WO2022236894A1 - 一种滑坡水下网式三维变形监测系统及监测方法 - Google Patents

一种滑坡水下网式三维变形监测系统及监测方法 Download PDF

Info

Publication number
WO2022236894A1
WO2022236894A1 PCT/CN2021/098094 CN2021098094W WO2022236894A1 WO 2022236894 A1 WO2022236894 A1 WO 2022236894A1 CN 2021098094 W CN2021098094 W CN 2021098094W WO 2022236894 A1 WO2022236894 A1 WO 2022236894A1
Authority
WO
WIPO (PCT)
Prior art keywords
underwater
monitoring
displacement
landslide
multifunctional
Prior art date
Application number
PCT/CN2021/098094
Other languages
English (en)
French (fr)
Inventor
张俊荣
唐辉明
张永权
李长冬
张青
马俊伟
夏丁
林成远
鲁莎
Original Assignee
中国地质大学(武汉)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国地质大学(武汉) filed Critical 中国地质大学(武汉)
Priority to US17/367,589 priority Critical patent/US11536861B2/en
Publication of WO2022236894A1 publication Critical patent/WO2022236894A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/16Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D21/00Measuring or testing not otherwise provided for
    • G01D21/02Measuring two or more variables by means not covered by a single other subclass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/14Receivers specially adapted for specific applications
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells

Definitions

  • the invention relates to the technical field of landslide disaster monitoring, in particular to a landslide underwater net-type three-dimensional deformation monitoring system and a monitoring method.
  • Underwater deformation of landslides is one of the important contents of reservoir landslide deformation monitoring.
  • landslide deformation monitoring technology has continued to develop, including GPS, total station, TDR, buried optical fiber, borehole inclinometer, Insar, near-Earth photography and a large number of monitoring methods have been discovered and developed, and achieved great achievements. Certain monitoring effect.
  • traditional monitoring techniques cannot be effectively applied in underwater environments.
  • the embodiment of the present invention provides a landslide underwater network three-dimensional deformation monitoring system and monitoring method.
  • An embodiment of the present invention provides a landslide underwater network-type three-dimensional deformation monitoring system, including a plurality of water monitoring stations and a plurality of underwater multifunctional 3D displacement meters;
  • a plurality of underwater multifunctional 3D displacement gauges are arranged in a grid structure and connected in sequence, fixed on the surface of the water slide body and the surface of the underwater slide body, each of the above-water monitoring stations and one of the underwater slides on the surface of the water slide body
  • the multifunctional 3D displacement gauges are fixedly connected, and there are at least three underwater multifunctional 3D displacement gauges located on the surface of the water slide body, and they are not on the same straight line.
  • the above water monitoring station is provided with a GPS device for obtaining The spatial position of the underwater multifunctional 3D displacement meter on the body surface;
  • the underwater multifunctional 3D displacement gauge includes a housing, four rotating shafts, four pull wires, four displacement gauges, and sensor components; four rotating shafts are rotatably installed in the housing, and the rotating shafts are rotatable along the vertical direction. Extending, one end of the rotating shaft is connected to the housing with a contraction spring, the housing is circumferentially spaced through four perforations, the pull wires correspond to the perforations one by one, and one end of the pull wire is wound to the On the rotating shaft, the other end passes through the perforation and connects with the stay wire of the adjacent underwater multifunctional 3D displacement gauge; the displacement gauge is fixed in the housing, and each of the displacement gauges is connected to the stay wire Correspondingly, for measuring the retractable length of the pull wire, the sensor assembly includes a three-axis acceleration sensor and a fluxgate, the three-axis acceleration sensor and the fluxgate are fixed in the housing, and are respectively used to monitor the Dip angle change and azimuth angle change of underwater multifunctional 3D displacement gauge.
  • the displacement gauge includes a light-emitting element, a photosensitive element and a grating disk, each of the grating disks is coaxially fixed on each of the rotating shafts, and the rotation of the rotating shaft drives the rotation of the grating disks, and the light-emitting
  • the element and the photosensitive element are respectively located on the upper and lower sides of the grating disk and are fixed in the housing.
  • the photosensitive element is used to obtain the rotation distance of the grating disk, thereby obtaining the retractable length of the pull wire.
  • a partition is provided in the housing to form a displacement meter chamber and a sensor chamber vertically, the displacement meter is located in the displacement meter chamber, and the sensor assembly is located in the sensor chamber.
  • the light-emitting element is located in the displacement gauge chamber, the photosensitive element is located in the sensor chamber, and the spacer is provided with a light-transmitting hole at a position opposite to the light-emitting element.
  • a hub is fixed on the rotating shaft, and one end of the pull wire is wound on the hub.
  • the housing is provided with a groove at a position opposite to the rotating shaft, the rotating shaft is installed in the groove, and the rotating shaft is connected to at least one of the grooves in which the contraction hairpin is connected. strip.
  • the sensor assembly also includes a water temperature sensor located in the housing for monitoring water temperature data; and/or,
  • the side wall of the sensor chamber is provided with a transparent monitoring window, and the miniature camera is fixed inside the transparent monitoring window for observing the erosion state of the underwater sliding body.
  • an integrated circuit board is fixed inside the housing, and the integrated circuit board is electrically connected with a water temperature sensor, a three-axis acceleration sensor, a fluxgate, a displacement meter, a miniature camera, and a photosensitive element for collecting and processing monitoring data. with pass.
  • the above-water monitoring station is provided with a solar power supply device, and the solar power supply device is electrically connected to all equipment in the underwater multifunctional 3D displacement meter, and continuously supplies power during the monitoring process; and/or,
  • the above-water monitoring station is provided with a communication module, and a data transceiver device is fixed inside the housing, and the data transceiver device is electrically connected with the integrated circuit board and communicated with the communication module, and the communication module is used to obtain
  • the monitoring information of the underwater multifunctional 3D displacement meter is sent to a mobile monitoring terminal or network through GPRS.
  • Embodiments of the present invention also provide a monitoring method, comprising the following steps:
  • S1 Determine the location of the landslide that needs to be monitored on the basis of the previous exploration, and determine the specific monitoring location of the landslide by setting out the line;
  • the underwater multi-functional 3D displacement gauges After numbering the underwater multi-functional 3D displacement gauges, they are networked in the form of lattice and connected by pull wires, and the underwater multi-functional 3D displacement gauges are deployed on the surface of the water slide body and the surface of the underwater slide body. There are at least three underwater multifunctional 3D displacement gauges that are not on the same straight line on the surface of the sliding body;
  • S3 fixedly connects the water monitoring station with the underwater multifunctional 3D displacement gauge on the surface of the water slide;
  • the azimuth angle change of the 3D displacement meter realizes the monitoring of the spatial attitude change of a single node, and uses the displacement meter to obtain the retractable length of the cable, thereby calculating the distance between two adjacent underwater multi-functional 3D displacement meters, and realizing the deformation of the landslide below the water surface Status real-time monitoring.
  • the beneficial effects brought by the technical solution provided by the embodiments of the present invention are: similar to the idea of finite element, based on the networked monitoring method, the spatial state changes of a large number of points on the landslide surface can be sensed and monitored, and the landslide can be indirectly obtained by inversion integral calculation
  • the characteristics of underwater deformation evolution are useful supplements to existing landslide displacement monitoring methods.
  • the sensors involved in the method are mature technology, simple in structure and reasonable in design.
  • Fig. 1 is the structural representation of an embodiment of the landslide underwater net-type three-dimensional deformation monitoring system provided by the present invention
  • Fig. 2 is an explosion schematic diagram of the underwater multifunctional 3D displacement meter in Fig. 1;
  • Fig. 3 is an explosion schematic diagram of another viewing angle of the underwater multifunctional 3D displacement meter in Fig. 1;
  • Fig. 4 is a structural schematic diagram in the displacement meter chamber in Fig. 1;
  • Fig. 5 is a schematic diagram of monitoring principle in the present invention.
  • Fig. 6 is a schematic flowchart of an embodiment of the monitoring method provided by the present invention.
  • water monitoring station 1 monitoring pier 11, solar power supply device 12, GPS device 13, communication module 14, underwater multifunctional 3D displacement meter 2, housing 201, perforation 201a, fixing screw 202, top cover 203, light emitting Component 204, shrinkage spring 205, hub 206, grating disk 207, rotating shaft 208, pull wire 209, displacement meter chamber 210, light transmission hole 211, sensor chamber 212, transparent monitoring window 213, miniature camera 214, three-axis acceleration Sensor 215, fluxgate 216, water temperature sensor 217, data transceiver 218, photosensitive element 219, integrated circuit board 220, bottom cover 221, lead hole 222, waterproof electric wire 223, sliding body 3, water surface 4.
  • an embodiment of the present invention provides an underwater landslide network-type three-dimensional deformation monitoring system, which includes a plurality of above-water monitoring stations 1 and a plurality of underwater multifunctional 3D displacement meters 2 .
  • the multiple underwater multifunctional 3D displacement gauges 2 are arranged in a grid pattern and connected in sequence, and are fixed on the surface of the water slide body 3 and the surface of the underwater slide body 3 for monitoring the underwater deformation evolution process of the landslide.
  • Each of the above-water monitoring stations 1 is fixedly connected to one of the underwater multifunctional 3D displacement gauges 2 on the surface of the water slide body 3, and there are at least three underwater multifunctional 3D displacement gauges 2 on the surface of the water slide body 3. , and not on the same straight line, in this embodiment, the number of monitoring stations 1 on the water is three.
  • the above-water monitoring station 1 is provided with a GPS device 13 for obtaining the spatial position of the underwater multifunctional 3D displacement gauge 2 on the surface of the water-sliding body 3 .
  • the above-water monitoring station 1 includes a monitoring pier 11, which is fixedly connected to the underwater multifunctional 3D displacement meter 2 after pouring and consolidation.
  • the monitoring pier 11 is located directly above the underwater multifunctional 3D displacement meter 2.
  • the power supply device 12 and the communication module 14 are fixed on the monitoring pier 11.
  • the communication module 14 is used to obtain the monitoring information of the underwater multifunctional 3D displacement gauge 2 and send it to the mobile monitoring terminal or network through GPRS.
  • the solar power supply device 12 is electrically connected with all equipment, the GPS device 13, and the communication module 14 in the described underwater multifunctional 3D displacement gauge 2, and continues to be the underwater multifunctional 3D displacement gauge 2, GPS device 13, The communication module 14 supplies power.
  • the underwater multifunctional 3D displacement gauge 2 includes a housing 201, four rotating shafts 208, four pull wires 209, four displacement gauges and sensor components.
  • the housing 201 includes a ring-shaped frame, a partition (not marked in the figure), a top cover 203 and a bottom cover 221 arranged at intervals up and down, all of which are made of stainless steel, and the top cover 203 and the bottom cover 221 Installed on the upper and lower ends of the frame by fixing screws 202 respectively, and sealed by waterproof glue, the partition is fixed in the middle of the frame, and the inside of the housing 201 is divided into a displacement meter chamber 210 and a sensor chamber 212 in the upper and lower directions.
  • the cavity in the sensor chamber 212 is a small sealed space, and the buoyancy generated is negligible compared with the overall gravity of the underwater multifunctional 3D displacement meter 2 .
  • Four rotating shafts 208 are rotatably installed in the housing 201 , and the rotating shafts 208 extend vertically.
  • the housing 201 is provided with a groove at a position opposite to the rotating shaft 208, the rotating shaft 208 is installed in the groove, and the rotating shaft 208 is connected to at least one of the grooves.
  • the mainspring 205 is retracted, and the rotating shaft 208 can rotate in the groove.
  • the grooves are respectively provided on the top cover 203 and the separator, the shrink spring 205 is located in the groove of the top cover 203 , and the rotating shaft 208 is located in the displacement gauge chamber 210 .
  • the casing 201 (displacement gauge chamber 210) is provided with four perforations 201a at circumferential intervals, the pull wires 209 correspond to the perforations 201a one by one, and one end of the pull wires 209 is wound on the rotating shaft 208, The other end passes through the through hole 201a and connects with the pull wire 209 of the adjacent underwater multifunctional 3D displacement gauge 2 .
  • the rotating shaft 208 is fixed with a hub 206 , and one end of the pull wire 209 is wound on the hub 206 , and the hub 206 is used to carry the pull wire 209 released and recovered, and limit the pull wire 209 .
  • a plurality of underwater multifunctional 3D displacement meters 2 are arranged in a lattice structure, one underwater multifunctional 3D displacement meter 2 is adjacent to four underwater multifunctional 3D displacement meters 2 in the circumferential direction, and the shell of the underwater multifunctional 3D displacement meter 2
  • Four pull wires 209 pass through the perforation 201a in the body 201, and are connected with the pull wires 209 of the four underwater multifunctional 3D displacement gauges 2 in the circumferential direction to form a monitoring network.
  • the rotating shaft 208 and the contraction spring 205 can be rotated so that the backguy 209 is released;
  • the underwater multifunctional 3D displacement meter 2 above the underwater multifunctional 3D displacement meter 2 moves downward with the sliding body 3, the two underwater multifunctional 3D displacement meters 2
  • the distance between the lower multifunctional 3D displacement gauges 2 is reduced, which will make the rotating shaft 208 and the shrinking mainspring 205 rotate so that the pull wire 209 is wound on the rotating shaft 208, and the setting of the shrinking mainspring 205 can make the pulling wire 209 always in tension state.
  • the displacement gauges are fixed in the casing 201 and located in the displacement gauge chamber 210 , each displacement gauge corresponds to the pull wire 209 and is used to measure the retracted length of the pull wire 209 .
  • the displacement gauge can be a magnetic displacement gauge.
  • the displacement gauge is a photoelectric displacement gauge, including a light emitting element 204, a photosensitive element 219 and a grating disk 207, and each grating disk 207 is coaxially fixed on each On the rotating shaft 208, the rotation of the rotating shaft 208 drives the rotation of the grating disk 207, the light-emitting element 204 and the photosensitive element 219 are respectively located on the upper and lower sides of the grating disk 207, and are fixed in the housing 201, The photosensitive element 219 is used to obtain the rotation distance of the grating disk 207 , so as to obtain the retractable length of the pull wire 209 .
  • the light-emitting element 204 is fixed on the top cover 203 by sealant, and is located in the displacement meter chamber 210, and the photosensitive element 219 is located in the sensor chamber 212, specifically, it is fixed on the partition facing the On one side of the bottom cover 221 , a light-transmitting hole 211 is formed through the position where the partition plate is opposite to the light-emitting element 204 .
  • the light-transmitting hole 211 is filled with resin and waterproofed.
  • the extension and contraction of the pull wire 209 makes the shrinking spring 205 drive the rotating shaft 208 to rotate, thereby driving the grating disc 207 to rotate, the light emitting element 204 emits light, passes through the grating disc 207 and irradiates on the photosensitive element 219 through the light transmission hole 211, and the photosensitive element 219 will receive The optical signal is converted into an electrical signal to obtain the rotation distance of the grating disk 207, thereby obtaining the retractable length of the pull wire 209.
  • the sensor assembly includes a three-axis acceleration sensor 215, a fluxgate 216 and a water temperature sensor 217 fixed in the housing 201, and the three-axis acceleration sensor 215 and the fluxgate 216 are respectively used to monitor the Functional 3D displacement meter 2 inclination change and azimuth change.
  • the water temperature sensor 217 is used for monitoring water temperature data.
  • the sensor assembly is located in the sensor chamber 212 .
  • the side wall of the sensor chamber 212 is provided with a transparent monitoring window 213, and the miniature camera 214 is fixed inside the transparent monitoring window 213.
  • the miniature camera 214 has a luminous body, which is convenient for observing the erosion state of the underwater slide body 3.
  • An integrated circuit board 220 is fixed inside the housing 201, and the integrated circuit board 220 is electrically connected with a water temperature sensor 217, a three-axis acceleration sensor 215, a fluxgate 216, a displacement meter, a miniature camera 214, and a photosensitive element 219.
  • Board 220 contains a single-chip microcomputer for the collection, processing and transmission of monitoring data.
  • the data transceiver device 218 is fixed in the housing 201. In this embodiment, it is fixed in the sensor chamber 212.
  • the data transceiver device 218 is electrically connected to the integrated circuit board 220 to obtain monitoring data.
  • the data transceiver device includes a Zigbee or Bluetooth module, which can realize Close to the near-field communication of the underwater multifunctional 3D displacement meter 2, thereby forming a local wireless network, the data transceiver device 218 communicates with the communication module 14, and gradually transmits the monitoring data in the underwater multifunctional 3D displacement meter 2 to the water monitoring In the communication module 14 in the station 1, the communication module 14 uploads the collected monitoring data to the network.
  • Both the housing 201 (bottom cover 221 ) and the partition are provided with a wire hole 222 for the waterproof wire 223 to pass through.
  • the wire hole 222 and the waterproof wire 223 are sealed with waterproof glue.
  • the waterproof wire 223 is electrically connected to form a power supply network, and the waterproof wire 223 is powered by the solar power supply device 12 to supply power to the sensors in the entire underwater multifunctional 3D displacement gauge 2 .
  • the landslide underwater net-type three-dimensional deformation monitoring system provided by the present invention, in the initial stage, a plurality of underwater multifunctional 3D displacement gauges 2 are attached to the surface of the sliding body 3 to form a monitoring network surface that is compatible with the surface of the sliding body 3 , the initial space attitude can be measured by the GPS devices 13 in the three water monitoring stations 1 on the curved surface.
  • the eroded state of the underwater slide body 3 can be observed by using the micro camera 214 .
  • the position of the first underwater multifunctional 3D displacement meter 2 before deformation is O
  • the position of the second underwater multifunctional 3D displacement meter 2 before deformation is C 1
  • the position of the second underwater multifunctional 3D displacement meter 2 is C 1 before deformation.
  • the deformed position of the underwater multifunctional 3D displacement meter 2 is C'1, and the position of point 20 of the first underwater multifunctional 3D displacement meter can be obtained through the GPS device of the water monitoring station 1 , which can be measured by the triaxial acceleration sensor 215
  • the inclination angle of point 2C1 of the second underwater multifunctional 3D displacement meter, the length of the backguy 209 between the first underwater multifunctional 3D displacement meter 2 and the second underwater multifunctional 3D displacement meter 2, and the backguy after deformation 209 retractable length, the distance L 1 between point O and point C 1 can be obtained, combined with the following integral formula, the position of the second underwater multifunctional 3D displacement meter 2C 1 and the bottommost underwater multifunctional 3D displacement meter can be obtained.
  • Position of Displacement Gauge 2 is
  • i is the number of underwater multifunctional 3D displacement meters 2 in a row
  • D is the horizontal distance between the first underwater multifunctional 3D displacement meter 2 and the second underwater multifunctional 3D displacement meter 2
  • L1 is The distance between the first underwater multifunctional 3D displacement meter 2 and the second underwater multifunctional 3D displacement meter 2 before the deformation of the sliding body 3
  • ⁇ 1 is the second underwater multifunctional 3D displacement of the sliding body 3 before deformation
  • D t is the horizontal distance between the first underwater multifunctional 3D displacement meter 2 and the bottommost underwater multifunctional 3D displacement meter 2
  • L i is the i-th underwater multifunctional 3D displacement meter before the sliding body 3 deforms.
  • ⁇ i is the inclination angle of the i +1th underwater multifunctional 3D displacement gauge 2 before the sliding body 3 deforms.
  • the straight-line distance from point C 1 to point C' 1 can be calculated by the following formula:
  • i is the number of underwater multifunctional 3D displacement gauges 2 in a row
  • L' 1 is the distance between the first underwater multifunctional 3D displacement gauge 2 and the second underwater multifunctional 3D displacement gauge 2 after the sliding body 3 is deformed.
  • D' is the horizontal distance between the first underwater multifunctional 3D displacement meter 2 and the second underwater multifunctional 3D displacement meter 2 after the deformation of the sliding body 3
  • D t is the first underwater multifunctional 3D displacement meter 2 after the deformation of the sliding body 3
  • ⁇ 1 is the inclination angle of the second underwater multifunctional 3D displacement meter 2 before the deformation of the sliding body 3
  • ⁇ 2 is the inclination angle of the second underwater multifunctional 3D displacement meter 2 after the deformation of the sliding body 3
  • D' i is the i-th underwater multifunctional 3D displacement meter 2 and the i+1 underwater multifunctional displacement meter 2 after the de
  • the position change between each underwater multifunctional 3D displacement meter 2 in the vertical direction can be known, and similarly, the position change between each underwater multifunctional 3D displacement meter 2 in the horizontal direction can be obtained, through the above calculation
  • the method can obtain the position change of any displacement monitoring device 2 at any moment.
  • the monitoring network After the monitoring network is deployed on the surface of the sliding body 3, without external interference, the monitoring network deforms cooperatively with the sliding body 3 on the water surface 4, and the spatial attitude change of the monitoring network obtained through monitoring is the spatial attitude change of the landslide.
  • the embodiment of the present invention also provides a monitoring method, comprising the following steps:
  • S1 Determine the location of the landslide that needs to be monitored on the basis of the previous exploration, and determine the specific monitoring location of the landslide by setting out the line.
  • the networking mode is a rectangular grid-structure.
  • the underwater multifunctional 3D displacement gauge 2 is laid on the surface of the water slide body 3 and the surface of the underwater slide body 3 .
  • all underwater multifunctional 3D displacement gauges 2 should be arranged in an orderly manner, evenly spaced, and must not overlap or entangle. Fix the underwater multifunctional 3D displacement gauge 2 positioned at the edge of the net by steel brazing or other means to prevent the impact of the water flow from its original position.
  • the monitoring pier 11 is constructed by pouring, and a solar power supply device 12 , a GPS device 13 , and a communication module 14 are installed on the monitoring pier 11 .
  • the real-time monitoring of the erosion state of the slope surface below the water surface 4 of the landslide can be realized, and the impact of different water pressure environments and surges on the landslide can be analyzed in combination with the serial number.
  • the water temperature sensor 217 can monitor changes in the water temperature environment, and can also be transformed and replaced with other sensors that are beneficial to landslide monitoring.

Abstract

一种滑坡水下网式三维变形监测系统及监测方法,多个水下多功能3D位移计(2)呈格构状布置且依次连接,壳体(201)内可旋转安装有四个转动轴(208),转动轴(208)沿上下向延伸,转动轴(208)一端与壳体(201)连接有收缩发条(205),壳体(201)周向间隔贯穿设有四个穿孔(201a),拉线(209)与穿孔(201a)一一对应,拉线(209)一端缠绕至转动轴(208)上,另一端从穿孔(201a)穿出与相邻水下多功能3D位移计(2)的拉线(209)连接;位移计(2)与拉线(209)相对应,测量拉线(209)收放长度,三轴加速度传感器(215)、磁通门(216)监测水下多功能3D位移计(2)的倾角变化与方位角变化。可基于组网式监测方法,通过感知监测滑坡表面大量点的空间状态变化,反演积分计算从而间接得到滑坡水下变形演化特征,是现有滑坡位移监测手段的有益补充。

Description

一种滑坡水下网式三维变形监测系统及监测方法 技术领域
本发明涉及滑坡灾害监测技术领域,尤其涉及一种滑坡水下网式三维变形监测系统及监测方法。
背景技术
我国中西部地区山地分布广泛,雨水条件充足,地质灾害频发,每年因地质灾害造成的人、财损失巨大,其中滑坡灾害约占总数的2/3。水是滑坡地质灾害的一个重要诱发因素,因而也是滑坡地质灾害监测的重要内容。近些年,三峡水库的水位周期性的波动使得大量古滑坡复滑,采取相应的监测手段,对水库滑坡变形特征持续监测是滑坡地质灾害防治的重要基础,也是滑坡地质灾害预测预警的重要前提。
滑坡水下变形是水库滑坡变形监测的重要内容之一。几十年来,滑坡变形监测技术持续发展,包括GPS,全站仪、TDR,埋入式布设光纤、钻孔测斜、Insar、近地摄影法等大量的监测手段被发现、发展,并取得了一定的监测效果。然而,由于诸如防水、水下变形特征采集等滑坡水下变形监测的挑战性,传统监测技术均无法在水下环境有效应用。如何适应水下变形监测时的大变形、长续航、高精度、高可靠性等需求,提出一套针对滑坡前缘水位波动下滑体变形特征监测的解决方案和监测设备,对滑坡中长期预测预报、滑坡灾害防治具有重要的意义。
发明内容
有鉴于此,为解决上述问题,本发明的实施例提供了一种滑坡水下网 式三维变形监测系统及监测方法。
本发明的实施例提供一种滑坡水下网式三维变形监测系统,包括多个水上监测站和多个水下多功能3D位移计;
多个所述水下多功能3D位移计呈格构状布置且依次连接,固定于水上滑体表面和水下滑体表面,每一所述水上监测站与水上滑体表面的一所述水下多功能3D位移计固定连接,位于水上滑体表面的所述水下多功能3D位移计至少为三个,且不在同一直线上,所述水上监测站上设有GPS装置,用于获取水上滑体表面的所述水下多功能3D位移计的空间位置;
所述水下多功能3D位移计包括壳体、四个转动轴、四个拉线、四个位移计、传感器组件;所述壳体内可旋转安装有四个转动轴,所述转动轴沿上下向延伸,所述转动轴一端与所述壳体连接有收缩发条,所述壳体周向间隔贯穿设有四个穿孔,所述拉线与所述穿孔一一对应,所述拉线一端缠绕至所述转动轴上,另一端从所述穿孔穿出与相邻所述水下多功能3D位移计的拉线连接;所述位移计固定于所述壳体内,每一所述位移计与所述拉线相对应,用于测量所述拉线收放长度,所述传感器组件包括三轴加速度传感器和磁通门,所述三轴加速度传感器、磁通门固定于所述壳体内,分别用于监测所述水下多功能3D位移计的倾角变化与方位角变化。
进一步地,所述位移计包括发光元件、光敏元件和光栅盘,每一所述光栅盘同轴固定于每一所述转动轴上,所述转动轴旋转带动所述光栅盘旋转,所述发光元件和光敏元件分别位于所述光栅盘上下两侧,且固定于所述壳体内,所述光敏元件用于获取所述光栅盘的转动距离,从而获得所述拉线的收放长度。
进一步地,所述壳体内设有隔板以在上下向形成位移计腔室和传感器腔室,所述位移计位于所述位移计腔室内,所述传感器组件位于所述传感器腔室内。
进一步地,所述发光元件位于所述位移计腔室内,所述光敏元件位于 所述传感器腔室内,所述隔板与所述发光元件相对的位置贯穿设有透光孔。
进一步地,所述转动轴上固定有轮毂,所述拉线一端缠绕至所述轮毂上。
进一步地,所述壳体与所述转动轴相对的位置设有凹槽,所述转动轴安装于所述凹槽内,所述转动轴与至少一所述凹槽内连接有所述收缩发条。
进一步地,所述传感器组件还包括水温传感器,所述水温传感器位于所述壳体内,用于监测水温数据;和/或,
还包括微型摄像头,所述传感器腔室侧壁设有透明监测窗,所述微型摄像头固定于所述透明监测窗内侧,用于观测水下滑体的受侵蚀状态。
进一步地,所述壳体内固定有集成电路板,所述集成电路板与水温传感器、三轴加速度传感器、磁通门、位移计、微型摄像头、光敏元件电连接,用于监测数据的收集、处理与传递。
进一步地,所述水上监测站上设有太阳能供电装置,所述太阳能供电装置与所述水下多功能3D位移计中的所有设备电连接,并在监测过程中持续供电;和/或,
所述水上监测站上设有通讯模块,所述壳体内固定有数据收发装置,所述数据收发装置与所述集成电路板电连接、与所述通讯模块通讯连接,所述通讯模块用于获取所述水下多功能3D位移计的监测信息,并通过GPRS发送至移动监测终端或者网络。
本发明的实施例还提供一种监测方法,包括以下步骤:
S1在前期勘探的基础上确定需要监测滑坡的位置,并通过放线确定滑坡具体监测部位;
S2将水下多功能3D位移计编号后以格构式的方式通过拉线相连接的方式组网,将水下多功能3D位移计布设到水上滑体表面和水下滑体表面,布设时在水上滑体表面至少留有3个以上不在同一直线上的水下多功能3D位移计;
S3将水上监测站与水上滑体表面的水下多功能3D位移计固定连接;
S4通电后,利用水上监测站的GPS设备获取各水上监测站的位置数据,利用三轴加速度传感器监测每个水下多功能3D位移计的倾角变化,利用磁通门监测每个水下多功能3D位移计的方位角变化,实现了单节点空间姿态变化的监测,利用位移计获取拉线收放长度,从而计算相邻两个水下多功能3D位移计之间的距离,实现滑坡水面以下变形状态的实时监测。
本发明的实施例提供的技术方案带来的有益效果是:类似有限元的思想,可基于组网式监测方法,通过感知监测滑坡表面大量点的空间状态变化,反演积分计算从而间接得到滑坡水下变形演化特征,是现有滑坡位移监测手段的有益补充。该方法所涉及传感器均为成熟技术,结构简单、设计合理。
提供了一个滑坡变形监测的稳定、安全的水下空间,可在与周围岩土体协调变形的同时,保护内部监测传感器,提供供电条件,实现滑坡水下变形的长时间、全过程跟踪监测。
可以实现滑坡水下滑体坡表的多参数监测,包含水下坡表侵蚀状态、水下滑体坡表变形参数等,有利于阐明和判定滑坡位移不同阶段的发展趋势,丰富并验证现有滑坡的预报方法。
附图说明
图1是本发明提供的滑坡水下网式三维变形监测系统一实施例的结构示意图;
图2是图1中水下多功能3D位移计的爆炸示意图;
图3是图1中水下多功能3D位移计另一视角的爆炸示意图;
图4是图1中位移计腔室内的结构示意图;
图5是本发明中监测原理示意图;
图6是本发明提供的监测方法一实施例的流程示意图。
图中:水上监测站1、监测墩11、太阳能供电装置12、GPS装置13、通讯模块14、水下多功能3D位移计2、壳体201、穿孔201a、固定螺钉202、顶盖203、发光元件204、收缩发条205、轮毂206、光栅盘207、转动轴208、拉线209、位移计腔室210、透光孔211、传感器腔室212、透明监测窗213、微型摄像头214、三轴加速度传感器215、磁通门216、水温传感器217、数据收发装置218、光敏元件219、集成电路板220、底盖221、导线孔222、防水电线223、滑体3、水面4。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明实施方式作进一步地描述。
请参见图1至图4,本发明的实施例提供一种滑坡水下网式三维变形监测系统,包括多个水上监测站1和多个水下多功能3D位移计2。
多个所述水下多功能3D位移计2呈格构状布置且依次连接,固定于水上滑体3表面和水下滑体3表面,用于监测滑坡水下变形演化过程。每一所述水上监测站1与水上滑体3表面的一所述水下多功能3D位移计2固定连接,位于水上滑体3表面的所述水下多功能3D位移计2至少为三个,且不在同一直线上,本实施例中,水上监测站1的数量为3个。所述水上监测站1上设有GPS装置13,用于获取水上滑体3表面的所述水下多功能3D位移计2的空间位置。
水上监测站1包括监测墩11,监测墩11浇筑固结后与水下多功能3D位移计2固定连接,监测墩11位于水下多功能3D位移计2的垂直正上方,GPS装置13、太阳能供电装置12、通讯模块14固定于监测墩11上,所述通讯模块14用于获取所述水下多功能3D位移计2的监测信息,并通过GPRS发送至移动监测终端或者网络。太阳能供电装置12与所述水下多功能3D位移计2中的所有设备、GPS装置13、通讯模块14电连接,并在监 测过程中持续为水下多功能3D位移计2、GPS装置13、通讯模块14供电。
所述水下多功能3D位移计2包括壳体201、四个转动轴208、四个拉线209、四个位移计和传感器组件。本实施例中,壳体201包括呈环形设置的边框、隔板(图中未标注)、在上下向间隔设置的顶盖203和底盖221,均为不锈钢材质,顶盖203和底盖221分别通过固定螺钉202安装于边框上下两端,并通过防水胶密封处理,隔板固定于边框中部,将壳体201内部在上下向分为位移计腔室210和传感器腔室212。传感器腔室212内空腔为较小的密封空间,产生的浮力相比水下多功能3D位移计2的整体重力可忽略不计。所述壳体201内可旋转安装有四个转动轴208,所述转动轴208沿上下向延伸,所述转动轴208一端与所述壳体201连接有收缩发条205。具体的,所述壳体201与所述转动轴208相对的位置设有凹槽,所述转动轴208安装于所述凹槽内,所述转动轴208与至少一所述凹槽内连接有所述收缩发条205,转动轴208可在凹槽内旋转。本实施例中,凹槽分别设在顶盖203和隔板上,收缩发条205位于顶盖203的凹槽内,转动轴208位于位移计腔室210内。
所述壳体201(位移计腔室210)周向间隔贯穿设有四个穿孔201a,所述拉线209与所述穿孔201a一一对应,所述拉线209一端缠绕至所述转动轴208上,另一端从所述穿孔201a穿出与相邻所述水下多功能3D位移计2的拉线209连接。本实施例中,所述转动轴208上固定有轮毂206,所述拉线209一端缠绕至所述轮毂206上,轮毂206用于承载放出与回收的拉线209,对拉线209限位。
多个水下多功能3D位移计2呈格构状布置,一水下多功能3D位移计2周向紧邻四个水下多功能3D位移计2,该水下多功能3D位移计2的壳体201内通过四个拉线209从穿孔201a穿出,与周向四个水下多功能3D位移计2的拉线209连接构成监测网络。示例性的,当一水下多功能3D位移计2下方的水下多功能3D位移计2随着滑体3向下移动,使两个水下多 功能3D位移计2之间的距离增大,会使转动轴208和收缩发条205转动使拉线209放出;当一水下多功能3D位移计2上方的水下多功能3D位移计2随着滑体3向下移动,使两个水下多功能3D位移计2之间的距离减小,会使转动轴208和收缩发条205转动使拉线209缠绕至转动轴208上,收缩发条205的设置,可使得拉线209始终处于紧绷状态。
所述位移计固定于所述壳体201内,位于所述位移计腔室210内,每一所述位移计与所述拉线209相对应,用于测量所述拉线209收放长度。位移计可以为磁性位移计,本实施例中,所述位移计为光电式位移计,包括发光元件204、光敏元件219和光栅盘207,每一所述光栅盘207同轴固定于每一所述转动轴208上,所述转动轴208旋转带动所述光栅盘207旋转,所述发光元件204和光敏元件219分别位于所述光栅盘207上下两侧,且固定于所述壳体201内,所述光敏元件219用于获取所述光栅盘207的转动距离,从而获得所述拉线209的收放长度。本实施例中,发光元件204由密封胶固定于顶盖203上,位于所述位移计腔室210内,所述光敏元件219位于所述传感器腔室212内,具体的,固定于隔板面向底盖221的一侧,所述隔板与所述发光元件204相对的位置贯穿设有透光孔211,该透光孔211以树脂填充并做防水处理。
拉线209的伸缩使收缩发条205带动转动轴208旋转,从而带动光栅盘207旋转,发光元件204发出光线,经过光栅盘207通过透光孔211照射至光敏元件219上,光敏元件219将接收到的光信号转换为电信号,获取光栅盘207的转动距离,从而获得拉线209的收放长度。
所述传感器组件包括固定于所述壳体201内的三轴加速度传感器215、磁通门216和水温传感器217,所述三轴加速度传感器215、磁通门216分别用于监测所述水下多功能3D位移计2的倾角变化与方位角变化。所述水温传感器217用于监测水温数据。本实施中,所述传感器组件位于所述传感器腔室212内。
所述传感器腔室212侧壁设有透明监测窗213,所述微型摄像头214固定于所述透明监测窗213内侧,微型摄像头214带有发光体,便于观测水下滑体3的受侵蚀状态。所述壳体201内固定有集成电路板220,所述集成电路板220与水温传感器217、三轴加速度传感器215、磁通门216、位移计、微型摄像头214、光敏元件219电连接,集成电路板220包含单片机,用于监测数据的收集、处理与传递。
数据收发装置218固定于壳体201内,本实施例中固定于传感器腔室212内,数据收发装置218与集成电路板220电连接,获取监测数据,数据收发设备包含Zigbee或蓝牙模块,可实现临近水下多功能3D位移计2的近场通讯,从而组成局部无线网络,数据收发装置218与通讯模块14通讯连接,将水下多功能3D位移计2内的监测数据逐步据传输至水上监测站1中的通讯模块14中,所述通讯模块14将采集到的的监测数据上传网络。
壳体201(底盖221)和隔板均开设有导线孔222,供防水电线223穿过,导线孔222与防水电线223之间通过防水胶密封处理,水下多功能3D位移计2之间通过防水电线223电连接构成供电网络,防水电线223通过太阳能供电装置12供电,为整个水下多功能3D位移计2内的传感器供电。
本发明提供的滑坡水下网式三维变形监测系统,在初始阶段,将多个水下多功能3D位移计2贴附于滑体3表面,形成与滑体3表面相适配的监测网曲面,通过该曲面上的三个水上监测站1内的GPS装置13可以测得其初始空间姿态。
利用水温传感器217对各水下多功能3D位移计2所处位置的水温进行监测,利用三轴加速度传感器215可监测每个水下多功能3D位移计2的倾角变化,利用磁通门216可监测每个水下多功能3D位移计2的方位角变化,实现了单节点空间姿态变化的监测,利用位移计获取拉伸收放长度,从而计算相邻两个水下多功能3D位移计2之间的距离。利用微型摄像头214可观测水下滑体3的受侵蚀状态。
将相邻两个水下多功能3D位移计2的拉线209连接组网后,由于拉线209始终处于绷直状态,两个相邻水下多功能3D位移计2之间的间距较小,每一列水下多功能3D位移计2可形成类似固定式测斜仪的组合。
示例性的,请参见图5,第一个水下多功能3D位移计2变形前的位置为O,第二个水下多功能3D位移计2变形前的位置为C 1,第二个水下多功能3D位移计2变形后的位置为C' 1,通过水上监测站1的GPS设备可获得第一个水下多功能3D位移计2O点的位置,通过三轴加速度传感器215可测得第二个水下多功能3D位移计2C1点的倾角,通过第一个水下多功能3D位移计2和第二个水下多功能3D位移计2之间拉线209的长度,以及变形后拉线209收放的长度,可以得到O点和C 1点之间的距离L 1,结合如下积分公式可以获得第二个水下多功能3D位移计2C 1的位置以及最底部的水下多功能3D位移计2的位置:
滑坡变形前的位置:
Figure PCTCN2021098094-appb-000001
其中,i为一列水下多功能3D位移计2的数量,D为第一个水下多功能3D位移计2和第二个水下多功能3D位移计2之间的水平距离,L 1为滑体3变形前第一个水下多功能3D位移计2和第二个水下多功能3D位移计2之间的距离,θ 1为滑体3变形前第2个水下多功能3D位移计2的倾角;D t为第一个水下多功能3D位移计2和最底部的水下多功能3D位移计2之间的水平距离,L i为滑体3变形前第i个水下多功能3D位移计2和第i+1个水下多功能3D位移计2之间的距离,θ i为滑体3变形前第i+1个水下多功能3D位移计2的倾角。
滑坡变形后的位置:
Figure PCTCN2021098094-appb-000002
最底部多功能3D位移计2两者的水平位置距离为:Z=D t'-D t
C 1点到C' 1点的直线距离可以通过如下公式计算:
Figure PCTCN2021098094-appb-000003
其中,i为一列水下多功能3D位移计2的数量,L' 1为滑体3变形后第一个水下多功能3D位移计2和第二个水下多功能3D位移计2之间的距离,D'为滑体3变形后第一个水下多功能3D位移计2和第二个水下多功能3D位移计2之间的水平距离,D t为滑体3变形后第一个水下多功能3D位移计2和最底部的水下多功能3D位移计2之间的水平距离,θ 1为滑体3变形前第2个水下多功能3D位移计2的倾角,θ 2为滑体3变形后第2个水下多功能3D位移计2的倾角,D' i为滑体3变形后第i个水下多功能3D位移计2和第i+1个水下多功能3D位移计2之间的水平距离。
由此,垂直向的每个水下多功能3D位移计2之间的位置变化可以获知,同理可获得水平向的每个水下多功能3D位移计2之间的位置变化,通过如上计算方法可以获得任一位移监测装置2任一时刻的位置变化。
该监测网布设于滑体3的表面后,无外界干扰下,监测网于水面4下滑体3协同变形,监测得到的监测网空间姿态变化,即滑坡的空间姿态变化。
本发明实施例还提供一种监测方法,包括以下步骤:
S1在前期勘探的基础上确定需要监测滑坡的位置,并通过放线确定滑坡具体监测部位。
S2将水下多功能3D位移计2编号后以格构式的方式通过拉线209相连接的方式组网,本实施例中,组网方式为矩形格构式。将水下多功能3D位移计2布设到水上滑体3表面和水下滑体3表面。布设时应注意所有水下多功能3D位移计2应依次有序排布,间隔均匀,不得重叠、缠绕。通过钢钎或其他方式固定位于该网边缘位置的水下多功能3D位移计2以防止水流冲击使其脱离原始位置。布设时在水上滑体3表面至少留有两排水下多 功能3D位移计2,或3个以上不在同一直线上的水下多功能3D位移计2。
S3将至少3个水上监测站1与水上滑体3表面不在同一直线上的水下多功能3D位移计2固定连接。具体的,通过浇筑的形式建造监测墩11,在监测墩11上安装太阳能供电装置12、GPS装置13、通讯模块14。
S4通电后,利用水上监测站1的GPS设备获取各水上监测站1的位置数据,利用三轴加速度传感器215监测每个水下多功能3D位移计2的倾角变化,利用磁通门216监测每个水下多功能3D位移计2的方位角变化,实现了单节点空间姿态变化的监测,利用位移计获取拉线209收放长度,从而计算相邻两个水下多功能3D位移计2之间的距离,通过通讯模块14将监测信息传递至网络,再通过终端如手机电脑下载、数据处理,实现滑坡水面4以下变形状态的实时监测。同时,借助水下多功能3D位移计2中的微型摄像头214可实现滑坡水面4以下坡表侵蚀状态的实时监测,结合编号,分析不同水压环境、涌浪对滑坡体的影响。此外,水温传感器217可监测水温环境变化,同时也可以改造替换为其他有益于滑坡监测的传感器。
在本文中,所涉及的前、后、上、下等方位词是以附图中零部件位于图中以及零部件相互之间的位置来定义的,只是为了表达技术方案的清楚及方便。应当理解,所述方位词的使用不应限制本申请请求保护的范围。
在不冲突的情况下,本文中上述实施例及实施例中的特征可以相互结合。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种滑坡水下网式三维变形监测系统,其特征在于,包括多个水上监测站和多个水下多功能3D位移计;
    多个所述水下多功能3D位移计呈格构状布置且依次连接,固定于水上滑体表面和水下滑体表面,每一所述水上监测站与水上滑体表面的一所述水下多功能3D位移计固定连接,位于水上滑体表面的所述水下多功能3D位移计至少为三个,且不在同一直线上,所述水上监测站上设有GPS装置,用于获取水上滑体表面的所述水下多功能3D位移计的空间位置;
    所述水下多功能3D位移计包括壳体、四个转动轴、四个拉线、四个位移计、传感器组件;所述壳体内可旋转安装有四个转动轴,所述转动轴沿上下向延伸,所述转动轴一端与所述壳体连接有收缩发条,所述壳体周向间隔贯穿设有四个穿孔,所述拉线与所述穿孔一一对应,所述拉线一端缠绕至所述转动轴上,另一端从所述穿孔穿出与相邻所述水下多功能3D位移计的拉线连接;所述位移计固定于所述壳体内,每一所述位移计与所述拉线相对应,用于测量所述拉线收放长度,所述传感器组件包括三轴加速度传感器和磁通门,所述三轴加速度传感器、磁通门固定于所述壳体内,分别用于监测所述水下多功能3D位移计的倾角变化与方位角变化。
  2. 如权利要求1所述的滑坡水下网式三维变形监测系统,其特征在于,所述位移计包括发光元件、光敏元件和光栅盘,每一所述光栅盘同轴固定于每一所述转动轴上,所述转动轴旋转带动所述光栅盘旋转,所述发光元件和光敏元件分别位于所述光栅盘上下两侧,且固定于所述壳体内,所述光敏元件用于获取所述光栅盘的转动距离,从而获得所述拉线的收放长度。
  3. 如权利要求2所述的滑坡水下网式三维变形监测系统,其特征在于,所述壳体内设有隔板以在上下向形成位移计腔室和传感器腔室,所述位移计位于所述位移计腔室内,所述传感器组件位于所述传感器腔室内。
  4. 如权利要求3所述的滑坡水下网式三维变形监测系统,其特征在于,所述发光元件位于所述位移计腔室内,所述光敏元件位于所述传感器腔室内,所述隔板与所述发光元件相对的位置贯穿设有透光孔。
  5. 如权利要求1所述的滑坡水下网式三维变形监测系统,其特征在于,所述转动轴上固定有轮毂,所述拉线一端缠绕至所述轮毂上。
  6. 如权利要求1所述的滑坡水下网式三维变形监测系统,其特征在于,所述壳体与所述转动轴相对的位置设有凹槽,所述转动轴安装于所述凹槽内,所述转动轴与至少一所述凹槽内连接有所述收缩发条。
  7. 如权利要求1所述的滑坡水下网式三维变形监测系统,其特征在于,所述传感器组件还包括水温传感器,所述水温传感器位于所述壳体内,用于监测水温数据;和/或,
    还包括微型摄像头,所述传感器腔室侧壁设有透明监测窗,所述微型摄像头固定于所述透明监测窗内侧,用于观测水下滑体的受侵蚀状态。
  8. 如权利要求1所述的滑坡水下网式三维变形监测系统,其特征在于,所述壳体内固定有集成电路板,所述集成电路板与水温传感器、三轴加速度传感器、磁通门、位移计、微型摄像头、光敏元件电连接,用于监测数据的收集、处理与传递。
  9. 如权利要求8所述的滑坡水下网式三维变形监测系统,其特征在于,所述水上监测站上设有太阳能供电装置,所述太阳能供电装置与所述水下多功能3D位移计中的所有设备电连接,并在监测过程中持续供电;和/或,
    所述水上监测站上设有通讯模块,所述壳体内固定有数据收发装置,所述数据收发装置与所述集成电路板电连接、与所述通讯模块通讯连接,所述通讯模块用于获取所述水下多功能3D位移计的监测信息,并通过GPRS发送至移动监测终端或者网络。
  10. 一种监测方法,其特征在于,包括以下步骤:
    S1在前期勘探的基础上确定需要监测滑坡的位置,并通过放线确定滑 坡具体监测部位;
    S2将水下多功能3D位移计编号后以格构式的方式通过拉线相连接的方式组网,将水下多功能3D位移计布设到水上滑体表面和水下滑体表面,布设时在水上滑体表面至少留有3个以上不在同一直线上的水下多功能3D位移计;
    S3将水上监测站与水上滑体表面的水下多功能3D位移计固定连接;
    S4通电后,利用水上监测站的GPS设备获取各水上监测站的位置数据,利用三轴加速度传感器监测每个水下多功能3D位移计的倾角变化,利用磁通门监测每个水下多功能3D位移计的方位角变化,实现了单节点空间姿态变化的监测,利用位移计获取拉线收放长度,从而计算相邻两个水下多功能3D位移计之间的距离,实现滑坡水面以下变形状态的实时监测。
PCT/CN2021/098094 2021-05-14 2021-06-03 一种滑坡水下网式三维变形监测系统及监测方法 WO2022236894A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/367,589 US11536861B2 (en) 2021-05-14 2021-07-05 Three-dimensional net-type monitoring system and method for underwater landslide deformation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110527710.X 2021-05-14
CN202110527710.XA CN113465523B (zh) 2021-05-14 2021-05-14 一种滑坡水下网式三维变形监测系统及监测方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/367,589 Continuation US11536861B2 (en) 2021-05-14 2021-07-05 Three-dimensional net-type monitoring system and method for underwater landslide deformation

Publications (1)

Publication Number Publication Date
WO2022236894A1 true WO2022236894A1 (zh) 2022-11-17

Family

ID=77870686

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/098094 WO2022236894A1 (zh) 2021-05-14 2021-06-03 一种滑坡水下网式三维变形监测系统及监测方法

Country Status (2)

Country Link
CN (1) CN113465523B (zh)
WO (1) WO2022236894A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114485371A (zh) * 2022-02-28 2022-05-13 重庆长安新能源汽车科技有限公司 一种拉线位移传感器的拉线安装装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114440820B (zh) * 2022-01-12 2023-02-28 中国地质大学(武汉) 一种滑坡水下变形特征转移监测设备与方法
CN115276837B (zh) * 2022-09-27 2023-06-16 江西怡杉环保股份有限公司 一种可估算测点坐标的高精度远程监测系统

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0835836A (ja) * 1994-07-22 1996-02-06 Jdc Corp 海底地盤変位計測方法およびその装置
CN203163672U (zh) * 2013-04-22 2013-08-28 中国地质科学院探矿工艺研究所 滑坡深部位移自动监测仪
CN104655191A (zh) * 2015-02-09 2015-05-27 中国地质大学(武汉) 一种消落带库岸多参数立体化监测方法及监测探头
CN106871836A (zh) * 2017-01-12 2017-06-20 中国地质大学(武汉) 一种边坡位移自动化监测装置及其使用方法
CN107101624A (zh) * 2017-05-23 2017-08-29 中国水利水电科学研究院 地质变形三维观测系统及其安装埋设方法、测量方法
CN206959778U (zh) * 2017-07-19 2018-02-02 四川建筑职业技术学院 一种基于滑坡体位移和坡度姿态变化的监测系统
CN109537650A (zh) * 2018-12-29 2019-03-29 中国矿业大学 一种边坡大量程测距仪及边坡变形实时监测方法
CN209027460U (zh) * 2018-11-16 2019-06-25 张斌 一种水平位移监测装置
CN110006382A (zh) * 2019-03-26 2019-07-12 华思(广州)测控科技有限公司 一种深部位移与表面位移一体化自动监测装置及方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3983505B2 (ja) * 2001-06-25 2007-09-26 東京瓦斯株式会社 埋設管路の沈下応力評価方法および沈下応力評価装置
JP4323298B2 (ja) * 2003-12-02 2009-09-02 坂田電機株式会社 地すべり記録器
WO2012145884A1 (zh) * 2011-04-25 2012-11-01 中国人民解放军国防科学技术大学 一种工程建筑沉降的监测方法与监测系统
CN104807431A (zh) * 2015-04-25 2015-07-29 东北大学 一种井下巷道收敛变形连续监测装置
CN106323223B (zh) * 2015-07-06 2019-12-20 长沙理工大学 一种高速公路路堑边坡变形监测及预警系统
CN104976983B (zh) * 2015-07-10 2017-12-12 镇江绿材谷新材料科技有限公司 一种采用分布式监测装置监测滑坡的方法
CN105333857A (zh) * 2015-12-02 2016-02-17 吉林大学 一种基于多个拉线式位移传感器监测滑坡变形参数的装置
CN207556493U (zh) * 2017-11-01 2018-06-29 中国电建集团华东勘测设计研究院有限公司 滑坡位移监测装置及预警系统
CN108050986B (zh) * 2017-12-13 2019-09-20 河北工业大学 基于多点位移计监测确定岩土体内部破裂面位置的方法
CN109115145B (zh) * 2018-05-25 2019-08-20 中国地质大学(武汉) 一种嵌入式滑坡深部大变形监测装置及方法
CN209277218U (zh) * 2018-12-25 2019-08-20 陈文勇 一种岩土工程边坡地表变形监测装置
CN210833476U (zh) * 2019-09-02 2020-06-23 湖南工程职业技术学院 一种地质滑坡监测装置
CN210199955U (zh) * 2019-09-04 2020-03-27 成理智源科技(成都)有限公司 一种山体滑坡用监测预警装置
CN110702170A (zh) * 2019-10-29 2020-01-17 西南交通大学 管道滑坡智能监测桩组件、监测网系统、监测方法
CN110715628A (zh) * 2019-10-31 2020-01-21 浙江中咨交通科技有限公司 全立面网格化导线式边坡监测系统及监测方法
CN111189437B (zh) * 2020-01-13 2022-02-18 江苏恒旺数字科技有限责任公司 露天矿区边坡变形检测装置及方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0835836A (ja) * 1994-07-22 1996-02-06 Jdc Corp 海底地盤変位計測方法およびその装置
CN203163672U (zh) * 2013-04-22 2013-08-28 中国地质科学院探矿工艺研究所 滑坡深部位移自动监测仪
CN104655191A (zh) * 2015-02-09 2015-05-27 中国地质大学(武汉) 一种消落带库岸多参数立体化监测方法及监测探头
CN106871836A (zh) * 2017-01-12 2017-06-20 中国地质大学(武汉) 一种边坡位移自动化监测装置及其使用方法
CN107101624A (zh) * 2017-05-23 2017-08-29 中国水利水电科学研究院 地质变形三维观测系统及其安装埋设方法、测量方法
CN206959778U (zh) * 2017-07-19 2018-02-02 四川建筑职业技术学院 一种基于滑坡体位移和坡度姿态变化的监测系统
CN209027460U (zh) * 2018-11-16 2019-06-25 张斌 一种水平位移监测装置
CN109537650A (zh) * 2018-12-29 2019-03-29 中国矿业大学 一种边坡大量程测距仪及边坡变形实时监测方法
CN110006382A (zh) * 2019-03-26 2019-07-12 华思(广州)测控科技有限公司 一种深部位移与表面位移一体化自动监测装置及方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114485371A (zh) * 2022-02-28 2022-05-13 重庆长安新能源汽车科技有限公司 一种拉线位移传感器的拉线安装装置
CN114485371B (zh) * 2022-02-28 2023-08-25 深蓝汽车科技有限公司 一种拉线位移传感器的拉线安装装置

Also Published As

Publication number Publication date
CN113465523B (zh) 2022-03-15
CN113465523A (zh) 2021-10-01

Similar Documents

Publication Publication Date Title
WO2022236894A1 (zh) 一种滑坡水下网式三维变形监测系统及监测方法
CN102901484B (zh) 天线测姿传感器以及天线测姿方法
CN102981185B (zh) 三分量磁场和三分量电场海洋电磁数据采集站
US11536861B2 (en) Three-dimensional net-type monitoring system and method for underwater landslide deformation
WO2022217722A1 (zh) 一种水库滑坡阵列式水下变形监测装置及监测方法
TWI406999B (zh) Probe Monitoring System for Pile Bottom Bed Height
CN105974480B (zh) 一种双舱球组合式海底电磁仪
CN107478374B (zh) 一种基于flex弯曲传感与3d打印技术的无线测斜监测系统
CN104730577B (zh) 一种基于共振包监测数据的地震预测方法
CN110488346A (zh) 一种基于光纤水听器的海洋地震勘探垂直缆系统
CN107655454A (zh) 一种基于加速度快速测量的移动测斜仪及其测量方法
CN102287184B (zh) 微型泥浆漂浮式电子压力计及其工作方法、压力测量装置
CN114001801A (zh) 一种长期地下水位观测装置及其观测方法
CN104155695A (zh) 潜水式浮标地震数据采集站
CN202024754U (zh) 大坝与边坡三维连续变形监测系统
CN102628957B (zh) 基于计算机网络的百万道级新型数字地震仪
CN215252761U (zh) 一种可回收的软土分层沉降远程实时自动监测装置
EP1971882A1 (fr) Dispositif de mesure géophysique pour l'exploration des ressources naturelles du sol en domaine aquatique.
CN104735421A (zh) 高层建筑物沉降检测装置及进行沉降检测的方法
CN207528223U (zh) 一种基于加速度快速测量的移动测斜仪
CN104251844B (zh) 一种多通道海水透明度测量装置及其方法
CN111980751B (zh) 一种便携式矿用巷道多源传感器扫描装置及施工方法
CN211318779U (zh) 一种煤矿地质条件勘探背景噪声采集设备
CN111502616B (zh) 注水参数的确定方法、装置及存储介质
CN114440820B (zh) 一种滑坡水下变形特征转移监测设备与方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21941463

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE