WO2022242196A1 - 冰箱 - Google Patents

冰箱 Download PDF

Info

Publication number
WO2022242196A1
WO2022242196A1 PCT/CN2022/070115 CN2022070115W WO2022242196A1 WO 2022242196 A1 WO2022242196 A1 WO 2022242196A1 CN 2022070115 W CN2022070115 W CN 2022070115W WO 2022242196 A1 WO2022242196 A1 WO 2022242196A1
Authority
WO
WIPO (PCT)
Prior art keywords
storage compartment
oxygen
air
refrigerator
electrolytic
Prior art date
Application number
PCT/CN2022/070115
Other languages
English (en)
French (fr)
Inventor
马坚
刘浩泉
姜波
王睿龙
苗建林
Original Assignee
青岛海尔电冰箱有限公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔电冰箱有限公司, 海尔智家股份有限公司 filed Critical 青岛海尔电冰箱有限公司
Publication of WO2022242196A1 publication Critical patent/WO2022242196A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L3/00Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs
    • A23L3/32Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by treatment with electric currents without heating effect
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L3/00Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs
    • A23L3/32Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by treatment with electric currents without heating effect
    • A23L3/325Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by treatment with electric currents without heating effect by electrolysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/32Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by electrical effects other than those provided for in group B01D61/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/042Air treating means within refrigerated spaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/02Doors; Covers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/02Doors; Covers
    • F25D23/028Details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/02Doors; Covers
    • F25D23/04Doors; Covers with special compartments, e.g. butter conditioners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D25/00Charging, supporting, and discharging the articles to be cooled
    • F25D25/02Charging, supporting, and discharging the articles to be cooled by shelves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D25/00Charging, supporting, and discharging the articles to be cooled
    • F25D25/02Charging, supporting, and discharging the articles to be cooled by shelves
    • F25D25/024Slidable shelves
    • F25D25/025Drawers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/10Single element gases other than halogens
    • B01D2257/104Oxygen

