WO2022236940A1 - Vehicle occupant protection system - Google Patents

Vehicle occupant protection system Download PDF

Info

Publication number
WO2022236940A1
WO2022236940A1 PCT/CN2021/103135 CN2021103135W WO2022236940A1 WO 2022236940 A1 WO2022236940 A1 WO 2022236940A1 CN 2021103135 W CN2021103135 W CN 2021103135W WO 2022236940 A1 WO2022236940 A1 WO 2022236940A1
Authority
WO
WIPO (PCT)
Prior art keywords
occupant protection
vehicle
protection system
wheel
sub
Prior art date
Application number
PCT/CN2021/103135
Other languages
French (fr)
Inventor
Kin Wing LIU
Original Assignee
Liu Kin Wing
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Liu Kin Wing filed Critical Liu Kin Wing
Publication of WO2022236940A1 publication Critical patent/WO2022236940A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/01Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents
    • B60R21/013Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting collisions, impending collisions or roll-over
    • B60R21/0136Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting collisions, impending collisions or roll-over responsive to actual contact with an obstacle, e.g. to vehicle deformation, bumper displacement or bumper velocity relative to the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60NSEATS SPECIALLY ADAPTED FOR VEHICLES; VEHICLE PASSENGER ACCOMMODATION NOT OTHERWISE PROVIDED FOR
    • B60N2/00Seats specially adapted for vehicles; Arrangement or mounting of seats in vehicles
    • B60N2/02Seats specially adapted for vehicles; Arrangement or mounting of seats in vehicles the seat or part thereof being movable, e.g. adjustable
    • B60N2/0224Non-manual adjustments, e.g. with electrical operation
    • B60N2/0244Non-manual adjustments, e.g. with electrical operation with logic circuits
    • B60N2/0276Non-manual adjustments, e.g. with electrical operation with logic circuits reaction to emergency situations, e.g. crash
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60NSEATS SPECIALLY ADAPTED FOR VEHICLES; VEHICLE PASSENGER ACCOMMODATION NOT OTHERWISE PROVIDED FOR
    • B60N2/00Seats specially adapted for vehicles; Arrangement or mounting of seats in vehicles
    • B60N2/24Seats specially adapted for vehicles; Arrangement or mounting of seats in vehicles for particular purposes or particular vehicles
    • B60N2/42Seats specially adapted for vehicles; Arrangement or mounting of seats in vehicles for particular purposes or particular vehicles the seat constructed to protect the occupant from the effect of abnormal g-forces, e.g. crash or safety seats
    • B60N2/427Seats or parts thereof displaced during a crash
    • B60N2/42727Seats or parts thereof displaced during a crash involving substantially rigid displacement
    • B60N2/42736Seats or parts thereof displaced during a crash involving substantially rigid displacement of the whole seat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60NSEATS SPECIALLY ADAPTED FOR VEHICLES; VEHICLE PASSENGER ACCOMMODATION NOT OTHERWISE PROVIDED FOR
    • B60N2/00Seats specially adapted for vehicles; Arrangement or mounting of seats in vehicles
    • B60N2/24Seats specially adapted for vehicles; Arrangement or mounting of seats in vehicles for particular purposes or particular vehicles
    • B60N2/42Seats specially adapted for vehicles; Arrangement or mounting of seats in vehicles for particular purposes or particular vehicles the seat constructed to protect the occupant from the effect of abnormal g-forces, e.g. crash or safety seats
    • B60N2/427Seats or parts thereof displaced during a crash
    • B60N2/42727Seats or parts thereof displaced during a crash involving substantially rigid displacement
    • B60N2/42745Seats or parts thereof displaced during a crash involving substantially rigid displacement of the back-rest
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60NSEATS SPECIALLY ADAPTED FOR VEHICLES; VEHICLE PASSENGER ACCOMMODATION NOT OTHERWISE PROVIDED FOR
    • B60N2/00Seats specially adapted for vehicles; Arrangement or mounting of seats in vehicles
    • B60N2/24Seats specially adapted for vehicles; Arrangement or mounting of seats in vehicles for particular purposes or particular vehicles
    • B60N2/42Seats specially adapted for vehicles; Arrangement or mounting of seats in vehicles for particular purposes or particular vehicles the seat constructed to protect the occupant from the effect of abnormal g-forces, e.g. crash or safety seats
    • B60N2/427Seats or parts thereof displaced during a crash
    • B60N2/42772Seats or parts thereof displaced during a crash characterised by the triggering system
    • B60N2/4279Seats or parts thereof displaced during a crash characterised by the triggering system electric or electronic triggering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/01Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents
    • B60R2021/01204Actuation parameters of safety arrangents
    • B60R2021/01211Expansion of air bags
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/01Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents
    • B60R2021/01204Actuation parameters of safety arrangents
    • B60R2021/01252Devices other than bags
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/01Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents
    • B60R2021/01204Actuation parameters of safety arrangents
    • B60R2021/01252Devices other than bags
    • B60R2021/01265Seat belts
    • B60R2021/01272Belt tensioners

Definitions

  • the present disclosure generally relates to an occupant protection system for a vehicle. More particularly, the present disclosure relates to a system for protecting the occupant when a collision is predicted to occur.
  • the airbag In a vehicle, such as an automobile, the airbag is commonly used to mitigate the impact when an accident occurs.
  • the airbag is instantly inflated to form a cushion for preventing and minimizing the injury to the occupant of the vehicle.
  • the airbag may be installed in various locations around the passengers.
  • the airbags can indisputably save lives in a crash.
  • the airbag is inflated so quick that the force developed from the rapid inflation may cause soft tissue injuries, chest pain, chest contusion, wrist injuries, ear trauma, or even broken bones in the fingers, face, jaw, and nose to the occupant.
  • eye injuries resulting in temporary or permanent blindness are resulted.
  • the likelihood of injuries caused by airbags is increased if the occupant is not wearing a seatbelt.
  • Such injuries associated with airbag deployment are not unusual, and corresponding measures for preventing or at least reducing the negative impacts should be implemented in the vehicle.
  • Another dangerous situation is related to the rollover of the vehicle in the event of a collision.
  • the vehicle may easily tip over. This is particularly dangerous to the occupant of the vehicle, which may cause serious injury.
  • an occupant protection system for a vehicle It is the objective of the present invention to minimize the negative impacts caused by the deployment of the airbags, and also minimize the chance of rollover.
  • an occupant protection system implemented in a vehicle having a wheel arrangement and a driving assembly.
  • the occupant protection system comprises a plurality of collision detection sensors, a processor, a rollover prevention sub-system, and an injury minimization sub-system.
  • the processor is configured to receive signals from the plurality of collision detection sensors for determining a potential collision direction.
  • the rollover prevention sub-system is executable for minimizing a rollover of the vehicle by controlling two distal wheels from the potential collision direction to rotate in an opposite manner.
  • the injury minimization sub-system is executable for minimizing a chance of injury caused by an airbag by adjusting a seat-back tilt angle and a seat position.
  • the rollover prevention sub-system rotates a first wheel of the two distal wheels in a counterclockwise direction, and a second wheel of the two distal wheels in a clockwise direction for minimizing the rollover of the vehicle.
  • the rollover prevention sub-system minimizes the rollover of the vehicle by lowering the vehicle by actuating height adjusters connecting to the wheel arrangement.
  • the rollover prevention sub-system controls the height adjusters for two proximal wheels from the potential collision direction to a lower position.
  • the height adjuster comprises a first piston and a first electromagnetic linear actuator, wherein the first electromagnetic linear actuator is controllable by the rollover prevention sub-system to retract the first piston for performing a high-speed compression.
  • the height adjuster comprises a strut configured to resist a linear compression by the first electromagnetic linear actuator.
  • the injury minimization sub-system comprises a second electromagnetic linear actuator movable along a longitudinal length for pulling a car seat away from the airbag.
  • the injury minimization sub-system comprises a seat tilting device configured to tilt the seat-back in a backward direction and a seat belt tightener for applying an increased tension on a seat belt.
  • the plurality of collision detection sensors comprise object detection sensors selected from the group consisting of a Lidar sensor, a radar, and a camera.
  • the plurality of collision detection sensors are disposed to a plurality of predetermined locations on the side surfaces, front surface, and rear surface of the vehicle.
  • FIG. 1 shows a diagram of the internal structure of a vehicle conceptually illustrating the occupant protection system, in accordance with embodiments of the invention
  • FIG. 2 shows a wheel arrangement for braking the vehicle and preventing rollover by a front collision, in accordance with embodiments of the invention
  • FIG. 3 shows a wheel arrangement for braking the vehicle and preventing rollover by a back collision, in accordance with embodiments of the invention
  • FIG. 4 shows a wheel arrangement for preventing rollover by a left side collision, in accordance with embodiments of the invention
  • FIG. 5 shows a wheel arrangement for preventing rollover by a right side collision, in accordance with embodiments of the invention
  • FIG. 6 shows a perspective view of an individual wheel having a height adjuster for preventing rollover, in accordance with embodiments of the invention
  • FIG. 7 shows a perspective view of the injury minimization sub-system of the occupant protection system for protecting the occupant from injuries associated to the inflation of the airbag, in accordance with embodiments of the invention.
  • FIG. 8 shows a side view of the seat for protecting the occupant from injuries associated to the inflation of the airbag, in accordance with embodiments of the invention.
  • the present specification discloses a system for protecting the occupant of a vehicle.
  • Such system may be specially constructed in a vehicle for the required purposes or may be included in an apparatus that can be installed in a vehicle.
  • Embodiments of the invention described herein relate to determination and detection of a potential collision, and performing various means to prevent the vehicle from rollover, and to protect the occupant from injuries associated with the inflation of the airbag.
  • Other advantages, such as additional friction for slowing down or completely stopping the vehicle may be realized by the present invention with extra stability.
  • One having ordinary skill in the art would understand that the current disclosure is also applicable in the various transportation system, such as automobiles, sports cars, trucks, buses, vans, streetcars, and trains.
  • the term “occupant” as used herein, may therefore include a driver, a passenger, a lorry driver, etc.
  • processor includes one or more central processing units, microprocessors, micro-computers, single-chip computers, cloud computing system, integrated circuits, and the like, and systems incorporating the same.
  • FIG. 1 is a diagram of the internal structure of a vehicle 10 conceptually illustrating the occupant protection system 100 (hereinafter referred to as the “system” ) of the present invention.
  • the vehicle 10 may be a road automobile, comprising a wheel arrangement 170 having one or more front wheels and one or more rear wheels, and a driving assembly 130.
  • the wheel arrangement 170 includes a left front wheel 171, a right front wheel 172, a left rear wheel 173, and a right rear wheel 174.
  • the driving assembly 130 comprises an internal combustion engine 131 driving a multi-speed transmission 133 via a clutch 132. It is apparent that the driving assembly 130 may be operated using other types of engines, such as electric traction motor.
  • the system 100 includes a processor 160, an injury minimization sub-system 200, a plurity of collision detection sensors 120, a rollover prevention sub-system 110, a plurality of wheel sensors 142, a brake sensor 150, and an engine sensor 141.
  • the plurality of wheel sensors 142 and the brake sensor 150 provide information on the braking condition and the speed of the vehicle 10 to the processor 160.
  • the plurity of collision detection sensors 120 includes at least a front collision detection sensor 121, two side collision detection sensors 122, and a rear collision detection sensor 123. Therefore, the plurity of collision detection sensors 120 are disposed to a plurality of predetermined locations on the two side surfaces, front surface, and rear surface of the vehicle 10.
  • the plurality of collision detection sensors 120 comprise object detection sensors selected from the group consisting of a Lidar sensor, a radar, and a camera.
  • the plurality of collision detection sensors 120 are configured to predict any imminent collision of another vehicle, a pedestrian, or other objects on the vehicle 10.
  • the processor 160 receives the signals from the plurality of collision detection sensors 120 and determines a potential collision direction. Furthermore, the processor 160 also receives signals from the engine sensor 141 and the brake sensor 150, thereby the processor 160 calculates the time required for stopping the vehicle 10 and determines whether the vehicle 10 can be stopped in time. As an example, when the front collision detection sensor 121 detects a fast approaching object, the processor 160 may determine the potential collision direction as a potential front impact. Similarly, when the left side collision detection sensor 122 detects a fast approaching object, the processor 160 may determine the potential collision direction as a potential side impact. In response the potential collision direction, the rollover prevention sub-system 110 and/or the injury minimization sub-system 200 are activated.
  • FIGS. 2-5 shows the wheel arrangement 170 when there is a potential collision.
  • the arrows indicated in the drawings refer to the potential collision direction.
  • the two rear wheels 173, 174 are reorientated by rotating in an opposite manner to provide additional frictional force for slowing down or completely stopping the vehicle 10.
  • the left rear wheel 173 is rotated in a counterclockwise direction
  • the right rear wheel 174 is rotated in a clockwise direction.
  • the rotation may be executed in an opposite manner, such as the left rear wheel 173 is rotated in a clockwise direction and the right rear wheel 174 is rotated in a counterclockwise direction.
  • the purpose for this reorientation is to maximize the friction and bring the vehicle 10 to a stop sooner.
  • the chance of rollover of the vehicle 10 is also minimized by providing extra friction at the distal wheels from the potential collision direction.
  • the two front wheels 171, 172 are reorientated by rotating in an opposite manner to provide additional frictional force for slowing down or completely stopping the vehicle 10.
  • the left front wheel 171 is rotated in a clockwise direction
  • the right front wheel 172 is rotated in a counterclockwise direction.
  • the rotation may be executed in an opposite manner, such as the left front wheel 171 is rotated in a counterclockwise direction and the right front wheel 172 is rotated in a clockwise direction.
  • the purpose for this reorientation is to maximize the friction and bring the vehicle 10 to a stop sooner.
  • the chance of rollover of the vehicle 10 is also minimized by providing extra friction at the distal wheels from the potential collision direction.
  • the right front wheel 172 and the right rear wheel 174 are reorientated by rotating in an opposite manner to provide additional frictional force for minimizing the chance of rollover of the vehicle 10.
  • the right front wheel 172 is rotated in a counterclockwise direction
  • the right rear wheel 174 is rotated in a clockwise direction. It is apparent that the rotation may be executed in an opposite manner, such as the right front wheel 172 is rotated in a clockwise direction and the right rear wheel 174 is rotated in a counterclockwise direction.
  • the left front wheel 171 and the left rear wheel 173 are reorientated by rotating in an opposite manner to provide additional frictional force for minimizing the chance of rollover of the vehicle 10.
  • the left front wheel 171 is rotated in a clockwise direction
  • the left rear wheel 173 is rotated in a counterclockwise direction. It is apparent that the rotation may be executed in an opposite manner, such as the left front wheel 171 is rotated in a counterclockwise direction and the left rear wheel 173 is rotated in a clockwise direction.
  • FIG. 6 an individual wheel having a height adjuster 175 for preventing rollover is depicted.
  • the illustrated individual wheel structure may be applied to at least two wheels, or more preferably be applied to all four wheels of the wheel arrangement 170.
  • the height adjuster 175 is controlled by the rollover prevention sub-system 110.
  • the rollover prevention sub-system 110 minimizes the rollover of the vehicle 10 by lowering the vehicle 10, which is realized by actuating the height adjusters 175 connecting to the wheel arrangement 170.
  • the rollover prevention sub-system 110 controls the height adjusters 175 of the two proximal wheels from the potential collision direction to a lower position. With a slightly inclined car body, the collision from the potential collision direction on the vehicle 10 is much difficult to turn the vehicle 10 up, thereby the chance of rollover is minimized.
  • the height adjuster 175 comprises a strut 112, a first electromagnetic linear actuator 114 and a first piston 113.
  • the strut 112 and the first electromagnetic linear actuator 114 are connected to or otherwise welded to a control arm 111, which has a wheel shaft 115 for mounting to a wheel 171-174 through an axle hole at the center of the wheel 171-174.
  • the first electromagnetic linear actuator 114 is controllable by the rollover prevention sub-system 110 to retract the first piston 113 for performing a high-speed compression.
  • the strut 112 acts as a reset spring configured to resist a linear compression by the first electromagnetic linear actuator 114, such that when the first electromagnetic linear actuator 114 is deactivated by the rollover prevention sub-system 110, the first piston 113 is not retracted and the wheel is not lowered.
  • the injury minimization sub-system 200 of the occupant protection system 100 implemented in a vehicle 10 and executable by the processor 160 for protecting the occupant from injuries associated to the inflation of the airbag 230 is depicted.
  • the airbag 230 is inflated so quick that the force developed from the rapid inflation may cause injuries to the occupant.
  • the present invention provides an injury minimization sub-system 200 comprising a second electromagnetic linear actuator 220 and a seat tilting device 211.
  • the seat tilting device 211 is configured to tilt the seat-back 210 in a backward direction.
  • the purpose of the seat tilting device 211 is to pull the occupant backward with the seat belt 240.
  • the angle of tilting is in the range of 10 to 45 degrees, and more preferably, in the range of 10 to 20 degrees.
  • the injury minimization sub-system 200 comprises a seat belt tightener 241 for applying an increased tension on a seat belt 240, thereby the occupant is pulled away from the airbag 230 by the seat-back 210 more effectively.
  • the second electromagnetic linear actuator 220 is movable along a longitudinal length for pulling the car seat 250 away from the airbag 230.
  • the second electromagnetic linear actuator 220 is controllable by the injury minimization sub-system 200 to retract the second piston 221 for performing a high-speed compression.
  • the second piston 221 is connected or welded to the car seat 250 so that the second piston 221 can be retracted to move the car seat 250 backward.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Transportation (AREA)
  • Air Bags (AREA)

Abstract

An occupant protection system (100) for a vehicle (10). The occupant protection system (100) is implemented in the vehicle (10) having a wheel arrangement (170) and a driving assembly (130). The occupant protection system (100) includes a plurality of collision detection sensors (120), a processor (160), a rollover prevention sub-system (110), and an injury minimization sub-system (200). The processor (160) is configured to receive signals from the plurality of collision detection sensors (120) for determining a potential collision direction. The rollover prevention sub-system (110) is executable for minimizing a chance of rollover of the vehicle (10) by controlling two distal wheels from the potential collision direction to rotate in an opposite manner. The injury minimization sub-system (200) is executable for minimizing a chance of injury caused by an airbag (230) by adjusting a seat-back tilt angle and a seat position.

Description

VEHICLE OCCUPANT PROTECTION SYSTEM
CROSS-REFERENCE TO RELATED APPLICATIONS
This application claims the benefit of Hong Kong Short-Term Patent Application No. 32021030841.9, filed on 11 May, 2021, which is incorporated by reference herein in its entirety.
TECHNICAL FIELD
The present disclosure generally relates to an occupant protection system for a vehicle. More particularly, the present disclosure relates to a system for protecting the occupant when a collision is predicted to occur.
BACKGROUND OF THE INVENTION
In a vehicle, such as an automobile, the airbag is commonly used to mitigate the impact when an accident occurs. The airbag is instantly inflated to form a cushion for preventing and minimizing the injury to the occupant of the vehicle. The airbag may be installed in various locations around the passengers.
The airbags can indisputably save lives in a crash. However, the airbag is inflated so quick that the force developed from the rapid inflation may cause soft tissue injuries, chest pain, chest contusion, wrist injuries, ear trauma, or even broken bones in the fingers, face, jaw, and nose to the occupant. In some severe cases, eye injuries resulting in temporary or permanent blindness are resulted. In some instances, the likelihood of injuries caused by airbags is increased if the occupant is not wearing a seatbelt. Such injuries associated with airbag deployment are not unusual, and corresponding measures for preventing or at least reducing the negative impacts should be implemented in the vehicle.
Another dangerous situation is related to the rollover of the vehicle in the event of a collision. In particular, when the vehicle is impacted by another moving object from the side, the vehicle may easily tip over. This is particularly dangerous to the occupant of the vehicle, which may cause serious injury.
In view of the deficiencies, there is a need for an occupant protection system that seeks to address at least some of the above issues. Furthermore, other desirable features and characteristics will become apparent from the subsequent detailed description and the appended claims, taken in conjunction with the accompanying drawings and this background of the disclosure.
SUMMARY OF THE INVENTION
Provided herein is an occupant protection system for a vehicle. It is the objective of the present invention to minimize the negative impacts caused by the deployment of the airbags, and also minimize the chance of rollover.
In accordance with certain embodiments of the present disclosure, an occupant protection system implemented in a vehicle having a wheel arrangement and a driving assembly. The occupant protection system comprises a plurality of collision detection sensors, a processor, a rollover prevention sub-system, and an injury minimization sub-system. The processor is configured to receive signals from the plurality of collision detection sensors for determining a potential collision direction. The rollover prevention sub-system is executable for minimizing a rollover of the vehicle by controlling two distal wheels from the potential collision direction to rotate in an opposite manner. The injury minimization sub-system is executable for minimizing a chance of injury caused by an airbag by adjusting a seat-back tilt angle and a seat position.
In accordance with a further aspect of the present disclosure, the rollover prevention sub-system rotates a first wheel of the two distal wheels in a counterclockwise direction, and a second wheel of the two distal wheels in a clockwise direction for minimizing the rollover of the vehicle.
In accordance with a further aspect of the present disclosure, the rollover prevention sub-system minimizes the rollover of the vehicle by lowering the vehicle by actuating height adjusters connecting to the wheel arrangement.
In accordance with a further aspect of the present disclosure, the rollover prevention sub-system controls the height adjusters for two proximal wheels from the potential collision direction to a lower position.
In accordance with a further aspect of the present disclosure, the height adjuster comprises a first piston and a first electromagnetic linear actuator, wherein the first electromagnetic linear actuator is controllable by the rollover prevention sub-system to retract the first piston for performing a high-speed compression.
In accordance with a further aspect of the present disclosure, the height adjuster comprises a strut configured to resist a linear compression by the first electromagnetic linear actuator.
In accordance with a further aspect of the present disclosure, the injury minimization sub-system comprises a second electromagnetic linear actuator movable along a longitudinal length for pulling a car seat away from the airbag.
In accordance with a further aspect of the present disclosure, the injury minimization sub-system comprises a seat tilting device configured to tilt the seat-back in a backward direction and a seat belt tightener for applying an increased tension on a seat belt.
In accordance with a further aspect of the present disclosure, the plurality of collision detection sensors comprise object detection sensors selected from the group consisting of a Lidar sensor, a radar, and a camera.
In accordance with a further aspect of the present disclosure, the plurality of collision detection sensors are disposed to a plurality of predetermined locations on the side surfaces, front surface, and rear surface of the vehicle.
This Summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This Summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used as an aid in determining the scope of the claimed subject matter. Other aspects and advantages of the present invention are disclosed as illustrated by the embodiments hereinafter.
BRIEF DESCRIPTION OF THE DRAWINGS
The appended drawings contain figures to further illustrate and clarify the above and other aspects, advantages, and features of the present disclosure. It will be appreciated that these drawings depict only certain embodiments of the present disclosure and are not intended to limit its scope. It will also be appreciated that these drawings are illustrated for simplicity and clarity and have not necessarily been depicted to scale. For example, the dimensions of some of the elements in the illustrations, block diagrams or flowcharts may be exaggerated in respect to other elements to help to improve understanding of the present embodiments.
The present disclosure will now be described and explained with additional specificity and detail through the use of the accompanying drawings in which:
FIG. 1 shows a diagram of the internal structure of a vehicle conceptually illustrating the occupant protection system, in accordance with embodiments of the invention;
FIG. 2 shows a wheel arrangement for braking the vehicle and preventing rollover by a front collision, in accordance with embodiments of the invention;
FIG. 3 shows a wheel arrangement for braking the vehicle and preventing rollover by a back collision, in accordance with embodiments of the invention;
FIG. 4 shows a wheel arrangement for preventing rollover by a left side collision, in accordance with embodiments of the invention;
FIG. 5 shows a wheel arrangement for preventing rollover by a right side collision, in accordance with embodiments of the invention;
FIG. 6 shows a perspective view of an individual wheel having a height adjuster for preventing rollover, in accordance with embodiments of the invention;
FIG. 7 shows a perspective view of the injury minimization sub-system of the occupant protection system for protecting the occupant from injuries associated to the inflation of the airbag, in accordance with embodiments of the invention; and
FIG. 8 shows a side view of the seat for protecting the occupant from injuries associated to the inflation of the airbag, in accordance with embodiments of the invention.
DETAILED DESCRIPTION OF THE INVENTION
The following detailed description is merely exemplary in nature and is not intended to limit the disclosure or its application and/or uses. It should be appreciated that a vast number of variations exist. The detailed description will enable those of ordinary skilled in the art to implement an exemplary embodiment of the present disclosure without undue experimentation, and it is understood that various changes or modifications may be made in the function and structure described in the exemplary embodiment without departing from the scope of the present disclosure as set forth in the appended claims.
The present specification discloses a system for protecting the occupant of a vehicle. Such system may be specially constructed in a vehicle for the required purposes or may be included in an apparatus that can be installed in a vehicle.
The use of the terms “a” and “an” and “the” and “at least one” and similar referents in the context of describing the invention (especially in the context of the following claims) are to be construed to cover both the singular and the plural, unless otherwise indicated herein or clearly contradicted by context. The terms “comprising” , “having” , “including” , and “containing” are to be construed as open-ended terms (i.e., meaning “including, but not limited to” , ) unless otherwise noted. The use of any and all examples, or exemplary language (e.g., “such as” ) provided herein, is intended merely to illuminate the invention better and does not pose a limitation on the scope of the invention unless otherwise claimed. No language in the specification should be construed as indicating any non-claimed element as essential to the practice of the invention.
Embodiments of the invention described herein relate to determination and detection of a potential collision, and performing various means to prevent the vehicle from rollover, and to protect the occupant from injuries associated with the inflation of the airbag. Other advantages, such as additional friction for slowing down or completely stopping the vehicle may be realized by the present invention with extra stability. One having ordinary skill in the art would understand that the current disclosure is also applicable in the various transportation system, such as automobiles, sports cars, trucks, buses, vans, streetcars, and trains. The term “occupant” , as used herein, may therefore include a driver, a passenger, a lorry driver, etc.
The benefits, advantages, solutions to problems, and any element (s) that may cause any benefit, advantage, or solution to occur or become more pronounced are not to be construed as a critical, required, or essential features or elements of any or all of the claims. The invention  is defined solely by the appended claims including any amendments made during the pendency of this application and all equivalents of those claims as issued.
Terms such as “inner” , “outer” , “front” , “rear” , “left” , “righ” , “top” , “bottom” , and any variations thereof are used for ease of description to explain the positioning of an element, or the positioning of one element relative to another element, and are not intended to be limiting to a specific orientation or position. Terms such as “first” , “second” , and the like are used herein to describe various elements, components, regions, sections, etc., and are not intended to be limiting.
The term “processor” , as used herein, includes one or more central processing units, microprocessors, micro-computers, single-chip computers, cloud computing system, integrated circuits, and the like, and systems incorporating the same.
FIG. 1 is a diagram of the internal structure of a vehicle 10 conceptually illustrating the occupant protection system 100 (hereinafter referred to as the “system” ) of the present invention. The vehicle 10 may be a road automobile, comprising a wheel arrangement 170 having one or more front wheels and one or more rear wheels, and a driving assembly 130. Typically, the wheel arrangement 170 includes a left front wheel 171, a right front wheel 172, a left rear wheel 173, and a right rear wheel 174. The driving assembly 130 comprises an internal combustion engine 131 driving a multi-speed transmission 133 via a clutch 132. It is apparent that the driving assembly 130 may be operated using other types of engines, such as electric traction motor. The system 100 includes a processor 160, an injury minimization sub-system 200, a plurity of collision detection sensors 120, a rollover prevention sub-system 110, a plurality of wheel sensors 142, a brake sensor 150, and an engine sensor 141. The plurality of wheel sensors 142 and the brake sensor 150 provide information on the braking condition and the speed of the vehicle 10 to the processor 160. The plurity of collision detection sensors 120 includes at least a front collision detection sensor 121, two side collision detection sensors 122, and a rear collision detection sensor 123. Therefore, the plurity of collision detection sensors 120 are disposed to a plurality of predetermined locations on the two side surfaces, front surface, and rear surface of the vehicle 10. In certain embodiment, the plurality of collision detection sensors 120 comprise object detection sensors selected from the group consisting of a Lidar sensor, a radar, and a camera.
The plurality of collision detection sensors 120 are configured to predict any imminent collision of another vehicle, a pedestrian, or other objects on the vehicle 10. The processor 160 receives the signals from the plurality of collision detection sensors 120 and determines a potential collision direction. Furthermore, the processor 160 also receives signals from the engine sensor 141 and the brake sensor 150, thereby the processor 160 calculates the time required for stopping the vehicle 10 and determines whether the vehicle 10 can be stopped in time. As an example, when the front collision detection sensor 121 detects a fast approaching object, the processor 160 may determine the potential collision direction as a potential front impact. Similarly, when the left side collision detection sensor 122 detects a fast approaching object, the processor 160 may determine the potential collision direction as a potential side impact. In response the potential collision direction, the rollover prevention sub-system 110 and/or the injury minimization sub-system 200 are activated.
FIGS. 2-5 shows the wheel arrangement 170 when there is a potential collision. The arrows indicated in the drawings refer to the potential collision direction.
As shown in FIG. 2, when the potential collision direction is from the front of the vehicle 10, the two  rear wheels  173, 174 are reorientated by rotating in an opposite manner to provide additional frictional force for slowing down or completely stopping the vehicle 10. Specifically shown in the illustrated embodiment, the left rear wheel 173 is rotated in a counterclockwise direction, and the right rear wheel 174 is rotated in a clockwise direction. It is apparent that the rotation may be executed in an opposite manner, such as the left rear wheel 173 is rotated in a clockwise direction and the right rear wheel 174 is rotated in a counterclockwise direction. The purpose for this reorientation is to maximize the friction and bring the vehicle 10 to a stop sooner. The chance of rollover of the vehicle 10 is also minimized by providing extra friction at the distal wheels from the potential collision direction.
As shown in FIG. 3, when the potential collision direction is from the rear of the vehicle 10, the two  front wheels  171, 172 are reorientated by rotating in an opposite manner to provide additional frictional force for slowing down or completely stopping the vehicle 10. Specifically shown in the illustrated embodiment, the left front wheel 171 is rotated in a clockwise direction, and the right front wheel 172 is rotated in a counterclockwise direction. It is apparent that the rotation may be executed in an opposite manner, such as the left front wheel 171 is rotated in a counterclockwise direction and the right front wheel 172 is rotated in a  clockwise direction. The purpose for this reorientation is to maximize the friction and bring the vehicle 10 to a stop sooner. The chance of rollover of the vehicle 10 is also minimized by providing extra friction at the distal wheels from the potential collision direction.
As shown in FIG. 4, when the potential collision direction is from the left of the vehicle 10, the right front wheel 172 and the right rear wheel 174 are reorientated by rotating in an opposite manner to provide additional frictional force for minimizing the chance of rollover of the vehicle 10. Specifically shown in the illustrated embodiment, the right front wheel 172 is rotated in a counterclockwise direction, and the right rear wheel 174 is rotated in a clockwise direction. It is apparent that the rotation may be executed in an opposite manner, such as the right front wheel 172 is rotated in a clockwise direction and the right rear wheel 174 is rotated in a counterclockwise direction.
As shown in FIG. 5, when the potential collision direction is from the right of the vehicle 10, the left front wheel 171 and the left rear wheel 173 are reorientated by rotating in an opposite manner to provide additional frictional force for minimizing the chance of rollover of the vehicle 10. Specifically shown in the illustrated embodiment, the left front wheel 171 is rotated in a clockwise direction, and the left rear wheel 173 is rotated in a counterclockwise direction. It is apparent that the rotation may be executed in an opposite manner, such as the left front wheel 171 is rotated in a counterclockwise direction and the left rear wheel 173 is rotated in a clockwise direction.
Now refer to FIG. 6, an individual wheel having a height adjuster 175 for preventing rollover is depicted. The illustrated individual wheel structure may be applied to at least two wheels, or more preferably be applied to all four wheels of the wheel arrangement 170. The height adjuster 175 is controlled by the rollover prevention sub-system 110.
The rollover prevention sub-system 110 minimizes the rollover of the vehicle 10 by lowering the vehicle 10, which is realized by actuating the height adjusters 175 connecting to the wheel arrangement 170. In certain embodiments, the rollover prevention sub-system 110 controls the height adjusters 175 of the two proximal wheels from the potential collision direction to a lower position. With a slightly inclined car body, the collision from the potential collision direction on the vehicle 10 is much difficult to turn the vehicle 10 up, thereby the chance of rollover is minimized. The height adjuster 175 comprises a strut 112, a first electromagnetic linear actuator 114 and a first piston 113. The strut 112 and the first  electromagnetic linear actuator 114 are connected to or otherwise welded to a control arm 111, which has a wheel shaft 115 for mounting to a wheel 171-174 through an axle hole at the center of the wheel 171-174. The first electromagnetic linear actuator 114 is controllable by the rollover prevention sub-system 110 to retract the first piston 113 for performing a high-speed compression. The strut 112 acts as a reset spring configured to resist a linear compression by the first electromagnetic linear actuator 114, such that when the first electromagnetic linear actuator 114 is deactivated by the rollover prevention sub-system 110, the first piston 113 is not retracted and the wheel is not lowered.
Referring to FIG. 7, the injury minimization sub-system 200 of the occupant protection system 100 implemented in a vehicle 10 and executable by the processor 160 for protecting the occupant from injuries associated to the inflation of the airbag 230 is depicted. Conventionally, during collision the airbag 230 is inflated so quick that the force developed from the rapid inflation may cause injuries to the occupant. The present invention provides an injury minimization sub-system 200 comprising a second electromagnetic linear actuator 220 and a seat tilting device 211. The seat tilting device 211 is configured to tilt the seat-back 210 in a backward direction. The purpose of the seat tilting device 211 is to pull the occupant backward with the seat belt 240. The angle of tilting is in the range of 10 to 45 degrees, and more preferably, in the range of 10 to 20 degrees. In certain embodiments, the injury minimization sub-system 200 comprises a seat belt tightener 241 for applying an increased tension on a seat belt 240, thereby the occupant is pulled away from the airbag 230 by the seat-back 210 more effectively.
Another method to minimize the potential injury by the airbag 230 is to move the car seat 250 away from the airbag 230, which is illustrated in FIG. 8. The second electromagnetic linear actuator 220 is movable along a longitudinal length for pulling the car seat 250 away from the airbag 230. In particular, the second electromagnetic linear actuator 220 is controllable by the injury minimization sub-system 200 to retract the second piston 221 for performing a high-speed compression. The second piston 221 is connected or welded to the car seat 250 so that the second piston 221 can be retracted to move the car seat 250 backward.
This illustrates the system for protecting the occupant of a vehicle in accordance with the present disclosure. It is apparent that the present disclosure may be embodied in other types of vehicles or passenger vessels without departing from the spirit or essential characteristics  thereof. The present embodiment is, therefore, to be considered in all respects as illustrative and not restrictive. The scope of the disclosure is indicated by the appended claims rather than by the preceding description, and all changes that come within the meaning and range of equivalency of the claims are therefore intended to be embraced therein.

Claims (14)

  1. An occupant protection system implemented in a vehicle having a wheel arrangement and a driving assembly, the occupant protection system comprising:
    a plurality of collision detection sensors;
    a processor configured to receive signals from the plurality of collision detection sensors for determining a potential collision direction;
    a rollover prevention sub-system; and
    an injury minimization sub-system;
    wherein:
    the rollover prevention sub-system is executable for minimizing a rollover of the vehicle by controlling two distal wheels from the potential collision direction to rotate in an opposite manner; and
    the injury minimization sub-system is executable for minimizing a chance of injury caused by an airbag by adjusting a seat-back tilt angle and a seat position.
  2. The occupant protection system of claim 1, wherein the rollover prevention sub-system rotates a first wheel of the two distal wheels in a counterclockwise direction, and a second wheel of the two distal wheels in a clockwise direction for minimizing the rollover of the vehicle.
  3. The occupant protection system of claim 1, wherein the rollover prevention sub-system minimizes the rollover of the vehicle by lowering the vehicle by actuating height adjusters connecting to the wheel arrangement.
  4. The occupant protection system of claim 3, wherein the rollover prevention sub-system controls the height adjusters for two proximal wheels from the potential collision direction to a lower position.
  5. The occupant protection system of claim 4, wherein the height adjuster comprises a first piston and a first electromagnetic linear actuator, wherein the first electromagnetic linear actuator is controllable by the rollover prevention sub-system to retract the first piston for performing a high-speed compression.
  6. The occupant protection system of claim 5, wherein the height adjuster comprises a strut configured to resist a linear compression by the first electromagnetic linear actuator.
  7. The occupant protection system of claim 6, wherein the strut and the first electromagnetic linear actuator are connected to or welded to a control arm having a wheel shaft for mounting to a wheel of the wheel arrangement through an axle hole at a center of the wheel.
  8. The occupant protection system of claim 1, wherein the injury minimization sub-system comprises a second electromagnetic linear actuator movable along a longitudinal length for pulling a car seat away from the airbag.
  9. The occupant protection system of claim 8, wherein the second electromagnetic linear actuator is controllable by the injury minimization sub-system to retract a second piston for performing a high-speed compression.
  10. The occupant protection system of claim 9, whrein the second piston is connected or welded to the car seat such that the second piston can be retracted to move the car seat backward.
  11. The occupant protection system of claim 1, wherein the injury minimization sub-system comprises a seat tilting device configured to tilt the seat-back in a backward direction and a seat belt tightener for applying an increased tension on a seat belt.
  12. The occupant protection system of claim 1 further comprising a plurality of wheel sensors and a brake sensor, wherein the plurality of wheel sensors detects a speed of the vehicle; and the brake sensor detects a braking condition of the vehicle.
  13. The occupant protection system of claim 1, wherein the plurality of collision detection sensors comprise object detection sensors selected from the group consisting of a Lidar sensor, a radar, and a camera.
  14. The occupant protection system of claim 1, wherein the plurality of collision detection sensors are disposed to a plurality of predetermined locations on the side surfaces, front surface, and rear surface of the vehicle.
PCT/CN2021/103135 2021-05-11 2021-06-29 Vehicle occupant protection system WO2022236940A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
HK32021030841 2021-05-11
HK32021030841.9 2021-05-11

Publications (1)

Publication Number Publication Date
WO2022236940A1 true WO2022236940A1 (en) 2022-11-17

Family

ID=83931616

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/103135 WO2022236940A1 (en) 2021-05-11 2021-06-29 Vehicle occupant protection system

Country Status (2)

Country Link
CN (1) CN115320530A (en)
WO (1) WO2022236940A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005254942A (en) * 2004-03-11 2005-09-22 Mazda Motor Corp Behavior control device for vehicle
JP2005263071A (en) * 2004-03-19 2005-09-29 Honda Motor Co Ltd Occupant protection device
CN101152847A (en) * 2006-09-25 2008-04-02 冯建中 Reverse direction actuating system of vehicle
CN105691341A (en) * 2014-11-20 2016-06-22 现代自动车美国技术硏究所 vehicle wheel twist system for small overlap frontal collisions
CN109677304A (en) * 2019-02-27 2019-04-26 汉腾汽车有限公司 Motor vehicle seat back angle control system and its control method
CN109890654A (en) * 2016-10-21 2019-06-14 罗伯特·博世有限公司 It is pre- to hit seat-activated device system and method
CN110001344A (en) * 2019-04-19 2019-07-12 福建工程学院 It is a kind of to be actively lifted torsion beam suspension structure

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8478484B2 (en) * 2011-07-07 2013-07-02 GM Global Technology Operations LLC Control of vehicle rollover
DE102011108918B4 (en) * 2011-07-28 2020-07-23 Volkswagen Aktiengesellschaft Restraint device for a motor vehicle
KR101724944B1 (en) * 2015-11-06 2017-04-10 현대자동차주식회사 Airbag system of vehicle
DE102017204698B4 (en) * 2017-03-21 2022-03-24 Deutsches Zentrum für Luft- und Raumfahrt e.V. vehicle
JP2018176792A (en) * 2017-04-03 2018-11-15 本田技研工業株式会社 Vehicle seat control device, vehicle seat control method and program

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005254942A (en) * 2004-03-11 2005-09-22 Mazda Motor Corp Behavior control device for vehicle
JP2005263071A (en) * 2004-03-19 2005-09-29 Honda Motor Co Ltd Occupant protection device
CN101152847A (en) * 2006-09-25 2008-04-02 冯建中 Reverse direction actuating system of vehicle
CN105691341A (en) * 2014-11-20 2016-06-22 现代自动车美国技术硏究所 vehicle wheel twist system for small overlap frontal collisions
CN109890654A (en) * 2016-10-21 2019-06-14 罗伯特·博世有限公司 It is pre- to hit seat-activated device system and method
CN109677304A (en) * 2019-02-27 2019-04-26 汉腾汽车有限公司 Motor vehicle seat back angle control system and its control method
CN110001344A (en) * 2019-04-19 2019-07-12 福建工程学院 It is a kind of to be actively lifted torsion beam suspension structure

Also Published As

Publication number Publication date
CN115320530A (en) 2022-11-11

Similar Documents

Publication Publication Date Title
US20070185635A1 (en) Occupant-protection system for vehicles and method for activating an occupant-protection system for vehicles
JP3738575B2 (en) Vehicle collision control device
JP3897254B2 (en) Method for operating a reversible occupant protection system in an automobile
US7835840B2 (en) Transmission neutral state management in vehicular safety and convenience systems
US8095277B2 (en) Method for determining a direction of travel in a motor vehicle
US20080201042A1 (en) System and method for pre-deploying restraints countermeasures using pre-crash sensing and post-crash sensing
JP4669509B2 (en) Control method for occupant protection means in vehicle and occupant protection system
JPH08169297A (en) Vehicular collision state control system
JP2007145313A (en) Automatic brake control device
EP2862755B1 (en) Vehicle bonnet safety assembly
US20130096779A1 (en) Motor vehicle with driving safety feature
US8855866B2 (en) Rear end advanced collision technology
US20090024282A1 (en) Method for a Preventive-Action Protection System In a Motor Vehicle Having an Inter-Vehicle Distance Sensor System
CN102039845A (en) Method and apparatus for avoiding a collision of an object with a first vehicle door of a stationary vehicle
ES2529717T3 (en) Procedure to brake a motor vehicle and motor vehicle
US20080262679A1 (en) Safety Device for a Motor Vehicle
WO2022236940A1 (en) Vehicle occupant protection system
JP2000118370A (en) Vehicle travel safety device
JP2007532390A (en) Safety devices for automobiles
Sanders et al. X-by-wire technology
JP2001122081A (en) Occupant restraining protective system
US20180281548A1 (en) Auto-leveling suspension and method for same
US20090008915A1 (en) Motor vehicle comprising an occupant restraint device
KR100666360B1 (en) Apparatus for preventing car crash based on vehicle dynamics
JP2007526168A (en) Safety devices for automobiles

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21941509

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21941509

Country of ref document: EP

Kind code of ref document: A1