箱温度控制的装置进行采集。
在一些实施例中,整流电路200包括:四个二极管组成的桥式整流电路。
串联分压电路400是将直流电压信号进行分压的,因此,至少包括两个串联的电阻,第一电阻和第二电阻。在一些实施例中,第二电阻可是可变电阻,即串联分压电路400包括:第一电阻,与第一电阻串联的调压器。由于通过变压器后再经过整流电路转化额直流电压信号可为0-24v的直流电压信号,而用于细胞培养箱温度控制的装置可为单片机或数字可编程控制器,一般对应的输入电压可为0-5v,或0-12v,因此,需要串联分压电路400进行分压,并且,串联分压电路400包括:调压器时,可提高了采样电压信 号的灵活性和适用性。
图2是本公开实施例提供的一种用于细胞培养箱温度控制的采样电路的结构图。如图2所示,细胞培养箱的供电的交流电火零线Lin-Nin之间的交流电压信号,通过变压器VT1降压后,再经过二极管整流桥D9-D10-D11-D12的作用,可将交流电压信号整成直流电压信号,大容值电容E5作用是滤波,即滤波电路包括:电容E5,并根据电容特性容值越大滤波频率越小,该电容可过滤50Hz频率的杂波。
而滑动变阻器VR1(也可称为调压器)与R112两电阻并联,二者可看作为一个整体电阻,即第二电阻,该第二电阻又和第一电阻R111串联组成串联分压电路,根据串联分压原理,通过改变VR1电阻就可改变R111两端分压。在本实施例中,电阻R110的作用是限流,而用于细胞培养箱温度控制的装置可为单片机,从而,单片机引脚LN-OUT_AD所采样的采样电压值可为R111两端电压。
可见,通过采样电路,可采集与细胞培养箱供电的交流电压匹配的采样电压信号,得到对应的采样电压,从而,得到细胞培养箱供电的交流电压对应的实际供电电压,然后可得到功率修正参数值K,从而,确定出细胞培养箱每面上加热丝的理论输出功率,并根据理论输出功率,确定脉冲宽度调制PWM波的对应的占空比,并通过确定参数的PWM波控制对应加热丝的开停,从而使得对应加热丝的功率可比较恒定,即使得细胞培养箱中每面的温度恒定,减少培养箱内壁上产生凝露的几率,提高了培养箱温度的稳定性。
图3是本公开实施例提供的一种用于细胞培养箱温度控制方法的流程示意图。如图3所示,用于细胞培养箱温度控制的过程包括:
步骤301:根据通过采样电路采集的当前采样电压信号,得到与细胞培养箱供电的交流电压匹配的当前采样电压。
通过如上述的采样电路,可采集到与细胞培养箱供电的交流电压匹配的采样电压信号,从而,得到对应的采样电压。可定时或实时进行采样,每次采样获取的为当前采样电压信号以及当前采样电压。
步骤302:根据保存的采样电压与实际供电电压之间的对应关系,确定与当前采样电压匹配的当前实际供电电压。
对于培养箱中的采样电路,可预先保存采样电压与实际供电电压之间的对应关系。在一些实施例中,可获取采样电路输出电压与输入电压之间的对应关系,并保存为采样电压与实际供电电压之间的对应关系。例如:通过多次实验检测,获得采样电路多个输入电压及其对应输出电压,得到采样电路输出电压与输入电压之间的对应关系,并保存 为采样电压与实际供电电压之间的对应关系。或者,通过网络通讯、实验检测或输入数值等等方式,获取采样电路多个输入电压及其对应输出电压样本,然后,进行机器学习,获得并保存采样电压与实际供电电压之间的对应关系。
表1是本公开实施例提供的一种采样电压与实际供电电压之间的对应关系。
Figure PCTCN2022073014-appb-000001
表1
通过采样电路,得到的当前采样电压若与AD3一致,那么,根据表1,可确定当前实际供电电压为47v。若当前采样电压若与AD177一致,则根据表1可确定当前实际供电电压为221v。
步骤303:根据当前实际供电电压,确定细胞培养箱每面上加热丝的当前理论输出功率,并根据当前理论输出功率,控制对应加热丝的运行。
在一些实施例中,培养箱可采用市电电网进行供电,那么,市电电网对应的理论电压可为市电电网交流电压的有效电压,即为220v,这样,对加热丝控制的理论输出功率可为P 0=220 2/R*D,D为这一时刻对加热丝控制的PWM波的占空比,但实际输出的功率值为P 1=V 1 2/R*D,V 1为电网实际电压值,即当前实际供电电压。为保障培养箱的精 确控温,需使得P 0=P 1,则需引入修正参数值K对实际输出功率P 1进行修正,即220 2/R*D=V 1 2/R*D*K,得K=220 2/V 1 2,得到当前理论输出功率为P=P 1*K。
因此,根据当前实际供电电压,确定细胞培养箱每面上加热丝的当前理论输出功率包括:根据细胞培养箱供电的交流电压的有效电压,以及当前实际供电电压,得到功率修正参数值;根据细胞培养箱的当前实际输出功率,以及功率修正参数值,得到当前理论输出功率。
由于加热丝的开停是通过输出的PWM波来控制的,PWM的关键参数包括占空比D,所谓占空比就是一个周期的内高电平占周期的比例;输出高电平时加热丝开,低电平时加热丝关闭,因此,根据当前理论输出功率,控制对应加热丝的运行包括:根据当前理论输出功率,确定脉冲宽度调制PWM波的当前占空比;通过当前占空比,确定当前PWM波,并输出控制对应加热丝的开停。
可见,本实施例中,通过采样电路,得到细胞培养箱供电的交流电压对应的实际供电电压,这样,通过实际供电电压,以及细胞培养箱供电的交流电压的有效电压,即可得到功率修正参数值K,从而,确定出细胞培养箱每面上加热丝的理论输出功率,并根据理论输出功率,确定脉冲宽度调制PWM波的对应的占空比,并通过确定参数的PWM波控制对应加热丝的开停,从而使得对应加热丝的功率一直与理论输出功率匹配,从而,可比较恒定,即使得细胞培养箱中每面的温度恒定,减少培养箱内壁上产生凝露的几率,提高了培养箱温度的稳定性。
