WO2022242165A1 - 一种制热空调扇及控制方法 - Google Patents

一种制热空调扇及控制方法 Download PDF

Info

Publication number
WO2022242165A1
WO2022242165A1 PCT/CN2021/139920 CN2021139920W WO2022242165A1 WO 2022242165 A1 WO2022242165 A1 WO 2022242165A1 CN 2021139920 W CN2021139920 W CN 2021139920W WO 2022242165 A1 WO2022242165 A1 WO 2022242165A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
preset
air
pipe
heating
Prior art date
Application number
PCT/CN2021/139920
Other languages
English (en)
French (fr)
Inventor
刘帅
许文明
Original Assignee
青岛海尔空调器有限总公司
青岛海尔空调电子有限公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔空调器有限总公司, 青岛海尔空调电子有限公司, 海尔智家股份有限公司 filed Critical 青岛海尔空调器有限总公司
Publication of WO2022242165A1 publication Critical patent/WO2022242165A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0007Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning
    • F24F5/0035Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning using evaporation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • F24F11/84Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2221/00Details or features not otherwise provided for
    • F24F2221/34Heater, e.g. gas burner, electric air heater

Definitions

  • the present application relates to the technical field of air temperature adjustment, in particular to a heating and air conditioning fan and a control method.
  • the air conditioner fan is a brand-new concept fan.
  • the common air conditioner fan is a refrigeration type air conditioner fan.
  • a refrigeration device is installed in the air conditioner fan. The refrigeration device cools the circulating medium, and then guides the refrigerated circulating medium to the fan. Blow out cold air for cooling; or use frozen ice crystals to cool down the water in the water storage tank, and the cooled water vapor is blown out by the fan for cooling.
  • the refrigeration type air-conditioning fan also has the function of humidifying the air. Compared with air conditioners, air-conditioning fans have low cooling power and low price, and are favored by more and more users.
  • the current air-conditioning fans with heating function mostly use the fan to blow directly to the electric heater.
  • the electric heater is heated at a high temperature, it is often exposed to the air, and even when it is heated in a high humidity environment, the moisture that enters is easy. It will cause a certain degree of oxidation to the electric heater, reduce the heating efficiency of the electric heater, and seriously damage the electric heater; and the heating and air-conditioning fan of the existing direct blowing electric heater can only be operated when the electric heating is turned on. Heating is difficult to perform heat storage.
  • the present application provides a heating and air-conditioning fan and a control method, which are used to solve the defects in the prior art that the heater of the heating and air-conditioning fan is easily damaged and difficult to store heat.
  • a heating and air-conditioning fan including:
  • a heating device includes a heat dissipation pipe, a heat conduction pipe, a heater, a gas pipe, and a liquid pipe, and the heat dissipation pipe is located in the ventilation passage of the air conditioning fan, and the heat dissipation pipe, the liquid pipe,
  • the heat pipe and the gas pipe are connected end to end in turn to form a circulation pipeline, the circulation pipeline is provided with a refrigerant, the heater is used to heat the refrigerant, and at least one of the gas pipe and the liquid pipe is provided There is a throttle valve;
  • a controller the controller is used to control the heater to heat the refrigerant, and to control the opening of the throttle valve.
  • the heat conduction pipe is located below the heat dissipation pipe.
  • the heating device of the air-conditioning fan further includes an insulated box, and the heat pipe and the heater are located in the insulated box.
  • the heating and air-conditioning fan further includes a temperature sensor, and the temperature sensor is used to detect the temperature of the refrigerant in the heat transfer pipe.
  • the present application also provides a control method for controlling the heating and air-conditioning fan described in any one of the above, including the following steps:
  • the throttle valve After receiving the start-up command of the air-conditioning fan, the throttle valve is opened to obtain the indoor temperature value, and the opening degree of the throttle valve is controlled according to the set temperature value and the indoor temperature value.
  • the controlling the opening of the throttle valve according to the set temperature value and the indoor temperature value includes:
  • Calculate the first temperature difference between the set temperature value and the indoor ambient temperature value determine the temperature preset range that the first temperature difference falls into, and obtain the opening degree signal corresponding to the temperature preset range that falls into, according to The opening degree signal controls the opening degree of the throttle valve.
  • the first preset time period is used as a cycle, and the indoor environment after the first preset time period is calculated at intervals of the first preset time period.
  • the second temperature difference between the temperature value and the indoor ambient temperature value before the first preset time length judging whether the second temperature difference is greater than the first preset temperature value, and if so, maintaining the opening of the throttle valve; if If not, the throttle valve is controlled to adjust the opening according to the preset opening amplitude.
  • different temperature preset intervals correspond to different first preset temperature values, and the greater the temperature value corresponding to the temperature preset interval, the greater the first preset temperature value. The larger the temperature value;
  • a first preset temperature value corresponding to the temperature preset interval that falls into is obtained.
  • different preset temperature intervals correspond to different preset opening amplitudes, and the larger the temperature value corresponding to the preset temperature interval, the greater the preset opening degree.
  • the preset opening amplitude corresponding to the preset temperature range in which the first temperature difference falls is obtained.
  • a control method of a heating and air-conditioning fan provided in the present application, when the first temperature difference falls into the temperature preset range corresponding to the maximum temperature value, and the throttle valve is increased to the maximum opening degree, it is judged that the inner tube Whether the temperature is lower than the fifth preset temperature value, if yes, turn on the heater; if not, maintain the opening degree of the throttle valve.
  • the heating and air-conditioning fan and the control method provided by the present application are provided with a heat conduction pipe and a heat dissipation pipe, and the heat conduction pipe and the heat dissipation pipe are connected by a gas pipe and a liquid pipe to form a circulation pipeline, a refrigerant is arranged in the circulation pipeline, and the heater is heated and circulated.
  • the refrigerant in the pipeline is used for heating, and the heater is no longer arranged in the ventilation channel, and the heater is not affected by moisture, which improves the working safety of the electric heater.
  • the air-conditioning fan described in the present application can be combined with the existing refrigeration-type air-conditioning fan, and when the air-conditioning fan blows out moisture, water will not condense on the electric heater, which can prevent the electric heater from being damaged.
  • the arrangement of the heat dissipation pipe also increases the air contact area of the air-conditioning fan and improves the heat exchange efficiency.
  • the heat pipe does not have to be installed in the ventilation channel and has a certain heat storage function, which can ensure that the refrigerant will last for a certain period of time under a certain high temperature condition, and will not cause a rapid drop in the temperature of the refrigerant within a period of time after the heater is turned off.
  • Fig. 1 is one of the schematic diagrams of the heating and air-conditioning fan provided by the present application
  • Fig. 2 is the second schematic diagram of the heating and air-conditioning fan provided by the present application.
  • Fig. 3 is a flow chart of the control method of the heating and air-conditioning fan provided by the present application.
  • Fig. 4 is a flow chart of the control method for turning on the heater in the heat storage mode provided by the present application
  • Fig. 5 is a flow chart of the heating program control method provided by the present application.
  • connection should be interpreted in a broad sense, for example, it may be a direct connection or an indirect connection through an intermediary.
  • the heating and air-conditioning fan of the present application will be described below with reference to FIGS. 1-2 .
  • the heating and air-conditioning fan includes a heating device, including a heat dissipation pipe 100, a heat conduction pipe 200, a heater 300, a gas pipe 400 and a liquid pipe 500, the heat dissipation pipe 100, the liquid pipe 500, the The heat pipe 200 and the gas pipe 400 are sequentially connected end to end to form a circulation pipeline, the circulation pipeline is provided with a refrigerant, and the heater 300 is used to heat the refrigerant.
  • the air pipe and/or the liquid pipe are provided with a throttle valve; preferably, both the air pipe and the liquid pipe are provided with a throttle valve.
  • both the heat dissipation pipe 100 and the heat conduction pipe 200 are copper pipes made of the same material as the heat exchange coil of an air conditioner. Copper tubes are light in weight, have good thermal conductivity and high strength at low temperature; at the same time, copper tubes are resistant to high temperatures and can be used in various environments.
  • the pressure resistance of copper tubes is several times or even dozens of times that of plastic tubes and aluminum-plastic tubes. It can withstand the highest water pressure in buildings today. In the hot water environment, with the prolongation of service life, the pressure-bearing capacity of plastic pipes will decrease significantly, while the mechanical properties of copper pipes remain unchanged in all thermal temperature ranges, so its pressure-resistant capacity will not decrease, nor will it There will be signs of aging.
  • the radiating pipe 100 and the heat pipe 200 may have a square or circular cross-sectional shape, preferably a circular pipe, the distance between the circumferential outer wall of the circular pipe and the medium in the pipe is the same, and the heat exchange efficiency is high.
  • the heater 300 can heat the liquid pipe 500 , the gas pipe 500 or the heat pipe 200 , preferably directly heat the refrigerant in the heat pipe 200 .
  • the air pipe 400 and/or the liquid pipe 500 is provided with a throttle valve 600 .
  • a throttle valve 600 is set on the air pipe 400.
  • the heater 300 and the throttle valve 600 are turned off.
  • the air pipe 400 is blocked, and the high temperature
  • the gaseous refrigerant does not flow into the heat pipe 100 but stays in the heat pipe 200 , preventing heat loss in the heat pipe 200 and improving the heat storage effect of the heat pipe 200 .
  • the throttle valve 600 provided on the gas pipe 400 is an electronic expansion valve, which can adjust the flow rate of gas in the gas pipe 400. By adjusting the opening of the electronic expansion valve, the high temperature gas state in the heat pipe 200 can be controlled.
  • the flow rate and flow rate of the refrigerant flowing into the radiating pipe 100 controls the heating temperature of the heating and air-conditioning fan.
  • throttle valves 600 are provided on both the air pipe 400 and the liquid pipe 500 .
  • the throttle valve 600 provided on the liquid pipe 500 can also be an electronic expansion valve with a cut-off function, which can effectively prevent the high-temperature gaseous refrigerant of the heat pipe 200 from flowing back into the heat pipe 100 from the return port.
  • the electronic expansion valve can control the flow rate of the condensed refrigerant in the heat pipe 100 flowing into the heat pipe 200 by adjusting the opening degree, and control the internal pressure of the heat pipe 100 to control the heating temperature of the air-conditioning fan.
  • the throttle valve 600 of the liquid pipe 500 can be closed at the same time to prevent the refrigerant condensed in the heat dissipation pipe 100 from flowing into the heat transfer pipe 200 and improve the heat transfer pipe 200. heat storage effect.
  • the throttle valve 600 described in this embodiment also has a cut-off function
  • the throttle valve described in this embodiment also includes a cut-off valve with only a cut-off function; similarly, the valve body with a cut-off function also It belongs to the scope of protection defined by the present application for the throttle valve.
  • At least one throttle valve 600 is provided on the air pipe 400 and the liquid pipe 500 , and preferably both of the air pipe 400 and the liquid pipe 500 are provided with
  • the throttle valve 600 can turn off the heater 300 and close the two throttle valves 600 on the gas pipe 400 and the liquid pipe 500 when the air-conditioning fan reaches the heating temperature.
  • both the gas pipe 400 and the liquid pipe 500 are blocked, and the refrigerant in the heat pipe 200 can be cooled in the incubator 700 maintain a certain temperature inside for a certain period of time to prevent the high-temperature refrigerant from continuing to flow into the heat pipe to cause heat loss.
  • the throttle valve 600 on the air pipe 400 is first opened to allow the high-temperature gaseous refrigerant to enter the heat dissipation pipe from the air pipe 400, and then the air-conditioning fan is opened after working for a period of time.
  • the throttle valve 600 of the liquid pipe 500 realizes the forward circulation of the refrigerant.
  • the air-conditioning fan heating device further includes an insulated box 700 , and the heat pipe 200 and the heater 300 are located in the insulated box 700 .
  • the incubator 700 is made of thermal insulation materials, such as polyurethane foam, polystyrene board, EPS, XPS, phenolic foam, glass wool and rock wool, etc.
  • the incubator 700 is in the shape of a hollow box, and the heat pipe 200 and The heaters 300 are installed in the incubator 700 .
  • the heat preservation box 700 can prevent heat loss in the heat pipe 200 and improve the heat storage effect of the high-temperature refrigerant in the heat pipe 200 .
  • the air pipe 400 and the liquid pipe 500 pass through the incubator 700 and are connected to the heat dissipation pipe 100 , the air pipe 400 and the liquid pipe 500 are connected to the incubator 700 Sealing devices are provided at the joints to realize the thermal insulation and airtightness of the incubator 700 .
  • the incubator 700 is provided with a heat storage medium, such as water or salt water, which has a large specific heat capacity, and is safe and non-polluting liquid, which can better insulate and store heat for the heat pipe 200 in the incubator 700. .
  • a heat storage medium such as water or salt water, which has a large specific heat capacity, and is safe and non-polluting liquid, which can better insulate and store heat for the heat pipe 200 in the incubator 700.
  • the air conditioner fan further includes a controller for controlling the heater 300 to heat the refrigerant and controlling the opening of the throttle valve 600 .
  • the heater 300 heats the refrigerant in the circulation pipeline, especially the temperature of the refrigerant in the heat pipe 200 is heated.
  • the refrigerant in the heat pipe 200 gradually becomes high temperature and gasified, and the gasified high-temperature refrigerant flows into the heat dissipation pipe 100, and exchanges heat with the wind blown by the air-conditioning fan through the heat dissipation pipe 100, and the air-conditioning fan blows out hot air to The surrounding environment is heated.
  • the cooled refrigerant gradually cools down and condenses, and the condensed refrigerant returns to the heat pipe 200 for heating, forming a heating cycle.
  • the heating and air-conditioning fan described in this embodiment after closing the throttle valve 600 on the liquid pipe 500 and the air pipe 400, the inside of the heat pipe 200 is in a relatively closed state, so that the air-conditioning fan has a heat storage function. Moreover, even if the heating and air-conditioning fan is not turned on (the user does not turn on the heating and air-conditioning fan, and the heating and air-conditioning fan does not rotate), the heating and air-conditioning fan can independently turn on the heater 300 during the valley value of electricity consumption at night. To heat the refrigerant in the heat pipe 200, the incubator 700 can effectively keep the heat of the refrigerant in the heat pipe 200.
  • the air-conditioning fan does not need to turn on the heater 300.
  • the heat in the tube 200 is transferred to the heat dissipation tube 100 to dissipate, realizing an energy-saving heating and air-conditioning fan that consumes electricity at night and heats up during the day.
  • the current air-conditioning fans with heating function mostly use the way that the fan blows directly to the electric heater, so that the electric heater is exposed to the air when it is heated at a high temperature, and even when it is heated in a high-humidity environment, the air that enters Moisture is easy to cause a certain degree of oxidation to the electric heater, reduce the heating efficiency of the electric heater, and seriously damage the electric heater.
  • the air-conditioning fan heating device described in this embodiment by setting the heat pipe 200 and the heat dissipation pipe 100, and connecting the heat pipe 200 and the heat dissipation pipe 100 through the gas pipe 400 and the liquid pipe 500 to form a circulation pipeline, the circulation pipeline is set Refrigerant, the heater 300 heats the refrigerant in the circulation pipeline for heating, the heater is no longer arranged in the ventilation channel, the heater is not affected by moisture, and the working safety of the electric heater is improved.
  • the air-conditioning fan described in this embodiment can be combined with the existing refrigeration-type air-conditioning fan, and when the air-conditioning fan blows out moisture, no dew will condense on the electric heater, which can prevent the electric heater from being damaged.
  • the arrangement of the radiating pipe 100 also increases the air contact area of the air-conditioning fan and improves the heat exchange efficiency.
  • the heat pipe 200 does not need to be installed in the ventilation channel, and has a certain heat storage function, which can ensure that the refrigerant will last for a certain period of time under a certain high temperature condition, and will not cause the air conditioning fan to heat up in a short time after the heater 300 is turned off. interruption.
  • the heating and air-conditioning fan described in this embodiment further includes a temperature sensor, and the temperature sensor is used to detect the temperature of the refrigerant in the heat pipe.
  • the temperature sensor is arranged on the outer wall of the heat pipe 200 .
  • the heater 300 described in this embodiment may be an electric heater, including a resistive electric heater, an infrared electric heater, an electromagnetic electric heater, and the like.
  • This embodiment is preferably a resistive electric heater.
  • PTC electric heaters, PTC heaters are composed of multiple PTCR heat-sensitive ceramic elements and corrugated heat-dissipating aluminum strips bonded by high-temperature glue, with the advantages of small thermal resistance and high switching efficiency.
  • an electric heating wire heater the electric heating wire is wound on the heat pipe 200, and the outer side of the electric heating wire is wrapped with a heat insulation layer, the heating temperature is high, the heat transfer efficiency is high, and the heating is fast.
  • the heat dissipation pipe 100 has various positional relationships with the heat pipe 200 .
  • the heat pipe 200 is located below the heat pipe 100, and the high-temperature gaseous refrigerant heated in the heat pipe 200 can rise naturally and enter the heat pipe 100 through the gas pipe 400, and the heat pipe 100 The condensed refrigerant may also flow into the heat pipe 200 under the action of gravity.
  • the gas pipe 400 and/or the liquid pipe 500 are arranged obliquely.
  • the gas pipe 400 and the liquid pipe 500 are both inclined, which can prevent the high-temperature gaseous refrigerant rising in the gas pipe 400 from condensing out of the liquid refrigerant in the gas pipe 400 and flowing downward, resulting in the gaseous refrigerant and the liquid refrigerant.
  • the flow of the refrigerant interferes, and the liquid refrigerant further reduces the rising high-temperature gas refrigerant, seriously causing blockage of the gas pipe 400 and preventing the high-temperature gas refrigerant from rising.
  • the gas pipe 400 arranged obliquely can make the condensed liquid refrigerant slide back into the heat pipe 200 without seriously affecting the temperature of the high-temperature gas refrigerant and causing the gas pipe 400 to be blocked.
  • the inclination angle between the air pipe 400 and/or the liquid pipe 500 and the horizontal plane is less than 70 degrees, ensuring that the air pipe 400 and/or the liquid pipe 500 has a certain inclination angle so that the condensed water flows along Sloped pipes flow down.
  • the inclination angle refers to the minimum included angle between the gas pipe 400 and the horizontal plane, and the minimum included angle between the liquid pipe 500 and the horizontal plane.
  • the trachea 400 described in this embodiment can be inclined in a variety of ways.
  • any method that ensures that the flow pipe in the trachea 400 is inclined to the horizontal plane can be inclined. fall within the scope of protection defined by the present application.
  • the heat pipe 200 is preferably located below the heat pipe 100 , and it also has a good matching degree with the air duct when installed inside the air-conditioning fan.
  • a circulating pump is provided on the air pipe 400 to drive the air pipe 400 The flow of gaseous refrigerant in the
  • the heat dissipation pipe 100 and/or the heat conduction pipe 200 are coiled. That is to say, the heat dissipation pipe 100 is in the shape of a coil, or the heat conduction pipe 200 is in the shape of a coil, or both the heat dissipation pipe 100 and the heat conduction pipe 200 in this embodiment are in the shape of a coil, specifically a finned coil or microchannel coils.
  • the coil structure of the heat dissipation pipe 100 and the heat conduction pipe 200 can be various, and it can be a spiral coil.
  • the heat conduction pipe 200 is spirally wound on the outside of the electric heating rod, which is beneficial to the heating
  • the heat pipe 200 is heated by the device 300; it can also be a reciprocating coil.
  • the coil mode of the heat pipe 100 is the same as that of the existing air conditioner evaporator, which is conducive to the heat transfer between the heat pipe 100 and the air. exchange.
  • the heating device is located in the casing of the air-conditioning fan, and a ventilation passage is provided in the casing, and the heat dissipation pipe 100 of the heating device of the air-conditioning fan is located in the casing of the air-conditioning fan.
  • a fan is also arranged in the ventilation channel, and the fan is suitable for blowing to the heat dissipation pipe 100 to realize heating by the air-conditioning fan.
  • the air-conditioning fan described in this embodiment installs the above-mentioned heating device in the air-conditioning fan.
  • the heating device is provided with a heat pipe 200 and a heat dissipation pipe 100, and the air pipe 400 is passed between the heat pipe 200 and the heat dissipation pipe 100. It is connected with the liquid pipe 500 to form a circulation pipeline, and a refrigerant is set in the circulation pipeline, and the heater 300 heats the refrigerant in the circulation pipeline for heating, and the heater is no longer set in the ventilation channel, and the heater is not affected by moisture , Improve the working safety of the electric heater.
  • the air-conditioning fan described in this embodiment can be combined with the existing refrigeration-type air-conditioning fan, and when the air-conditioning fan blows out moisture, no dew will condense on the electric heater, which can prevent the electric heater from being damaged.
  • the arrangement of the radiating pipe 100 also increases the air contact area of the air-conditioning fan and improves the heat exchange efficiency.
  • the heat pipe 200 does not need to be installed in the ventilation channel, and has a certain heat storage function, which can ensure that the refrigerant will last for a certain period of time under a certain high temperature condition, and will not cause the air conditioning fan to heat up in a short time after the heater 300 is turned off. interruption.
  • this embodiment also provides a control method for controlling the heating and air-conditioning fan described in any one of the above implementation manners, including:
  • the throttle valve After receiving the start-up command of the air-conditioning fan, the throttle valve is opened to obtain the indoor temperature value, and the opening degree of the throttle valve is controlled according to the set temperature value and the indoor temperature value.
  • the controlling the opening of the throttle valve according to the set temperature value and the indoor temperature value includes:
  • Calculate the first temperature difference between the set temperature value and the indoor ambient temperature value determine the temperature preset range that the first temperature difference falls into, and obtain the opening degree signal corresponding to the temperature preset range that falls into, according to The opening signal controls the throttle valve opening.
  • a plurality of temperature preset intervals are preset in the air-conditioning fan, each temperature preset interval corresponds to a different opening degree signal, and different opening degree signals correspond to different opening degree values of the throttle valve.
  • B1 is less than 0°C (including 0°C), corresponding to the opening value p1-20;
  • B2 is 0°C to 2°C (excluding 0°C, Including 2°C), corresponding to the opening value p1;
  • B3 is from 2°C to 5°C (excluding 2°C, including 5°C), corresponding to the opening value p1+20;
  • B4 is greater than 5°C (excluding 5°C), corresponding to Opening value p1+50.
  • the opening value p1 refers to the opening value of p1 when the throttle valve is opened during the heating process of the air-conditioning fan so that the indoor temperature can be stabilized at around the set temperature. The specific value depends on different types of air-conditioning fans and different refrigerant rather different.
  • the throttle valve is controlled to operate at the opening degree of p1+50, so that the high-temperature gaseous refrigerant in the heat conduction pipe enters the cooling area with a large flow rate. Tube, improve the heating effect of the air-conditioning fan.
  • the throttle valve is controlled to operate at the opening degree of p1, so that the high-temperature gaseous refrigerant in the heat conduction pipe enters the heat dissipation pipe with a relatively small flow rate In the middle, the heating operation of the air-conditioning fan maintains the indoor temperature around the set temperature.
  • the second difference between the indoor ambient temperature value after the first preset time length and the indoor ambient temperature value before the first preset time length is calculated.
  • the temperature difference value, the second temperature difference value is the difference between the indoor ambient temperature value after the first preset time length and the indoor ambient temperature value before the first preset time length, and it is judged whether the second temperature difference value is greater than the first preset temperature value value T1, if yes, maintain the throttle valve opening; if not, obtain the preset opening amplitude, and control the throttle valve opening to adjust the opening according to the preset opening amplitude.
  • the preset opening amplitude can take a fixed value of 20.
  • different temperature preset intervals correspond to different first preset temperature values T1, and after determining the temperature preset interval that the first temperature difference falls into, obtain the falling temperature value T1.
  • the first preset temperature value T1 corresponding to the preset temperature range the larger the temperature value corresponding to the preset temperature range, the larger the first preset temperature value T1.
  • B1 is less than 0°C (including 0°C), corresponding to the opening value p1-20, and the first preset duration is 5 minutes, corresponding to the first preset
  • the temperature value T1 is -0.3°C
  • B2 is 0°C to 2°C (excluding 0°C, including 2°C), corresponding to the opening value p1, the first preset duration is 5 minutes, and the corresponding first preset temperature value T1 is 0.3 °C
  • B3 is 2°C to 5°C (excluding 2°C, including 5°C), corresponding to the opening value p1+20, the first preset time length is 5min, corresponding to the first preset temperature value T1 is 0.5°C
  • B4 is Greater than 5°C (excluding 5°C), the corresponding opening value p1+50, the first preset time length is 5min, and the corresponding first preset temperature value T1 is 0.8°C.
  • different temperature preset intervals correspond to different preset opening amplitudes, and after determining the temperature preset intervals in which the first temperature difference falls, obtain the falling temperature preset intervals.
  • B1 is less than 0°C (including 0°C), corresponding to the opening value p1-20, and the first preset duration is 5 minutes, corresponding to the first preset
  • the temperature value T1 is -0.3°C, and the corresponding preset opening amplitude is -10
  • B2 is 0°C to 2°C (excluding 0°C, including 2°C), corresponding to the opening value p1
  • the first preset duration is 5min, corresponding to the first preset temperature value T1 is 0.3°C, the corresponding preset opening amplitude is 10
  • B3 is 2°C to 5°C (excluding 2°C, including 5°C), corresponding to the opening value p1+20
  • the first preset duration is 5 minutes, corresponding to the first preset temperature value T1 is 0.5°C, and the corresponding preset opening amplitude is 15
  • B4 is greater than 5°C (excluding 5°C), corresponding to the opening value p
  • the throttle valve is increased to the maximum opening degree, it is judged whether the temperature of the inner tube is less than the fifth preset temperature value, and if so , then turn on the heater; if not, then maintain the opening of the throttle valve.
  • the first temperature difference falls into the B4 interval, and increases to the maximum opening of the throttle valve with the gradual adjustment of the throttle valve opening, it is judged whether the temperature of the inner tube is lower than the fifth preset temperature value to detect Whether the temperature of the inner pipe meets the heating demand. If the temperature of the inner tube is less than the fifth preset temperature value, it indicates that the temperature of the inner tube is not enough for heating, and the heater needs to be turned on for heating; if the temperature of the inner tube is greater than or equal to the fifth preset temperature, it indicates that the temperature of the inner tube can satisfy Heating demand, maintain the current maximum opening of the throttle valve for heating.
  • the opening degree of the throttle valve increases to the maximum opening degree, it is judged whether the temperature of the inner pipe is lower than the fifth preset temperature value, and the fifth preset temperature value is at a lower level of heat released by the heat storage module preset in the air conditioner Horizontal set temperature value, such as 35°C; when the inner pipe temperature is greater than or equal to the fifth preset temperature value, it means that the indoor temperature can still increase under the current throttle valve opening, and the heating control will be exited when the exit condition is met; When the temperature of the inner tube is lower than the fifth preset temperature value, the heater is turned on in time for heating, so as to ensure that the heating capacity and heating speed meet user requirements.
  • this embodiment also provides a heat storage control method for an air-conditioning fan, as shown in FIG. 3 , including the following steps:
  • Step S100 after receiving the shutdown command of the air conditioner, close the throttle valve
  • Step S200 enter the thermal storage control program.
  • the heat storage control program includes: acquiring a time value, judging whether the time value falls into a preset low-power time interval, and if so, entering the heat storage mode, and the heat storage mode includes turning on the heater; if not, then The time value is acquired again after waiting for a second preset time length, and it is judged whether the time value falls within the preset low-power time interval until entering the heat storage mode.
  • the time value is acquired in real time, and when the acquired time value falls within the preset high-power time interval, the heat storage mode is exited.
  • the thermal storage mode is also exited.
  • receiving the shutdown command of the air conditioner refers to receiving the shutdown command sent by the user through the remote control or the control button. After receiving the shutdown command, the air conditioner turns off the fan and the throttle valve, so that the heat pipe is in a closed state.
  • the preset low power time interval refers to a valley value time period of power consumption preset in the memory of the air-conditioning fan.
  • the electricity consumption valley time period is between 0:00 am and 6:00 am, and the electricity charge for the 6 hours between 0:00 am and 6:00 am is lower, and after 6:00 am to the early morning of the next day
  • the 18-hour electricity bill between midnight is high, so the 6-hour time period between midnight and 6 am can be entered into the air-conditioning fan, and the air-conditioning fan obtains the time period information and determines it as the preset low-power time interval.
  • the preset high-power time interval refers to the preset power consumption peak time period in the memory of the air-conditioning fan. For example, the 18-hour time period between 6:00 am and 0:00 am of the next day is entered into the air-conditioning fan. It is the preset high power time interval.
  • the air-conditioning fan can be provided with a time setting program, which can be entered by the user through a mobile phone or a remote control; optionally, the air-conditioning fan can obtain location information through the Internet of Things, and then obtain the location information of the user through the Internet of Things.
  • Electricity valley time period and power consumption peak time period, and the obtained power consumption valley time period is determined as the preset low power time interval, and the obtained power consumption peak time period is determined as the preset high power time interval, and can Implement automatic updates.
  • the throttle valve is closed, and the air-conditioning fan automatically enters the heat storage control program.
  • Turn on the heater to store heat when the electricity bill is low, so that when the electricity bill is high during the day, the heat stored in the heat pipe is used for heating first, and then the heater is turned on for heating, which can reduce the user's electricity consumption. Reducing the cost of electricity consumption can also reduce the electricity consumption during the peak period of electricity consumption, and improve the uniformity of electricity consumption in the region.
  • control method for turning on the heater in the heat storage mode includes the following steps:
  • Step S210 obtaining the temperature value of the inner tube
  • Step S220 determine whether the temperature value of the inner tube is less than the second preset temperature value T2, if yes, turn on the heater; if not, obtain the temperature value of the inner tube again after a third preset time interval, and determine whether the temperature value of the inner tube is less than The second preset temperature value T2 is until the heater is turned on.
  • the second preset temperature value T2 refers to the temperature value that the refrigerant in the heat pipe needs to be heated to during the preset low-power time interval, such as the heat storage level selected by the user through the remote control or the operation button, different The heat storage levels correspond to different second preset temperature values T2.
  • the second preset temperature value T2 is a fixed value preset by the air conditioner, such as 60°C
  • the second preset temperature value T2 selected by the user is 60°C.
  • the air-conditioning fan After the air-conditioning fan enters the heat storage mode, it obtains the temperature value of the inner pipe, judges whether the acquired inner pipe temperature value is less than 60°C, and controls heating when it is less than 60°C. Turn on the device to store heat; when the temperature of the inner tube is greater than or equal to 60°C, judge again after an interval of 30 minutes whether the temperature of the inner tube is less than 60°C, and judge in a cycle until the electric heating is turned on.
  • the temperature value of the inner tube is obtained in real time until the temperature value of the inner tube reaches greater than or equal to the fourth preset temperature value T4, the heater is turned off, and the fourth preset duration is used as a cycle, the interval
  • the fourth preset time length obtains the temperature value of the inner tube again, and loops to determine whether the temperature value of the inner tube is less than the fourth preset temperature value T4 until the heater is turned on.
  • the fourth preset temperature value is the highest temperature value of the thermal storage module of the air-conditioning fan. If the maximum temperature of the thermal storage module reaches 75° C., continuing to turn on the heater will cause damage to the heater and the thermal storage module. After turning on the heater, obtain the temperature value of the inner tube in real time and judge whether the temperature value of the inner tube has increased to the fourth preset temperature value T4, and turn off the heater in time after reaching the fourth preset temperature value T4 to prevent the heater from overheating Exceeding the user's heating demand.
  • the temperature value of the inner tube is obtained again after a fourth preset time interval, and it is judged whether the temperature value of the inner tube is less than the second preset temperature value T2, until the heater is turned on, so as to realize an automatic temperature monitoring and ensure The temperature value of the inner pipe of the air-conditioning fan is always around the second preset temperature value T2.
  • the second preset temperature value T2 selected by the user is 60°C
  • the fourth preset temperature value T4 is 75°C.
  • the air-conditioning fan After the air-conditioning fan enters the heat storage mode, it obtains the temperature value of the heat storage module, and judges the obtained heat storage module Whether the temperature value is less than 60°C, when it is less than 60°C, control the heater to turn on to store heat; when the temperature value of the heat storage module is greater than or equal to 75°C, judge whether the temperature value of the heat storage module is less than 60°C after an interval of 30 minutes, and cycle Judging until the electric heating is turned on.
  • the heater is controlled to turn on when the temperature is lower than 60°C, and the heater is turned off when the temperature reaches 75°C, so as to ensure that the temperature of the heat storage module is always maintained between 60°C and 75°C.
  • the temperature value of the inner tube described in this embodiment is the average value of the refrigerant temperature at multiple positions in the heat transfer tube, such as taking the temperature values of 3 positions at the two ports and the middle position of the heat transfer tube, and calculating the temperature of the 3 positions
  • the average value of the temperature value is determined as the temperature value of the inner tube, which prevents the deviation of the temperature value of the inner tube caused by the difference in temperature at different positions in the heat transfer tube, and improves the accuracy of judgment.
  • the heating priority of the air-conditioning fan is given priority, and the heat storage control priority is lower than that of the heating of the air-conditioning fan, so as to ensure that the air-conditioning fan meets the heating demand of the user.
  • the heating program described in this embodiment can refer to the existing air-conditioning fan heating program, determine the temperature value of the inner tube to be heated according to the temperature set by the user, and then control the opening time and power of the heater.
  • this embodiment also provides a method for controlling the heating program, as shown in Figure 5, including the following steps:
  • Step M100 opening the throttle valve
  • Step M200 obtaining the temperature value of the inner tube
  • Step M300 determine whether the temperature value of the inner tube is less than the third preset temperature value T3, if yes, turn on the heater; if not, obtain the temperature value of the inner tube again after a fifth preset time interval, and determine whether the temperature value of the inner tube is less than The third preset temperature value T3 is until the heater is turned on.
  • the throttle valve is opened, so that the high-temperature refrigerant in the shown heat pipe can evaporate high-temperature steam and flow into the heat-dissipating pipe to realize the heating of the air-conditioning fan.
  • the temperature value of the inner pipe is the average value of the refrigerant temperature at multiple positions in the heat transfer pipe; by judging whether the temperature value of the inner pipe is less than the third preset temperature value T3, determine Whether to turn on the heater, and form a loop judgment, and turn on the electric heating in time when the temperature value of the inner tube is lower than the third preset temperature value T3.
  • the third preset temperature value T3 described in this embodiment is the lowest temperature value at which the refrigerant in the heat pipe evaporates high-temperature steam, that is, when the refrigerant is below the third preset temperature value T3, the refrigerant no longer evaporates high-temperature gas. It is necessary to turn on the electric heating to ensure that the high-temperature refrigerant can evaporate the gaseous refrigerant.
  • the third preset temperature value T3 can be obtained experimentally according to the characteristics of the refrigerant, and is preset in the controller of the air-conditioning fan.
  • the temperature value of the inner tube is obtained in real time, and the heater is turned off until the temperature value of the inner tube reaches a value greater than or equal to a fourth preset temperature value.
  • the fourth preset temperature value in this embodiment refers to the maximum temperature to which the refrigerant in the heat pipe can be heated.
  • the fourth preset temperature value is the highest temperature value of the thermal storage module of the air-conditioning fan. If the maximum temperature of the thermal storage module reaches 75° C., continuing to turn on the heater will cause damage to the heater and the thermal storage module.
  • the fourth preset temperature value is greater than the third preset temperature value T3.
  • the fourth preset temperature value can be obtained experimentally according to the characteristics of the refrigerant, and is preset in the controller of the air-conditioning fan.
  • the controller may include: a processor, a communication interface (Communications Interface), a memory (memory) and a communication bus, wherein the processor, the communication interface, and the memory complete mutual communication through the communication bus.
  • the processor can call the logic instructions in the memory to execute the air conditioning fan control method of the air conditioner.
  • the above logic instructions in the memory can be implemented in the form of software functional units and can be stored in a computer-readable storage medium when sold or used as an independent product.
  • the technical solution of the present application is essentially or the part that contributes to the prior art or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disk or optical disc, etc., which can store program codes. .
  • the present application also provides a computer program product
  • the computer program product includes a computer program stored on a non-transitory computer-readable storage medium
  • the computer program includes program instructions, and when the program instructions are executed by a computer When executing, the computer can execute the method for controlling the air-conditioning fan of the air-conditioner provided by the above-mentioned methods.
  • the present application also provides a non-transitory computer-readable storage medium, on which a computer program is stored, and when the computer program is executed by a processor, it is implemented to execute the air-conditioning fan control methods of the air conditioners provided above.
  • the device embodiments described above are only illustrative, and the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in One place, or it can be distributed to multiple network elements. Part or all of the modules can be selected according to actual needs to achieve the purpose of the solution of this embodiment. It can be understood and implemented by those skilled in the art without any creative effort.
  • each implementation can be implemented by means of software plus a necessary general hardware platform, and of course also by hardware.
  • the essence of the above technical solution or the part that contributes to the prior art can be embodied in the form of software products, and the computer software products can be stored in computer-readable storage media, such as ROM/RAM, magnetic discs, optical discs, etc., including several instructions to make a computer device (which may be a personal computer, server, or network device, etc.) execute the methods described in various embodiments or some parts of the embodiments.

Abstract

一种制热空调扇及控制方法,属于空调领域,空调扇包括制热装置,制热装置包括散热管(100)、导热管(200)、加热器(300)、气管(400)及液管(500),散热管(100)位于空调扇的通风通道内,散热管(100)、液管(500)、导热管(200)与气管(400)依次首尾连接并形成循环管路,循环管路内设有冷媒,加热器(300)用于加热冷媒,气管(400)和液管(500)中的至少一者设有节流阀(600),控制器用于控制加热器(300)加热冷媒以及控制节流阀(600)的开度。由于不再将加热器(300)设置在通风通道中,空调扇吹出湿气时不会在加热器(300)上凝结出水露,提高了安全性,防止加热器(300)损坏;导热管(200)具有储热功能,在关闭加热器(300)后的一段时间内不会造成冷媒温度的快速下降。

Description

一种制热空调扇及控制方法
相关申请的交叉引用
本申请要求于2021年05月20日提交的申请号为202110552222.4,名称为“一种制热空调扇及控制方法”的中国专利申请的优先权,其通过引用方式全部并入本文。
技术领域
本申请涉及空气温度调节技术领域,尤其涉及一种制热空调扇及控制方法。
背景技术
空调扇是一种全新概念的风扇,目前常见的空调扇为制冷型空调扇,空调扇内设置制冷装置,制冷装置对循环介质进行制冷,再将制冷后的循环介质导流至风扇处,风扇吹出冷风进行制冷;或者采用冰冻好的冰晶对储水箱的水进行降温,降温后的水汽经由风扇吹出,进行制冷。同时,制冷型空调扇也具有加湿空气的功能。空调扇相比于空调器而言,制冷功率低,价格低,受到越来越多用户的喜欢。
然而,目前制热功能的空调扇,多采用风扇直吹电加热器,在电加热器制热高温时多暴露在空气中,甚至于在湿度较大环境下制热时,进入的湿气容易对电加热器造成一定程度的氧化,降低电加热器的加热效率,严重的损害电加热器;并且现有直吹电加热器方式的制热空调扇,仅可在开启电加热的情况下进行制热,难以进行蓄热。
发明内容
本申请提供一种制热空调扇及控制方法,用以解决现有技术中制热空调扇加热器容易损坏,难以蓄热的缺陷。
为了解决上述技术缺陷,本申请提供一种制热空调扇,包括:
制热装置,所述制热装置包括散热管、导热管、加热器、气管、与液管,所述散热管位于所述空调扇的通风通道内,所述散热管、所述液管、 所述导热管与所述气管依次首尾连接并形成循环管路,所述循环管路内设有冷媒,所述加热器用于加热所述冷媒,所述气管和所述液管中的至少一者设有节流阀;
控制器,所述控制器用于控制所述加热器加热所述冷媒,以及用于控制所述节流阀的开度。
根据本申请提供的一种制热空调扇,所述导热管位于所述散热管下方。
根据本申请提供的一种制热空调扇,所述空调扇制热装置还包括保温箱,所述导热管和所述加热器位于所述保温箱内。
根据本申请提供的一种制热空调扇,所述制热空调扇还包括温度传感器,所述温度传感器用于检测所述导热管内冷媒温度。
本申请还提供一种用于控制如上述任一项所述的制热空调扇的控制方法,包括如下步骤:
在接收空调扇开机指令后,开启节流阀,获取室内温度值,根据设定温度值与室内温度值控制所述节流阀的开度。
根据本申请提供的一种制热空调扇的控制方法,所述根据设定温度值与室内温度值控制所述节流阀的开度包括:
计算设定温度值与室内环境温度值的第一温度差值,确定所述第一温度差值落入的温度预设区间,得到落入的所述温度预设区间对应的开度信号,根据所述开度信号控制节流阀开度。
根据本申请提供的一种制热空调扇的控制方法,所述温度预设区间对应的温度值越大,所述开度信号对应的开度值越大。
根据本申请提供的一种制热空调扇的控制方法,在获取所述开度信号后,以第一预设时长为周期,每间隔第一预设时长,计算第一预设时长后室内环境温度值与第一预设时长前室内环境温度值的第二温度差值,判断所述第二温度差值是否大于第一预设温度值,若是,则维持所述节流阀开度;若否,则控制所述节流阀根据预设开度幅值调节开度。
根据本申请提供的一种制热空调扇的控制方法,不同的温度预设区间对应不同的第一预设温度值,所述温度预设区间对应的温度值越大,所述第一预设温度值越大;
在确定所述第一温度差值落入的温度预设区间后,得到落入的所述温 度预设区间对应的第一预设温度值。
根据本申请提供的一种制热空调扇的控制方法,不同的温度预设区间对应不同的预设开度幅值,所述温度预设区间对应的温度值越大,所述预设开度幅值越大;
在确定所述第一温度差值落入的温度预设区间后,得到落入的所述温度预设区间对应的预设开度幅值。
根据本申请提供的一种制热空调扇的控制方法,在所述第一温度差值落入对应温度值最大的温度预设区间,并且节流阀增大至最大开度时,判断内管温度是否小于第五预设温度值,若是,则开启加热器;若否,则维持所述节流阀开度。
本申请提供的制热空调扇及控制方法,通过设置导热管与散热管,并且导热管与散热管之间通过气管与液管连接形成循环管路,循环管路内设置冷媒,加热器加热循环管路内的冷媒进行制热,不再将加热器设置在通风通道中,加热器不受到湿气的影响,提高了电加热器的工作安全性。并且,本申请所述的空调扇可以与现有制冷型空调扇相结合,在空调扇吹出湿气时不会在电加热器上凝结出水露,能够防止电加热器损坏。并且散热管的设置也提高了空调扇有空气的接触面积,提高了热交换效率。
同时,导热管不必安装在通风通道内而具有一定的储热功能,能够确保冷媒以一定的高温条件持续一段时间,在关闭加热器后的一段时间内不会造成冷媒温度的快速下降。
附图说明
为了更清楚地说明本申请或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请提供的制热空调扇示意图之一;
图2是本申请提供的制热空调扇示意图之二;
图3是本申请提供的制热空调扇的控制方法的流程图;
图4是本申请提供的蓄热模式中开启加热器的控制方法流程图;
图5是本申请提供的加热程序控制方法流程图。
附图标记:
100:散热管;         200:导热管;       300:加热器;
400:气管;           500:液管;         600:节流阀;
700:保温箱。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合本申请中的附图,对本申请中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在本申请实施例的描述中,需要说明的是,除非另有明确的规定和限定。“上”“下”“内”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请实施例中的具体含义。
需要说明的是,除非另有明确的规定和限定,术语“连接”应做广义理解,例如,可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可以具体情况理解上述术语在发明实施例中的具体含义。
下面结合图1-图2描述本申请的制热空调扇。
如图1所示,所述制热空调扇包括制热装置,包括散热管100、导热管200、加热器300、气管400与液管500,所述散热管100、所述液管500、所述导热管200与所述气管400依次首尾连接并形成循环管路,所述循环管路内设有冷媒,所述加热器300用于加热所述冷媒。所述气管和/或所述液管上设有节流阀;较好地,所述气管和所述液管上均设有节流阀。
具体地,所述散热管100与所述导热管200均为与空调器换热盘管材质相同的铜管。铜管重量较轻,导热性好,低温强度高;同时,铜管耐高温,可在多种环境中使用,铜管的耐压能力是塑料管和铝塑管的几倍乃至几十倍,它可以承受当今建筑中最高水压。在热水环境下,随着使用年限的延长,塑料管材的承压能力显著下降,而铜管的机械性能在所有的热温 范围内保持不变,故其耐压能力不会降低,也不会出现老化的现象。
具体地,所述散热管100与所述导热管200的截面形状可以为方或圆形,优选采用圆管,圆管的周向外壁与管内介质的距离相同,热交换效率高。
所述加热器300可加热液管500、气管500或导热管200,优选直接加热所述导热管200内的冷媒。
具体地,所述气管400和/或所述液管500上设有节流阀600。结合图1所示,本实施例在气管400上设置节流阀600,在空调扇制热满足用户的热量需求时,关闭加热器300与节流阀600,所述气管400被阻断,高温气态冷媒不会流入所述散热管100中而留存在所述导热管200中,防止所述导热管200内热量散失,提高所述导热管200的蓄热效果。
具体地,所述气管400上设置的节流阀600为电子膨胀阀,能够调节所述气管400内气体流通量,通过调节所述电子膨胀阀的开度,控制所述导热管200内高温气态冷媒流入所述散热管100的流速与流量,控制所述制热空调扇的制热温度。
较好地,在所述气管400和所述液管500上均设置节流阀600。所述液管500上设置的节流阀600,同样可采用具有截止功能的电子膨胀阀,能够有效防止所述导热管200的高温气态冷媒从回流口反流入所述散热管100中。一方面,电子膨胀阀能够通过调节开度来控制所述散热管100中冷凝的冷媒流入所述导热管200的流速,控制所述散热管100中的管内压力来控制空调扇的制热温度。另一方面,也可在加热器300关闭时,同时关闭所述液管500的节流阀600,防止所述散热管100中冷凝的冷媒流入所述导热管200中,提高所述导热管200的蓄热效果。
需要说明的是,本实施例所述的节流阀600同样具有截止功能,本实施例所述的节流阀,也包括仅有截止功能的截流阀;同样地,具有截止功能的阀体也属于本申请对节流阀所限定的保护范围内。
本实施例所述的空调扇制热装置,在所述气管400与所述液管500上至少设置一个所述节流阀600,优选在所述气管400与所述液管500上均设置所述节流阀600,能够在所述空调扇达到制热温度时,关闭所述加热器300,同时关闭所述气管400和所述液管500上的两个节流阀600。
在同时关闭所述气管400和所述液管500上的两个节流阀600后,所述气管400与所述液管500均被截流,所述导热管200内的冷媒能够在保温箱700内保持一定的温度并持续一段时长,防止所述高温冷媒继续流入所述散热管而造成热量的损失。
较好地,在所述空调扇工作时,先开启所述气管400上的节流阀600以使高温气态冷媒从所述气管400进入所述散热管中,在工作一段时间后再开启所述液管500的节流阀600,实现所述冷媒的正向循环。
较好地,所述空调扇制热装置还包括保温箱700,所述导热管200和所述加热器300位于所述保温箱700内。
