WO2022237836A1 - 栓塞保护装置 - Google Patents

栓塞保护装置 Download PDF

Info

Publication number
WO2022237836A1
WO2022237836A1 PCT/CN2022/092218 CN2022092218W WO2022237836A1 WO 2022237836 A1 WO2022237836 A1 WO 2022237836A1 CN 2022092218 W CN2022092218 W CN 2022092218W WO 2022237836 A1 WO2022237836 A1 WO 2022237836A1
Authority
WO
WIPO (PCT)
Prior art keywords
embolic protection
protection device
frame
head
distal end
Prior art date
Application number
PCT/CN2022/092218
Other languages
English (en)
French (fr)
Inventor
刘建勇
李安宁
葛洋
朱万诚
汤麟
Original Assignee
深圳市先健呼吸科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市先健呼吸科技有限公司 filed Critical 深圳市先健呼吸科技有限公司
Priority to CN202280003954.0A priority Critical patent/CN115916111A/zh
Priority to EP22806798.9A priority patent/EP4338704A1/en
Publication of WO2022237836A1 publication Critical patent/WO2022237836A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/01Filters implantable into blood vessels
    • A61F2/013Distal protection devices, i.e. devices placed distally in combination with another endovascular procedure, e.g. angioplasty or stenting
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/01Filters implantable into blood vessels
    • A61F2002/016Filters implantable into blood vessels made from wire-like elements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/01Filters implantable into blood vessels
    • A61F2002/018Filters implantable into blood vessels made from tubes or sheets of material, e.g. by etching or laser-cutting

Definitions

  • the invention relates to the technical field of interventional medical devices, in particular to an embolism protection device.
  • Cerebral embolism refers to various emboli in the blood (such as wall thrombus in the heart, atherosclerotic plaque, fat, tumor cells, fibrocartilage or air, etc.) entering the relatively narrow and curved cerebral arteries along with the blood flow.
  • emboli such as wall thrombus in the heart, atherosclerotic plaque, fat, tumor cells, fibrocartilage or air, etc.
  • Cerebral embolism often occurs in the internal carotid artery system, and the vertebral-basilar artery system is relatively rare. Cerebral embolism accounts for about 15% to 20% of ischemic strokes. About 75% of cardiogenic emboli embolize in the brain.
  • valve replacement is mainly transcatheter aortic valve implantation (Transcatheter Aortic Valve Implantation, TAVI), through the femoral artery into the interventional catheter, the artificial heart valve is delivered to the aortic valve area to open, so as to complete the artificial valve implantation, restore valve function.
  • TAVI Transcatheter Aortic Valve Implantation
  • the three branches of the aortic arch need to effectively filter emboli in order to minimize the risk of stroke.
  • Most of the existing anti-embolism protection devices are nickel-titanium alloy frame plus filter membrane structure to block the three branches of the aortic arch.
  • the filter membrane usually needs to be supported by a sheath core bent at the arch.
  • embolic protection device which usually uses a cut and pre-bent support net to fit the inner walls of the three branches to achieve filtration.
  • the filter membrane or filter mesh cannot fit the aortic arch walls at the three branches well, resulting in some emboli still entering the aortic arch branches, which poses a safety hazard.
  • An embolic protection device comprising a frame and a filter screen covering the frame, the embolic protection device also includes a plurality of support rods arranged at intervals along its axial direction, the support rods include a first end, a second end and at least one head end facing the distal end, the first end and the second end are respectively connected to opposite sides of the frame, and a first line segment is formed between the first end and the head end , a second line segment is formed between the second end and the head end, the first line segment extends from the first end toward the head end and gradually moves away from the frame, the second line segment extends from The second end extends toward the head end and gradually moves away from the frame, so that the plurality of support rods directs the filter net covered on the plurality of support rods in a direction away from the frame hold up.
  • the value range of the vertical distance from the highest point on the support rod to the horizontal plane is greater than or equal to 0 mm and less than or equal to 30 mm.
  • the vertical distance from the head end to the vertical projection point of the horizontal plane to the line connecting each of the first end and the second end to the vertical projection point of the horizontal plane is greater than or equal to 20 mm and less than or equal to 120 mm.
  • the shortest distance between the first end and the second end ranges from 20 mm to 100 mm.
  • At least one of the head ends bends and extends toward the distal end and toward the frame.
  • At least one of the head ends is provided with an anti-damage piece.
  • At least one sliding constraint ring is provided on the embolic protection device.
  • the sliding constraint ring is arranged on the frame of the embolic protection device, or on at least one head end of at least one support rod.
  • the proximal end and/or the distal end of the embolic protection device is provided with at least one developing member.
  • the embolic protection device further includes a connecting piece connected to the proximal end of the frame.
  • the connecting member is rotatably connected with the frame.
  • the proximal end of the frame is provided with at least one connecting hole, and the distal end of the connecting piece passes through the connecting hole and is fixed on the connecting piece, so that the connecting piece is connected to the connecting piece.
  • the above-mentioned frame is rotated and connected.
  • the connecting member is connected to the frame through a universal ball device.
  • the connecting member is connected to the frame through a hinge device.
  • An embolic protection system comprising an elongated sheath core and any one of the above embolic protection devices.
  • At least one sliding confinement ring is provided on the embolic protection device, one end of the embolic protection device is fixed on the sheath core, and the other end can pass through the sliding confinement ring along the sheath core. Perform axial movement.
  • the embolic protection device includes a plurality of support rods arranged at intervals along its axial direction, and since the first end and the second end of the support rods are respectively connected to opposite sides of the frame, And the first line segment formed from the first end to the head end on the support rod, and the second line segment formed from the second end to the head end respectively extend from the corresponding end toward the head end and gradually move away from the frame.
  • the structural design makes the support rods extend upward toward the far end and away from the frame, and the head ends of the support rods are suspended, so that the filter screens covered on these support rods can be lifted upward toward the direction away from the frame.
  • the filter can be attached to the three branches of the aortic arch, and in practical applications, the frame and the support rods can interact and promote each other, which can not only make the frame more stable at the aortic arch, but also Each support rod can be promoted to give the filter screen a greater upward support force, thereby promoting the filter screen to better fit the upper wall tissue of the aortic arch.
  • FIG. 1 is a schematic diagram of the overall structure of the embolic protection device of Embodiment 1;
  • Fig. 2 is a schematic structural view of the embolic protection device in Fig. 1 when the filter screen is not covered;
  • Fig. 3 is a top view of the structure shown in Fig. 2;
  • Fig. 4 is another schematic structural view of the embolic protection device of embodiment 1 when the filter screen is not covered;
  • Figure 5 is a top view of the structure shown in Figure 4.
  • Fig. 6 is another schematic structural view of the embolic protection device of embodiment 1 when the filter screen is not covered;
  • Fig. 7 is a structural schematic diagram when the structure shown in Fig. 2 is placed on a horizontal plane;
  • Fig. 8 is a schematic diagram of implanting the embolic protection device in Fig. 1 into the aortic arch;
  • Example 9 is a schematic diagram of the overall structure of the embolic protection device of Example 2.
  • Fig. 10 is a schematic structural view of the embolic protection device in Fig. 9 when the filter screen is not covered;
  • Fig. 11 is another structural schematic diagram of the embolic protection device of Example 2.
  • Fig. 12 is a schematic structural view of the embolic protection device of Fig. 9 when it is accommodated in the sheath;
  • Fig. 13 is a schematic diagram of the embolic protection device of Fig. 9 being implanted in the aortic arch;
  • Fig. 14 is a schematic diagram of the overall structure of the embolic protection device of Example 3.
  • Figure 15 is an enlarged schematic view of E in Figure 14;
  • Fig. 16 is another schematic structural view of the embolic protection device of Example 3.
  • Figure 17 is an enlarged schematic view of F in Figure 16;
  • Fig. 18 is another schematic structural view of the embolic protection device of Example 3.
  • Figure 19 is an enlarged schematic view of G in Figure 18;
  • Fig. 20 is another structural schematic diagram of the embolic protection device of Example 3.
  • Figure 21 is an enlarged schematic view of K in Figure 20;
  • Fig. 22 is a schematic diagram of the overall structure of the embolic protection device of Example 4.
  • Figure 23 is an enlarged schematic view of J in Figure 21;
  • Figure 24 is a cross-sectional view of the universal ball device of the embolic protection device.
  • Fig. 25 is a schematic diagram of the overall structure of the embolic protection device of Example 5.
  • FIG. 26 is an enlarged schematic view of S in FIG. 25 .
  • proximal end the end of a medical device implanted in a human or animal body that is closer to the operator
  • distal end the end that is farther from the operator
  • proximal end the end of a medical device implanted in a human or animal body that is closer to the operator
  • distal end the end that is farther from the operator
  • proximal end the end of a medical device implanted in a human or animal body that is closer to the operator
  • distal end the end that is farther from the operator
  • distal end the end that is farther from the operator
  • proximal end the end that is farther from the operator
  • distal end the end that is farther from the operator
  • Embodiment 1 proposes an embolic protection device, which is used in valve replacement surgery as an example, to prevent particles such as thrombus or hard lumps in the blood flow from flowing into the brain through any of the three branches of the aortic arch at the position of the aortic arch. lead to cerebral embolism.
  • it can also be used in thoracotomy to filter blood, or implanted in blood vessels to filter particles or particles such as thrombus or calcification.
  • the embolic protection device 100 includes a frame 110 and a filter 120 covering the frame 110 , and also includes four support rods 130 arranged at intervals along the axial direction of the embolic protection device 100 .
  • Each support rod 130 is V-shaped and includes a first end 131, a second end 131 and a distal end 132, the first end 131 and the second end 131 are respectively fixedly connected to opposite sides of the frame 110 .
  • a virtual first line segment V1 is formed between the first end 131 and the head end 132
  • a virtual second line segment V2 is formed between the second end 131 and the head end 132
  • the first line segment V1 is from the first end 131 toward the head end.
  • the second line segment V2 extends from the second end 131 toward the head end 132 and gradually away from the frame 110, that is, at least a part of each support rod 130 is from its corresponding first
  • the end 131 and the second end 131 respectively extend toward the corresponding head end 132 and gradually move away from the frame 110 , so as to prop up the filter screen 120 covering the four supporting rods 130 toward the direction away from the frame 110 .
  • a part of the support rods 130 can be selected for propping up the filter screen 120 away from the frame 110 , and another part of the support rods 130 can have other shapes and other functions.
  • the frame 110 is a closed frame in the embolic protection device 100 .
  • the shape of the frame 110 is similar to an ellipse or a leaf shape with a hollow inside.
  • the frame 110 can be made of alloys or polymer materials with shape memory properties, such as nickel-titanium alloys, cobalt-chromium alloys, TPU (Thermoplastic polyurethanes, thermoplastic polyurethane elastomer rubber), PTFE (Poly tetrafluoroethylene, polytetrafluoroethylene), PE (polyethylene, polyethylene), etc.
  • the surface enclosed by the frame 110 may be parallel to the horizontal plane, or be an arcuate surface conforming to the shape of the aortic arch.
  • the filter screen 120 is a film made of polymer materials such as PTFE, TPU or PET (Polyethylene terephthalate, polyethylene terephthalate), and can also be made of braided wire with shape memory characteristics through weaving.
  • the thickness of the filter screen 120 ranges from 10 microns to 55 microns, and there are many small holes 121 for filtering on the membrane.
  • the diameters of the small holes 121 range from 25 microns to 300 microns.
  • the shape and size of the filter 120 are similar to or match those of the frame 110 , as long as the filter 120 can completely cover the frame 110 and the edge of the filter 120 can be fixedly connected to the frame 110 .
  • the edge portion of the filter screen 120 is fixedly connected to the frame 110 by glue, high frequency, laser welding, sewing and other processes.
  • the filter screen 120 can filter large particles such as larger thrombi or hard clots, and can also filter particles such as small blood clots or small hard clots.
  • the supporting rod 130 can be made of the same material as the frame 110 .
  • the supporting rod 130 can be made separately and then fixed on the frame 110 , or can be made of the same sheet material as the frame 110 after being cut and heat-set.
  • the minimum distance between the head ends 132 of two adjacent support rods 130 ranges from 5 mm to 100 mm.
  • the first end 131 and the second end 131 on the same support rod 130 can be symmetrical along the central axis of the frame 110, which can not only promote the frame 110 to have greater radial support and anchoring stability, but also make the filter screen 120 Maximum fit on the superior wall of the aortic arch.
  • the first end 131 and the second end 131 of the same support rod 130 may also be asymmetrical along the central axis of the frame 110 .
  • the head end 132 of the support rod 130 is away from the frame 110 and suspended in the air, the first part of the support rod 130 from its first end 131 to its head end 132 and the second part from its second end 131 to its head end 132, gradually
  • the filter mesh 120 covered on the support rod 130 is propped up toward the direction away from the frame 110 , so that this part of the filter mesh 120 can stably attach to the upper wall of the aortic arch without using the sheath core to prop it up.
  • the number of support rods 130 may also be 3 or 5, and an appropriate number of support rods 130 may be provided as required.
  • the angle a between the two struts 133 constituting a V-shaped bar 130 ranges from 10 degrees to 145 degrees.
  • the included angle a is less than 10 degrees, when the embolic protection device 100 is unsheathed, the support rod 130 cannot provide sufficient stretching force for the frame 110 , and the frame 110 may not be well anchored on the inner wall of the aortic arch.
  • the included angle a is greater than 145 degrees, the embolic protection device 100 is less flexible in the radial direction and may damage blood vessels.
  • the value of the included angle a between the two struts 133 of the support rod 130 is 135 degrees.
  • the support bar 130 can also be a U-shaped bar; or, the support bar 130 can be composed of two or more V-shaped bars and/or U-shaped bars connected in series, as shown in Figure 4 and Figure 5
  • the W-shaped bar 130 made of two V-shaped bars can also be a folded line bar made of more than two V-shaped bars, or a wave-shaped bar made of more than two U-shaped bars.
  • the support The rod 130 has two or more head ends 132, such a support rod 130 can attach the filter mesh 120 to the upper wall of the aortic arch at multiple angles, and the support rod 130 has better deployment strength, which can make the frame 110 Better anchoring within the aortic arch.
  • the first line segment V1 may be formed between the first end 131 of the support rod 130 and any head end 132 on the support rod 130.
  • a virtual line segment, the second line segment V2 may be another virtual line segment formed between the second end 131 of the support rod 130 and any head end 132 of the support rod 130 .
  • the lengths of the four support rods 130 in FIG. 1 are different, specifically, they gradually increase from the proximal end to the distal end of the embolic protection device 100 .
  • the four support rods 130 all have a certain degree of bending toward the distal end, and the degree of bending can also be different, as long as they cooperate with each other to ensure that the propped up filter mesh 120 fully fits the upper walls of the three branches of the aortic arch.
  • the value range of the minimum angle b between the support rod 130 and the frame 110 is greater than or equal to 10 degrees and less than or equal to 80 degrees.
  • the four head ends 132 on the embolic protection device 100 are bent downward towards the distal end and slightly towards the direction of the frame 110, so as to prevent the distal ends of the head ends 132 from piercing the filter when entering and leaving the sheath tube 400 120, or poke into the superior wall tissue of the aortic arch during deployment.
  • the head end 132 of each support rod 130 can be blunted.
  • at least one head end 132 is provided with an anti-damage member, such as a ball head formed by hot-melting the head end 132 , silica gel wrapping the head end 132 , etc., so as to prevent the head end 132 from piercing the filter screen 120 .
  • the head end 132 on the support rod 130 may also extend toward the distal end while extending slightly upward toward the direction away from the frame 110. At this time, the head end 132 may adopt the aforementioned passivation treatment or be provided with the aforementioned anti-damage piece, and the head end 132 is the highest point on the support rod 130 where it is located. In other implementations, as shown in FIG.
  • all the head ends 132 are bent downward for a short distance toward the distal end and toward the frame 110 , and the curvature c of the head ends 132 is bent downward in a value range of R2 To R30, so that there is no point at the portion of the support rod 130 in contact with the filter screen 120 , and the support rod 130 is in smooth contact with the filter screen 120 , thereby preventing the head end 132 from piercing the filter screen 120 .
  • the support rod 130 includes two or more head ends 132
  • one or more head ends 132 of the support rod 130 can adopt the above-mentioned method for preventing the head end 132 from piercing the filter screen 120, which is not described here. Let me repeat.
  • the value range of the vertical distance H is greater than or equal to 0 mm and less than or equal to 30 mm, for example, the value of H may be 0 mm, 10 mm, 20 mm or 30 mm. In this embodiment, because the head end 132 is slightly bent downward, the head end 132 is not the highest point on the support rod 130 .
  • the vertical distance H from the highest point on the support rod 130 to the horizontal plane M is greater than 30 millimeters, the height difference between the first end 131 or the second end 131 and the head end 132 of the support rod 130 is too large, and It is unfavorable for the bonding of the support rod 130 as a whole and the filter screen 120 , thereby affecting the sealing performance of the filter screen 120 to the three branches.
  • the vertical distance H from the highest point on the support rod 130 to the horizontal plane M is less than 0 mm, the support height of the support rod 130 is limited, which is not conducive to the fit of the filter mesh 120 to the upper wall of the aortic arch. Assuming that point A on the support rod 130 in FIG. 7 is the highest point, then the vertical distance from point A to the horizontal plane M is H.
  • the vertical projection point B of the head end 132 on the support rod 130 to the horizontal plane M, the vertical projection point C of the first end 131 of the support rod 130 to the horizontal plane M and the vertical projection point of the second end 131 to the horizontal plane M The value range of the vertical distance L1 between the connecting lines CD of D is greater than or equal to 20 mm and less than or equal to 120 mm, for example, the value of L1 may be 30 mm.
  • the shortest distance between the first end 131 and the second end 131 of the support rod 130, that is, the length of the straight line CD, ranges from 20 mm to 100 mm, such as between the first end 131 and the second end 131 The shortest distance can be 50mm.
  • each support rod 130 cooperates with each other to not only fully attach the filter mesh 120 to the three branches 210 of the aortic arch 200, but also to be compatible with the
  • the frame 110 that is squeezed by the inner wall of the aortic arch 200 interacts.
  • the frame 110 transmits a part of the force to each support rod 130 after being squeezed, so that each support rod 130 further supports the filter screen 120 upwards, thereby making the filter screen 120 is more close to the upper wall of the three branches 210 of the aortic arch 200.
  • each support rod 130 reacts against the frame 110, and supports the two sides of the frame 110 connected with each support rod 130 outward, so that the frame 110 It can be stably anchored on the inner wall of the aortic arch 200 .
  • the frame 110 when the embolic protection device 100 is placed on the horizontal plane M, the frame 110 is basically completely attached to the horizontal plane M. As shown in FIG. In another implementation, as shown in FIG. 6 , when the embolic protection device 100 is placed on the horizontal plane M, only the distal portion of the frame 110 is in contact with the horizontal plane M, while the middle portion of the frame 110 is arched upwards, that is, The frame 110 is curved relative to the horizontal plane M, and the value range of the curved curvature d is R20 to R200, so that after the embolic protection device 100 is released, the curved frame 110 can promote the support rod 130 and the filter screen 120 to be more compact. Fits well to the upper wall of the aortic arch 200 .
  • the value range of the axial length L2 of the frame 110 is 50 mm to 150 mm;
  • the widths can be different, and the maximum width W ranges from 30 mm to 100 mm, so that the three branches 210 of the aortic arch 200 can cover most of the anatomical structures to achieve effective anti-embolism.
  • the filter screen 120 is only covered on each support rod 130 without being fixedly connected thereto.
  • a part of the support rod 130 may be partially fixed on the filter mesh 120 by means of glue bonding or suture stitching.
  • one support rod 130 includes two or more head ends 132, it is also possible to prevent the head ends 132 from being hinged when being sheathed.
  • the proximal end of the frame 110 is provided with a connecting piece 140 connected to the distal end of the sheath core 300 .
  • the connector 140 can be made of nickel-titanium alloy.
  • the proximal section 141 of the connector 140 is in a hollow tubular shape, and the distal section 142 is rod-shaped. The distal end of the proximal section 141 and the proximal end of the distal section 142 are connected directly.
  • the proximal section 141 of the connector 140 is used to allow the distal end of the sheath core 300 to pass through the proximal end and pass through the distal end, and then the sheath core 300 extends to the distal end for a certain distance until the distal end of the sheath core 300 The end is more distal than the distal end of the embolic protection device 100 .
  • the distal segment 142 can rest against the sheath core 300 .
  • the embolic protection device 100 can be fixedly connected to the distal end of the sheath core 300 through the proximal section 141 of the connecting member 140 .
  • the embolic protection device 100 may also be fixedly connected to the sheath core 300 through the frame 110 or the support rod 130 .
  • the developing member 150 can be made of a material that can be developed under DSA equipment, such as gold, platinum, platinum-iridium alloy or other materials with strong developability.
  • the specific structure or shape of the developing member 150 is not limited, as long as it can be fixed at a proper position of the embolic protection device 100 .
  • a first developing member 151 may be provided at the distal end of the embolic protection device 100
  • a second developing member 152 may be provided at the proximal end of the embolic protection device 100 .
  • other developing components 150 may also be provided at other positions of the embolic protection device 100, for example, a developing component 150 may be provided on the head end 132 of the support rod 130 in the middle area of the embolic protection device 100, to assist judgment Whether the filter 120 on the embolic protection device 100 is effectively attached to the upper wall of the aortic arch 200 .
  • This embodiment also proposes an embolic protection system comprising the above-mentioned embolic protection device 100 and a sheath core 300 , and the embolic protection system further includes a sheath tube 400 for compressing and delivering the above-mentioned embolic protection device 100 .
  • the above-mentioned embolic protection device 100 has superelasticity and shape memory characteristics. After being fixed to the distal end of the sheath core 300, the embolic protection device 100 is pulled into the sheath tube 400 through the sheath core 300 to be in a compressed state, so as to facilitate the use of the sheath tube. 400 delivers the embolic protection device 100 into the body.
  • the embolic protection device 100 After the embolic protection device 100 protrudes from the sheath tube 400 , it can self-expand and expand under the action of the shape memory property to assume the deployed state as shown in FIG. 1 .
  • the released and deployed shape of the embolic protection device 100 at the aortic arch 200 is generally consistent with the deployed state in the natural state shown in FIG.
  • the above descriptions of the embolic protection device 100 all describe the features in the deployed state unless otherwise specified.
  • the proximal end of the embolic protection device 100 can be fixed on the sheath core 300, and the distal end is not fixed, or the embolic protection device 100 can be The distal end is fixed on the sheath core 300, and the proximal end is not fixed.
  • the following will describe in detail by taking the proximal end of the embolic protection device 100 fixed on the sheath core 300 as an example.
  • the embolic protection device 100 is pulled into the sheath tube 400.
  • the embolic protection device 100 is radially compressed and axially extended to be accommodated inside the distal end of the sheath tube 400 in a compressed state.
  • puncture is performed from the femoral artery on one side of the human body or animal body, and then a guide wire is sent in to establish a delivery channel in the body; after the guide wire reaches a predetermined position, the sheath tube 400 containing the embolic protection device 100 is transported along the guide wire channel To the area where the aortic arch 200 is located, at this time, with the help of DSA equipment, according to the positions of the multiple developing components 150 set on the embolic protection device 100, the relative positions of the embolic protection device 100 and the three branches 210 of the aortic arch 200 are judged, and when the DSA When the device observes that the first developing part 151 and the second developing part 152 on the embolic protection device 100 are located at the two ends of the three branches 210 of the aortic arch 200, keep the sheath core 300 still, and then slowly withdraw the sheath tube 400, To gradually release the embolic protection device 100 from the sheath tube 400 until the entire embolic protection device 100
  • Embodiment 2 proposes another embolic protection device and its embolic protection system.
  • the embolic protection device 500 of Example 2 is generally similar to the embolic protection device 100 of Example 1, the definition and characteristics of the virtual first line segment V1 and the virtual second line segment V2 are also consistent, and the operation process is also generally consistent.
  • the embolic protection device 500 of Embodiment 2 is provided with at least one sliding constraint ring 160, and the sliding constraint ring 160 can be set on the frame 110 or on at least one head end 132 of the support rod 130; implementation
  • the distal end of the sheath core 300 passes through one or more sliding confinement rings 160 on the embolic protection device 500, so that when the embolic protection device 500 is squeezed by the aortic arch 200, the sliding confinement rings 160 can Move axially along the sheath core 300, so that the entire embolic protection device 500 is adaptively bent and deformed to better fit the upper wall of the aortic arch 200 to achieve a more effective anti-embolism effect, and at the same time prevent the embolic protection device 500 from The deviation occurs relative to the sheath core 300, resulting in the inability to effectively filter thrombus and the like.
  • a sliding confinement ring 160 can be provided on at least one head end 132 of one or more support rods 130 of the embolic protection device 500, and the number of the sliding confinement rings 160 on each head end 132 can be set as required.
  • the head end 132 of the most distal support rod 130 of the embolic protection device 500 is provided with a sliding constraint ring 160 , which not only prevents the distal end of the embolic protection device 500 from being biased relative to the sheath core 300
  • the sheath core 300 can also be used to conform to the bending of the aortic arch 200 to promote the support rod 130 to better prop up the filter screen 120, so that the filter screen 130 fits more tightly at the three branches 210, filtering In addition, it can prevent the head end 132 of the support rod 130 from poking into the filter mesh 120 or the inner wall of the aortic arch 200 .
  • a sliding constraint ring 160 may be provided at the distal end or the proximal end of the frame 110 of the embolic protection device 500 .
  • at least one sliding constraining ring 160 may be respectively provided on the distal end of the frame 110 of the embolic protection device 500 and on at least one head end 132 of at least one support rod 130 .
  • the proximal end of the embolic protection device 500 is fixed on the distal end of the sheath core 300, and the distal end is relatively fixed on the sheath core 300 through the sliding confinement ring 160 on the frame 110, and the embolic protection device 500 and the sheath core
  • the distal ends of the sheath tube 400 are received at the distal end of the sheath tube 400 so as to assume a compressed state.
  • the state in which the embolic protection device 100 is accommodated in the sheath tube 400 in the first embodiment is similar to that shown in FIG. 12 .
  • one end of the embolic protection device 500 needs to be fixed at a suitable position at the distal end of the sheath core 300, the proximal end of the embolic protection device 500 can be fixed on the sheath core 300, and the distal end passes through the sheath through the set sliding constraint ring 160
  • the distal end of the core 300 is relatively fixed, and the distal end of the embolic protection device 500 can also be fixed on the sheath core 300 , and the proximal end is relatively fixed through the distal end of the sheath core 300 through the provided sliding constraint ring 160 .
  • the proximal end of the embolic protection device 500 is fixed on the distal end of the sheath core 300 , and the distal end passes through the distal end of the sheath core 300 through the sliding constraint ring 160 on the frame 110 for relative fixation.
  • the operation process is generally consistent with that of Example 1, and will not be repeated here.
  • the sliding constraining ring 160 on the embolic protection device 500 makes the embolic protection device 500 always slide along the axial direction of the sheath core 300 during release, deployment and recovery, and can well conform to the curved shape of the aortic arch 200 to further reduce embolic protection. There is a risk of excessive twisting or deflection of the device 500 .
  • Embodiment 3 proposes another embolic protection device and its embolic protection system.
  • the embolic protection device 600 of the third embodiment is generally similar to the embolic protection device 100 of the first embodiment, and the operation process is also generally the same. The main difference between the two is that the distal end section 142 of the connecting piece 140 of the embolic protection device 600 of the third embodiment is rotationally connected with the proximal end of the frame 110.
  • the sheath core then extends to the distal end for a certain distance until the sheath core
  • the distal end of the embolic protection device 600 is closer to the distal end than the distal end of the embolic protection device 600.
  • the embolic protection device 600 can be fixed at the aortic arch to prevent thrombus from entering the blood vessels of the brain and prevent stroke and other symptoms.
  • the embolic protection device 600 is spliced with the sheath core, which can be pushed out or put into the sheath by pushing and pulling the sheath core.
  • the embolic protection device 600 When the embolic protection device 600 is released in the aortic arch, due to the extrusion and friction of the blood vessel wall, the embolic protection device 600 often occurs. If it cannot be fully expanded, the frame 110 will be bent, which may lead to the risk that the embolic protection device 600 cannot cover the blood vessels in the brain and affect the performance of the device.
  • the distal section 142 of the connector 140 of the embolic protection device 600 is rotationally connected to the proximal end of the frame 110, so that the connector 140 of the embolic protection device 600 has better deformation ability, and is subjected to extrusion energy when released. Provide a space for the embolic protection device 600 so that it can fully expand, thereby avoiding bending of the frame 110 .
  • At least one connecting hole 111 is opened at the proximal end of the frame 110, and the distal end section 142 of the connecting piece 140 passes through the connecting hole 111 and is fixed on the connecting piece. 140 , specifically, it can be fixed on the distal end section 142 itself, so that the connecting piece 140 is rotatably connected to the frame 110 .
  • the distal end section 142 can be fixed by welding, riveting, stamping or glue after passing through the connecting hole 111, or can be fixed by braiding and winding on the distal end section 142 itself, which is not specifically limited in the embodiment of the present invention.
  • a welding point can be arranged on the distal end section 142, the width of the welding point is greater than the width of the distal end section 142, and the distal end section 142 can be welded on the welding spot after passing through the connecting hole 111. At the point, the welding joint area can be increased to ensure the strength of the welding.
  • the proximal end of the frame 110 can be provided with two connection holes 111, the distal section 142 of the connecting piece 140 is cut into two bifurcated sections, and the two bifurcated sections
  • the fork segments pass through the two connection holes 111 respectively and are fixed at the fork of the distal end segment 142 .
  • the proximal end of the frame 110 can be provided with two connecting holes 111, and the distal section 142 of the connecting piece 140 is cut into two bifurcated sections, two The bifurcated section passes through two connection holes 111 and is fixed on the bifurcation section itself, wherein the diameter of the surrounding hole formed by the bifurcated section through the connection hole 111 is slightly greater than the distance from the connection hole 111 to the edge of the frame 110 to ensure The embolic protection device 600 has certain mobility.
  • a connecting hole 111 may be opened at the proximal end of the frame 110, and the distal end section 142 of the connecting piece 140 passes through the connecting hole 111 and then is braided and wound for a certain length.
  • a metal wire with a suitable diameter is passed through the connecting hole 111 and then braided and wound for a certain length before being welded on the distal end section 142 of the connecting member 140 .
  • the metal wire may be Nitinol wire.
  • At least one sliding confinement ring 160 can be provided on the embolic protection device 600 , and the sliding confinement ring 160 can be provided on the frame 110 or on the side of the support rod 130 At least one head end 132, so that when the embolic protection device 600 is squeezed by the aortic arch, the sliding constraint ring 160 can move axially along the sheath core, so that the entire embolic protection device 600 can be adaptively bent and deformed to better Fitting the upper wall of the aortic arch achieves a more effective anti-embolism effect, and at the same time prevents the embolic protection device 600 from shifting relative to the sheath core, resulting in failure to effectively filter thrombus and the like.
  • the specific setting method refer to Embodiment 2, and the embodiment of the present invention will not be described in detail here.
  • Embodiment 4 proposes another embolic protection device and its embolic protection system.
  • the embolic protection device 700 of Embodiment 4 is generally similar to the embolic protection device 600 of Embodiment 3, and its structure and function are generally the same.
  • the distal section 142 of the connector 140 is also connected to the proximal end of the frame 110 by rotation, and the operation process is also generally the same. .
  • the main difference between the two is that the connection part 140 of the embolic protection device 700 is connected with the frame 110 through the universal ball device 170 .
  • the universal ball device 170 includes a ball seat 171 and a rotatable ball 172 placed in the ball seat 171, the ball seat 171 includes a groove, and the distance from the notch of the groove to the bottom of the groove is Greater than the radius of the ball 172 , the distance from the notch of the groove to the bottom of the groove is smaller than the diameter of the ball 172 , so that the ball 172 can rotate freely in the ball seat 171 without breaking away from the ball seat 171 .
  • one of the ball seat 171 and the ball 172 is connected with the distal section 142 of the connecting member 140 , and the other is connected with the proximal end of the frame 110 .
  • the ball seat 171 or the ball 172 connected to the frame 110 may be directly connected to the frame 110 or indirectly connected to the frame 110 through a connecting rod.
  • the connecting rod can be a nickel-titanium alloy rod.
  • Embodiment 5 proposes another embolic protection device and its embolic protection system.
  • the embolic protection device 800 of Embodiment 5 is generally similar to the embolic protection device 700 of Embodiment 4, and its structure and function are generally the same.
  • the distal section 142 of the connector 140 is also connected to the proximal end of the frame 110 by rotation, and the operation process is also generally the same. .
  • the main difference between the two is that the connection part 140 of the embolic protection device 800 is connected to the frame 110 through the hinge device 180 .
  • the hinge device 180 is a rotating shaft structure, including a first rotating member 181 and a second rotating member 182, the first rotating member 181 and the second rotating member 182 are coaxially rotatably connected, wherein the first rotating member 181 One of the first rotating member 181 and the second rotating member 182 is connected to the distal end section 142 of the connecting member 140 , and the other is connected to the proximal end of the frame 110 .
  • the first rotating member 181 or the second rotating member 182 connected to the frame 110 may be directly connected to the frame 110 or indirectly connected to the frame 110 through a connecting rod.
  • the connecting rod can be a nickel-titanium alloy rod.

Landscapes

  • Health & Medical Sciences (AREA)
  • Cardiology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Surgical Instruments (AREA)

Abstract

一种栓塞保护装置(100),包括边框(110)、边过滤网(120)和间隔设置的多个支撑杆(130),支撑杆(130)包括第一末端(131)、第二末端(131)和至少一个朝向远端的头端(132),第一末端(131)和第二末端(131)分别连接在边框(110)的相对两侧,第一末端(131)、第二末端(131)分别与头端(132)形成第一线段(V1)、第二线段(V2),第一线段(V1)从第一末端(131)朝向头端(132)的方向延伸并逐渐远离边框(110),第二线段(V2)从第二末端(131)超向头端(132)的方向延伸并逐渐远离边框(110),使多个支撑杆(130)将覆盖在多个支撑杆(130)上的边过滤网(120)朝向远离边框(110)的方向撑起。该装置无需借助鞘芯即可将边过滤网贴合在主动脉弓的三个分支处,且在实际应用中,边框和支撑杆相互作用、相互促进,促使边框在主动脉弓处稳固的固定,还使各个支撑杆给予过滤网更大的向上支撑力,进而使边过滤网更好地贴合主动脉弓。

Description

栓塞保护装置 技术领域
本发明涉及介入医疗器械技术领域,尤其涉及一种栓塞保护装置。
背景技术
脑栓塞是指血液中的各种栓子(如心脏内的附壁血栓、动脉粥样硬化的斑块、脂肪、肿瘤细胞、纤维软骨或空气等)随血流进入较为狭窄、弯曲的脑动脉而阻塞血管,当侧支循环不能代偿时,引起该动脉供血区脑组织缺血性坏死,出现局灶性神经功能缺损。脑栓塞常发生于颈内动脉系统,椎-基底动脉系统相对少见。脑栓塞约占缺血性脑卒中的15%~20%。约75%的心源性栓子栓塞于脑部,引起脑栓塞的常见的心脏疾病有心房颤动、心脏瓣膜病、感染性心内膜炎、心脏粘液瘤等。随着医疗水平的提高,越来越多的心脏和血管外科问题可通过血管内手术完成。支架植入术、瓣膜置换术等均是近年来发展迅速的血管内手术。其中瓣膜置换术主要为经导管主动脉瓣置入术(Transcatheter Aortic Valve Implantation,TAVI),通过股动脉送入介入导管,将人工心脏瓣膜输送至主动脉瓣区打开,从而完成人工瓣膜置入,恢复瓣膜功能。手术无需开胸,因而创伤小、术后恢复快。瓣膜置换术配合防栓塞的保护装置使用,有效防止栓子进入颅内造成堵塞,进一步降低风险。
目前,根据临床研究认为主动脉弓的三个分支均需有效过滤栓子,才能最大程度的降低发生脑卒中的风险。现有的防栓塞的保护装置大多为镍钛合金框架加过滤膜结构来封堵主动脉弓的三个分支,对于这种结构的保护装置,过滤膜通常需要借助在弓部弯曲的鞘芯撑起,才能达到在三个分支处进行过滤血栓的目的。还有一种栓塞保护装置,通常是采用切割形成并预弯曲的支撑网贴合三个分支处的内壁来实现过滤。但这些保护装置在临床应用中,过滤膜或过滤网不能很好地贴合三个分支处的主动脉弓壁,导致仍然存在一些栓子进入主动脉弓分支,存在安全隐患。
发明内容
基于此,有必要针对现有的栓塞保护装置的过滤膜或过滤网不能很好地贴合主动脉弓的三个分支的问题提供一种新的栓塞保护装置。
提出一种栓塞保护装置,包括边框和包覆所述边框的过滤网,所述栓塞保护装置还包括沿其轴向方向间隔设置的多个支撑杆,所述支撑杆包括第一末端、第二末端和至少一个朝向远端的头端,所述第一末端和所述第二末端分别连接在所述边框的相对两侧,所述第一末端与所述头端之间形成第一线段,所述第二末端与所述头端之间形成第二线段,所述第一线段从所述第一末端朝向所述头端的方向延伸并逐渐远离所述边框,所述第二线段从所述第二末端超向所述头端的方向延伸并逐渐远离所述边框,从而使得所述多个支撑杆将覆盖在所述多个支撑杆上的所述过滤网朝向远离所述边框的方向撑起。
在其中一个实施例中,将所述栓塞保护装置放置于水平面时,所述支撑杆上的最高点到所述水平面的垂直距离的取值范围为大于或等于0毫米且小于或等于30毫米。
在其中一个实施例中,所述头端到所述水平面的垂直投影点,到所述第一末端和所述第二末端各自到所述水平面的垂直投影点的连线之间的垂直距离的取值范围为大于或等于20毫米且小于或等于120毫米。
在其中一个实施例中,所述第一末端和所述第二末端之间的最短距离的取值范围为20毫米至100毫米。
在其中一个实施例中,至少有一个所述头端朝向远端并朝向所述边框的方向弯曲延伸。
在其中一个实施例中,至少有一个所述头端上设有防损伤件。
在其中一个实施例中,所述栓塞保护装置上设有至少一个滑动约束环。
在其中一个实施例中,所述滑动约束环设置在所述栓塞保护装置的边框上,或设置在至少一个支撑杆的至少一个所述头端上。
在其中一个实施例中,所述栓塞保护装置的近端和/或远端设有至少一个显影件。
在其中一个实施例中,所述栓塞保护装置还包括与所述边框的近端连接的连接件。
在其中一个实施例中,所述连接件与所述边框转动连接。
在其中一个实施例中,所述边框的近端开设有至少一个连接孔,所述连接件的远端穿过所述连接孔后固定在所述连接件上,以使得所述连接件与所述边框转动连接。
在其中一个实施例中,所述连接件与所述边框通过万向球装置进行连接。
在其中一个实施例中,所述连接件与所述边框通过铰链装置进行连接。
还提出一种栓塞保护系统,包括细长的鞘芯和上述任一栓塞保护装置。
在其中一个实施例中,所述栓塞保护装置上设有至少一个滑动约束环,所述栓塞保护装置的一端固定在所述鞘芯上,另一端可通过所述滑动约束环沿所述鞘芯进行轴向移动。
上述栓塞保护装置及其栓塞保护系统中,栓塞保护装置包括沿着其轴向方向间隔设置的多个支撑杆,且由于支撑杆的第一末端和第二末端分别连接在边框的相对两侧,且该支撑杆上的由第一末端到头端形成的第一线段,以及由第二末端到头端形成的第二线段,分别从其对应的末端朝向头端的方向延伸并逐渐远离边框,这一结构设计使得支撑杆是朝向远端并远离边框向上延伸,且支撑杆的头端部分是悬空的,从而能够将覆盖在这些支撑杆上的过滤网朝向远离边框的方向向上撑起,因而,无需借助鞘芯即可将过滤网贴合在主动脉弓的三个分支处,且在实际应用中,边框和支撑杆之间可相互作用、相互促进,不仅能促使边框在主动脉弓处固定的更稳固,还能促使各个支撑杆给予过滤网更大的向上支撑力,进而促使过滤网更好地贴合主动脉弓的上壁组织。
附图说明
图1为实施例1的栓塞保护装置的整体结构示意图;
图2为图1中栓塞保护装置未覆盖过滤网时的结构示意图;
图3为图2所示结构的俯视图;
图4为实施例1的栓塞保护装置在未覆盖过滤网时的另一结构示意图;
图5为图4所示结构的俯视图;
图6为实施例1的栓塞保护装置在未覆盖过滤网时的另一结构示意图;
图7为图2所示结构放置于水平面时的结构示意图;
图8为图1的栓塞保护装置植入到主动脉弓处的示意图;
图9为实施例2的栓塞保护装置的整体结构示意图;
图10为图9中栓塞保护装置未覆盖过滤网时的结构示意图;
图11为实施例2的栓塞保护装置的另一结构示意图;
图12为图9的栓塞保护装置收容在鞘管内时的结构示意图;
图13为图9的栓塞保护装置植入到主动脉弓处的示意图;
图14为实施例3的栓塞保护装置的整体结构示意图;
图15为图14中E的放大示意图;
图16为实施例3的栓塞保护装置的另一结构示意图;
图17为图16中F的放大示意图;
图18为实施例3的栓塞保护装置的又一结构示意图;
图19为图18中G的放大示意图;
图20为实施例3的栓塞保护装置的再一结构示意图;
图21为图20中K的放大示意图;
图22为实施例4的栓塞保护装置的整体结构示意图;
图23为图21中J的放大示意图;
图24为栓塞保护装置的万向球装置的剖视图;
图25为实施例5的栓塞保护装置的整体结构示意图;
图26为图25中S的放大示意图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
需要说明的是,在介入医疗器械领域,一般将植入人体或动物体内的医疗 器械的距离操作者较近的一端称为“近端”,将距离操作者较远的一端称为“远端”,并依据此原理定义医疗器械的任一部件的“近端”和“远端”。“轴向”一般是指医疗器械在被输送时的长度方向,“径向”一般是指医疗器械的与其“轴向”垂直的方向,并依据此原理定义医疗器械的任一部件的“轴向”和“径向”。
以下将结合具体实施例进一步详细说明本发明的技术方案。
实施例1
实施例1提出一种栓塞保护装置,以用在瓣膜置换手术中为例,在主动脉弓的位置处阻挡血流中的血栓或硬块等微粒通过主动脉弓的三个分支中任一个分支而流入脑部,导致脑栓塞。此外,还可以用在开胸手术中使用以用来过滤血液,或是植入到血管内用来过滤血栓或钙化物等微粒或颗粒。
请参考图1和图2,栓塞保护装置100包括边框110和包覆边框110的过滤网120,还包括沿栓塞保护装置100的轴向方向间隔设置的4个支撑杆130。每一个支撑杆130均呈V形,且包括第一末端131、第二末端131和一个朝向远端的头端132,第一末端131和第二末端131分别固定连接在边框110的相对两侧。第一末端131与头端132之间形成虚拟的第一线段V1,第二末端131与头端132之间形成虚拟的第二线段V2,第一线段V1从第一末端131朝向头端132的方向延伸并逐渐远离边框110,第二线段V2从第二末端131朝向头端132的方向延伸并逐渐远离边框110,也即,每个支撑杆130的至少一部分均从其对应的第一末端131、第二末端131分别朝向与其对应的头端132的方向延伸并逐渐远离边框110,以将覆盖在这4个支撑杆130上的过滤网120朝向远离边框110的方向向上撑起。在一些实施例中,可以选择一部分的支撑杆130用于将过滤网120朝向远离边框110的方向向上撑起,另一部分支撑杆130可以具有其他形状和其他作用。
边框110为栓塞保护装置100中封闭的一圈框架。边框110的形状为类似椭圆形或为内部中空的树叶形等。边框110可采用具有形状记忆特性的合金或高分子材料制成,例如镍钛合金、钴铬合金、TPU(Thermoplastic polyurethanes,热塑性聚氨酯弹性体橡胶)、PTFE(Poly tetra fluoroethylene,聚四氟乙烯)、 PE(polyethylene,聚乙烯)等。边框110所围合的面,可以与水平面平行,或为可以顺应主动脉弓部形状的弧形面。
过滤网120为采用PTFE、TPU或PET(Polyethylene terephthalate,聚对苯二甲酸乙二醇酯)等高分子材料制成的膜,也可以采用具有形状记忆特性的编织丝经过编织制成。过滤网120的厚度的取值范围为10微米至55微米,膜上有许多用于过滤的小孔121,小孔121的孔径的取值范围为25微米至300微米。过滤网120的形状及大小与边框110的形状及大小相近或相匹配,只要过滤网120能够完全覆盖边框110,且过滤网120的边缘能够固定连接在边框110上即可。过滤网120的边缘部分通过胶水、高周波、激光焊接、缝合等工艺固定连接在边框110上。过滤网120能够过滤较大的血栓或硬块等大颗粒,也能够过滤小血块或小硬块等微粒。
支撑杆130可采用与边框110相同的材料制成。支撑杆130可单独制作后再固定在边框110上,或是与边框110采用同一片状材料经过切割后热定型制成。沿栓塞保护装置100的轴向方向,相邻的两个支撑杆130各自的头端132之间的最小间距的取值范围为5毫米至100毫米。同一个支撑杆130上的第一末端131和第二末端131,可沿边框110的中心轴对称,既可以促使边框110具有更大的径向支撑力和锚固稳定性,又可以将过滤网120最大程度地贴合在主动脉弓的上壁处。在其他实现方式中,同一个支撑杆130的第一末端131和第二末端131沿边框110的中心轴也可以不对称。支撑杆130的头端132远离边框110且悬空,支撑杆130的从其第一末端131到其头端132的第一部分和从其第二末端131到其头端132的第二部分,逐渐将覆盖在该支撑杆130上的过滤网120朝向远离边框110的方向向上撑起,以使该部分过滤网120能够稳定地贴合主动脉弓的上壁,而无需借助鞘芯撑起。在其他实现方式中,支撑杆130的数量还可以为3个或5个等,可根据需要设置合适数量的支撑杆130。
如图3所示,构成一个V形杆130的两个支杆133之间的夹角a的取值范围为10度至145度。这个夹角a小于10度时,栓塞保护装置100在出鞘时支撑杆130不能给边框110提供足够的撑开力,而可能使边框110不能很好地锚定在主动脉弓内壁上。这个夹角a大于145度时,栓塞保护装置100在径向上 的柔顺性弱,会损伤血管。本实施例中,支撑杆130的两个支杆133之间的夹角a的取值为135度。
在其他实现方式中,支撑杆130也可以为U形杆;或者,支撑杆130可以由两个或两个以上的V形杆和/或U形杆串联构成,例如图4和图5所示的由两个V形杆构成的W形杆130,还可以为由两个以上的V形杆构成的折线形杆,或由两个以上的U形杆构成的波浪形杆,此时的支撑杆130具有两个或两个以上的头端132,这样的支撑杆130可以将过滤网120多角度地贴合到主动脉弓的上壁,并且支撑杆130具有更好的展开强度,能够使边框110更好地锚定在主动脉弓内。对于具有两个或两个以上头端132的支撑杆130来说,第一线段V1可以为该支撑杆130的第一末端131和该支撑杆130上的任意一个头端132之间形成的虚拟的线段,第二线段V2可以为该支撑杆130的第二末端131和该支撑杆130上的任意一个头端132之间形成的虚拟的另一线段。
图1中的4个支撑杆130的长度不同,具体地,从栓塞保护装置100的近端至远端逐渐增大。4个支撑杆130均朝向远端具有一定的弯曲,且弯曲的程度也可以不同,只要相互配合能够保证被撑起的过滤网120充分贴合主动脉弓的三个分支处的上壁即可。作为其中一种实现方式,如图2所示,支撑杆130与边框110之间的最小夹角b的取值范围为大于或等于10度且小于或等于80度。
本实施例中,栓塞保护装置100上的4个头端132均朝向远端并略朝向边框110的方向向下弯曲,从而避免头端132的远端端部在进出鞘管400时戳破过滤网120,或在展开时戳到主动脉弓的上壁组织。为了更好地避免该问题,进一步地,每个支撑杆130的头端132均可采用钝化处理。在其他实现方式中,至少有一个头端132上设有防损伤件,例如热熔头端132形成的球头、包裹头端132的硅胶等,均可以避免头端132戳破过滤网120。在其他实现方式中,支撑杆130上的头端132也可以朝向远端延伸的同时朝向远离边框110的方向略向上延伸,此时的头端132可采用上述钝化处理或设置有上述放损伤件,且头端132为其所在的支撑杆130上的最高点。在其他实现方式中,如图6所示,所有的头端132均朝向远端并朝向边框110的方向向下弯曲延伸一小段距离,头端132向下弯曲的曲率c的取值范围为R2至R30,以使与过滤网120接触的 支撑杆130部分不存在尖端,支撑杆130与过滤网120是圆滑接触,从而避免头端132戳破过滤网120。在支撑杆130包括两个或两个以上的头端132的实施例中,该支撑杆130的一个或多个头端132均可采用上述避免头端132戳破过滤网120的方式,在此不再赘述。
如图7所示,将图2所示的栓塞保护装置100放置于水平面M时,边框110与水平面M接触,以其中一个支撑杆130为例,支撑杆130上的最高点到该水平面M的垂直距离H的取值范围为大于或等于0毫米且小于或等于30毫米,例如H取值可以为0毫米、10毫米、20毫米或30毫米。本实施例中,由于头端132略向下弯曲,因而头端132不是支撑杆130上的最高点。如果支撑杆130上的最高点到该水平面M的垂直距离H的取值大于30毫米,则支撑杆130的第一末端131或第二末端131与头端132之间的高度差太大,而不利于支撑杆130整体与过滤网120的贴合,进而影响过滤网120对三个分支的密封性。如果支撑杆130上的最高点到该水平面M的垂直距离H的取值小于0毫米,则支撑杆130的支撑高度有限,不利于过滤网120与主动脉弓的上壁的贴合。假设图7中支撑杆130上的A点为最高点,则A点到该水平面M的垂直距离即为H。
支撑杆130上的头端132到该水平面M的垂直投影点B,到该支撑杆130的第一末端131到该水平面M的垂直投影点C和第二末端131到该水平面M的垂直投影点D的连线CD之间的垂直距离L1的取值范围,为大于或等于20毫米且小于或等于120毫米,例如L1的取值可以为30毫米。该支撑杆130的第一末端131和第二末端131之间的最短距离,也即直线CD的长度,的取值范围为20毫米至100毫米,例如第一末端131和第二末端131之间的最短距离可以为50毫米。
如图8所示,这样的栓塞保护装置100在植入到主动脉弓200后,其多个支撑杆130相互配合不仅能够将过滤网120充分贴合在主动脉弓200的三个分支210处,且能够与受到主动脉弓200的内壁挤压的边框110相互作用,一方面,边框110在受到挤压后将一部分力传递给各个支撑杆130,使各个支撑杆130进一步向上撑起过滤网120,进而使过滤网120更贴合主动脉弓200的三个分支210处的上壁,另一方面,各个支撑杆130反作用于边框110,将边框110 的与各个支撑杆130相连的两侧向外撑,从而使边框110能够稳定地锚固在主动脉弓200的内壁上。
本实施例中,当将栓塞保护装置100放置于水平面M时,边框110基本上完全贴合水平面M。在另一个实现方式中,如图6所示,当将栓塞保护装置100放置于水平面M时,仅有边框110的远端部分与水平面M接触,而边框110的中间部分向上拱起,也即边框110相对于水平面M来说是弯曲的,且弯曲的曲率d的取值范围为R20至R200,从而使栓塞保护装置100在释放后,弯曲的边框110能够促使支撑杆130和过滤网120更好地贴合主动脉弓200的上壁。
当将栓塞保护装置100放置于水平面M时,如图3所示,边框110的轴向长度L2的取值范围为50毫米至150毫米;沿边框110的轴向方向,边框110的不同区域的宽度可不相同,且最大宽度W的取值范围为30毫米至100毫米,因而能够覆盖住绝大多数解剖结构的主动脉弓200的三个分支210,实现有效的防栓塞。
本实施例中,过滤网120仅覆盖在各个支撑杆130上而没有与之固定连接。在其他实现方式中,支撑杆130的一部分区域可通过胶水粘合或缝合线缝合等方式部分地固定在过滤网120上。在一个支撑杆130包括两个或以上的头端132的情况下,还可以避免头端132在进鞘时发生铰接。
如图1所示,边框110的近端端部设有与鞘芯300的远端连接的连接件140。连接件140可由镍钛合金制成,连接件140的近端段141呈内部中空的管状,远端段142呈杆状,近端段141的远端端部与远端段142的近端端部直接连接。连接件140的近端段141用于使鞘芯300的远端从其近端穿入并从其远端穿出后,鞘芯300再向远端延伸一段距离,直至鞘芯300的远端端部较栓塞保护装置100的远端端部更靠近远端。在植入到主动脉弓200后,远端段142可贴靠在鞘芯300上。在临床应用中,栓塞保护装置100可通过连接件140的近端段141固定连接在鞘芯300的远端上。在其他实现方式中,栓塞保护装置100也可通过边框110或支撑杆130而固定连接在鞘芯300上。
为了便于通过DSA(Digital subtraction angiography,数字减影血管造影)设备观察手术过程,如图1所示,可在栓塞保护装置100上设置至少两个显影 件150。显影件150可采用在DSA设备下可显影的材料制成,例如黄金、铂金、铂铱合金或者其它具有强显影性的材料。显影件150的具体结构或形状等不做限制,只要能够固定在栓塞保护装置100的合适位置即可。具体地,可在栓塞保护装置100的远端端部设置第一显影件151,在栓塞保护装置100的近端端部设置第二显影件152。在其他实施例中,还可在栓塞保护装置100的其他位置处设置其他的显影件150,例如在栓塞保护装置100的中间区域的支撑杆130的头端132上设置显影件150,以辅助判断栓塞保护装置100上过滤网120是否有效贴合主动脉弓200的上壁。
本实施例还提出一种包括上述栓塞保护装置100和鞘芯300的栓塞保护系统,栓塞保护系统还包括用于压缩并输送上述栓塞保护装置100的鞘管400。上述栓塞保护装置100具有超弹性和形状记忆特性,其在固定到鞘芯300的远端后,通过鞘芯300将栓塞保护装置100拉入鞘管400内而呈压缩状态,以便于借助鞘管400将栓塞保护装置100输送到体内。当栓塞保护装置100从鞘管400内伸出后,可在形状记忆特性的作用下自膨胀展开而呈如图1所示的展开状态。栓塞保护装置100在主动脉弓200处释放展开后的形状,与图1所示的在自然状态下的展开状态大体一致,可根据植入到主动脉弓200的具体情况而略有不同。上述对于栓塞保护装置100的描述在无特殊描述时,均表述的是在展开状态下的特征。
在手术之前,栓塞保护装置100的一端需要固定在鞘芯300远端的合适位置,可以将栓塞保护装置100的近端固定在鞘芯300上、远端不固定,也可以将栓塞保护装置100的远端固定在鞘芯300上、近端不固定。以下将以栓塞保护装置100的近端端部固定在鞘芯300上为例进行详细描述。将鞘芯300的近端从鞘管400的远端穿入,并顺着鞘管400的管腔通路从鞘管400的近端穿出,直至栓塞保护装置100被拉入到鞘管400的远端管腔内,使栓塞保护装置100被径向压缩、轴向伸长而收容在鞘管400的远端内部,呈压缩状态。
手术时,从人体或动物体的一侧股动脉进行穿刺,之后送入导丝建立体内输送通道;待导丝到达预定位置后,将收容有栓塞保护装置100的鞘管400沿导丝通道输送到主动脉弓200所在区域,此时,借助DSA设备,根据栓塞保护 装置100上设置的多个显影件150的位置,判断栓塞保护装置100与主动脉弓200的三个分支210的相对位置,且当通过DSA设备观察到栓塞保护装置100上第一显影件151和第二显影件152已经分别位于主动脉弓200的三个分支210区域的两端时,保持鞘芯300不动,然后缓慢后撤鞘管400,以将栓塞保护装置100从鞘管400内逐步释放,直到整个栓塞保护装置100完全从鞘管400的远端伸出,并自膨胀展开到将主动脉弓200的三个分支210覆盖;之后,利用猪尾导管从该侧股动脉进入并穿过主动脉弓200后,到达钙化的主动脉瓣的位置进行造影;将主动脉置换瓣鞘管400从对侧的股动脉进行穿刺后进入体内,直至到达主动脉瓣膜处进行瓣膜置换,在置换过程中,脱落的钙化组织、栓子等颗粒或微粒会随着血流朝主动脉弓200的方向移动;由于栓塞保护装置100已在主动脉弓200的三个分支210的开口处形成了严密的过滤机制,栓子、钙化组织等漂浮物被栓塞保护装置100偏转到降主动脉处,从而避免这些漂浮物经过三个分支210流到脑部;待主动脉瓣膜置换完成后,回撤主动脉置换瓣鞘管400;之后朝远端推送鞘管400,以压缩栓塞保护装置100使其收容在鞘管400的远端内,然后再将栓塞保护装置100随着鞘管400撤出体内等,从而完成手术。
实施例2
实施例2提出另一种栓塞保护装置及其栓塞保护系统。实施例2的栓塞保护装置500与实施例1的栓塞保护装置100大体相似,虚拟的第一线段V1和虚拟的第二线段V2各自的定义和特征也一致,手术过程也大体一致。两者的主要区别在于,实施例2的栓塞保护装置500上设有至少一个滑动约束环160,滑动约束环160可设置在边框110上或设置在支撑杆130的至少一个头端132上;实施例2的栓塞保护系统中,鞘芯300的远端穿过栓塞保护装置500上的一个或多个滑动约束环160,从而在栓塞保护装置500受到主动脉弓200的挤压时,滑动约束环160可以沿鞘芯300进行轴向移动,从而使整个栓塞保护装置500适应性地弯曲变形,以更好地贴合主动脉弓200的上壁,达到更有效的防栓塞效果,同时还能避免栓塞保护装置500相对鞘芯300发生偏移而导致不能有效过滤血栓等。
可在栓塞保护装置500的一个或多个支撑杆130的至少一个头端132上设 置滑动约束环160,每个头端132上的滑动约束环160的个数可根据需要设置。如图9和图10所示,栓塞保护装置500的最远端的支撑杆130的头端132上设有一个滑动约束环160,不仅能够防止栓塞保护装置500的远端相对鞘芯300发生偏移而导致密封不严,还能够借助鞘芯300顺应主动脉弓200的弯曲,促进支撑杆130将过滤网120更好地撑起,使得过滤网130在三个分支210处贴合的更严密、过滤的更全面,此外,还能够避免支撑杆130的头端132戳到过滤网120或主动脉弓200的内壁。在其他实现方式中,如图11所示,可在栓塞保护装置500的边框110的远端端部或近端端部设置滑动约束环160。在其他实现方式中,可在栓塞保护装置500的边框110的远端端部,以及至少一个支撑杆130的至少一个头端132上分别设置至少一个滑动约束环160。如图12所示,栓塞保护装置500的近端固定在鞘芯300的远端,远端通过边框110上的滑动约束环160而相对固定在鞘芯300上,且栓塞保护装置500和鞘芯300的远端均收容在鞘管400的远端,从而呈现压缩状态。实施例1中栓塞保护装置100收容在鞘管400内的状态与图12相似。
在手术之前,栓塞保护装置500的一端需要固定在鞘芯300远端的合适位置,可以将栓塞保护装置500的近端固定在鞘芯300上、远端通过设置的滑动约束环160穿过鞘芯300的远端进行相对固定,也可以将栓塞保护装置500的远端固定在鞘芯300上、近端通过设置的滑动约束环160穿过鞘芯300的远端进行相对固定。图13中是以栓塞保护装置500的近端端部固定在鞘芯300的远端、远端通过位于边框110上的滑动约束环160穿过鞘芯300的远端进行相对固定为例。其手术过程与实施例1的手术过程大体一致,在此不再赘述。
栓塞保护装置500上的滑动约束环160,使得栓塞保护装置500在释放展开和回收的过程中始终沿鞘芯300的轴向滑动,能够很好地顺应主动脉弓200的弯曲形态,以进一步降低栓塞保护装置500发生扭转或偏转过度的风险。
实施例3
请参考图14-图21,实施例3提出另一种栓塞保护装置及其栓塞保护系统。实施例3的栓塞保护装置600与实施例1的栓塞保护装置100大体相似,手术过程也大体一致。两者的主要区别在于,实施例3的栓塞保护装置600的连接 件140的远端段142与边框110的近端转动连接。实施例3的栓塞保护系统中,鞘芯的远端从连接件140的近端段141的近端穿入并从其远端穿出后,鞘芯再向远端延伸一段距离,直至鞘芯的远端端部较栓塞保护装置600的远端端部更靠近远端。
栓塞保护装置600可固定在主动脉弓处防止血栓进入脑部血管,防止中风等症状。栓塞保护装置600与鞘芯拼接,通过推拉鞘芯可将其推出或收入鞘管之中,当栓塞保护装置600在主动脉弓部释放时,由于血管壁的挤压与摩擦,常会发生栓塞保护装置600无法充分展开,导致边框110弯折的情况发生,进而可能带来栓塞保护装置600无法覆盖住脑部血管,影响器械性能的风险。本发明实施例通过将栓塞保护装置600的连接件140的远端段142与边框110的近端转动连接,使得栓塞保护装置600的连接件140具有较好的变形能力,释放时受到挤压能给栓塞保护装置600提供让位空间以便其充分展开,进而避免边框110弯折。
具体地,在栓塞保护装置600中,如图14和图15所示,边框110的近端开设有至少一个连接孔111,连接件140的远端段142穿过连接孔111后固定在连接件140上,具体可以固定在远端段142自身上,以使得连接件140与边框110转动连接。其中,远端段142穿过连接孔111后可以通过焊接、铆接、冲压或胶贴等方式进行固定,也可以编织缠绕在远端段142自身上进行固定,本发明实施例不作具体限定。进一步地,当通过焊接的方式进行固定时,远端段142上可以设置一焊接点,焊接点的宽度大于远端段142的宽度,远端段142穿过连接孔111后可以焊接在该焊接点处,能够增加焊接结合面积,确保焊接的强度。
作为一种可选的实施方式,如图16和图17所示,边框110的近端可以开设两个连接孔111,连接件140的远端段142切割成两个分叉段,两个分叉段分别穿过两个连接孔111后固定在远端段142的分叉口处。作为另一种可选的实施方式,如图18和图19所示,边框110的近端可以开设两个连接孔111,连接件140的远端段142切割成两个分叉段,两个分叉段分别穿过两个连接孔111后固定在分叉段自身上,其中,分叉段穿过连接孔111形成的环绕孔的直径稍 大于连接孔111到边框110边缘的距离,以保证栓塞保护装置600具有一定的活动能力。作为另一种可选的实施方式,如图20和图21所示,边框110的近端可以开设一个连接孔111,连接件140的远端段142穿过连接孔111后编织缠绕一定长度,又或者用合适直径的金属丝穿过连接孔111后编织缠绕一定长度后再焊接在连接件140的远端段142上。金属丝可以为镍钛合金丝。
进一步地,如图14所示,实施例3的栓塞保护系统中,可在栓塞保护装置600上设置至少一个滑动约束环160,滑动约束环160可设置在边框110上或设置在支撑杆130的至少一个头端132上,从而在栓塞保护装置600受到主动脉弓的挤压时,滑动约束环160可以沿鞘芯进行轴向移动,从而使整个栓塞保护装置600适应性地弯曲变形,以更好地贴合主动脉弓的上壁,达到更有效的防栓塞效果,同时还能避免栓塞保护装置600相对鞘芯发生偏移而导致不能有效过滤血栓等。具体设置方式可参考实施例2,本发明实施例在此不做赘述。
实施例4
请参考图22-图24,实施例4提出另一种栓塞保护装置及其栓塞保护系统。实施例4的栓塞保护装置700与实施例3的栓塞保护装置600大体相似,结构和功能大体一致,连接件140的远端段142与边框110的近端也为转动连接,手术过程也大体一致。两者的主要区别在于,栓塞保护装置700的连接件140与边框110通过万向球装置170进行连接。
具体地,在栓塞保护装置700中,万向球装置170包括球座171和置于球座171中可转动的球体172,球座171包括一凹槽,凹槽的槽口到槽底的距离大于球体172的半径,凹槽的槽口到槽底的距离小于球体172的直径,使得球体172能够在球座171中自由转动且不会脱离球座171。
其中,球座171和球体172之一与连接件140的远端段142连接,则另一与边框110的近端连接。其中,与边框110连接的球座171或球体172可以直接与边框110直接连接,也可以通过一连接杆与边框110间接连接。连接杆可以为镍钛合金杆。
实施例5
请参考图25和图26,实施例5提出另一种栓塞保护装置及其栓塞保护系统。 实施例5的栓塞保护装置800与实施例4的栓塞保护装置700大体相似,结构和功能大体一致,连接件140的远端段142与边框110的近端也为转动连接,手术过程也大体一致。两者的主要区别在于,栓塞保护装置800的连接件140与边框110通过铰链装置180进行连接。
具体地,在栓塞保护装置800中,铰链装置180为一转轴结构,包括第一转动件181和第二转动件182,第一转动件181与第二转动件182同轴转动连接,其中,第一转动件181和第二转动件182之一与连接件140的远端段142连接,则另一与边框110的近端连接。其中,与边框110连接的第一转动件181或第二转动件182可以直接与边框110直接连接,也可以通过一连接杆与边框110间接连接。连接杆可以为镍钛合金杆。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (16)

  1. 一种栓塞保护装置,包括边框和包覆所述边框的过滤网,其特征在于,所述栓塞保护装置还包括沿其轴向方向间隔设置的多个支撑杆,所述支撑杆包括第一末端、第二末端和至少一个朝向远端的头端,所述第一末端和所述第二末端分别连接在所述边框的相对两侧,所述第一末端与所述头端之间形成第一线段,所述第二末端与所述头端之间形成第二线段,所述第一线段从所述第一末端朝向所述头端的方向延伸并逐渐远离所述边框,所述第二线段从所述第二末端超向所述头端的方向延伸并逐渐远离所述边框,从而使得所述多个支撑杆将覆盖在所述多个支撑杆上的所述过滤网朝向远离所述边框的方向撑起。
  2. 根据权利要求1所述的栓塞保护装置,其特征在于,将所述栓塞保护装置放置于水平面时,所述支撑杆上的最高点到所述水平面的垂直距离的取值范围为大于或等于0毫米且小于或等于30毫米。
  3. 根据权利要求2所述的栓塞保护装置,其特征在于,所述头端到所述水平面的垂直投影点,到所述第一末端和所述第二末端各自到所述水平面的垂直投影点的连线之间的垂直距离的取值范围为大于或等于20毫米且小于或等于120毫米。
  4. 根据权利要求3所述的栓塞保护装置,其特征在于,所述第一末端和所述第二末端之间的最短距离的取值范围为20毫米至100毫米。
  5. 根据权利要求1所述的栓塞保护装置,其特征在于,至少有一个所述头端朝向远端并朝向所述边框的方向弯曲延伸。
  6. 根据权利要求1或5所述的栓塞保护装置,其特征在于,至少有一个所述头端上设有防损伤件。
  7. 根据权利要求1所述的栓塞保护装置,其特征在于,所述栓塞保护装置上设有至少一个滑动约束环。
  8. 根据权利要求7所述的栓塞保护装置,其特征在于,所述滑动约束环设置在所述栓塞保护装置的边框上,或设置在至少一个支撑杆的至少一个所述头端上。
  9. 根据权利要求1所述的栓塞保护装置,其特征在于,所述栓塞保护装置的近端和/或远端设有至少一个显影件。
  10. 根据权利要求1所述的栓塞保护装置,其特征在于,所述栓塞保护装置还包括与所述边框的近端连接的连接件。
  11. 根据权利要求10所述的栓塞保护装置,其特征在于,所述连接件与所述边框转动连接。
  12. 根据权利要求11所述的栓塞保护装置,其特征在于,所述边框的近端开设有至少一个连接孔,所述连接件的远端穿过所述连接孔后固定在所述连接件上,以使得所述连接件与所述边框转动连接。
  13. 根据权利要求11所述的栓塞保护装置,其特征在于,所述连接件与所述边框通过万向球装置进行连接。
  14. 根据权利要求11所述的栓塞保护装置,其特征在于,所述连接件与所述边框通过铰链装置进行连接。
  15. 一种栓塞保护系统,其特征在于,包括细长的鞘芯和上述权利要求1至14任一项所述的栓塞保护装置。
  16. 根据权利要求15所述的栓塞保护系统,其特征在于,所述栓塞保护装置上设有至少一个滑动约束环,所述栓塞保护装置的一端固定在所述鞘芯上,另一端可通过所述滑动约束环沿所述鞘芯进行轴向移动。
PCT/CN2022/092218 2021-05-13 2022-05-11 栓塞保护装置 WO2022237836A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280003954.0A CN115916111A (zh) 2021-05-13 2022-05-11 栓塞保护装置
EP22806798.9A EP4338704A1 (en) 2021-05-13 2022-05-11 Embolic protection device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110521963 2021-05-13
CN202110521963.6 2021-05-13

Publications (1)

Publication Number Publication Date
WO2022237836A1 true WO2022237836A1 (zh) 2022-11-17

Family

ID=84028103

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/092218 WO2022237836A1 (zh) 2021-05-13 2022-05-11 栓塞保护装置

Country Status (3)

Country Link
EP (1) EP4338704A1 (zh)
CN (1) CN115916111A (zh)
WO (1) WO2022237836A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140031857A1 (en) * 2012-07-25 2014-01-30 Boston Scientific Scimed, Inc. Embolic protection filter for transcatheter aortic valve replacement and uses thereof
CN109640880A (zh) * 2017-05-12 2019-04-16 企斯动哈特有限公司 用于过滤血管系统中栓塞材料的装置
CN110167484A (zh) * 2017-10-27 2019-08-23 企斯动哈特有限公司 圆顶形过滤装置及其制造方法
CN211325886U (zh) * 2019-11-28 2020-08-25 上海微创医疗器械(集团)有限公司 一种血栓阻隔装置
CN214632500U (zh) * 2020-11-05 2021-11-09 上海微盾医疗科技有限公司 抗栓塞保护装置及医疗器械
CN114431998A (zh) * 2020-11-05 2022-05-06 上海微盾医疗科技有限公司 抗栓塞保护装置及医疗器械

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140031857A1 (en) * 2012-07-25 2014-01-30 Boston Scientific Scimed, Inc. Embolic protection filter for transcatheter aortic valve replacement and uses thereof
CN109640880A (zh) * 2017-05-12 2019-04-16 企斯动哈特有限公司 用于过滤血管系统中栓塞材料的装置
CN110167484A (zh) * 2017-10-27 2019-08-23 企斯动哈特有限公司 圆顶形过滤装置及其制造方法
CN211325886U (zh) * 2019-11-28 2020-08-25 上海微创医疗器械(集团)有限公司 一种血栓阻隔装置
CN214632500U (zh) * 2020-11-05 2021-11-09 上海微盾医疗科技有限公司 抗栓塞保护装置及医疗器械
CN114431998A (zh) * 2020-11-05 2022-05-06 上海微盾医疗科技有限公司 抗栓塞保护装置及医疗器械

Also Published As

Publication number Publication date
EP4338704A1 (en) 2024-03-20
CN115916111A (zh) 2023-04-04

Similar Documents

Publication Publication Date Title
US10357359B2 (en) Methods and apparatus for endovascularly replacing a patient's heart valve
EP3700463B1 (en) A dome shaped filtering device
EP3021792B1 (en) System for cardiac valve repair and replacement
US9585750B2 (en) Methods and apparatus for endovascularly replacing a patient's heart valve
US20190091005A1 (en) Method of isolating the cerebral circulation during a cardiac procedure
US7445631B2 (en) Methods and apparatus for endovascularly replacing a patient's heart valve
US8252052B2 (en) Methods and apparatus for endovascularly replacing a patient's heart valve
US8246678B2 (en) Methods and apparatus for endovascularly replacing a patient's heart valve
EP2658476B1 (en) Intravascular blood filter
US20160022406A1 (en) Embolic protection devices and methods of use
US10561488B2 (en) Embolic protection catheter and related devices and methods
US20220370074A1 (en) Transcatheter device and minimally invasive method for constricting and adjusting blood flow through a blood vessel
WO2022237836A1 (zh) 栓塞保护装置
US11351023B2 (en) Systems and methods for protecting the cerebral vasculature
CN116135178A (zh) 栓塞保护装置及栓塞保护系统
CN116135179A (zh) 血栓过滤器及血栓过滤系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22806798

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18290007

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2022806798

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022806798

Country of ref document: EP

Effective date: 20231213