下面将操作流程集合到具体实施例中,举例说明本发明实施例提供的用于细胞培养箱温度控制过程。
本实施例中,培养箱采用市电电网进行供电,对应的有效电压为220v,并且,包括如图2所示的采样电路,并保存了如表1所示的采样电压与实际供电电压之间的对应关系。
图4是本公开实施例提供的一种用于细胞培养箱温度控制方法的流程示意图。结合图4用于细胞培养箱温度控制的过程包括:
步骤401:根据通过采样电路采集的当前采样电压信号,得到与细胞培养箱供电的交流电压匹配的当前采样电压。
可定时进行采样,每次采样,对应得到当前采样电压。
通过如图2所示的采样电路,得到与细胞培养箱供电的交流电压匹配的当前采样电压,如AD170、AD176等等。
步骤402:根据保存的采样电压与实际供电电压之间的对应关系,确定与当前采样电压匹配的当前实际供电电压。
根据表1所示的对应关系,可确定AD176对应的当前实际供电电压为220v,可AD210则对应的当前实际供电电压为254v。
步骤403:根据细胞培养箱供电的交流电压的有效电压,以及当前实际供电电压,得到功率修正参数值。
本实施例中,有效电压为220v,则K=220 2/V 1 2
步骤404:根据细胞培养箱的当前实际输出功率,以及功率修正参数值,得到当前理论输出功率。
当前理论输出功率为P=P 1*K,P 1为当前实际输出功率。
步骤405:根据当前理论输出功率,确定脉冲宽度调制PWM波的当前占空比。
步骤406:通过当前占空比,确定当前PWM波,并输出控制对应加热丝的开停。
可见,本实施例中,通过采样电路,得到细胞培养箱供电的交流电压对应的实际供电电压,并修正为稳定的理论输出功率,从而,根据稳定的理论输出功率,确定培养箱中每面上控制加热丝的PWM波的控制参数,进而控制加热丝的开停,使得细胞培养箱中每面功率接近理论输出功率,处于恒定状态,从而,使得培养箱的温度恒定,减少培养箱内壁上产生凝露的几率,提高了培养箱温度的稳定性。
根据上述用于细胞培养箱温度控制的过程,可构建一种用于细胞培养箱温度控制的装置。
图5是本公开实施例提供的一种用于细胞培养箱温度控制装置的结构示意图。如图5所示,用于细胞培养箱温度控制装置包括:获取模块510、确定模块520、和控制模块530。
获取模块510,被配置为通过采样电路,得到与细胞培养箱供电的交流电压匹配的当前采样电压。
确定模块520,被配置为根据保存的采样电压与实际供电电压之间的对应关系,确定与当前采样电压匹配的当前实际供电电压。
控制模块530,被配置为根据当前实际供电电压,确定细胞培养箱每面上加热丝的当前理论输出功率,并根据当前理论输出功率,控制对应加热丝的运行。
在一些实施例中,还包括:
保存模块,被配置为获取采样电路输出电压与输入电压之间的对应关系,并保存为 采样电压与实际供电电压之间的对应关系。
在一些实施例中,控制模块530包括:
修正确定单元,被配置为根据细胞培养箱供电的交流电压的有效电压,以及当前实际供电电压,得到功率修正参数值;
功率确定单元,被配置为根据细胞培养箱的当前实际输出功率,以及功率修正参数值,得到当前理论输出功率。
在一些实施例中,控制模块530包括:
占空比确定单元,被配置为根据当前理论输出功率,确定脉冲宽度调制PWM波的当前占空比;
输出控制单元,被配置为通过当前占空比,确定当前PWM波,并输出控制对应加热丝的开停。
可见,本实施例中,用于细胞培养箱温度控制的装置可通过采样电路,得到细胞培养箱供电的交流电压对应的实际供电电压,并修正为稳定的理论输出功率,从而,根据稳定的理论输出功率,确定培养箱中每面上加热丝的控制参数,进而控制加热丝的开停,使得细胞培养箱中每面的温度恒定,减少培养箱内壁上产生凝露的几率,提高了培养箱温度的稳定性。
本公开实施例提供了一种用于细胞培养箱温度控制的装置,其结构如图6所示,包括:
处理器(processor)1000和存储器(memory)1001,还可以包括通信接口(Communication Interface)1002和总线1003。其中,处理器1000、通信接口1002、存储器1001可以通过总线1003完成相互间的通信。通信接口1002可以用于信息传输。处理器1000可以调用存储器1001中的逻辑指令,以执行上述实施例的用于细胞培养箱温度控制的方法。
此外,上述的存储器1001中的逻辑指令可以通过软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。
存储器1001作为一种计算机可读存储介质,可用于存储软件程序、计算机可执行程序,如本公开实施例中的方法对应的程序指令/模块。处理器1000通过运行存储在存储器1001中的程序指令/模块,从而执行功能应用以及数据处理,即实现上述方法实施例中的用于细胞培养箱温度控制的方法。
存储器1001可包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、 至少一个功能所需的应用程序;存储数据区可存储根据终端培养箱的使用所创建的数据等。此外,存储器1001可以包括高速随机存取存储器,还可以包括非易失性存储器。