Definitions

  • the invention relates to refrigeration equipment, in particular to a refrigerator.
  • the shelf life of items can be extended appropriately.
  • Different items correspond to different preservation conditions.
  • the preservation conditions of fruits, vegetables and other ingredients are low oxygen and low temperature
  • the preservation conditions of some meat such as red meat are high oxygen and low temperature.
  • the refrigerator can create a low-temperature preservation environment for items.
  • the continuous advancement of science and technology people expect refrigerators to have diversified preservation functions, which can not only provide low-oxygen and low-temperature preservation atmospheres, but also provide high-oxygen and low-temperature preservation atmospheres.
  • An object of the present invention is to overcome at least one technical defect in the prior art and provide a refrigerator.
  • a further object of the present invention is to simplify the structure of the refrigerator and make it easy to create a low-oxygen fresh-keeping atmosphere and a high-oxygen fresh-keeping atmosphere.
  • Another further object of the present invention is to enable the refrigerator to simultaneously create an appropriate fresh-keeping atmosphere for multiple storage compartments.
  • a still further object of the present invention is to simplify the structure of the air duct member of the refrigerator.
  • a further object of the present invention is to reduce or avoid leakage of electrolyte when the electrolytic deoxygenation device of the refrigerator is exhausted.
  • the present invention provides a refrigerator, comprising: a box body, a first storage compartment and at least one second storage compartment are formed inside it; The air flow is connected, and is used to consume the oxygen in the first storage compartment through the electrochemical reaction; the electrolytic deoxygenation device is formed with an exhaust port for discharging oxygen; The end communicates with the second storage compartment and is configured to direct oxygen flowing through the exhaust port to the second storage compartment.
  • the air guide pipe includes: an air intake pipe section extending from the exhaust port toward the second storage compartment, and its first end forms an air intake end; a plurality of air outlet pipe sections, the first end of each air outlet pipe section One end forms an air outlet, and the second end of each air outlet pipe section communicates with the second end of the air inlet pipe section respectively.
  • the air guide pipe also includes a multi-way valve, which has an inlet valve port and a plurality of diverter valve ports, the inlet valve port communicates with the second end of the intake pipe section, and the diverter valve port communicates with the second end of the air outlet pipe section.
  • the ports are communicated one by one; and the multi-way valve is configured to adjust the flow path of oxygen flowing through it by opening or closing the diversion valve port in a controlled manner.
  • a hollow frame is provided on the rear wall of the first storage compartment; the electrolytic deoxygenation device is disposed at the hollow frame, and together with the first storage compartment, defines an airtight storage space.
  • the rear wall of the second storage compartment is provided with an air inlet connected to the air outlet end of the air guiding pipe; the air outlet end of the air guiding pipe is plugged into the air inlet so as to be sealingly connected with the air inlet.
  • the electrolytic deoxygenation device includes: a housing on which is formed a lateral opening facing the interior of the first storage compartment; a cathode plate disposed at the lateral opening to jointly define a The liquid storage chamber containing the electrolyte is used to consume the oxygen in the first storage compartment through electrochemical reaction; and the anode plate is arranged in the liquid storage chamber and is used to provide reactants to the cathode plate through electrochemical reaction and generate oxygen ; and the exhaust port is set on the shell and communicates with the liquid storage chamber.
  • the exhaust port is located at the top section of the casing, and is configured to be higher than the highest liquid level of the electrolyte in the liquid storage chamber.
  • the first storage compartment and the second storage compartment are arranged along the height direction of the refrigerator, or along the transverse direction of the refrigerator.
  • the air guide pipe can guide the oxygen discharged from the electrolytic deoxygenation device to the second storage compartment, and utilize the electrolytic deoxygenation device to
  • the combination of the device and the air-guiding pipe makes it easy to create a low-oxygen fresh-keeping atmosphere and a high-oxygen fresh-keeping atmosphere in the refrigerator of the present invention, and the structure is simple, and there is no need to install a booster device, which is conducive to simplifying the operation process, reducing operating costs and maintenance of the booster device cost.
  • the oxygen discharged from the electrolytic deoxygenation device can respectively reach each of the second storage compartments by connecting the gas outlet end of the air guide tube with each second storage compartment.
  • Two storage compartments so that when the first storage compartment realizes a low-oxygen fresh-keeping atmosphere, each second storage compartment realizes a high-oxygen fresh-keeping atmosphere at the same time, which makes the refrigerator create an appropriate environment for multiple storage compartments at the same time.
  • the fresh-keeping atmosphere is conducive to improving the atmosphere adjustment efficiency of the refrigerator.
  • the refrigerator of the present invention by using a multi-way valve to connect the air inlet pipe section and the air outlet pipe section of the air guide pipe, multiple air outlet pipe sections can be easily arranged in the air guide pipe, which is conducive to simplifying the air guide pipe of the refrigerator. Structure.
  • the exhaust port of the electrolytic deoxygenation device is located on the top section of the casing, and is configured to be higher than the highest liquid level of the electrolyte in the liquid storage chamber, this can reduce or avoid the The electrolytic deoxygenation device leaks electrolyte when exhausting.
  • FIG. 1 is a schematic diagram of a refrigerator according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of a partial structure of a refrigerator according to an embodiment of the present invention.
  • Fig. 3 is a partial enlarged view of place A in Fig. 2;
  • Fig. 4 is another schematic diagram of the partial structure of the refrigerator shown in Fig. 2;
  • FIG. 5 is a schematic diagram of a partial structure of a refrigerator according to another embodiment of the present invention.
  • Fig. 6 is a schematic diagram of an electrolytic deoxygenation device of a refrigerator according to an embodiment of the present invention.
  • Fig. 7 is an exploded view of an electrolytic deoxidizer of a refrigerator according to an embodiment of the present invention.
  • Fig. 8 is a schematic diagram of a support in the electrolytic oxygen removal device shown in Fig. 7;
  • FIG. 9 is a partial enlarged view of B in FIG. 8 .
  • FIG. 1 is a schematic diagram of a refrigerator 10 according to one embodiment of the present invention.
  • the refrigerator 10 may generally include a box body 200 , an electrolytic deoxygenation device 100 and an air duct 300 .
  • the inside of the box body 200 is formed with a first storage compartment 210 and at least one second storage compartment 220 .
  • the temperature zones of the first storage compartment 210 and the second storage compartment 220 can be set according to actual needs, for example, the first storage compartment 210 and the second storage compartment 220 can be refrigerated compartments, freezer compartments, Any one of the compartments and variable temperature compartments.
  • the number of the second storage compartments 220 can be set to one or more according to actual needs.
  • the first storage compartment 210 may be a refrigerated compartment
  • the second storage compartment 220 may be a freezer compartment.
  • a part of the electrolytic deoxygenation device 100 is in gas flow communication with the first storage compartment 210 , and is used for consuming oxygen in the first storage compartment 210 through an electrochemical reaction.
  • the above-mentioned “airflow communication” means that the airflow in the first storage compartment 210 can flow to the electrolytic deoxygenation device 100 and contact with a part of the electrolytic deoxygenation device 100 .
  • the above-mentioned “part of the electrolytic deoxygenation device 100” can "absorb" the oxygen in the first storage compartment 210, and use the oxygen as a reactant to perform an electrochemical reaction, so as to reduce the concentration of oxygen in the first storage compartment 210.
  • the purpose is to create a low-oxygen fresh-keeping atmosphere in the first storage compartment 210 . While the electrolytic deoxygenation device 100 consumes the oxygen inside the first storage compartment 210 , it also generates oxygen through an electrochemical reaction.
  • the electrolytic deoxygenation device 100 is formed with an exhaust port 112 for exhausting oxygen.
  • the exhaust port 112 is used for exhausting the oxygen generated by the electro-deoxygenation device 100 through the electrochemical reaction.
  • the air inlet end of the air guide tube 300 communicates with the exhaust port 112 , and its air outlet end communicates with the second storage compartment 220 , and is configured to guide the oxygen flowing through the exhaust port 112 to the second storage compartment 220 . That is to say, the air guide tube 300 is used as a communication part connecting the exhaust port 112 and the second storage compartment 220, and can discharge the oxygen generated by the electrolytic oxygen deoxygenation device 100 to the second storage compartment 220, thereby realizing the improvement of the second storage compartment 220.
  • the purpose of oxygen in the second storage compartment 220 is to create a high-oxygen fresh-keeping atmosphere in the second storage compartment 220 .
  • the air guide pipe 300 can guide the oxygen discharged from the electrolytic deoxygenation device 100 to the second storage compartment 220, and utilize electrolytic deoxygenation
  • the combination of the device 100 and the air guide pipe 300 makes it easy for the refrigerator 10 of this embodiment to create a low-oxygen fresh-keeping atmosphere and a high-oxygen fresh-keeping atmosphere, and has a simple structure without the need for a booster device, which is conducive to simplifying the operation process, reducing operating costs and increasing costs. Maintenance cost of pressure equipment.
  • FIG. 2 is a schematic diagram of a partial structure of a refrigerator 10 according to an embodiment of the present invention, which shows a first storage compartment 210 , a second storage compartment 220 , an electrolytic deoxygenation device 100 and an air duct 300 .
  • Each air outlet is used to communicate with a second storage compartment 220 .
  • FIG. 2 only illustrates the situation where there are two second storage compartments 220, those skilled in the art should be fully capable of expanding for other numbers of situations on the basis of understanding this embodiment, here No more examples.
  • Fig. 3 is a partial enlarged view of A in Fig. 2 .
  • the air guiding pipe 300 includes an air inlet pipe section 310 and a plurality of air outlet pipe sections 320 .
  • the intake pipe section 310 extends from the exhaust port 112 toward the second storage compartment 220 , and a first end thereof forms an intake end.
  • the first end of each air outlet pipe section 320 forms an air outlet end, and the second end of each air outlet pipe section 320 communicates with the second end of the air inlet pipe section 310 respectively. That is to say, the first end of the intake pipe section 310 communicates with the exhaust port 112 , and the first end of each intake pipe segment 310 communicates with a second storage compartment 220 , which is discharged from the exhaust port 112 of the electrolytic deoxygenation device 100 .
  • the oxygen can flow into the air guide tube 300 from the first end of the air intake pipe section 310, and then flow through the second end of the air intake pipe section 310, the second end of the air outlet pipe section 320 and the first end of the air outlet pipe section 320 in sequence, Then flow into the second storage compartment 220 .
  • the oxygen discharged from the electrolytic deoxygenation device 100 can respectively reach each second storage compartment by connecting the gas outlet end of the air guide tube 300 with each second storage compartment 220. room 220, so that when the first storage compartment 210 realizes a low-oxygen fresh-keeping atmosphere, each second storage compartment 220 realizes a high-oxygen fresh-keeping atmosphere at the same time, which enables the refrigerator 10 to create a suitable environment for multiple storage compartments at the same time.
  • the fresh-keeping atmosphere is conducive to improving the atmosphere adjustment efficiency of the refrigerator 10.
  • the air guide pipe 300 may further include a multi-way valve 330, which has an inlet valve port and a plurality of diverter valve ports, and the inlet valve port communicates with the second end of the intake pipe section 310, The diverter valve ports communicate with the second ends of the gas outlet pipe section 320 one by one.
  • the multi-way valve 330 is configured to adjust the flow path of oxygen flowing therethrough by opening or closing the diversion valve port in a controlled manner.
  • the multi-way valve 330 can be a three-way valve, which has an inlet valve port and two diverter valve ports, and each diverter valve port communicates with an outlet valve port.
  • the second end of the trachea segment 320 can be connected by the multi-way valve 330, so that the oxygen flowing through the inlet pipe section 310 can flow into the outlet pipe section 320 .
  • the multi-way valve 330 to connect the air inlet pipe section 310 and the air outlet pipe section 320 of the air guide pipe part 300, multiple air outlet pipe sections 320 can be easily arranged in the air guide pipe part 300, which is conducive to simplifying the air guide pipe part 300 of the refrigerator 10. Structure.
  • the fresh-keeping atmosphere of each second storage compartment 220 can be adjusted, thereby improving the flexibility of the atmosphere adjustment process of the refrigerator 10 .
  • FIG. 4 is another schematic diagram of the partial structure of the refrigerator 10 shown in FIG. 2 , in which the air duct 300 and a second storage compartment 220 are hidden.
  • a hollow frame 211 may be opened on the rear wall of the first storage compartment 210, and the hollow frame 211 may be an opening.
  • the electrolytic deoxygenation device 100 may be disposed at the hollow frame 211 , and together with the first storage compartment 210 define an airtight storage space. That is to say, the electrolytic deoxygenation device 100 can close the opening where the hollow frame 211 is located, so that the first storage compartment 210 is in an airtight state.
  • the hollow frame 211 may be a rectangular opening, and the electrolytic deoxidizer 100 may be in the shape of a rectangular parallelepiped flat box.
  • the first storage compartment 210 and the second storage compartment 220 are arranged along the height direction of the refrigerator 10 .
  • the second storage compartment 220 can be located below the first storage compartment 210, and the two second storage compartments 220 can be arranged in sequence along the height direction of the refrigerator 10, which can reduce the installation of the air guide tube. difficulty.
  • the second storage compartment 220 may also be located above the first storage compartment 210 .
  • the first storage compartment 210 and the second storage compartment 220 may also be arranged along the transverse direction of the refrigerator 10 .
  • the first storage compartment 210 and one second storage compartment 220 may be arranged along the horizontal direction of the refrigerator 10, and the other second storage compartment 220 may be located in the first storage compartment. Above or below the compartment 210.
  • the rear wall of the second storage compartment 220 defines an air inlet hole 222 communicating with the air outlet end of the air guiding tube 300 .
  • the air outlet end of the air guiding tube 300 is plugged into the air inlet 222 to be sealedly connected with the air inlet 222 . That is to say, the air outlet end of the air guiding tube 300 is inserted into the air inlet 222 to communicate with the second storage compartment 220 and seal the air inlet 222 of the second storage compartment 220 .
  • the air guiding tube 300 may extend vertically downward from the exhaust port 112 to the air intake hole 222 of the second storage compartment 220 .
  • Fig. 5 is a schematic diagram of a partial structure of a refrigerator 10 according to another embodiment of the present invention, showing a first storage compartment 210, a second storage compartment 220, an electrolytic deoxygenation device 100 and an air duct 300 .
  • there may be one second storage compartment 220 .
  • there is one air outlet end of the air guiding tube 300 and the air guiding tube 300 may include an air inlet pipe section 310 , an air outlet pipe section 320 and a multi-way valve.
  • the intake pipe segment 310 extends from the exhaust port 112 toward the second storage compartment 220 , and a first end thereof forms an intake end.
  • the first end of the air outlet pipe section 320 forms an air outlet end, and the second end of the air outlet pipe section 320 communicates with the second end of the air inlet pipe section 310 .
  • the multi-way valve can be a two-way valve, which has an inlet valve port and a diverter valve port, and the diverter valve port communicates with the second end of the gas outlet pipe section 320.
  • Fig. 6 is a schematic diagram of the electrolytic deoxygenation device 100 of the refrigerator 10 according to one embodiment of the present invention
  • Fig. 7 is an exploded view of the electrolytic deoxygenation device 100 of the refrigerator 10 according to one embodiment of the present invention.
  • the electrolytic deoxygenation device 100 may include a housing 110 , a cathode plate 120 and an anode plate 140 .
  • the casing 110 is formed with a lateral opening 114 facing the inside of the first storage compartment 210 .
  • the side opening 114 is located at the front side of the casing 110 .
  • the cathode plate 120 is disposed at the side opening 114 to define together with the casing 110 a liquid storage cavity for containing electrolyte, and is used for consuming oxygen in the first storage compartment 210 through an electrochemical reaction.
  • the cathode plate 120 is in airflow communication with the inner space of the first storage compartment 210 .
  • oxygen in the air can undergo a reduction reaction at the cathode plate 120 , namely: O 2 +2H 2 O+4e ⁇ ⁇ 4OH ⁇ .
  • the anode plate 140 is disposed in the liquid storage chamber for providing reactants (eg, electrons) to the cathode plate 120 through an electrochemical reaction to generate oxygen.
  • the anode plate 140 and the cathode plate 120 may be disposed in the liquid storage chamber at a distance from each other, that is, the anode plate 140 may be disposed on a side of the cathode plate 120 facing away from the first storage compartment.
  • the OH ⁇ produced by the cathode plate 120 can undergo an oxidation reaction at the anode plate 140 to generate oxygen, namely: 4OH ⁇ ⁇ O 2 +2H 2 O+4e ⁇ .
  • the liquid storage chamber of the electrolytic deoxygenation device 100 can contain an alkaline electrolyte, such as 0.1-8 mol/L NaOH, and its concentration can be adjusted according to actual needs.
  • an alkaline electrolyte such as 0.1-8 mol/L NaOH
  • the exhaust port 112 is disposed on the casing 110 and communicates with the liquid storage chamber.
  • the exhaust port 112 may be located at the top section of the casing 110 and configured to be higher than the highest liquid level of the electrolyte in the liquid storage chamber.
  • the housing 110 may be in the shape of a rectangular parallelepiped flat box and arranged to extend along the vertical direction.
  • the exhaust port 112 may be located on the top wall of the housing 110 .
  • the vertical direction is the height direction of the refrigerator.
  • the exhaust port 112 of the electrolytic deoxygenation device 100 is located on the top section of the casing 110 and is configured to be higher than the highest point of the liquid level of the electrolyte in the liquid storage chamber, this can reduce or avoid the electrolytic deoxygenation device of the refrigerator 10. 100 leaks electrolyte when exhausting.
  • the exhaust port 112 can also be used as a replenishment port for the electrolyte.
  • the electrolyte can be injected into the liquid storage chamber at the exhaust port 112, which can realize exhaust.
  • the function multiplexing of the port 112 is beneficial to simplify the structure of the electrolytic deoxygenation device 100 .
  • the refrigerator 10 may further include a power supply module, such as a battery.
  • the power supply module is set close to the electrolytic deoxygenation device 100 and provides power for the electrolytic deoxygenation device 100 .
  • the anode plate 140 has an anode power supply terminal 142 passing through the casing 110 and connected to the positive pole of the external power supply.
  • the cathode plate 120 has a cathode power supply terminal 152b that passes through the casing 110 and is connected to the negative pole of the external power supply.
  • the electrolytic deoxygenation device 100 may further include a partition 130 and a fixing component 150 .
  • the separator 130 is disposed in the liquid storage chamber and is located between the cathode plate 120 and the anode plate 140.
  • a plurality of protrusions 132 are formed on the side of the separator 130 facing the anode plate 140, and the protrusions 132 are in contact with the anode plate. 140 to separate the cathode plate 120 and the anode plate 140 to prevent the electrolytic deoxidizer 100 from short circuiting.
  • a plurality of protrusions 132 are formed on the side of the separator 130 facing the anode plate 140, the protrusions 132 are in contact with the anode plate 140, and the cathode plate 120 is attached to a side of the separator 130 away from the protrusions 132. side, so as to form a preset gap between the cathode plate 120 and the anode plate 140 , thereby separating the cathode plate 120 from the anode plate 140 .
  • the fixing component 150 can be disposed on the outside of the cathode plate 120 and configured to fix the cathode plate 120 at the side opening 114 of the casing 110 .
  • the fixing assembly 150 may further include a metal frame 152 and a support 154 .
  • FIG. 8 is a schematic diagram of the support member 154 in the electrolytic deoxygenation device 100 shown in FIG. 7
  • FIG. 9 is a partial enlarged view of B in FIG. 8
  • the metal frame 152 is attached to the outside of the cathode plate 120 , and the metal frame 152 protrudes outward to form a surrounding portion 152 a.
  • the support member 154 is arranged on the outside of the metal frame 152, and has an outer ring 1542 and an inner ring 1544 located inside the outer ring 1542.
  • the outer ring 1542 is fixedly connected with the housing 110, and an insertion groove 1544a is formed on the inner side of the inner ring 1544.
  • the surrounding portion 152a extends into the insertion slot 1544a to fix the metal frame 152 and the cathode plate 120 at the opening.
  • the metal frame 152 is in direct contact with the cathode plate 120, and the metal frame 152 can play the role of pressing the cathode plate 120, and the cathode power supply terminal 152b of the cathode plate 120 can also be provided on the metal frame 152 to communicate with the outside Power is connected.
  • the surrounding portion 152 a is formed on the metal frame 152 and extends toward the outside, so as to be inserted into the insertion slot 1544 a of the inner ring 1544 of the support member 154 , thereby positioning the metal frame 152 .
  • the outer ring 1542 of the support 154 is fixedly connected with the housing 110, when the surrounding portion 152a of the metal frame 152 enters the insertion groove 1544a of the support 154, the metal frame 152 can be fixed and positioned by the support 154, and then The metal frame 152 is pressed against the cathode plate 120 .
  • reinforcing ribs 1546 are formed between the outer ring 1542 and the inner ring 1544 of the support member 154 and inside the inner ring 1544 for fixedly connecting the outer ring 1542 and the inner ring 1544 of the support member 154, and to The outer ring 1542 and the inner ring 1544 of the support member 154 are shaped to prevent them from being deformed by external force.
  • the material of the anode plate 140 may be nickel, but not limited thereto.
  • the cathode plate 120 may be composed of a catalyst layer, a first waterproof and gas-permeable layer, a collector layer and a second waterproof and gas-permeable layer arranged sequentially from inside to outside.
  • directional words such as "outside” and "inside” are relative to the actual use state of the casing 110, and relative to other structures of the cathode plate 120, the catalytic layer can be located on the innermost side of the cathode plate 120, so that In contact with the electrolyte in the reservoir chamber.
  • the catalytic layer can be a metal catalyst, wherein the metal can be a noble metal or a rare metal, for example, can be selected from the material group consisting of platinum, gold, silver, manganese and rubidium.
  • Metal catalyst particles can be attached to acetylene black particles.
  • the first waterproof and gas-permeable layer and the second waterproof and gas-permeable layer can be waterproof and gas-permeable membranes, so that the electrolyte cannot seep out from the liquid storage chamber, and air can pass through the first waterproof and gas-permeable layer and the second waterproof and gas-permeable layer to contact the catalytic layer .
  • the current-collecting layer can be made into a corrosion-resistant metal current-collecting net, such as metal nickel, metal titanium, etc., so that it not only has better conductivity, corrosion resistance and support strength. And because the cathode plate 120 itself has a certain strength, it can fully meet the sealing strength requirements of the liquid storage chamber. In addition, the cathode plate 120 adopts two waterproof and breathable layers, which can also effectively prevent leakage caused by electrolyte corrosion.
  • the refrigerator 10 of the present invention since the electrolytic deoxygenation device 100 can create a low-oxygen fresh-keeping atmosphere for the first storage compartment 210, the air guide pipe 300 can guide the oxygen discharged from the electrolytic deoxygenation device 100 to the second storage compartment 220, using the combination of the electrolytic deoxygenation device 100 and the air guide pipe 300, the refrigerator 10 of the present invention is easy to create a low-oxygen fresh-keeping atmosphere and a high-oxygen fresh-keeping atmosphere, and the structure is simple, no need to install a booster device, which is conducive to simplifying the operation process, Reduce operating costs and maintenance costs for booster equipment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Nutrition Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)

Abstract

一种冰箱(10),包括:箱体(200),其内部形成有第一储物间室(210)和至少一个第二储物间室(220);电解除氧装置(100),其一部分与第一储物间室(210)气流连通,并用于通过电化学反应消耗第一储物间室(210)内的氧气;电解除氧装置(100)形成有用于排出氧气的排气口(112);以及导气管件(300),其进气端与排气口(112)连通,其出气端与第二储物间室(220)连通,并配置成将流经排气口(112)的氧气导引至第二储物间室(220)。由于电解除氧装置(100)能为第一储物间室(210)营造低氧保鲜气氛,导气管件(300)能将电解除氧装置(100)排出的氧气导引至第二储物间室(220),利用电解除氧装置(100)和导气管件(300)相结合,使得本发明的冰箱(10)易于营造低氧保鲜气氛和高氧保鲜气氛,且结构简单,无需设置增压设备,有利于简化操作过程,降低操作成本和增压设备的维护成本。

Description

冰箱 技术领域
本发明涉及制冷设备,特别是涉及一种冰箱。
背景技术
在日常生产生活中,通过调节合适的保藏气氛,可以适当延长物品的保存期限。不同的物品对应着不同的保藏条件,例如,通常情况下,水果、蔬菜等食材的保藏条件为低氧低温,红肉等部分肉类的保藏条件为高氧低温。
冰箱作为一种低温存储设备,可以为物品营造低温保鲜环境。随着科技的不断进步,人们期望冰箱能够具备多样化的保藏功能,既能提供低氧低温的保藏气氛,又能提供高氧低温的保藏气氛。
然而,发明人认识到,现有技术中的部分冰箱,为实现低氧和高氧保鲜功能,采用变压吸附除氧或者富氧膜除氧等方式营造低氧保鲜气氛,其主要原理为在一定压力下分离空气中的氮气和氧气,并将氮气留在或者排入低氧保鲜空间内,然后将氧气从低氧保鲜空间排出并排入高氧保鲜空间。由于需要利用增压设备实现氮氧分离,不但结构复杂,除氧过程容易产生较大噪声,而且操作繁琐,操作成本高,还对使用环境的湿度、洁净度有较高要求,否则会污染增压设备的分子筛,严重影响设备的使用寿命,导致设备的维护成本高。
发明内容
本发明的一个目的是要克服现有技术中的至少一个技术缺陷,提供一种冰箱。
本发明一个进一步的目的是要简化冰箱的结构,并使其易于营造低氧保鲜气氛和高氧保鲜气氛。
本发明另一个进一步的目的是使得冰箱同时为多个储物间室营造适当的保鲜气氛。
本发明再一个进一步的目的是要简化冰箱的导气管件的结构。
本发明又一个进一步的目的是要减少或避免冰箱的电解除氧装置在排气时泄露电解液。
特别地,本发明提供了一种冰箱,包括:箱体,其内部形成有第一储物 间室和至少一个第二储物间室;电解除氧装置,其一部分与第一储物间室气流连通,并用于通过电化学反应消耗第一储物间室内的氧气;电解除氧装置形成有用于排出氧气的排气口;以及导气管件,其进气端与排气口连通,其出气端与第二储物间室连通,并配置成将流经排气口的氧气导引至第二储物间室。
可选地,第二储物间室为多个。
可选地,导气管件的出气端为多个,且与第二储物间室一一连通。
可选地,导气管件包括:一个进气管段,从排气口朝向第二储物间室延伸,且其第一端形成进气端;多个出气管段,每一出气管段的第一端形成出气端,且每一出气管段的第二端分别连通进气管段的第二端。
可选地,导气管件还包括多通阀,其具有一个进流阀口和多个分流阀口,进流阀口连通进气管段的第二端,分流阀口与出气管段的第二端一一连通;且多通阀配置成通过受控地打开或关闭分流阀口以调节流经其的氧气的流动路径。
可选地,第一储物间室的后壁开设有镂空框;电解除氧装置设置于镂空框处,并与第一储物间室共同限定出密闭储物空间。
可选地,第二储物间室的后壁开设有与导气管件的出气端相连通的进气孔;导气管件的出气端插接于进气孔,以与进气孔密封连接。
可选地,电解除氧装置包括:壳体,其上形成有面朝第一储物间室内部的侧向开口;阴极板,设置于侧向开口处,以与壳体共同限定出用于盛装电解液的储液腔,用于通过电化学反应消耗第一储物间室内的氧气;以及阳极板,设置于储液腔内,用于通过电化学反应向阴极板提供反应物并生成氧气;且排气口设置于壳体上,并与储液腔相连通。
可选地,排气口位于壳体的顶部区段,且配置成高于储液腔内的电解液的液面最高处。
可选地,第一储物间室与第二储物间室沿冰箱的高度方向排布,或者沿冰箱的横向方向排布。
本发明的冰箱,由于电解除氧装置能够为第一储物间室营造低氧保鲜气氛,导气管件能够将电解除氧装置排出的氧气导引至第二储物间室,利用电解除氧装置和导气管件相结合,使得本发明的冰箱易于营造低氧保鲜气氛和高氧保鲜气氛,且结构简单,无需设置增压设备,有利于简化操作过程,降 低操作成本和增压设备的维护成本。
进一步地,本发明的冰箱,由于第二储物间室可以为多个,通过连通导气管件的出气端与各个第二储物间室,可使电解除氧装置排出的氧气分别到达各个第二储物间室,从而能够在第一储物间室实现低氧保鲜气氛时,使得各个第二储物间室同时实现高氧保鲜气氛,这使得冰箱同时为多个储物间室营造适当的保鲜气氛,有利于提高冰箱的气氛调节效率。
进一步地,本发明的冰箱,通过利用多通阀连接导气管件的进气管段和出气管段,可以简便地在导气管件中设置多个出气管段,这有利于简化冰箱的导气管件的结构。
更进一步地,本发明的冰箱,由于电解除氧装置的排气口位于壳体的顶部区段,且配置成高于储液腔内的电解液的液面最高处,这可以减少或避免冰箱的电解除氧装置在排气时泄露电解液。
根据下文结合附图对本发明具体实施例的详细描述,本领域技术人员将会更加明了本发明的上述以及其他目的、优点和特征。
附图说明
后文将参照附图以示例性而非限制性的方式详细描述本发明的一些具体实施例。附图中相同的附图标记标示了相同或类似的部件或部分。本领域技术人员应该理解,这些附图未必是按比例绘制的。附图中:
图1是根据本发明一个实施例的冰箱的示意图;
图2是根据本发明一个实施例的冰箱的部分结构的示意图;
图3是图2中A处的局部放大图;
图4是图2所示的冰箱的部分结构的另一示意图;
图5是根据本发明另一个实施例的冰箱的部分结构的示意图;
图6是根据本发明一个实施例的冰箱的电解除氧装置的示意图;
图7是根据本发明一个实施例的冰箱的电解除氧装置的分解图;
图8是图7所示的电解除氧装置中支撑件的示意图;
图9是图8中B处的局部放大图。
具体实施方式
图1是根据本发明一个实施例的冰箱10的示意图。
冰箱10一般性地可包括箱体200、电解除氧装置100和导气管件300。
箱体200的内部形成有第一储物间室210和至少一个第二储物间室220。第一储物间室210和第二储物间室220的温区可以根据实际需要进行设置,例如,第一储物间室210和第二储物间室220可以分别为冷藏间室、冷冻间室和变温间室中的任意一个。第二储物间室220的数量可以根据实际需要设置为一个或多个。本实施例中,第一储物间室210可以为冷藏间室,第二储物间室220可以为冷冻间室。
电解除氧装置100的一部分与第一储物间室210气流连通,并用于通过电化学反应消耗第一储物间室210内的氧气。上述“气流连通”是指第一储物间室210内的气流可以流动至电解除氧装置100,并与电解除氧装置100的一部分接触。上述“电解除氧装置100的一部分”可以“吸收”第一储物间室210内的氧气,并将该氧气作为反应物进行电化学反应,从而实现降低第一储物间室210内部氧气的目的,使得第一储物间室210营造出低氧保鲜气氛。电解除氧装置100在消耗第一储物间室210内部氧气的同时,还会通过电化学反应生成氧气。
本实施例中,电解除氧装置100形成有用于排出氧气的排气口112。该排气口112用于排出电解除氧装置100通过电化学反应生成的氧气。
导气管件300的进气端与排气口112连通,其出气端与第二储物间室220连通,并配置成将流经排气口112的氧气导引至第二储物间室220。也就是说,导气管件300作为连通排气口112与第二储物间室220的连通部件,可以将电解除氧装置100生成的氧气排放至第二储物间室220,从而实现提高第二储物间室220内部氧气的目的,使得第二储物间室220营造出高氧保鲜气氛。
由于电解除氧装置100能够为第一储物间室210营造低氧保鲜气氛,导气管件300能够将电解除氧装置100排出的氧气导引至第二储物间室220,利用电解除氧装置100和导气管件300相结合,使得本实施例的冰箱10易于营造低氧保鲜气氛和高氧保鲜气氛,且结构简单,无需设置增压设备,有利于简化操作过程,降低操作成本和增压设备的维护成本。
图2是根据本发明一个实施例的冰箱10的部分结构的示意图,图中示出了第一储物间室210、第二储物间室220、电解除氧装置100和导气管件300。
第二储物间室220可以为多个。导气管件300的出气端为多个,且与第 二储物间室220一一连通。也就是说,导气管件300的出气端的数量与第二储物间室220的数量相同。每一出气端用于连通一第二储物间室220。
值得说明的是,图2仅以第二储物间室220为两个的情况进行示意,本领域技术人员在了解本实施例的基础上应当完全有能力针对其他数量的情况进行拓展,此处不再一一举例。
图3是图2中A处的局部放大图。
导气管件300包括一个进气管段310和多个出气管段320。进气管段310从排气口112朝向第二储物间室220延伸,且其第一端形成进气端。每一出气管段320的第一端形成出气端,且每一出气管段320的第二端分别连通进气管段310的第二端。也就是说,进气管段310的第一端连通排气口112,每一进气管段310的第一端连通一第二储物间室220,从电解除氧装置100的排气口112排出的氧气可以从进气管段310的第一端流入导气管件300,然后依次流经进气管段310的第二端、出气管段320的第二端以及出气管段320的第一端之后,再流入第二储物间室220。
由于第二储物间室220可以为多个,通过连通导气管件300的出气端与各个第二储物间室220,可使电解除氧装置100排出的氧气分别到达各个第二储物间室220,从而能够在第一储物间室210实现低氧保鲜气氛时,使得各个第二储物间室220同时实现高氧保鲜气氛,这使得冰箱10同时为多个储物间室营造适当的保鲜气氛,有利于提高冰箱10的气氛调节效率。
在一些进一步的实施例中,导气管件300还可以进一步地包括多通阀330,其具有一个进流阀口和多个分流阀口,进流阀口连通进气管段310的第二端,分流阀口与出气管段320的第二端一一连通。且多通阀330配置成通过受控地打开或关闭分流阀口以调节流经其的氧气的流动路径。例如,本实施例中,第二储物间室220为两个,多通阀330可以为三通阀,其具有一个进流阀口和两个分流阀口,每个分流阀口连通一出气管段320的第二端。也就是说,本实施例中,可以利用多通阀330连接进气管段310的第二端和出气管段320的第二端,从而使得流经进气管段310的氧气可以流入出气管段320。
通过利用多通阀330连接导气管件300的进气管段310和出气管段320,可以简便地在导气管件300中设置多个出气管段320,这有利于简化冰箱10的导气管件300的结构。
通过调节多通阀330的分流阀口的开闭状态,可以调节每个第二储物间室220的保鲜气氛,从而有利于提高冰箱10的气氛调节过程的灵活性。
图4是图2所示的冰箱10的部分结构的另一示意图,图中隐去了导气管件300和一个第二储物间室220。
本实施例中,第一储物间室210的后壁可以开设有镂空框211,该镂空框211可以为开口。电解除氧装置100可以设置于镂空框211处,并与第一储物间室210共同限定出密闭储物空间。也就是说,电解除氧装置100可以封闭镂空框211所在位置的开口,使得第一储物间室210呈密闭状态。例如,镂空框211可以为长方形开口,电解除氧装置100可以为长方体扁平盒状。
本实施例中,第一储物间室210与第二储物间室220沿冰箱10的高度方向排布。例如,第二储物间室220可以位于第一储物间室210的下方,且两个第二储物间室220可以沿冰箱10的高度方向依次排布,这可以降低导气管件的安装难度。
在一些可选的实施例中,第二储物间室220也可以位于第一储物间室210的上方。在又一些可选的实施例中,第一储物间室210与第二储物间室220还可以沿冰箱10的横向方向排布。在另一些可选的实施例中,第一储物间室210可以与一个第二储物间室220沿冰箱10的横向排布,另一个第二储物间室220可以位于第一储物间室210的上方或者下方。
第二储物间室220的后壁开设有与导气管件300的出气端相连通的进气孔222。导气管件300的出气端插接于进气孔222,以与进气孔222密封连接。也就是说,导气管件300的出气端通过插接于进气孔222,从而与第二储物间室220连通,且密封第二储物间室220的进气孔222。本实施例中,导气管件300可以从排气口112沿竖直方向向下延伸至第二储物间室220的进气孔222。
图5是根据本发明另一个实施例的冰箱10的部分结构的示意图,图中示出了第一储物间室210、第二储物间室220、电解除氧装置100和导气管件300。本实施例中,第二储物间室220可以为一个。相应地,导气管件300的出气端为一个,且导气管件300可以包括一个进气管段310、一个出气管段320和多通阀。进气管段310从排气口112朝向第二储物间室220延伸,其第一端形成进气端。出气管段320的第一端形成出气端,且出气管段320的第二端连通进气管段310的第二端。多通阀可以为二通阀,其具有一个进 流阀口和一个分流阀口,且该分流阀口连通出气管段320的第二端。
图6是根据本发明一个实施例的冰箱10的电解除氧装置100的示意图,图7是根据本发明一个实施例的冰箱10的电解除氧装置100的分解图。
电解除氧装置100可以包括壳体110、阴极板120和阳极板140。壳体110上形成有面朝第一储物间室210内部的侧向开口114。本实施例中,侧向开口114位于壳体110的前侧。
阴极板120设置于侧向开口114处,以与壳体110共同限定出用于盛装电解液的储液腔,用于通过电化学反应消耗第一储物间室210内的氧气。阴极板120与第一储物间室210的内部空间气流连通。例如,空气中的氧气可以在阴极板120处发生还原反应,即:O 2+2H 2O+4e -→4OH -
阳极板140设置于储液腔内,用于通过电化学反应向阴极板120提供反应物(例如,电子)并生成氧气。阳极板140可以与阴极板120相互间隔地设置于储液腔内,即,阳极板140可以设置于阴极板120背朝第一储物间室的一侧。阴极板120产生的OH -可以在阳极板140处可以发生氧化反应,并生成氧气,即:4OH -→O 2+2H 2O+4e -
电解除氧装置100的储液腔内可以盛装碱性电解液,例如0.1~8mol/L的NaOH,其浓度可以根据实际需要进行调整。
排气口112设置于壳体110上,并与储液腔相连通。本实施例中,排气口112可以位于壳体110的顶部区段,且配置成高于储液腔内的电解液的液面最高处。例如,壳体110可以为长方体扁平盒状,且沿竖直方向延伸布置。排气口112可以位于壳体110的顶壁上。竖直方向即为冰箱的高度方向。
由于电解除氧装置100的排气口112位于壳体110的顶部区段,且配置成高于储液腔内的电解液的液面最高处,这可以减少或避免冰箱10的电解除氧装置100在排气时泄露电解液。
在一些可选的实施例中,该排气口112还可以作为电解液的补液口,当电解液不充足时,可以在排气口112处向储液腔注入电解液,这可以实现排气口112的功能复用,有利于简化电解除氧装置100的结构。
在一些实施例中,冰箱10可以进一步地包括供电模组,例如电池。该供电模组靠近电解除氧装置100设置,并为电解除氧装置100提供电源。阳极板140上具有从壳体110内穿出并与外部电源正极连接的阳极供电端子142。阴极板120上具有从壳体110内穿出并与外部电源负极连接的阴极供 电端子152b。
在一些实施例中,电解除氧装置100还可以进一步地包括分隔件130和固定组件150。
分隔件130设置于储液腔内,并位于阴极板120与阳极板140之间,分隔件130上朝向阳极板140的一侧形成有多个凸起部132,凸起部132抵触于阳极板140上,以分隔阴极板120与阳极板140,防止电解除氧装置100短路。具体地,分隔件130上朝向阳极板140的一侧形成有多个凸起部132,凸起部132抵触于阳极板140上,阴极板120贴靠于分隔件130背离凸起部132的一侧,以在阴极板120与阳极板140形成预设间隙,进而将阴极板120与阳极板140分隔开。
固定组件150可以设置于阴极板120的外侧,配置成将阴极板120固定于壳体110的侧向开口114处。具体地,该固定组件150还可以包括金属边框152和支撑件154。
图8是图7所示的电解除氧装置100中支撑件154的示意图,图9是图8中B处的局部放大图。金属边框152贴靠于阴极板120的外侧,并且金属边框152朝外凸起形成有围立部152a。支撑件154设置于金属边框152的外侧,并且其具有外圈1542和位于外圈1542内部的内圈1544,外圈1542与壳体110固定连接,内圈1544的内侧形成有插接槽1544a,围立部152a伸入至插接槽1544a内,以将金属边框152和阴极板120固定于开口处。本实施例中,金属边框152与阴极板120直接接触,金属边框152可以起到压紧阴极板120的作用,并且金属边框152上还可以设置有阴极板120的阴极供电端子152b,以与外部电源相连。
围立部152a形成于金属边框152并朝向外部延伸,以插进支撑件154的内圈1544插接槽1544a内,进而对金属边框152进行定位。又由于支撑件154的外圈1542与壳体110固定连接,因此当金属边框152的围立部152a进支撑件154的插接槽1544a时,金属边框152可以由支撑件154固定和定位,进而使得金属边框152压紧阴极板120。
在一些实施例中,支撑件154的外圈1542与内圈1544之间以及内圈1544的内部还形成有加强筋1546,用于固定连接支撑件154的外圈1542与内圈1544,并且对支撑件154的外圈1542与内圈1544进行定型,防止其受外力变形。
阳极板140的材质可以为镍,但不限于此。
阴极板120可以由内至外地依次设置有催化层、第一防水透气层、集流层和第二防水透气层构成。其中,“外”“内”等方向性词语是相对于壳体110的实际使用状态而言的,相对于阴极板120的其他结构而言,催化层可以位于阴极板120的最内侧,以便于与储液腔内的电解液接触。
催化层可以采用金属催化剂,其中,金属可以为贵金属或稀有金属,例如可以选自由铂、金、银、锰和铷构成的物质组中。金属催化剂颗粒可以附着在乙炔黑颗粒上。第一防水透气层和第二防水透气层可以为防水透气膜,以使得电解液无法从储液腔渗出,而空气可以透过第一防水透气层和第二防水透气层从而与催化层接触。集流层可以制作成耐腐金属集流网,例如金属镍、金属钛等,以使其不仅具备较佳的导电性、防腐性和支撑强度。并且由于阴极板120本身具有一定的强度,完全可以能够满足储液腔的密封强度需求,另外阴极板120采用两层防水透气层也能够有效地防止由于电解液腐蚀引起的泄漏。
本发明的冰箱10,由于电解除氧装置100能够为第一储物间室210营造低氧保鲜气氛,导气管件300能够将电解除氧装置100排出的氧气导引至第二储物间室220,利用电解除氧装置100和导气管件300相结合,使得本发明的冰箱10易于营造低氧保鲜气氛和高氧保鲜气氛,且结构简单,无需设置增压设备,有利于简化操作过程,降低操作成本和增压设备的维护成本。
至此,本领域技术人员应认识到,虽然本文已详尽示出和描述了本发明的多个示例性实施例,但是,在不脱离本发明精神和范围的情况下,仍可根据本发明公开的内容直接确定或推导出符合本发明原理的许多其他变型或修改。因此,本发明的范围应被理解和认定为覆盖了所有这些其他变型或修改。

Claims (10)

  1. 一种冰箱,包括:
    箱体,其内部形成有第一储物间室和至少一个第二储物间室;
    电解除氧装置,其一部分与所述第一储物间室气流连通,并用于通过电化学反应消耗所述第一储物间室内的氧气;所述电解除氧装置形成有用于排出氧气的排气口;以及
    导气管件,其进气端与所述排气口连通,其出气端与所述第二储物间室连通,并配置成将流经所述排气口的氧气导引至所述第二储物间室。
  2. 根据权利要求1所述的冰箱,其中,
    所述第二储物间室为多个。
  3. 根据权利要求2所述的冰箱,其中,
    所述导气管件的所述出气端为多个,且与所述第二储物间室一一连通。
  4. 根据权利要求3所述的冰箱,其中,
    所述导气管件包括:
    一个进气管段,从所述排气口朝向所述第二储物间室延伸,且其第一端形成所述进气端;
    多个出气管段,每一所述出气管段的第一端形成所述出气端,且每一所述出气管段的第二端分别连通所述进气管段的第二端。
  5. 根据权利要求4所述的冰箱,其中,
    所述导气管件还包括多通阀,其具有一个进流阀口和多个分流阀口,所述进流阀口连通所述进气管段的第二端,所述分流阀口与所述出气管段的第二端一一连通;且所述多通阀配置成通过受控地打开或关闭所述分流阀口以调节流经其的氧气的流动路径。
  6. 根据权利要求1所述的冰箱,其中,
    所述第一储物间室的后壁开设有镂空框;所述电解除氧装置设置于所述镂空框处,并与所述第一储物间室共同限定出密闭储物空间。
  7. 根据权利要求1所述的冰箱,其中,
    所述第二储物间室的后壁开设有与所述导气管件的所述出气端相连通的进气孔;所述导气管件的所述出气端插接于所述进气孔,以与所述进气孔密封连接。
  8. 根据权利要求1所述的冰箱,其中,
    所述电解除氧装置包括:
    壳体,其上形成有面朝所述第一储物间室内部的侧向开口;
    阴极板,设置于所述侧向开口处,以与所述壳体共同限定出用于盛装电解液的储液腔,用于通过电化学反应消耗所述第一储物间室内的氧气;以及
    阳极板,设置于所述储液腔内,用于通过电化学反应向所述阴极板提供反应物并生成氧气;且
    所述排气口设置于所述壳体上,并与所述储液腔相连通。
  9. 根据权利要求8所述的冰箱,其中,
    所述排气口位于所述壳体的顶部区段,且配置成高于所述储液腔内的电解液的液面最高处。
  10. 根据权利要求1所述的冰箱,其中,
    所述第一储物间室与所述第二储物间室沿所述冰箱的高度方向排布,或者沿所述冰箱的横向方向排布。
PCT/CN2022/070115 2021-05-20 2022-01-04 冰箱 WO2022242196A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110554271.1A CN115371322A (zh) 2021-05-20 2021-05-20 冰箱
CN202110554271.1 2021-05-20

Publications (1)

Publication Number Publication Date
WO2022242196A1 true WO2022242196A1 (zh) 2022-11-24

Family

ID=84058308

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/070115 WO2022242196A1 (zh) 2021-05-20 2022-01-04 冰箱

Country Status (2)

Country Link
CN (1) CN115371322A (zh)
WO (1) WO2022242196A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000032968A (ja) * 1998-07-17 2000-02-02 Matsushita Electric Ind Co Ltd 食品保存器
CN101000191A (zh) * 2006-01-11 2007-07-18 王冬雷 一种带制氮保鲜功能的冰箱、冰柜
JP2010144993A (ja) * 2008-12-18 2010-07-01 Panasonic Corp 冷蔵庫
CN106642913A (zh) * 2016-12-02 2017-05-10 青岛海尔股份有限公司 冷藏冷冻装置
CN108302889A (zh) * 2017-12-22 2018-07-20 青岛海尔股份有限公司 冷藏冷冻装置及其储物容器
CN111895717A (zh) * 2020-07-21 2020-11-06 海信容声(广东)冰箱有限公司 保鲜装置及具有其的冰箱

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000032968A (ja) * 1998-07-17 2000-02-02 Matsushita Electric Ind Co Ltd 食品保存器
CN101000191A (zh) * 2006-01-11 2007-07-18 王冬雷 一种带制氮保鲜功能的冰箱、冰柜
JP2010144993A (ja) * 2008-12-18 2010-07-01 Panasonic Corp 冷蔵庫
CN106642913A (zh) * 2016-12-02 2017-05-10 青岛海尔股份有限公司 冷藏冷冻装置
CN108302889A (zh) * 2017-12-22 2018-07-20 青岛海尔股份有限公司 冷藏冷冻装置及其储物容器
CN111895717A (zh) * 2020-07-21 2020-11-06 海信容声(广东)冰箱有限公司 保鲜装置及具有其的冰箱

Also Published As

Publication number Publication date
CN115371322A (zh) 2022-11-22

Similar Documents

Publication Publication Date Title
CN210292481U (zh) 氧气分离装置和冰箱
CN108332479B (zh) 冰箱
CN108278823B (zh) 冰箱
WO2022242196A1 (zh) 冰箱
CN216409396U (zh) 冰箱
CN213048783U (zh) 一种便携式氢氧呼吸机
CN108302861B (zh) 冰箱
WO2023142643A1 (zh) 气体处理装置以及具有其的冰箱
WO2023143368A1 (zh) 冰箱
CN213061041U (zh) 一种氢气制备装置
CN217465007U (zh) 冰箱
WO2023124678A1 (zh) 冰箱
CN217876674U (zh) 气体处理装置以及具有其的冰箱
WO2022242241A1 (zh) 冰箱及其电解除氧装置
CN216909520U (zh) 一种燃料电池系统用气液分离装置
CN112747538B (zh) 冰箱
WO2023142642A1 (zh) 气体处理装置以及具有其的冰箱
CN114719519A (zh) 一种冰箱
WO2022242240A1 (zh) 冰箱
CN111271489A (zh) 一种制氧机用气动组合阀
WO2022242239A1 (zh) 冰箱及其电解除氧装置
CN217876606U (zh) 冰箱
CN111255923A (zh) 一种制氧机用气动组合阀
CN217589020U (zh) 一种自调节增湿器
CN219346958U (zh) 气调装置及冷藏冷冻装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22803534

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22803534

Country of ref document: EP

Kind code of ref document: A1