WO2022236866A1 - 驱动电路、显示面板及面板 - Google Patents

驱动电路、显示面板及面板 Download PDF

Info

Publication number
WO2022236866A1
WO2022236866A1 PCT/CN2021/095368 CN2021095368W WO2022236866A1 WO 2022236866 A1 WO2022236866 A1 WO 2022236866A1 CN 2021095368 W CN2021095368 W CN 2021095368W WO 2022236866 A1 WO2022236866 A1 WO 2022236866A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
emitting
driving signal
signal line
signal input
Prior art date
Application number
PCT/CN2021/095368
Other languages
English (en)
French (fr)
Inventor
李浩然
Original Assignee
Tcl华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tcl华星光电技术有限公司 filed Critical Tcl华星光电技术有限公司
Priority to US17/417,793 priority Critical patent/US11756478B2/en
Publication of WO2022236866A1 publication Critical patent/WO2022236866A1/zh

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]

Definitions

  • the present application relates to the field of display technology, in particular to a driving circuit, a display panel and the panel.
  • the thickness of the metal layer deposited on the glass substrate is limited, and it is difficult to reach the thickness level of the metal layer on the conventional PCB substrate.
  • the impedance values of key signal lines with large spans such as ground signal lines, chip drive signal lines, and LED drive signal lines will be large, causing obvious line loss (IR Drop).
  • the signal lines of the existing large-size LED panels are only provided with one signal input terminal.
  • the voltage signal loaded on the signal input terminal needs to take into account the factors on the signal line.
  • the voltage loss caused by the line loss makes the actual voltage signal loaded on the signal input end much larger than the initial set value, which in turn causes more power loss and even damages devices close to the signal input end.
  • the embodiment of the present application provides a driving circuit, a display panel and the panel, which solves the technical problem that the farthest load component far away from the signal input terminal cannot work normally due to insufficient voltage caused by the loss of the signal line on the large-size panel.
  • the embodiment of the present application provides a driving circuit, a display panel, and a panel to avoid more power loss caused by the voltage signal actually loaded on the signal input terminal being much greater than the initial set value when a single-ended input signal is input on a large-size panel. Or the device close to the signal input end will be damaged due to the actual applied voltage being too large.
  • An embodiment of the present application provides a driving circuit, including a substrate, a signal line disposed on the substrate, and a plurality of load components, the plurality of load components are distributed along a first direction, each of the plurality of load components is connected to the The signal line is connected; the signal line includes at least two signal input terminals, and signals are loaded to the signal line through the at least two signal input terminals.
  • the load component includes a plurality of load elements connected in series and a constant current driver chip for driving the load elements, one end of the load element is connected to the signal The other end of the load element is connected to the constant current driver chip.
  • the substrate further includes a first side and a second side opposite to the first side, and the first direction is from the first side to the second side.
  • the two sides extend, one of the signal input ends is set close to the first side, and the other signal input end is set close to the second side.
  • An embodiment of the present application further provides a display panel, including the aforementioned driving circuit, and the load component includes a light emitting element.
  • An embodiment of the present application also provides a panel, including a substrate, a signal line disposed on the substrate, and a plurality of light-emitting components, the plurality of light-emitting components are distributed along a first direction, and each of the light-emitting components is connected to the signal Wire connection; the signal wire includes at least two signal input terminals, and signals are loaded to the signal wire through the at least two signal input terminals.
  • each of the light-emitting components includes a plurality of light bars and a constant current driver chip for driving the light bars
  • the light bars include a plurality of light-emitting elements connected in series , one end of the light bar is connected to the signal line, and the other end of the light bar is connected to the constant current drive chip
  • the signal line includes a light-emitting drive signal line
  • the light-emitting drive signal line includes at least two A light-emitting driving signal input terminal, the light-emitting driving signal is loaded to the light-emitting driving signal line through the at least two light-emitting driving signal input terminals.
  • the signal line further includes a chip driving signal line, and a plurality of the constant current driving chips in the plurality of light emitting components are connected to the chip driving signal line,
  • the chip driving signal line includes at least two chip driving signal input terminals, and the chip driving signal is loaded to the chip driving signal line through the at least two chip driving signal input terminals.
  • the signal line further includes a ground signal line, and a plurality of the constant current driving chips in the plurality of light-emitting components are connected to the ground signal line, and the The ground signal line includes at least two ground signal input terminals, and the ground signal is loaded to the ground signal line through the at least two ground signal input terminals.
  • the panel further includes a first side and a second side opposite to the first side, and the first direction is from the first side to the second side.
  • the two sides extend;
  • the light-emitting drive signal input end includes a first light-emitting drive signal input end and a second light-emitting drive signal input end;
  • the first light-emitting drive signal input end is set close to the first side, and the second light-emitting drive signal input end
  • the driving signal input terminal is arranged close to the second side;
  • the light-emitting driving signal input terminal also includes a third light-emitting driving signal input terminal; in the first direction, the third light-emitting driving signal input terminal is located at the first side Between a light-emitting driving signal input end and the second light-emitting driving signal input end.
  • the panel further includes a first side and a second side opposite to the first side, and the first direction is from the first side to the second side.
  • the two sides extend; one of the signal input ends is set close to the first side, and the other signal input end is set close to the second side.
  • each of the light emitting components includes a plurality of light bars and a constant current driver chip for driving the light bars;
  • the signal lines include chip drive signal lines, and each One of the constant current driving chips is electrically connected to the chip driving signal line;
  • the chip driving signal line includes at least two chip driving signal input terminals, and the chip driving signal is loaded to the chip through the at least two chip driving signal input terminals.
  • the chip driving signal line; in the first direction, at least two light emitting components are arranged between two adjacent chip driving signal input terminals.
  • each of the light-emitting components includes a plurality of light bars and a constant current driver chip for driving the light bars;
  • the signal line is a ground signal line, and each The constant current driver chip is electrically connected to the ground signal line;
  • the ground signal line includes at least two ground signal input terminals, and the ground signal is loaded to the ground signal line through the at least two ground signal input terminals ;
  • at least two of the light-emitting components are arranged between two adjacent ground signal input ends.
  • each of the light-emitting components includes a first light bar, a second light bar, and a light bar for driving the first light bar and/or the second light bar.
  • Constant current drive chip the signal line includes a first light-emitting drive signal line and a second light-emitting drive signal line, the first light bar includes a plurality of light-emitting elements connected in series, and one end of the first light bar is electrically connected to the The first light-emitting driving signal line, the other end of the first light bar is electrically connected to the constant current drive chip; the second light bar includes a plurality of light-emitting elements connected in series, and one end of the second light bar is connected to the To the second light-emitting drive signal line, the other end of the second light bar is connected to the constant current drive chip; the signal includes a first light-emitting drive signal and a second light-emitting drive signal, and the first light-emitting drive signal The signal line includes at least two
  • the panel further includes a signal connection terminal for inputting the signal, a first connection line and a second connection line connected to the signal connection terminal, the The first connection line is connected to one of the signal input ends, and the second connection line is connected to the other signal input end.
  • the signal line extends along the first direction, and the at least two signal input terminals are evenly distributed along the first direction; in the first direction , there are at least two light-emitting components arranged between two adjacent signal input ends.
  • the panel is an LED light panel
  • the light emitting component is an LED component
  • each of the light-emitting components includes four light bars and a constant current driver chip for driving the four light bars, and the light bars include a plurality of One end of the light bar is connected to the signal line, and the other end of the light bar is connected to the constant current drive chip;
  • the signal line includes a light-emitting drive signal line, and the light-emitting drive signal line includes multiple a light-emitting driving signal input terminal, and the light-emitting driving signal is loaded to the light-emitting driving signal line through the plurality of light-emitting driving signal input terminals.
  • a first side and a second side opposite to the first side are further included, and the first direction extends from the first side toward the second side
  • the light-emitting drive signal input end includes a first light-emitting drive signal input end and a second light-emitting drive signal input end; the first light-emitting drive signal input end is set close to the first side, and the second light-emitting drive signal input end The end is set close to the second side; the light-emitting element is an LED light-emitting element.
  • the light-emitting driving signal input terminal further includes a third light-emitting driving signal input terminal; in the first direction, the third light-emitting driving signal input terminal is located at the Between the first light-emitting driving signal input terminal and the second light-emitting driving signal input terminal.
  • the signal line includes at least two signal input terminals, and the signal is loaded on the signal line through multiple signal input terminals, thereby improving the consistency of the overall voltage on the signal line, thereby alleviating the distance from the signal input due to line loss
  • the signal is loaded on the signal line through multiple signal input terminals, which can avoid increasing the line loss voltage on the initial set value when the single-ended input signal is used as the actual loaded voltage value. Increase the power loss on the signal line, and avoid damage to the load components close to the signal input due to the actual loading voltage being too large.
  • Fig. 1 is the schematic diagram of the first embodiment of the panel provided by the present application.
  • Fig. 2 is the enlarged schematic diagram of place A in Fig. 1;
  • FIG. 3 is a schematic diagram of a second embodiment of the panel provided by the present application.
  • FIG. 4 is a schematic diagram of a third embodiment of the panel provided by the present application.
  • FIG. 5 is a schematic diagram of a fourth embodiment of the panel provided by the present application.
  • Fig. 6 is a schematic diagram of a fifth embodiment of the panel provided by the present application.
  • FIG. 7 is a schematic diagram of a driving circuit provided by the present application.
  • the present application provides a panel, including a substrate, a signal line disposed on the substrate, and a plurality of light emitting components. Multiple light emitting components are distributed along the first direction. Each light-emitting component is connected with a signal line.
  • the signal line includes at least two signal input terminals. Signals are applied to the signal lines via at least two signal inputs. This application loads the signal on the signal line through multiple signal input terminals on the signal line to improve the consistency of the overall voltage on the signal line, thereby alleviating the problem of insufficient voltage of the LED at the farthest end far away from the signal input terminal due to line loss.
  • FIG. 1 and FIG. 2 The first embodiment provided by the present application is shown in FIG. 1 and FIG. 2 .
  • This embodiment provides a panel, including a substrate 1 .
  • the panel also includes a light-emitting driving signal line 2 , a plurality of light-emitting components A, a ground signal line 6 and a chip driving signal line 7 arranged on the substrate 1 .
  • the substrate 1 is a glass substrate.
  • the substrate 1 is rectangular.
  • the substrate 1 includes a first side 111 and a second side 112 opposite to the first side 111 .
  • the first direction extends from the first side 111 to the second side 112 .
  • the light-emitting driving signal lines 2 include a first light-emitting driving signal line 21 and a second light-emitting driving signal line 22 .
  • the first light-emitting driving signal line 21 and the second light-emitting driving signal line 22 extend along the first direction 11 .
  • the first light-emitting driving signal line 21 extends along the first direction 11 .
  • the first light-emitting driving signal line 21 includes two first light-emitting driving signal input terminals VLED1.
  • the two first light-emitting driving signal input terminals VLED1 are located at both ends of the first light-emitting driving signal line 21 .
  • One of the first light-emitting driving signal input terminals VLED1 is disposed close to the first side 111
  • the other first light-emitting driving signal input terminal VLED1 is disposed close to the second side 112 .
  • a first light-emitting driving signal input terminal VLED1 is disposed on a side of the light-emitting component A adjacent to the first side 111 that is close to the first side 111 .
  • Another first light-emitting driving signal input terminal VLED1 is disposed on a side of the light-emitting component A adjacent to the second side 112 that is close to the second side 112 .
  • the first LED driving signal is loaded to the first light-emitting driving signal line 21 from both ends through the two first light-emitting driving signal input terminals VLED1 .
  • the second light emitting driving signal line 22 extends along the first direction 11 .
  • the second light-emitting driving signal line 22 includes two second light-emitting driving signal input terminals VLED2.
  • the two second light-emitting driving signal input terminals VLED2 are located at both ends of the second light-emitting driving signal line 22 .
  • One of the second light-emitting driving signal input terminals VLED2 is set close to the first side 111
  • the other second light-emitting driving signal input terminal VLED2 is set close to the second side 112 .
  • a second light-emitting driving signal input terminal VLED2 is disposed on a side of the light-emitting component A adjacent to the first side 111 that is close to the first side 111 .
  • Another second light-emitting driving signal input terminal VLED2 is disposed on a side of the light-emitting component A adjacent to the second side 112 close to the second side 112 .
  • the second LED driving signal is loaded to the second light emitting driving signal line 22 from both ends through the two second light emitting driving signal input terminals VLED2.
  • each lighting assembly A includes a first light bar 41 , a second light bar 42 and a constant current driver chip 3 for driving the first light bar 41 and the second light bar 42 .
  • the light-emitting component A is an LED light-emitting component.
  • the light bar is an LED light bar.
  • the first light bar 41 includes a plurality of LEDs 5 connected in series. One end of the first light bar 41 is connected to the first light-emitting driving signal line 21 . The anode of the first light bar 41 is electrically connected to the first light-emitting driving signal line 21 . The other end of the first light bar 41 is connected to the constant current driving chip 3 . The cathode of the first light bar 41 is electrically connected to the constant current output terminal (not shown in the figure) of the constant current driving chip 3 .
  • the second light bar 42 includes a plurality of LEDs 5 connected in series. One end of the second light bar 42 is connected to the second light-emitting driving signal line 22 . The anode of the second light bar 42 is electrically connected to the second light-emitting driving signal line 22 . The other end of the second light bar 42 is connected to the constant current driving chip 3 . The cathode of the second light bar 42 is electrically connected to another constant current output terminal (not shown in the figure) of the constant current driving chip 3 .
  • the constant current driver chip 3 has a ground terminal, a power input terminal and a constant current output terminal.
  • the ground terminal is electrically connected to the ground signal line 6 through a wire.
  • the power input terminal is electrically connected to the chip driving signal line 7 through a wire.
  • the ground terminal of each constant current drive chip 3 is connected to the ground signal line 6, and the power input of each constant current drive chip 3 The terminal is connected to the chip driving signal line 7 .
  • the ground signal line 6 extends along the first direction 11 .
  • the ground signal line 6 has a ground signal input terminal GND.
  • the ground signal input terminal GND is disposed close to the second side 112 .
  • the ground signal is loaded on the ground signal line 6 from one end of the ground signal line 6 through the ground signal input terminal GND.
  • the chip driving signal line 7 extends along the first direction 11 .
  • the chip driving signal line 7 has a chip driving signal input terminal VDD1.
  • the chip driving signal input terminal VDD1 is disposed close to the second side 112 .
  • the chip driving signal is loaded on the chip driving signal line 7 from one end of the chip driving signal line 7 through the chip driving signal input terminal VDD1.
  • a plurality of signal input ends are provided on the signal line extending along the first direction 11 .
  • a plurality of signal input ends are evenly distributed along the first direction 11 .
  • the signal is loaded on the signal line through multiple signal input terminals on the signal line to improve the consistency of the overall voltage on the signal line, thereby alleviating the problem of insufficient voltage of the LED at the farthest end far away from the signal input terminal due to line loss; At the same time, it can avoid increasing the power loss on the signal line by increasing the line loss voltage on the initial set value as the actual loaded voltage value when the single-ended input signal is applied, and can avoid damage to devices near the signal input end due to excessive actual loaded voltage .
  • the driving voltage of each LED 5 is 6V
  • the normal lighting voltage of the first light bar 41 is 24V.
  • the first LED driving signal loaded on the anode of the first light bar 41 should be greater than or equal to 24V.
  • the connection points between the first light bar 41 and the first light-emitting driving signal line 21 in the light-emitting assembly adjacent to the second side 112 are O and P.
  • the connection points between the first light bar 41 in the adjacent light-emitting assembly A and the first light-emitting driving signal line 21 are Q and S.
  • the connection points between the first light bar 41 and the first light-emitting driving signal line 21 in the light-emitting assembly A farthest from the second side 112 are X and Y.
  • the first LED driving signal is only input from a single end of the first light-emitting driving signal line 21 close to the second side 112 . If the number of light-emitting components A in the same column is 10, the constant current output by the constant-current output terminal of the constant-current drive chip 3 is 10mA, and the constant current output between the two adjacent first light bars 41 and the first light-emitting drive signal line
  • the line resistance of the first light-emitting driving signal line 21 between the connection points 21 is 1 ⁇ .
  • the voltage loaded on the point O is 28.2V-1 ⁇ *200*2mA, that is, 27.8V, which is much higher than the voltage 24V that the first light bar 41 needs to withstand to emit light normally.
  • the first LED driving signal is simultaneously loaded on the first light-emitting driving signal line 21 through the two first light-emitting driving signal input terminals VLED1 at both ends of the first light-emitting driving signal line 21 .
  • the voltage loaded on point O is 26.65V-1 ⁇ *200mA*2, that is, 26.25V, which reduces the actual voltage value loaded on the first light strip 41 close to the first light-emitting drive signal input terminal VLED1 to a certain extent, The power loss of the light emitting component A is reduced.
  • the second light-emitting driving signal is simultaneously loaded on the second light-emitting driving signal line 22 through the two second light-emitting driving signal input terminals VLED2 at both ends of the second light-emitting driving signal line 22, which can also reduce the proximity to the second light-emitting driving signal line 22.
  • the second light-emitting driving signal input terminal VLED2 is the actual voltage value loaded on the second light bar 42 , and further reduces the power loss of the light-emitting component A.
  • the panel also includes a first flexible circuit board 8 and a second flexible circuit board 9 connected to the substrate 1 .
  • the first flexible circuit board 8 is connected to the first side 111 .
  • the second flexible circuit board 9 is connected to the second side 112 .
  • a plurality of wires for transmitting the first light-emitting driving signal and for transmitting the second light-emitting driving signal are arranged on the first flexible circuit board 8 .
  • the first light-emitting driving signal is transmitted to the first light-emitting driving signal input terminal VLED1 near the first edge 111 in the first light-emitting driving signal line 21, and the second light-emitting driving signal
  • the signal is transmitted to the second light-emitting driving signal input terminal VLED2 close to the first side 111 in the second light-emitting driving signal line 22 .
  • the first flexible circuit board 8 is used to solve the technical problems of complex wiring around the panel and complicated cross-line process and high cost.
  • the first flexible circuit board 8 is used as a jumper circuit to realize long-distance jumper transmission of signals.
  • the second flexible circuit board 9 is provided with a driver chip and other peripheral circuits.
  • the ground signal, the first light-emitting driving signal, the second light-emitting driving signal and the chip driving signal are generated on the second flexible circuit board 9 .
  • a plurality of signal transmission terminals are arranged on the second flexible circuit board 9 .
  • the signal transmission terminals on the second flexible circuit board 9 are pressed and electrically connected to the signal connection terminals on the substrate 1 . Through the press-fit electrical connection between the second flexible circuit board 9 and the substrate 1 , the above-mentioned signals generated on the second flexible circuit board 9 are input into corresponding signal lines.
  • the ground signal generated on the second flexible circuit board 9 is loaded on the ground signal line 6 from one end of the ground signal line 6 through the ground signal input terminal GND.
  • the chip driving signal generated on the second flexible circuit board 9 is loaded on the chip driving signal line 7 from one end of the chip driving signal line 7 through the chip driving signal input terminal VDD1 .
  • the first light-emitting driving signal generated on the second flexible circuit board 9 is loaded to the first light-emitting driving signal line 21 through two first light-emitting driving signal input terminals VLED1 from both ends.
  • the second light-emitting driving signal generated on the second flexible circuit board 9 is loaded to the second light-emitting driving signal line 22 through two second light-emitting driving signal input terminals VLED2 from both ends.
  • the first flexible circuit board 8 may also be provided with a driver chip and other peripheral circuits.
  • the first light-emitting driving signal and the second light-emitting driving signal which are the same as the first light-emitting driving signal and the second light-emitting driving signal generated on the second flexible circuit board can also be generated on the first flexible circuit board 8 .
  • the first light-emitting driving signal generated on the first flexible circuit board 8 and the first light-emitting driving signal generated on the second flexible circuit board 9 are loaded from the first light-emitting driving signal input terminal VLED1 at both ends of the first light-emitting driving signal line 21 to the first light-emitting driving signal line.
  • a light-emitting driving signal line 21 are loaded from the first light-emitting driving signal input terminal VLED1 at both ends of the first light-emitting driving signal line 21 to the first light-emitting driving signal line.
  • the second light-emitting driving signal generated on the first flexible circuit board 8 and the second light-emitting driving signal generated on the second flexible circuit board 9 are loaded from the second light-emitting driving signal input terminal VLED2 at both ends of the second light-emitting driving signal line 22 to the second light-emitting driving signal.
  • Two light-emitting driving signal lines 22 Two light-emitting driving signal lines 22 .
  • the first light-emitting driving signal and the second light-emitting driving signal are the same DC voltage driving signal.
  • the first light-emitting driving signal and the second light-emitting driving signal may also be different DC voltage driving signals.
  • the voltage value of the first light-emitting driving signal is determined by the operating voltage value of the first light bar 41 , the voltage loss value on the first light-emitting driving signal line 21 and the ground signal line 6 .
  • the voltage value of the second light-emitting driving signal is determined by the working voltage value of the second light bar 42 , the voltage loss value on the second light-emitting driving signal line 22 and the ground signal line 6 .
  • the constant current driver chip 3 in each light-emitting component A drives four light bars simultaneously during normal operation. Specifically, each constant current driver chip 3 drives two first light bars 41 and two second light bars 42 at the same time during normal operation. It can be understood that, in other specific embodiments of the present application, each constant current driver chip 3 can also drive 2, 3, 6 or 8 light bars at the same time during normal operation. The number of light bars specifically connected to the constant current driver chip 3 is limited by the driving capability of the constant current driver chip 3 , which is not specifically limited here.
  • the first light-emitting driving signal line 21 may also include a plurality of first light-emitting driving signal input terminals VLED1.
  • the first light-emitting driving signal is loaded to the first light-emitting driving signal line 21 from multiple places through a plurality of first light-emitting driving signal input terminals VLED1 , so as to further improve the uniformity of the voltage on the first light-emitting driving signal line 21 .
  • the number of the first light-emitting driving signal input terminals VLED1 included in the first light-emitting driving signal line 21 is not specifically limited here.
  • the second light-emitting driving signal line 22 may also include a plurality of second light-emitting driving signal input terminals VLED2.
  • the second light-emitting driving signal is loaded to the second light-emitting driving signal line 22 from multiple places through a plurality of second light-emitting driving signal input terminals VLED2 , so as to further improve the uniformity of the voltage on the second light-emitting driving signal line 22 .
  • the number of the second light-emitting driving signal input terminals VLED2 included in the second light-emitting driving signal line 22 is also not specifically limited here.
  • multiple rows of the above-mentioned light-emitting assemblies A are arranged on the panel, and the specific number of rows is not specifically limited here.
  • the second embodiment provided by the present application is shown in FIG. 3 .
  • the difference between this embodiment and the first embodiment is that the ground signal line 6 extending along the first direction 11 has two ground signal input terminals GND.
  • Two ground signal input terminals GND are located at both ends of the ground signal line 6 .
  • One of the ground signal input terminals GND is disposed close to the first side 111
  • the other ground signal input terminal GND is disposed close to the second side 112 .
  • a ground signal input terminal GND is disposed on a side of the light-emitting component A adjacent to the first side 111 that is close to the first side 111 .
  • Another ground signal input terminal GND is disposed on a side of the light-emitting component A adjacent to the second side 112 close to the second side 112 .
  • the ground signal is loaded onto the ground signal line 6 from both ends through the two ground signal input terminals GND.
  • at least two light emitting assemblies A are arranged between two adjacent ground signal input terminals GND.
  • the constant current drive chip 3 The constant current output by the constant current output terminal is 10mA, and the line resistance of the first light-emitting driving signal line 21 between the connection points between two adjacent first light bars 41 and the first light-emitting driving signal line 21 is 1 ⁇ .
  • the maximum voltage drop Vm on the first light-emitting driving signal line 21 can be reduced to 0.55V through the aforementioned design.
  • the voltage applied to point O is 26.65V-1 ⁇ *200mA*2, that is, 26.25V.
  • the ground signal is simultaneously loaded on the ground signal line 6 through the two ground signal input terminals GND at both ends of the ground signal line 6 .
  • the maximum voltage drop Vm1 on the ground signal line 6 will also be reduced to 0.55V.
  • the voltage applied to point O is 25.1V-1 ⁇ *200mA*2, that is, 24.7V.
  • the actual voltage value loaded on the first light bar 41 close to the input terminal VLED1 of the first light-emitting driving signal is 24.7V.
  • This voltage value is also the maximum driving voltage value carried by the plurality of first light bars 41 in the column. This voltage value is very close to the voltage 24V required by the first light bar 41 to emit light normally.
  • the voltage uniformity on the first light-emitting driving signal line 21 is significantly improved.
  • the voltage uniformity on the second light-emitting driving signal line 22 is also significantly improved compared with the first embodiment.
  • the increased loss P required by the entire row of light-emitting components A is reduced to 0.22W, which is only a quarter of that of the prior art, which significantly reduces the power loss of the panel.
  • the panel also includes signal connection terminals 10 disposed on the substrate 1 .
  • the signal connection terminal 10 is used for inputting a signal generated by an external circuit into a corresponding signal line.
  • the panel also includes a first connection line and a second connection line arranged on the substrate 1 and connected to the signal connection terminal 10 .
  • the first connection line is connected to one of the signal input ends of the corresponding signal line.
  • the second connection line is connected to the other signal input end of the corresponding signal line.
  • the signal line extends along the first direction.
  • the second connection line has a portion extending in the first direction.
  • the signal connection terminal 10 includes a ground signal connection terminal, a first light-emitting drive signal connection terminal, a second light-emitting drive signal connection terminal, and a chip drive signal connection terminal.
  • the panel also includes a first ground signal connection line 61 and a second ground signal connection line 62 connected to the ground signal connection terminal.
  • the first ground signal connection line 61 is connected to a ground signal input terminal GND of the ground signal line 6 .
  • the second ground signal connection line 62 is connected to the other ground signal input terminal GND of the ground signal line 6 .
  • the second ground signal connection line 62 has a portion extending in the first direction.
  • the panel also includes a first light-emitting driving signal connection line 211 and a second light-emitting driving signal connection line 212 connected to the first light-emitting driving signal connection terminal.
  • the first light-emitting driving signal connection line 211 is connected to a first light-emitting driving signal input terminal VLED1 of the first light-emitting driving signal line 21 .
  • the second light-emitting driving signal connection line 212 is connected to another first light-emitting driving signal input terminal VLED1 of the first light-emitting driving signal line 21 .
  • the first light emission driving signal line 21 extends along the first direction.
  • the second light emitting driving signal connection line 212 has a portion extending along the first direction.
  • the panel also includes a third light-emitting driving signal connection line 221 and a fourth light-emitting driving signal connection line 222 connected to the second light-emitting driving signal connection terminal.
  • the third light-emitting driving signal connection line 221 is connected to a second light-emitting driving signal input terminal VLED2 of the second light-emitting driving signal line 22 .
  • the fourth light-emitting driving signal connection line 222 is connected to another second light-emitting driving signal input terminal VLED2 of the second light-emitting driving signal line 22 .
  • the second light emission driving signal line 22 extends along the first direction.
  • the fourth light-emitting driving signal connection line 222 has a portion extending along the first direction.
  • the third embodiment provided by the present application is shown in FIG. 4 .
  • the chip driving signal line 7 extending along the first direction 11 has two chip driving signal input terminals VDD1 .
  • the two chip driving signal input terminals VDD1 are located at both ends of the chip driving signal line 7 .
  • One of the chip driving signal input terminals VDD1 is disposed close to the first side 111
  • the other chip driving signal input terminal VDD1 is disposed close to the second side 112 .
  • a chip driving signal input terminal VDD1 is disposed on a side of the light-emitting component A adjacent to the first side 111 that is close to the first side 111 .
  • Another chip driving signal input terminal VDD1 is disposed on a side of the light-emitting component A adjacent to the second side 112 close to the second side 112 .
  • the chip driving signal is loaded to the chip driving signal line 7 from both ends through the two chip driving signal input terminals VDD1.
  • at least two light emitting assemblies A are arranged between two adjacent chip driving signal input terminals VDD1.
  • the constant current drive The constant current output by the constant current output terminal of the chip 3 is 10 mA, and the line resistance of the first light-emitting driving signal line 21 between the connection points between two adjacent first light bars 41 and the first light-emitting driving signal line 21 is 1 ⁇ . Then the maximum voltage drop Vm on the first light-emitting driving signal line 21 has been reduced to 0.55V. If the ground signal line 6 has a resistance similar to that of the first light-emitting driving signal line 21 , the maximum voltage drop Vm1 on the ground signal line 6 is 2.1V.
  • the chip driving signal line 7 has a resistance similar to that of the first light-emitting driving signal line 21 , a corresponding voltage drop of 2.1V will be generated on the chip driving signal line 7 . Since the normal working voltage of the constant current driver chip 3 is 3.3V, considering the voltage drop on the ground signal line 6 and the chip drive signal line 7, the actual chip drive voltage loaded at point F is 3.3V+2.1V+2.1V, That is 7.5V. For the corresponding constant current driver chip 3, this value has exceeded the normal working voltage range of the constant current driver chip 3, which will cause the constant current driver chip 3 to fail to work normally or be damaged.
  • the ground signal is simultaneously loaded on the ground signal line 6 through the two ground signal input terminals GND at both ends of the ground signal line 6 .
  • the chip driving signal is simultaneously loaded on the chip driving signal line 7 through the two chip driving signal input terminals VDD1 at both ends of the chip driving signal line 7 .
  • the maximum voltage drop Vm on the first light-emitting driving signal line 21 is reduced to 0.55V as described above.
  • the maximum voltage drop Vm1 on the ground signal line 6 will also be reduced to 0.55V.
  • the maximum voltage drop Vm2 on the chip driving signal line 7 will also be reduced to 0.55V.
  • the chip driving voltage loaded at point F is 4.4V, which is still within the normal working voltage range of the constant current driving chip 3 and will not damage the constant current driving chip 3 .
  • the actual voltage value loaded on the first light bar 41 close to the input terminal VLED1 of the first light-emitting driving signal is 24.7V.
  • This voltage value is also the maximum driving voltage value carried by the plurality of first light bars 41 in the column. This voltage value is very close to the voltage 24V required by the first light bar 41 to emit light normally.
  • the voltage uniformity on the first light-emitting driving signal line 21 is significantly improved.
  • the voltage uniformity on the second light-emitting driving signal line 22 is also significantly improved compared with the first embodiment.
  • the increased LED line loss P required by the entire row of light-emitting components A is reduced to 0.22W, which is only a quarter of that of the prior art, which significantly reduces the power loss of the panel.
  • the actual voltage value loaded on the constant current driving chip 3 close to the chip driving signal input terminal VDD1 is 4.4V.
  • This voltage value is also the maximum driving voltage value carried by the plurality of constant current driving chips 3 in the row. This voltage value is still within the normal working voltage range of the constant current driver chip 3 .
  • the voltage uniformity on the chip driving signal line 7 is significantly improved.
  • the increased chip line loss P' required for the entire array of light-emitting components A is reduced to 0.22W, further reducing the overall power loss of the panel.
  • each light emitting assembly A includes four light bars 4 and a constant current driving chip 3 for driving the light bars 4 .
  • Each light bar 4 includes four LEDs 5 connected in series. One end of the light bar 4 is connected to the light-emitting driving signal line 2 . The anode of the light bar 4 is electrically connected to the light-emitting driving signal line 2 . The other end of the light bar 4 is connected to the constant current driver chip 3 . The cathode of the light bar 4 is electrically connected to the constant current output terminal (not shown in the figure) of the constant current driving chip 3 .
  • the light-emitting driving signal line 2 includes two third light-emitting driving signal input terminals VLED3.
  • the two third light-emitting driving signal input terminals VLED3 are located at both ends of the light-emitting driving signal line 2 .
  • One of the third light-emitting driving signal input terminals VLED3 is disposed close to the first side 111
  • the other third light-emitting driving signal input terminal VLED3 is disposed close to the second side 112 .
  • a third light-emitting driving signal input terminal VLED3 is disposed on a side of the light-emitting component A adjacent to the first side 111 that is close to the first side 111 .
  • Another third light-emitting driving signal input terminal VLED3 is disposed on a side of the light-emitting component A adjacent to the second side 112 close to the second side 112 .
  • the light-emitting driving signal is loaded to the light-emitting driving signal line 2 from both ends through the two third light-emitting driving signal input terminals VLED3.
  • the light-emitting driving signal is simultaneously loaded on the light-emitting driving signal line 2 through the two third light-emitting driving signal input terminals VLED3 at both ends of the light-emitting driving signal line 2, which improves the uniformity of the voltage on the light-emitting driving signal line 2 and reduces the voltage near the third light-emitting driving signal line.
  • the actual voltage value loaded on the light strip 4 of the light-emitting drive signal input terminal VLED3 reduces the power loss of the light-emitting component A.
  • multiple light-emitting driving signal lines 2 such as 3 or 4 can also be used to drive multiple light bars 4, and the specific number of light-emitting driving signal lines 2 will not be specified here. limited.
  • the fifth embodiment provided by the present application is shown in FIG. 6 .
  • the difference between this embodiment and the fourth embodiment is that the light-emitting driving signal line 2 includes three light-emitting driving signal input terminals VLED3 .
  • two third light-emitting driving signal input terminals VLED3 are located at both ends of the light-emitting driving signal line 2
  • another third light-emitting driving signal input terminal VLED3 is located between the two third light-emitting driving signal input terminals VLED3.
  • a third light-emitting driving signal input terminal VLED3 is set close to the first side 111
  • another third light-emitting driving signal input terminal VLED3 is set close to the second side 112
  • another third light-emitting driving signal input terminal VLED3 is set on the aforementioned two sides.
  • the light-emitting driving signal is simultaneously loaded on the light-emitting driving signal line 2 through the three third light-emitting driving signal input terminals VLED3 on the light-emitting driving signal line 2, which further improves the uniformity of the voltage on the light-emitting driving signal line 2 and further reduces the
  • the actual voltage value loaded on the light bar 4 close to the third light-emitting driving signal input terminal VLED3 significantly reduces the power loss of the light-emitting component A.
  • each light-emitting assembly A includes six light bars 4 and a constant current drive chip 3 for driving the light bars 4.
  • the anodes of the six light bars 4 are all connected to the same light-emitting The driving signal line 2.
  • the cathodes of the six light bars 4 are electrically connected to the constant current output terminal (not shown in the figure) of the constant current driving chip 3 .
  • the part extending along the first direction 11 may also include three, four, or five or more signal input terminals.
  • each constant current driver chip 3 in each light emitting component A drives 4 or 6 light bars simultaneously during normal operation. It can be understood that, in other specific embodiments of the present application, each constant current driver chip 3 can also drive multiple light bars such as 2, 3, 5 or 8 at the same time during normal operation. The number of light bars specifically connected to the constant current driver chip 3 is limited by the driving capability of the constant current driver chip 3 , which is not specifically limited here.
  • each light bar 4 is composed of four LEDs 5 connected in series. It can be understood that, in other specific embodiments of the present application, the number of light emitting diodes 5 in each light bar 4 is not specifically limited.
  • the panel provided in the present application is an LED light panel, specifically, it may be an LED light panel for LED display, or an LED light panel for backlight in a display panel backlight module.
  • the present application also provides a driving circuit, as shown in FIG. 7 , including a substrate 201 , a signal line 202 disposed on the substrate 201 and a plurality of load components 203 .
  • a plurality of load assemblies 203 are distributed along a first direction 204 .
  • Each load component 203 is connected to the signal line 202 .
  • the signal line 202 includes at least two signal input terminals ( V1 , V2 , V3 or V4 ). Signals are loaded to the signal line 202 through the at least two signal input terminals.
  • Each load assembly 203 includes a plurality of load elements connected in series and a constant current driver chip 206 for driving the load elements. One end of the load element is connected to the signal line 202 .
  • the other end of the load element is connected to the constant current driver chip 206 .
  • the panel also includes a first side 207 and a second side 208 opposite the first side 207 .
  • the first direction 204 extends from the first side 207 to the second side 208 .
  • a signal input terminal (one of V1 , V2 , V3 or V4 ) is disposed close to the first side 207 , and another signal input terminal connected to the signal input terminal is disposed close to the second side 208 .
  • the present application also provides a display panel, including the aforementioned driving circuit, and the load component 203 may be a light emitting element.
  • the load component 203 may be an LED element on an LED panel in a display panel backlight component.
  • the load component 203 may also be a pixel unit on a display panel.
  • the load component 203 specifically includes an organic light emitting pixel unit.
  • This application loads the signal on the signal line through multiple signal input terminals to improve the consistency of the overall voltage on the signal line, thereby alleviating the problem of insufficient driving voltage of the light bar far away from the signal input terminal; at the same time, it can reduce the actual load on the relevant devices. Voltage value to avoid damage to devices close to the signal input, and reduce power loss on the signal line.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Led Device Packages (AREA)

Abstract

本申请实施例公开了一种驱动电路、显示面板及面板,所述驱动电路包括基板、设置在所述基板上的信号线和多个负载组件,所述多个负载组件沿第一方向分布,每一所述多个负载组件与所述信号线连接;所述信号线包括至少两个信号输入端,信号通过所述至少两个信号输入端加载至所述信号线。

Description

驱动电路、显示面板及面板 技术领域
本申请涉及显示技术领域,具体涉及一种驱动电路、显示面板及面板。
背景技术
对于以玻璃基板作为载体的miniLED及MicroLED面板,玻璃基板上沉积的金属层厚度受限,难以达到常规PCB基板上金属层的厚度水平。在大尺寸LED面板中,接地信号线、芯片驱动信号线以及LED驱动信号线等跨度较大的关键信号线的阻抗值都会较大,从而引起明显的线损(IR Drop)。
现有大尺寸LED面板的信号线均只设置有一个信号输入端,为确保远离信号输入端的最远端的LED能获取正常的工作电压,信号输入端上加载的电压信号需要兼顾信号线上因线损而产生的电压损耗,使得信号输入端上实际加载的电压信号远大于初始设定值,进而带来更多的功率损耗,甚至会损伤靠近信号输入端的器件。
技术问题
本申请实施例提供一种驱动电路、显示面板及面板,解决了大尺寸面板上因信号线线损而带来的远离信号输入端的最远端负载组件因电压不足而无法正常工作的技术问题。本申请实施例提供一种驱动电路、显示面板及面板,避免大尺寸面板上单端输入信号时,信号输入端上实际加载的电压信号远大于初始设定值而带来更多的功率损耗,或因实际加载的电压过大而损伤靠近信号输入端的器件。
技术解决方案
本申请实施例提供一种驱动电路,包括基板、设置在所述基板上的信号线和多个负载组件,所述多个负载组件沿第一方向分布,每一所述多个负载组件与所述信号线连接;所述信号线包括至少两个信号输入端,信号通过所述至少两个信号输入端加载至所述信号线。
可选的,在本申请的一些具体实施例中,所述负载组件包括串联的多个负载元件和用于驱动所述负载元件的恒流驱动芯片,所述负载元件的一端连接至所述信号线,所述负载元件的另一端连接至所述恒流驱动芯片。
可选的,在本申请的一些具体实施例中,所述基板还包括第一边和与所述第一边相对的第二边,所述第一方向由所述第一边朝向所述第二边延伸,一所述信号输入端靠近所述第一边设置,另一所述信号输入端靠近所述第二边设置。
本申请实施例还提供一种显示面板,包括如前所述的驱动电路,所述负载组件包括发光元件。
本申请实施例还提供一种面板,包括基板、设置在所述基板上的信号线和多个发光组件,所述多个发光组件沿第一方向分布,每一所述发光组件与所述信号线连接;所述信号线包括至少两个信号输入端,信号通过所述至少两个信号输入端加载至所述信号线。
可选的,在本申请的一些具体实施例中,每一所述发光组件包括多个灯条和用于驱动所述灯条的恒流驱动芯片,所述灯条包括串联的多个发光元件,所述灯条的一端连接至所述信号线,所述灯条的另一端连接至所述恒流驱动芯片;所述信号线包括发光驱动信号线,所述发光驱动信号线包括至少两个发光驱动信号输入端,所述发光驱动信号通过所述至少两个发光驱动信号输入端加载至所述发光驱动信号线。
可选的,在本申请的一些具体实施例中,所述信号线还包括芯片驱动信号线,所述多个发光组件中的多个所述恒流驱动芯片连接至所述芯片驱动信号线,所述芯片驱动信号线包括至少两个芯片驱动信号输入端,芯片驱动信号通过所述至少两个芯片驱动信号输入端加载至所述芯片驱动信号线。
可选的,在本申请的一些具体实施例中,所述信号线还包括接地信号线,所述多个发光组件中的多个所述恒流驱动芯片连接至所述接地信号线,所述接地信号线包括至少两个地信号输入端,所述接地信号通过所述至少两个地信号输入端加载至所述接地信号线。
可选的,在本申请的一些具体实施例中,所述面板还包括第一边和与所述第一边相对的第二边,所述第一方向由所述第一边朝向所述第二边延伸;所述发光驱动信号输入端包括第一发光驱动信号输入端和第二发光驱动信号输入端;所述第一发光驱动信号输入端靠近所述第一边设置,所述第二发光驱动信号输入端靠近所述第二边设置;所述发光驱动信号输入端还包括第三发光驱动信号输入端;在所述第一方向上,所述第三发光驱动信号输入端位于所述第一发光驱动信号输入端和所述第二发光驱动信号输入端之间。
可选的,在本申请的一些具体实施例中,所述面板还包括第一边和与所述第一边相对的第二边,所述第一方向由所述第一边朝向所述第二边延伸;一所述信号输入端靠近所述第一边设置,另一所述信号输入端靠近所述第二边设置。
可选的,在本申请的一些具体实施例中,每一所述发光组件包括多个灯条和用于驱动所述灯条的恒流驱动芯片;所述信号线包括芯片驱动信号线,每一所述恒流驱动芯片电连接至所述芯片驱动信号线;所述芯片驱动信号线包括至少两个芯片驱动信号输入端,芯片驱动信号通过所述至少两个芯片驱动信号输入端加载至所述芯片驱动信号线;在所述第一方向上,相邻两个所述芯片驱动信号输入端之间设置有至少两个所述发光组件。
可选的,在本申请的一些具体实施例中,每一所述发光组件包括多个灯条和用于驱动所述灯条的恒流驱动芯片;所述信号线为接地信号线,每一所述恒流驱动芯片电连接至所述接地信号线;所述接地信号线包括至少两个地信号输入端,所述接地信号通过所述至少两个地信号输入端加载至所述接地信号线;在所述第一方向上,相邻两个所述地信号输入端之间设置有至少两个所述发光组件。
可选的,在本申请的一些具体实施例中,每一所述发光组件包括第一灯条、第二灯条和用于驱动所述第一灯条和/或所述第二灯条的恒流驱动芯片;所述信号线包括第一发光驱动信号线和第二发光驱动信号线,所述第一灯条包括串联的多个发光元件,所述第一灯条的一端电连接至所述第一发光驱动信号线,所述第一灯条的另一端电连接至所述恒流驱动芯片;所述第二灯条包括串联的多个发光元件,所述第二灯条的一端连接至所述第二发光驱动信号线,所述第二灯条的另一端连接至所述恒流驱动芯片;所述信号包括第一发光驱动信号和第二发光驱动信号,所述第一发光驱动信号线包括至少两个第一发光驱动信号输入端,所述第一发光驱动信号通过所述至少两个第一发光驱动信号输入端加载至所述第一发光驱动信号线;所述第二发光驱动信号线包括至少两个第二发光驱动信号输入端,所述第二发光驱动信号通过所述至少两个第二发光驱动信号输入端加载至所述第二发光驱动信号线。
可选的,在本申请的一些具体实施例中,所述面板还包括用于输入所述信号的信号连接端子、与所述信号连接端子连接的第一连接线和第二连接线,所述第一连接线与一个所述信号输入端连接,所述第二连接线与另一个所述信号输入端连接。
可选的,在本申请的一些具体实施例中,所述信号线沿所述第一方向延伸,所述至少两个信号输入端沿所述第一方向均匀分布;在所述第一方向上,相邻两个所述信号输入端之间设置有至少两个所述发光组件。
可选的,在本申请的一些具体实施例中,所述面板为LED灯板,所述发光组件为LED组件。
可选的,在本申请的一些具体实施例中,每一所述发光组件包括四个灯条和用于驱动所述四个灯条的恒流驱动芯片,所述灯条包括串联的多个发光元件,所述灯条的一端连接至所述信号线,所述灯条的另一端连接至所述恒流驱动芯片;所述信号线包括发光驱动信号线,所述发光驱动信号线包括多个发光驱动信号输入端,所述发光驱动信号通过所述多个发光驱动信号输入端加载至所述发光驱动信号线。
可选的,在本申请的一些具体实施例中,还包括第一边和与所述第一边相对的第二边,所述第一方向由所述第一边朝向所述第二边延伸;所述发光驱动信号输入端包括第一发光驱动信号输入端和第二发光驱动信号输入端;所述第一发光驱动信号输入端靠近所述第一边设置,所述第二发光驱动信号输入端靠近所述第二边设置;所述发光元件为LED发光元件。
可选的,在本申请的一些具体实施例中,所述发光驱动信号输入端还包括第三发光驱动信号输入端;在所述第一方向上,所述第三发光驱动信号输入端位于所述第一发光驱动信号输入端和所述第二发光驱动信号输入端之间。
有益效果
本申请的有益效果:信号线包括至少两个信号输入端,信号通过多个信号输入端加载在信号线上,提高信号线上整体电压的一致性,从而缓解因线损带来的远离信号输入端的最远端负载组件电压不足的问题;同时,信号通过多个信号输入端加载在信号线上,可以避免单端输入信号时在初始设定值上增加线损电压作为实际加载的电压值而增大信号线上的功率损耗,并能避免因实际加载电压过大而损伤靠近信号输入端的负载组件。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请提供的面板的第一实施例的示意图;
图2是图1中A处的放大示意图;
图3是本申请提供的面板的第二实施例的示意图;
图4是本申请提供的面板的第三实施例的示意图;
图5是本申请提供的面板的第四实施例的示意图;
图6是本申请提供的面板的第五实施例的示意图;
图7是本申请提供的驱动电路的示意图。
本发明的实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请提供了一种面板,包括基板、设置在基板上的信号线和多个发光组件。多个发光组件沿第一方向分布。每一发光组件与信号线连接。信号线包括至少两个信号输入端。信号通过至少两个信号输入端加载至信号线。本申请将信号通过信号线上的多个信号输入端加载在信号线上,提高信号线上整体电压的一致性,从而缓解因线损带来的远离信号输入端的最远端LED电压不足的问题;同时可以避免单端输入信号时在初始设定值上增加线损电压作为实际加载的电压值而增大信号线上的功率损耗,并能避免因实际加载电压过大而损伤靠近信号输入端的器件。
本申请提供的第一实施例如图1和图2所示,本实施例提供了一种面板,包括基板1。面板还包括设置在基板1上的发光驱动信号线2、多个发光组件A、接地信号线6和芯片驱动信号线7。
基板1为玻璃基板。基板1为矩形。基板1包括第一边111和与第一边111相对的第二边112。第一方向由第一边111朝向第二边112延伸。
发光驱动信号线2包括第一发光驱动信号线21和第二发光驱动信号线22。第一发光驱动信号线21和第二发光驱动信号线22沿第一方向11延伸。
第一发光驱动信号线21沿第一方向11延伸。第一发光驱动信号线21包括两个第一发光驱动信号输入端VLED1。两个第一发光驱动信号输入端VLED1位于第一发光驱动信号线21的两端。其中一个第一发光驱动信号输入端VLED1靠近第一边111设置,另一第一发光驱动信号输入端VLED1靠近第二边112设置。具体的,一第一发光驱动信号输入端VLED1设置在与第一边111相邻的发光组件A靠近第一边111的一侧。另一第一发光驱动信号输入端VLED1设置在与第二边112相邻的发光组件A靠近第二边112的一侧。第一LED驱动信号通过两个第一发光驱动信号输入端VLED1从两端加载至第一发光驱动信号线21。
第二发光驱动信号线22沿第一方向11延伸。第二发光驱动信号线22包括两个第二发光驱动信号输入端VLED2。两个第二发光驱动信号输入端VLED2位于第二发光驱动信号线22的两端。其中一个第二发光驱动信号输入端VLED2靠近第一边111设置,另一第二发光驱动信号输入端VLED2靠近第二边112设置。具体的,一第二发光驱动信号输入端VLED2设置在与第一边111相邻的发光组件A靠近第一边111的一侧。另一第二发光驱动信号输入端VLED2设置在与第二边112相邻的发光组件A靠近第二边112的一侧。第二LED驱动信号通过两个第二发光驱动信号输入端VLED2从两端加载至第二发光驱动信号线22。
多个发光组件A沿第一方向11均匀分布。每一发光组件A都与第一发光驱动信号线21和第二发光驱动信号线22连接。结合图2,每一发光组件A包括第一灯条41、第二灯条42和用于驱动第一灯条41和第二灯条42的恒流驱动芯片3。在本实施例中,发光组件A为LED发光组件。灯条为LED灯条。
第一灯条41包括串联的多个发光二极管5。第一灯条41的一端连接至第一发光驱动信号线21。第一灯条41的阳极与第一发光驱动信号线21电连接。第一灯条41的另一端连接至恒流驱动芯片3。第一灯条41的阴极与恒流驱动芯片3的恒流输出端子(图中未示出)电连接。
第二灯条42包括串联的多个发光二极管5。第二灯条42的一端连接至第二发光驱动信号线22。第二灯条42的阳极与第二发光驱动信号线22电连接。第二灯条42的另一端连接至恒流驱动芯片3。第二灯条42的阴极与恒流驱动芯片3的另一恒流输出端子(图中未示出)电连接。
恒流驱动芯片3具有接地端子、电源输入端子和恒流输出端子。接地端子通过导线电连接至接地信号线6。电源输入端子通过导线电连接至芯片驱动信号线7。沿第一方向均匀分布的多个发光组件A中的多个恒流驱动芯片3中,每一恒流驱动芯片3的接地端子连接至接地信号线6,每一恒流驱动芯片3的电源输入端子连接至芯片驱动信号线7。
接地信号线6沿第一方向11延伸。接地信号线6具有一个地信号输入端GND。地信号输入端GND靠近第二边112设置。接地信号通过地信号输入端GND从接地信号线6的一端加载在接地信号线6上。
芯片驱动信号线7沿第一方向11延伸。芯片驱动信号线7具有一个芯片驱动信号输入端VDD1。芯片驱动信号输入端VDD1靠近第二边112设置。芯片驱动信号通过芯片驱动信号输入端VDD1从芯片驱动信号线7的一端加载在芯片驱动信号线7上。
本申请在沿第一方向11延伸的信号线上设置多个信号输入端。多个信号输入端沿第一方向11均匀分布。将信号通过信号线上的多个信号输入端加载在信号线上,以提高信号线上整体电压的一致性,从而缓解因线损带来的远离信号输入端的最远端LED电压不足的问题;同时可以避免单端输入信号时在初始设定值上增加线损电压作为实际加载的电压值而增大信号线上的功率损耗,并能避免因实际加载电压过大而损伤靠近信号输入端的器件。
具体的结合图1和图2,若每一发光二极管5的驱动电压为6V,则第一灯条41的正常点亮电压为24V。加载在第一灯条41阳极的第一LED驱动信号应大于等于24V。与第二边112相邻的发光组件中的第一灯条41与第一发光驱动信号线21的连接点为O和P。相邻的发光组件A中的第一灯条41与第一发光驱动信号线21的连接点为Q和S。距离第二边112最远的发光组件A中第一灯条41与第一发光驱动信号线21的连接点为X和Y。
在现有技术中,将第一LED驱动信号仅从第一发光驱动信号线21靠近第二边112的单端输入。若位于同一列的发光组件A的个数为10个,恒流驱动芯片3的恒流输出端子输出的恒定电流为10mA,且位于相邻两个第一灯条41与第一发光驱动信号线21的连接点之间的第一发光驱动信号线21的线阻为1Ω。O点和P点之间的压降Vdrop=1Ω*10mA=10mV。O点和Q点之间的压降Vdrop=1Ω*(20mA+10mA)=30mV。O点和S点之间的压降Vdrop=1Ω*(30mA+20mA+10mA)=60mV。O点和X点之间的压降Vdrop=1Ω*(180mA+170mA+…+30mA+20mA+10mA)=1710mV。O点和Y点之间的压降Vdrop=1Ω*(190mA+180mA+…+30mA+20mA+10mA)=1.9V。第一发光驱动信号输入端VLED1和Y点之间的压降Vdrop=1Ω*(200mA+190mA+180mA+…+30mA+20mA+10mA)=2.1V。
若接地信号线6具有与第一发光驱动信号线21相近的电阻,则接地信号线6上也会对应产生2.1V的压降。因此,考虑到线损,在第一发光驱动信号输入端VLED1实际需要加载的电压值V=24V+2.1V+2.1V=28.2V。整列发光组件A需要增加损耗P=4.2V*200mA=0.84W。对应的,加载在O点的电压为28.2V-1Ω*200*2mA,即27.8V,远大于第一灯条41正常发光所需承受的电压24V。
而采用本实施例的方式,将第一LED驱动信号通过第一发光驱动信号线21两端的两个第一发光驱动信号输入端VLED1同时加载在第一发光驱动信号线21上。此时,第一发光驱动信号线21上的最大压降Vm=1Ω*(100mA+90mA+…+30mA+20mA+10mA)=0.55V。在第一发光驱动信号输入端VLED1实际需要加载的电压值V=24V+2.1V+0.55V=26.65V。整列发光组件A需要增加损耗P=2.65V*200mA=0.53W。对应的,加载在O点的电压为26.65V-1Ω*200mA*2,即26.25V,一定程度的降低了靠近第一发光驱动信号输入端VLED1的第一灯条41上实际加载的电压值,降低了发光组件A的功率损耗。
同理,本实施例中,将第二发光驱动信号通过第二发光驱动信号线22两端的两个第二发光驱动信号输入端VLED2同时加载在第二发光驱动信号线22上,也能降低靠近第二发光驱动信号输入端VLED2的第二灯条42上实际加载的电压值,并进一步降低发光组件A的功率损耗。
面板还包括与基板1连接的第一柔性电路板8和第二柔性电路板9。第一柔性电路板8与第一边111连接。第二柔性电路板9与第二边112连接。
第一柔性电路板8上设置有用于传输第一发光驱动信号和用于传输第二发光驱动信号的多条导线。通过第一柔性电路板8与基板1的压合电连接,第一发光驱动信号传输至第一发光驱动信号线21中靠近第一边111的第一发光驱动信号输入端VLED1,第二发光驱动信号传输至第二发光驱动信号线22中靠近第一边111的第二发光驱动信号输入端VLED2。在本实施例中,第一柔性电路板8用于解决因面板周边布线复杂且跨线工艺复杂成本高的技术问题。第一柔性电路板8作为跨线电路,实现信号的远距离跨线传输。
第二柔性电路板9上设置有驱动芯片和其他外围电路。第二柔性电路板9上产生接地信号、第一发光驱动信号、第二发光驱动信号和芯片驱动信号。第二柔性电路板9上设置有多个信号传输端子。第二柔性电路板9上的信号传输端子与基板1上的信号连接端子压合电连接。通过第二柔性电路板9与基板1的压合电连接,第二柔性电路板9上产生的上述信号输入至对应信号线中。具体的,第二柔性电路板9上产生的接地信号通过地信号输入端GND从接地信号线6的一端加载在接地信号线6上。第二柔性电路板9上产生的芯片驱动信号通过芯片驱动信号输入端VDD1从芯片驱动信号线7的一端加载在芯片驱动信号线7上。第二柔性电路板9上产生的第一发光驱动信号通过两个第一发光驱动信号输入端VLED1从两端加载至第一发光驱动信号线21。第二柔性电路板9上产生的第二发光驱动信号通过两个第二发光驱动信号输入端VLED2从两端加载至第二发光驱动信号线22。
可以理解的是,在本申请的其他具体实施例中,第一柔性电路板8上也可以设置有驱动芯片和其他外围电路。第一柔性电路板8上也可以产生与第二柔性电路板上产生的第一发光驱动信号和第二发光驱动信号相同的第一发光驱动信号和第二发光驱动信号。第一柔性电路板8上产生的第一发光驱动信号和第二柔性电路板9上产生的第一发光驱动信号从第一发光驱动信号线21两端的第一发光驱动信号输入端VLED1加载至第一发光驱动信号线21上。第一柔性电路板8上产生的第二发光驱动信号和第二柔性电路板9上产生的第二发光驱动信号从第二发光驱动信号线22两端的第二发光驱动信号输入端VLED2加载至第二发光驱动信号线22上。
在本实施例中,第一发光驱动信号和第二发光驱动信号为相同的直流电压驱动信号。在其他具体实施例中,第一发光驱动信号和第二发光驱动信号也可以为不同的直流电压驱动信号。第一发光驱动信号的电压值由第一灯条41的工作电压值、第一发光驱动信号线21和接地信号线6上的电压损耗值决定。第二发光驱动信号的电压值由第二灯条42的工作电压值、第二发光驱动信号线22和接地信号线6上的电压损耗值决定。
在本实施例中,每一发光组件A内的恒流驱动芯片3在正常工作时同时驱动4个灯条。具体的,每一恒流驱动芯片3在正常工作时同时驱动两个第一灯条41和两个第二灯条42。可以理解的是,在本申请的其他具体实施例中,每一恒流驱动芯片3在正常工作时还可以同时驱动2个、3个、6个或8个灯条。恒流驱动芯片3具体连接的灯条数量以恒流驱动芯片3的驱动能力为限,这里不作具体限定。
可以理解的是,在本实施例中,第一发光驱动信号线21还可以包括多个第一发光驱动信号输入端VLED1。第一发光驱动信号通过多个第一发光驱动信号输入端VLED1从多处加载至第一发光驱动信号线21,从而进一步提高第一发光驱动信号线21上电压的均匀性。第一发光驱动信号线21所包括的第一发光驱动信号输入端VLED1的个数这里不作具体限定。同理,第二发光驱动信号线22也可以包括多个第二发光驱动信号输入端VLED2。第二发光驱动信号通过多个第二发光驱动信号输入端VLED2从多处加载至第二发光驱动信号线22,从而进一步提高第二发光驱动信号线22上电压的均匀性。第二发光驱动信号线22所包括的第二发光驱动信号输入端VLED2的个数这里同样不作具体限定。
在本实施例中,面板上设置有多列上述发光组件A,具体列数这里不作具体限定。
本申请提供的第二实施例如图3所示,本实施例与第一实施例的区别在于沿第一方向11延伸的接地信号线6具有两个地信号输入端GND。两个地信号输入端GND位于接地信号线6的两端。其中一个地信号输入端GND靠近第一边111设置,另一地信号输入端GND靠近第二边112设置。具体的,一地信号输入端GND设置在与第一边111相邻的发光组件A靠近第一边111的一侧。另一地信号输入端GND设置在与第二边112相邻的发光组件A靠近第二边112的一侧。接地信号通过两个地信号输入端GND从两端加载至接地信号线6上。在第一方向11上,相邻两个地信号输入端GND之间设置有至少两个发光组件A。
结合图1,在实施例一中,若将接地信号仅从接地信号线6靠近第二边112的单端输入,且位于同一列的发光组件A的个数为10个,恒流驱动芯片3的恒流输出端子输出的恒定电流为10mA,且位于相邻两个第一灯条41与第一发光驱动信号线21的连接点之间的第一发光驱动信号线21的线阻为1Ω。如实施例一所述,第一发光驱动信号线21上的最大压降Vm通过前述设计可降低至0.55V。
由于实施例一中,接地信号仅从接地信号线6的单端输入,若接地信号线6具有与第一发光驱动信号线21相近的电阻,则接地信号线6上仍会产生2.1V的压降。因此,考虑到线损,在第一发光驱动信号输入端VLED1实际需要加载的电压值V=24V+2.1V+0.55V=26.65V。整列发光组件A需要增加损耗P=2.65V*200mA=0.53W。对应的,加载在O点的电压为26.65V-1Ω*200mA*2,即26.25V。
而采用本实施例的方式,将接地信号通过接地信号线6两端的两个地信号输入端GND同时加载在接地信号线6上。此时,接地信号线6上的最大压降Vm1也将降低至0.55V。在第一发光驱动信号输入端VLED1实际需要加载的电压值V=24V+0.55V+0.55V=25.1V。整列发光组件A需要增加损耗P=1.1V*200mA=0.22W。对应的,加载在O点的电压为25.1V-1Ω*200mA*2,即24.7V。
综上,靠近第一发光驱动信号输入端VLED1的第一灯条41上实际加载的电压值为24.7V。该电压值也是与该列多个第一灯条41所承载的最大驱动电压值。该电压值与第一灯条41正常发光所需电压24V极为接近。第一发光驱动信号线21上的电压均匀性显著提高。同理,第二发光驱动信号线22上的电压均匀性也相较于实施例一得到了显著提高。而且,整列发光组件A需要增加的损耗P降低至0.22W,仅为现有技术的四分之一,显著降低了面板的功率损耗。
此外,在本申请中,面板还包括设置在基板1上的信号连接端子10。信号连接端子10用于将外部电路产生的信号输入至对应的信号线中。面板还包括设置在基板1上的与信号连接端子10连接的第一连接线和第二连接线。第一连接线与对应的信号线的一个所述信号输入端连接。第二连接线与所述对应的信号线的另一个信号输入端连接。信号线沿第一方向延伸。第二连接线具有沿第一方向延伸的部分。
具体的,在本实施例中,信号连接端子10包括接地信号连接端子、第一发光驱动信号连接端子、第二发光驱动信号连接端子以及芯片驱动信号连接端子。
面板还包括与接地信号连接端子连接的第一接地信号连接线61和第二接地信号连接线62。第一接地信号连接线61与接地信号线6的一个地信号输入端GND连接。第二接地信号连接线62与接地信号线6的另一个地信号输入端GND连接。第二接地信号连接线62具有沿第一方向延伸的部分。
面板还包括与第一发光驱动信号连接端子连接的第一发光驱动信号连接线211和第二发光驱动信号连接线212。第一发光驱动信号连接线211与第一发光驱动信号线21的一个第一发光驱动信号输入端VLED1连接。第二发光驱动信号连接线212与第一发光驱动信号线21的另一个第一发光驱动信号输入端VLED1连接。第一发光驱动信号线21沿第一方向延伸。第二发光驱动信号连接线212具有沿第一方向延伸的部分。
面板还包括与第二发光驱动信号连接端子连接的第三发光驱动信号连接线221和第四发光驱动信号连接线222。第三发光驱动信号连接线221与第二发光驱动信号线22的一个第二发光驱动信号输入端VLED2连接。第四发光驱动信号连接线222与第二发光驱动信号线22的另一个第二发光驱动信号输入端VLED2连接。第二发光驱动信号线22沿第一方向延伸。第四发光驱动信号连接线222具有沿第一方向延伸的部分。
本申请提供的第三实施例如图4所示,本实施例与第二实施例的区别在于沿第一方向11延伸的芯片驱动信号线7具有两个芯片驱动信号输入端VDD1。两个芯片驱动信号输入端VDD1位于芯片驱动信号线7的两端。其中一个芯片驱动信号输入端VDD1靠近第一边111设置,另一芯片驱动信号输入端VDD1靠近第二边112设置。具体的,一芯片驱动信号输入端VDD1设置在与第一边111相邻的发光组件A靠近第一边111的一侧。另一芯片驱动信号输入端VDD1设置在与第二边112相邻的发光组件A靠近第二边112的一侧。芯片驱动信号通过两个芯片驱动信号输入端VDD1从两端加载至芯片驱动信号线7上。在第一方向11上,相邻两个芯片驱动信号输入端VDD1之间设置有至少两个发光组件A。
结合图1,在实施例一中,若将芯片驱动信号仅从芯片驱动信号线7靠近第二边112的单端输入,且位于同一列的发光组件A的个数为10个,恒流驱动芯片3的恒流输出端子输出的恒定电流为10mA,且位于相邻两个第一灯条41与第一发光驱动信号线21的连接点之间的第一发光驱动信号线21的线阻为1Ω。则第一发光驱动信号线21上的最大压降Vm已降低至0.55V。若接地信号线6具有与第一发光驱动信号线21相近的电阻,则接地信号线6上的最大压降Vm1为2.1V。
若芯片驱动信号线7具有与第一发光驱动信号线21相近的电阻,则芯片驱动信号线7上也会对应产生2.1V的压降。由于恒流驱动芯片3的正常工作电压为3.3V,考虑到接地信号线6和芯片驱动信号线7上的压降,加载在F点的实际芯片驱动电压为3.3V+2.1V+2.1V,即7.5V。对于对应的恒流驱动芯片3,这个值已经超过了恒流驱动芯片3的正常工作电压范围,会导致恒流驱动芯片3无法正常工作或损坏。
而采用本实施例的方式,将接地信号通过接地信号线6两端的两个地信号输入端GND同时加载在接地信号线6上。同时,将芯片驱动信号通过芯片驱动信号线7两端的两个芯片驱动信号输入端VDD1同时加载在芯片驱动信号线7上。此时,第一发光驱动信号线21上的最大压降Vm如前所述降低至0.55V。接地信号线6上的最大压降Vm1也将降低至0.55V。芯片驱动信号线7上的最大压降Vm2也将降低至0.55V。在芯片驱动信号输入端VDD1实际需要加载的电压值V1=3.3V+0.55V+0.55V=4.4V。整列发光组件A需要增加芯片线路损耗P’=1.1V*200mA=0.22W。对应的,加载在F点的芯片驱动电压为4.4V,仍在恒流驱动芯片3的正常工作电压范围内,不会损坏恒流驱动芯片3。
综上,靠近第一发光驱动信号输入端VLED1的第一灯条41上实际加载的电压值为24.7V。该电压值也是与该列多个第一灯条41所承载的最大驱动电压值。该电压值与第一灯条41正常发光所需电压24V极为接近。第一发光驱动信号线21上的电压均匀性显著提高。同理,第二发光驱动信号线22上的电压均匀性也相较于实施例一得到了显著提高。而且,整列发光组件A需要增加的LED线路损耗P降低至0.22W,仅为现有技术的四分之一,显著降低了面板的功率损耗。
而且,靠近芯片驱动信号输入端VDD1的恒流驱动芯片3上实际加载的电压值为4.4V。该电压值也是与该列多个恒流驱动芯片3所承载的最大驱动电压值。该电压值仍在恒流驱动芯片3的正常工作电压范围内。芯片驱动信号线7上的电压均匀性显著提高。而且,整列发光组件A需要增加的芯片线路损耗P’降低至0.22W,进一步降低了面板整体的功率损耗。
本申请提供的第四实施例如图5所示,本实施例与第一实施例的区别在于位于同一列的多个发光组件A仅与一发光驱动信号线2连接。具体的,每个发光组件A包括四个灯条4和一个用于驱动灯条4的恒流驱动芯片3。每一灯条4包括串联的四个发光二极管5。灯条4的一端连接至发光驱动信号线2。灯条4的阳极与发光驱动信号线2电连接。灯条4的另一端连接至恒流驱动芯片3。灯条4的阴极与恒流驱动芯片3的恒流输出端子(图中未示出)电连接。
发光驱动信号线2包括两个第三发光驱动信号输入端VLED3。两个第三发光驱动信号输入端VLED3位于发光驱动信号线2的两端。其中一个第三发光驱动信号输入端VLED3靠近第一边111设置,另一第三发光驱动信号输入端VLED3靠近第二边112设置。具体的,一第三发光驱动信号输入端VLED3设置在与第一边111相邻的发光组件A靠近第一边111的一侧。另一第三发光驱动信号输入端VLED3设置在与第二边112相邻的发光组件A靠近第二边112的一侧。发光驱动信号通过两个第三发光驱动信号输入端VLED3从两端加载至发光驱动信号线2。
将发光驱动信号通过发光驱动信号线2两端的两个第三发光驱动信号输入端VLED3同时加载在发光驱动信号线2上,提升了发光驱动信号线2上电压的均匀性,降低了靠近第三发光驱动信号输入端VLED3的灯条4上实际加载的电压值,降低了发光组件A的功率损耗。
可以理解的是,在本申请的其他具体实施例中,还可以采用3条、4条等多条发光驱动信号线2来驱动多个灯条4,发光驱动信号线2的具体数量这里不作具体限定。
本申请提供的第五实施例如图6所示,本实施例与第四实施例的区别在于发光驱动信号线2包括三个发光驱动信号输入端VLED3。其中,两个第三发光驱动信号输入端VLED3位于发光驱动信号线2的两端,另一第三发光驱动信号输入端VLED3位于所述两个第三发光驱动信号输入端VLED3之间。具体的,一个第三发光驱动信号输入端VLED3靠近第一边111设置,另一第三发光驱动信号输入端VLED3靠近第二边112设置,又一第三发光驱动信号输入端VLED3设置在前述两个第三发光驱动信号输入端VLED3之间沿第一方向11的中间位置。
将发光驱动信号通过发光驱动信号线2上的三个第三发光驱动信号输入端VLED3同时加载在发光驱动信号线2上,进一步提升了发光驱动信号线2上电压的均匀性,并进一步降低了靠近第三发光驱动信号输入端VLED3的灯条4上实际加载的电压值,显著降低了发光组件A的功率损耗。
本实施例与第四实施例的区别还在于每个发光组件A包括六个灯条4和一个用于驱动灯条4的恒流驱动芯片3。6个灯条4的阳极均连接至同一发光驱动信号线2。6个灯条4的阴极与恒流驱动芯片3的恒流输出端子(图中未示出)电连接。
可以理解的是,在本申请中,包括发光驱动信号线、接地信号线6和芯片驱动信号线7的信号线中,沿第一方向11延伸的部分还可以包括三个、四个、五个或更多个信号输入端。信号线上沿第一方向11分布的信号输入端的个数越多,信号线上的电压越均匀,信号线上的电压损耗越小,近信号输入端的发光组件A中器件承载的驱动电压越接近理论工作电压值,从而保护器件的同时有效降低功耗。
在本申请中,每一发光组件A内的恒流驱动芯片3在正常工作时同时驱动4个或6个灯条。可以理解的是,在本申请的其他具体实施例中,每一恒流驱动芯片3在正常工作时还可以同时驱动2个、3个、5个或8个等多个灯条。恒流驱动芯片3具体连接的灯条数量以恒流驱动芯片3的驱动能力为限,这里不作具体限定。
在本申请中,每一灯条4为四个发光二极管5串联组成。可以理解的是,在本申请的其他具体实施例中,每一灯条4内发光二极管5的数量不作具体限定。
可以理解的是,本申请提供的面板为LED灯板,具体是可以是用于LED显示的LED灯板,也可以是用于显示面板背光模组中背光源的LED灯板。
本申请还提供了一种驱动电路,如图7所示,包括基板201、设置在基板201上的信号线202和多个负载组件203。多个负载组件203沿第一方向204分布。每一负载组件203与信号线202连接。信号线202包括至少两个信号输入端(V1、V2、V3或V4)。信号通过这至少两个信号输入端加载至所述信号线202。每一负载组件203包括串联的多个负载元件和用于驱动负载元件的恒流驱动芯片206。负载元件的一端连接至信号线202。负载元件的另一端连接至恒流驱动芯片206。面板还包括第一边207和与第一边207相对的第二边208。第一方向204由第一边207朝向第二边208延伸。一信号输入端(V1、V2、V3或V4中的一个)靠近第一边207设置,与所述信号输入端连接的另一信号输入端靠近第二边208设置。
本申请还提供一种显示面板,包括如前所述的驱动电路,负载组件203可以是发光元件。具体的,负载组件203可以是显示面板背光组件中的LED面板上的LED元件。在一些具体实施例中,负载组件203也可以是显示面板上的像素单元。负载组件203具体包括有机发光像素单元。
本申请将信号通过多个信号输入端加载在信号线上,提高信号线上整体电压的一致性,从而缓解远离信号输入端的灯条驱动电压不足的问题;同时,可以降低相关器件上实际加载的电压值以避免损伤靠近信号输入端的器件,并降低信号线上的功率损耗。
以上对本申请实施例所提供的一种面板进行了详细的介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (20)

  1. 一种驱动电路,其中,包括基板、设置在所述基板上的信号线和多个负载组件,所述多个负载组件沿第一方向分布,每一所述多个负载组件与所述信号线连接;所述信号线包括至少两个信号输入端,信号通过所述至少两个信号输入端加载至所述信号线。
  2. 根据权利要求1所述的驱动电路,其中,所述负载组件包括串联的多个负载元件和用于驱动所述负载元件的恒流驱动芯片,所述负载元件的一端连接至所述信号线,所述负载元件的另一端连接至所述恒流驱动芯片。
  3. 根据权利要求1所述的驱动电路,其中,所述基板还包括第一边和与所述第一边相对的第二边,所述第一方向由所述第一边朝向所述第二边延伸,一所述信号输入端靠近所述第一边设置,另一所述信号输入端靠近所述第二边设置。
  4. 一种显示面板,其中,包括如权利要求1所述的驱动电路,所述负载组件包括发光元件。
  5. 一种面板,其中,包括基板、设置在所述基板上的信号线和多个发光组件,所述多个发光组件沿第一方向分布,每一所述发光组件与所述信号线连接;所述信号线包括至少两个信号输入端,信号通过所述至少两个信号输入端加载至所述信号线。
  6. 根据权利要求5所述的面板,其中,每一所述发光组件包括多个灯条和用于驱动所述灯条的恒流驱动芯片,所述灯条包括串联的多个发光元件,所述灯条的一端连接至所述信号线,所述灯条的另一端连接至所述恒流驱动芯片;
    所述信号线包括发光驱动信号线,所述发光驱动信号线包括至少两个发光驱动信号输入端,所述发光驱动信号通过所述至少两个发光驱动信号输入端加载至所述发光驱动信号线。
  7. 根据权利要求6所述的面板,其中,所述信号线还包括芯片驱动信号线,所述多个发光组件中的多个所述恒流驱动芯片连接至所述芯片驱动信号线,所述芯片驱动信号线包括至少两个芯片驱动信号输入端,芯片驱动信号通过所述至少两个芯片驱动信号输入端加载至所述芯片驱动信号线。
  8. 根据权利要求6所述的面板,其中,所述信号线还包括接地信号线,所述多个发光组件中的多个所述恒流驱动芯片连接至所述接地信号线,所述接地信号线包括至少两个地信号输入端,所述接地信号通过所述至少两个地信号输入端加载至所述接地信号线。
  9. 根据权利要求6所述的面板,其中,所述面板还包括第一边和与所述第一边相对的第二边,所述第一方向由所述第一边朝向所述第二边延伸;
    所述发光驱动信号输入端包括第一发光驱动信号输入端和第二发光驱动信号输入端;所述第一发光驱动信号输入端靠近所述第一边设置,所述第二发光驱动信号输入端靠近所述第二边设置。
  10. 根据权利要求9所述的面板,其中,所述发光驱动信号输入端还包括第三发光驱动信号输入端;在所述第一方向上,所述第三发光驱动信号输入端位于所述第一发光驱动信号输入端和所述第二发光驱动信号输入端之间。
  11. 根据权利要求5所述的面板,其中,所述面板还包括第一边和与所述第一边相对的第二边,所述第一方向由所述第一边朝向所述第二边延伸;一所述信号输入端靠近所述第一边设置,另一所述信号输入端靠近所述第二边设置。
  12. 根据权利要求5所述的面板,其中,每一所述发光组件包括多个灯条和用于驱动所述灯条的恒流驱动芯片;
    所述信号线包括芯片驱动信号线,每一所述恒流驱动芯片电连接至所述芯片驱动信号线;所述芯片驱动信号线包括至少两个芯片驱动信号输入端,芯片驱动信号通过所述至少两个芯片驱动信号输入端加载至所述芯片驱动信号线;
    在所述第一方向上,相邻两个所述芯片驱动信号输入端之间设置有至少两个所述发光组件。
  13. 根据权利要求5所述的面板,其中,每一所述发光组件包括多个灯条和用于驱动所述灯条的恒流驱动芯片;
    所述信号线为接地信号线,每一所述恒流驱动芯片电连接至所述接地信号线;所述接地信号线包括至少两个地信号输入端,所述接地信号通过所述至少两个地信号输入端加载至所述接地信号线;
    在所述第一方向上,相邻两个所述地信号输入端之间设置有至少两个所述发光组件。
  14. 根据权利要求5所述的面板,其中,每一所述发光组件包括第一灯条、第二灯条和用于驱动所述第一灯条和/或所述第二灯条的恒流驱动芯片;
    所述信号线包括第一发光驱动信号线和第二发光驱动信号线,所述第一灯条包括串联的多个发光元件,所述第一灯条的一端电连接至所述第一发光驱动信号线,所述第一灯条的另一端电连接至所述恒流驱动芯片;所述第二灯条包括串联的多个发光元件,所述第二灯条的一端连接至所述第二发光驱动信号线,所述第二灯条的另一端连接至所述恒流驱动芯片;
    所述信号包括第一发光驱动信号和第二发光驱动信号,所述第一发光驱动信号线包括至少两个第一发光驱动信号输入端,所述第一发光驱动信号通过所述至少两个第一发光驱动信号输入端加载至所述第一发光驱动信号线;所述第二发光驱动信号线包括至少两个第二发光驱动信号输入端,所述第二发光驱动信号通过所述至少两个第二发光驱动信号输入端加载至所述第二发光驱动信号线。
  15. 根据权利要求5所述的面板,其中,所述面板还包括用于输入所述信号的信号连接端子、与所述信号连接端子连接的第一连接线和第二连接线,所述第一连接线与一个所述信号输入端连接,所述第二连接线与另一个所述信号输入端连接。
  16. 根据权利要求5所述的面板,其中,所述信号线沿所述第一方向延伸,所述至少两个信号输入端沿所述第一方向均匀分布;在所述第一方向上,相邻两个所述信号输入端之间设置有至少两个所述发光组件。
  17. 根据权利要求6所述的面板,其中,所述面板为LED灯板,所述发光组件为LED组件。
  18. 根据权利要求6所述的面板,其中,每一所述发光组件包括四个灯条和用于驱动所述四个灯条的恒流驱动芯片,所述灯条包括串联的多个发光元件,所述灯条的一端连接至所述信号线,所述灯条的另一端连接至所述恒流驱动芯片;
    所述信号线包括发光驱动信号线,所述发光驱动信号线包括多个发光驱动信号输入端,所述发光驱动信号通过所述多个发光驱动信号输入端加载至所述发光驱动信号线。
  19. 根据权利要求18所述的面板,其中,还包括第一边和与所述第一边相对的第二边,所述第一方向由所述第一边朝向所述第二边延伸;
    所述发光驱动信号输入端包括第一发光驱动信号输入端和第二发光驱动信号输入端;所述第一发光驱动信号输入端靠近所述第一边设置,所述第二发光驱动信号输入端靠近所述第二边设置;
    所述发光元件为LED发光元件。
  20. 根据权利要求18所述的面板,其中,所述发光驱动信号输入端还包括第三发光驱动信号输入端;在所述第一方向上,所述第三发光驱动信号输入端位于所述第一发光驱动信号输入端和所述第二发光驱动信号输入端之间。
PCT/CN2021/095368 2021-05-11 2021-05-24 驱动电路、显示面板及面板 WO2022236866A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/417,793 US11756478B2 (en) 2021-05-11 2021-05-24 Driving circuit, display panel, and panel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110512239.7 2021-05-11
CN202110512239.7A CN113257175B (zh) 2021-05-11 2021-05-11 驱动电路、显示面板及面板

Publications (1)

Publication Number Publication Date
WO2022236866A1 true WO2022236866A1 (zh) 2022-11-17

Family

ID=77222734

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/095368 WO2022236866A1 (zh) 2021-05-11 2021-05-24 驱动电路、显示面板及面板

Country Status (2)

Country Link
CN (1) CN113257175B (zh)
WO (1) WO2022236866A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115236906B (zh) * 2022-06-30 2023-08-22 苏州华星光电技术有限公司 显示装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205782610U (zh) * 2016-06-28 2016-12-07 优亮科技股份有限公司 发光二极管灯条单元结构
CN110649042A (zh) * 2019-09-30 2020-01-03 厦门天马微电子有限公司 显示面板和显示装置
CN111243496A (zh) * 2020-02-21 2020-06-05 京东方科技集团股份有限公司 一种像素电路及其驱动方法、显示装置
CN111999936A (zh) * 2020-08-27 2020-11-27 深圳市华星光电半导体显示技术有限公司 背光模组和显示装置
CN112331676A (zh) * 2020-11-02 2021-02-05 厦门天马微电子有限公司 一种阵列基板、显示面板及显示装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010243736A (ja) * 2009-04-03 2010-10-28 Sony Corp 表示装置
CN102157113B (zh) * 2011-04-13 2015-09-16 北京彩讯科技股份有限公司 柔性led显示屏
CN102708785B (zh) * 2011-05-18 2015-06-24 京东方科技集团股份有限公司 像素单元电路及其工作方法、oled显示装置
CN103927968B (zh) * 2013-06-18 2016-12-28 上海天马微电子有限公司 一种oled显示装置
KR20150102788A (ko) * 2014-02-28 2015-09-08 삼성디스플레이 주식회사 유기 발광 표시 장치
CN104409046A (zh) * 2014-12-18 2015-03-11 京东方科技集团股份有限公司 显示阵列基板、补偿方法、显示面板和显示装置
KR102648416B1 (ko) * 2016-12-26 2024-03-19 엘지디스플레이 주식회사 유기전계발광표시장치 및 이의 구동방법
CN108511478A (zh) * 2017-02-24 2018-09-07 上海和辉光电有限公司 有机发光二极管显示器
CN108922493A (zh) * 2018-09-21 2018-11-30 京东方科技集团股份有限公司 一种驱动电路及其驱动方法、显示装置
US11545542B2 (en) * 2019-01-22 2023-01-03 Chengdu Boe Optoelectronics Technology Co., Ltd. Display panel, display device, and method for manufacturing display panel
CN110599955B (zh) * 2019-09-19 2021-02-09 昆山工研院新型平板显示技术中心有限公司 一种显示面板和显示装置
CN111445860B (zh) * 2020-04-30 2021-08-03 深圳市华星光电半导体显示技术有限公司 一种显示面板及其制作方法以及电子装置
CN112017595A (zh) * 2020-09-02 2020-12-01 Tcl华星光电技术有限公司 显示面板及电子设备
CN112767880A (zh) * 2021-02-09 2021-05-07 Tcl华星光电技术有限公司 显示装置
CN112767852B (zh) * 2021-02-26 2022-07-29 Tcl华星光电技术有限公司 一种用于透明显示的迷你发光二极管显示面板及拼接屏

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205782610U (zh) * 2016-06-28 2016-12-07 优亮科技股份有限公司 发光二极管灯条单元结构
CN110649042A (zh) * 2019-09-30 2020-01-03 厦门天马微电子有限公司 显示面板和显示装置
CN111243496A (zh) * 2020-02-21 2020-06-05 京东方科技集团股份有限公司 一种像素电路及其驱动方法、显示装置
CN111999936A (zh) * 2020-08-27 2020-11-27 深圳市华星光电半导体显示技术有限公司 背光模组和显示装置
CN112331676A (zh) * 2020-11-02 2021-02-05 厦门天马微电子有限公司 一种阵列基板、显示面板及显示装置

Also Published As

Publication number Publication date
CN113257175B (zh) 2022-11-08
CN113257175A (zh) 2021-08-13

Similar Documents

Publication Publication Date Title
CN101833916B (zh) 发光显示面板及其像素驱动方法
US8654040B2 (en) Electro-optical device, matrix substrate, and electronic equipment
US9723712B2 (en) Curved display device
US20100052564A1 (en) Backlight assembly and method of driving the same
CN105427823A (zh) 一种栅极驱动电压的调节方法、调节装置及显示装置
CN108389880B (zh) 一种oled显示面板及oled显示器
US10529701B2 (en) MicroLED display panel
US7336036B2 (en) Organic electroluminescent display device
CN104753349A (zh) 电源装置和包括该电源装置的显示设备
CN211654192U (zh) 阵列基板及拼接显示面板
CN211858095U (zh) 一种显示面板及拼接显示装置
EP2927899A1 (en) Led display device
CN109767725A (zh) 一种像素驱动电路及其驱动方法、显示装置
CN107481661A (zh) 显示装置的操作方法及显示装置
WO2022236866A1 (zh) 驱动电路、显示面板及面板
KR20120047390A (ko) 백라이트 유닛 및 이를 포함하는 액정 표시 장치
KR100795797B1 (ko) 유기발광 표시장치 및 유기발광 표시장치의 전원공급부
KR20220051195A (ko) 평면 패널 디바이스 전극 구조
US11756478B2 (en) Driving circuit, display panel, and panel
CN107808653B (zh) 显示面板供电装置、制造方法、供电方法及显示装置
WO2022095549A1 (zh) 驱动背板、显示面板及其制备方法
CN100411188C (zh) 主动式电激发光显示器及其电源供应电路
CN215182984U (zh) 显示面板和电子设备
CN110085643B (zh) 一种阵列基板及显示装置
CN113066920A (zh) Led芯片、驱动基板以及显示面板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21941435

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21941435

Country of ref document: EP

Kind code of ref document: A1