WO2022239203A1 - Insulating varnish composition, cured insulating varnish, coil and method for producing coil - Google Patents

Insulating varnish composition, cured insulating varnish, coil and method for producing coil Download PDF

Info

Publication number
WO2022239203A1
WO2022239203A1 PCT/JP2021/018280 JP2021018280W WO2022239203A1 WO 2022239203 A1 WO2022239203 A1 WO 2022239203A1 JP 2021018280 W JP2021018280 W JP 2021018280W WO 2022239203 A1 WO2022239203 A1 WO 2022239203A1
Authority
WO
WIPO (PCT)
Prior art keywords
insulating varnish
coil
mass
parts
varnish composition
Prior art date
Application number
PCT/JP2021/018280
Other languages
French (fr)
Japanese (ja)
Inventor
文彦 細越
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2021/018280 priority Critical patent/WO2022239203A1/en
Priority to CN202180095682.7A priority patent/CN117203285A/en
Priority to JP2021555017A priority patent/JP7046280B1/en
Publication of WO2022239203A1 publication Critical patent/WO2022239203A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • C08L63/10Epoxy resins modified by unsaturated compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/06Unsaturated polyesters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D163/00Coating compositions based on epoxy resins; Coating compositions based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D163/00Coating compositions based on epoxy resins; Coating compositions based on derivatives of epoxy resins
    • C09D163/10Epoxy resins modified by unsaturated compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D167/00Coating compositions based on polyesters obtained by reactions forming a carboxylic ester link in the main chain; Coating compositions based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D167/00Coating compositions based on polyesters obtained by reactions forming a carboxylic ester link in the main chain; Coating compositions based on derivatives of such polymers
    • C09D167/06Unsaturated polyesters having carbon-to-carbon unsaturation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/40Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes epoxy resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/38Insulated conductors or cables characterised by their form with arrangements for facilitating removal of insulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F5/00Coils
    • H01F5/06Insulation of windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/30Windings characterised by the insulating material
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/46Fastening of windings on the stator or rotor structure

Definitions

  • the present disclosure relates to an insulating varnish composition, a cured insulating varnish obtained by curing this insulating varnish composition, a coil comprising this cured insulating varnish, and a method for manufacturing a coil.
  • rotating machines such as electric motors, generators, and compressors have coils formed by winding electric wires around a stator core.
  • a coil in order to ensure electrical insulation of the coil, protect the wire, and fix the wire to the stator core, self-bonding of the wire, mold resin molding, insulating varnish treatment, etc. are performed.
  • the insulating varnish treatment it is necessary to impregnate the gaps between the electric wires of the coil with the insulating varnish composition, so an insulating varnish composition containing a low-viscosity thermosetting resin is widely used.
  • the insulating varnish composition is required to impregnate the gaps between the wires of the coil.
  • the cured insulating varnish produced by heating and curing the insulating varnish composition is required to have the property of preventing dielectric breakdown due to partial discharge occurring between wires of a coil.
  • As a method for suppressing the occurrence of partial discharge between the wires of a coil it is generally considered effective to increase the thickness of the insulation coating layer of the wires and increase the distance between the wires, but both of these methods reduce the output of the rotating machine. may invite.
  • Patent Literature 1 discloses a technique for obtaining a cured insulating varnish containing air bubbles by adding a microcapsule-type foaming agent to a thermosetting resin.
  • Patent Literature 1 does not consider miniaturization of bubbles, the effect of suppressing the occurrence of partial discharge in bubbles may not be sufficient.
  • the present disclosure has been made in view of the above, and aims to obtain an insulating varnish composition that can suppress the occurrence of partial discharge in air bubbles in a cured insulating varnish.
  • the insulating varnish composition according to the present disclosure includes unsaturated polyester resins, epoxy resins, and vinyl ester resins containing high molecular weight substances having a weight average molecular weight of 2000 or more.
  • FIG. 2 is a cross-sectional view of the rotating machine according to the first embodiment cut in a direction perpendicular to the central axis, and is a partially enlarged cross-sectional view showing the stator;
  • FIG. 2 is a partially enlarged cross-sectional view schematically showing the electric wire and the cured insulating varnish according to the first embodiment;
  • the insulating varnish composition, the cured insulating varnish, the coil, and the method for manufacturing the coil according to the embodiment will be described below in detail with reference to the drawings.
  • FIG. 1 is a cross-sectional view of a rotary machine 1 taken along a central axis C according to a first embodiment.
  • a rotating machine 1 includes a stator 2 , a rotor 3 , a shaft 4 , a frame 5 and two brackets 6 .
  • the stator 2 is formed in a cylindrical shape having a central axis C. As shown in FIG.
  • the direction parallel to the central axis C is the axial direction
  • the direction perpendicular to the central axis C is the radial direction
  • the direction of rotation about the central axis C is the circumferential direction.
  • the rotor 3 is arranged inside the stator 2 .
  • a gap is provided between the stator 2 and the rotor 3 over the entire circumferential direction.
  • a shaft 4 is connected to the center of the rotor 3 .
  • the shaft 4 and the central axis C of the stator 2 are provided coaxially.
  • the rotor 3 is rotatable around the central axis C as a rotation axis.
  • the frame 5 forms an outer shell of the rotating machine 1 and accommodates the stator 2 and the rotor 3 .
  • the frame 5 is formed in a cylindrical shape that is open at both ends along the axial direction.
  • One bracket 6 is arranged so as to close an opening at one end of the frame 5 along the axial direction.
  • the other bracket 6 is arranged to block the opening at the other end of the frame 5 along the axial direction.
  • One axial end of the shaft 4 protrudes outside the frame 5 through a hole 6 a formed in one bracket 6 .
  • the stator 2 includes a stator core 7 formed by laminating a plurality of electromagnetic steel sheets, and a coil 10 formed by winding an electric wire 11 around the stator core 7 .
  • FIG. 2 is a cross-sectional view of the rotating machine 1 according to the first embodiment cut in a direction orthogonal to the central axis C, and is a partially enlarged cross-sectional view showing the stator 2.
  • the stator core 7 has a cylindrical core back 7a made of a magnetic material and teeth 7b protruding radially inward from the inner peripheral surface of the core back 7a. Although only one tooth 7b is shown in FIG. 2, a plurality of teeth 7b are actually arranged at equal angles in the circumferential direction. Slots 8 are formed between adjacent teeth 7b.
  • An insulator 9 is provided in the slot 8 .
  • the insulator 9 is arranged between the stator core 7 and the coil 10 to electrically insulate the stator core 7 and the coil 10 from each other.
  • the insulator 9 covers the surface of the core back 7a facing the slot 8 and the surface of the tooth 7b facing the slot 8.
  • An electric wire 11 is wound around the tooth 7b via an insulator 9 to form a coil 10.
  • a gap G is formed between adjacent electric wires 11 .
  • the stator 2 is not limited to the illustrated example, and may be appropriately selected from known stators and used.
  • an insulating tape may be arranged between adjacent coils 10 in each slot 8, or an interphase paper may be arranged.
  • FIG. 3 is a partially enlarged sectional view schematically showing the electric wire 11 and the cured insulating varnish 14 according to the first embodiment.
  • the electric wire 11 is an insulated wire in which a conductive wire 12 is covered with an insulating coating 13 .
  • the material of the conducting wire 12 is not particularly limited as long as it has conductivity, and is, for example, copper.
  • the material of the insulating coating 13 is not particularly limited as long as it has electrical insulation, and is, for example, polyamide-imide.
  • a hardened insulating varnish 14 is placed in the gap G between adjacent electric wires 11 .
  • the insulating varnish cured product 14 fills the gap G between the adjacent wires 11 to prevent dielectric breakdown of the wires 11 due to partial discharge occurring between the wires 11, protect the wires 11, and connect the wires 11 to the stator core 7. It has a sticking effect.
  • the cured insulating varnish 14 contains a thermosetting resin 15 and air bubbles 16 .
  • the insulating varnish cured product 14 is produced by heating and curing an insulating varnish composition. The components of the insulating varnish composition used for the cured insulating varnish 14 are described in detail below.
  • the insulating varnish composition contains a thermosetting resin 15 containing at least one of unsaturated polyester resin, epoxy resin, and vinyl ester resin containing a high molecular weight substance having a weight average molecular weight of 2000 or more, and a liquid bubble-forming component having a vapor pressure of 1 mmHg or more and less than 80 mmHg.
  • the weight average molecular weight of the thermosetting resin 15 before curing is determined from a relative average molecular weight that can be measured by a conventionally known method such as gel permeation chromatography (GPC). can be done.
  • the vapor pressure of the bubble-forming component refers to the equilibrium vapor pressure that can be measured by conventionally known methods such as static method, boiling point method, and differential scanning calorimetry (DSC) method.
  • DSC differential scanning calorimetry
  • the standard state of the gas described in this specification assumes the conditions of a standard temperature of 25° C. and a standard pressure of 100 kPa (SATP: Standard Ambient Temperature and Pressure).
  • Unsaturated polyester resin, epoxy resin, and vinyl ester resin exhibit the function of increasing impregnability of the insulating varnish composition into the gap G between the electric wires 11 before curing, and the heat resistance of the cured insulating varnish 14 after curing. , and exhibit the function of enhancing electrical insulation and adhesion to the stator core 7 .
  • the main component of the thermosetting resin 15 of the insulating varnish composition is an oligomer or polymer having a weight-average molecular weight of 2000 or more. A viscous effect occurs early. Therefore, it is possible to obtain the effect of fixing the air bubbles 16 generated by the vaporization of the air bubble-forming component inside the cured insulating varnish 14 .
  • the weight-average molecular weight is less than 2000, it takes a long time to thicken the thermosetting resin 15, so the number of air bubbles 16 in the cured insulating varnish 14 decreases and the diameter of the air bubbles 16 increases. From the viewpoint of achieving both impregnability of the insulating varnish composition and miniaturization of the air bubbles 16 in the cured insulating varnish 14, the weight average molecular weight is more preferably 5,000 or more and less than 20,000.
  • the amount of the high molecular weight material having a weight average molecular weight of 2000 or more contained in the thermosetting resin 15 is preferably 20 parts by mass or more and less than 90 parts by mass with respect to 100 parts by mass of the thermosetting resin 15 .
  • the blending amount of the high molecular weight material having a weight average molecular weight of 2000 or more is within the above range, the impregnating property of the insulating varnish composition and the occurrence of partial discharge between the electric wires 11 due to the air bubbles 16 in the insulating varnish cured product 14 are improved. It is possible to achieve both the effect of suppressing
  • the unsaturated polyester resin is composed of a main component mainly composed of an unsaturated polyester component having an average molecular weight of 2000 or more having two or more unsaturated bond sites in the molecule, and a reactive diluent added in an arbitrary ratio. Obtained by mixing.
  • the type of the unsaturated polyester component is not particularly limited as long as it can be obtained by polymerizing an unsaturated polybasic acid or its anhydride, a polyhydric alcohol, and an optional saturated polybasic acid or its anhydride. It is possible to use an appropriately selected one from among known unsaturated polyester components without using any other component.
  • unsaturated polybasic acids or anhydrides thereof include maleic anhydride, maleic acid, fumaric acid, citraconic acid, itaconic acid, and methylcyclohexene-1,2-dicarboxylic anhydride. These unsaturated polybasic acids may be used alone or in combination of two or more.
  • polyhydric alcohols examples include ethylene glycol, propylene glycol, butanediol, diethylene glycol, dipropylene glycol, triethylene glycol, pentanediol, hexanediol, and bisphenol A. These polyhydric alcohols may be used alone or in combination of two or more.
  • saturated polybasic acids or anhydrides thereof include isophthalic acid, phthalic acid, phthalic anhydride, terephthalic acid, succinic acid, adipic acid, sebacic acid, 2,6-naphthalene dicarboxylic acid, bicyclo [2.2.1 ] and heptane-2,3-dicarboxylic anhydride. These saturated polybasic acids may be used alone or in combination of two or more.
  • the reactive diluent is blended for the purpose of improving the impregnating property of the insulating varnish composition and forming a crosslinked structure, so it has a lower viscosity than the unsaturated polyester component and has one radically polymerizable group in the molecule.
  • the type of the diluent is not particularly limited as long as it is a diluent, and the diluent may be appropriately selected from known reactive diluents.
  • Reactive diluents include, for example, styrene, vinyl toluene, hydroxyethyl methacrylic acid, diethylene glycol monovinyl ether. These reactive diluents may be used alone or in combination of two or more.
  • the amount of the reactive diluent is not particularly limited, but from the viewpoint of the balance between the adhesiveness and the low viscosity of the insulating varnish composition, 40 parts by mass to 250 parts by mass with respect to 100 parts by mass of the unsaturated polyester component. parts by weight, more preferably 60 to 200 parts by weight. If the reactive diluent exceeds 250 parts by mass, the adhesiveness of the insulating varnish composition may significantly deteriorate. On the other hand, when the amount of the reactive diluent is less than 40 parts by mass, the effect of reducing the viscosity of the insulating varnish composition due to the addition of the reactive diluent may not be sufficiently obtained.
  • a polymerization initiator may be added to the unsaturated polyester resin.
  • the type of the polymerization initiator is not particularly limited as long as it is a compound that generates radicals by heating or the like and has the action of promoting the cross-linking reaction. good.
  • the polymerization initiator it is preferable to use an organic peroxide having a 1-minute half-life temperature of 180° C. or less. Examples of such organic peroxides include methyl ethyl ketone peroxide, benzoyl peroxide, dicumyl peroxide, and t-butyl peroxide. These polymerization initiators may be used alone or in combination of two or more. If an organic peroxide having a 1-minute half-life temperature higher than 180° C.
  • the amount of the polymerization initiator to be blended is not particularly limited, but is preferably 0.1 to 10 parts by mass with respect to a total of 100 parts by mass of the unsaturated polyester component and the reactive diluent, and 0.5 parts by mass. It is more preferably from 1 part by mass to 5 parts by mass. If the amount of the polymerization initiator is less than 0.1 parts by mass, the crosslink density may be low, and the strength and chemical resistance of the cured insulating varnish 14 may be lowered. On the other hand, if the blending amount of the polymerization initiator is more than 10 parts by mass, the usable life of the thermosetting resin 15 before curing may be significantly shortened.
  • Epoxy resin is obtained by mixing epoxy resin, which is the main agent, with a curing agent.
  • the type of the epoxy resin is not particularly limited as long as it has an epoxy group in the molecule, and it may be appropriately selected from known epoxy resins and used.
  • Examples of epoxy resins include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol E type epoxy resin, biphenol type epoxy resin, phenol novolac type epoxy resin, cresol novolak type epoxy resin, alicyclic epoxy resin, and aliphatic epoxy resin.
  • Examples include chain epoxy resins and glycidylamine type epoxy resins. These epoxy resins may be used alone or in combination of two or more.
  • an epoxy resin that has been self-polymerized in advance may be used.
  • the type of the curing agent is not particularly limited as long as it can cure the epoxy resin, and it may be appropriately selected from known curing agents and used.
  • curing agents include acid anhydride-based curing agents and amine-based curing agents.
  • acid anhydride curing agents include bicyclo[2.2.1]heptane-2,3-dicarboxylic anhydride, methyl-5-norbornene-2,3-dicarboxylic anhydride, methylcyclohexene-1, 2-dicarboxylic anhydrides are mentioned.
  • Amine curing agents include triethylenetetramine, 4,4'-diaminodiphenylmethane, and methylcyclohexylamine as primary and secondary amines, and N,N-benzyldimethylamine, dimethylaniline, and diaza as tertiary amines. Bicycloundecene can be mentioned. These curing agents may be used alone or in combination of two or more.
  • the amount of the acid anhydride-based curing agent is preferably 30 parts by mass to 150 parts by mass, more preferably 50 parts by mass to 100 parts by mass, per 100 parts by mass of the epoxy compound.
  • the amount of the primary and secondary amine curing agents is preferably 10 parts by mass to 50 parts by mass and 20 parts by mass to 40 parts by mass with respect to 100 parts by mass of the epoxy compound. is more preferable. Further, the amount of the tertiary amine-based curing agent is preferably 0.1 to 5 parts by mass, more preferably 0.2 to 3 parts by mass, with respect to 100 parts by mass of the epoxy compound. is more preferable. When the blending amount of each curing agent is within the range described above, it is possible to obtain a cured insulating varnish 14 having high electrical properties and mechanical properties.
  • a curing accelerator may be added to the epoxy resin.
  • a curing accelerator is a compound that has the effect of accelerating the cross-linking reaction between the epoxy compound and the curing agent.
  • the curing accelerator is not particularly limited as long as it is generally used as a curing accelerator for epoxy resins, and may be appropriately selected from known curing accelerators and used.
  • the curing accelerator for example, imidazole-based curing accelerators and tertiary amine-based curing accelerators are preferable. These curing accelerators may be used alone or in combination of two or more.
  • a vinyl ester resin is obtained by mixing a main component mainly composed of a vinyl ester component with an average molecular weight of 2000 or more, which has unsaturated bond sites at both ends of the molecule, and a reactive diluent.
  • the vinyl ester component is not particularly limited as long as it can be obtained by an addition reaction between an arbitrary epoxy resin and an unsaturated carboxylic acid, and can be appropriately selected from known vinyl ester resins. good.
  • the structure of the epoxy resin used as the raw material of the vinyl ester resin is not particularly limited as long as it has at least two epoxy groups in the molecule.
  • examples of such epoxy resins include epoxy resins having skeletons such as bisphenol A, bisphenol F, cresol novolac, and phenol novolac, which are described in the section on epoxy resins. These epoxy resins may be used alone or in combination of two or more. Moreover, in order to make the average molecular weight of the resin component before curing 2000 or more, an epoxy resin that has been self-polymerized in advance may be used.
  • the structure of the unsaturated carboxylic acid is not particularly limited as long as it has one unsaturated bond site and a carboxyl group in the molecule at the same time.
  • unsaturated carboxylic acids include acrylic acid and methacrylic acid. These unsaturated carboxylic acids may be used alone or in combination of two or more.
  • an unsaturated carboxylic acid obtained by addition reaction of acrylic acid with an epoxy compound it is possible to use an unsaturated carboxylic acid obtained by addition reaction of acrylic acid with an epoxy compound. preferable.
  • the compounds described in the unsaturated polyester resin section can be used with the same composition.
  • a polymerization initiator may be added to the vinyl ester resin.
  • the compounds described in the section of the unsaturated polyester resin can be used in the same composition.
  • the bubble-forming component is a liquid with a vapor pressure of 1 mmHg or more and less than 80 mmHg in the standard gas state.
  • the bubble-forming component is sequentially vaporized with the curing reaction of the thermosetting resin 15 to form closed cells in the cured insulating varnish 14, and then the bubble-forming component evaporates to prevent the liquid from remaining in the cured insulating varnish 14 .
  • a liquid having a vapor pressure of 80 mmHg or higher is used as the bubble-forming component, the gasification of the bubble-forming component progresses before the curing of the thermosetting resin 15 starts. cause an increase in diameter.
  • the bubble-forming component when a liquid having a vapor pressure of less than 1 mmHg is used as the bubble-forming component, the bubble-forming component does not vaporize even at around the highest temperature of the curing reaction of the thermosetting resin 15 . cannot be formed.
  • the bubble-forming component should be a liquid having a vapor pressure of 5 mmHg or more and less than 40 mmHg in the standard gas state. is more preferred.
  • the type of the bubble-forming component is not particularly limited as long as it does not interfere with the curing reaction of the thermosetting resin 15, and may be appropriately selected from known bubble-forming components.
  • Hydrocarbon-based solvents, ketone-based solvents, ester-based solvents, alcohol-based solvents, and amide-based solvents are suitable as the bubble-forming component, for example.
  • Hydrocarbon solvents include, for example, normal heptane, toluene, xylene, and cyclohexane.
  • Ketone solvents include, for example, methyl isobutyl ketone, diisobutyl ketone, cyclopentanone, and cyclohexanone.
  • ester solvents include butyl acetate and ethylene glycol monomethyl ether acetate.
  • alcoholic solvents include propanol, butanol, and diethylene glycol.
  • amide solvents include N,N-dimethylformamide and N,N-dimethylacetamide.
  • the normal boiling point of the bubble-forming component is about the same as the 1-minute half-life temperature of the polymerization initiator added to the thermosetting resin 15 in order to simultaneously proceed with the vaporization of the bubble-forming component and the curing of the thermosetting resin 15. is preferred.
  • the amount of the bubble-forming component to be added is preferably 10 to 50 parts by mass, more preferably 20 to 40 parts by mass, with respect to 100 parts by mass as the total amount of the thermosetting resin component and the reactive diluent. It is more preferable to have If the air bubble-forming component is less than 10 parts by mass, the vaporization amount is small and a sufficient number of air bubbles 16 cannot be formed in the cured insulating varnish 14 . On the other hand, when the air bubble-forming component is more than 50 parts by mass, the strength and toughness of the cured insulating varnish 14 tend to decrease.
  • the insulating varnish composition contains a flame retardant, a flame retardant aid, a reinforcing agent, an antioxidant, a light stabilizer, an antistatic agent, a foaming nucleating agent, an antifoaming agent, an interface
  • Known additives such as activators, glass fibers, ceramic fibers, carbon fibers, stabilizers and colorants may be incorporated. When these additives are added, the effect of improving the heat resistance, mechanical strength, etc. of the insulating varnish composition can be obtained.
  • the above additives may be used alone, or two or more of them may be mixed and used.
  • a method of manufacturing the coil 10 includes a mixing process, a preheating process, an air cooling process, an impregnation process, a drip removal process, and a curing and drying process. It should be noted that these steps are examples and are not intended to limit the method of manufacturing the coil 10 .
  • thermosetting resin 15 containing at least one resin selected from unsaturated polyester resins containing high molecular weight substances having a weight average molecular weight of 2000 or more, epoxy resins and vinyl ester resins, and vapor in the standard gas state.
  • This is a step of mixing a liquid foam-forming component with a pressure of 1 mmHg or more and less than 80 mmHg and various additives.
  • the mixing method is not particularly limited, and may be appropriately selected from known mixing methods. For example, a machine such as a stirrer may be used to uniformly mix the thermosetting resin 15, the bubble forming component, and various additives.
  • the mixing step results in an insulating varnish composition.
  • the preheating step is a step of heating the coil 10 before impregnation shown in FIG. 2 at a predetermined temperature.
  • the air-cooling step is a step of cooling the coil 10 heated in the preheating step to a predetermined temperature in order to suppress the temperature rise of the insulating varnish composition in the impregnating step.
  • the impregnation step is a step of impregnating the coil 10 cooled in the air cooling step with the insulating varnish composition.
  • a method for impregnating the insulating varnish composition is not particularly limited, and may be appropriately selected from known methods. Examples of the method for impregnating the insulating varnish composition include an immersion method (dipping method) in which the coil 10 is immersed in an impregnation tank containing the insulating varnish composition, and a drip impregnation method in which the insulating varnish composition is dripped onto the coil 10 (dripping method). law). If a drop impregnation method is used, the coil 10 may be preheated prior to beginning the impregnation process. In addition, the impregnation of the insulating varnish composition into the coil 10 can be divided into multiple times by either the dipping method or the dripping impregnation method.
  • the drip removal process is a process for dripping unnecessary insulating varnish composition adhering to the side surfaces of the coil 10 during the impregnation process.
  • the curing and drying process is a process of heating and curing the insulating varnish composition with which the coil 10 is impregnated.
  • the thermosetting resin 15 is cured and the bubble-forming component is vaporized to form a cured insulating varnish 14 containing fine bubbles 16 shown in FIG.
  • the insulating varnish cured product 14 adheres to the coil 10 and fills the gap G between the adjacent electric wires 11 . Thereby, the coil 10 with electrical insulation is obtained.
  • a method for curing the insulating varnish composition is not particularly limited, and may be appropriately selected from known methods.
  • the insulating varnish composition may be cured by heating using a closed curing furnace, a tunnel furnace capable of continuous curing, an electric heating facility, or the like.
  • the heating temperature of the insulating varnish composition is not particularly limited, but is generally 80°C to 200°C, preferably 130°C to 180°C. If the heating temperature of the insulating varnish composition is less than 80°C, curing of the insulating varnish composition may be insufficient. In addition, when the heating temperature of the insulating varnish composition is higher than 200 ° C., the possibility of deterioration and decomposition of the insulating varnish, the interphase paper, the insulator 9, etc., which are the resin parts that electrically insulate the coil 10, increases. .
  • the curing speed of the insulating varnish composition and the amount of the insulating varnish composition adhered to the coil 10 differ depending on the composition of the insulating varnish composition. Therefore, the heating time of the insulating varnish composition may be appropriately set according to the composition of the insulating varnish composition, and is generally 5 minutes to 6 hours. , preferably 20 minutes to 4 hours, more preferably 30 minutes to 2 hours.
  • the coil 10 with sufficient electrical insulation can be obtained.
  • the coil 10 is impregnated with the insulating varnish composition, and the insulating varnish composition is cured by heating at 130 ° C. to 180 ° C. for 5 minutes to 2 hours to form a coil with the insulating varnish cured product 14 containing fine bubbles 16. Since the gap G between the wires 11 of 10 can be filled, the effect of suppressing the occurrence of partial discharge between the adjacent wires 11, the heat resistance of the coil 10, and the reinforcing performance of the coil 10 can be improved.
  • all the air bubbles 16 contained in the cured insulating varnish 14 are preferably independent air bubbles.
  • the maximum bubble diameter is preferably 10 ⁇ m or less, and more preferably 5 ⁇ m or less.
  • the electrical properties, particularly the effect of suppressing the occurrence of partial discharge in the bubbles 16 is enhanced.
  • the minimum diameter of the air bubbles 16 is not particularly limited, it is preferably 0.1 ⁇ m or more.
  • the size of the air bubbles 16 can be measured by observing the cross section of the cured insulating varnish 14 with a scanning electron microscope (SEM).
  • the diameter of each of ten arbitrarily selected bubbles 16 is measured, and the diameter of each bubble is measured.
  • the cross-sectional shape of the bubble 16 may be circular, elliptical, or rectangular, for example.
  • the diameter of the circle is the diameter of the bubble.
  • the diameter is the major axis of the ellipse.
  • the length of the line connecting the diagonal corners of the rectangle is taken as the diameter of the bubble.
  • the insulating varnish composition that is the base of the insulating varnish cured product 14 is at least one of unsaturated polyester resin, epoxy resin and vinyl ester resin containing a high molecular weight substance having a weight average molecular weight of 2000 or more. It comprises a thermosetting resin 15 containing a resin, and a liquid bubble-forming component having a vapor pressure of 1 mmHg or more and less than 80 mmHg in a gas standard state.
  • the relative dielectric constant of the cured insulating varnish 14 can be reduced, the partial discharge inception voltage of the cured insulating varnish 14 can be increased, and the occurrence of partial discharge between adjacent electric wires 11 can be suppressed.
  • the air bubbles 16 contained in the cured insulating varnish 14 can be made finer, the occurrence of partial discharge in the air bubbles 16 in the cured insulating varnish 14 can be suppressed.
  • the bubble-forming component is a liquid, it is possible to enhance the ability of the coil 10 to be impregnated with the insulating varnish composition.
  • thermosetting resin 15 contains a polymerization initiator having a one-minute half-life temperature of 180° C. or less, so that the bubbles 16 can be formed at a temperature of 200° C. or less, which is suitable for the curing conditions of the insulating varnish composition. Insulating varnish cured product 14 containing can be produced.
  • the bubble-forming component is a liquid containing at least one of a hydrocarbon solvent, a ketone solvent, an ester solvent, an alcohol solvent, a phenol solvent, and an amide solvent. While facilitating the formation of air bubbles 16 during curing of the composition, the air bubbles 16 can be made finer.
  • the average diameter of the air bubbles 16 contained in the cured insulating varnish 14 is within the range of 0.1 ⁇ m to 10 ⁇ m.
  • the effect of reducing the dielectric constant of the object 14 can be compatible. Therefore, it is possible to cope with an increase in the current supplied to the coil 10 as the output of the coil 10 is improved.
  • the insulating varnish composition of the present disclosure was used for the insulation of the coil 10 of the rotating machine 1.
  • a varnish composition may also be used.
  • Unsaturated polyester resin Unsaturated polyester resin A: Unsaturated polyester resin prepared by condensation polymerization of 30 parts by mass of maleic acid, 20 parts by mass of isophthalic acid and 50 parts by mass of propylene glycol by a known method so as to have a polymerization average molecular weight of about 5000.
  • Polyester resin B Unsaturated polyester resin prepared by condensation polymerization of 30 parts by mass of maleic acid, 20 parts by mass of isophthalic acid and 50 parts by mass of propylene glycol by a known method so as to have a polymerization average molecular weight of about 8000
  • Unsaturated polyester resin C Unsaturated polyester resin prepared by subjecting 30 parts by mass of maleic acid, 20 parts by mass of isophthalic acid, and 50 parts by mass of propylene glycol to condensation polymerization by a known method so as to have a polymerization average molecular weight of about 2000
  • Unsaturated polyester resin D Unsaturated polyester resin prepared by condensation polymerization of 30 parts by mass of maleic acid, 20 parts by mass of isophthalic acid and 50 parts by mass of propylene glycol by a known method so as to have a polymerization average molecular weight of about 1000
  • Reactive diluent Styrene Polymerization initiation Agent: benzoyl peroxide
  • Epoxy resin A linear epoxy resin prepared by alternately copolymerizing bisphenol A diglycidyl ether (manufactured by Mitsubishi Chemical Corporation: jER828) and bisphenol A by a known method so as to have a polymerization average molecular weight of about 5000
  • Curing agent Bicyclo [2.2.1] Heptane-2,3-dicarboxylic anhydride
  • Curing accelerator 2-ethyl-4-methylimidazole
  • Vinyl ester component Bisphenol A diglycidyl ether (manufactured by Mitsubishi Chemical Corporation: jER828) and bisphenol A are alternately copolymerized by a known method, and the ends are modified with methacrylic acid so that the polymerization average molecular weight is about 5000.
  • Bisphenol A type vinyl ester resin prepared in Reactive diluent Styrene Polymerization initiator: Benzoyl peroxide
  • Example 1 By uniformly mixing 100 parts by mass of unsaturated polyester resin A, 80 parts by mass of a reactive diluent, 2 parts by mass of a polymerization initiator, and 50 parts by mass of 2-propanol, the insulating varnish composition according to Example 1 got
  • Example 2 By uniformly mixing 100 parts by mass of unsaturated polyester resin A, 80 parts by mass of reactive diluent, 2 parts by mass of polymerization initiator, and 50 parts by mass of methyl isobutyl ketone, the insulating varnish composition according to Example 2 was prepared. got
  • Example 3 An insulating varnish composition according to Example 3 was obtained by uniformly mixing 100 parts by mass of unsaturated polyester resin A, 80 parts by mass of a reactive diluent, 2 parts by mass of a polymerization initiator, and 50 parts by mass of xylene. rice field.
  • Example 4 An insulating varnish composition according to Example 4 was obtained by uniformly mixing 100 parts by mass of unsaturated polyester resin A, 80 parts by mass of a reactive diluent, 2 parts by mass of a polymerization initiator, and 50 parts by mass of cyclohexanone. rice field.
  • Example 5 An insulating varnish composition according to Example 5 was obtained by uniformly mixing 100 parts by mass of the unsaturated polyester resin B, 80 parts by mass of the reactive diluent, 2 parts by mass of the polymerization initiator, and 50 parts by mass of xylene. rice field.
  • Example 6 An insulating varnish composition according to Example 6 was obtained by uniformly mixing 100 parts by mass of unsaturated polyester resin C, 80 parts by mass of a reactive diluent, 2 parts by mass of a polymerization initiator, and 50 parts by mass of xylene. rice field.
  • Example 7 An insulating varnish composition according to Example 7 was obtained by uniformly mixing 100 parts by mass of an epoxy compound, 80 parts by mass of a curing agent, 2 parts by mass of a curing accelerator, and 50 parts by mass of xylene.
  • Example 8 An insulating varnish composition according to Example 8 was obtained by uniformly mixing 100 parts by mass of a vinyl ester component, 80 parts by mass of a reactive diluent, 2 parts by mass of a polymerization initiator, and 50 parts by mass of xylene. .
  • Comparative example 1 An insulating varnish composition according to Comparative Example 1 was obtained by uniformly mixing 100 parts by mass of unsaturated polyester resin A, 80 parts by mass of a reactive diluent, 2 parts by mass of a polymerization initiator, and 50 parts by mass of tetrahydrofuran. rice field.
  • Comparative example 2 By uniformly mixing 100 parts by mass of the unsaturated polyester resin A, 80 parts by mass of the reactive diluent, 2 parts by mass of the polymerization initiator, and 50 parts by mass of ethyl acetate, the insulating varnish composition according to Comparative Example 2 was prepared. Obtained.
  • Comparative Example 4 By uniformly mixing 100 parts by mass of the unsaturated polyester resin A, 80 parts by mass of the reactive diluent, 2 parts by mass of the polymerization initiator, and 50 parts by mass of ethylene glycol, the insulating varnish composition according to Comparative Example 4 was prepared. Obtained.
  • Comparative Example 5 An insulating varnish composition according to Comparative Example 5 was obtained by uniformly mixing 100 parts by mass of unsaturated polyester resin D, 80 parts by mass of a reactive diluent, 2 parts by mass of a polymerization initiator, and 50 parts by mass of xylene. rice field.
  • the dielectric constant of the cured insulating varnish was calculated by sandwiching the cured insulating varnish between two flat electrodes and measuring the capacitance. A dielectric constant obtained under the conditions of a temperature of 25° C. and a frequency of 1 kHz was evaluated as good when it was 3.0 or less, and as unsatisfactory when it was higher than 3.0.
  • the weight average molecular weight contained in the thermosetting resin is 2000 or more, and the vapor pressure of the air bubble-forming component gas under standard conditions is in the range of 4 mmHg to 40 mmHg. No. 8 was good in the evaluation items of the presence or absence of microbubbles contained in the cured insulating varnish and the dielectric constant.
  • Comparative Examples 1 to 4 since the vapor pressure of the gas of the bubble-forming component in the standard state was outside the range of 1 mmHg to 80 mmHg, fine bubbles could not be formed in the insulating varnish cured product, and the insulating varnish The effect of lowering the dielectric constant of the cured product was not sufficiently obtained.
  • Comparative Example 5 since the weight average molecular weight contained in the thermosetting resin was 1000, an increase in cell diameter in the cured insulating varnish was confirmed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Insulating Materials (AREA)
  • Insulation, Fastening Of Motor, Generator Windings (AREA)

Abstract

This insulating varnish composition comprises: a thermosetting resin (15) which contains at least one resin that is selected from among an epoxy resin, a vinyl ester resin, and an unsaturated polyester resin that contains a high molecular weight material having a weight average molecular weight of 2,000 or more; and an air bubble-forming component which is in a liquid state, and a gas of which has a vapor pressure of 1 mmHg or more but less than 80 mmHg in a standard state.

Description

絶縁ワニス組成物、絶縁ワニス硬化物、コイルおよびコイルの製造方法Insulating varnish composition, cured insulating varnish, coil, and method for producing coil
 本開示は、絶縁ワニス組成物、この絶縁ワニス組成物を硬化させた絶縁ワニス硬化物、この絶縁ワニス硬化物を備えるコイルおよびコイルの製造方法に関する。 The present disclosure relates to an insulating varnish composition, a cured insulating varnish obtained by curing this insulating varnish composition, a coil comprising this cured insulating varnish, and a method for manufacturing a coil.
 従来、電動機、発電機、圧縮機などの回転機は、ステータコアに電線が巻き付けられて形成されたコイルを備えている。このようなコイルでは、コイルの電気絶縁性の確保、電線の保護および電線のステータコアへの固着を図るために、電線の自己融着化、モールド樹脂成型、絶縁ワニス処理などが行われている。このうち絶縁ワニス処理では、コイルの電線間の間隙に絶縁ワニス組成物を含浸する必要があるため、低粘度の熱硬化性樹脂を含んだ絶縁ワニス組成物が広く用いられている。  Conventionally, rotating machines such as electric motors, generators, and compressors have coils formed by winding electric wires around a stator core. In such a coil, in order to ensure electrical insulation of the coil, protect the wire, and fix the wire to the stator core, self-bonding of the wire, mold resin molding, insulating varnish treatment, etc. are performed. Of these, in the insulating varnish treatment, it is necessary to impregnate the gaps between the electric wires of the coil with the insulating varnish composition, so an insulating varnish composition containing a low-viscosity thermosetting resin is widely used.
 絶縁ワニス組成物には、コイルの電線間の間隙への含浸性が求められる。一方で、絶縁ワニス組成物を加熱して硬化させることにより作製される絶縁ワニス硬化物には、コイルの電線間で発生する部分放電による絶縁破壊を防ぐ特性が求められる。コイルの電線間における部分放電の発生を抑制する方法として、一般には電線の絶縁皮膜層の厚膜化および電線間の距離の増大が有効とされているが、いずれも回転機の出力の低下を招く可能性がある。 The insulating varnish composition is required to impregnate the gaps between the wires of the coil. On the other hand, the cured insulating varnish produced by heating and curing the insulating varnish composition is required to have the property of preventing dielectric breakdown due to partial discharge occurring between wires of a coil. As a method for suppressing the occurrence of partial discharge between the wires of a coil, it is generally considered effective to increase the thickness of the insulation coating layer of the wires and increase the distance between the wires, but both of these methods reduce the output of the rotating machine. may invite.
 回転機の出力の低下を招くことなく、コイルの電線間における部分放電の発生を抑制する技術として、絶縁ワニス硬化物中に気泡を形成することにより絶縁ワニス硬化物の比誘電率を低減させて絶縁ワニス硬化物の部分放電開始電圧(PDIV:Partial Discharge Inception Voltage)を高める技術が開発されている。例えば、特許文献1には、熱硬化性樹脂にマイクロカプセル型発泡剤を添加することにより、気泡を含んだ絶縁ワニス硬化物を得る技術が開示されている。 As a technology for suppressing the occurrence of partial discharge between the wires of the coil without causing a decrease in the output of the rotating machine, the dielectric constant of the cured insulating varnish is reduced by forming air bubbles in the cured insulating varnish. Techniques for increasing the partial discharge inception voltage (PDIV: Partial Discharge Inception Voltage) of cured insulating varnish have been developed. For example, Patent Literature 1 discloses a technique for obtaining a cured insulating varnish containing air bubbles by adding a microcapsule-type foaming agent to a thermosetting resin.
特開2020-33433号公報Japanese Patent Application Laid-Open No. 2020-33433
 絶縁ワニス硬化物に含まれる気泡の大きさが大きいほど、気泡において部分放電が発生しやすくなるため、絶縁ワニス硬化物の絶縁破壊が発生しやすくなる。しかし、特許文献1では、気泡の微細化を図ることについて考慮されていないため、気泡における部分放電の発生を抑制する効果が十分でない可能性がある。 The larger the size of the air bubbles contained in the cured insulating varnish, the easier it is for partial discharge to occur in the air bubbles, and the more likely it is for dielectric breakdown to occur in the cured insulating varnish. However, since Patent Literature 1 does not consider miniaturization of bubbles, the effect of suppressing the occurrence of partial discharge in bubbles may not be sufficient.
 本開示は、上記に鑑みてなされたものであって、絶縁ワニス硬化物中の気泡における部分放電の発生を抑制することができる絶縁ワニス組成物を得ることを目的とする。 The present disclosure has been made in view of the above, and aims to obtain an insulating varnish composition that can suppress the occurrence of partial discharge in air bubbles in a cured insulating varnish.
 上述した課題を解決し、目的を達成するために、本開示にかかる絶縁ワニス組成物は、重量平均分子量が2000以上の高分子量体を含有する不飽和ポリエステル樹脂、エポキシ樹脂およびビニルエステル樹脂のうち少なくとも1つの樹脂を含む熱硬化性樹脂と、気体の標準状態における蒸気圧が1mmHg以上80mmHg未満であって液体の気泡形成成分と、を備える。 In order to solve the above-described problems and achieve the object, the insulating varnish composition according to the present disclosure includes unsaturated polyester resins, epoxy resins, and vinyl ester resins containing high molecular weight substances having a weight average molecular weight of 2000 or more. A thermosetting resin containing at least one resin, and a liquid bubble-forming component having a vapor pressure of 1 mmHg or more and less than 80 mmHg in a gas standard state.
 本開示によれば、絶縁ワニス硬化物中の気泡における部分放電の発生を抑制することができるという効果を奏する。 According to the present disclosure, it is possible to suppress the occurrence of partial discharge in air bubbles in the cured insulating varnish.
実施の形態1にかかる回転機を中心軸に沿って切った断面図Sectional drawing which cut the rotary machine concerning Embodiment 1 along the central axis 実施の形態1にかかる回転機を中心軸と直交する方向で切った断面図であって、ステータを示した部分拡大断面図FIG. 2 is a cross-sectional view of the rotating machine according to the first embodiment cut in a direction perpendicular to the central axis, and is a partially enlarged cross-sectional view showing the stator; 実施の形態1にかかる電線および絶縁ワニス硬化物を模式的に示した部分拡大断面図FIG. 2 is a partially enlarged cross-sectional view schematically showing the electric wire and the cured insulating varnish according to the first embodiment;
 以下に、実施の形態にかかる絶縁ワニス組成物、絶縁ワニス硬化物、コイルおよびコイルの製造方法を図面に基づいて詳細に説明する。 The insulating varnish composition, the cured insulating varnish, the coil, and the method for manufacturing the coil according to the embodiment will be described below in detail with reference to the drawings.
実施の形態1.
 図1は、実施の形態1にかかる回転機1を中心軸Cに沿って切った断面図である。回転機1は、ステータ2と、ロータ3と、シャフト4と、フレーム5と、2つのブラケット6とを備える。ステータ2は、中心軸Cを有する円筒形状に形成されている。以下、回転機1の各構成要素について方向を説明するときには、中心軸Cと平行な方向を軸方向、中心軸Cと直交する方向を半径方向、中心軸Cを中心とする回転方向を周方向とする。
Embodiment 1.
FIG. 1 is a cross-sectional view of a rotary machine 1 taken along a central axis C according to a first embodiment. A rotating machine 1 includes a stator 2 , a rotor 3 , a shaft 4 , a frame 5 and two brackets 6 . The stator 2 is formed in a cylindrical shape having a central axis C. As shown in FIG. Hereinafter, when describing the direction of each component of the rotating machine 1, the direction parallel to the central axis C is the axial direction, the direction perpendicular to the central axis C is the radial direction, and the direction of rotation about the central axis C is the circumferential direction. and
 ロータ3は、ステータ2の内側に配置されている。ステータ2とロータ3との間には、隙間が周方向の全周に亘って設けられている。ロータ3の中心には、シャフト4が連結されている。シャフト4とステータ2の中心軸Cとは、同軸に設けられている。ロータ3は、中心軸Cを回転軸として回転可能である。フレーム5は、回転機1の外郭を構成するとともに、ステータ2およびロータ3を収容する。フレーム5は、軸方向に沿った両端部が開口する円筒形状に形成されている。一方のブラケット6は、フレーム5の軸方向に沿った一端部の開口を塞ぐように配置されている。他方のブラケット6は、フレーム5の軸方向に沿った他端部の開口を塞ぐように配置されている。シャフト4の軸方向に沿った一端部は、一方のブラケット6に形成された孔6aを通じて、フレーム5の外部に突出している。 The rotor 3 is arranged inside the stator 2 . A gap is provided between the stator 2 and the rotor 3 over the entire circumferential direction. A shaft 4 is connected to the center of the rotor 3 . The shaft 4 and the central axis C of the stator 2 are provided coaxially. The rotor 3 is rotatable around the central axis C as a rotation axis. The frame 5 forms an outer shell of the rotating machine 1 and accommodates the stator 2 and the rotor 3 . The frame 5 is formed in a cylindrical shape that is open at both ends along the axial direction. One bracket 6 is arranged so as to close an opening at one end of the frame 5 along the axial direction. The other bracket 6 is arranged to block the opening at the other end of the frame 5 along the axial direction. One axial end of the shaft 4 protrudes outside the frame 5 through a hole 6 a formed in one bracket 6 .
 ステータ2は、複数枚の電磁鋼板が積層されて形成されたステータコア7と、ステータコア7に電線11が巻き付けられて形成されたコイル10とを備える。図2は、実施の形態1にかかる回転機1を中心軸Cと直交する方向で切った断面図であって、ステータ2を示した部分拡大断面図である。ステータコア7は、磁性体で形成された円筒形状のコアバック7aと、コアバック7aの内周面から半径方向内側に向かって突出するティース7bとを有する。図2では、1つのティース7bのみを図示しているが、実際には複数のティース7bが周方向に等角度で離隔して配置されている。隣り合うティース7bの間には、スロット8が形成されている。 The stator 2 includes a stator core 7 formed by laminating a plurality of electromagnetic steel sheets, and a coil 10 formed by winding an electric wire 11 around the stator core 7 . FIG. 2 is a cross-sectional view of the rotating machine 1 according to the first embodiment cut in a direction orthogonal to the central axis C, and is a partially enlarged cross-sectional view showing the stator 2. As shown in FIG. The stator core 7 has a cylindrical core back 7a made of a magnetic material and teeth 7b protruding radially inward from the inner peripheral surface of the core back 7a. Although only one tooth 7b is shown in FIG. 2, a plurality of teeth 7b are actually arranged at equal angles in the circumferential direction. Slots 8 are formed between adjacent teeth 7b.
 スロット8内には、インシュレータ9が設けられている。インシュレータ9は、ステータコア7とコイル10との間に配置されてステータコア7とコイル10とを電気的に絶縁する。インシュレータ9は、コアバック7aのうちスロット8に臨む面とティース7bのうちスロット8に臨む面とを覆っている。ティース7bには、インシュレータ9を介して電線11が巻き付けられてコイル10が形成されている。隣接する電線11間には、間隙Gが形成される。なお、ステータ2は、図示の例に限定されることなく、公知のステータの中から適宜選択して用いればよい。また、各スロット8において隣接するコイル10の間には、絶縁テープが配置されてもよいし、相間紙が配置されてもよい。 An insulator 9 is provided in the slot 8 . The insulator 9 is arranged between the stator core 7 and the coil 10 to electrically insulate the stator core 7 and the coil 10 from each other. The insulator 9 covers the surface of the core back 7a facing the slot 8 and the surface of the tooth 7b facing the slot 8. As shown in FIG. An electric wire 11 is wound around the tooth 7b via an insulator 9 to form a coil 10. As shown in FIG. A gap G is formed between adjacent electric wires 11 . Note that the stator 2 is not limited to the illustrated example, and may be appropriately selected from known stators and used. Moreover, an insulating tape may be arranged between adjacent coils 10 in each slot 8, or an interphase paper may be arranged.
 図3は、実施の形態1にかかる電線11および絶縁ワニス硬化物14を模式的に示した部分拡大断面図である。電線11は、導電性の導線12が絶縁被膜13で覆われた絶縁導線である。導線12の材質は、導電性を有すれば特に制限されないが、例えば、銅である。絶縁被膜13の材質は、電気絶縁性を有すれば特に制限されないが、例えば、ポリアミドイミドである。隣接する電線11間の間隙Gには、絶縁ワニス硬化物14が配置されている。 FIG. 3 is a partially enlarged sectional view schematically showing the electric wire 11 and the cured insulating varnish 14 according to the first embodiment. The electric wire 11 is an insulated wire in which a conductive wire 12 is covered with an insulating coating 13 . The material of the conducting wire 12 is not particularly limited as long as it has conductivity, and is, for example, copper. The material of the insulating coating 13 is not particularly limited as long as it has electrical insulation, and is, for example, polyamide-imide. A hardened insulating varnish 14 is placed in the gap G between adjacent electric wires 11 .
 絶縁ワニス硬化物14は、隣接する電線11間の間隙Gを埋めて、電線11間で発生する部分放電による電線11の絶縁破壊を防ぐ効果、電線11を保護する効果および電線11をステータコア7に固着する効果を発揮する。絶縁ワニス硬化物14は、熱硬化性樹脂15と、気泡16とを含有する。絶縁ワニス硬化物14は、絶縁ワニス組成物を加熱して硬化させることにより作製される。以下、絶縁ワニス硬化物14に用いられる絶縁ワニス組成物の成分について詳しく説明する。 The insulating varnish cured product 14 fills the gap G between the adjacent wires 11 to prevent dielectric breakdown of the wires 11 due to partial discharge occurring between the wires 11, protect the wires 11, and connect the wires 11 to the stator core 7. It has a sticking effect. The cured insulating varnish 14 contains a thermosetting resin 15 and air bubbles 16 . The insulating varnish cured product 14 is produced by heating and curing an insulating varnish composition. The components of the insulating varnish composition used for the cured insulating varnish 14 are described in detail below.
 絶縁ワニス組成物は、重量平均分子量が2000以上の高分子量体を含有する不飽和ポリエステル樹脂、エポキシ樹脂およびビニルエステル樹脂のうち少なくとも1つの樹脂を含む熱硬化性樹脂15と、気体の標準状態における蒸気圧が1mmHg以上80mmHg未満であって液体の気泡形成成分と、を備える。本明細書において、硬化前の熱硬化性樹脂15の重量平均分子量は、ゲル浸透クロマトグラフィー(GPC:Gel Permeation Chromatography)法などの従来公知の方法で測定可能な、相対的な平均分子量より求めることができる。また、本明細書において、気泡形成成分の蒸気圧とは、静止法、沸点法、示差走査熱量測定(DSC:Differential Scanning Calorimetry)法などの従来公知の方法で測定可能な、平衡蒸気圧を指す。本明細書に記載される気体の標準状態とは、基準温度を25℃、標準圧力を100kPaとする条件(SATP:Standard Ambient Temperature and Pressure)を想定している。 The insulating varnish composition contains a thermosetting resin 15 containing at least one of unsaturated polyester resin, epoxy resin, and vinyl ester resin containing a high molecular weight substance having a weight average molecular weight of 2000 or more, and a liquid bubble-forming component having a vapor pressure of 1 mmHg or more and less than 80 mmHg. In this specification, the weight average molecular weight of the thermosetting resin 15 before curing is determined from a relative average molecular weight that can be measured by a conventionally known method such as gel permeation chromatography (GPC). can be done. In this specification, the vapor pressure of the bubble-forming component refers to the equilibrium vapor pressure that can be measured by conventionally known methods such as static method, boiling point method, and differential scanning calorimetry (DSC) method. . The standard state of the gas described in this specification assumes the conditions of a standard temperature of 25° C. and a standard pressure of 100 kPa (SATP: Standard Ambient Temperature and Pressure).
 不飽和ポリエステル樹脂、エポキシ樹脂およびビニルエステル樹脂は、硬化前において電線11間の間隙Gへの絶縁ワニス組成物の含浸性を高める機能を発揮するとともに、硬化後において絶縁ワニス硬化物14の耐熱性、電気絶縁性およびステータコア7への固着力を高める機能を発揮する。絶縁ワニス組成物の主剤である熱硬化性樹脂15は、重量平均分子量が2000以上のオリゴマー、ポリマーなどを主成分とすることで、モノマーから硬化する場合と比較して硬化反応の進行に伴う増粘効果が早期に発生する。そのため、気泡形成成分の気化に伴い生じる気泡16を絶縁ワニス硬化物14の内部に固定化する効果が得られる。重量平均分子量が2000未満の場合には、熱硬化性樹脂15の増粘に時間を要するために、絶縁ワニス硬化物14中の気泡16の減少および気泡16の大径化が生じる。絶縁ワニス組成物の含浸性と、絶縁ワニス硬化物14中の気泡16の微細化とを両立させる観点から、重量平均分子量は5000以上20000未満であることがより好ましい。熱硬化性樹脂15に含まれる重量平均分子量が2000以上の高分子量体の配合量は、100質量部の熱硬化性樹脂15に対して、20質量部以上90質量部未満であることが好ましい。重量平均分子量が2000以上の高分子量体の配合量が前記した範囲内であれば、絶縁ワニス組成物の含浸性と、絶縁ワニス硬化物14中の気泡16による電線11間における部分放電の発生を抑制する効果とを両立させることができる。 Unsaturated polyester resin, epoxy resin, and vinyl ester resin exhibit the function of increasing impregnability of the insulating varnish composition into the gap G between the electric wires 11 before curing, and the heat resistance of the cured insulating varnish 14 after curing. , and exhibit the function of enhancing electrical insulation and adhesion to the stator core 7 . The main component of the thermosetting resin 15 of the insulating varnish composition is an oligomer or polymer having a weight-average molecular weight of 2000 or more. A viscous effect occurs early. Therefore, it is possible to obtain the effect of fixing the air bubbles 16 generated by the vaporization of the air bubble-forming component inside the cured insulating varnish 14 . If the weight-average molecular weight is less than 2000, it takes a long time to thicken the thermosetting resin 15, so the number of air bubbles 16 in the cured insulating varnish 14 decreases and the diameter of the air bubbles 16 increases. From the viewpoint of achieving both impregnability of the insulating varnish composition and miniaturization of the air bubbles 16 in the cured insulating varnish 14, the weight average molecular weight is more preferably 5,000 or more and less than 20,000. The amount of the high molecular weight material having a weight average molecular weight of 2000 or more contained in the thermosetting resin 15 is preferably 20 parts by mass or more and less than 90 parts by mass with respect to 100 parts by mass of the thermosetting resin 15 . If the blending amount of the high molecular weight material having a weight average molecular weight of 2000 or more is within the above range, the impregnating property of the insulating varnish composition and the occurrence of partial discharge between the electric wires 11 due to the air bubbles 16 in the insulating varnish cured product 14 are improved. It is possible to achieve both the effect of suppressing
 不飽和ポリエステル樹脂は、分子中に2つ以上の不飽和結合部位を有する平均分子量が2000以上の不飽和ポリエステル成分を主成分とする主剤と、任意の割合で添加される反応性希釈剤とを混合することで得られる。 The unsaturated polyester resin is composed of a main component mainly composed of an unsaturated polyester component having an average molecular weight of 2000 or more having two or more unsaturated bond sites in the molecule, and a reactive diluent added in an arbitrary ratio. Obtained by mixing.
 不飽和ポリエステル成分は、不飽和多塩基酸またはその無水物と、多価アルコールと、任意成分である飽和多塩基酸またはその無水物とを重合させて得られることができればその種類は特に限定されることなく、公知の不飽和ポリエステル成分の中から適宜選択して用いればよい。 The type of the unsaturated polyester component is not particularly limited as long as it can be obtained by polymerizing an unsaturated polybasic acid or its anhydride, a polyhydric alcohol, and an optional saturated polybasic acid or its anhydride. It is possible to use an appropriately selected one from among known unsaturated polyester components without using any other component.
 不飽和多塩基酸またはその無水物としては、例えば、無水マレイン酸、マレイン酸、フマル酸、シトラコン酸、イタコン酸、メチルシクロヘキセン-1,2-ジカルボン酸無水物が挙げられる。これらの不飽和多塩基酸は、それぞれ単独で使用されてもよいし、2種類以上が混合されて使用されてもよい。 Examples of unsaturated polybasic acids or anhydrides thereof include maleic anhydride, maleic acid, fumaric acid, citraconic acid, itaconic acid, and methylcyclohexene-1,2-dicarboxylic anhydride. These unsaturated polybasic acids may be used alone or in combination of two or more.
 多価アルコールとしては、例えば、エチレングリコール、プロピレングリコール、ブタンジオール、ジエチレングリコール、ジプロピレングリコール、トリエチレングリコール、ペンタンジオール、ヘキサンジオール、ビスフェノールAが挙げられる。これらの多価アルコールは、それぞれ単独で使用されてもよいし、2種類以上が混合されて使用されてもよい。 Examples of polyhydric alcohols include ethylene glycol, propylene glycol, butanediol, diethylene glycol, dipropylene glycol, triethylene glycol, pentanediol, hexanediol, and bisphenol A. These polyhydric alcohols may be used alone or in combination of two or more.
 飽和多塩基酸またはその無水物としては、例えば、イソフタル酸、フタル酸、無水フタル酸、テレフタル酸、コハク酸、アジピン酸、セバシン酸、2,6-ナフタレンジカルボン酸、ビシクロ[2.2.1]ヘプタン-2,3-ジカルボン酸無水物が挙げられる。これらの飽和多塩基酸は、それぞれ単独で使用されてもよいし、2種類以上が混合されて使用されてもよい。 Examples of saturated polybasic acids or anhydrides thereof include isophthalic acid, phthalic acid, phthalic anhydride, terephthalic acid, succinic acid, adipic acid, sebacic acid, 2,6-naphthalene dicarboxylic acid, bicyclo [2.2.1 ] and heptane-2,3-dicarboxylic anhydride. These saturated polybasic acids may be used alone or in combination of two or more.
 反応性希釈剤は、絶縁ワニス組成物の含浸性の向上と架橋構造形成とを目的に配合するため、不飽和ポリエステル成分よりも低粘度で、かつ、分子中に1つのラジカル重合性基を有するものであればその種類は特に限定されることなく、公知の反応性希釈剤の中から適宜選択して用いればよい。反応性希釈剤としては、例えば、スチレン、ビニルトルエン、ヒドロキシエチルメタクリル酸、ジエチレングリコールモノビニルエーテルが挙げられる。これらの反応性希釈剤は、それぞれ単独で使用されてもよいし、2種類以上が混合されて使用されてもよい。反応性希釈剤の配合量は、特に限定されないが、絶縁ワニス組成物の接着性と低粘度化とのバランスの観点から、100質量部の不飽和ポリエステル成分に対して、40質量部~250質量部の範囲内であることが好ましく、60質量部~200質量部の範囲であることがより好ましい。反応性希釈剤が250質量部を超えると、絶縁ワニス組成物の接着性が著しく低下する場合がある。一方、反応性希釈剤が40質量部未満であると、反応性希釈剤の添加による絶縁ワニス組成物の低粘度化の効果が十分に得られない場合がある。 The reactive diluent is blended for the purpose of improving the impregnating property of the insulating varnish composition and forming a crosslinked structure, so it has a lower viscosity than the unsaturated polyester component and has one radically polymerizable group in the molecule. The type of the diluent is not particularly limited as long as it is a diluent, and the diluent may be appropriately selected from known reactive diluents. Reactive diluents include, for example, styrene, vinyl toluene, hydroxyethyl methacrylic acid, diethylene glycol monovinyl ether. These reactive diluents may be used alone or in combination of two or more. The amount of the reactive diluent is not particularly limited, but from the viewpoint of the balance between the adhesiveness and the low viscosity of the insulating varnish composition, 40 parts by mass to 250 parts by mass with respect to 100 parts by mass of the unsaturated polyester component. parts by weight, more preferably 60 to 200 parts by weight. If the reactive diluent exceeds 250 parts by mass, the adhesiveness of the insulating varnish composition may significantly deteriorate. On the other hand, when the amount of the reactive diluent is less than 40 parts by mass, the effect of reducing the viscosity of the insulating varnish composition due to the addition of the reactive diluent may not be sufficiently obtained.
 不飽和ポリエステル樹脂には、重合開始剤が添加されてもよい。重合開始剤は、加熱などによってラジカルを発生し、架橋反応を促進する作用を有する化合物であれば、その種類は特に限定されることなく、公知の重合開始剤の中から適宜選択して用いればよい。特に、重合開始剤としては、1分間半減期温度が180℃以下の有機過酸化物を使用することが好ましい。このような有機過酸化物としては、例えば、メチルエチルケトンパーオキサイド、ベンゾイルパーオキサイド、ジクミルパーオキサイド、t-ブチルパーオキサイドが挙げられる。これらの重合開始剤は、それぞれ単独で使用されてもよいし、2種類以上が混合されて使用されてもよい。1分間半減期温度が180℃よりも高い有機過酸化物を使用すると、絶縁ワニス組成物の硬化速度が低下して気泡16を含む絶縁ワニス硬化物14が得られないか、あるいは、気泡16が大径化する可能性がある。重合開始剤の配合量は、特に限定されないが、不飽和ポリエステル成分と反応性希釈剤との合計100質量部に対して、0.1質量部~10質量部であることが好ましく、0.5質量部~5質量部であることがより好ましい。重合開始剤の配合量が0.1質量部未満であると、架橋密度が小さくなり、絶縁ワニス硬化物14の強度および耐薬品性が低下することがある。一方、重合開始剤の配合量が10質量部よりも多いと、硬化前の熱硬化性樹脂15の可使時間が著しく短くなることがある。 A polymerization initiator may be added to the unsaturated polyester resin. The type of the polymerization initiator is not particularly limited as long as it is a compound that generates radicals by heating or the like and has the action of promoting the cross-linking reaction. good. In particular, as the polymerization initiator, it is preferable to use an organic peroxide having a 1-minute half-life temperature of 180° C. or less. Examples of such organic peroxides include methyl ethyl ketone peroxide, benzoyl peroxide, dicumyl peroxide, and t-butyl peroxide. These polymerization initiators may be used alone or in combination of two or more. If an organic peroxide having a 1-minute half-life temperature higher than 180° C. is used, the curing speed of the insulating varnish composition is lowered and the insulating varnish cured product 14 containing air bubbles 16 cannot be obtained, or the air bubbles 16 are not formed. It may be enlarged. The amount of the polymerization initiator to be blended is not particularly limited, but is preferably 0.1 to 10 parts by mass with respect to a total of 100 parts by mass of the unsaturated polyester component and the reactive diluent, and 0.5 parts by mass. It is more preferably from 1 part by mass to 5 parts by mass. If the amount of the polymerization initiator is less than 0.1 parts by mass, the crosslink density may be low, and the strength and chemical resistance of the cured insulating varnish 14 may be lowered. On the other hand, if the blending amount of the polymerization initiator is more than 10 parts by mass, the usable life of the thermosetting resin 15 before curing may be significantly shortened.
 エポキシ樹脂は、主剤であるエポキシ樹脂と、硬化剤とを混合することで得られる。エポキシ樹脂は、分子中にエポキシ基を有すればその種類は特に限定されることなく、公知のエポキシ樹脂の中から適宜選択して用いればよい。エポキシ樹脂としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールE型エポキシ樹脂、ビフェノール型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、脂環式エポキシ樹脂、脂肪族鎖状エポキシ樹脂、グリシジルアミン型エポキシ樹脂が挙げられる。これらのエポキシ樹脂は、それぞれ単独で使用されてもよいし、2種類以上が混合されて使用されてもよい。また、硬化前の樹脂成分の重量平均分子量を2000以上とするために、事前に自己重合させたエポキシ樹脂が使用されてもよい。 Epoxy resin is obtained by mixing epoxy resin, which is the main agent, with a curing agent. The type of the epoxy resin is not particularly limited as long as it has an epoxy group in the molecule, and it may be appropriately selected from known epoxy resins and used. Examples of epoxy resins include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol E type epoxy resin, biphenol type epoxy resin, phenol novolac type epoxy resin, cresol novolak type epoxy resin, alicyclic epoxy resin, and aliphatic epoxy resin. Examples include chain epoxy resins and glycidylamine type epoxy resins. These epoxy resins may be used alone or in combination of two or more. Moreover, in order to make the weight average molecular weight of the resin component before curing 2000 or more, an epoxy resin that has been self-polymerized in advance may be used.
 硬化剤は、エポキシ樹脂を硬化できればその種類は特に限定されることなく、公知の硬化剤の中から適宜選択して用いればよい。硬化剤としては、例えば、酸無水物系硬化剤、アミン系硬化剤が挙げられる。酸無水物系硬化剤としては、例えば、ビシクロ[2.2.1]ヘプタン-2,3-ジカルボン酸無水物、メチル-5-ノルボルネン-2,3-ジカルボン酸無水物、メチルシクロヘキセン-1,2-ジカルボン酸無水物が挙げられる。アミン系硬化剤としては、第一級及び第二級アミンとしてトリエチレンテトラミン、4,4‘-ジアミノジフェニルメタン、メチルシクロヘキシルアミン、第三級アミンとしてN,N-ベンジルジメチルアミン、ジメチルアニリン、ジアザビシクロウンデセンが挙げられる。これらの硬化剤は、それぞれ単独で使用されてもよいし、2種類以上が混合されて使用されてもよい。酸無水物系硬化剤の配合量は、100質量部のエポキシ化合物に対して、30質量部~150質量部であることが好ましく、50質量部~100質量部であることがより好ましい。また、第一級および第二級アミン系硬化剤の配合量は、100質量部のエポキシ化合物に対して、10質量部~50質量部であることが好ましく、20質量部~40質量部であることがより好ましい。また、第三級アミン系硬化剤の配合量は、100質量部のエポキシ化合物に対して、0.1質量部~5質量部であることが好ましく、0.2質量部~3質量部であることがより好ましい。各種硬化剤の配合量が前記した範囲内であると、電気的特性および機械的特性が高い絶縁ワニス硬化物14を得ることができる。 The type of the curing agent is not particularly limited as long as it can cure the epoxy resin, and it may be appropriately selected from known curing agents and used. Examples of curing agents include acid anhydride-based curing agents and amine-based curing agents. Examples of acid anhydride curing agents include bicyclo[2.2.1]heptane-2,3-dicarboxylic anhydride, methyl-5-norbornene-2,3-dicarboxylic anhydride, methylcyclohexene-1, 2-dicarboxylic anhydrides are mentioned. Amine curing agents include triethylenetetramine, 4,4'-diaminodiphenylmethane, and methylcyclohexylamine as primary and secondary amines, and N,N-benzyldimethylamine, dimethylaniline, and diaza as tertiary amines. Bicycloundecene can be mentioned. These curing agents may be used alone or in combination of two or more. The amount of the acid anhydride-based curing agent is preferably 30 parts by mass to 150 parts by mass, more preferably 50 parts by mass to 100 parts by mass, per 100 parts by mass of the epoxy compound. The amount of the primary and secondary amine curing agents is preferably 10 parts by mass to 50 parts by mass and 20 parts by mass to 40 parts by mass with respect to 100 parts by mass of the epoxy compound. is more preferable. Further, the amount of the tertiary amine-based curing agent is preferably 0.1 to 5 parts by mass, more preferably 0.2 to 3 parts by mass, with respect to 100 parts by mass of the epoxy compound. is more preferable. When the blending amount of each curing agent is within the range described above, it is possible to obtain a cured insulating varnish 14 having high electrical properties and mechanical properties.
 エポキシ樹脂には、硬化促進剤が添加されてもよい。硬化促進剤は、エポキシ化合物と硬化剤との架橋反応を早める作用を有する化合物である。硬化促進剤としては、エポキシ樹脂用の硬化促進剤として一般的に使用されるものであればその種類は特に制限されることなく、公知の硬化促進剤の中から適宜選択して用いればよい。硬化促進剤としては、例えば、イミダゾール系硬化促進剤、第三級アミン系硬化促進剤が好ましい。これらの硬化促進剤は、それぞれ単独で使用されてもよいし、2種類以上が混合されて使用されてもよい。 A curing accelerator may be added to the epoxy resin. A curing accelerator is a compound that has the effect of accelerating the cross-linking reaction between the epoxy compound and the curing agent. The curing accelerator is not particularly limited as long as it is generally used as a curing accelerator for epoxy resins, and may be appropriately selected from known curing accelerators and used. As the curing accelerator, for example, imidazole-based curing accelerators and tertiary amine-based curing accelerators are preferable. These curing accelerators may be used alone or in combination of two or more.
 ビニルエステル樹脂は、分子の両末端に不飽和結合部位を有する平均分子量が2000以上のビニルエステル成分を主成分とする主剤と、反応性希釈剤とを混合することで得られる。ビニルエステル成分は、任意のエポキシ樹脂と不飽和カルボン酸との付加反応によって得られるものであれば、その種類は特に限定されることなく、公知のビニルエステル樹脂の中から適宜選択して用いればよい。 A vinyl ester resin is obtained by mixing a main component mainly composed of a vinyl ester component with an average molecular weight of 2000 or more, which has unsaturated bond sites at both ends of the molecule, and a reactive diluent. The vinyl ester component is not particularly limited as long as it can be obtained by an addition reaction between an arbitrary epoxy resin and an unsaturated carboxylic acid, and can be appropriately selected from known vinyl ester resins. good.
 ビニルエステル樹脂の原料として用いられるエポキシ樹脂は、分子中に少なくとも2個のエポキシ基を有すれば、その構造は特に限定されない。このようなエポキシ樹脂としては、例えば、前記のエポキシ樹脂の項で記載した、ビスフェノールA、ビスフェノールF、クレゾールノボラック、フェノールノボラック等の骨格を有するエポキシ樹脂が挙げられる。これらのエポキシ樹脂は、それぞれ単独で使用されてもよいし、2種類以上が混合されて使用されてもよい。また、硬化前の樹脂成分の平均分子量を2000以上とするために、事前に自己重合させたエポキシ樹脂が使用されてもよい。 The structure of the epoxy resin used as the raw material of the vinyl ester resin is not particularly limited as long as it has at least two epoxy groups in the molecule. Examples of such epoxy resins include epoxy resins having skeletons such as bisphenol A, bisphenol F, cresol novolac, and phenol novolac, which are described in the section on epoxy resins. These epoxy resins may be used alone or in combination of two or more. Moreover, in order to make the average molecular weight of the resin component before curing 2000 or more, an epoxy resin that has been self-polymerized in advance may be used.
 不飽和カルボン酸は、分子中に1つの不飽和結合部位とカルボキシル基とを同時に有すれば、その構造は特に限定されない。このような不飽和カルボン酸としては、例えば、アクリル酸、メタクリル酸が挙げられる。これらの不飽和カルボン酸は、それぞれ単独で使用されてもよいし、2種類以上が混合されて使用されてもよい。特に、高い硬化物特性と耐熱寿命とに加え、高い反応性により絶縁ワニス組成物の硬化時間を短縮できるという観点から、アクリル酸をエポキシ化合物と付加反応させた不飽和カルボン酸を使用することが好ましい。 The structure of the unsaturated carboxylic acid is not particularly limited as long as it has one unsaturated bond site and a carboxyl group in the molecule at the same time. Examples of such unsaturated carboxylic acids include acrylic acid and methacrylic acid. These unsaturated carboxylic acids may be used alone or in combination of two or more. In particular, from the viewpoint of shortening the curing time of the insulating varnish composition due to high reactivity in addition to high cured product properties and heat resistance life, it is possible to use an unsaturated carboxylic acid obtained by addition reaction of acrylic acid with an epoxy compound. preferable.
 反応性希釈剤には、前記の不飽和ポリエステル樹脂の項で記載した化合物を、同様の組成で使用することができる。また、ビニルエステル樹脂には、重合開始剤が添加されてもよい。重合開始剤には、前記の不飽和ポリエステル樹脂の項で記載した化合物を、同様の組成で使用することができる。 For the reactive diluent, the compounds described in the unsaturated polyester resin section can be used with the same composition. Moreover, a polymerization initiator may be added to the vinyl ester resin. As the polymerization initiator, the compounds described in the section of the unsaturated polyester resin can be used in the same composition.
 気泡形成成分は、気体の標準状態における蒸気圧が1mmHg以上80mmHg未満の液体である。このような液体を気泡形成成分として選択することにより、熱硬化性樹脂15の硬化反応に伴い気泡形成成分が順次気化して、絶縁ワニス硬化物14中に独立気泡を形成し、その後気泡形成成分の全量が気化して絶縁ワニス硬化物14中の液体の残留を防ぐことが可能となる。気泡形成成分として蒸気圧が80mmHg以上の液体を用いると、熱硬化性樹脂15の硬化開始前に気泡形成成分の気化が進むことから、絶縁ワニス硬化物14中の気泡16の減少、気泡16の大径化を引き起こす。一方、気泡形成成分として蒸気圧が1mmHg未満の液体を用いると、熱硬化性樹脂15の硬化反応の最高温度付近であっても気泡形成成分が気化しないため、絶縁ワニス硬化物14中に気泡16を形成することができない。絶縁ワニス組成物の熱的安定性と、絶縁ワニス硬化物14中の気泡16の微細化との観点から、気泡形成成分は、気体の標準状態における蒸気圧が5mmHg以上40mmHg未満の液体であることがより好ましい。 The bubble-forming component is a liquid with a vapor pressure of 1 mmHg or more and less than 80 mmHg in the standard gas state. By selecting such a liquid as the bubble-forming component, the bubble-forming component is sequentially vaporized with the curing reaction of the thermosetting resin 15 to form closed cells in the cured insulating varnish 14, and then the bubble-forming component evaporates to prevent the liquid from remaining in the cured insulating varnish 14 . If a liquid having a vapor pressure of 80 mmHg or higher is used as the bubble-forming component, the gasification of the bubble-forming component progresses before the curing of the thermosetting resin 15 starts. cause an increase in diameter. On the other hand, when a liquid having a vapor pressure of less than 1 mmHg is used as the bubble-forming component, the bubble-forming component does not vaporize even at around the highest temperature of the curing reaction of the thermosetting resin 15 . cannot be formed. From the viewpoint of thermal stability of the insulating varnish composition and miniaturization of the bubbles 16 in the cured insulating varnish 14, the bubble-forming component should be a liquid having a vapor pressure of 5 mmHg or more and less than 40 mmHg in the standard gas state. is more preferred.
 気泡形成成分は、熱硬化性樹脂15の硬化反応を阻害しなければその種類は特に限定されることなく、公知の気泡形成成分の中から適宜選択して用いればよい。気泡形成成分としては、例えば、炭化水素系溶媒、ケトン系溶媒、エステル系溶媒、アルコール系溶媒、アミド系溶媒が好適である。炭化水素系溶媒としては、例えば、ノルマルヘプタン、トルエン、キシレン、シクロヘキサンが挙げられる。ケトン系溶媒としては、例えば、メチルイソブチルケトン、ジイソブチルケトン、シクロペンタノン、シクロヘキサノンが挙げられる。エステル系溶媒としては、例えば、酢酸ブチル、酢酸エチレングリコールモノメチルエーテルが挙げられる。アルコール系溶媒としては、例えば、プロパノール、ブタノール、ジエチレングリコールが挙げられる。アミド系溶媒としては、例えば、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミドが挙げられる。これらの気泡形成成分は、それぞれ単独で使用されてもよいし、2種類以上が混合されて使用されてもよい。2種類以上の気泡形成成分を混合して使用すると、より広い温度範囲で気泡形成成分の気化が生じることから、気泡16の形成が容易になる。 The type of the bubble-forming component is not particularly limited as long as it does not interfere with the curing reaction of the thermosetting resin 15, and may be appropriately selected from known bubble-forming components. Hydrocarbon-based solvents, ketone-based solvents, ester-based solvents, alcohol-based solvents, and amide-based solvents are suitable as the bubble-forming component, for example. Hydrocarbon solvents include, for example, normal heptane, toluene, xylene, and cyclohexane. Ketone solvents include, for example, methyl isobutyl ketone, diisobutyl ketone, cyclopentanone, and cyclohexanone. Examples of ester solvents include butyl acetate and ethylene glycol monomethyl ether acetate. Examples of alcoholic solvents include propanol, butanol, and diethylene glycol. Examples of amide solvents include N,N-dimethylformamide and N,N-dimethylacetamide. These foam-forming components may be used alone, or two or more of them may be mixed and used. Using a mixture of two or more types of bubble-forming ingredients facilitates the formation of bubbles 16 because the bubble-forming ingredients vaporize over a wider temperature range.
 気泡形成成分の気化と熱硬化性樹脂15の硬化とを同時に進める点から、気泡形成成分の標準沸点が熱硬化性樹脂15に添加される重合開始剤の1分間半減期温度と同程度であることが好ましい。気泡形成成分の添加量は、熱硬化性樹脂成分と反応性希釈剤との合計量100質量部に対して、10質量部~50質量部であることが好ましく、20質量部~40質量部であることがより好ましい。気泡形成成分が10質量部未満の場合は、気化量が少なく十分な数の気泡16を絶縁ワニス硬化物14中に形成することができない。一方、気泡形成成分が50質量部よりも多い場合は、絶縁ワニス硬化物14の強度および靭性が低下しやすくなる。 The normal boiling point of the bubble-forming component is about the same as the 1-minute half-life temperature of the polymerization initiator added to the thermosetting resin 15 in order to simultaneously proceed with the vaporization of the bubble-forming component and the curing of the thermosetting resin 15. is preferred. The amount of the bubble-forming component to be added is preferably 10 to 50 parts by mass, more preferably 20 to 40 parts by mass, with respect to 100 parts by mass as the total amount of the thermosetting resin component and the reactive diluent. It is more preferable to have If the air bubble-forming component is less than 10 parts by mass, the vaporization amount is small and a sufficient number of air bubbles 16 cannot be formed in the cured insulating varnish 14 . On the other hand, when the air bubble-forming component is more than 50 parts by mass, the strength and toughness of the cured insulating varnish 14 tend to decrease.
 絶縁ワニス組成物には、本開示の効果を損なわない範囲で、難燃剤、難燃助剤、強化剤、酸化防止剤、光安定剤、帯電防止剤、気泡化核剤、消泡剤、界面活性剤、ガラス繊維、セラミック繊維、炭素繊維、安定剤、着色剤といった公知の添加剤が配合されてもよい。これらの添加剤を添加した場合、絶縁ワニス組成物の耐熱性、機械的強度などを向上させる効果を得ることができる。前記の添加剤は、それぞれ単独で使用されてもよいし、2種類以上が混合されて使用されてもよい。 The insulating varnish composition contains a flame retardant, a flame retardant aid, a reinforcing agent, an antioxidant, a light stabilizer, an antistatic agent, a foaming nucleating agent, an antifoaming agent, an interface Known additives such as activators, glass fibers, ceramic fibers, carbon fibers, stabilizers and colorants may be incorporated. When these additives are added, the effect of improving the heat resistance, mechanical strength, etc. of the insulating varnish composition can be obtained. The above additives may be used alone, or two or more of them may be mixed and used.
 次に、図2および図3を参照して、本実施の形態にかかるコイル10の製造方法について説明する。コイル10の製造方法は、混合工程と、予熱工程と、空冷工程と、含浸工程と、除滴工程と、硬化乾燥工程とを含んでいる。なお、これらの工程は一例であり、コイル10の製造方法を限定する趣旨ではない。 Next, a method for manufacturing the coil 10 according to this embodiment will be described with reference to FIGS. A method of manufacturing the coil 10 includes a mixing process, a preheating process, an air cooling process, an impregnation process, a drip removal process, and a curing and drying process. It should be noted that these steps are examples and are not intended to limit the method of manufacturing the coil 10 .
 混合工程は、重量平均分子量が2000以上の高分子量体を含有する不飽和ポリエステル樹脂、エポキシ樹脂およびビニルエステル樹脂のうち少なくとも1つの樹脂を含んだ熱硬化性樹脂15と、気体の標準状態における蒸気圧が1mmHg以上80mmHg未満の液体の気泡形成成分と、各種添加剤とを混合する工程である。混合方法は、特に限定されず、公知の混合方法の中から適宜選択すればよい。例えば、攪拌機などの機械を用いて熱硬化性樹脂15と気泡形成成分と各種添加剤とを均一に混合すればよい。混合工程により、絶縁ワニス組成物が得られる。 In the mixing step, a thermosetting resin 15 containing at least one resin selected from unsaturated polyester resins containing high molecular weight substances having a weight average molecular weight of 2000 or more, epoxy resins and vinyl ester resins, and vapor in the standard gas state. This is a step of mixing a liquid foam-forming component with a pressure of 1 mmHg or more and less than 80 mmHg and various additives. The mixing method is not particularly limited, and may be appropriately selected from known mixing methods. For example, a machine such as a stirrer may be used to uniformly mix the thermosetting resin 15, the bubble forming component, and various additives. The mixing step results in an insulating varnish composition.
 予熱工程は、図2に示される含浸前のコイル10を所定の温度で加熱する工程である。空冷工程は、含浸工程での絶縁ワニス組成物の温度上昇を抑制するために、予熱工程で加熱されたコイル10を所定の温度まで冷却する工程である。 The preheating step is a step of heating the coil 10 before impregnation shown in FIG. 2 at a predetermined temperature. The air-cooling step is a step of cooling the coil 10 heated in the preheating step to a predetermined temperature in order to suppress the temperature rise of the insulating varnish composition in the impregnating step.
 含浸工程は、空冷工程で冷却されたコイル10に絶縁ワニス組成物を含浸する工程である。絶縁ワニス組成物の含浸方法は、特に限定されず、公知の方法の中から適宜選択すればよい。絶縁ワニス組成物の含浸方法としては、例えば、絶縁ワニス組成物を入れた含浸槽中にコイル10を浸漬する浸漬法(ディッピング法)、絶縁ワニス組成物をコイル10に滴下する滴下含浸法(ドリップ法)が挙げられる。滴下含浸法を用いる場合には、含浸工程の開始前にコイル10を予熱してもよい。また、浸漬法および滴下含浸法のいずれの方法でも、コイル10への絶縁ワニス組成物の含浸を複数回に分けて行うことが可能である。 The impregnation step is a step of impregnating the coil 10 cooled in the air cooling step with the insulating varnish composition. A method for impregnating the insulating varnish composition is not particularly limited, and may be appropriately selected from known methods. Examples of the method for impregnating the insulating varnish composition include an immersion method (dipping method) in which the coil 10 is immersed in an impregnation tank containing the insulating varnish composition, and a drip impregnation method in which the insulating varnish composition is dripped onto the coil 10 (dripping method). law). If a drop impregnation method is used, the coil 10 may be preheated prior to beginning the impregnation process. In addition, the impregnation of the insulating varnish composition into the coil 10 can be divided into multiple times by either the dipping method or the dripping impregnation method.
 除滴工程は、含浸工程でコイル10の側面などに付着した不必要な絶縁ワニス組成物を滴下させる工程である。 The drip removal process is a process for dripping unnecessary insulating varnish composition adhering to the side surfaces of the coil 10 during the impregnation process.
 硬化乾燥工程は、コイル10に含浸させた絶縁ワニス組成物を加熱して硬化させる工程である。絶縁ワニス組成物を加熱することにより、熱硬化性樹脂15が硬化するとともに、気泡形成成分が気化して図3に示される微細な気泡16を含んだ絶縁ワニス硬化物14が形成される。絶縁ワニス硬化物14は、コイル10に固着するとともに、隣接する電線11間の間隙Gを埋める。これにより、電気絶縁性を備えたコイル10が得られる。絶縁ワニス組成物の硬化方法は、特に限定されず、公知の方法の中から適宜選択すればよい。例えば、密閉式硬化炉、連続硬化が可能なトンネル炉、通電加熱設備などを用いて、絶縁ワニス組成物を加熱して硬化させればよい。絶縁ワニス組成物の加熱温度は、特に限定されないが、一般に80℃~200℃であり、好ましくは130℃~180℃である。絶縁ワニス組成物の加熱温度が80℃未満の場合には、絶縁ワニス組成物の硬化が不十分となる可能性がある。また、絶縁ワニス組成物の加熱温度が200℃よりも高い場合には、コイル10を電気的に絶縁する樹脂部品である絶縁ワニス、相間紙、インシュレータ9などの劣化および分解が生じる可能性が高まる。 The curing and drying process is a process of heating and curing the insulating varnish composition with which the coil 10 is impregnated. By heating the insulating varnish composition, the thermosetting resin 15 is cured and the bubble-forming component is vaporized to form a cured insulating varnish 14 containing fine bubbles 16 shown in FIG. The insulating varnish cured product 14 adheres to the coil 10 and fills the gap G between the adjacent electric wires 11 . Thereby, the coil 10 with electrical insulation is obtained. A method for curing the insulating varnish composition is not particularly limited, and may be appropriately selected from known methods. For example, the insulating varnish composition may be cured by heating using a closed curing furnace, a tunnel furnace capable of continuous curing, an electric heating facility, or the like. The heating temperature of the insulating varnish composition is not particularly limited, but is generally 80°C to 200°C, preferably 130°C to 180°C. If the heating temperature of the insulating varnish composition is less than 80°C, curing of the insulating varnish composition may be insufficient. In addition, when the heating temperature of the insulating varnish composition is higher than 200 ° C., the possibility of deterioration and decomposition of the insulating varnish, the interphase paper, the insulator 9, etc., which are the resin parts that electrically insulate the coil 10, increases. .
 絶縁ワニス組成物の硬化速度およびコイル10への絶縁ワニス組成物の付着量は、絶縁ワニス組成物の組成によって異なる。したがって、絶縁ワニス組成物の加熱時間は、絶縁ワニス組成物の組成に応じて、絶縁ワニス組成物が完全固化するのに必要な加熱時間を適宜設定すればよく、一般に5分間~6時間であり、好ましくは20分間~4時間であり、さらに好ましくは30分~2時間である。このような硬化条件を採用することにより、電気的絶縁性が十分に確保されたコイル10を得ることができる。特に、コイル10に絶縁ワニス組成物を含浸し、絶縁ワニス組成物を130℃~180℃で5分間~2時間加熱して硬化させることにより、微細な気泡16を含む絶縁ワニス硬化物14でコイル10の電線11間の間隙Gを埋めることができるため、隣接する電線11間における部分放電の発生を抑制する効果、コイル10の耐熱性およびコイル10の補強性能を向上させることができる。 The curing speed of the insulating varnish composition and the amount of the insulating varnish composition adhered to the coil 10 differ depending on the composition of the insulating varnish composition. Therefore, the heating time of the insulating varnish composition may be appropriately set according to the composition of the insulating varnish composition, and is generally 5 minutes to 6 hours. , preferably 20 minutes to 4 hours, more preferably 30 minutes to 2 hours. By adopting such curing conditions, the coil 10 with sufficient electrical insulation can be obtained. In particular, the coil 10 is impregnated with the insulating varnish composition, and the insulating varnish composition is cured by heating at 130 ° C. to 180 ° C. for 5 minutes to 2 hours to form a coil with the insulating varnish cured product 14 containing fine bubbles 16. Since the gap G between the wires 11 of 10 can be filled, the effect of suppressing the occurrence of partial discharge between the adjacent wires 11, the heat resistance of the coil 10, and the reinforcing performance of the coil 10 can be improved.
 絶縁ワニス硬化物14に含まれる気泡16は、気泡16における部分放電の発生を抑制する観点から、全て独立気泡であることが好ましい。また、気泡16の大きさは、最大気泡径が10μm以下であることが好ましく、最大気泡径が5μm以下であることがさらに好ましい。気泡16の最大気泡径が前記した範囲内であると、電気的特性、特に気泡16における部分放電の発生を抑制する効果が高まる。気泡16の最小径は、特に制限されないが、0.1μm以上であることが好ましい。気泡16の大きさは、絶縁ワニス硬化物14の断面を走査型電子顕微鏡(SEM:Scanning Electron Microscope)で観察することにより測定できる。具体的には、絶縁ワニス硬化物14を切断し、その断面をSEMで例えば15000倍に拡大した後、任意に選択した10個の気泡16のそれぞれの気泡径を測定し、各気泡径の測定値の算術平均を計算することで気泡16の大きさ、すなわち気泡16の平均径を求められる。気泡16の断面形状は、円形の他、例えば、楕円形、矩形であってもよい。円形の気泡16の場合には、円の直径を気泡径とする。楕円形の気泡16の場合には、楕円の長径を径とする。矩形の気泡16の場合には、矩形の対角を結ぶ線の長さを気泡径とする。 From the viewpoint of suppressing the occurrence of partial discharge in the air bubbles 16, all the air bubbles 16 contained in the cured insulating varnish 14 are preferably independent air bubbles. As for the size of the bubbles 16, the maximum bubble diameter is preferably 10 μm or less, and more preferably 5 μm or less. When the maximum bubble diameter of the bubbles 16 is within the above range, the electrical properties, particularly the effect of suppressing the occurrence of partial discharge in the bubbles 16 is enhanced. Although the minimum diameter of the air bubbles 16 is not particularly limited, it is preferably 0.1 μm or more. The size of the air bubbles 16 can be measured by observing the cross section of the cured insulating varnish 14 with a scanning electron microscope (SEM). Specifically, after cutting the insulating varnish cured product 14 and enlarging the cross section by, for example, 15,000 times with an SEM, the diameter of each of ten arbitrarily selected bubbles 16 is measured, and the diameter of each bubble is measured. By calculating the arithmetic mean of the values, the size of the bubbles 16, that is, the average diameter of the bubbles 16 can be obtained. The cross-sectional shape of the bubble 16 may be circular, elliptical, or rectangular, for example. In the case of a circular bubble 16, the diameter of the circle is the diameter of the bubble. In the case of an elliptical bubble 16, the diameter is the major axis of the ellipse. In the case of a rectangular bubble 16, the length of the line connecting the diagonal corners of the rectangle is taken as the diameter of the bubble.
 次に、本実施の形態にかかる絶縁ワニス組成物、絶縁ワニス硬化物14およびコイル10の効果について説明する。 Next, the effects of the insulating varnish composition, the cured insulating varnish 14 and the coil 10 according to this embodiment will be described.
 一般に、図3に示される隣接する電線11間では、コイル10への通電によって強力な電場が印加されると、空気中で電子雪崩が発生して部分放電を生じる可能性がある。本実施の形態では、絶縁ワニス硬化物14の素となる絶縁ワニス組成物は、重量平均分子量が2000以上の高分子量体を含有する不飽和ポリエステル樹脂、エポキシ樹脂およびビニルエステル樹脂のうち少なくとも1つの樹脂を含む熱硬化性樹脂15と、気体の標準状態における蒸気圧が1mmHg以上80mmHg未満であって液体の気泡形成成分とを備える。これにより、絶縁ワニス硬化物14には、多量かつ微細な気泡16が形成される。そのため、絶縁ワニス硬化物14の比誘電率を低減させて絶縁ワニス硬化物14の部分放電開始電圧を高めることができ、隣接する電線11間における部分放電の発生を抑制することができる。また、絶縁ワニス硬化物14に含まれる気泡16を微細化できるため、絶縁ワニス硬化物14中の気泡16における部分放電の発生を抑制することができる。 In general, between the adjacent electric wires 11 shown in FIG. 3, when a strong electric field is applied by energizing the coil 10, an electron avalanche may occur in the air to cause partial discharge. In the present embodiment, the insulating varnish composition that is the base of the insulating varnish cured product 14 is at least one of unsaturated polyester resin, epoxy resin and vinyl ester resin containing a high molecular weight substance having a weight average molecular weight of 2000 or more. It comprises a thermosetting resin 15 containing a resin, and a liquid bubble-forming component having a vapor pressure of 1 mmHg or more and less than 80 mmHg in a gas standard state. As a result, a large amount of fine air bubbles 16 are formed in the cured insulating varnish 14 . Therefore, the relative dielectric constant of the cured insulating varnish 14 can be reduced, the partial discharge inception voltage of the cured insulating varnish 14 can be increased, and the occurrence of partial discharge between adjacent electric wires 11 can be suppressed. Moreover, since the air bubbles 16 contained in the cured insulating varnish 14 can be made finer, the occurrence of partial discharge in the air bubbles 16 in the cured insulating varnish 14 can be suppressed.
 本実施の形態では、気泡形成成分が液体であるため、コイル10への絶縁ワニス組成物の含浸性を高めることができる。 In the present embodiment, since the bubble-forming component is a liquid, it is possible to enhance the ability of the coil 10 to be impregnated with the insulating varnish composition.