具体地,所述保温箱700由保温材料制成,如聚氨酯泡沫、聚苯板、EPS、XPS、酚醛泡沫、玻璃棉与岩棉等,保温箱700呈中空箱状,所述导热管200与所述加热器300均安装在所述保温箱700内。所述保温箱700能够防止所述导热管200内热量损失,提高所述导热管200内高温冷媒的蓄热效果。
较好地,所述气管400与所述液管500由所述保温箱700内穿出并与所述散热管100连接,所述气管400和所述液管500在与所述保温箱700的连接处均设置密封装置,实现所述保温箱700的保温密封性。
较好地,所述保温箱700内设有蓄热介质,如水或盐水等比热容较大,且安全无污染的液体,能够更好的对所述保温箱700内的导热管200进行保温蓄热。
具体地,所述空调扇还包括控制器,所述控制器用于控制所述加热器300加热所述冷媒,以及控制所述节流阀600的开度。
本实施例所述的制热空调扇,加热器300加热循环管路内的冷媒,尤其导热管200内的冷媒温度被加热。导热管200内的冷媒逐渐变高温而气化,气化的高温冷媒流通到散热管100中,并通过所述散热管100与空调扇风机吹动的风进行热交换,空调扇吹出热风,对周围环境进行制热。散热后的冷媒逐渐降温并冷凝,冷凝成液态的冷媒返回导热管200中进行加热,形成制热循环。
同时,本实施例所述的制热空调扇,在将液管500与气管400上的节流阀600关闭后,导热管200内处于相对封闭状态,使得所述空调扇具有 蓄热功能。并且,即便在制热空调扇未开机(用户未开启制热空调扇,制热空调扇风机不转动)的情况下,制热空调扇可在夜间用电谷值时间段内单独开启加热器300对导热管200内的冷媒进行加热,保温箱700能够有效的保持导热管200内冷媒的热量,待用户白天开启空调扇的制热功能时,空调扇可不开启加热器300,先将所述导热管200内的热量传输至散热管100处散出,实现一种夜间耗电而白天制热的节能制热空调扇。
并且,目前具有制热功能的空调扇,多采用风扇直吹电加热器的方式,使得电加热器制热高温时多暴露在空气中,甚至于在湿度较大环境下制热时,进入的湿气容易对电加热器造成一定程度的氧化,降低电加热器的加热效率,严重的损害电加热器。
本实施例所述的空调扇制热装置,通过设置导热管200与散热管100,并且导热管200与散热管100之间通过气管400与液管500连接形成循环管路,循环管路内设置冷媒,加热器300加热循环管路内的冷媒进行制热,不再将加热器设置在通风通道中,加热器不受到湿气的影响,提高了电加热器的工作安全性。
并且,本实施例所述的空调扇可以与现有制冷型空调扇相结合,在空调扇吹出湿气时不会在电加热器上凝结出水露,能够防止电加热器损坏。并且散热管100的设置也提高了空调扇有空气的接触面积,提高了热交换效率。
同时,导热管200不需要安装在通风通道内,具有一定的储热功能,能够确保冷媒以一定的高温条件持续一段时间,在关闭加热器300后的短时间内不会造成空调扇制热的中断。
进一步地,本实施例所述的制热空调扇还包括温度传感器,所述温度传感器用于检测所述导热管内冷媒温度。较好地,所述温度传感器设置在所述导热管200外壁上。
具体地,本实施例所述的加热器300,可为电加热器,包括电阻式电加热器、红外式电加热器与电磁式电加热器等。本实施例优选电阻式电加热器。如PTC电加热器,PTC加热器采用多个PTCR热敏陶瓷元件与波纹散热铝条经高温胶粘结组成,热阻小、切换效率高等优点。或者电热丝加热器,将电热丝缠绕在所述导热管200上,并在电热丝外侧包裹隔热层, 加热温度高,热传递效率大,加热快。
具体地,所述散热管100与所述导热管200有多种位置关系。优选地,所述导热管200位于所述散热管100下方,所述导热管200内加热的高温气态冷媒能够自然上升并通过所述气管400进入到所述散热管100中,所述散热管100冷凝后的冷媒也可在重力作用下流入所述导热管200中。
较好地,所述气管400和/或所述液管500倾斜设置。本实施例优选所述气管400与所述液管500均倾斜设置,能够防止所述气管400中上升的高温气态冷媒在所述气管400中冷凝出液态冷媒而向下流动,造成气态冷媒与液态冷媒的流动干涉,液态冷媒进一步降低上升的高温气态冷媒,严重的造成所述气管400堵塞而使得所述高温气态冷媒无法上升。
倾斜设置的所述气管400能够使得冷凝出的液态冷媒滑落回所述导热管200内,不会严重影响高温气态冷媒的温度,同时不会造成所述气管400堵塞。
较好地,所述气管400和/或所述液管500与水平面之间的倾斜角度小于70度,确保所述气管400和/或所述液管500具有一定的倾斜角度使得冷凝水顺着倾斜的管路流下。
需要说明的是,倾斜角度指的是所述气管400与水平面之间的最小夹角,以及所述液管500与水平面之间的最小夹角。
具体地,本实施例所述的气管400倾斜可有多种倾斜方式,当所述气管400为非直线形状时,凡是保证所述气管400内的流通管道与水平面之间为倾斜设置的,均落入本申请所限定的保护范围内。
需要说明的是,本实施例优选所述导热管200位于所述散热管100下方,在安装到空调扇内部时也与风道具有较好的匹配度。当空调扇结构设计需要所述散热管100与所述导热管200水平放置,或者所述散热管100位于所述导热管200上方时,在所述气管400上设置循环泵来驱动所述气管400中的气态冷媒流动。
较好地,所述散热管100和/或所述导热管200为盘管状。也就是说,散热管100为盘管状,或者导热管200为盘管状,或者本实施例中所述散热管100和所述导热管200均为盘管状,具体为翅片式盘管或微通道式盘管。
所述散热管100与所述导热管200的盘管结构可有多种,可以为螺旋式盘管,如所述导热管200呈螺旋式而缠绕在电加热棒的外侧,有利于所述加热器300加热所述导热管200;也可以为往复式盘管,如散热管100的盘管方式与现有空调蒸发器的盘管方式相同,有利于所述散热管100与空气之间进行热交换。
较好地,本实施例所述的制热空调扇,所述制热装置位于所述空调扇的壳体内,所述壳体内设通风通道,所述空调扇制热装置的散热管100位于所述通风通道内,所述通风通道内还设有风扇,所述风扇适于吹向所述散热管100,实现所述空调扇制热。
本实施例所述的空调扇,通过在空调扇内安装上述所述制热装置,所述制热装置通过设置导热管200与散热管100,并且导热管200与散热管100之间通过气管400与液管500连接形成循环管路,循环管路内设置冷媒,加热器300加热循环管路内的冷媒进行制热,不再将加热器设置在通风通道中,加热器不受到湿气的影响,提高了电加热器的工作安全性。
并且,本实施例所述的空调扇可以与现有制冷型空调扇相结合,在空调扇吹出湿气时不会在电加热器上凝结出水露,能够防止电加热器损坏。并且散热管100的设置也提高了空调扇有空气的接触面积,提高了热交换效率。
同时,导热管200不需要安装在通风通道内,具有一定的储热功能,能够确保冷媒以一定的高温条件持续一段时间,在关闭加热器300后的短时间内不会造成空调扇制热的中断。
进一步地,本实施例还提供一种用于控制上述任一实施方式所述的制热空调扇的控制方法,包括:
在接收空调扇开机指令后,开启节流阀,获取室内温度值,根据设定温度值与室内温度值控制所述节流阀的开度。
较好地,所述根据设定温度值与室内温度值控制所述节流阀的开度包括:
计算设定温度值与室内环境温度值的第一温度差值,确定所述第一温度差值落入的温度预设区间,获取落入的所述温度预设区间对应的开度信号,根据所述开度信号控制所述节流阀开度。
具体地,所述空调扇内预设多个温度预设区间,每个温度预设区间对应有不同的开度信号,不同的开度信号对应节流阀不同的开度值。
较好地,所述温度预设区间对应的温度值越大,所述开度信号对应的开度值越大。
例如,所述预设区间有四个B1、B2、B3与B4,B1为小于0℃(包括0℃),对应开度值p1-20;B2为0℃到2℃(不包括0℃,包括2℃),对应开度值p1;B3为2℃到5℃(不包括2℃,包括5℃),对应开度值p1+20;B4为大于5℃(不包括5℃),对应开度值p1+50。需要说明的是,开度值p1指的是空调扇制热过程中,节流阀开启p1开度值能够使得室内温度稳定在设定温度左右,具体数值以不同型号的空调扇,不同的冷媒而不同。
当判断结果为当前设定温度与室内环境温度的差值落入B4区间时,控制节流阀以p1+50的开度运行,使得导热管中的高温气态冷媒以较大的流通量进入散热管中,提高空调扇的制热效果。当判断结果为当前设定温度与室内环境温度的差值落入B2区间时,控制节流阀以p1的开度运行,使得导热管中的高温气态冷媒以相对较小的流通量进入散热管中,空调扇制热运行维持室内温度在设定温度左右。
在上述实施方式的基础上,在获取开度信号值后,每次间隔第一预设时长,计算第一预设时长后室内环境温度值与第一预设时长前室内环境温度值的第二温度差值,第二温度差值为第一预设时长后室内环境温度值与第一预设时长前室内环境温度值的差值,判断所述第二温度差值是否大于第一预设温度值T1,若是,则维持所述节流阀开度;若否,则获取预设开度幅值,控制所述节流阀开度根据所述预设开度幅值调节开度。
例如,在获取开度信号后,取第一预设时长为5min,每间隔5min,计算5min后室内环境温度值与5min前室内环境温度值的第二温度差值,判断所述第二温度差值是否大于第一预设温度值T1,第一预设温度值T1可以取3℃的定值,若第二温差差值大于3℃,表明空调扇制热效果明显,维持节流阀的开度值不变;若第二温差差值小于或等于3℃,表明空调扇制热效果不明显,需要增加节流阀开度值,在之前开度值的基础上,增加预设开度幅值,所述预设开度幅值可取定值20。
较好地,在上述实施方式的基础上,不同的温度预设区间对应不同的第一预设温度值T1,确定所述第一温度差值落入的温度预设区间后,获取落入的所述温度预设区间对应的第一预设温度值T1,所述温度预设区间对应的温度值越大,所述第一预设温度值T1越大。
例如,所述预设区间有四个B1、B2、B3与B4,B1为小于0℃(包括0℃),对应开度值p1-20,第一预设时长为5min,对应第一预设温度值T1为-0.3℃;B2为0℃到2℃(不包括0℃,包括2℃),对应开度值p1,第一预设时长为5min,对应第一预设温度值T1为0.3℃;B3为2℃到5℃(不包括2℃,包括5℃),对应开度值p1+20,第一预设时长为5min,对应第一预设温度值T1为0.5℃;B4为大于5℃(不包括5℃),对应开度值p1+50,第一预设时长为5min,对应第一预设温度值T1为0.8℃。
较好地,在上述实施方式的基础上,不同的温度预设区间对应不同的预设开度幅值,确定所述第一温度差值落入的温度预设区间后,获取落入的所述温度预设区间对应的预设开度幅值,所述温度预设区间对应的温度值越大,所述预设开度幅值越大。
例如,所述预设区间有四个B1、B2、B3与B4,B1为小于0℃(包括0℃),对应开度值p1-20,第一预设时长为5min,对应第一预设温度值T1为-0.3℃,对应的预设开度幅值为-10;B2为0℃到2℃(不包括0℃,包括2℃),对应开度值p1,第一预设时长为5min,对应第一预设温度值T1为0.3℃,对应的预设开度幅值为10;B3为2℃到5℃(不包括2℃,包括5℃),对应开度值p1+20,第一预设时长为5min,对应第一预设温度值T1为0.5℃,对应的预设开度幅值为15;B4为大于5℃(不包括5℃),对应开度值p1+50,第一预设时长为5min,对应第一预设温度值T1为0.8℃,对应的预设开度幅值为20。
较好地,在所述第一温度差值落入对应温度值最大的温度预设区间,并且节流阀增大至最大开度时,判断内管温度是否小于第五预设温度值,若是,则开启加热器;若否,则维持所述节流阀开度。
例如,当第一温度差值落入B4区间,随着节流阀开度的逐渐调整增大至节流阀的最大开度时,判断内管温度是否小于第五预设温度值,以检测内管温度是否达到制热需求。若内管温度小于第五预设温度值,表明内 管温度不足以进行制热,需要开启加热器进行制热;若内管温度大于或等于第五预设温度,则表明内管温度可以满足制热需求,维持节流阀当前的最大开度进行制热。
在节流阀开度增大至最大开度时,判断内管温度是否小于第五预设温度值,所述第五预设温度值为空调器内预设的蓄热模块释放热量处于较低水平的设定温度值,如35℃;当内管温度大于或等于第五预设温度值时,说明当前的节流阀开度下室内温度依旧能够提升,直至满足退出条件时退出加热控制;当内管温度小于第五预设温度值时,及时开启加热器进行加热,以确保制热量与制热速度满足用户需求。
较好地,本实施例还提供一种空调扇蓄热控制方法,结合图3所示,包括如下步骤:
步骤S100、在接收空调扇关机指令后,关闭节流阀;
步骤S200、进入蓄热控制程序。
具体地,所述蓄热控制程序包括:获取时间值,判断时间值是否落入预设低电时间区间,若是,则进入蓄热模式,所述蓄热模式包括开启加热器;若否,则等待第二预设时长后再次获取时间值,判断时间值是否落入所述预设低电时间区间,直至进入所述蓄热模式。
较好地,在进入所述蓄热模式后,实时获取时间值,当获取的时间值落入预设高电时间区间时,退出所述蓄热模式。
较好地,在蓄热模式中接收空调扇开机指令时,同样退出所述蓄热模式。
具体地,接收空调扇关机指令,指的是接收到用户通过遥控器或操控按钮发出的关机指令,空调扇在接收到关机指令后,关闭风扇与节流阀,使导热管处于封闭状态。
具体地,所述预设低电时间区间,指的是空调扇存储器中预设的用电谷值时间段。例如,某地区在凌晨零点至凌晨6点之间为用电谷值时间段,在凌晨零点至凌晨6点之间的6个小时电费较低,而在凌晨6点之后至第二天的凌晨零点之间的18个小时电费较高,因此可将凌晨零点至凌晨6点之间的6个小时时间段录入空调扇中,空调扇获取时间段信息并确定为预设低电时间区间。另外,预设高电时间区间指的是空调扇存储器中预设 的用电峰值时间段,如将凌晨6点之后至第二天的凌晨零点之间的18个小时时间段录入空调扇中确定为预设高电时间区间。
较好地,所述空调扇可设有时间设置程序,用户通过手机或遥控器录入;可选地,所述空调扇可通过物联网,通过获取定位信息后,通过物联网获取所在地区的用电谷值时间段与用电峰值时间段,并将获取的用电谷值时间段确定为预设低电时间区间,将获取的用电峰值时间段确定为预设高电时间区间,并能够实现自动更新。
本实施例所述的制热空调扇控制方法,在空调扇关机后,关闭节流阀,空调扇自动进入蓄热控制程序,通过时间来判断是否处于低电费的用电谷值时间段,在电费较低的时间开启加热器进行蓄热,以便于白天电费较高时先将导热管内蓄存的热量用于制热,再通过开启加热器进行制热,既能减少用户的用电消耗,减小用电费用,又能降低用电峰值时间段的用电量,提高地区用电的均匀性。
具体地,结合图4所示,所述蓄热模式中开启加热器的控制方法包括如下步骤:
步骤S210、获取内管温度值;
步骤S220、判断内管温度值是否小于第二预设温度值T2,若是,则开启加热器;若否,则间隔第三预设时长后再次获取内管温度值,判断内管温度值是否小于所述第二预设温度值T2,直至开启加热器。
具体地,所述第二预设温度值T2,指的是导热管内冷媒在预设低电时间区间内需要加热到的温度值,如用户通过遥控器或操作按钮进行选择的蓄热等级,不同蓄热等级对应不同的第二预设温度值T2。本步骤中,第二预设温度值T2为空调器预设的固定数值,如60℃
例如,用户选定的第二预设温度值T2为60℃,空调扇在进入蓄热模式后,获取内管温度值,判断获取的内管温度值是否小于60℃,小于60℃时控制加热器开启,进行蓄热;当内管温度值大于或等于60℃时,间隔30分钟后再次判断内管温度值是否小于60℃,循环判断至开启电加热。
较好地,开启加热器后,实时获取内管温度值,直至内管温度值达到大于或等于所述第四预设温度值T4,关闭加热器,并以第四预设时长为周期,间隔第四预设时长再次获取内管温度值,循环判断内管温度值是否 小于第四预设温度值T4,直至开启加热器。
本实施例中,所述第四预设温度值为空调扇蓄热模块最高温度值,如蓄热模块最高达到75℃,继续开启加热器则会对加热器及蓄热模块造成损坏。在开启加热器后,实时获取内管温度值并判断内管温度值是否增大到第四预设温度值T4,在达到第四预设温度值T4后及时关闭加热器,防止加热器加热温度超出用户制热的需求量。并且,在关闭加热器后,间隔第四预设时长后再次获取内管温度值,判断内管温度值是否小于第二预设温度值T2,直至开启加热器,实现一种自动温度监控,确保空调扇的内管温度值始终在第二预设温度值T2左右。
例如,用户选定的第二预设温度值T2为60℃,第四预设温度值T4为75℃,空调扇在进入蓄热模式后,获取蓄热模块温度值,判断获取的蓄热模块温度值是否小于60℃,小于60℃时控制加热器开启,进行蓄热;当蓄热模块温度值大于或等于75℃时,间隔30分钟后再次判断蓄热模块温度值是否小于60℃,循环判断至开启电加热。本实施例通过自主温度判断,在低于60℃时控制加热器开启,在温度达到75℃时控制加热器关闭,确保蓄热模块的温度始终保持在60℃至75℃之间。
较好地,本实施例所述的内管温度值为导热管中多个位置冷媒温度的平均值,如在导热管的两个端口与中间位置取3个位置的温度值,计算3个位置温度值的平均值确定为内管温度值,防止导热管内不同位置温度的不同而造成内管温度值的偏差,提高判断的准确程度。
较好地,在上述所述的制热空调扇控制方法中,即便是已经在运行所述蓄热控制程序,当接收到空调扇开启指令后,退出所述蓄热控制程序,进入加热程序。
本实施例以空调扇制热优先,将蓄热的控制优先级低于空调扇制热的优先级,以确保空调扇满足用户的制热需求量为准。
具体地,本实施例所述的加热程序,可参照目前已有的空调扇加热程序,依据用户设定的温度,确定内管需要加热的温度值,再控制加热器开启的时间与功率。
较好地,本实施例还提供一种加热程序的控制方法,结合图5所示,包括如下步骤:
步骤M100、开启节流阀;
步骤M200、获取内管温度值;
步骤M300、判断内管温度值是否小于第三预设温度值T3,若是,则开启加热器;若否,则间隔第五预设时长后再次获取内管温度值,判断内管温度值是否小于所述第三预设温度值T3,直至开启加热器。
具体地,在接收到用户发出的空调扇开启指令后,打开节流阀,使得所示导热管中的高温冷媒能够蒸发出高温蒸汽并流经到散热管中,实现空调扇的制热。开启节流阀后,获取内管温度值,较好地,内管温度值为导热管中多个位置冷媒温度的平均值;通过判断内管温度值是否小于第三预设温度值T3,确定是否开启加热器,并形成循环判断,在内管温度值小于第三预设温度值T3时及时开启电加热。
具体地,本实施例所述的第三预设温度值T3为导热管内冷媒蒸发出高温蒸汽的最低温度值,即在第三预设温度值T3以下时冷媒不再蒸发出高温气体,此时需要开启电加热来确保高温冷媒能够蒸发出气态冷媒。其中,第三预设温度值T3可依据冷媒特性来实验获得,并预设在空调扇的控制器内。
具体地,在开启加热器后,实时获取内管温度值,直至内管温度值达到大于或等于第四预设温度值时,关闭加热器。
本实施例所述的第四预设温度值,指的是导热管内冷媒能够加热到的最高温度。本实施例中,所述第四预设温度值为空调扇蓄热模块最高温度值,如蓄热模块最高达到75℃,继续开启加热器则会对加热器及蓄热模块造成损坏。
具体地,所述第四预设温度值大于所述第三预设温度值T3。
同样的,第四预设温度值可依据冷媒特性来实验获得,并预设在空调扇的控制器内。
本实施例通过设置第四预设温度值,防止加热器开启后造成冷媒温度过高而造成系统的不稳定,确保空调扇制热的正常运行。
需要说明的是,控制器可以包括:处理器(processor)、通信接口(Communications Interface)、存储器(memory)和通信总线,其中,处理器,通信接口,存储器通过通信总线完成相互间的通信。处理器可以调用存储 器中的逻辑指令,以执行空调器的空调扇控制方法。
此外,上述的存储器中的逻辑指令可以通过软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
另一方面,本申请还提供一种计算机程序产品,所述计算机程序产品包括存储在非暂态计算机可读存储介质上的计算机程序,所述计算机程序包括程序指令,当所述程序指令被计算机执行时,计算机能够执行上述各方法所提供的空调器的空调扇控制方法。
又一方面,本申请还提供一种非暂态计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现以执行上述各提供的空调器的空调扇控制方法。
以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性的劳动的情况下,即可以理解并实施。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到各实施方式可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件。基于这样的理解,上述技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在计算机可读存储介质中,如ROM/RAM、磁碟、光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行各个实施例或者实施例的某些部分所述的方法。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (11)

  1. 一种制热空调扇,其特征在于,包括:
    制热装置,所述制热装置包括散热管、导热管、加热器、气管、与液管,所述散热管位于所述空调扇的通风通道内,所述散热管、所述液管、所述导热管与所述气管依次首尾连接并形成循环管路,所述循环管路内设有冷媒,所述加热器用于加热所述冷媒,所述气管和所述液管中的至少一者设有节流阀;
    控制器,所述控制器用于控制所述加热器加热所述冷媒,以及用于控制所述节流阀的开度。
  2. 根据权利要求1所述的制热空调扇,其特征在于,所述导热管位于所述散热管下方。
  3. 根据权利要求1所述的制热空调扇,其特征在于,所述空调扇制热装置还包括保温箱,所述导热管和所述加热器位于所述保温箱内。
  4. 根据权利要求1所述的制热空调扇,其特征在于,所述制热空调扇还包括温度传感器,所述温度传感器用于检测所述导热管内冷媒温度。
  5. 一种用于控制如上述权利要求1-4任一项所述的制热空调扇的控制方法,其特征在于,包括如下步骤:
    在接收空调扇开机指令后,开启节流阀,获取室内温度值,根据设定温度值与室内温度值控制所述节流阀的开度。
  6. 根据权利要求5所述的制热空调扇的控制方法,其特征在于,所述根据设定温度值与室内温度值控制所述节流阀的开度包括:
    计算设定温度值与室内环境温度值的第一温度差值,确定所述第一温度差值落入的温度预设区间,得到落入的所述温度预设区间对应的开度信号,根据所述开度信号控制节流阀开度。
  7. 根据权利要求6所述的制热空调扇的控制方法,其特征在于,所述温度预设区间对应的温度值越大,所述开度信号对应的开度值越大。
  8. 根据权利要求7所述的制热空调扇的控制方法,其特征在于,在获取所述开度信号后,以第一预设时长为周期,每间隔第一预设时长,计算第一预设时长后室内环境温度值与第一预设时长前室内环境温度值的第二温度差值,判断所述第二温度差值是否大于第一预设温度值,若所述 第二温度差值大于第一预设温度值,则维持所述节流阀开度;若所述第二温度差值不大于第一预设温度值,则控制所述节流阀根据预设开度幅值调节开度。
  9. 根据权利要求8所述的制热空调扇的控制方法,其特征在于,不同的温度预设区间对应不同的第一预设温度值,所述温度预设区间对应的温度值越大,所述第一预设温度值越大;
    在确定所述第一温度差值落入的温度预设区间后,得到落入的所述温度预设区间对应的第一预设温度值。
  10. 根据权利要求9所述的制热空调扇的控制方法,其特征在于,不同的温度预设区间对应不同的预设开度幅值,所述温度预设区间对应的温度值越大,所述预设开度幅值越大;
    在确定所述第一温度差值落入的温度预设区间后,得到落入的所述温度预设区间对应的预设开度幅值。
  11. 根据权利要求8-10任一项所述的制热空调扇的控制方法,其特征在于,在所述第一温度差值落入对应温度值最大的温度预设区间,并且节流阀增大至最大开度时,判断内管温度是否小于第五预设温度值,若所述内管温度小于所述第五预设温度值,则开启加热器;若所述内管温度不小于所述第五预设温度值,则维持所述节流阀开度。
PCT/CN2021/139920 2021-05-20 2021-12-21 一种制热空调扇及控制方法 WO2022242165A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110552222.4A CN113357722A (zh) 2021-05-20 2021-05-20 一种制热空调扇及控制方法
CN202110552222.4 2021-05-20