本公开实施例提供了一种用于细胞培养箱温度控制装置,包括:处理器和存储有程序指令的存储器,处理器被配置为在执行程序指令时,执行用于细胞培养箱温度控制方法。
本公开实施例提供了一种培养箱,包括上述用于细胞培养箱温度控制装置。
本公开实施例提供了一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令设置为执行上述用于细胞培养箱温度控制方法。
本公开实施例提供了一种计算机程序产品,所述计算机程序产品包括存储在计算机可读存储介质上的计算机程序,所述计算机程序包括程序指令,当所述程序指令被计算机执行时,使所述计算机执行上述用于细胞培养箱温度控制方法。
上述的计算机可读存储介质可以是暂态计算机可读存储介质,也可以是非暂态计算机可读存储介质。
本公开实施例的技术方案可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括一个或多个指令用以使得一台计算机培养箱(可以是个人计算机,服务器,或者网络培养箱等)执行本公开实施例所述方法的全部或部分步骤。而前述的存储介质可以是非暂态存储介质,包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等多种可以存储程序代码的介质,也可以是暂态存储介质。
以上描述和附图充分地示出了本公开的实施例,以使本领域的技术人员能够实践它们。其他实施例可以包括结构的、逻辑的、电气的、过程的以及其他的改变。实施例仅代表可能的变化。除非明确要求,否则单独的部件和功能是可选的,并且操作的顺序可以变化。一些实施例的部分和特征可以被包括在或替换其他实施例的部分和特征。本公开实施例的范围包括权利要求书的整个范围,以及权利要求书的所有可获得的等同物。当用于本申请中时,虽然术语“第一”、“第二”等可能会在本申请中使用以描述各元件,但这些元件不应受到这些术语的限制。这些术语仅用于将一个元件与另一个元件区别开。比如,在不改变描述的含义的情况下,第一元件可以叫做第二元件,并且同样第,第二元件可以叫做第一元件,只要所有出现的“第一元件”一致重命名并且所有出现的“第二元件”一致重命名即可。第一元件和第二元件都是元件,但可以不是相同的元件。而且,本申请中使用的用词仅用于描述实施例并且不用于限制权利要求。如在实施例以 及权利要求的描述中使用的,除非上下文清楚地表明,否则单数形式的“一个”(a)、“一个”(an)和“所述”(the)旨在同样包括复数形式。类似地,如在本申请中所使用的术语“和/或”是指包含一个或一个以上相关联的列出的任何以及所有可能的组合。另外,当用于本申请中时,术语“包括”(comprise)及其变型“包括”(comprises)和/或包括(comprising)等指陈述的特征、整体、步骤、操作、元素,和/或组件的存在,但不排除一个或一个以上其它特征、整体、步骤、操作、元素、组件和/或这些的分组的存在或添加。在没有更多限制的情况下,由语句“包括一个…”限定的要素,并不排除在包括所述要素的过程、方法或者培养箱中还存在另外的相同要素。本文中,每个实施例重点说明的可以是与其他实施例的不同之处,各个实施例之间相同相似部分可以互相参见。对于实施例公开的方法、产品等而言,如果其与实施例公开的方法部分相对应,那么相关之处可以参见方法部分的描述。
本领域技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,可以取决于技术方案的特定应用和设计约束条件。所述技术人员可以对每个特定的应用来使用不同方法以实现所描述的功能,但是这种实现不应认为超出本公开实施例的范围。所述技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
本文所披露的实施例中,所揭露的方法、产品(包括但不限于装置、培养箱等),可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,可以仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例。另外,在本公开实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
附图中的流程图和框图显示了根据本公开实施例的系统、方法和计算机程序产品的 可能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序段或代码的一部分,所述模块、程序段或代码的一部分包含一个或多个用于实现规定的逻辑功能的可执行指令。在有些作为替换的实现中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个连续的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这可以依所涉及的功能而定。在附图中的流程图和框图所对应的描述中,不同的方框所对应的操作或步骤也可以以不同于描述中所披露的顺序发生,有时不同的操作或步骤之间不存在特定的顺序。例如,两个连续的操作或步骤实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这可以依所涉及的功能而定。框图和/或流程图中的每个方框、以及框图和/或流程图中的方框的组合,可以用执行规定的功能或动作的专用的基于硬件的系统来实现,或者可以用专用硬件与计算机指令的组合来实现。

Claims (10)

  1. 一种用于细胞培养箱温度控制的采样电路,其特征在于,包括:变压器、整流电路、滤波电路、串联分压电路,其中,
    所述细胞培养箱的供电的交流电压信号,通过所述变压器后再经过所述整流电路转化为直流电压信号;
    所述直流电压信号通过滤波电路滤波后,输入所述串联分压电路的两端,得到所述串联分压电路中第一电阻上的采样电压信号,并输入用于细胞培养箱温度控制的装置中。
  2. 根据权利要求1所述的采样电路,其特征在于,所述整流电路包括:
    四个二极管组成的桥式整流电路。
  3. 根据权利要求1或2所述的采样电路,其特征在于,所述串联分压电路包括:
    所述第一电阻,与所述第一电阻串联的调压器。
  4. 一种用于细胞培养箱温度控制的方法,其特征在于,所述细胞培养箱包括如权利要求1-3任一项所述的采样电路,该方法包括:
    根据通过所述采样电路采集的当前采样电压信号,得到与所述细胞培养箱供电的交流电压匹配的当前采样电压;
    根据保存的采样电压与实际供电电压之间的对应关系,确定与所述当前采样电压匹配的当前实际供电电压;
    根据所述当前实际供电电压,确定所述细胞培养箱每面上加热丝的当前理论输出功率,并根据所述当前理论输出功率,控制对应加热丝的运行。
  5. 根据权利要求4所述的方法,其特征在于,所述得到与所述细胞培养箱供电的交流电压匹配的当前采样电压之前,包括:
    获取所述采样电路输出电压与输入电压之间的对应关系,并保存为采样电压与实际供电电压之间的对应关系。
  6. 根据权利要求4所述的方法,其特征在于,所述根据所述当前实际供电电压,确定所述细胞培养箱每面上加热丝的当前理论输出功率包括:
    根据所述细胞培养箱供电的交流电压的有效电压,以及所述当前实际供电电压,得到功率修正参数值;
    根据所述细胞培养箱的当前实际输出功率,以及所述功率修正参数值,得到所述当前理论输出功率。
  7. 根据权利要求6所述的方法,其特征在于,所述根据所述当前理论输出功率, 控制对应加热丝的运行包括:
    根据所述当前理论输出功率,确定脉冲宽度调制PWM波的当前占空比;
    通过所述当前占空比,确定当前PWM波,并输出控制对应加热丝的开停。
  8. 一种用于细胞培养箱温度控制的装置,其特征在于,所述细胞培养箱包括如权利要求1-3任一项所述的采样电路,该装置包括:
    获取模块,被配置为通过所述采样电路,得到与所述细胞培养箱供电的交流电压匹配的当前采样电压;
    确定模块,被配置为根据保存的采样电压与实际供电电压之间的对应关系,确定与所述当前采样电压匹配的当前实际供电电压;
    控制模块,被配置为根据所述当前实际供电电压,确定所述细胞培养箱每面上加热丝的当前理论输出功率,并根据所述当前理论输出功率,控制对应加热丝的运行。
  9. 一种用于细胞培养箱温度控制的装置,该装置包括处理器和存储有程序指令的存储器,其特征在于,所述处理器被配置为在执行所述程序指令时,执行如权利要求4至7任一项所述用于细胞培养箱温度控制的方法。
  10. 一种细胞培养箱,其特征在于,包括:如权利要求8或9所述用于细胞培养箱温度控制的装置。
PCT/CN2022/073014 2021-05-17 2022-01-20 用于细胞培养箱温度控制的电路、方法、装置及培养箱 WO2022242215A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110535782.9A CN113406981B (zh) 2021-05-17 2021-05-17 用于细胞培养箱温度控制的电路、方法、装置及培养箱
CN202110535782.9 2021-05-17