 本実施の形態では、熱硬化性樹脂15は、1分間半減期温度が180℃以下の重合開始剤を含むことにより、絶縁ワニス組成物の硬化条件に適した200℃以下の温度で、気泡16を含む絶縁ワニス硬化物14を作製することができる。 In the present embodiment, the thermosetting resin 15 contains a polymerization initiator having a one-minute half-life temperature of 180° C. or less, so that the bubbles 16 can be formed at a temperature of 200° C. or less, which is suitable for the curing conditions of the insulating varnish composition. Insulating varnish cured product 14 containing can be produced.
 本実施の形態では、気泡形成成分は、炭化水素系溶媒、ケトン系溶媒、エステル系溶媒、アルコール系溶媒、フェノール系溶媒、アミド系溶媒のうち少なくとも1種類を含む液体であることにより、絶縁ワニス組成物を硬化する際の気泡16の形成を容易にしながら、気泡16の微細化を図ることができる。 In the present embodiment, the bubble-forming component is a liquid containing at least one of a hydrocarbon solvent, a ketone solvent, an ester solvent, an alcohol solvent, a phenol solvent, and an amide solvent. While facilitating the formation of air bubbles 16 during curing of the composition, the air bubbles 16 can be made finer.
 本実施の形態では、絶縁ワニス硬化物14に含まれる気泡16の平均径は、0.1μmから10μmの範囲内であることにより、気泡16における部分放電の発生を抑制する効果と、絶縁ワニス硬化物14の比誘電率を低減させる効果とを両立できる。したがって、コイル10の出力の向上に伴うコイル10への通電電流の増大にも対応することができる。 In the present embodiment, the average diameter of the air bubbles 16 contained in the cured insulating varnish 14 is within the range of 0.1 μm to 10 μm. The effect of reducing the dielectric constant of the object 14 can be compatible. Therefore, it is possible to cope with an increase in the current supplied to the coil 10 as the output of the coil 10 is improved.
 なお、本実施の形態では、回転機1のコイル10の絶縁に本開示の絶縁ワニス組成物を用いたが、発電機、トランス、圧縮機などの各種回転機のコイルの絶縁に本開示の絶縁ワニス組成物を用いてもよい。 In the present embodiment, the insulating varnish composition of the present disclosure was used for the insulation of the coil 10 of the rotating machine 1. A varnish composition may also be used.
 次に、実施例および比較例により、本開示の効果について更に説明する。 Next, the effects of the present disclosure will be further described by examples and comparative examples.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
(材料組成)
 表1に示す配合量に従って実施例1~8および比較例1~5にかかる絶縁ワニス組成物を作製した。なお、表1に示す各材料の詳細は、以下の通りである。
(Material composition)
Insulating varnish compositions according to Examples 1 to 8 and Comparative Examples 1 to 5 were prepared according to the blending amounts shown in Table 1. The details of each material shown in Table 1 are as follows.
(不飽和ポリエステル樹脂)
 不飽和ポリエステル樹脂A:マレイン酸30質量部、イソフタル酸20質量部およびプロピレングリコール50質量部を公知の方法で縮合重合し、重合平均分子量が約5000となるように調製した不飽和ポリエステル樹脂
 不飽和ポリエステル樹脂B:マレイン酸30質量部、イソフタル酸20質量部およびプロピレングリコール50質量部を公知の方法で縮合重合し、重合平均分子量が約8000となるように調製した不飽和ポリエステル樹脂
 不飽和ポリエステル樹脂C:マレイン酸30質量部、イソフタル酸20質量部およびプロピレングリコール50質量部を公知の方法で縮合重合し、重合平均分子量が約2000となるように調製した不飽和ポリエステル樹脂
 不飽和ポリエステル樹脂D:マレイン酸30質量部、イソフタル酸20質量部およびプロピレングリコール50質量部を公知の方法で縮合重合し、重合平均分子量が約1000となるように調製した不飽和ポリエステル樹脂
 反応性希釈剤:スチレン
 重合開始剤:ベンゾイルパーオキサイド
(Unsaturated polyester resin)
Unsaturated polyester resin A: Unsaturated polyester resin prepared by condensation polymerization of 30 parts by mass of maleic acid, 20 parts by mass of isophthalic acid and 50 parts by mass of propylene glycol by a known method so as to have a polymerization average molecular weight of about 5000. Polyester resin B: Unsaturated polyester resin prepared by condensation polymerization of 30 parts by mass of maleic acid, 20 parts by mass of isophthalic acid and 50 parts by mass of propylene glycol by a known method so as to have a polymerization average molecular weight of about 8000 Unsaturated polyester resin C: Unsaturated polyester resin prepared by subjecting 30 parts by mass of maleic acid, 20 parts by mass of isophthalic acid, and 50 parts by mass of propylene glycol to condensation polymerization by a known method so as to have a polymerization average molecular weight of about 2000 Unsaturated polyester resin D: Unsaturated polyester resin prepared by condensation polymerization of 30 parts by mass of maleic acid, 20 parts by mass of isophthalic acid and 50 parts by mass of propylene glycol by a known method so as to have a polymerization average molecular weight of about 1000 Reactive diluent: Styrene Polymerization initiation Agent: benzoyl peroxide
(エポキシ樹脂)
 エポキシ化合物:ビスフェノールAジグリシジルエーテル(三菱ケミカル株式会社製:jER828)およびビスフェノールAを公知の方法で交互共重合し、重合平均分子量が約5000となるように調製した直鎖エポキシ樹脂
 硬化剤:ビシクロ[2.2.1]ヘプタン-2,3-ジカルボン酸無水物
 硬化促進剤:2-エチル-4-メチルイミダゾール
(Epoxy resin)
Epoxy compound: A linear epoxy resin prepared by alternately copolymerizing bisphenol A diglycidyl ether (manufactured by Mitsubishi Chemical Corporation: jER828) and bisphenol A by a known method so as to have a polymerization average molecular weight of about 5000 Curing agent: Bicyclo [2.2.1] Heptane-2,3-dicarboxylic anhydride Curing accelerator: 2-ethyl-4-methylimidazole
(ビニルエステル樹脂)
 ビニルエステル成分:ビスフェノールAジグリシジルエーテル(三菱ケミカル株式会社製:jER828)およびビスフェノールAを公知の方法で交互共重合した後、末端にメタクリル酸を修飾して、重合平均分子量が約5000となるように調製したビスフェノールA型ビニルエステル樹脂
 反応性希釈剤:スチレン
 重合開始剤:ベンゾイルパーオキサイド
(vinyl ester resin)
Vinyl ester component: Bisphenol A diglycidyl ether (manufactured by Mitsubishi Chemical Corporation: jER828) and bisphenol A are alternately copolymerized by a known method, and the ends are modified with methacrylic acid so that the polymerization average molecular weight is about 5000. Bisphenol A type vinyl ester resin prepared in Reactive diluent: Styrene Polymerization initiator: Benzoyl peroxide
(気泡形成成分)
 以下の市販品を精製せずにそのまま用いた。
 2-プロパノール:気体の標準状態における蒸気圧40mmHg、アルコール系
 メチルイソブチルケトン:気体の標準状態における蒸気圧15mmHg、ケトン系
 キシレン:気体の標準状態における蒸気圧10mmHg、炭化水素系
 シクロヘキサノン:気体の標準状態における蒸気圧4mmHg、ケトン系
 テトラヒドロフラン:気体の標準状態における蒸気圧175mmHg、エーテル系
 酢酸エチル:気体の標準状態における蒸気圧92mmHg、エステル系
 2-アミノエタノール:気体の標準状態における蒸気圧0.4mmHg、アルコール系
 エチレングリコール:気体の標準状態における蒸気圧0.01mmHg、アルコール系
(Air bubble forming component)
The following commercial products were used as they were without purification.
2-propanol: vapor pressure of 40 mmHg in standard gas state, alcohol-based methyl isobutyl ketone: vapor pressure of 15 mmHg in standard gas state, ketone-based xylene: vapor pressure of 10 mmHg in standard gas state, hydrocarbon-based cyclohexanone: standard gas state In vapor pressure 4 mmHg, ketone type tetrahydrofuran: vapor pressure in gas standard state 175 mmHg, ether type ethyl acetate: vapor pressure in gas standard state 92 mmHg, ester type 2-aminoethanol: vapor pressure in gas standard state 0.4 mmHg, Alcohol-based Ethylene glycol: Vapor pressure of 0.01 mmHg in the standard gas state, alcohol-based
(実施例1)
 不飽和ポリエステル樹脂A100質量部と、反応性希釈剤80質量部と、重合開始剤2質量部と、2-プロパノール50質量部とを均一に混合することにより、実施例1にかかる絶縁ワニス組成物を得た。
(Example 1)
By uniformly mixing 100 parts by mass of unsaturated polyester resin A, 80 parts by mass of a reactive diluent, 2 parts by mass of a polymerization initiator, and 50 parts by mass of 2-propanol, the insulating varnish composition according to Example 1 got
(実施例2)
 不飽和ポリエステル樹脂A100質量部と、反応性希釈剤80質量部と、重合開始剤2質量部と、メチルイソブチルケトン50質量部とを均一に混合することにより、実施例2にかかる絶縁ワニス組成物を得た。
(Example 2)
By uniformly mixing 100 parts by mass of unsaturated polyester resin A, 80 parts by mass of reactive diluent, 2 parts by mass of polymerization initiator, and 50 parts by mass of methyl isobutyl ketone, the insulating varnish composition according to Example 2 was prepared. got
(実施例3)
 不飽和ポリエステル樹脂A100質量部と、反応性希釈剤80質量部と、重合開始剤2質量部と、キシレン50質量部とを均一に混合することにより、実施例3にかかる絶縁ワニス組成物を得た。
(Example 3)
An insulating varnish composition according to Example 3 was obtained by uniformly mixing 100 parts by mass of unsaturated polyester resin A, 80 parts by mass of a reactive diluent, 2 parts by mass of a polymerization initiator, and 50 parts by mass of xylene. rice field.
(実施例4)
 不飽和ポリエステル樹脂A100質量部と、反応性希釈剤80質量部と、重合開始剤2質量部と、シクロヘキサノン50質量部とを均一に混合することにより、実施例4にかかる絶縁ワニス組成物を得た。
(Example 4)
An insulating varnish composition according to Example 4 was obtained by uniformly mixing 100 parts by mass of unsaturated polyester resin A, 80 parts by mass of a reactive diluent, 2 parts by mass of a polymerization initiator, and 50 parts by mass of cyclohexanone. rice field.
(実施例5)
 不飽和ポリエステル樹脂B100質量部と、反応性希釈剤80質量部と、重合開始剤2質量部と、キシレン50質量部とを均一に混合することにより、実施例5にかかる絶縁ワニス組成物を得た。
(Example 5)
An insulating varnish composition according to Example 5 was obtained by uniformly mixing 100 parts by mass of the unsaturated polyester resin B, 80 parts by mass of the reactive diluent, 2 parts by mass of the polymerization initiator, and 50 parts by mass of xylene. rice field.
(実施例6)
 不飽和ポリエステル樹脂C100質量部と、反応性希釈剤80質量部と、重合開始剤2質量部と、キシレン50質量部とを均一に混合することにより、実施例6にかかる絶縁ワニス組成物を得た。
(Example 6)
An insulating varnish composition according to Example 6 was obtained by uniformly mixing 100 parts by mass of unsaturated polyester resin C, 80 parts by mass of a reactive diluent, 2 parts by mass of a polymerization initiator, and 50 parts by mass of xylene. rice field.
(実施例7)
 エポキシ化合物100質量部と、硬化剤80質量部と、硬化促進剤2質量部と、キシレン50質量部とを均一に混合することにより、実施例7にかかる絶縁ワニス組成物を得た。
(Example 7)
An insulating varnish composition according to Example 7 was obtained by uniformly mixing 100 parts by mass of an epoxy compound, 80 parts by mass of a curing agent, 2 parts by mass of a curing accelerator, and 50 parts by mass of xylene.
(実施例8)
 ビニルエステル成分100質量部と、反応性希釈剤80質量部と、重合開始剤2質量部と、キシレン50質量部とを均一に混合することにより、実施例8にかかる絶縁ワニス組成物を得た。
(Example 8)
An insulating varnish composition according to Example 8 was obtained by uniformly mixing 100 parts by mass of a vinyl ester component, 80 parts by mass of a reactive diluent, 2 parts by mass of a polymerization initiator, and 50 parts by mass of xylene. .
(比較例1)
 不飽和ポリエステル樹脂A100質量部と、反応性希釈剤80質量部と、重合開始剤2質量部と、テトラヒドロフラン50質量部とを均一に混合することにより、比較例1にかかる絶縁ワニス組成物を得た。
(Comparative example 1)
An insulating varnish composition according to Comparative Example 1 was obtained by uniformly mixing 100 parts by mass of unsaturated polyester resin A, 80 parts by mass of a reactive diluent, 2 parts by mass of a polymerization initiator, and 50 parts by mass of tetrahydrofuran. rice field.
(比較例2)
 不飽和ポリエステル樹脂A100質量部と、反応性希釈剤80質量部と、重合開始剤2質量部と、酢酸エチル50質量部とを均一に混合することにより、比較例2にかかる絶縁ワニス組成物を得た。
(Comparative example 2)
By uniformly mixing 100 parts by mass of the unsaturated polyester resin A, 80 parts by mass of the reactive diluent, 2 parts by mass of the polymerization initiator, and 50 parts by mass of ethyl acetate, the insulating varnish composition according to Comparative Example 2 was prepared. Obtained.
(比較例3)
 不飽和ポリエステル樹脂A100質量部と、反応性希釈剤80質量部と、重合開始剤2質量部と、2-アミノエタノール50質量部とを均一に混合することにより、比較例3にかかる絶縁ワニス組成物を得た。
(Comparative Example 3)
By uniformly mixing 100 parts by mass of unsaturated polyester resin A, 80 parts by mass of reactive diluent, 2 parts by mass of polymerization initiator, and 50 parts by mass of 2-aminoethanol, the insulating varnish composition according to Comparative Example 3 got stuff
(比較例4)
 不飽和ポリエステル樹脂A100質量部と、反応性希釈剤80質量部と、重合開始剤2質量部と、エチレングリコール50質量部とを均一に混合することにより、比較例4にかかる絶縁ワニス組成物を得た。
(Comparative Example 4)
By uniformly mixing 100 parts by mass of the unsaturated polyester resin A, 80 parts by mass of the reactive diluent, 2 parts by mass of the polymerization initiator, and 50 parts by mass of ethylene glycol, the insulating varnish composition according to Comparative Example 4 was prepared. Obtained.
(比較例5)
 不飽和ポリエステル樹脂D100質量部と、反応性希釈剤80質量部と、重合開始剤2質量部と、キシレン50質量部とを均一に混合することにより、比較例5にかかる絶縁ワニス組成物を得た。
(Comparative Example 5)
An insulating varnish composition according to Comparative Example 5 was obtained by uniformly mixing 100 parts by mass of unsaturated polyester resin D, 80 parts by mass of a reactive diluent, 2 parts by mass of a polymerization initiator, and 50 parts by mass of xylene. rice field.
(試験方法)
 実施例1~8および比較例1~5にかかる絶縁ワニス組成物を硬化させることにより得られた絶縁ワニス硬化物について、絶縁ワニス硬化物中の微細気泡の有無および絶縁ワニス硬化物の比誘電率の評価を行った。全ての実施例および比較例にかかる絶縁ワニス組成物を型枠内へ注入し、乾燥炉中で加熱硬化処理を実施することによって硬化させ、縦20mm×横20mm×厚さ1mmの絶縁ワニス硬化物を得た。全ての実施例および比較例において、加熱硬化条件は、180℃30分とした。
(Test method)
Regarding the insulating varnish cured products obtained by curing the insulating varnish compositions according to Examples 1 to 8 and Comparative Examples 1 to 5, the presence or absence of fine air bubbles in the cured insulating varnish and the dielectric constant of the cured insulating varnish was evaluated. Insulating varnish compositions according to all examples and comparative examples are injected into a mold and cured by performing a heat curing treatment in a drying oven to obtain a cured insulating varnish having a size of 20 mm long × 20 mm wide × 1 mm thick. got In all examples and comparative examples, the heat curing condition was 180° C. for 30 minutes.
[絶縁ワニス硬化物中に含まれる微細気泡の有無]
 絶縁ワニス硬化物中に含まれる微細気泡の有無は、絶縁ワニス硬化物の断面をSEMで観察することにより評価した。具体的には、10個の気泡を任意に選択して各気泡の気泡径を測定し、各気泡径の測定値の算術平均が10μm以下の場合を良とし、10μmよりも大きい場合を否と評価した。
[Presence or absence of fine air bubbles contained in the cured product of insulating varnish]
The presence or absence of microbubbles contained in the cured insulating varnish was evaluated by observing the cross section of the cured insulating varnish with an SEM. Specifically, 10 bubbles are arbitrarily selected and the bubble diameter of each bubble is measured. If the arithmetic mean of the measured values of the bubble diameter is 10 μm or less, it is considered good, and if it is larger than 10 μm, it is rejected. evaluated.
[比誘電率]
 絶縁ワニス硬化物の比誘電率は、絶縁ワニス硬化物を2枚の平板電極の間に挟み込み、静電容量を測定することにより算出した。温度が25℃、周波数が1kHzの条件で取得した比誘電率が、3.0以下の場合を良とし、3.0よりも高い場合を否と評価した。
[Dielectric constant]
The dielectric constant of the cured insulating varnish was calculated by sandwiching the cured insulating varnish between two flat electrodes and measuring the capacitance. A dielectric constant obtained under the conditions of a temperature of 25° C. and a frequency of 1 kHz was evaluated as good when it was 3.0 or less, and as unsatisfactory when it was higher than 3.0.
 表1から明らかなように、熱硬化性樹脂に含まれる重量平均分子量が2000以上であって、かつ、気泡形成成分の気体の標準状態における蒸気圧が4mmHg~40mmHgの範囲である実施例1~8は、絶縁ワニス硬化物中に含まれる微細気泡の有無および比誘電率の評価項目が良であった。一方、比較例1~4は、気泡形成成分の気体の標準状態における蒸気圧が1mmHg~80mmHgの範囲外であるために、絶縁ワニス硬化物中に微細気泡を形成することができないとともに、絶縁ワニス硬化物の比誘電率を低くする効果が十分に得られなかった。また、比較例5は、熱硬化性樹脂に含まれる重量平均分子量が1000であるために、絶縁ワニス硬化物中の気泡径の増大が確認された。 As is clear from Table 1, the weight average molecular weight contained in the thermosetting resin is 2000 or more, and the vapor pressure of the air bubble-forming component gas under standard conditions is in the range of 4 mmHg to 40 mmHg. No. 8 was good in the evaluation items of the presence or absence of microbubbles contained in the cured insulating varnish and the dielectric constant. On the other hand, in Comparative Examples 1 to 4, since the vapor pressure of the gas of the bubble-forming component in the standard state was outside the range of 1 mmHg to 80 mmHg, fine bubbles could not be formed in the insulating varnish cured product, and the insulating varnish The effect of lowering the dielectric constant of the cured product was not sufficiently obtained. In addition, in Comparative Example 5, since the weight average molecular weight contained in the thermosetting resin was 1000, an increase in cell diameter in the cured insulating varnish was confirmed.
 以上の実施の形態に示した構成は、一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。 The configuration shown in the above embodiment is an example, and can be combined with another known technique, and part of the configuration can be omitted or changed without departing from the scope of the invention. It is possible.
 1 回転機、2 ステータ、3 ロータ、4 シャフト、5 フレーム、6 ブラケット、6a 孔、7 ステータコア、7a コアバック、7b ティース、8 スロット、9 インシュレータ、10 コイル、11 電線、12 導線、13 絶縁被膜、14 絶縁ワニス硬化物、15 熱硬化性樹脂、16 気泡、C 中心軸、G 間隙。 1 rotating machine, 2 stator, 3 rotor, 4 shaft, 5 frame, 6 bracket, 6a hole, 7 stator core, 7a core back, 7b tooth, 8 slot, 9 insulator, 10 coil, 11 electric wire, 12 conducting wire, 13 insulating coating , 14 cured insulating varnish, 15 thermosetting resin, 16 air bubbles, C central axis, G gap.

Claims (6)

  1.  重量平均分子量が2000以上の高分子量体を含有する不飽和ポリエステル樹脂、エポキシ樹脂およびビニルエステル樹脂のうち少なくとも1つの樹脂を含む熱硬化性樹脂と、
     気体の標準状態における蒸気圧が1mmHg以上80mmHg未満であって液体の気泡形成成分と、
     を備えることを特徴とする絶縁ワニス組成物。
    a thermosetting resin containing at least one of unsaturated polyester resins, epoxy resins, and vinyl ester resins containing high molecular weight substances having a weight average molecular weight of 2000 or more;
    A liquid bubble-forming component having a vapor pressure of 1 mmHg or more and less than 80 mmHg in the standard gas state;
    An insulating varnish composition comprising:
  2.  前記熱硬化性樹脂は、1分間半減期温度が180℃以下の重合開始剤を含むことを特徴とする請求項1に記載の絶縁ワニス組成物。 The insulating varnish composition according to claim 1, wherein the thermosetting resin contains a polymerization initiator having a 1-minute half-life temperature of 180°C or less.
  3.  前記気泡形成成分は、炭化水素系溶媒、ケトン系溶媒、エステル系溶媒、アルコール系溶媒、フェノール系溶媒、アミド系溶媒のうち少なくとも1種類を含む液体であることを特徴とする請求項1または2に記載の絶縁ワニス組成物。 3. The bubble forming component is a liquid containing at least one of a hydrocarbon solvent, a ketone solvent, an ester solvent, an alcohol solvent, a phenol solvent and an amide solvent. The insulating varnish composition according to .
  4.  請求項1から3のいずれか1項に記載の絶縁ワニス組成物が硬化した絶縁ワニス硬化物であって、
     前記絶縁ワニス硬化物に含まれる気泡の平均径は、0.1μm~10μmの範囲内にあることを特徴とする絶縁ワニス硬化物。
    A cured insulating varnish obtained by curing the insulating varnish composition according to any one of claims 1 to 3,
    A cured product of insulating varnish, wherein the average diameter of cells contained in the cured product of insulating varnish is in the range of 0.1 μm to 10 μm.
  5.  ステータコアに巻き付けられた電線と、
     隣接する電線間の間隙を埋める請求項4に記載の絶縁ワニス硬化物と、
     を備えることを特徴とするコイル。
    an electric wire wound around the stator core;
    The cured insulating varnish according to claim 4, which fills the gaps between adjacent electric wires;
    A coil comprising:
  6.  請求項5に記載のコイルの製造方法であって、
     請求項1から3のいずれか1項に記載の絶縁ワニス組成物をコイルに含浸する含浸工程と、
     前記コイルに含浸した前記絶縁ワニス組成物を加熱して硬化させる加熱硬化工程と、
     を含むことを特徴とするコイルの製造方法。
    A method for manufacturing the coil according to claim 5,
    An impregnation step of impregnating a coil with the insulating varnish composition according to any one of claims 1 to 3;
    A heat curing step of heating and curing the insulating varnish composition impregnated in the coil;
    A method of manufacturing a coil, comprising:
PCT/JP2021/018280 2021-05-13 2021-05-13 Insulating varnish composition, cured insulating varnish, coil and method for producing coil WO2022239203A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2021/018280 WO2022239203A1 (en) 2021-05-13 2021-05-13 Insulating varnish composition, cured insulating varnish, coil and method for producing coil
CN202180095682.7A CN117203285A (en) 2021-05-13 2021-05-13 Insulating varnish composition, insulating varnish cured product, coil, and method for producing coil
JP2021555017A JP7046280B1 (en) 2021-05-13 2021-05-13 Insulation varnish composition, insulation varnish cured product, coil and method for manufacturing the coil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/018280 WO2022239203A1 (en) 2021-05-13 2021-05-13 Insulating varnish composition, cured insulating varnish, coil and method for producing coil

Publications (1)

Publication Number Publication Date
WO2022239203A1 true WO2022239203A1 (en) 2022-11-17

Family

ID=81255844

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/018280 WO2022239203A1 (en) 2021-05-13 2021-05-13 Insulating varnish composition, cured insulating varnish, coil and method for producing coil

Country Status (3)

Country Link
JP (1) JP7046280B1 (en)
CN (1) CN117203285A (en)
WO (1) WO2022239203A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009102586A (en) * 2007-10-25 2009-05-14 Kyocera Chemical Corp Thermosetting resin composition, cured material, and high thermal conduction coil
WO2016072425A1 (en) * 2014-11-07 2016-05-12 古河電気工業株式会社 Insulating wire and rotating electric machine
JP2017048329A (en) * 2015-09-03 2017-03-09 日立化成株式会社 Unsaturated polyester resin composition, and method for manufacturing resin composition for electric insulation and electric equipment insulation using the same
WO2017061006A1 (en) * 2015-10-08 2017-04-13 三菱電機株式会社 Solvent-free varnish composition, insulated coil, process for producing same, rotary device, and closed electric compressor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2890280B2 (en) * 1992-08-11 1999-05-10 東京特殊電線株式会社 Self-fusing insulated wire with excellent crazing properties and low-temperature adhesion
JP2890279B2 (en) * 1992-08-11 1999-05-10 東京特殊電線株式会社 Self-fusing insulated wire with excellent crazing properties and low-temperature adhesion
JP2003016847A (en) * 2001-06-29 2003-01-17 Totoku Electric Co Ltd Self-fusing insulated electric wire
CN112063270A (en) * 2020-09-23 2020-12-11 安徽恒磁磁电有限公司 Enameled wire insulation impregnating varnish and preparation method and application thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009102586A (en) * 2007-10-25 2009-05-14 Kyocera Chemical Corp Thermosetting resin composition, cured material, and high thermal conduction coil
WO2016072425A1 (en) * 2014-11-07 2016-05-12 古河電気工業株式会社 Insulating wire and rotating electric machine
JP2017048329A (en) * 2015-09-03 2017-03-09 日立化成株式会社 Unsaturated polyester resin composition, and method for manufacturing resin composition for electric insulation and electric equipment insulation using the same
WO2017061006A1 (en) * 2015-10-08 2017-04-13 三菱電機株式会社 Solvent-free varnish composition, insulated coil, process for producing same, rotary device, and closed electric compressor

Also Published As

Publication number Publication date
JPWO2022239203A1 (en) 2022-11-17
JP7046280B1 (en) 2022-04-01
CN117203285A (en) 2023-12-08

Similar Documents

Publication Publication Date Title
EP0810249B1 (en) Thermosetting resin composition, electrically insulated coil, electric rotating machine and method for producing same
TWI540146B (en) Insulation formulations
JP3359410B2 (en) Epoxy resin composition for molding, molded product for high voltage equipment using the same, and method for producing the same
JP5611182B2 (en) Dry mica tape, and electrically insulated wire ring and rotating electric machine using the same
AU614695B2 (en) Electrically insulated coil, electric rotating machine, and method of manufacturing same
EP0497046A1 (en) Heat resistant resin compositions, articles and method
CN1844237A (en) Solvent-free impregnating resin and its preparation process and use
US20120038239A1 (en) Dry mica tape and insulation coils manufactured therewith
US20210183535A1 (en) Insulation sheet and producing method therefor, and rotary electric machine
JP5606619B2 (en) Rotating machine coil and manufacturing method thereof
WO2022239203A1 (en) Insulating varnish composition, cured insulating varnish, coil and method for producing coil
EP0414975B1 (en) Thermosetting resin composition
JPH07268079A (en) Epoxy resin composition
JP4560982B2 (en) Method for manufacturing insulation coil for high-pressure rotating machine
KR20100111454A (en) Method for preparing epoxy/silica multicomposite for high voltage insulation and product thereby
CN110892019B (en) Unsaturated polyester resin composition and electrical device using same
JPH06233486A (en) Insulated electric coil, rotating electric machine and their manufacture
US5276073A (en) Thermosetting resin composition comprising maleimide, anhydride, epoxy resin and wollastonite
WO2024034026A1 (en) Insulating varnish composition, cured insulating varnish, coil and method for producing coil
JP2874501B2 (en) Electrically insulated wire loop, method for manufacturing electrically insulated wire loop, rotating electric machine, and insulating sheet
JP3164949B2 (en) Self-fusing insulated wire and rotating electric machine using the same
JP3141057B2 (en) Resin composition for impregnation
JP7378438B2 (en) Liquid thermosetting resin composition, method for curing liquid thermosetting resin composition, stator coil, and rotating electric machine
JP3876709B2 (en) Liquid thermosetting resin composition, liquid thermosetting resin composition manufacturing method, and insulating coil manufacturing method
CN111164126A (en) Impregnating resin mixture

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021555017

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21941936

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE