WO2022236872A1 - 一种连续纤维增强复合材料的增材制造方法 - Google Patents

一种连续纤维增强复合材料的增材制造方法 Download PDF

Info

Publication number
WO2022236872A1
WO2022236872A1 PCT/CN2021/095909 CN2021095909W WO2022236872A1 WO 2022236872 A1 WO2022236872 A1 WO 2022236872A1 CN 2021095909 W CN2021095909 W CN 2021095909W WO 2022236872 A1 WO2022236872 A1 WO 2022236872A1
Authority
WO
WIPO (PCT)
Prior art keywords
continuous fiber
continuous
reinforced composite
additive manufacturing
composite material
Prior art date
Application number
PCT/CN2021/095909
Other languages
English (en)
French (fr)
Inventor
熊异
王耀辉
周利民
张国权
刘光
Original Assignee
南方科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南方科技大学 filed Critical 南方科技大学
Publication of WO2022236872A1 publication Critical patent/WO2022236872A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/141Processes of additive manufacturing using only solid materials
    • B29C64/147Processes of additive manufacturing using only solid materials using sheet material, e.g. laminated object manufacturing [LOM] or laminating sheet material precut to local cross sections of the 3D object
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/307Handling of material to be used in additive manufacturing
    • B29C64/314Preparation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/379Handling of additively manufactured objects, e.g. using robots
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/386Data acquisition or data processing for additive manufacturing
    • B29C64/393Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/56Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using mechanical means or mechanical connections, e.g. form-fits
    • B29C65/62Stitching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/56Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using mechanical means or mechanical connections, e.g. form-fits
    • B29C65/64Joining a non-plastics element to a plastics element, e.g. by force
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/74Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by welding and severing, or by joining and severing, the severing being performed in the area to be joined, next to the area to be joined, in the joint area or next to the joint area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/74Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by welding and severing, or by joining and severing, the severing being performed in the area to be joined, next to the area to be joined, in the joint area or next to the joint area
    • B29C65/747Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by welding and severing, or by joining and severing, the severing being performed in the area to be joined, next to the area to be joined, in the joint area or next to the joint area using other than mechanical means
    • B29C65/7473Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by welding and severing, or by joining and severing, the severing being performed in the area to be joined, next to the area to be joined, in the joint area or next to the joint area using other than mechanical means using radiation, e.g. laser, for simultaneously welding and severing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/74Joining plastics material to non-plastics material
    • B29C66/744Joining plastics material to non-plastics material to elements other than metals
    • B29C66/7444Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • B33Y40/10Pre-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • B33Y40/20Post-treatment, e.g. curing, coating or polishing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes

Definitions

  • the invention relates to the field of additive manufacturing, in particular to an additive manufacturing method for continuous fiber reinforced composite materials.
  • Continuous fiber reinforced polymer matrix composites have the advantages of high specific strength, high specific stiffness, and strong designability, and have been widely used in aerospace, military and other fields.
  • Additive manufacturing technology is an emerging molding process based on the principle of discrete accumulation. Since additive manufacturing technology can freely form complex parts with high efficiency and low cost while giving great freedom in design, it has been gradually applied to continuous fiber reinforced polymer matrix composites. Compared with traditional molding technologies such as resin transfer molding, compression molding, and hot pressing, the continuous fiber-reinforced polymer matrix composites formed by additive manufacturing technology have the advantages of no mold, flexible process, and short development cycle. At the same time, since composite additive manufacturing can be integrated into a complex structure with excellent performance, it has broad development prospects in metamaterials, lightweight structures, and intelligent circuit development.
  • FDM Fused Deposition Modeling
  • the matrix material and fiber co-extrusion technology which is a sequential solidification from point to line, and then from line to surface. Due to the continuous characteristics of the fibers in the printing process, the solidification of the continuous fibers and the matrix material is slow, and the fiber arrangement is prone to distortion when large corners appear in a small area. Therefore, the 3D printing of continuous fiber reinforced composite materials based on FDM has the advantages of printing Disadvantages such as slow speed and inaccurate fiber arrangement.
  • the purpose of the present invention is to provide an additive manufacturing method for continuous fiber reinforced composite materials, aiming to solve the problems of slow printing speed and inaccurate fiber arrangement in the prior art.
  • a method for additive manufacturing of continuous fiber-reinforced composite materials comprising the steps of:
  • the continuous fibers are arranged and fixed on the matrix film by sewing;
  • the matrix film with continuous fiber is carried out peripheral contour cutting processing, until the matrix film with continuous fiber of required profile is cut out;
  • step B a laser device or a numerical control machine tool is used to cut the outer contour of the matrix film with continuous fibers.
  • the steps include:
  • the model analysis system processes the computer-aided design (CAD) model to obtain the data information of each layer of the 3D CAD model, and transmits the data information of each layer to the control system layer by layer through the interface.
  • CAD computer-aided design
  • step A specifically includes: the control system controls the sewing device to sew the continuous fiber onto the matrix film according to the sewing data of the current layer.
  • step B specifically includes: the control system controls the laser device to cut the outer contour of the matrix film with continuous fibers according to the outer contour data of the current layer, until the matrix film with continuous fibers with the desired contour is cut.
  • step C specifically includes:
  • the cut matrix film with continuous fibers is sent to the printing platform and stacked on the formed film layer;
  • thermocompression bonding process is performed using a thermopress plate.
  • the temperature of the thermocompression bonding treatment is 50°C-350°C, and the time of the thermocompression bonding treatment is 1s-15s.
  • the continuous fiber is selected from one of continuous fibers such as carbon fiber and aramid fiber, but is not limited thereto.
  • the matrix film is selected from one or more of thermoplastic matrix films such as polylactic acid matrix film and nylon matrix film, but is not limited thereto.
  • a method for additive manufacturing of continuous fiber-reinforced composite materials comprising the steps of:
  • the continuous fibers are arranged and fixed on the matrix film by sewing;
  • the present invention can precisely control the continuous fiber arrangement in the continuous fiber reinforced composite material by adopting the above method, can control the volume content of the continuous fiber and improve the mechanical properties of the composite material.
  • the present invention only needs to process the outer contour of each layer, and can run multiple sewing equipment at the same time, and realize stacking for multi-layer parallel processing And bonding, can greatly increase the manufacturing speed of continuous fiber reinforced composites.
  • Fig. 1 is a schematic diagram of the method of the present invention.
  • Fig. 2 is a schematic diagram of the sewing track of the embodiment.
  • Fig. 3 is an effect diagram of the precise arrangement of the continuous fibers of the embodiment.
  • the present invention provides a continuous fiber reinforced composite material and its additive manufacturing method.
  • the present invention will be further described in detail below. It should be understood that the specific embodiments described here are only used to explain the present invention, not to limit the present invention.
  • An embodiment of the present invention provides a continuous fiber-reinforced composite material additive manufacturing method, which includes the steps of:
  • the continuous fibers are arranged and fixed on the matrix film by sewing;
  • the matrix film with continuous fiber is carried out peripheral contour cutting processing, until the matrix film with continuous fiber of required profile is cut out;
  • the above method can be used to precisely control the arrangement of the continuous fibers in the continuous fiber reinforced composite material, control the volume content of the continuous fibers and improve the mechanical properties of the composite material.
  • this embodiment is based on the surface as the basic unit to be piled up layer by layer, and each layer only needs to process the outer contour, and multiple sewing equipment can be used Simultaneous operation, parallel processing of multiple layers to achieve lamination and bonding, can greatly improve the manufacturing speed of continuous fiber reinforced composite materials.
  • the step before step A, the step also includes:
  • the model analysis system processes the 3D CAD model to obtain the data information of each layer of the 3D CAD model, and transmits the data information of each layer to the control system layer by layer through the interface.
  • the model analysis system processes the three-dimensional CAD model to obtain the coordinate data information of each layer of the three-dimensional CAD model, that is, the coordinate information (X, Y) of each point on the path.
  • the coordinate origin can be any point, and all points
  • the coordinates of each layer are determined by the origin, and the data information of each layer is transmitted to the control system layer by layer through the interface.
  • step A specifically includes: the control system controls the sewing device to sew the continuous fiber onto the matrix film according to the sewing data of the current layer.
  • continuous fibers are stitched and laminated to realize additive manufacturing, which can precisely control the arrangement of continuous fibers in the continuous fiber reinforced composite material, control the volume content of continuous fibers and improve the mechanical properties of the composite material.
  • step B a laser device or a numerical control machine tool is used to cut the outer contour of the matrix film with continuous fibers.
  • step B specifically includes: the control system controls the laser device to cut the outer contour of the matrix film with continuous fibers according to the outer contour data of the current layer until the matrix film with continuous fibers with the desired contour is cut.
  • step C specifically includes:
  • thermocompression bonding process is performed using a thermopress plate.
  • the temperature of the thermocompression bonding treatment is 50°C-350°C, and the time of the thermocompression bonding treatment is 1s-15s.
  • the continuous fiber may be selected from one of continuous fibers such as carbon fiber and aramid fiber, but is not limited thereto.
  • the matrix film is selected from one or more of thermoplastic matrix films such as polylactic acid (PLA) matrix films and nylon matrix films, but is not limited thereto.
  • thermoplastic matrix films such as polylactic acid (PLA) matrix films and nylon matrix films, but is not limited thereto.
  • the thickness of the matrix film is 0.05mm-1mm.
  • the additive manufacturing method of the continuous fiber reinforced composite material specifically includes the steps of:
  • Step 1 The model analysis system processes the 3D CAD model to obtain the coordinate data information of each layer of the 3D CAD model, that is, the coordinate information (X, Y) of each point on the path.
  • the coordinate origin can be any point, and the coordinates of all points The origin is used to determine its coordinate value, and the data information of each layer is transmitted to the control system layer by layer through the interface;
  • Step 2 The control system controls the sewing device to sew the continuous fiber to the matrix film according to the sewing data of the current layer.
  • the principle is shown in 1 in Figure 1;
  • Step 3 sending the matrix film with continuous fibers obtained in step 2 to the laser workbench processing area of the laser device;
  • Step 4 The control system controls the laser head of the laser device to move in the X and Y axes according to the outer contour data of the current layer to cut the outer contour of the matrix film with continuous fibers until the matrix film with continuous fibers with the required contour is cut , its principle is shown in 2 in Figure 1;
  • Step 5 The control system controls the laser working platform to send the cut matrix film with continuous fibers to the printing working platform;
  • Step 6 According to the principle of 3 in Figure 1, the printing table rises for heat-pressing treatment, and then the control system controls the printing table to descend one level, and then repeat steps 2 to 5 until the processing is completed and the workpiece is taken out.
  • continuous fibers are stitched and laminated to realize additive manufacturing, which can precisely control the arrangement of continuous fibers in continuous fiber reinforced composite materials, control the volume content of continuous fibers and improve the mechanical properties of composite materials; in addition, different Compared with the sequential solidification method of other composite material additive manufacturing from point to line, and then from line to surface, this embodiment is based on the surface as the basic unit to be piled up layer by layer. Each layer only needs to process the outer contour, and multiple sewing equipment can be used simultaneously Running, parallel processing of multiple layers followed by lamination and bonding enables ultrafast additive manufacturing of continuous fiber reinforced composites.
  • the embodiment of the present invention also provides a continuous fiber reinforced composite material additive manufacturing method, which includes the steps of:
  • the continuous fibers are arranged and fixed on the matrix film by sewing;
  • An embodiment of the present invention provides a continuous fiber-reinforced composite material, which is manufactured by using the additive manufacturing method of the continuous fiber-reinforced composite material described in the embodiment of the present invention.
  • an additive manufacturing method for continuous fiber reinforced composites including the following steps:
  • the data of the three-dimensional component of the cuboid part is layered and discrete, and the size of the cuboid part to be printed is defined as a cuboid part with a length of 60mm, a width of 18mm, and a height of 1.2mm.
  • the material is Toray T300B 1000K carbon fiber bundle and 0.06mm thick PLA (polylactic acid) film material.
  • the control system controls the sewing device according to When layer sewing data is used to sew continuous fibers onto a substrate film. Among them, the sewing path is the single-track reciprocating linear scanning method shown in Figure 2, the layer thickness is 0.06mm, and the scanning distance is 1mm.
  • the control system sends the sewn carbon fiber film material to be cut to the laser working platform, adjusts the distance between the laser head and the sewn carbon fiber film material to be cut, and focuses the laser on the sewn carbon fiber film material to be cut
  • the peripheral contour cutting process is performed on the single-layer sewing carbon fiber film material.
  • the effect of the film after single-layer treatment is shown in Figure 3: the white part shown in the figure is the continuous fiber, and it can be observed that the continuous 90° turning layout of the continuous fiber in a small range has little distortion, and the overall layout of the fiber is accurate.
  • the material is 200D aramid fiber and 0.06mm thick PLA film material.
  • the material is 400D aramid fiber and 0.06mm thick PLA film material.
  • the present invention provides a continuous fiber reinforced composite material additive manufacturing method.
  • the method of the invention can accurately control the continuous fiber arrangement in the continuous fiber reinforced composite material, can control the volume content of the continuous fiber and improve the mechanical properties of the composite material.
  • the present invention is based on the surface as the basic unit of layer-by-layer accumulation and formation. Each layer only needs to process the outer contour, and multiple sewing equipment can be used at the same time Running, laminating and bonding multiple layers in parallel can greatly increase the manufacturing speed of continuous fiber-reinforced composites.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Robotics (AREA)
  • Moulding By Coating Moulds (AREA)
  • Reinforced Plastic Materials (AREA)

Abstract

一种连续纤维增强复合材料的增材制造方法,包括步骤:A、采用缝纫的方式将连续纤维形成于基质薄膜上;B、对具有连续纤维的基质薄膜进行外围轮廓切割处理,直至切割出所需轮廓的具有连续纤维的基质薄膜;C、将切割后的具有连续纤维的基质薄膜依次进行堆叠和粘合处理;重复上述步骤A、B和C,直至得到所述连续纤维增强复合材料。该方法可以精确控制连续纤维增强复合材料中连续纤维的排布和体积含量,并能提高复合材料的力学性能和制造速度。

Description

一种连续纤维增强复合材料的增材制造方法 技术领域
本发明涉及增材制造领域,尤其涉及一种连续纤维增强复合材料的增材制造方法。
背景技术
连续纤维增强聚合物基复合材料具有比强度高、比刚度大、可设计性强等优点,已广泛应用于航空航天、军工等领域。增材制造技术是基于离散-堆积原理的新兴成型工艺。由于增材制造技术能够高效、低成本自由成型复杂零件同时赋予设计极大自由度,因此被逐渐应用于连续纤维增强聚合物基复合材料成型。相比于树脂转移模塑、模压、热压等传统成型技术,通过增材制造技术来成型连续纤维增强聚合物基复合材料具有无需模具、工艺灵活、开发周期短等优势。同时,由于复材增材制造能一体化成型,具有优异性能的复杂结构,在超材料、轻质结构、智能电路开发等方面具有广阔的发展前景。
现有连续纤维复合材料增材制造技术大多基于熔融沉积成型工艺(Fused Deposition Modeling,简称FDM),基质材料与纤维共挤出技术,是一种由点到线,再由线到面的顺序凝固方式,由于受限于打印过程中纤维的连续特性,连续纤维与基质材料固化较慢,小范围出现大幅度拐角时纤维排布容易出现失真,所以基于FDM的连续纤维增强复合材料3D打印具有打印速度慢、纤维排布不准确等缺点。
因此,现有技术仍有待于改进和发展。
发明内容
鉴于上述现有技术的不足,本发明的目的在于提供一种连续纤维增强复合材料的增材制造方法,旨在解决现有技术存在打印速度慢、纤维排布不准确的问题。
本发明的技术方案如下:
一种连续纤维增强复合材料的增材制造方法,其中,包括步骤:
A、采用缝纫的方式将连续纤维排布并固定于基质薄膜上;
B、对具有连续纤维的基质薄膜进行外围轮廓切割处理,直至切割出所需轮廓的具有连续纤维的基质薄膜;
C、将切割后的具有连续纤维的基质薄膜依次进行堆叠和粘合处理;
重复上述步骤A、B和C,直至得到所述连续纤维增强复合材料。
可选地,步骤B中,采用激光装置或数控机床对具有连续纤维的基质薄膜进行外围轮廓切割处理。
可选地,步骤A之前,还包括步骤:
模型分析系统对计算机辅助设计(Computer Aided Design,简称CAD)模型进行处理得出三维CAD模型每层数据信息,通过接口将每层数据信息逐层传递给控制系统。
可选地,步骤A具体包括:控制系统控制缝纫装置按照当层缝纫数据将连续纤维缝纫至基质薄膜上。
可选地,步骤B具体包括:控制系统控制激光装置按照当层外围轮廓数据对具有连续纤维的基质薄膜进行外围轮廓切割处理,直至切割出所需轮廓的具有连续纤维的基质薄膜。
可选地,步骤C具体包括:
将切割后的具有连续纤维的基质薄膜送至打印工作平台,堆叠在已成型的膜层上;
利用热压板进行热压粘合处理。
可选地,所述热压粘合处理的温度为50℃-350℃,所述热压粘合处理的时间为1s-15s。
可选地,所述连续纤维选自碳纤维、芳纶纤维等连续纤维中的一种,但不限于此。
可选地,所述基质薄膜选自聚乳酸基质薄膜、尼龙基质薄膜等热塑性基质薄膜中的一种或多种,但不限于此。
一种连续纤维增强复合材料的增材制造方法,其中,包括步骤:
A'、采用缝纫的方式将连续纤维排布并固定于基质薄膜上;
B'、将具有连续纤维的基质薄膜依次进行堆叠和粘合处理;
C'、对粘合好的具有连续纤维的基质薄膜进行外围轮廓切割处理,直至切割出所需 轮廓的具有连续纤维的基质薄膜;
重复上述步骤A'、B'和C',直至得到所述连续纤维增强复合材料。
有益效果:本发明采用上述方法可以精确控制连续纤维增强复合材料中连续纤维排布,能控制连续纤维体积含量和提高复合材料的力学性能。不同于其他复合材料增材制造由点到线、再由线到面的顺序凝固方式,本发明每层仅需处理外围轮廓,且可多台缝纫设备同时运行,对多层并行处理再实现层叠和粘合,能极大地提高连续纤维增强复合材料的制造速度。
附图说明
图1为本发明方法原理图。
图2为实施例缝纫轨迹示意图。
图3为实施例连续纤维精确排布效果图。
具体实施方式
本发明提供一种连续纤维增强复合材料及其增材制造方法,为使本发明的目的、技术方案及效果更加清楚、明确,以下对本发明进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
本发明实施例提供一种连续纤维增强复合材料的增材制造方法,其中,包括步骤:
A、采用缝纫的方式将连续纤维排布并固定于基质薄膜上;
B、对具有连续纤维的基质薄膜进行外围轮廓切割处理,直至切割出所需轮廓的具有连续纤维的基质薄膜;
C、将切割后的具有连续纤维的基质薄膜依次进行堆叠和粘合处理;
重复上述步骤A、B和C,直至得到所述连续纤维增强复合材料。
本实施例采用上述方法可以精确控制连续纤维增强复合材料中连续纤维排布,能控制连续纤维体积含量和提高复合材料的力学性能。不同于其他复合材料增材制造由点到线、再由线到面的顺序凝固方式,本实施例基于面为基本单元逐层堆积成型,每层仅需 处理外围轮廓,且可多台缝纫设备同时运行,对多层并行处理再实现层叠和粘合,能极大地提高连续纤维增强复合材料的制造速度。
在一种实施方式中,步骤A之前,还包括步骤:
模型分析系统对三维CAD模型进行处理得出三维CAD模型每层数据信息,通过接口将每层数据信息逐层传递给控制系统。
本实施例中,模型分析系统对三维CAD模型进行处理得出三维CAD模型每一层坐标数据信息,也即路径上各个点的坐标信息(X,Y),坐标原点可以取任意点,所有点的坐标均以原点确定其坐标值,通过接口将每层数据信息逐层传递给控制系统。
在一种实施方式中,步骤A具体包括:控制系统控制缝纫装置按照当层缝纫数据将连续纤维缝纫至基质薄膜上。本实施例将连续纤维以缝纫层压的方式实现增材制造,可以精确控制连续纤维增强复合材料中连续纤维排布,能控制连续纤维体积含量和提高复合材料的力学性能。
在一种实施方式中,步骤B中,采用激光装置或数控机床对具有连续纤维的基质薄膜进行外围轮廓切割处理。
在一种实施方式中,步骤B具体包括:控制系统控制激光装置按照当层外围轮廓数据对具有连续纤维的基质薄膜进行外围轮廓切割处理,直至切割出所需轮廓的具有连续纤维的基质薄膜。
在一种实施方式中,步骤C具体包括:
将切割后的具有连续纤维的基质薄膜送至打印工作平台,堆叠在已成型的膜层上(即逐层打印,后打印的层堆叠至打印好的半成品上);
利用热压板进行热压粘合处理。
在一种实施方式中,所述热压粘合处理的温度为50℃-350℃,所述热压粘合处理的时间为1s-15s。
在一种实施方式中,所述连续纤维可以选自碳纤维、芳纶纤维等连续纤维中的一种,但不限于此。
在一种实施方式中,所述基质薄膜选自聚乳酸(PLA)基质薄膜、尼龙基质薄膜等 热塑性基质薄膜中的一种或多种,但不限于此。
在一种实施方式中,所述基质薄膜的厚度为0.05mm-1mm。
在一种实施方式中,所述连续纤维增强复合材料的增材制造方法,具体包括步骤:
步骤一:模型分析系统对三维CAD模型进行处理得出三维CAD模型每一层坐标数据信息,也即路径上各个点的坐标信息(X,Y),坐标原点可以取任意点,所有点的坐标均以原点确定其坐标值,通过接口将每层数据信息逐层传递给控制系统;
步骤二:控制系统控制缝纫装置按照当层缝纫数据将连续纤维缝纫至基质薄膜上,其原理见图1中①所示;
步骤三:将步骤二得到的具有连续纤维的基质薄膜送至激光装置的激光工作台加工区;
步骤四:控制系统控制激光装置的激光头根据当层外围轮廓数据在X,Y两轴移动对具有连续纤维的基质薄膜进行外围轮廓切割处理,直至切割出所需轮廓的具有连续纤维的基质薄膜,其原理见图1中②所示;
步骤五:控制系统控制激光工作平台将切割后的具有连续纤维的基质薄膜送至打印工作平台;
步骤六:按照图1中③原理所示,打印工作台上升进行热压处理,后控制系统控制打印工作台下降一层,然后重复步骤二至五,直至完成加工,取出制件。
本实施例中,将连续纤维以缝纫层压的方式实现增材制造,可以精确控制连续纤维增强复合材料中连续纤维排布,能控制连续纤维体积含量和提高复合材料的力学性能;另外,不同于其他复合材料增材制造由点到线、再由线到面的顺序凝固方式,本实施例基于面为基本单元逐层堆积成型,每层仅需处理外围轮廓,且可多台缝纫设备同时运行,对多层并行处理再实现层叠和粘合,能实现连续纤维增强复合材料的超快增材制造。
本发明实施例还提供一种连续纤维增强复合材料的增材制造方法,其中,包括步骤:
A'、采用缝纫的方式将连续纤维排布并固定于基质薄膜上;
B'、将具有连续纤维的基质薄膜依次进行堆叠和粘合处理;
C'、对粘合好的具有连续纤维的基质薄膜进行外围轮廓切割处理,直至切割出所需 轮廓的具有连续纤维的基质薄膜;
重复上述步骤A'、B'和C',直至得到所述连续纤维增强复合材料。
本实施例具体细节见上文,在此不再赘述。
本发明实施例提供一种连续纤维增强复合材料,其中,采用本发明实施例所述的连续纤维增强复合材料的增材制造方法制造得到。
下面通过具体的实施例对本发明作进一步地说明。
实施例1
对于长方体零件,一种连续纤维增强复合材料的增材制造方法,包括以下步骤:
a)对长方体零件三维构件的数据进行分层离散,将待打印的长方体零件定义尺寸为长60mm、宽18mm、高1.2mm的长方体零件。材料选用东丽T300B 1000K碳纤维束、0.06mm厚的PLA(聚乳酸)薄膜材料,利用商业软件对长方体零件三维数据进行离散处理后,并规划路径和制定各层缝纫数据,控制系统控制缝纫装置按照当层缝纫数据将连续纤维缝纫至基质薄膜上。其中,缝纫路径为图2单轨迹往复直线扫描方式、分层厚度为0.06mm、扫面间距为1mm。
b)控制系统将待切割处理的缝纫碳纤维的薄膜材料送至激光工作平台,调节激光头与待切割处理的缝纫碳纤维的薄膜材料的距离,使激光聚焦在待切割处理的已缝纫碳纤维的薄膜材料上,按照步骤a)得到的外围轮廓X、Y数据对单层缝纫碳纤维的薄膜材料进行外围轮廓切割处理。单层处理后薄膜效果如图3所示:图中所示白色部分为连续纤维,可观察到连续纤维在小范围内连续90°转弯布局失真很小,纤维整体布局精准。
c)将已完成切割处理的缝纫碳纤维的薄膜材料送至打印工作平台,利用热压板进行热压处理,热压板温度设为180℃;完成一层热压处理后,打印工作平台自动下降一个层厚,即0.06mm的高度,直至整个零件打印完成。
实施例2
材料选用200D芳纶纤维、0.06mm厚的PLA薄膜材料。
制造方法和零件形状同实施例1。
实施例3
材料选用400D芳纶纤维、0.06mm厚的PLA薄膜材料。
制造方法和零件形状同实施例1。
综上所述,本发明提供的一种连续纤维增强复合材料的增材制造方法。本发明方法可以精确控制连续纤维增强复合材料中连续纤维排布,能控制连续纤维体积含量和提高复合材料的力学性能。不同于其他复合材料增材制造由点到线、再由线到面的顺序凝固方式,本发明基于面为基本单元逐层堆积成型,每层仅需处理外围轮廓,且可多台缝纫设备同时运行,对多层并行处理再实现层叠和粘合,能极大地提高连续纤维增强复合材料的制造速度。
应当理解的是,本发明的应用不限于上述的举例,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,所有这些改进和变换都应属于本发明所附权利要求的保护范围。

Claims (9)

  1. 一种连续纤维增强复合材料的增材制造方法,其特征在于,包括步骤:
    A、采用缝纫的方式将连续纤维排布并固定于基质薄膜上;
    B、对具有连续纤维的基质薄膜进行外围轮廓切割处理,直至切割出所需轮廓的具有连续纤维的基质薄膜;
    C、将切割后的具有连续纤维的基质薄膜依次进行堆叠和粘合处理;
    重复上述步骤A、B和C,直至得到所述连续纤维增强复合材料。
  2. 根据权利要求1所述的连续纤维增强复合材料的增材制造方法,其特征在于,步骤B中,采用激光装置或数控机床对具有连续纤维的基质薄膜进行外围轮廓切割处理。
  3. 根据权利要求1所述的连续纤维增强复合材料的增材制造方法,其特征在于,步骤A之前,还包括步骤:
    模型分析系统对三维CAD模型进行处理得出三维CAD模型每层数据信息,通过接口将每层数据信息逐层传递给控制系统。
  4. 根据权利要求3所述的连续纤维增强复合材料的增材制造方法,其特征在于,步骤A具体包括:控制系统控制缝纫装置按照当层缝纫数据将连续纤维缝纫至基质薄膜上。
  5. 根据权利要求3所述的连续纤维增强复合材料的增材制造方法,其特征在于,步骤B具体包括:控制系统控制激光装置按照当层外围轮廓数据对具有连续纤维的基质薄膜进行外围轮廓切割处理,直至切割出所需轮廓的具有连续纤维的基质薄膜。
  6. 根据权利要求3所述的连续纤维增强复合材料的增材制造方法,其特征在于,步骤C具体包括:
    将切割后的具有连续纤维的基质薄膜送至打印工作平台,堆叠在已成型的膜层上;
    利用热压板进行热压粘合处理。
  7. 根据权利要求6所述的连续纤维增强复合材料的增材制造方法,其特征在于,步骤C中,所述热压粘合处理的温度为50℃-350℃,所述热压粘合处理的时间为1s-15s。
  8. 根据权利要求1所述的连续纤维增强复合材料的增材制造方法,其特征在于, 所述连续纤维选自碳纤维、芳纶纤维中的一种;
    和/或,所述基质薄膜选自聚乳酸基质薄膜、尼龙基质薄膜中的一种。
  9. 一种连续纤维增强复合材料的增材制造方法,其特征在于,包括步骤:
    A'、采用缝纫的方式将连续纤维排布并固定于基质薄膜上;
    B'、将具有连续纤维的基质薄膜依次进行堆叠和粘合处理;
    C'、对粘合好的具有连续纤维的基质薄膜进行外围轮廓切割处理,直至切割出所需轮廓的具有连续纤维的基质薄膜;
    重复上述步骤A'、B'和C',直至得到所述连续纤维增强复合材料。
PCT/CN2021/095909 2021-05-14 2021-05-26 一种连续纤维增强复合材料的增材制造方法 WO2022236872A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110531288.5 2021-05-14
CN202110531288.5A CN113427754B (zh) 2021-05-14 2021-05-14 一种连续纤维增强复合材料的增材制造方法

Publications (1)

Publication Number Publication Date
WO2022236872A1 true WO2022236872A1 (zh) 2022-11-17

Family

ID=77802513

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/095909 WO2022236872A1 (zh) 2021-05-14 2021-05-26 一种连续纤维增强复合材料的增材制造方法

Country Status (2)

Country Link
CN (1) CN113427754B (zh)
WO (1) WO2022236872A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106113811A (zh) * 2016-06-21 2016-11-16 郑州大学 热塑性连续纤维复合材料及其制备方法和生产装置
CN106113524A (zh) * 2016-06-29 2016-11-16 华东理工大学 一种预浸带、混纤纱编织物的缝编及其压制成型方法
CN106915002A (zh) * 2017-03-13 2017-07-04 华东理工大学 一种单向预浸带缝纫模压制备复合材料板材的方法
CN108638518A (zh) * 2018-03-16 2018-10-12 嘉兴领科材料技术有限公司 一种高性能热塑性复合材料的快速增材制造方法
US20200139583A1 (en) * 2017-07-05 2020-05-07 Coats Group Plc Fiber preform of commingled fiber bundle for overmolding
US20210008816A1 (en) * 2018-03-19 2021-01-14 Coats & Clark, Inc. Multiple layer article with interactive reinforcements linear ribbon fiber reinforcement for composite forms
CN112756626A (zh) * 2020-12-22 2021-05-07 沈阳航空航天大学 一种基于增材制造的复合材料增强相形态与分布控制方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107457404B (zh) * 2017-08-02 2021-01-05 华中科技大学 一种适用于复杂零件和模具的增材加工成形方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106113811A (zh) * 2016-06-21 2016-11-16 郑州大学 热塑性连续纤维复合材料及其制备方法和生产装置
CN106113524A (zh) * 2016-06-29 2016-11-16 华东理工大学 一种预浸带、混纤纱编织物的缝编及其压制成型方法
CN106915002A (zh) * 2017-03-13 2017-07-04 华东理工大学 一种单向预浸带缝纫模压制备复合材料板材的方法
US20200139583A1 (en) * 2017-07-05 2020-05-07 Coats Group Plc Fiber preform of commingled fiber bundle for overmolding
CN108638518A (zh) * 2018-03-16 2018-10-12 嘉兴领科材料技术有限公司 一种高性能热塑性复合材料的快速增材制造方法
US20210008816A1 (en) * 2018-03-19 2021-01-14 Coats & Clark, Inc. Multiple layer article with interactive reinforcements linear ribbon fiber reinforcement for composite forms
CN112756626A (zh) * 2020-12-22 2021-05-07 沈阳航空航天大学 一种基于增材制造的复合材料增强相形态与分布控制方法

Also Published As

Publication number Publication date
CN113427754A (zh) 2021-09-24
CN113427754B (zh) 2022-07-05

Similar Documents

Publication Publication Date Title
Raspall et al. Fabrication of complex 3D composites by fusing automated fiber placement (AFP) and additive manufacturing (AM) technologies
Mekonnen et al. A study on state of the art technology of laminated object manufacturing (LOM)
JP5757338B2 (ja) 繊維強化複合材料成形品の製造方法
KR102213420B1 (ko) 구성요소를 접합하는 방법
US5954898A (en) Method and system for fabricating parts from composite materials
DE60239773D1 (de) Verfahren zur Herstellung von Elementen aus Verbundmaterial durch Co-Bonding Technik
US6136132A (en) Method and apparatus for the manufacture of three-dimensional objects
WO2019024469A1 (zh) 一种适用于复杂零件和模具的增材加工成形方法
Janssen et al. Efficient production of tailored structural thermoplastic composite parts by combining tape placement and 3d printing
TWI548539B (zh) 立體列印裝置
CN107914392B (zh) 热固性树脂基复合材料电子束固化lom成型方法及装置
CN108971482B (zh) 一种平面阵列式磁控增材制造方法
CN104827155A (zh) 一种适用于复杂零件的固熔复合增材成形方法
US20180257315A1 (en) Flat composites having layup features for forming into 3d shapes
CN115972572A (zh) 连续纤维复材层间增强的机器人辅助激光增材制造系统
WO2022236872A1 (zh) 一种连续纤维增强复合材料的增材制造方法
CN103341976A (zh) 一种桌面3d打印方法及系统
Velu et al. Experimental investigation on fabrication of thermoset prepreg composites using automated fibre placement process and 3D printed substrate
Zhang et al. Robot-assisted conformal additive manufacturing for continuous fibre-reinforced grid-stiffened shell structures
CN106659001A (zh) 多层pcb涨缩测量补偿方法
JP2020114665A (ja) 複合材プライのレイアップを製作するためのシステム及び方法
TWI736423B (zh) 高爾夫球桿頭部件的製造方法
CN107415238A (zh) 一种三维物体的分区成型方法和装置
WO2018103075A1 (zh) 一种基于cmt的金属焊接成形系统和方法
TWI358358B (en) Multi-material thin-film rapid prototyping system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21941441

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21941441

Country of ref document: EP

Kind code of ref document: A1