Publications (1)

Publication Number Publication Date
WO2022242215A1 true WO2022242215A1 (zh) 2022-11-24

Family

ID=77678817

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/073014 WO2022242215A1 (zh) 2021-05-17 2022-01-20 用于细胞培养箱温度控制的电路、方法、装置及培养箱

Country Status (2)

Country Link
CN (1) CN113406981B (zh)
WO (1) WO2022242215A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113406981B (zh) * 2021-05-17 2023-06-16 青岛海尔生物医疗科技有限公司 用于细胞培养箱温度控制的电路、方法、装置及培养箱

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130265023A1 (en) * 2012-04-10 2013-10-10 Palo Alto Research Center Incorporated Output power control circuit for a thermoelectric generator
CN106768457A (zh) * 2017-01-03 2017-05-31 珠海格力电器股份有限公司 一种热敏电阻温度采集电路及其自检方法
CN106851885A (zh) * 2016-12-28 2017-06-13 广东格兰仕集团有限公司 变频微波炉电源控制电路及其闭环控制方法
CN109982600A (zh) * 2016-09-29 2019-07-05 脱其泰有限责任公司 用于与包括温度控制容器系统的制冷设备一起使用的设备和方法
CN110333653A (zh) * 2019-06-19 2019-10-15 四川若斌生物科技有限责任公司 基于bp神经网络pid微生物培养箱温控装置及其温控方法
CN111141949A (zh) * 2020-02-12 2020-05-12 东南大学 一种用于输出功率控制的交流电压采样电路及其设计方法
CN113406981A (zh) * 2021-05-17 2021-09-17 青岛海特生物医疗有限公司 用于细胞培养箱温度控制的电路、方法、装置及培养箱

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2010507C1 (ru) * 1991-12-18 1994-04-15 Таршиков Владислав Иванович Инкубатор
US5792427A (en) * 1996-02-09 1998-08-11 Forma Scientific, Inc. Controlled atmosphere incubator
JP2009165288A (ja) * 2008-01-08 2009-07-23 Sanken Electric Co Ltd スイッチング電源装置
CN201828843U (zh) * 2010-06-29 2011-05-11 华中农业大学 一种适用于芽菜培养箱的智能化控制器
CN204544215U (zh) * 2015-03-02 2015-08-12 田茹 一种生化培养箱
CN110198119B (zh) * 2019-05-22 2021-01-26 广东美的白色家电技术创新中心有限公司 功率因数校正电路、控制方法、存储介质、电器及家电
CN110791411A (zh) * 2019-11-29 2020-02-14 徐州医科大学 一种多场景、多菌种的培养箱
CN212259387U (zh) * 2020-07-09 2020-12-29 深圳莱福德科技股份有限公司 一种恒功率控制电路与驱动系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130265023A1 (en) * 2012-04-10 2013-10-10 Palo Alto Research Center Incorporated Output power control circuit for a thermoelectric generator
CN109982600A (zh) * 2016-09-29 2019-07-05 脱其泰有限责任公司 用于与包括温度控制容器系统的制冷设备一起使用的设备和方法
CN106851885A (zh) * 2016-12-28 2017-06-13 广东格兰仕集团有限公司 变频微波炉电源控制电路及其闭环控制方法
CN106768457A (zh) * 2017-01-03 2017-05-31 珠海格力电器股份有限公司 一种热敏电阻温度采集电路及其自检方法
CN110333653A (zh) * 2019-06-19 2019-10-15 四川若斌生物科技有限责任公司 基于bp神经网络pid微生物培养箱温控装置及其温控方法
CN111141949A (zh) * 2020-02-12 2020-05-12 东南大学 一种用于输出功率控制的交流电压采样电路及其设计方法
CN113406981A (zh) * 2021-05-17 2021-09-17 青岛海特生物医疗有限公司 用于细胞培养箱温度控制的电路、方法、装置及培养箱

Also Published As

Publication number Publication date
CN113406981B (zh) 2023-06-16
CN113406981A (zh) 2021-09-17

Similar Documents

Publication Publication Date Title
CN110870192B (zh) 具有控制的负载识别ac电源及方法
CN104360697B (zh) 一种三相逆变系统igbt模块功率-温度控制及检测装置
WO2022242215A1 (zh) 用于细胞培养箱温度控制的电路、方法、装置及培养箱
CN103915989B (zh) 供电单元的控制电路、电池充电器及控制对供电电源的输入端进行取样的方法
WO2016123897A1 (zh) 电磁加热控制电路及电磁加热设备
CN110944413B (zh) 云边协同架构下基于历史负荷辨识数据的电热细分方法
CN115333388B (zh) 整流模块切换方法、装置、终端及存储介质
CA2910799C (en) System and method for instantaneous power decomposition and estimation
CN107708243A (zh) 电磁加热炊具及其控制方法、控制装置
CN107852089A (zh) 蓄电池充电器
CN110031705A (zh) 电解电容寿命监测方法、装置、电子设备及存储介质
CN105763035B (zh) 一种提高低温启动能力的方法及电路
CN108134409A (zh) 储能变流器的控制方法、装置、存储介质和处理器
WO2023045571A1 (zh) 用于培养设备的液位检测装置及方法、培养设备及介质
Zhang et al. Drying control system for persimmon based on single-chip computer and PID
CN109738687A (zh) 一种三相电压监测系统及方法
CN113691151B (zh) 三电平逆变器控制方法及pcs系统
CN112398384B (zh) 一种用于直流电机的控制装置
CN100392547C (zh) 高压直流电源程控系统
CN201490963U (zh) 马达调速控制电路
CN2456626Y (zh) 吸尘器的功率控制装置
CN105811847B (zh) 单相感应电机反向电动势的自动采集及电压补偿方法
CN203691225U (zh) 一种分段式有源功率因数校正的控制系统
CN209731583U (zh) 用于发热元件的控制模块和水壶
CN209151020U (zh) 一种稳压服务器模组电源

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22803549

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE