WO2022237364A1 - 蓝牙耳机 - Google Patents

蓝牙耳机 Download PDF

Info

Publication number
WO2022237364A1
WO2022237364A1 PCT/CN2022/083846 CN2022083846W WO2022237364A1 WO 2022237364 A1 WO2022237364 A1 WO 2022237364A1 CN 2022083846 W CN2022083846 W CN 2022083846W WO 2022237364 A1 WO2022237364 A1 WO 2022237364A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
extension part
touch sensor
main antenna
bluetooth
Prior art date
Application number
PCT/CN2022/083846
Other languages
English (en)
French (fr)
Inventor
杨崇文
尤佳庆
任二贝
徐灏文
刘天一
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2022237364A1 publication Critical patent/WO2022237364A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/10Earpieces; Attachments therefor ; Earphones; Monophonic headphones
    • H04R1/1041Mechanical or electronic switches, or control elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/10Earpieces; Attachments therefor ; Earphones; Monophonic headphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/10Earpieces; Attachments therefor ; Earphones; Monophonic headphones
    • H04R1/1025Accumulators or arrangements for charging
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/10Earpieces; Attachments therefor ; Earphones; Monophonic headphones
    • H04R1/1091Details not provided for in groups H04R1/1008 - H04R1/1083
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2201/00Details of transducers, loudspeakers or microphones covered by H04R1/00 but not provided for in any of its subgroups
    • H04R2201/10Details of earpieces, attachments therefor, earphones or monophonic headphones covered by H04R1/10 but not provided for in any of its subgroups

Definitions

  • the present application relates to the technical field of communication equipment, in particular to a bluetooth earphone.
  • Bluetooth earphones are deeply loved by users because of their advantages of convenience and compactness, and their usage range is getting wider and wider.
  • the performance of the antenna itself is not good, and in order to meet the demands of a compact layout, it is difficult to realize the requirement of no antenna headroom or a small antenna without headroom, resulting in a decrease in the performance of the antenna.
  • TWS Bluetooth headsets do not have traditional physical wires.
  • the left and right headsets form a stereo system through Bluetooth.
  • the mobile phone can be connected to a headset as the receiving end.
  • the receiving end will The stereo signal is distributed to the earphone as the other receiving end through wireless transmission to form a stereo system.
  • TWS earphones are deeply loved by users because of their advantages of convenience and compactness, and they are widely used.
  • the TWS Bluetooth headset is small in size but has many components, and the internal space of the product is tight. How to effectively use the internal space of the TWS headset to reduce the impact of product miniaturization on antenna performance has become a current research topic.
  • An embodiment of the present application provides a bluetooth earphone, which can effectively utilize the internal space of the bluetooth earphone and reduce the impact of product miniaturization on antenna performance.
  • a Bluetooth headset in a first aspect, includes an earplug part and an ear handle part; the ear handle part includes a corner part connected to the earplug part and an ear handle rod connected to the corner part, and a battery is arranged inside the ear handle rod
  • the bluetooth headset includes a flexible circuit board, the flexible circuit board includes a feed part and a first extension part connected to the feed part; the feed part is arranged at the corner, and the first extension part Extending to the ear handle rod; the feed part is provided with a feed electrode, the first side of the first extension part is provided with a main antenna, and the second side of the first extension part is provided with at least one touch sensor wherein, the first side of the first extension part faces the battery, the second side of the first extension part faces the inner wall of the ear stem rod, and the feeding electrode is coupled with the main antenna.
  • the touch sensor and the main antenna are respectively arranged on both sides of the first extension part of the flexible circuit board, so that the two can reuse the same space in space, saving the internal space of the Bluetooth headset.
  • the touch sensor is set on the side close to the inner wall of the ear handle
  • the main antenna is set on the side close to the battery, which prevents the antenna from covering the touch sensor, thereby ensuring the normal use of the touch sensor.
  • Reasonably setting the position of the touch sensor can ensure the clearance area of the antenna, so that while the internal space of the Bluetooth headset is effectively used, the impact of product miniaturization on the performance of the antenna is minimized.
  • the earplug part is provided with a touch circuit, and the touch sensor is coupled to the touch circuit through a low-pass high-resistance element.
  • the touch sensor and the main antenna are arranged on both sides of the first extension part, since the touch sensor and the main antenna are only separated by the thickness of the first extension part, the touch sensor is in the high-frequency signal radiation of the main antenna.
  • the earplug is provided with a touch circuit, and the touch sensor is coupled with the touch circuit through a low-pass high-resistance element.
  • the low-pass high-resistance element may be a choke device, such as a choke inductor or a magnetic bead.
  • the low-pass high-resistance element can block the high-frequency resonance current on the touch sensor, and at the same time, ensure that the low-frequency signal generated by the touch sensor when touched by the human body can be transmitted to the touch circuit through the low-pass high-impedance element.
  • the touch sensor is only equivalent to the suspended wiring above the main antenna, which can maximize the elimination of the impact on the clearance of the main antenna.
  • the low-pass high-impedance element in order to prevent the high-frequency signal of the main antenna from being coupled to the low-pass high-impedance element through the ground trace (of course, when multiple touch sensors are used, it can also be the low-pass high Resistance element), or the wiring between the low-pass high-impedance element and the touch sensor, or the touch sensor, resulting in the formation of in-band noise in the touch sensor and/or the above-mentioned wiring, so the low-pass high-impedance element.
  • the traces between the low-pass high-resistance element and the touch sensor, and the distance between the touch sensor and the ground trace on the flexible circuit board are greater than a first threshold.
  • the first threshold is 1 ⁇ m.
  • the low-pass high-resistance element, the trace between the low-pass high-resistance element and the touch sensor, and the touch sensor are effectively isolated from the ground trace on the flexible circuit board, and the high frequency of the main antenna is reduced as much as possible.
  • the signal is coupled to the low-pass high-impedance element, or the trace between the low-pass high-impedance element and the touch sensor, or the touch sensor through the ground trace.
  • the ground trace is connected to the common reference ground, and the common reference ground refers to the ground terminal of each component inside the Bluetooth headset.
  • the flexible circuit board further includes a second extension part connected to the feeding part, a parasitic antenna is arranged on the second extension part, and the second extension part extends to the earplug part, the feeding part is provided with a ground trace, and the parasitic antenna is coupled with the ground trace.
  • the main antenna and the parasitic antenna can form antennas of different modes on the Bluetooth headset, such as a balanced antenna or an unbalanced antenna.
  • the balanced antenna is also called a differential mode (DM) antenna
  • An unbalanced antenna is called a common mode (CM) antenna.
  • the direction of the current provided by the radio frequency circuit to the main antenna and the parasitic antenna 60 is different, for example: the flow direction of the first current in the main antenna is from the end connected to the feeding electrode To the other end away from the feeding electrode, the flow direction of the second current in the parasitic antenna is from the end away from the ground trace to the end coupled with the ground trace.
  • the direction of the current from the radio frequency circuit to the main antenna and the parasitic antenna is the same, for example: the first current in the main antenna flows from one end connected to the feeding electrode to the other end away from the feeding electrode, The flow direction of the second current in the parasitic antenna is from an end coupled with the ground trace to an end far away from the ground trace.
  • the parasitic antenna in order to adjust the physical length of the actual current flowing on the parasitic antenna, is coupled with the ground trace through an inductance. Wherein, by adjusting the inductance value of the inductor, it is equivalent to adjusting the physical length of the actual current flowing on the parasitic antenna.
  • the flexible circuit board includes a third extension part connected to the power feeding part, the third extension part extends to the earplug part, and at least one PCB; wherein the second extension portion extends to between two of the PCBs, or the second extension portion extends to a side of the at least one PCB away from the corner portion.
  • the third extension part can be extended between the two PCBs.
  • the PCB and the components arranged on the PCB contain conductive materials, such as metal components, in order to avoid the influence on the parasitic antenna, the second extension part extends to at least one side of the PCB away from the corner (that is, the side of the PCB close to the speaker assembly) side).
  • the thickness of the flexible circuit board is greater than or equal to 0.12mm.
  • the touch sensor includes touch electrodes; the projection of at least one touch electrode of the touch sensor on the plane where the main antenna is located is located in the area of the main antenna; in order to ensure the Clearance, the total area of the touch electrodes of the at least one touch sensor is smaller than the area of the main antenna.
  • the flexible circuit board includes a fourth extension part connected to the power supply part, wherein the fourth extension part extends to the ear handle rod; the fourth extension part is disposed on the between the first extension part and the battery; the battery is coupled to the power line on the fourth extension part.
  • the electrical length of the main antenna is 1/2.
  • the main antenna constitutes a monopole offset antenna, wherein the electrical length of the main antenna is approximately 1/2, wherein the electrical length refers to the current flowing through the main antenna The ratio of the physical length to the wavelength of the transmitted electromagnetic wave.
  • the matching circuit can be adjusted to make the electrical length equal to one-half, but the physical length of the actual current flowing on the main antenna may not be exactly equal to one-half.
  • the sum of electrical lengths of the main antenna and the parasitic antenna is 1/2.
  • the electrical length of the main antenna is 1/4, and the electrical length of the parasitic antenna is 1/4.
  • the sum of the electrical lengths of the main antenna and the parasitic antenna is approximately 1/2; for example, the electrical length of the main antenna 40 is approximately 1/4, and the electrical length of the parasitic antenna is approximately 1/4.
  • the bluetooth frequency band as an example of the electromagnetic wave wavelength transmitted by the main antenna and the parasitic antenna
  • “approximately” means that the physical length of the current flowing on the main antenna and the physical length of the current flowing on the parasitic antenna The sum is approximately equal to one-half of the wavelength of electromagnetic waves in the Bluetooth frequency band, or the physical length of the current flowing on the main antenna is approximately equal to one-fourth of the wavelength of electromagnetic waves in the Bluetooth frequency band and the physical length of the current flowing on the parasitic antenna is approximately equal to A quarter of the wavelength of electromagnetic waves in the Bluetooth band.
  • the difference between the sum of the physical length of the current flowing on the main antenna and the physical length of the current flowing on the parasitic antenna and half of the wavelength of the electromagnetic wave in the Bluetooth frequency band is within a preset range.
  • the difference between the physical length of the current flowing on the main antenna and a quarter of the electromagnetic wave wavelength of the Bluetooth frequency band is within a preset range
  • the physical length of the current flowing on the parasitic antenna is a quarter of the electromagnetic wave wavelength of the Bluetooth frequency band The difference of one of them is within the preset range.
  • the matching circuit can be adjusted to make the electrical length equal to one-half, but the sum of the physical length of the actual current flowing on the main antenna and the physical length of the actual current flowing on the parasitic antenna is not necessarily exactly equal to two one-third.
  • the actual physical length of the current flowing on the main antenna and the actual physical length of the current flowing on the parasitic antenna may be equal or unequal.
  • Fig. 1 is the structural representation of a kind of bluetooth earphone provided by prior art
  • FIG. 2 is a schematic diagram of a partial exploded structure of the Bluetooth headset shown in FIG. 1 provided by an embodiment of the present application;
  • FIG. 3 is a schematic diagram of the internal structure of a bluetooth headset provided by an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of a flexible circuit board provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of the local structure of the flexible circuit board at E shown in FIG. 4 provided by the embodiment of the present application;
  • FIG. 6 is a schematic structural diagram of a first extension part provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram of a connection relationship of a touch sensor provided by an embodiment of the present application.
  • FIG. 8 is a schematic diagram of a connection relationship of a parasitic antenna provided by an embodiment of the present application.
  • FIG. 9 is a schematic diagram of the internal structure of a Bluetooth headset provided by another embodiment of the present application.
  • FIG. 10 is a schematic diagram of a partial structure of a fourth extension provided by an embodiment of the present application.
  • FIG. 11 is a schematic diagram of a simulation curve of the radiation parameters of the antenna of the Bluetooth headset provided by the embodiment of the present application;
  • Fig. 12 is a schematic diagram of the current direction of the main antenna and the parasitic antenna provided by the embodiment of the present application when the antenna of the Bluetooth headset works in a 2.44GHz common mode state;
  • FIG. 13 is a schematic diagram of the current direction of the main antenna and the parasitic antenna provided by the embodiment of the present application when the antenna of the Bluetooth headset works in a 2.44GHz differential mode state;
  • FIG. 14 is a schematic diagram of a simulation curve of radiation parameters of an antenna of a Bluetooth headset provided by another embodiment of the present application.
  • At least one (unit) of a, b or c can represent: a, b, c, a and b, a and c, b and c or a, b and c, wherein a, b and c can be It can be single or multiple.
  • words such as "first" and "second” do not limit the quantity and order.
  • the antennas (main antenna and parasitic antenna) of the Bluetooth headset provided by the embodiments of the present application can work in the Bluetooth frequency band, where the frequency range of the Bluetooth frequency band is 2402MHz-2480MHz.
  • the embodiment of the present application provides a schematic structural diagram of a bluetooth headset 100 (hereinafter, in the three-dimensional coordinate system space composed of XYZ, the positional relationship of the structures described in each structural schematic diagram is described in association, for example, in FIG. 1, the Y direction is the vertical direction, the X direction is the horizontal direction, and the Z direction is the direction perpendicular to the XY plane).
  • the Bluetooth earphone 100 has an earbud part 1 and an ear handle part 2 .
  • the ear handle part 2 includes a corner part 21 connected with the earplug part 1 , and an ear handle rod 22 connected with the corner part 21 .
  • the corner part 21 and the ear stem rod 22 of the ear stem part 2 are arranged in sequence in the longitudinal direction (Y direction).
  • the earplug part 1 is used to be partially embedded in the ear of the user's human body.
  • the earplug part 1 is partially embedded in the user's ear, and the ear handle part 2 is located outside the user's ear and contacts the user's ear.
  • FIG. 2 is a partial exploded structural diagram of the Bluetooth headset 100 shown in FIG. 1 .
  • the Bluetooth headset 100 includes a housing 10 .
  • the shell 10 is used to accommodate other components of the Bluetooth headset 100 to fix and protect other components.
  • the case 10 includes a main case 101 , a bottom case 102 and a side case 103 .
  • the main housing 101 is partially located on the ear handle 2 of the Bluetooth headset 100 and partially located on the earplug 1 of the Bluetooth headset 100 .
  • the main housing 101 forms a first opening 1011 at an end of the ear stem 22 of the Bluetooth headset 100 away from the corner 21 , and forms a second opening 1012 at the earplug 1 of the Bluetooth headset 100 .
  • the Bluetooth headset 100 can be loaded into the main casing 101 through the first opening 1011 or the second opening 1012 .
  • the speaker assembly 80 can be installed inside the earplug part 1 of the main housing 101 through the second opening 1012
  • the battery 30 can be installed inside the ear stem 22 of the main housing 101 through the first opening 1011.
  • a flexible circuit board 20 one or more printed circuit boards (printed circuit board, PCB) 70 (701, 702), and a chip 200 (such as a processor) on the PCB 70 , audio decoder, radio frequency circuit, charging circuit, touch circuit, etc.), microphone module 90, antenna (such as the main antenna 40 and parasitic antenna 60 provided in the embodiment of the application), touch sensor (the touch sensor 50), etc.
  • the bottom shell 102 is located at the end of the ear stem 22 away from the corner 21 of the Bluetooth headset 100 and is fixedly connected to the main shell 101 .
  • the bottom shell 102 is installed in the first opening 1011 .
  • the side housing 103 is located at the earplug part 1 of the Bluetooth headset 100 and fixedly connected to the main housing 101 , and the side housing 103 is installed in the second opening 1012 .
  • the connection between the bottom shell 102 and the main shell 101 is a detachable connection (such as snap-fit connection, threaded connection, etc.), so as to facilitate subsequent repair or maintenance of the Bluetooth headset 100 .
  • the connection between the bottom shell 102 and the main shell 101 can also be a non-detachable connection (such as glued), so as to reduce the risk of the bottom shell 102 accidentally falling off, so that the reliability of the Bluetooth headset 100 is higher .
  • the connection between the side housing 103 and the main housing 101 is a detachable connection (such as snap-fit connection, screw connection, etc.), so as to facilitate subsequent repair or maintenance of the Bluetooth headset 100 .
  • the connection between the side housing 103 and the main housing 101 can also be a non-detachable connection (such as glued), so as to reduce the risk of the side housing 103 accidentally falling off, so that the reliability of the Bluetooth headset 100 higher.
  • the side casing 103 is provided with one or more sound outlet holes 1031 , so that the sound inside the casing 10 can be transmitted to the outside of the casing 10 through the sound outlet holes 1031 .
  • the present application does not strictly limit the shape, position, quantity, etc. of the sound outlet holes 1031 .
  • the structure of a typical bluetooth earphone 100 is introduced above.
  • the structure of the bluetooth earphone 100 in the above manner is not the only structure. In some embodiments, those skilled in the art can make other structural designs.
  • FIG. 3 provides a schematic diagram of the internal structure of the Bluetooth headset 100
  • FIG. 4 provides a schematic diagram of the structure of the flexible circuit board 20
  • the Bluetooth headset 100 includes a flexible circuit board 20, and the flexible circuit board 20 includes a power supply part 201 and a first extension part 202 connected to the power supply part 201; the power supply part 201 is arranged at the corner 21, and the first extension part 202 extends To ear handle bar 22.
  • the feeding part 201 is provided with a feeding electrode 2011, the first side of the first extension part 202 is provided with the main antenna 40, and the second side of the first extension part 202 is provided with at least one touch sensor 50 (wherein FIG. touch sensors 501, 502, 503) as an example; in conjunction with FIG.
  • the electrical electrode 2011 is coupled with the main antenna 40 . It should be noted that, as shown in FIGS.
  • the extension direction of the first extension part 202 is laid in turn on the second side. In this way, the radio frequency circuit of the Bluetooth headset 100 can output a transmission signal to the main antenna 40 through the feeding electrode 2011, and the transmission signal forms a resonant radiation in the main antenna to the surrounding space.
  • the main antenna 40 can also receive the radio frequency signal transmitted in the space, and convert The electrical signal is transmitted to a radio frequency circuit, so as to realize signal transmission.
  • the radio frequency circuit is also called a transceiver.
  • only one touch sensor 50 may be provided on the second side of the first extension part 202, and the user's operation on the touch sensor 50 at this time may be single-click, multi-click or long-press operation, wherein,
  • the touch circuit coupled with the touch sensor 50 can determine the user's touch operation on the touch sensor 50 according to the touch signal transmitted by the touch sensor 50, and determine the frequency, duration, and intensity of the touch according to the electrical signal generated by the touch sensor 50 and other parameters, so as to determine the corresponding operation type, and the processor judges and executes the operation corresponding to the operation type.
  • the operation of the two or more touch sensors 50 at this time can be a sliding operation.
  • the touch circuit coupled with the touch sensor 50 can be connected according to the touch sensor 501, the touch sensor 502 and the touch sensor 503 successively output the touch signals to determine the sliding direction of the user's finger, thereby determining the corresponding operation type, and the processor judges and executes the operation corresponding to the operation type.
  • the processor determines that the user's finger is sliding upwards according to the touch signal detected by the touch circuit, and controls to increase the volume; or When the finger slides down the touch sensor 503 , the touch sensor 502 , and the touch sensor 501 sequentially along the Y direction, the processor determines that the user's finger slides down according to the touch signal detected by the touch circuit, and then controls to decrease the volume.
  • the touch sensor 50 and the main antenna 40 are respectively arranged on both sides of the first extension part 202 of the flexible circuit board 20, so that the two can reuse the same space in space, saving the bluetooth headset. interior space.
  • the touch sensor 50 is set on the side close to the inner wall of the ear stem 22, and the main antenna 40 is set on the side close to the battery, so as to prevent the main antenna 40 from covering the touch sensor 50, thus ensuring the touch sensor 50 in normal use, in addition, reasonably setting the position of the touch sensor 50 can ensure the clearance area of the main antenna 40, so that while effectively utilizing the internal space of the Bluetooth headset, the impact of product miniaturization on the performance of the antenna is minimized .
  • Fig. 5 is a schematic diagram of a local structure at E in Fig. 4, the earplug part 1 is provided with a touch circuit, and the touch sensor 50 (501 in Fig. The high resistance element 2013 is coupled with the touch circuit.
  • the low-pass high-resistance element 2013 may be a choke device, such as a choke inductor or a magnetic bead. In this way, the low-pass high-resistance element 2013 can block the high-frequency resonant current on the touch sensor, and at the same time, ensure that the low-frequency signal generated by the touch sensor 50 can be transmitted to the touch sensor through the low-pass high-resistance element 2013. circuit. In this way, the touch sensor 50 is only equivalent to the wiring suspended above the main antenna 40 , which can maximize the elimination of the impact on the clearance of the main antenna 40 . As shown in FIG. 4 and FIG.
  • the touch sensor 501 is connected to the low-pass high-resistance element 2013 through the wiring L1
  • the touch sensor 502 is connected to the low-pass high-impedance element (not shown in the figure) and the touch sensor through the wiring L2.
  • the device 502 is connected to the low-pass high-resistance element (not shown in the figure) through the line L3.
  • the thickness H of the flexible circuit board 20 is greater than or equal to 0.12 mm. .
  • the high-frequency signal of the main antenna 40 from being coupled to the low-pass high-impedance element 2013 through the grounding wire GND (of course, when multiple touch sensors are used, it can also be a low-pass high-impedance element coupled with other touch sensors), or
  • the wiring L1 between the low-pass high-resistance element 2013 and the touch sensor 501 can also be the wiring L2 or the wiring L3), or the touch sensor 50 (501, 502, 503), resulting in the touch sensor and/or Or in-band clutter is formed in the above-mentioned traces, so the low-pass high-resistance element, the traces (L1, L2 and L3) between the low-pass high-resistance element and the touch sensor, and the touch sensor 50 (501, 502 , 503), the distance from the ground trace GND on the flexible circuit board 20 is greater than the first threshold.
  • the first threshold is 1 ⁇ m, wherein the low-pass high-resistance element, the traces (L1, L2, and L3) between the low-pass high-resistance element and the touch sensor, and the touch sensor 50 (501, 502, 503),
  • the distance from the ground trace GND on the flexible circuit board 20 refers to the structurally low-pass high-resistance element, the traces (L1, L2 and L3) between the low-pass high-resistance element and the touch sensor, and the touch sensor 50 (501, 502, 503), the distance from the grounding trace GND on the flexible circuit board 20 (for example, in the structure, the low-pass high-resistance element, the trace between the low-pass high-resistance element and the touch sensor (L1 , L2 and L3), and the size of the gap existing between the touch sensor 50 (501, 502, 503) and the ground trace GND on the flexible circuit board 20).
  • the low-pass high-resistance element, the trace between the low-pass high-resistance element and the touch sensor, and the touch sensor are effectively isolated from the ground trace GND on the flexible circuit board, so as to reduce the main antenna 40 as much as possible.
  • the high-frequency signal is coupled to the low-pass high-impedance element, or the trace between the low-pass high-impedance element and the touch sensor, or the touch sensor through the ground wire GND.
  • the ground trace GND is connected to the common reference ground, and the common reference ground refers to the ground terminals of the various components inside the Bluetooth headset.
  • the touch sensor 50 ( 501 , 502 , 503 ) includes touch electrodes; that is, the touch sensor 50 uses plate-shaped touch electrodes.
  • the touch sensor 50 uses plate-shaped touch electrodes.
  • the total area of the touch electrodes of at least one touch sensor is smaller than the area of the main antenna.
  • the total area of the touch electrodes of at least one touch sensor is 20% to 80% of the area of the main antenna.
  • the larger the ratio of the total area of the touch electrodes of at least one touch sensor to the area of the main antenna the better.
  • the main antenna 40 constitutes a monopole offset antenna, wherein the electrical length of the main antenna 40 is approximately 1/2, wherein the electrical length refers to the main antenna 40.
  • the matching circuit can be adjusted to make the electrical length equal to one-half, but the physical length of the actual current flowing on the main antenna 40 is not necessarily exactly equal to one-half.
  • the flexible circuit board 20 also includes a second extension part 203 connected to the feed part 201, a parasitic antenna 60 is arranged on the second extension part 203, and the second extension part 203 extends to the earplug Part 1, the feeding part 201 is provided with a ground trace GND, and the parasitic antenna 60 is coupled with the ground trace GND.
  • the parasitic antenna 60 is laid along the extension direction of the second extension portion 203 , and the parasitic antenna 60 is connected to the radio frequency circuit through the ground trace GND.
  • the main antenna 50 and the parasitic antenna 60 can form antennas of different modes on the Bluetooth headset, such as a balanced (balance) antenna or an unbalanced (unbalance) antenna.
  • the balanced antenna is also called a differential antenna.
  • a differential mode (DM) antenna and an unbalanced antenna are called a common mode (CM) antenna.
  • the direction of the current provided by the radio frequency circuit to the main antenna 40 and the parasitic antenna 60 is different, for example: the flow direction of the first current in the main antenna 40 is from being connected with the feeding electrode
  • the second current in the parasitic antenna 60 flows from one end away from the ground trace GND to the end coupled with the ground trace GND.
  • the direction of the current in the radio frequency circuit to the main antenna 40 and the parasitic antenna 60 is the same, for example: the flow direction of the first current in the main antenna 50 is from the end connected to the feeding electrode to the side far away from the feeding electrode On the other end, the flow direction of the second current in the parasitic antenna 60 is from the end coupled with the ground trace GND to the end far away from the ground trace GND.
  • the sum of the electrical lengths of the main antenna 40 and the parasitic antenna 60 is approximately 1/2; for example, the electrical length of the main antenna 40 is approximately 1/4, and the electrical length of the parasitic antenna 60 is approximately 1/4.
  • the electromagnetic wave wavelength transmitted by the main antenna 40 and the parasitic antenna 60 as an example in the Bluetooth frequency band, it should be noted that “approximately” means that the physical length of the current flowing on the main antenna 40 is the same as the current flowing on the parasitic antenna 60.
  • the sum of the passed physical lengths is approximately equal to 1/2 of the electromagnetic wave wavelength of the Bluetooth frequency band, or the physical length of the current flowing on the main antenna 40 is approximately equal to 1/4 of the electromagnetic wave wavelength of the Bluetooth frequency band and the current flow on the parasitic antenna 60
  • the passing physical length is approximately equal to a quarter of the wavelength of the electromagnetic wave in the Bluetooth band. That is, the difference between the sum of the physical length of the current flowing on the main antenna 40 and the physical length of the current flowing on the parasitic antenna 60 and half of the wavelength of the electromagnetic wave in the Bluetooth frequency band is within a preset range.
  • the difference between the physical length of the current flowing on the main antenna 40 and a quarter of the electromagnetic wave wavelength of the Bluetooth frequency band is within a preset range, and the physical length of the current flowing on the parasitic antenna 60 is equal to the electromagnetic wave wavelength of the Bluetooth frequency band.
  • a quarter of the difference is within the preset range.
  • the adjustment of the matching circuit can make the electrical length equal to 1/2, but the sum of the physical length of the actual current flowing on the main antenna 40 and the physical length of the actual current flowing on the parasitic antenna 60 is not necessarily accurate equal to one-half.
  • the physical length of the actual current flowing on the main antenna 40 and the physical length of the actual current flowing on the parasitic antenna 60 may or may not be equal.
  • the parasitic antenna 60 in order to adjust the physical length of the actual current flowing on the parasitic antenna 60 , the parasitic antenna 60 is coupled with the ground wire GND through the inductor 2012 . Wherein, adjusting the inductance value of the inductor 2012 is equivalent to adjusting the physical length of the actual current flowing on the parasitic antenna 60 .
  • the flexible circuit board 20 also includes a third extension part 204 connected to the power supply part 201, the third extension part 204 extends to the earplug part 1, and the third extension part 204 At least one PCB 70 (701, 702) is provided; wherein the second extension portion 203 extends to between the two PCBs (as shown in FIG. 3 ), or the second extension portion extends to at least one side of the PCB away from the corner portion (as shown in FIG. Figure 9).
  • the third extension part 204 can form one or more bent structures on the earplug part 1, and the PCB can be connected to the bent structures.
  • the third extension portion 204 is specifically used for transmitting signals to the PCB.
  • PCB701 and PCB702 are shown in FIG. 3 and FIG. 9 .
  • PCB701 and PCB702 are used for fabrics.
  • one or more chips including the above-mentioned functional circuits such as touch circuits, radio frequency circuits, and audio decoders can be respectively arranged on PCB701 and PCB702.
  • the chip 200 (such as the processor of the Bluetooth headset) can be arranged on the PCB 701 .
  • the third extension portion 204 can be extended between the two PCBs 701 and 702 (as shown in FIG. 3 ).
  • the second extension part 203 extends to at least one side of the PCB70 away from the corner (that is, the PCB701 is close to the speaker assembly 80 side, as shown in Figure 9).
  • the flexible circuit board 20 includes a fourth extension 205 connected to the feeder 201, wherein the fourth extension 205 extends to the ear handle rod 22; the fourth extension 205 is arranged on the second Between the first extension part 202 and the battery 30 ; the battery 30 is coupled with the power line on the fourth extension part 205 .
  • the fourth extension part 205 has one or more bends in the ear handle rod 22, wherein the connecting terminal 301 of the battery 30 and the fourth extension part 205 are provided with electrodes connected to power lines. (Electrodes 2051, 2052, wherein the electrode 2051 and the electrode 2052 are positive and negative electrodes respectively) coupled.
  • the battery 30 is disposed inside the ear stem 22 , and the battery 30 is coupled to the chip 200 through a power line.
  • the battery 30 is used to provide electric energy for the Bluetooth headset 100 .
  • the battery 30 is in the shape of a strip to be better accommodated in the main casing 101 .
  • the battery 30 may also have other shapes.
  • the connection terminal 301 of the battery 30 is set toward the first opening 1011 of the main casing 101, and the connection structure between the connection terminal 301 of the battery 30 and the fourth extension part 205 is located near the first opening 1011, so it is beneficial to Subsequent maintenance operations on the battery 30 .
  • the connection terminal 301 of the battery 30 may also be arranged towards the corner portion 21 .
  • the Bluetooth headset 100 may also include a microphone module 90 .
  • the microphone module 90 is located at the end of the ear handle rod 22 away from the corner 21 (as shown in FIG. ) or on PCB70.
  • the microphone module 90 is used to convert sound signals into electrical signals.
  • the microphone module 90 is closer to the bottom housing 102 than the battery 30 .
  • the sound signal sent by the user can be received by the microphone module 90 with better quality and faster speed, thereby ensuring the sound quality and efficiency of the Bluetooth headset 100 .
  • the fourth extension part 205 may also be provided with other signal lines providing signals for these components, such as a signal line connected to the microphone module 90 .
  • the first extension part 202, the second extension part 203, the third extension part 204, and the fourth extension part 205 wherein, according to installation requirements, the first extension part 202 extends to the ear stem rod 22, and the second extension part 203 extends to In the earplug part 1 , the third extension part 204 extends to the earplug part 1 , and the fourth extension part extends to the ear stem rod 22 .
  • the feeding part 201 , the first extension part 202 , the second extension part 203 , the third extension part 204 , and the fourth extension part 205 can be integrally formed.
  • the power feeding part 201 , the first extension part 202 , the second extension part 203 , the third extension part 204 , and the fourth extension part 205 can also be assembled to form an integrated structure.
  • the flexible circuit board 20 may also include one or more reinforcing boards (not shown in the figure).
  • One or more reinforcement plates are disposed at the reinforcement area of the flexible circuit board 20 .
  • the reinforced area of the flexible circuit board 20 is mainly the area of the flexible circuit board 20 that needs to be connected with other components, or the area used to carry other components.
  • the feeder part 201, the first extension part 202, the second extension part 203, the third extension part 204, and the fourth extension part 205 are integrally formed, the feeder part 201, Each part of the first extension part 202, the second extension part 203, the third extension part 204, and the fourth extension part 205 is bent to adapt to the installation shape of the main housing.
  • FIG. 1 In the embodiment of the present application, refer to FIG.
  • the first extension part 202 can be bent to the in-plane (inward along the Z direction) side along the axis A parallel to the extension direction of the first extension part 202 along the connection between the first extension part 202 and the feed part 201 90°, and then bend down 90° along the axis D perpendicular to the extension direction of the first extension portion 202 along the Y direction along the connection between the first extension portion 202 and the feeder portion 201;
  • the connection of the electric part 201 is along the axis B parallel to the extension direction of the fourth extension part 205.
  • the fourth extension part 205 is bent 90° to the in-plane (inward along the Z direction) side, and then along the fourth extension part 205 and the feeder
  • the connection part of the electric part 201 is bent down 90° along the axis C perpendicular to the extension direction of the fourth extension part 205 along the Y direction;
  • the axis A in the extension direction of the part 202 bends the second extension part 203 to the in-plane (inward along the Z direction) side by 90°; wherein, for the third extension part 204, it is specifically required to bend according to the number and shape of the PCBs connected thereto. It is folded into a shape suitable for being installed on the earplug part 1 , which will not be repeated here, and finally forms the installation structure of the flexible circuit board 20 as shown in FIG. 3 .
  • the embodiment of the present application simulates the radiation parameters of the antenna in the two cases where the Bluetooth headset only includes the main antenna (case 1) and includes both the main antenna and the parasitic antenna (case 2).
  • the main antenna works in the common mode, that is, the inflection point of curve 1, curve 3, and curve 5
  • the location (lowest loss) is between 2.4GHz-2.5GHz.
  • the main antenna works in the common mode mode, that is, the inflection point of curve 2, curve 4, and curve 6 between 2.4GHz-2.5GHz; the differential mode mode of the parasitic antenna is curve 2, Curve 4, the inflection point between 2.2GHz-2.3GHz of curve 6).
  • the total efficiency of the antenna is -13.154dB, -11.445GHz and -11.436GHz; in the second case, The total efficiency of the antenna is -12.027dB, -11.49GHz and -11.408GHz respectively; obviously the total efficiency of the antenna is higher in the second case.
  • the radiation efficiency curve and the loss curve it can be seen that in the Bluetooth band, the radiation efficiency in the second case is higher, and the loss efficiency is lower, and the use bandwidth of the antenna is effectively increased in the second case.
  • the embodiment of the present application includes the main antenna and the parasitic antenna (case 2), and the antenna works in the differential mode state (DM, Fig. 13 ) and common mode state (CM) at 2.44GHz. , Fig. 12), the current directions of the main antenna and the parasitic antenna are simulated.
  • the direction of the current in the radio frequency circuit to the main antenna 40 and the parasitic antenna 60 is the same, for example: the flow direction of the first current in the main antenna is from one end connected to the feeding electrode to the other end away from the feeding electrode , the flow direction of the second current in the parasitic antenna is from the end coupled with the ground trace GND to the end far away from the ground trace GND; as shown in Figure 13, the flow direction of the first current in the main antenna is from the feed electrode One end connected to the other end far away from the feeding electrode, the flow direction of the second current in the parasitic antenna is from the end far away from the ground trace GND to the end coupled to the ground trace GND.
  • curve 7 shows the total efficiency of the antenna in the common mode state
  • curve 8 shows the total efficiency of the antenna in the differential mode state
  • curve 9 shows the loss efficiency of the antenna in the common mode state
  • curve 10 shows the loss efficiency of the antenna in differential mode.
  • sampling the total efficiency of the frequency points 2.4GHz, 2.44GHz, and 2.48GHz in the Bluetooth band it can be seen that in the common mode state, the total efficiency of the antenna is -13.593dB, -12.76GHz and -12.562GHz respectively; Case 2 Under , the total efficiency of the antenna is -12.027dB, -11.49GHz and -11.408GHz respectively; the total efficiency is obviously higher in the differential mode state.
  • curve 9 and curve 10 it can be seen that in the bluetooth band, the loss efficiency is lower in the differential mode state. That is, it has better antenna performance in the differential mode state.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Details Of Aerials (AREA)

Abstract

本申请实施例提供一种蓝牙耳机,涉及通讯设备领域,能够有效利用蓝牙耳机的内部空间,并降低产品小型化对天线性能的影响。蓝牙耳机,包括耳塞部和耳柄部;耳柄部包括与耳塞部相接的拐角部、及与拐角部连接的耳柄杆,耳柄杆内部设有电池;蓝牙耳机包括柔性电路板,柔性电路板包括馈电部分和连接馈电部分的第一延伸部分;馈电部分设置于拐角部,第一延伸部分延伸至耳柄杆;馈电部分设置有馈电电极,第一延伸部分的第一侧设置有主天线,第一延伸部分的第二侧设置有至少一个触摸感应器;其中第一延伸部分的第一侧朝向电池,第一延伸部分的第二侧朝向所述耳柄杆的内壁,馈电电极与主天线耦合。

Description

蓝牙耳机
本申请要求于2021年05月12日提交国家知识产权局、申请号为202110519183.8、申请名称为“蓝牙耳机”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通讯设备技术领域,尤其涉及一种蓝牙耳机。
背景技术
目前,蓝牙耳机因其便捷和小巧等优点,深受用户的喜爱,使用范围越来越广。然而,传统蓝牙耳机中,天线自身的天线性能不佳,且为了满足布局紧凑的诉求,不易实现无天线净空区或者小天线无净空区的需求,导致天线的天线性能下降。
基于芯片、蓝牙技术的发展,真无线立体声(true wireless stereo,TWS)蓝牙耳机没有传统的物理线材,左右2个耳机通过蓝牙组成立体声系统,手机连接一个作为接收端的耳机即可,此接收端会把立体声信号通过无线传输的方式分到作为另一个接收端的耳机,从而组成立体声系统。TWS耳机因其便捷和小巧等优点,深受用户的喜爱,使用范围越来越广。
TWS蓝牙耳机体积小但是器件多,产品内部空间紧张,如何有效利用TWS耳机的内部空间,以降低产品小型化对天线性能的影响成为当前的一项研究课题。
发明内容
本申请实施例提供一种蓝牙耳机,能够有效利用蓝牙耳机的内部空间,并降低产品小型化对天线性能的影响。
为达到上述目的,本申请采用如下技术方案:
第一方面,提供一种蓝牙耳机。该蓝牙耳机,包括耳塞部和耳柄部;所述耳柄部包括与所述耳塞部相接的拐角部、及与所述拐角部连接的耳柄杆,所述耳柄杆内部设有电池;所述蓝牙耳机包括柔性电路板,所述柔性电路板包括馈电部分和连接所述馈电部分的第一延伸部分;所述馈电部分设置于所述拐角部,所述第一延伸部分延伸至所述耳柄杆;所述馈电部分设置有馈电电极,所述第一延伸部分的第一侧设置有主天线,所述第一延伸部分的第二侧设置有至少一个触摸感应器;其中,所述第一延伸部分的第一侧朝向所述电池,所述第一延伸部分的第二侧朝向所述耳柄杆的内壁,所述馈电电极与所述主天线耦合。在本申请的实施例中,将触摸感应器与主天线分别设置于柔性电路板的第一延伸部分的两侧,在空间上实现了两者复用同一空间,节约了蓝牙耳机的内部空间。此外,将触摸感应器设置在靠近耳柄杆的内壁的一侧,将主天线设置在靠近电池的一侧,避免了天线将触摸感应器遮挡,从而保证了触摸感应器的正常使用,另外,合理设置触摸感应器的位置,可以保证天线的净空区域,这样在有效利用蓝牙耳机的内部空间的同时,最大化的降低了产品小型化对天线性能的影响。
在一些可能的实现方式中,所述耳塞部设置有触控电路,所述触摸感应器通过低通高阻元件与所述触控电路耦合。在将触摸感应器和主天线设置在第一延伸部分的两侧时,由于触摸感应器和主天线之间仅间隔第一延伸部分的厚度,因此,触摸感应器 处于主天线的高频信号辐射场时,会在触摸感应器产生高频的谐振电流从而在触摸感应器形成带内杂波。为避免上述问题,耳塞部设置有触控电路,触摸感应器通过低通高阻元件与触控电路耦合。其中该低通高阻元件可以为扼流(choke)器件,例如扼流电感或磁珠。这样,低通高阻元件可以阻断触摸感应器上的高频的谐振电流,同时,保证触摸感应器在被人体触摸时生成的低频信号能够通过通低通高阻元件传输至触控电路。这样,触摸感应器仅相当于主天线上方悬浮的走线,能最大化消除对主天线净空的影响。
在一些可能的实现方式中,为了避免主天线的高频信号通过接地走线耦合至低通高阻元件(当然在采用多个触摸感应器时,也可以是其他触摸感应器耦合的低通高阻元件)、或者低通高阻元件与触摸感应器之间的走线、或者触摸感应器,导致触摸感应器和/或上述走线内形成带内杂波,故,低通高阻元件、所述低通高阻元件与所述触摸感应器之间的走线、以及所述触摸感应器,与所述柔性电路板上的接地走线的距离大于第一阈值。例如,第一阈值为1μm。这样,将低通高阻元件、低通高阻元件与触摸感应器之间的走线、以及触摸感应器,与柔性电路板上的接地走线形成有效的隔离,尽量降低主天线的高频信号通过接地走线耦合至低通高阻元件、或者低通高阻元件与触摸感应器之间的走线、或者触摸感应器。其中,接地走线与公共参考地连接,公共参考地指蓝牙耳机内部各个部件的接地端。
在一些可能的实现方式中,所述柔性电路板还包括连接所述馈电部分的第二延伸部分,所述第二延伸部分上设置有寄生天线,所述第二延伸部分延伸至所述耳塞部,所述馈电部分设置有接地走线,所述寄生天线与所述接地走线耦合。主天线与寄生天线可以在蓝牙耳机上形成不同模式的天线,例如平衡(balance)天线或非平衡(unbalance)天线,在一些示例中也将平衡天线称作差模(differential mode,DM)天线、将非平衡天线称作共模(common mode,CM)天线。其中,可以理解的是,在形成平衡天线时,射频电路向主天线与寄生天线60中提供的电流方向不相同,例如:主天线中的第一电流的流向为自与馈电电极连接的一端至远离馈电电极的另一端,寄生天线中的第二电流的流向为自远离接地走线的一端至与接地走线耦合的一端。在形成非平衡天线时,射频电路向主天线与寄生天线中的电流方向相同,例如:主天线中的第一电流的流向为自与馈电电极连接的一端至远离馈电电极的另一端,寄生天线中的第二电流的流向为自与接地走线耦合的一端至远离接地走线的一端。
在一些可能的实现方式中,为了调节寄生天线上实际的电流流过的物理长度,寄生天线通过电感与接地走线耦合。其中,通过调节电感的电感值,相当于调节寄生天线上实际的电流流过的物理长度。
在一些可能的实现方式中,所述柔性电路板包括连接所述馈电部分的第三延伸部分,所述第三延伸部分延伸至所述耳塞部,所述第三延伸部分上设置有至少一个PCB;其中所述第二延伸部分延伸至两个所述PCB之间,或者所述第二延伸部分延伸至所述至少一个PCB远离所述拐角部的一侧。为了节省空间,可以将第三延伸部分延伸至两个PCB之间。此外,由于PCB以及设置在PCB上的部件含有导电材料,例如金属成分,为了避免对寄生天线的影响,第二延伸部分延伸至至少一个PCB远离拐角部的一侧(即PCB靠近扬声器组件的一侧)。
在一些可能的实现方式中,为了确保触摸感应器和主天线的有效隔离,尽量降低主天线的高频信号耦合至触摸感应器,所述柔性电路板的厚度大于或等于0.12mm。
在一些可能的实现方式中,所述触摸感应器包括触摸电极;至少一个所述触摸感应器的触摸电极在所述主天线所在平面的投影位于所述主天线的区域内;为了确保主天线的净空,所述至少一个所述触摸感应器的触摸电极的总面积小于所述主天线的面积。
在一些可能的实现方式中,所述柔性电路板包括连接所述馈电部分的第四延伸部分,其中所述第四延伸部分延伸至所述耳柄杆;所述第四延伸部分设置于所述第一延伸部分与所述电池之间;所述电池与所述第四延伸部分上的电源线耦合。
在一些可能的实现方式中,所述主天线的电长度为1/2。当上述的蓝牙耳机的天线仅包含上述的主天线时,该主天线构成单极子偏馈天线,其中,主天线的电长度大致为1/2,其中电长度指在主天线上电流流过的物理长度与所传输的电磁波波长之比。以主天线与寄生天线所传输的电磁波波长为蓝牙频段为例,其中需要说明的是,“大致为”的意思是,主天线上电流流过的物理长度近似等于蓝牙频段的电磁波波长的二分之一,即主天线上电流流过的物理长度与蓝牙频段的电磁波波长的二分之一的差值在预设范围内。具体实施时,可以通过匹配电路的调节使得电长度等于二分之一,但主天线上实际的电流流过的物理长度不一定精确等于二分之一。
在一些可能的实现方式中,所述主天线与所述寄生天线的电长度之和为1/2。
在一些可能的实现方式中,所述主天线的电长度为1/4,所述寄生天线的电长度为1/4。主天线与寄生天线的电长度之和大致为1/2;例如,主天线40的电长度大致为1/4,寄生天线的电长度大致为1/4。以主天线与寄生天线所传输的电磁波波长为蓝牙频段为例,其中需要说明的是,“大致为”的意思是,主天线上电流流过的物理长度与寄生天线上电流流过的物理长度之和近似等于蓝牙频段的电磁波波长的二分之一,或者,主天线上电流流过的物理长度近似等于蓝牙频段的电磁波波长的四分之一并且寄生天线上电流流过的物理长度近似等于蓝牙频段的电磁波波长的四分之一。即主天线上电流流过的物理长度与寄生天线上电流流过的物理长度之和与蓝牙频段的电磁波波长的二分之一的差值在预设范围内。或者,主天线上电流流过的物理长度与蓝牙频段的电磁波波长的四分之一的差值在预设范围内,并且寄生天线上电流流过的物理长度与蓝牙频段的电磁波波长的四分之一的差值在预设范围内。具体实施时,可以通过匹配电路的调节使得电长度等于二分之一,但主天线上实际的电流流过的物理长度与寄生天线上实际的电流流过的物理长度之和不一定精确等于二分之一。主天线上实际的电流流过的物理长度与寄生天线上实际的电流流过的物理长度可以相等,也可以不相等。
附图说明
图1为现有技术提供的一种蓝牙耳机的结构示意图;
图2为本申请的实施例提供的图1所示蓝牙耳机的部分分解结构示意图;
图3为本申请的实施例提供的一种蓝牙耳机的内部结构示意图;
图4为本申请的实施例提供的一种柔性电路板的结构示意图;
图5为本申请的实施例提供的图4所示的柔性电路板在E处的局部结构示意图;
图6为本申请的实施例提供的一种第一延伸部分的结构示意图;
图7为本申请的实施例提供的一种触摸感应器的连接关系示意图;
图8为本申请的实施例提供的一种寄生天线的连接关系示意图;
图9为本申请的另一实施例提供的一种蓝牙耳机的内部结构示意图;
图10为本申请的实施例提供的一种第四延伸部分的局部结构示意图;
图11为本申请的实施例提供的对蓝牙耳机的天线的辐射参数的仿真曲线示意图;
图12为本申请的实施例提供的对蓝牙耳机的天线工作在2.44GHz共模状态下主天线和寄生天线的电流方向示意图;
图13为本申请的实施例提供的对蓝牙耳机的天线工作在2.44GHz差模状态下主天线和寄生天线的电流方向示意图;
图14为本申请的另一实施例提供的对蓝牙耳机的天线的辐射参数的仿真曲线示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。
除非另有定义,否则本文所用的所有科技术语都具有与本领域普通技术人员公知的含义相同的含义。在本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b或c中的至少一项(个),可以表示:a,b,c,a和b,a和c,b和c或a、b和c,其中a、b和c可以是单个,也可以是多个。另外,在本申请的实施例中,“第一”、“第二”等字样并不对数量和次序进行限定。
此外,本申请中,“上”、“下”等方位术语是相对于附图中的部件示意置放的方位来定义的,应当理解到,这些方向性术语是相对的概念,它们用于相对于的描述和澄清,其可以根据附图中部件所放置的方位的变化而相应地发生变化。
需要说明的是,本申请中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其他实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
本申请的实施例提供的蓝牙耳机的天线(主天线和寄生天线)可以工作在蓝牙频段,其中蓝牙波段的频段范围为2402MHz~2480MHz。
参照图1所示,本申请的实施例提供一种蓝牙耳机100的结构示意图(以下在XYZ构成的三维坐标系空间中对各个结构示意图中所描述的结构的位置关系进行关联说明,例如在图1中,Y方向为纵向、X方向为横向,Z方向为垂直于XY平面的方向)。通常,蓝牙耳机100具有耳塞部1和耳柄部2。耳柄部2包括与耳塞部1连接的拐角部21、及与拐角部21连接的耳柄杆22。耳柄部2的拐角部21、耳柄杆22依次排布于纵向(Y方向)。耳塞部1用于部分嵌入用户人体的耳部。用户佩戴蓝牙耳机100时, 耳塞部1部分嵌入用户耳部,耳柄部2位于用户耳部外侧并接触用户耳部。
参考图1和图2所示,其中图2是图1所示蓝牙耳机100的部分分解结构示意图。蓝牙耳机100包括外壳10。外壳10用于收容蓝牙耳机100的其他部件,以固定并保护其他部件。外壳10包括主壳体101、底部壳体102以及侧部壳体103。主壳体101部分位于蓝牙耳机100的耳柄部2、部分位于蓝牙耳机100的耳塞部1。主壳体101于蓝牙耳机100的耳柄杆22远离拐角部21的一端形成有第一开口1011,于蓝牙耳机100的耳塞部1形成有第二开口1012。蓝牙耳机100的其他部件可以自第一开口1011或第二开口1012装入主壳体101内部。例如可以通过第二开口1012将扬声器组件80安装于主壳体101的耳塞部1的内部,将电池30通过第一开口1011安装于主壳体101的耳柄杆22内部,当然,还可以有其他需要设置于主壳体101内部的部件,例如:柔性电路板20、一块或多块印刷电路板(printed circuit board,PCB)70(701、702)、以及PCB70上的芯片200(例如处理器、音频解码器、射频电路、充电电路、触控电路等)、话筒模组90、天线(例如本申请的实施例中提供的主天线40和寄生天线60)、触摸感应器(图4中的触摸感应器50)等。底部壳体102位于蓝牙耳机100的耳柄杆22远离拐角部21的一端并固定连接主壳体101,底部壳体102安装于第一开口1011。侧部壳体103位于蓝牙耳机100的耳塞部1并固定连接主壳体101,侧部壳体103安装于第二开口1012。其中,底部壳体102与主壳体101之间的连接为可拆卸连接(例如扣合连接、螺纹连接等),以便于蓝牙耳机100后续进行维修或维护。其他实施方式中,底部壳体102与主壳体101之间的连接也可以为不可拆卸连接(例如胶接),以降低底部壳体102意外脱落的风险,使得蓝牙耳机100的可靠性更高。侧部壳体103与主壳体101之间的连接为可拆卸连接(例如扣合连接、螺纹连接等),以便于蓝牙耳机100后续进行维修或维护。其他实施例中,侧部壳体103与主壳体101之间的连接也可以为不可拆卸连接(例如胶接),以降低侧部壳体103意外脱落的风险,使得蓝牙耳机100的可靠性更高。其中,侧部壳体103设有一个或多个出音孔1031,使得外壳10内部的声音能够经出音孔1031传输至外壳10外部。本申请不对出音孔1031的形状、位置、数量等作严格限定。
以上介绍了一种典型的蓝牙耳机100的结构,当然上述方式的蓝牙耳机100的结构并不是唯一的结构,在一些实施例中,本领域技术人员还可以作出其他的结构设计。
参照图2、图3以及图4所示,其中图3提供了蓝牙耳机100的内部结构示意图,图4提供了柔性电路板20的结构示意图。具体的,蓝牙耳机100包括柔性电路板20,柔性电路板20包括馈电部分201和连接馈电部分201的第一延伸部分202;馈电部分201设置于拐角部21,第一延伸部分202延伸至耳柄杆22。
馈电部分201设置有馈电电极2011,第一延伸部分202的第一侧设置有主天线40,第一延伸部分202的第二侧设置有至少一个触摸感应器50(其中图4中以三个触摸感应器501、502、503)为例;结合图6所示,第一延伸部分202的第一侧朝向电池30,第一延伸部分202的第二侧朝向耳柄杆22的内壁,馈电电极2011与主天线40耦合。需要说明的是,如图4、图6所示,主天线40沿第一延伸部分202的延伸方向铺设在第一延伸部分202的第一侧,至少一个触摸感应器50沿第一延伸部分202的延伸方向依次铺设在第一延伸部分202的第二侧。这样,蓝牙耳机100的射频电路可以通过馈 电电极2011向主天线40输出发射信号,发射信号在主天线形成谐振辐射至周围的空间,当然主天线40也可以接受空间传输的射频信号,并转换成电信号传输至射频电路,从而实现信号的传输,在一些实施例中射频电路也称作收发机。其中,需要说明的是,可以在第一延伸部分202的第二侧仅设置一个触摸感应器50,此时用户对触摸感应器50的操作可以是单击、多击或长按操作,其中,与触摸感应器50耦合的触控电路可以根据触摸感应器50传输的触摸信号,确定用户对触摸感应器50发生触摸操作,并且根据触摸感应器50产生的电信号确定触摸的频率、时长、强度等参数,从而确定相应的操作类型,经处理器判断并执行操作类型相应的操作。此外,在第一延伸部分202的第二侧设置两个或两个以上的触摸感应器50(例如501、502、503)时,此时对两个或两个以上的触摸感应器50的操作可以是滑动操作,例如,当用户通过手指依次划过触摸感应器501、触摸感应器502、以及触摸感应器503时,触摸感应器50耦合的触控电路可以根据触摸感应器501、触摸感应器502、以及触摸感应器503依次输出触摸信号的时间先后,确定用户手指滑动的方向,从而确定相应的操作类型,经处理器判断并执行操作类型相应的操作。例如当手指沿Y方向向上依次划过触摸感应器501、触摸感应器502、以及触摸感应器503时,处理器根据触控电路检测的触摸信号确定用户手指为向上滑动,则控制增加音量;或者当手指沿Y方向向下依次划过触摸感应器503、触摸感应器502、以及触摸感应器501时,处理器根据触控电路检测的触摸信号确定用户手指为向下滑动,则控制降低音量。
在本申请的实施例中,将触摸感应器50与主天线40分别设置于柔性电路板20的第一延伸部分202的两侧,在空间上实现了两者复用同一空间,节约了蓝牙耳机的内部空间。此外,将触摸感应器50设置在靠近耳柄杆22的内壁的一侧,将主天线40设置在靠近电池的一侧,避免了主天线40将触摸感应器50遮挡,从而保证了触摸感应器50的正常使用,另外,合理设置触摸感应器50的位置,可以保证主天线40的净空区域,这样在有效利用蓝牙耳机的内部空间的同时,最大化的降低了产品小型化对天线性能的影响。
在将触摸感应器50和主天线40设置在第一延伸部分202的两侧时,由于触摸感应器50和主天线40之间仅间隔第一延伸部分202的厚度,因此,触摸感应器处于主天线的高频信号辐射场时,会在触摸感应器产生高频的谐振电流从而在触摸感应器形成带内杂波。为避免上述问题,结合图5、图7所示,其中图5为图4中E处的局部结构示意图,耳塞部1设置有触控电路,触摸感应器50(图7中501)通过低通高阻元件2013与触控电路耦合。其中该低通高阻元件2013可以为扼流(choke)器件,例如扼流电感或磁珠。这样,低通高阻元件2013可以阻断触摸感应器上的高频的谐振电流,同时,保证触摸感应器50在被人体触摸时生成的低频信号能够通过低通高阻元件2013传输至触控电路。这样,触摸感应器50仅相当于主天线40上方悬浮的走线,能最大化消除对主天线40净空的影响。结合图4、图5所示,触摸感应器501通过走线L1连接低通高阻元件2013、触摸感应器502通过走线L2连接低通高阻元件(图中未给出标记)和触摸感应器502通过走线L3连接低通高阻元件(图中未给出标记)。此外,为了确保触摸感应器50和主天线40的有效隔离,尽量降低主天线40的高频信号耦合至触摸感应器50,参照图6所示,柔性电路板20的厚度H大于或等于0.12mm。
为了避免主天线40的高频信号通过接地走线GND耦合至低通高阻元件2013(当然在采用多个触摸感应器时,也可以是其他触摸感应器耦合的低通高阻元件)、或者低通高阻元件2013与触摸感应器501之间的走线L1(当然也可以是走线L2或走线L3)、或者触摸感应器50(501、502、503),导致触摸感应器和/或上述走线内形成带内杂波,故,低通高阻元件、低通高阻元件与触摸感应器之间的走线(L1、L2和L3)、以及触摸感应器50(501、502、503),与柔性电路板20上的接地走线GND的距离大于第一阈值。例如,第一阈值为1μm,其中低通高阻元件、低通高阻元件与触摸感应器之间的走线(L1、L2和L3)、以及触摸感应器50(501、502、503),与柔性电路板20上的接地走线GND的距离是指在结构上低通高阻元件、低通高阻元件与触摸感应器之间的走线(L1、L2和L3)、以及触摸感应器50(501、502、503),与柔性电路板20上的接地走线GND间隔的距离(例如在结构上低通高阻元件、低通高阻元件与触摸感应器之间的走线(L1、L2和L3)、以及触摸感应器50(501、502、503),与柔性电路板20上的接地走线GND之间存在的缝隙的尺寸)。这样,将低通高阻元件、低通高阻元件与触摸感应器之间的走线、以及触摸感应器,与柔性电路板上的接地走线GND形成有效的隔离,尽量降低主天线40的高频信号通过接地走线GND耦合至低通高阻元件、或者低通高阻元件与触摸感应器之间的走线、或者触摸感应器。其中,接地走线GND与公共参考地连接,公共参考地指蓝牙耳机内部各个部件的接地端。
在一些示例中,如图4和图7所示,触摸感应器50(501、502、503)包括触摸电极;即触摸感应器50采用板状的触摸电极,为了尽量节约空间,至少一个触摸感应器50的触摸电极在主天线40所在平面的投影位于主天线40的区域内。此时,为了确保主天线40的净空,至少一个触摸感应器的触摸电极的总面积小于主天线的面积。其中,为了确保主天线40的净空并确保触摸感应器的灵敏度,至少一个触摸感应器的触摸电极的总面积为主天线的面积的20%到80%。其中,在实际应用中,在保证确保主天线40的净空的情况下,为保证触摸感应器的灵敏度,至少一个触摸感应器的触摸电极的总面积与主天线的面积比例越大越好。
其中,当上述的蓝牙耳机的天线仅包含上述的主天线40时,该主天线40构成单极子偏馈天线,其中,主天线40的电长度大致为1/2,其中电长度指在主天线40上电流流过的物理长度与所传输的电磁波波长之比。以主天线40与寄生天线60所传输的电磁波波长为蓝牙频段为例,其中需要说明的是,“大致为”的意思是,主天线40上电流流过的物理长度近似等于蓝牙频段的电磁波波长的二分之一,即主天线40上电流流过的物理长度与蓝牙频段的电磁波波长的二分之一的差值在预设范围内。具体实施时,可以通过匹配电路的调节使得电长度等于二分之一,但主天线40上实际的电流流过的物理长度不一定精确等于二分之一。
参照图4、图5、图8所示,柔性电路板20还包括连接馈电部分201的第二延伸部分203,第二延伸部分203上设置有寄生天线60,第二延伸部分203延伸至耳塞部1,馈电部分201设置有接地走线GND,寄生天线60与接地走线GND耦合。其中,寄生天线60沿第二延伸部分203的延伸方向铺设,并且寄生天线60通过接地走线GND连接至射频电路。这样,配合主天线50,主天线50与寄生天线60可以在蓝牙耳机上形成不同模式的天线,例如平衡(balance)天线或非平衡(unbalance)天线,在一 些示例中也将平衡天线称作差模(differential mode,DM)天线、将非平衡天线称作共模(common mode,CM)天线。其中,可以理解的是,在形成平衡天线时,射频电路向主天线40与寄生天线60中提供的电流方向不相同,例如:主天线40中的第一电流的流向为自与馈电电极连接的一端至远离馈电电极的另一端,寄生天线60中的第二电流的流向为自远离接地走线GND的一端至与接地走线GND耦合的一端。在形成非平衡天线时,射频电路向主天线40与寄生天线60中的电流方向相同,例如:主天线50中的第一电流的流向为自与馈电电极连接的一端至远离馈电电极的另一端,寄生天线60中的第二电流的流向为自与接地走线GND耦合的一端至远离接地走线GND的一端。
示例的,主天线40与寄生天线60的电长度之和大致为1/2;例如,主天线40的电长度大致为1/4,寄生天线60的电长度大致为1/4。以主天线40与寄生天线60所传输的电磁波波长为蓝牙频段为例,其中需要说明的是,“大致为”的意思是,主天线40上电流流过的物理长度与寄生天线60上电流流过的物理长度之和近似等于蓝牙频段的电磁波波长的二分之一,或者,主天线40上电流流过的物理长度近似等于蓝牙频段的电磁波波长的四分之一并且寄生天线60上电流流过的物理长度近似等于蓝牙频段的电磁波波长的四分之一。即主天线40上电流流过的物理长度与寄生天线60上电流流过的物理长度之和与蓝牙频段的电磁波波长的二分之一的差值在预设范围内。或者,主天线40上电流流过的物理长度与蓝牙频段的电磁波波长的四分之一的差值在预设范围内,并且寄生天线60上电流流过的物理长度与蓝牙频段的电磁波波长的四分之一的差值在预设范围内。具体实施时,可以通过匹配电路的调节使得电长度等于二分之一,但主天线40上实际的电流流过的物理长度与寄生天线60上实际的电流流过的物理长度之和不一定精确等于二分之一。主天线40上实际的电流流过的物理长度与寄生天线60上实际的电流流过的物理长度可以相等,也可以不相等。在一些示例中,为了调节寄生天线60上实际的电流流过的物理长度,寄生天线60通过电感2012与接地走线GND耦合。其中,通过调节电感2012的电感值,相当于调节寄生天线60上实际的电流流过的物理长度。
参照图3、图4、图5、图9所示,柔性电路板20还包括连接馈电部分201的第三延伸部分204,第三延伸部分204延伸至耳塞部1,第三延伸部分204上设置有至少一个PCB70(701、702);其中第二延伸部分203延伸至两个PCB之间(如图3所示),或者第二延伸部分延伸至至少一个PCB远离拐角部的一侧(如图9所示)。其中,第三延伸部分204可以在耳塞部1形成一个或多个弯折结构,PCB可以连接在弯折结构处。第三延伸部分204具体用于向PCB传输信号。其中,图3以及图9中示出了两个PCB701、PCB702。可以理解的是,PCB701、PCB702用于布件,例如:可以将包含上述的触控电路、射频电路、音频解码器等功能电路的一个或多个芯片分别设置在PCB701、PCB702,一种示例是,可以将芯片200(例如蓝牙耳机的处理器)设置在PCB701上。其中,为了节省空间,可以将第三延伸部分204延伸至两个PCB701与PCB702之间(如图3所示)。此外,由于PCB70以及设置在PCB70上的部件含有导电材料,例如金属成分,为了避免对寄生天线60的影响,第二延伸部分203延伸至至少一个PCB70远离拐角部的一侧(即PCB701靠近扬声器组件80的一侧,如图9所示)。
参照图3、图4、图10所示,柔性电路板20包括连接馈电部分201的第四延伸部 分205,其中第四延伸部分205延伸至耳柄杆22;第四延伸部分205设置于第一延伸部分202与电池30之间;电池30与第四延伸部分205上的电源线耦合。具体的,如图10所示,第四延伸部分205在耳柄杆22内存在一处或多处弯折,其中电池30的连接端子301与第四延伸部分205上设置连接有电源线的电极(电极2051、2052,其中电极2051和电极2052分别正电极和负电极)耦合。电池30设于耳柄杆22内部,电池30通过电源线耦合芯片200。电池30用于为蓝牙耳机100提供电能。本实施例中,电池30呈条状,以更好地容纳于主壳体101内。其他实施例中,电池30也可以是其他形状。此时,电池30的连接端子301朝向主壳体101的第一开口1011处设置,电池30的连接端子301与第四延伸部分205的连接结构位于靠近第一开口1011处的位置,因此有利于后续对电池30的维修操作。其他实施例中,电池30的连接端子301也可以朝向拐角部21设置。其中,蓝牙耳机100还可以包括话筒模组90。话筒模组90位于耳柄杆22远离拐角部21的一端(如图3所示话筒模组90可以位于电池30远离馈电部分201的一侧,具体设置在第四延伸部分205的弯折处)或者位于PCB70上。话筒模组90用于将声音信号转换成电信号。话筒模组90相对电池30更靠近底部壳体102。此时,用户佩戴蓝牙耳机100时,用户发出的声音信号能够质量更好地、速度更快地被话筒模组90接收,从而保证蓝牙耳机100的收音质量和效率。同样的,也更有利于后续对话筒模组90的维修操作。此外,需要说明的是根据蓝牙耳机在耳柄杆21上安装的部件,第四延伸部分205还可以设置有为这些部件提供信号的其他信号线路,例如连接话筒模组90的信号线路。
以下具体对图4示出的柔性电路板安装至主壳体形成如图3所示的结构的具体说明如下:如上所述,柔性电路板20包括馈电部分201、与馈电部分201连接的第一延伸部分202、第二延伸部分203、第三延伸部分204、以及第四延伸部分205;其中,按照安装要求,第一延伸部分202延伸至耳柄杆22,第二延伸部分203延伸至耳塞部1,第三延伸部分204延伸至耳塞部1,第四延伸部分延伸至耳柄杆22。则首先,馈电部分201、第一延伸部分202、第二延伸部分203、第三延伸部分204、以及第四延伸部分205可以一体成型。其他实施例中,馈电部分201、第一延伸部分202、第二延伸部分203、第三延伸部分204、以及第四延伸部分205也可以通过组装方式形成一体式结构。柔性电路板20还可以包括一个或多个补强板(图中未示出)。一个或多个补强板设于柔性电路板20的补强区域处。柔性电路板20的补强区域主要为柔性电路板20中需要与其他部件连接的区域,或者用于承载其他部件的区域。其次,根据柔性电路板制图工艺,当馈电部分201、第一延伸部分202、第二延伸部分203、第三延伸部分204、以及第四延伸部分205一体成型时,需要对馈电部分201、第一延伸部分202、第二延伸部分203、第三延伸部分204、以及第四延伸部分205各部分进行弯折,以适应主壳体的安装形状,在本申请的实施例中,参照图4所示,可以沿第一延伸部分202与馈电部分201的连接处沿平行于第一延伸部分202延伸方向的轴线A将第一延伸部分202向平面内(沿Z方向向内)侧弯折90°,然后沿第一延伸部分202与馈电部分201的连接处沿垂直于第一延伸部分202延伸方向的轴线D沿Y方向向下弯折90°;可以沿第四延伸部分205与馈电部分201的连接处沿平行于第四延伸部分205延伸方向的轴线B将第四延伸部分205向平面内(沿Z方向向内)侧弯折90°,然后沿第四 延伸部分205与馈电部分201的连接处沿垂直于第四延伸部分205延伸方向的轴线C沿Y方向向下弯折90°;可以沿第二延伸部分203与馈电部分201的连接处沿平行于第一延伸部分202延伸方向的轴线A将第二延伸部分203向平面内(沿Z方向向内)侧弯折90°;其中,对于第三延伸部分204,具体需要根据与其连接的PCB的数量和形状弯折成适合安装于耳塞部1的形状,此处不再赘述,最终形成如图3所示的柔性电路板20的安装结构。
参照图11所示,本申请的实施例分别对蓝牙耳机仅包含主天线(情况一),以及同时包含主天线和寄生天线(情况二)的两种情况下,对天线的辐射参数进行了仿真测试如下:其中图11中示出了曲线一为情况一下天线的总效率(total efficiency(tot.eff)=辐射功率/输入功率);曲线二为情况二下天线的总效率;曲线三为情况一下天线的辐射效率(radiation efficiency(rad.eff)=辐射功率/(输入功率—天线损耗));曲线四为情况二下天线的辐射效率;曲线五为情况一下天线的损耗效率;曲线六为情况二下天线的损耗效率。其中,可以看出,情况一下存在一种模态(主天线的工作在共模模态,即曲线一、曲线三、曲线五的拐点),其中该模态下的总效率、辐射效率最佳位置(损耗最低)在2.4GHz-2.5GHz之间。情况二下存在两种模态(主天线工作在共模模态,即曲线二、曲线四、曲线六的在2.4GHz-2.5GHz之间的拐点;寄生天线的差模模态即曲线二、曲线四、曲线六的2.2GHz-2.3GHz之间的拐点)。其中,对蓝牙波段的频率点2.4GHz、2.44GHz、以及2.48GHz的总效率采样,可以看出情况一下,天线的总效率分别为-13.154dB、-11.445GHz以及-11.436GHz;情况二下,天线的总效率分别为-12.027dB、-11.49GHz以及-11.408GHz;明显情况二下天线总效率更高。此外,结合辐射效率曲线以及损耗曲线可以看出,在蓝牙波段,情况二下的辐射效率更高,损耗效率更低,并且,情况二下有效增加了天线的使用带宽。
参照图12、图13所示,本申请的实施例对包含主天线和寄生天线(情况二)的情况下,天线工作在2.44GHz下差模状态(DM,图13)和共模状态(CM,图12),主天线和寄生天线的电流方向进行了仿真。如图12所示,射频电路向主天线40与寄生天线60中的电流方向相同,例如:主天线中的第一电流的流向为自与馈电电极连接的一端至远离馈电电极的另一端,寄生天线中的第二电流的流向为自与接地走线GND耦合的一端至远离接地走线GND的一端;如图13所示,主天线中的第一电流的流向为自与馈电电极连接的一端至远离馈电电极的另一端,寄生天线中的第二电流的流向为自远离接地走线GND的一端至与接地走线GND耦合的一端。结合图14所示,其中曲线七示出了共模状态下天线的总效率,曲线八示出了差模状态下天线的总效率;曲线九示出了共模状态下天线的损耗效率,曲线十示出了差模状态下天线的损耗效率。其中,对蓝牙波段的频率点2.4GHz、2.44GHz、以及2.48GHz的总效率采样,可以看出共模状态下,天线的总效率分别为-13.593dB、-12.76GHz以及-12.562GHz;情况二下,天线的总效率分别为-12.027dB、-11.49GHz以及-11.408GHz;明显差模状态下具有更高的总效率。并且结合曲线九和曲线十,可以看出在蓝牙波段,在差模状态下具有更低的损耗效率。即在差模状态下具有更好的天线性能。
尽管结合具体特征及其实施例对本申请进行了描述,显而易见的,在不脱离本申请的精神和范围的情况下,可对其进行各种修改和组合。相应地,本说明书和附图仅 仅是所附权利要求所界定的本申请的示例性说明,且视为已覆盖本申请范围内的任意和所有修改、变化、组合或等同物。显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (14)

  1. 一种蓝牙耳机,其特征在于,包括耳塞部和耳柄部;所述耳柄部包括与所述耳塞部相接的拐角部、及与所述拐角部连接的耳柄杆,所述耳柄杆内部设有电池;
    所述蓝牙耳机包括柔性电路板,所述柔性电路板包括馈电部分和连接所述馈电部分的第一延伸部分;所述馈电部分设置于所述拐角部,所述第一延伸部分延伸至所述耳柄杆;
    所述馈电部分设置有馈电电极,所述第一延伸部分的第一侧设置有主天线,所述第一延伸部分的第二侧设置有至少一个触摸感应器;其中,所述第一延伸部分的第一侧朝向所述电池,所述第一延伸部分的第二侧朝向所述耳柄杆的内壁,所述馈电电极与所述主天线耦合。
  2. 根据权利要求1所述的蓝牙耳机,其特征在于,所述耳塞部设置有触控电路,所述触摸感应器通过低通高阻元件与所述触控电路耦合。
  3. 根据权利要求2所述的蓝牙耳机,其特征在于,所述低通高阻元件包括扼流电感。
  4. 根据权利要求2所述的蓝牙耳机,其特征在于,所述低通高阻元件、所述低通高阻元件与所述触摸感应器之间的走线、以及所述触摸感应器,与所述柔性电路板上的接地走线的距离大于第一阈值。
  5. 根据权利要求4所述的蓝牙耳机,其特征在于,所述第一阈值为1μm。
  6. 根据权利要求1所述的蓝牙耳机,其特征在于,所述柔性电路板还包括连接所述馈电部分的第二延伸部分,所述第二延伸部分上设置有寄生天线,所述第二延伸部分延伸至所述耳塞部,所述馈电部分设置有接地走线,所述寄生天线与所述接地走线耦合。
  7. 根据权利要求6所述的蓝牙耳机,其特征在于,所述寄生天线通过电感与所述接地走线耦合。
  8. 根据权利要求6所述的蓝牙耳机,其特征在于,所述柔性电路板包括连接所述馈电部分的第三延伸部分,所述第三延伸部分延伸至所述耳塞部,所述第三延伸部分上设置有至少一个PCB;其中,所述第二延伸部分延伸至两个所述PCB之间,或者所述第二延伸部分延伸至所述至少一个PCB远离所述拐角部的一侧。
  9. 根据权利要求1所述的蓝牙耳机,其特征在于,所述柔性电路板的厚度大于或等于0.12mm。
  10. 根据权利要求1所述的蓝牙耳机,其特征在于,所述触摸感应器包括触摸电极;
    至少一个所述触摸感应器的触摸电极在所述主天线所在平面的投影位于所述主天线的区域内;
    所述至少一个所述触摸感应器的触摸电极的总面积小于所述主天线的面积。
  11. 根据权利要求1所述的蓝牙耳机,其特征在于,所述柔性电路板包括连接所述馈电部分的第四延伸部分,其中,所述第四延伸部分延伸至所述耳柄杆;所述第四延伸部分设置于所述第一延伸部分与所述电池之间;
    所述电池与所述第四延伸部分上的电源线耦合。
  12. 根据权利要求1所述的蓝牙耳机,其特征在于,其特征在于,所述主天线的电长度为1/2。
  13. 根据权利要求6所述的蓝牙耳机,其特征在于,其特征在于,所述主天线与所述寄生天线的电长度之和为1/2。
  14. 根据权利要求6所述的蓝牙耳机,其特征在于,其特征在于,所述主天线的电长度为1/4,所述寄生天线的电长度为1/4。
PCT/CN2022/083846 2021-05-12 2022-03-29 蓝牙耳机 WO2022237364A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110519183.8A CN115348495A (zh) 2021-05-12 2021-05-12 蓝牙耳机
CN202110519183.8 2021-05-12

Publications (1)

Publication Number Publication Date
WO2022237364A1 true WO2022237364A1 (zh) 2022-11-17

Family

ID=83977840

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/083846 WO2022237364A1 (zh) 2021-05-12 2022-03-29 蓝牙耳机

Country Status (2)

Country Link
CN (1) CN115348495A (zh)
WO (1) WO2022237364A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN210272654U (zh) * 2019-07-18 2020-04-07 深圳市豪恩声学股份有限公司 一种天线结构和耳机
US20200314520A1 (en) * 2019-03-27 2020-10-01 Daniel Rhondeau Systems and methods for providing an earpiece
CN112510357A (zh) * 2020-11-25 2021-03-16 惠州Tcl移动通信有限公司 天线组件及无线耳机
CN112533096A (zh) * 2019-09-17 2021-03-19 华为技术有限公司 蓝牙耳机
WO2021063106A1 (zh) * 2019-09-30 2021-04-08 华为技术有限公司 一种天线及蓝牙无线耳机
CN112738679A (zh) * 2020-12-24 2021-04-30 Oppo广东移动通信有限公司 信号收发装置、电子设备、穿戴设备以及无线耳机

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200314520A1 (en) * 2019-03-27 2020-10-01 Daniel Rhondeau Systems and methods for providing an earpiece
CN210272654U (zh) * 2019-07-18 2020-04-07 深圳市豪恩声学股份有限公司 一种天线结构和耳机
CN112533096A (zh) * 2019-09-17 2021-03-19 华为技术有限公司 蓝牙耳机
WO2021063106A1 (zh) * 2019-09-30 2021-04-08 华为技术有限公司 一种天线及蓝牙无线耳机
CN112510357A (zh) * 2020-11-25 2021-03-16 惠州Tcl移动通信有限公司 天线组件及无线耳机
CN112738679A (zh) * 2020-12-24 2021-04-30 Oppo广东移动通信有限公司 信号收发装置、电子设备、穿戴设备以及无线耳机

Also Published As

Publication number Publication date
CN115348495A (zh) 2022-11-15

Similar Documents

Publication Publication Date Title
WO2022068827A1 (zh) 天线组件和电子设备
US11323796B2 (en) Wireless earphone
JP5670545B2 (ja) 補聴器用の双極子アンテナ
US8577289B2 (en) Antenna with integrated proximity sensor for proximity-based radio-frequency power control
US9236656B2 (en) Radio frequency antenna circuit
US20090231211A1 (en) Antenna for use in earphone and earphone with integrated antenna
CN108281759B (zh) 一种电子设备
WO2021238347A1 (zh) 天线和电子设备
US11582567B2 (en) Hearing device with an antenna
KR20080094242A (ko) 이동단말기
TWI627794B (zh) 電子裝置及其天線單元
CN115442714A (zh) 无线耳机
WO2022116705A1 (zh) 天线装置及电子设备
TW201501411A (zh) 無線通訊裝置
WO2022237364A1 (zh) 蓝牙耳机
CN205566584U (zh) 一种应用于蓝牙耳机的天线电路及其蓝牙耳机
WO2020024673A1 (zh) 移动终端的天线系统及移动终端
JP4001014B2 (ja) 携帯電話機
CN115377663A (zh) 无线耳机
TWI390943B (zh) 手持式電子裝置
US10763584B2 (en) Conductive plane antenna
WO2024045856A1 (zh) 天线组件及电子设备
WO2022068373A1 (zh) 天线组件和电子设备
JPS62231552A (ja) 携帯無線電話用送受話器
WO2024045853A1 (zh) 天线组件及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22806334

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22806334

Country of ref document: EP

Kind code of ref document: A1