WO2022236953A1 - 一种固态脉冲铥激光和绿激光协同输出的医用激光器 - Google Patents

一种固态脉冲铥激光和绿激光协同输出的医用激光器 Download PDF

Info

Publication number
WO2022236953A1
WO2022236953A1 PCT/CN2021/105897 CN2021105897W WO2022236953A1 WO 2022236953 A1 WO2022236953 A1 WO 2022236953A1 CN 2021105897 W CN2021105897 W CN 2021105897W WO 2022236953 A1 WO2022236953 A1 WO 2022236953A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
thulium
total reflection
green
output
Prior art date
Application number
PCT/CN2021/105897
Other languages
English (en)
French (fr)
Inventor
张宝刚
睢伟
Original Assignee
张宝刚
睢伟
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 张宝刚, 睢伟 filed Critical 张宝刚
Publication of WO2022236953A1 publication Critical patent/WO2022236953A1/zh
Priority to US18/454,686 priority Critical patent/US20230398374A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/20Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
    • A61B18/22Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser the beam being directed along or through a flexible conduit, e.g. an optical fibre; Couplings or hand-pieces therefor
    • A61B18/26Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser the beam being directed along or through a flexible conduit, e.g. an optical fibre; Couplings or hand-pieces therefor for producing a shock wave, e.g. laser lithotripsy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N5/067Radiation therapy using light using laser light
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/20Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
    • A61B18/22Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser the beam being directed along or through a flexible conduit, e.g. an optical fibre; Couplings or hand-pieces therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/00589Coagulation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/00601Cutting
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N2005/0632Constructional aspects of the apparatus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N2005/065Light sources therefor
    • A61N2005/0654Lamps
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N2005/0658Radiation therapy using light characterised by the wavelength of light used
    • A61N2005/0662Visible light
    • A61N2005/0663Coloured light

Definitions

  • the utility model relates to the technical field of medical lasers, in particular to a medical laser with synergistic output of a solid-state pulsed thulium laser and a green laser.
  • Laser technology is developing rapidly due to the following advantages: no electrical stimulation, ensuring patient safety .
  • pacemakers such as the obturator nerve reflex in bladder surgery, can be solved in the era of light; the instantaneous high power makes the laser a "knife", capable of cutting, coagulating, hemostasis, and gravel, etc.
  • the heat-affected zone is small and more precise, making it a safe operation without accidentally injuring adjacent tissues, nerves, blood vessels, etc.; the energy is transmitted through a bendable optical fiber, and the laser can reach as long as the endoscope can reach, so that Various minimally invasive surgeries become possible, especially making it possible to use with various soft mirrors in the future.
  • thulium laser emitters are in the form of a single-tube single-wavelength emission. Although the thulium laser emitted by it has a high water absorption rate, which is convenient for tissue vaporization and is mostly used in lithotripsy operations, the wavelength characteristics of the thulium laser determine its hemoglobin absorption rate. It is extremely low and cannot be applied in the field of medical cosmetology.
  • CN204619199U--discloses a kind of medical laser treatment machine comprises: continuous type laser device, is used for emitting continuous type laser; Pulse type laser device, is used for emitting pulse type laser; On the optical path of the laser, the continuous laser and the pulsed laser are output from the mirror and propagate along the same optical path.
  • Gauge medical laser treatment machine can emit pulsed laser and continuous laser at the same time or separately. In a medical process, the medical laser treatment machine can choose to use continuous laser, pulsed laser or a mixture of the two lasers for treatment. , which is conducive to the treatment effect and treatment efficiency.
  • the laser treatment machine in the above patent does not disclose the type of laser, laser wavelength, and its resonance generation and transmission structure, and its function and structure are quite different from this application, so it does not affect the novelty of this application.
  • This utility model is to overcome the deficiencies of the prior art, to provide a medical laser with synergistic output of a solid-state pulsed thulium laser and a green laser, and to complement the 532nm wavelength green laser with a 2025nm wavelength thulium laser to meet the needs of medical cosmetology for wrinkle removal. Multifunctional needs for epidermal erythema and surgical lithotripsy.
  • a medical laser with coordinated output of solid-state pulsed thulium laser and green laser comprising an axially extending casing, the inside of which is radially fixed with a first partition; one side of the first partition is fixed with a second partition plate, and the inside of the housing is divided into a thulium laser generating cavity, a green laser generating cavity, and a light mixing cavity by the first partition and the second partition; the thulium laser generating cavity is coaxially solidified from the laser resonant end to the laser emitting end in turn.
  • the first total mirror, Nd-doped yttrium aluminum garnet rod, frequency doubling crystal and the green laser that output the green laser to the light mixing cavity are coaxially installed in the green laser generating cavity in sequence from the laser resonant end to the laser emitting end.
  • Output mirror; the first 45° total reflection mirror is adjusted and connected to the light mixing cavity, and the side wall of the light mixing cavity is coupled with an optical fiber for receiving the first 45° total reflection mirror reflection laser.
  • the green laser generating cavity and the light mixing cavity are coaxially arranged, and three groups of light source generators projecting to Nd-doped yttrium aluminum garnet rods are fixedly installed on the inner wall of the green laser generating cavity, and the green laser generating cavity and the thulium laser generating cavity Arranged in parallel; three groups of palladium strips that project 750-800nm semiconductor waves to the thulium rod are fixed on the inner wall of the thulium laser generating cavity;
  • the light source generator and the palladium strips are arranged in an isosceles triangle, wherein the base of the isosceles triangle formed by the three groups of light source generators radially penetrates the Nd-doped yttrium aluminum garnet rod, and the isosceles triangle formed by the three groups of palladium strips The base of the triangle penetrates the thulium rod radially.
  • the light source generator is a semiconductor laser with a wavelength of 820-880nm or a xenon lamp with a wavelength of 820-880nm.
  • window mirrors that transmit laser light are fixed on the first partition and the second partition where the light mixing cavity is located.
  • the second 45° total reflection mirror outputs the thulium laser with a center wavelength of 2025 nm to the first 45° total reflection mirror through the window on the first partition.
  • the frequency doubling crystal receives the 1064nm green laser emitted by the Nd-doped yttrium aluminum garnet rod and doubles the frequency to output a green laser with a 532nm wavelength; lens.
  • the first 45° total reflection mirror is a three-dimensional adjustable mirror with total reflection at 2025nm wavelength and antireflection at 532nm wavelength.
  • the second 45° total reflection mirror is a 2025nm wavelength thulium laser total reflection mirror.
  • the utility model relates to a medical laser with coordinated output of solid-state pulsed thulium laser and green laser.
  • Fig. 1 is a half sectional view of the utility model
  • Fig. 2 is the side view of Fig. 1;
  • a medical laser with solid-state pulsed thulium laser and green laser combined output comprising an axially extending casing 1, the inside of which is radially fixed with a first partition 12; one side of the first partition is fixed with a second Two partitions 10, and the first partition and the second partition divide the interior of the housing into a thulium laser generating cavity 13, a green laser generating cavity 5, and a light mixing cavity 8;
  • the transmitting end is sequentially coaxially equipped with a second total reflection mirror 21, a thulium rod 18, an acousto-optic Q-switching 16 and a 5% spectrum output mirror 15, and the laser emitting end of the thulium laser generating cavity is fixedly equipped with a device for reflecting the laser light to the light mixing cavity
  • the second 45° total reflection mirror 14 inside; the first total reflection mirror 2, Nd-doped yttrium aluminum garnet rod 3, frequency doubling crystal and
  • the green laser is output to the green laser output mirror 7 in the light mixing cavity; the first 45°
  • the green laser generating cavity and the light mixing cavity are coaxially arranged, and three groups of light source generators projecting to Nd-doped yttrium aluminum garnet rods are fixedly installed on the inner wall of the green laser generating cavity, and the green laser generating cavity and the thulium laser generating cavity Arranged in parallel; three groups of palladium strips 19 that project 750-800nm semiconductor waves to the thulium rods are fixed on the inner wall of the thulium laser generating cavity;
  • the light source generator and the palladium strips are arranged in an isosceles triangle, wherein the base of the isosceles triangle formed by the three groups of light source generators radially penetrates the Nd-doped yttrium aluminum garnet rod, and the isosceles triangle formed by the three groups of palladium strips The base of the triangle penetrates the thulium rod radially.
  • the light source generator is a semiconductor laser with a wavelength of 820-880 nm or a xenon lamp 4 with a wavelength of 820-880 nm.
  • a window mirror 22 for transmitting laser light is fixed on the first partition and the second partition where the light mixing cavity is located.
  • the second 45° total reflection mirror outputs the thulium laser with a center wavelength of 2025 nm to the first 45° total reflection mirror through the window on the first partition.
  • the frequency doubling crystal receives the 1064nm green laser emitted by the Nd-doped yttrium aluminum garnet rod and doubles the frequency to output a green laser with a 532nm wavelength; lens.
  • the first 45° total reflection mirror is a three-dimensional adjustable mirror with total reflection at 2025nm wavelength and antireflection at 532nm wavelength.
  • the second 45° total reflection mirror is a 2025nm wavelength thulium laser total reflection mirror.
  • the bonding bracket adopts mature products in the prior art.
  • a kind of solid-state pulsed thulium laser of the present utility model and the medical laser of green laser synergetic output, its specific component function and specification are as follows:
  • the specification of the thulium rod is ⁇ 4*102mm, and each of its two ends has a 16mm bonding part connected to the bonding bracket 17, which is used to reduce the thermal lens effect and facilitate the heat dissipation of the palladium rod.
  • the palladium strips are divided into three groups, and each group of palladium strips is fixed with 6 ammonia light-concentrating palladium points 20, and the output power of each palladium point is 60W, which outputs 750-800nm semiconductor waves to the palladium strips, and its total power is 1080W.
  • the second total reflection mirror is used to reflect the parallel illumination of 2025nm wavelength projected by the thulium rod.
  • the second total reflection mirror cooperates with the 5% spectrum output mirror to form a resonant cavity, and the thulium laser with a wavelength of 2025nm repeats in the resonant cavity Through thulium rods and acousto-optic Q-switching and resonant amplification effect.
  • the specification of the second total reflection mirror is ⁇ 18*3mm, and its surface is coated with a total reflection film with a wavelength of 2025nm.
  • the specification of the 5% spectral output mirror is ⁇ 18*3mm, its central penetration wavelength is 2025nm, and the output rate is 5%; the remaining 95% of the thulium laser with a wavelength of 2025nm is reflected back to the resonant cavity for resonance amplification, which can amplify the original 2025nm
  • the output power of the wavelength thulium laser is amplified by more than 20 times.
  • the center of the second 45° total reflection mirror is coated with a total reflection film of 2025nm wavelength thulium laser, and its specification is ⁇ 40*3mm.
  • the size of the window mirror is ⁇ 18*6mm, and its center is coated with an anti-reflection film of 2025nm wavelength thulium laser, which mainly plays the role of isolation and sealing, and can effectively transmit light to the thulium laser generation cavity, green laser generation cavity and light mixing cavity Seal the divider.
  • the first 45° total reflection mirror is coated with a total reflection film of 2025nm wavelength thulium laser and an anti-reflection coating of 532nm wavelength green laser, which adopts a three-dimensional adjustable mirror with a specification of ⁇ 40*3mm in the prior art.
  • a kind of solid-state pulse thulium laser of the present utility model and the medical laser of green laser cooperative output, its working principle is as follows:
  • the palladium bar When the palladium bar is energized, it emits a semiconductor wave of 750-800nm and projects it to the thulium rod. When the semiconductor laser reaches a certain speed, the thulium rod is excited to produce a 2025nm thulium laser, which passes through the cooperation between the second total reflection mirror and the 5% spectral output mirror.
  • a resonant cavity is formed to resonate and amplify the thulium laser, and the continuous thulium laser in the resonant cavity is modulated by acousto-optic Q-switching to output a pulse wave with a pulse width of 1 ⁇ s, and the output pulsed thulium laser is transmitted through the second 45° total reflection mirror and window mirror , and mixed with the green laser with a wavelength of 532nm in the optical mixing cavity, and finally reflected by the first 45° total reflection mirror to the optical fiber for output.
  • the optical mixing cavity between the first 45° total reflection mirror and the optical fiber The focusing mirror 23 in the prior art is also fixed inside.
  • the utility model relates to a medical laser with synergistic output of solid-state pulsed thulium laser and green laser, which adopts the principle of side irradiation to stimulate thulium rods and neodymium-doped yttrium aluminum garnet rods, and its three irradiation points are respectively distributed in isosceles triangles for To ensure the excited area of thulium rods and Nd-doped yttrium aluminum garnet rods, the output pulsed thulium laser peak power is over 30,000 watts; the pulse width is 1 ⁇ s.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Medical Informatics (AREA)
  • Otolaryngology (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Laser Surgery Devices (AREA)
  • Lasers (AREA)
  • Radiation-Therapy Devices (AREA)

Abstract

一种固态脉冲铥激光和绿激光协同输出的医用激光器,包括轴向延伸的壳体,该壳体内部径向固接第一隔板;第一隔板的一侧面上固接有第二隔板,并由第一隔板及第二隔板将壳体内部分割为铥激光发生腔、绿激光发生腔及混光腔;铥激光发生腔内同轴固装有第二全反镜、铥棒、声光调Q及5%光谱输出镜,且铥激光发生腔的激光发射端固装有将激光反射至混光腔内的第二45°全反镜;绿激光发生腔内同轴固装有第一全反镜、掺钕钇铝石榴石棒、倍频晶体以及绿激光输出镜;混光腔中调节连接有第一45°全反镜,该混光腔的侧壁上偶合连接有光纤。该激光发生器,以532nm波长绿激光互补配合2025nm波长铥激光,满足医学美容中去皱去表皮红斑及手术碎石的多功能需要。

Description

一种固态脉冲铥激光和绿激光协同输出的医用激光器 技术领域
本实用新型涉及医用激光技术领域,具体为一种固态脉冲铥激光和绿激光协同输出的医用激光器。
背景技术
医学科技在快速发展,激光技术在外科的应用也是突飞猛进的,有学者提出未来外科技术将脱离电的时代进入光的时代,激光技术由于具有以下优势正在快速发展:不具有电刺激,保证病人安全。比如带起博器病人,比如膀胱手术中的闭孔神经反射的问题,在光的时代都可解决;瞬间的高功率,使激光成为了“刀”,能够做到切割凝固止血碎石等多种用途;热影响区小,更加精准,使之成为了安全的手术,不会误伤临近组织神经血管等;通过可弯曲的光纤传输能量,只要内窥镜能到达的地方激光就能够到达,使各种微创手术成为可能,尤其使未来配合各种软镜使用成为可能。
现有的铥激光发射器为单管单波长发射形式,其发射的铥激光虽然水吸收率高,便于组织气化,且多用于碎石手术之中,但是铥激光波长特性决定其血红蛋白吸收率极低,无法应用于医学美容领域。
因此,如何设计一种医用激光发生器,用以满足切割碎石以及医学美容的多功能需要,是本领域技术人员亟待解决的技术问题。
通过公开专利检索,发现以下对比文件:
CN204619199U--公开了一种医用激光治疗机,包括:连续式激光器,用于发射连续式激光;脉冲式激光器,用于发射脉冲式激光;透反镜,设置在所述连续式激光和脉冲式激光的光路上,使所述连续式激光和发射脉冲式激光从透反镜输出后,沿同一光路传播。Gauge医用激光治疗机能够同时或分别发出脉冲式激光和连续式激光器,在一次医疗过程中,采用该医用激光治疗机,可选择采用连续式激光、脉冲式激光或是二者的混合激光进行治疗,从而有利于治疗效果和治疗效率。
经分析,上述专利中的激光治疗机并为公开激光类型、激光波长以及其谐振发生和透射结构,固及功能及结构与本申请均存在较大差异,因此不影响本申请的新颖性。
实用新型内容
本实用新型的目的在于克服现有技术的不足之处,提供一种固态脉冲铥激光和绿激光协 同输出的医用激光器,以532nm波长绿激光互补配合2025nm波长铥激光,满足医学美容中去皱去表皮红斑及手术碎石的多功能需要。
一种固态脉冲铥激光和绿激光协同输出的医用激光器,包括轴向延伸的壳体,该壳体内部径向固接第一隔板;第一隔板的一侧面上固接有第二隔板,并由第一隔板及第二隔板将壳体内部分割为铥激光发生腔、绿激光发生腔及混光腔;铥激光发生腔内由激光谐振端至激光发射端依次同轴固装有第二全反镜、铥棒、声光调Q及5%光谱输出镜,且铥激光发生腔的激光发射端固装有将激光反射至混光腔内的第二45°全反镜;绿激光发生腔内由激光谐振端至激光发射端依次同轴固装有第一全反镜、掺钕钇铝石榴石棒、倍频晶体以及将绿激光输出至混光腔中的绿激光输出镜;混光腔中调节连接有第一45°全反镜,该混光腔的侧壁上偶合连接有接收第一45°全反镜反射激光的光纤。
而且,绿激光发生腔与混光腔同轴设置,该绿激光发生腔的内壁上固装有三组投射向掺钕钇铝石榴石棒的光源发生器,且绿激光发生腔与铥激光发生腔平行设置;铥激光发生腔的内壁上固装有三组向铥棒投射750~800nm半导体波的钯条;
而且,光源发生器及钯条均呈等腰三角形布置,其中三组光源发生器所组成的等腰三角形的底边径向穿透掺钕钇铝石榴石棒,三组钯条组成的等腰三角形的底边径向穿透铥棒。
而且,光源发生器为820~880nm波长的半导体激光或820~880nm波长的疝灯。
而且,混光腔所在位置的第一隔板及第二隔板上均固设有透射激光的窗口镜。
而且,第二45°全反镜经第一隔板上的窗口镜向第一45°全反镜输出中心波长为2025nm的铥激光。
而且,倍频晶体接收掺钕钇铝石榴石棒发射的1064nm波长的绿激光并倍频输出为532nm波长的绿激光;绿激光输出镜为532nm波长输出、1064nm波长全反且输出率1%的透镜。
而且,第一45°全反镜为2025nm波长全反、532nm波长增透的三维可调镜。
而且,第二45°全反镜为2025nm波长铥激光全反镜。
本实用新型的优点和技术效果是:
本实用新型的一种固态脉冲铥激光和绿激光协同输出的医用激光器,实现同一壳体内部的铥激光及绿激光的配合输出以及任选其一的选择性输出,以532nm波长绿激光的低吸水率、高血红蛋白吸收率、无法用于碎石的特性,互补配合2025nm波长铥激光的高吸水率、低血红蛋白吸收率、碎石效果好的特性,满足医学美容中去皱去表皮红斑及手术碎石的多功能需要。
附图说明
图1为本实用新型的半剖视图;
图2为图1的侧视图;
图中:1-壳体;2-第一全反镜;3-掺钕钇铝石榴石棒;4-疝灯;5-绿激光发生腔;7-绿激光输出镜;8-混光腔;9-第一45°全反镜;10-第二隔板;11-光纤;12-第一隔板;13-铥激光发生腔;14-第二45°全反镜;15-5%光谱输出镜;16-声光调Q;17-键合支架;18-铥棒;19-钯条;20-钯点;21-第二全反镜;22-窗口镜;23-聚焦镜。
具体实施方式
为能进一步了解本实用新型的内容、特点及功效,兹例举以下实施例,并配合附图详细说明如下。需要说明的是,本实施例是描述性的,不是限定性的,不能由此限定本实用新型的保护范围。
一种固态脉冲铥激光和绿激光协同输出的医用激光器,包括轴向延伸的壳体1,该壳体内部径向固接第一隔板12;第一隔板的一侧面上固接有第二隔板10,并由第一隔板及第二隔板将壳体内部分割为铥激光发生腔13、绿激光发生腔5及混光腔8;铥激光发生腔内由激光谐振端至激光发射端依次同轴固装有第二全反镜21、铥棒18、声光调Q16及5%光谱输出镜15,且铥激光发生腔的激光发射端固装有将激光反射至混光腔内的第二45°全反镜14;绿激光发生腔内由激光谐振端至激光发射端依次同轴固装有第一全反镜2、掺钕钇铝石榴石棒3、倍频晶体以及将绿激光输出至混光腔中的绿激光输出镜7;混光腔中调节连接有第一45°全反镜9,该混光腔的侧壁上偶合连接有接收第一45°全反镜反射激光的光纤11。
而且,绿激光发生腔与混光腔同轴设置,该绿激光发生腔的内壁上固装有三组投射向掺钕钇铝石榴石棒的光源发生器,且绿激光发生腔与铥激光发生腔平行设置;铥激光发生腔的内壁上固装有三组向铥棒投射750~800nm半导体波的钯条19;
而且,光源发生器及钯条均呈等腰三角形布置,其中三组光源发生器所组成的等腰三角形的底边径向穿透掺钕钇铝石榴石棒,三组钯条组成的等腰三角形的底边径向穿透铥棒。
而且,光源发生器为820~880nm波长的半导体激光或820~880nm波长的疝灯4。
而且,混光腔所在位置的第一隔板及第二隔板上均固设有透射激光的窗口镜22。
而且,第二45°全反镜经第一隔板上的窗口镜向第一45°全反镜输出中心波长为2025nm的铥激光。
而且,倍频晶体接收掺钕钇铝石榴石棒发射的1064nm波长的绿激光并倍频输出为532nm波长的绿激光;绿激光输出镜为532nm波长输出、1064nm波长全反且输出率1%的透镜。
而且,第一45°全反镜为2025nm波长全反、532nm波长增透的三维可调镜。
而且,第二45°全反镜为2025nm波长铥激光全反镜。
另外,本实用新型优选的,键合支架采用现有技术中的成熟产品。
为了更清楚地说明本实用新型的具体实施方式,下面提供一种实施例:
本实用新型的一种固态脉冲铥激光和绿激光协同输出的医用激光器,其具体部件功能及规格如下:
1、铥棒规格为φ4*102mm,其两端各有16mm键合部分连接键合支架17,用于减小热透镜效应,便于钯条散热。
2、钯条分为三组,每组钯条上固接6个氨聚光钯点20,每个钯点输出功率为60W,其向钯条输出750~800nm的半导体波,其总功率为1080W。
3、声光调Q用于将连续的激光调制成脉冲光波,其采用现有技术中的成熟产品。
4、第二全反镜用于反射铥棒投射的2025nm波长的平行光照,该第二全反镜与5%光谱输出镜之间配合形成谐振腔,在该谐振腔内2025nm波长的铥激光反复通过铥棒与声光调Q并产生谐振放大效应。该第二全反镜规格为φ18*3mm,其表面镀2025nm波长的全反膜。
5、5%光谱输出镜规格为φ18*3mm,其中心穿透波长为2025nm,输出率为5%;剩余95%的2025nm波长铥激光反射回谐振腔内谐振放大,其可以将最初发生的2025nm波长铥激光的输出功率放大20倍以上。
6、第二45°全反镜中心镀2025nm波长铥激光的全反膜,其规格为φ40*3mm。
7、窗口镜规格为φ18*6mm,其中心镀2025nm波长铥激光的增透膜,其主要起到隔离密封作用,可对铥激光发生腔、绿激光发生腔及混光腔进行有效的透光密封分隔。
8、第一45°全反镜镀2025nm波长铥激光的全反膜以及532nm波长绿激光的增透膜,其采用现有技术中规格为φ40*3mm的三维可调镜。
本实用新型的一种固态脉冲铥激光和绿激光协同输出的医用激光器,其工作原理如下:
钯条通电时其发出750~800nm半导体波并投射向铥棒,当半导体激光达到一定速度时铥棒受激产生出2025nm的铥激光,经过第二全反镜和5%光谱输出镜之间配合形成谐振腔对铥激光进行谐振放大,并且谐振腔内连续的铥激光通过声光调Q调制成脉宽1μs的脉冲波输出,输出的脉冲铥激光经第二45°全反镜及窗口镜透射,并在混光腔内与532nm波长的绿激光混合,最终经第一45°全反镜反射至光纤中输出,需要注意的是在第一45°全反镜与光纤之间的混光腔内还固装有现有技术中的聚焦镜23。
本实用新型的一种固态脉冲铥激光和绿激光协同输出的医用激光器,其采用侧面照射原理刺激铥棒及掺钕钇铝石榴石棒,其三个照射点分别呈等腰三角形分布,用以保证铥棒及掺 钕钇铝石榴石棒的受激面积,其输出的脉冲铥激光峰值功率达3万瓦以上;脉宽是1μs。
最后,本实用新型的未述之处均采用现有技术中的成熟产品及成熟技术手段。
应当理解的是,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,而所有这些改进和变换都应属于本实用新型所附权利要求的保护范围。

Claims (9)

  1. 一种固态脉冲铥激光和绿激光协同输出的医用激光器,其特征在于:包括轴向延伸的壳体,该壳体内部径向固接第一隔板;所述第一隔板的一侧面上固接有第二隔板,并由第一隔板及第二隔板将壳体内部分割为铥激光发生腔、绿激光发生腔及混光腔;所述铥激光发生腔内由激光谐振端至激光发射端依次同轴固装有第二全反镜、铥棒、声光调Q及5%光谱输出镜,且铥激光发生腔的激光发射端固装有将激光反射至混光腔内的第二45°全反镜;所述绿激光发生腔内由激光谐振端至激光发射端依次同轴固装有第一全反镜、掺钕钇铝石榴石棒、倍频晶体以及将绿激光输出至混光腔中的绿激光输出镜;所述混光腔中调节连接有第一45°全反镜,该混光腔的侧壁上偶合连接有接收第一45°全反镜反射激光的光纤。
  2. 根据权利要求1所述的一种固态脉冲铥激光和绿激光协同输出的医用激光器,其特征在于:所述绿激光发生腔与混光腔同轴设置,该绿激光发生腔的内壁上固装有三组投射向掺钕钇铝石榴石棒的光源发生器,且绿激光发生腔与铥激光发生腔平行设置;所述铥激光发生腔的内壁上固装有三组向铥棒投射750~800nm半导体波的钯条;
  3. 据权利要求2所述的一种固态脉冲铥激光和绿激光协同输出的医用激光器,其特征在于:所述光源发生器及钯条均呈等腰三角形布置,其中三组光源发生器所组成的等腰三角形的底边径向穿透掺钕钇铝石榴石棒,三组钯条组成的等腰三角形的底边径向穿透铥棒。
  4. 根据权利要求2所述的一种固态脉冲铥激光和绿激光协同输出的医用激光器,其特征在于:所述光源发生器为820~880nm波长的半导体激光或820~880nm波长的疝灯。
  5. 根据权利要求1所述的一种固态脉冲铥激光和绿激光协同输出的医用激光器,其特征在于:所述混光腔所在位置的第一隔板及第二隔板上均固设有透射激光的窗口镜。
  6. 根据权利要求1所述的一种固态脉冲铥激光和绿激光协同输出的医用激光器,其特征在于:所述第二45°全反镜经第一隔板上的窗口镜向第一45°全反镜输出中心波长为2025nm的铥激光。
  7. 根据权利要求1所述的一种固态脉冲铥激光和绿激光协同输出的医用激光器,其特征在于:所述倍频晶体接收掺钕钇铝石榴石棒发射的1064nm波长的绿激光并倍频输出为532nm波长的绿激光;所述绿激光输出镜为532nm波长输出、1064nm波长全反且输出率1%的透镜。
  8. 根据权利要求1所述的一种固态脉冲铥激光和绿激光协同输出的医用激光器,其特征在于:所述第一45°全反镜为2025nm波长全反、532nm波长增透的三维可调镜。
  9. 根据权利要求1所述的一种固态脉冲铥激光和绿激光协同输出的医用激光器,其特征在于:所述第二45°全反镜为2025nm波长铥激光全反镜。
PCT/CN2021/105897 2021-05-12 2021-07-13 一种固态脉冲铥激光和绿激光协同输出的医用激光器 WO2022236953A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/454,686 US20230398374A1 (en) 2021-05-12 2023-08-23 Medical laser device cooperatively outputting solid-state q-switch pulse tm: yag laser and green laser

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202121004521.6U CN216134092U (zh) 2021-05-12 2021-05-12 一种固态脉冲铥激光和绿激光协同输出的医用激光器
CN202121004521.6 2021-05-12

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/454,686 Continuation US20230398374A1 (en) 2021-05-12 2023-08-23 Medical laser device cooperatively outputting solid-state q-switch pulse tm: yag laser and green laser

Publications (1)

Publication Number Publication Date
WO2022236953A1 true WO2022236953A1 (zh) 2022-11-17

Family

ID=80765599

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/105897 WO2022236953A1 (zh) 2021-05-12 2021-07-13 一种固态脉冲铥激光和绿激光协同输出的医用激光器

Country Status (3)

Country Link
US (1) US20230398374A1 (zh)
CN (1) CN216134092U (zh)
WO (1) WO2022236953A1 (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005123226A (ja) * 2003-10-14 2005-05-12 Showa Optronics Co Ltd 内部共振器型の和周波混合レーザ
CN101350492A (zh) * 2007-07-19 2009-01-21 天津市天坤光电技术有限公司 一种LD泵浦高功率2μm波长医用Tm激光器
CN101599614A (zh) * 2009-07-01 2009-12-09 天津大学 双调Q复合陶瓷Nd:YAG内腔倍频绿光激光器
CN102090928A (zh) * 2009-12-14 2011-06-15 武汉奇致激光技术有限公司 双波长多功能激光治疗机
CN204619199U (zh) * 2015-05-06 2015-09-09 上海瑞柯恩激光技术有限公司 医用激光治疗机
CN205452782U (zh) * 2016-04-08 2016-08-10 上海瑞柯恩激光技术有限公司 激光器装置
CN106299996A (zh) * 2016-04-08 2017-01-04 上海瑞柯恩激光技术有限公司 激光器装置以及获得多种波长激光的方法
CN106390303A (zh) * 2016-12-02 2017-02-15 中国科学院合肥物质科学研究院 980nm与2100nm钬激光双波长治疗仪
CN110492348A (zh) * 2019-07-29 2019-11-22 张宝刚 一种超脉冲固态铥激光器
CN113113832A (zh) * 2021-05-12 2021-07-13 张宝刚 一种固态脉冲铥激光和绿激光协同输出的医用激光器

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005123226A (ja) * 2003-10-14 2005-05-12 Showa Optronics Co Ltd 内部共振器型の和周波混合レーザ
CN101350492A (zh) * 2007-07-19 2009-01-21 天津市天坤光电技术有限公司 一种LD泵浦高功率2μm波长医用Tm激光器
CN101599614A (zh) * 2009-07-01 2009-12-09 天津大学 双调Q复合陶瓷Nd:YAG内腔倍频绿光激光器
CN102090928A (zh) * 2009-12-14 2011-06-15 武汉奇致激光技术有限公司 双波长多功能激光治疗机
CN204619199U (zh) * 2015-05-06 2015-09-09 上海瑞柯恩激光技术有限公司 医用激光治疗机
CN205452782U (zh) * 2016-04-08 2016-08-10 上海瑞柯恩激光技术有限公司 激光器装置
CN106299996A (zh) * 2016-04-08 2017-01-04 上海瑞柯恩激光技术有限公司 激光器装置以及获得多种波长激光的方法
CN106390303A (zh) * 2016-12-02 2017-02-15 中国科学院合肥物质科学研究院 980nm与2100nm钬激光双波长治疗仪
CN110492348A (zh) * 2019-07-29 2019-11-22 张宝刚 一种超脉冲固态铥激光器
CN113113832A (zh) * 2021-05-12 2021-07-13 张宝刚 一种固态脉冲铥激光和绿激光协同输出的医用激光器

Also Published As

Publication number Publication date
CN216134092U (zh) 2022-03-25
US20230398374A1 (en) 2023-12-14

Similar Documents

Publication Publication Date Title
ES2444141T3 (es) Un sistema de láser para tratamiento de la piel
US5290274A (en) Laser apparatus for medical and dental treatments
US6631153B2 (en) Light generating device and laser device using said light generating device
CN102553086A (zh) 一种双波长激光治疗装置
Garden et al. Dermatologic laser surgery
KR101229111B1 (ko) 멀티 레이저 발진 시스템
CN115021062B (zh) 一种用于多脉宽多模式输出的激光器及激光治疗仪
WO2022236953A1 (zh) 一种固态脉冲铥激光和绿激光协同输出的医用激光器
CN113113832A (zh) 一种固态脉冲铥激光和绿激光协同输出的医用激光器
JP4190325B2 (ja) 固体レーザ装置及び固体レーザ装置によるレーザ照射方法
CN203235152U (zh) 一种腔内倍频全固体拉曼黄橙激光皮肤血管性病变治疗仪
US5910140A (en) Laser medical device
CN104184033A (zh) 一种医用532nm绿激光发生装置
JP2008167896A (ja) 医療用レーザ装置
CN201088786Y (zh) 一种结合电磁波及超声波的多能量美容及肿瘤治疗仪
US20140025051A1 (en) Apparatus for optical surgery and method for controlling same
Clark et al. Selective absorption and control of thermal effects: A comparison of the laser systems used in otology and neurotology
CN103585718B (zh) 一种全固态折叠式腔内和频黄橙激光血管性疾病治疗仪
Das Fundamentals and Laser-Tissue Interaction Physics in Dentistry
Yeragi et al. LASER Physics& its Application in Dentistry–A Review
CN217362139U (zh) 基于百微焦泵浦源大能量595nm染料激光器
CN205429414U (zh) 激光器和激光治疗仪
CN110492348A (zh) 一种超脉冲固态铥激光器
CN2759506Y (zh) Er∶YAG铒激光美容仪新型结构
CN212725947U (zh) 一种新型铥激光医疗装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21941522

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21941522

Country of ref document: EP

Kind code of ref document: A1