Publications (1)

Publication Number Publication Date
WO2022242165A1 true WO2022242165A1 (zh) 2022-11-24

Family

ID=77527082

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/139920 WO2022242165A1 (zh) 2021-05-20 2021-12-21 一种制热空调扇及控制方法

Country Status (2)

Country Link
CN (1) CN113357722A (zh)
WO (1) WO2022242165A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113357722A (zh) * 2021-05-20 2021-09-07 青岛海尔空调器有限总公司 一种制热空调扇及控制方法
CN113819547B (zh) * 2021-09-10 2023-03-21 青岛海尔空调器有限总公司 一种制热系统及其控制方法
CN113819514B (zh) * 2021-09-15 2023-06-23 青岛海尔空调器有限总公司 一种空调系统及其控制方法
CN116742491B (zh) * 2023-08-09 2023-11-21 新乡市景弘电气有限公司 一种灭火装置及具有其的箱式变电站

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003148884A (ja) * 2001-11-13 2003-05-21 Furukawa Electric Co Ltd:The ループヒートパイプ
CN201273647Y (zh) * 2008-07-15 2009-07-15 马加良 节能环保空调扇
CN101520205A (zh) * 2009-04-10 2009-09-02 清华大学 一种可分离式热管供暖采热系统
CN102913986A (zh) * 2012-10-17 2013-02-06 常州市康舒环境科技有限公司 分离热管壁挂式平板太阳能采暖装置
CN103542750A (zh) * 2013-10-24 2014-01-29 镇江新梦溪能源科技有限公司 一种盘管式分离热管换热系统
CN104566616A (zh) * 2015-02-04 2015-04-29 东南大学 基于分离式热管平板太阳能集热器耦合室内供暖系统
CN107143967A (zh) * 2017-04-08 2017-09-08 云南师范大学 一拖多光伏制冰蓄冷空调的控制系统
CN112611241A (zh) * 2020-12-15 2021-04-06 山东大学 一种可调节流动阻力的分离式热管系统及使用方法
CN113357722A (zh) * 2021-05-20 2021-09-07 青岛海尔空调器有限总公司 一种制热空调扇及控制方法
CN215260236U (zh) * 2021-05-20 2021-12-21 青岛海尔空调器有限总公司 一种空调扇制热装置与空调扇

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3404150B2 (ja) * 1994-09-28 2003-05-06 東芝キヤリア株式会社 空気調和機及びその制御方法
CN103245031B (zh) * 2012-02-06 2015-11-11 珠海格力电器股份有限公司 空调器及其控制方法和装置
CN108931015A (zh) * 2017-05-24 2018-12-04 刘勇 一种电加热储能空调系统
CN110887137A (zh) * 2018-09-10 2020-03-17 天津华信机械有限公司 热管空调器及其控制方法
CN111442576B (zh) * 2020-03-17 2021-09-28 中国移动通信集团设计院有限公司 空调制冷系统的工作方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003148884A (ja) * 2001-11-13 2003-05-21 Furukawa Electric Co Ltd:The ループヒートパイプ
CN201273647Y (zh) * 2008-07-15 2009-07-15 马加良 节能环保空调扇
CN101520205A (zh) * 2009-04-10 2009-09-02 清华大学 一种可分离式热管供暖采热系统
CN102913986A (zh) * 2012-10-17 2013-02-06 常州市康舒环境科技有限公司 分离热管壁挂式平板太阳能采暖装置
CN103542750A (zh) * 2013-10-24 2014-01-29 镇江新梦溪能源科技有限公司 一种盘管式分离热管换热系统
CN104566616A (zh) * 2015-02-04 2015-04-29 东南大学 基于分离式热管平板太阳能集热器耦合室内供暖系统
CN107143967A (zh) * 2017-04-08 2017-09-08 云南师范大学 一拖多光伏制冰蓄冷空调的控制系统
CN112611241A (zh) * 2020-12-15 2021-04-06 山东大学 一种可调节流动阻力的分离式热管系统及使用方法
CN113357722A (zh) * 2021-05-20 2021-09-07 青岛海尔空调器有限总公司 一种制热空调扇及控制方法
CN215260236U (zh) * 2021-05-20 2021-12-21 青岛海尔空调器有限总公司 一种空调扇制热装置与空调扇

Also Published As

Publication number Publication date
CN113357722A (zh) 2021-09-07

Similar Documents

Publication Publication Date Title
WO2022242165A1 (zh) 一种制热空调扇及控制方法
CN106524389B (zh) 一种空调器除霜方法及其空调器
JP5958503B2 (ja) 室温調整システム
CN201237396Y (zh) 用于邻室环境模拟室的工况调节系统
US11959652B2 (en) Machine learning apparatus, air conditioning system, and machine learning method
WO2010003378A1 (zh) 辐射换热空调系统及其辐射换热天花板
CN104697085A (zh) 分户组合式辐射空调系统、控制方法及相应的控制系统
CA2962291A1 (en) Micro environmental control system
CN109489126A (zh) 一种一体式节能空调器及其控制方法
CN110553325A (zh) 室温调节装置及控制方法
CN113531678A (zh) 空调运行方法、换热器及其机组散热结构、空调机组
CN106288487A (zh) 一拖多空调及其控制方法
CN113669986A (zh) 降低风冷冰箱化霜速率的方法
CN215260236U (zh) 一种空调扇制热装置与空调扇
CN108571792A (zh) 数据机房自然冷却系统及其控制方法
JP5730689B2 (ja) 空調運転制御システム
CN114413416B (zh) 一种多联机空调除霜控制方法、存储介质及多联机空调
CN215177057U (zh) 闭式冷却塔
WO2023000678A1 (zh) 一种空调室内机及其控制方法
CN210624718U (zh) 空调系统
CN203518099U (zh) 寒冷季室外直接防冻取冷装置
CN113803941A (zh) 一种风道结构、制冷机组、控制方法及存储介质
CN216159212U (zh) 一种制热系统
CN205641240U (zh) 窗机空调
JP2008064444A (ja) 建物において温水を循環させて暖房を行う温水循環暖房システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21940607

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE