WO2022236745A1 - 多通路阀组件、多通路阀总成及热管理系统 - Google Patents

多通路阀组件、多通路阀总成及热管理系统 Download PDF

Info

Publication number
WO2022236745A1
WO2022236745A1 PCT/CN2021/093406 CN2021093406W WO2022236745A1 WO 2022236745 A1 WO2022236745 A1 WO 2022236745A1 CN 2021093406 W CN2021093406 W CN 2021093406W WO 2022236745 A1 WO2022236745 A1 WO 2022236745A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow channel
port
access point
valve body
channel
Prior art date
Application number
PCT/CN2021/093406
Other languages
English (en)
French (fr)
Inventor
夏嵩勇
卢叶红
胡磊
董彦亮
敖伟伟
Original Assignee
浙江吉利控股集团有限公司
宁波吉利汽车研究开发有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江吉利控股集团有限公司, 宁波吉利汽车研究开发有限公司 filed Critical 浙江吉利控股集团有限公司
Priority to PCT/CN2021/093406 priority Critical patent/WO2022236745A1/zh
Priority to CN202180081912.4A priority patent/CN116568951A/zh
Publication of WO2022236745A1 publication Critical patent/WO2022236745A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K11/00Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K11/00Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves
    • F16K11/02Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit
    • F16K11/06Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements
    • F16K11/072Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements with pivoted closure members
    • F16K11/074Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements with pivoted closure members with flat sealing faces

Definitions

  • the invention relates to the field of automobile thermal management, in particular to a multi-channel valve assembly, a multi-channel valve assembly and a thermal management system.
  • Thermal management is the use of heating or cooling means to adjust and control the temperature of the managed object.
  • fluid media to thermally manage automobiles is a relatively common thermal management method, that is, heating/cooling fluid media through heating/cooling components , and then conduct heat exchange with the managed object through the fluid medium.
  • the managed objects are equipped with three-way valves, four-way valves and other valves to connect with corresponding cooling/heating components. By switching these valves, the Each circuit realizes heat management, but this kind of heat management system has multiple valves and multiple driving elements for driving these valves, which not only takes up a lot of space, is difficult to arrange, but also has high cost.
  • valve which has a housing and a rotatable valve core arranged in the housing. There are multiple ports on the outer wall of the housing.
  • the valve core adopts a cylindrical structure, and there are multiple flow channels in the valve core.
  • the inlet and outlet of each flow channel are located on the outer wall of the valve core. By rotating the valve core, the inlet and outlet of each flow channel are connected to different ports, and the switching of each circuit can also be realized.
  • this multi-channel valve is highly integrated Higher, but it still takes up a lot of space in the state of use.
  • the object of the present invention is to provide a multi-channel valve assembly, a multi-channel valve assembly and a heat management system, so as to improve the problem that the existing multi-channel valve occupies a large space.
  • a multi-channel valve assembly comprising a housing assembly and a valve body, the housing assembly has an inner chamber, the inner chamber is provided with a bottom surface, and the bottom surface is provided with a plurality of ports; the valve body is rotatably set In the inner cavity, the valve body is provided with at least two flow channels that are not connected to each other, and each of the flow channels is a planar flow channel whose trajectory is on the end surface of the valve body.
  • the flow channel is used to communicate with at least two ports; wherein, the end surface of the valve body provided with each of the flow channels is always in close contact with the bottom surface, and the valve body has at least two ports relative to the housing assembly.
  • the rotation gear position when the valve body is rotated to switch the rotation gear position, the ports connected to each of the flow channels are switched.
  • each of the channels has at least two access points for connecting with the ports, and each access point has an equal radius of gyration to at least one of the ports.
  • the ports are grouped according to the radius of gyration, and each of the ports is divided into at least two port groups, and the ports of a single port group have the same radius of gyration.
  • the end face of the valve body is divided into a central closed area and at least one annular closed area, the central closed area and each of the annular closed areas are arranged in sequence from inside to outside, and the central closed area has a virtual an outer contour, each of the annular enclosed areas has a virtual inner contour and a virtual outer contour,
  • At least two groups of flow channel components are arranged on the end surface of the valve body, and one group of the flow channel components is correspondingly located in one of the enclosed areas, each group of flow channel components corresponds to a group of the port components, and each group of flow channel components
  • Each includes at least two flow channels, and in the corresponding flow channel components and port groups, the radius of gyration of each port is equal to the radius of gyration of each access point.
  • the flow channel assembly in the central enclosed area includes a first flow channel, a second flow channel and a third flow channel, the first flow channel has a first access point and a second access point ;
  • the second flow channel has a third access point and a fourth access point;
  • the third flow channel has a fifth access point and a sixth access point;
  • the second flow channel is separated from the Between the first flow channel and the third flow channel, the first access point, the third access point, the fifth access point, the sixth access point, the fourth access point and the second access point
  • the ports are uniformly distributed in sequence along the circumferential direction, and among the port groups of each group, the port group with the smallest radius of gyration has four ports uniformly distributed along the circumferential direction.
  • At least one of the flow channel components provided in the annular closed area is an outer flow channel component
  • the outer flow channel component includes a fourth flow channel and a fifth flow channel
  • the fourth flow channel and the The fifth flow channel is an equal-curvature circular arc flow channel with the same radius of gyration everywhere
  • the port group corresponding to the outer flow channel assembly also has four ports uniformly distributed in the axial direction.
  • a cross-area flow channel is provided on the end surface of the valve body, and there are at least two access points with unequal gyration radii in the cross-area flow channel.
  • an elastic pressing member is arranged in the housing assembly, and the elastic pressing member is used to press the valve body in the inner cavity, so that the valve body is provided with The end face of the flow channel is pressed against the end face.
  • the present invention also provides a multi-channel valve assembly, including a driving member and any one of the above-mentioned multi-channel valve assemblies, the driving member is used to drive the valve body in the housing assembly Rotation in cavity.
  • the present invention also provides a thermal management system for managing the temperature of each object, which includes at least one heating element, at least one cooling element, and also includes any one of the multi-channel valve assemblies described above, each of which The heating element, the cooling element, and each of the objects are each connected to a corresponding said port.
  • the flow channel is a planar flow channel arranged on the end surface of the valve body, and the ports are also arranged on the corresponding end surface of the housing.
  • the processing of the flow channel is simpler, the processing cost is lower, and the occupied space is smaller.
  • Fig. 1 is a three-dimensional structural schematic diagram of a multi-way valve assembly of the present invention in an embodiment
  • Fig. 2 is an exploded view of the multi-way valve assembly of Fig. 1 in an embodiment
  • Fig. 3 is a schematic structural view of the valve body in Fig. 2;
  • Fig. 4 is a schematic structural view of the housing in Fig. 2;
  • Fig. 5 is a schematic diagram of the relationship between each flow channel and the port position in the multi-channel valve assembly corresponding to Fig. 2;
  • Fig. 6 is a schematic diagram of the positional relationship between each flow channel and port in Fig. 5 after switching to another gear;
  • Fig. 7 is a schematic diagram of the positional relationship between each flow channel and port in Fig. 5 after switching to another gear;
  • Fig. 8 is a schematic diagram of the positional relationship between each flow channel and port in Fig. 5 after switching to another gear;
  • Fig. 9 is a schematic diagram of the relationship between the state and position of each flow channel and port in another embodiment of the multi-way valve assembly.
  • Fig. 10 is a schematic diagram of the positional relationship between each flow channel and port in Fig. 9 after switching to another gear;
  • Fig. 11 is a schematic diagram of the positional relationship between each flow channel and port in Fig. 9 after switching to another gear;
  • Fig. 12 is a schematic diagram of a state position relationship between each flow channel and port in another embodiment of the multi-channel valve group;
  • Fig. 13 is a schematic diagram of the positional relationship between each flow channel and port in Fig. 12 after being switched to another gear;
  • Fig. 14 is a schematic diagram of the positional relationship between the flow channels and ports in Fig. 13 after switching to another gear;
  • Fig. 15 is a schematic diagram of the positional relationship between each flow channel and port in Fig. 14 after switching to another gear;
  • Fig. 16 is a schematic diagram of a state position relationship between each flow channel and port in another embodiment of the multi-channel valve group
  • Fig. 17 is a schematic diagram of a state-position relationship between each flow channel and a port in another embodiment of the multi-channel valve group;
  • Fig. 18 is a schematic diagram of a state-position relationship of each flow channel and port in yet another embodiment of the multi-channel valve group.
  • valve body 110, first end face; 101, first flow channel; 102, second flow channel; 103, third flow channel; 104, fourth flow channel; 105, fifth flow channel;
  • Embodiments of the present invention are described below through specific examples, and those skilled in the art can easily understand other advantages and effects of the present invention from the content disclosed in this specification.
  • the present invention can also be implemented or applied through other different specific implementation modes, and various modifications or changes can be made to the details in this specification based on different viewpoints and applications without departing from the spirit of the present invention. It should be noted that, in the case of no conflict, the following embodiments and features in the embodiments can be combined with each other.
  • the terminology used in the embodiments of the present invention is for describing specific implementations, not for limiting the protection scope of the present invention.
  • the test methods for which specific conditions are not indicated in the following examples are usually in accordance with conventional conditions, or in accordance with the conditions suggested by each manufacturer.
  • the multi-channel valves of the following embodiments can be applied in the thermal management system of vehicles, especially in the thermal management system of electric vehicles.
  • the multi-port valve assembly provided by the present invention includes a housing assembly 200 with an inner cavity and a valve body 100 rotatably arranged in the inner cavity, and a bottom surface 211 is provided in the inner cavity, the The bottom surface 211 is provided with a plurality of ports, and the valve body 100 is provided with at least two flow channels (refer to labels 101-105) that are not connected to each other.
  • each flow channel is used to communicate with at least two ports; here and in the following embodiments, the end face on which each flow channel is set is defined as the first end face 110, and the first end face 110 is always in close contact with the bottom surface 211, and
  • the valve body 100 has at least two rotation gears relative to the housing assembly 200 , and when the valve body 100 is rotated to switch the rotation gears, the ports connected to each flow channel are switched.
  • the port here is a port for connecting the pipeline outside the casing 210 into the corresponding flow channel.
  • the cross-sectional shape of the port is circular, and the label of each port corresponds to the corresponding digital serial number, such as the number needs 1, 2, 3...8, in the actual implementation process, the port
  • the labels of each flow channel correspond to corresponding labels, such as labels 101, 102 , 103, 104, 105, in the thermal management process, manually or automatically rotate the valve body 100 according to a specific angle to switch the rotation gear, so that the ports connected to each flow channel are switched, for example, Figure 1 to Figure 15 In each drawing, the switching rotation angle is a multiple of 60 degrees.
  • the flow channel is a planar flow channel arranged on the end surface of the valve body, which makes the processing of the flow channel simpler and lower in processing cost; and the port is also arranged on the corresponding end surface of the housing, compared with the The way that the port is arranged on the side wall of the housing assembly can not only make the space occupied by the entire multi-way valve smaller, but also make the space occupied by the entire connection structure smaller after the port is connected to the pipe joints of each pipeline in the thermal management system. Zoom out further.
  • each flow channel adopts a straight line flow channel and a broken line flow channel.
  • each flow channel adopts an arc flow channel with equal curvature.
  • the type of flow channel can include one or at least one of straight line flow channel, broken line flow channel, equal curvature arc flow channel, variable curvature arc flow channel, straight line arc combination flow channel, broken line arc combination flow channel two kinds.
  • each channel has at least two access points for connecting with ports, and each access point has an equal radius of gyration with at least one port.
  • the flow channel 101 in FIGS. 5 to 8 has three access points, and these three access points are the access points A, B, and C marked in FIG. 3 .
  • each port is divided into at least two groups of port groups according to the radius of gyration, and each port of a single group of port groups has the same radius of gyration.
  • two groups of port groups are set. That is, the first port group and the second port group, the first port group corresponds to the first port 1, the second port 2, the third port 3 and the fourth port 4, and the second port group corresponds to the fifth port 5 and the sixth port 6 and the seventh port 7.
  • the group port group here, a single port group can only have one port, or it can include two or more ports.
  • three groups of port groups are set, and only the first Port 1 and the second port group include the second port 2 , the third port 3 and the fourth port 4 , and the third port group includes the fifth port 5 , the sixth port 6 , the seventh port 7 and the eighth port 8 .
  • the first end surface 110 is divided into a central closed area m and at least one annular closed area n, and the central closed area m and each annular closed area are composed of Arranged in sequence from inside to outside, the central closed area has a virtual outer contour (see the dotted outline in each drawing for details), and each annular closed area has a virtual inner contour and a virtual outer contour (not shown in the figure).
  • the virtual outer contour and the virtual inner contour are not real contours, but for the convenience of understanding the distribution of each runner component.
  • the circular closure here does not refer to the area surrounded by two circles.
  • the virtual outer contour and the virtual The specific contour of the inner contour is not limited, as long as the virtual outer contour of a single annular closed area is surrounded by the virtual inner contour.
  • At least two groups of flow channel components are provided on the first end surface, and one group of flow channel components is correspondingly located in one of the enclosed areas, each group of flow channel components corresponds to a group of port components, and each group of flow channel components
  • Each component includes at least two flow channels, and in the corresponding flow channel components and port groups, the radius of gyration of each port is equal to the radius of gyration of each access point.
  • the first end surface 110 is provided with a first flow channel assembly (including flow channels 101, 102, 103) and a second flow channel assembly (104, 105), and the first flow channel assembly
  • a first flow channel assembly including flow channels 101, 102, 103 and a second flow channel assembly (104, 105)
  • the first flow channel assembly Each flow channel is in the central closed area m
  • each flow channel assembly of the second flow channel assembly is in the ring-shaped closed area n
  • the radius of gyration of each access point of the first flow channel assembly is equal
  • each access point of the second flow channel assembly The radius of gyration of the points is equal
  • the labels of the ports in the port group corresponding to the first flow channel assembly are 1, 2, 3, 4, and the labels of the ports in the port group corresponding to the second flow channel assembly are 5, 6, 7, 8 .
  • the first end surface 110 may also be provided with a cross-region flow channel, and there are at least two access points with unequal gyration radii in the cross-region flow channel, that is to say
  • the setting areas of the flow channels on the first end face 110 are not grouped correspondingly according to the above-mentioned central closed area and annular area, and the access points of the cross-area flow channels are distributed in at least two closed areas, for example, FIG. 12
  • the flow channel 101 there are three access points, two of which are distributed in the central closed area labeled m, and one access point is distributed in the ring-shaped closed area marked n.
  • the flow channel 101 also has Three access points, one of which is distributed in the ring-shaped enclosed area marked m, and two access points are distributed in the ring-shaped enclosed area marked n,
  • the flow channel assembly in the central closed area m includes a first flow channel 101 , a second flow channel 102 and a third flow channel 103 , the first flow channel 101 has a first flow channel 101 One access point A, the second access point B and the third access point C, the second channel 102 has the fourth access point D, the fifth access point E, and the third channel 103 has the sixth access point point F, the seventh access point G, and the eighth access point H, the second flow channel 102 is separated between the first flow channel 101 and the third flow channel 103, so that the first access point A, the second flow channel The second access point B, the third access point C, the fourth access point D, the sixth access point F, the seventh access point G, the eighth access point H and the fifth access point E along the circumferential direction
  • the directions are uniformly distributed in sequence, and among each group of port groups, the port group with the smallest radius of gyration has four ports uniformly distributed along the circumferential
  • the flow channel assembly provided in at least one annular closed area is an outer flow channel assembly, see 3, Figure 5 to Figure 8, a set of outer flow channel assemblies are provided, and the outer flow channel assembly includes a fourth flow channel 104 and the fifth flow channel 105, the fourth flow channel 104 and the fifth flow channel 105 are equal-curvature arc flow channels with the same radius of gyration everywhere, if the corresponding radius of gyration of the group of flow channel components is R, the fourth flow channel
  • the arc lengths of the channel and the fifth channel are both greater than a quarter of the circumference corresponding to the radius of gyration, and the port group corresponding to the outer channel component also has four ports uniformly distributed along the axial direction.
  • the multi-way valve assembly with this structure has four gears: when in the state shown in Figure 5, the second port 2 and the fourth port 4 are connected, the fifth port 5 and the eighth port 8 are connected, and the second port Six ports 6 and the seventh port 7 are connected; when in the state shown in Figure 6, the first port 1 and the third port 3 are connected, the seventh port 7 and the eighth port 8 are connected, the fifth port 5 and the The sixth port 6 is connected; when in the state shown in Figure 7, the first port 1 is communicated with the second port 2, the third port 3 is communicated with the fourth port 4, the fifth port 5 is communicated with the sixth port 6,
  • the seventh port 7 communicates with the eighth port 8; when in the state shown in Figure 8, the first port 1 communicates with the fourth port 4, the second port 2 communicates with the third port 3, the fifth port 5 communicates with the eighth port Port 8 is connected, seventh port 7 and sixth port 6 are connected.
  • the flow channel assembly in the central closed area m may not be provided with the second flow channel 102, but only the first flow channel 101 and the third flow channel 103 are provided. At this time, there are The three gears can also switch the connection state between ports by switching the gears, but setting the second flow channel 102 can form more gears without changing the volume.
  • the second flow channel 102 is preferably a linear flow channel
  • the first flow channel 101 and the third flow channel 103 are symmetrically arranged on both sides of the second flow channel 102
  • the five flow passages 105 correspond to the axial center of the valve body, which is beneficial to the static balance and dynamic balance of the valve body, and also helps to avoid leakage of the flow passages due to the deviation of the valve body.
  • the housing assembly 200 is provided with an elastic pressing member 300, and the elastic pressing member 300 is used to press the valve body 100 into the inner cavity, so that the first end surface 110 is pressed against the bottom surface 211,
  • the provision of the elastic pressing member 300 is beneficial to prevent leakage caused by the flow channel detaching from the bottom surface 211 during the switching process, and improves the reliability of the multi-channel valve assembly during operation.
  • the elastic pressing member 300 adopts a disc-shaped structure, which is beneficial to evenly pressing the valve body 100 and reducing the possibility of medium leakage in the flow channel.
  • the housing assembly 200 includes a housing 210 with an opening and a detachable end cover 220 mounted on the opening, and the opening is used for the valve body 100 to be installed into the inner cavity in the axial direction, and the When the valve body 100 is installed, the valve body 100 is installed toward the bottom surface 211 of the housing 210 , and then the elastic pressing member 300 is installed, and finally the end cap 220 is installed.
  • the present invention also provides a multi-channel valve assembly, including a motor and any one of the above-mentioned multi-channel valve assemblies, the driving member 400 is used to drive the valve body 100 to rotate in the inner cavity of the housing assembly 200 .
  • the driving member 400 may be a motor.
  • the driver 400 is arranged on the side of the valve body 100 facing away from the first end surface 110, so that the driver 400 is located at one end of the valve body 100, and each port and each The pipe joints connected to the ports are located at the other end of the valve body 100, and there is sufficient installation space for the driver 400 and each pipe joint, and the outer diameter of the entire multi-way valve assembly can be controlled within a relatively small size range.
  • a torsion transmission structure is provided between the driving part 400 and the valve body 100.
  • a boss is provided on the valve body 100, and the bosses pass through the elastic pressing part in turn. 300 and the end cover 220, the boss is provided with a mounting hole for the output shaft of the power supply to be inserted in cooperation, the output shaft has a square shaft section, and the square shaft section is inserted into the mounting hole to realize the button transmission.
  • the space occupied by this transmission button structure is small.
  • the torque transmission can be realized by means of key connection.
  • the present invention also provides a thermal management system for managing the temperature of each object, which includes at least one heating element and at least one cooling element.
  • the thermal management system also includes any one of the above-mentioned multi-channel valve assemblies, each The heating element, the cooling element and each object are connected to corresponding ports, so that when the multi-way valve assembly is switched, each object (managed object) is switched to be connected to the corresponding heating element or cooling element, or is switched to be connected to each The state in which both the heating element and the cooling element are disconnected.
  • the processing of the flow channel is simpler, the processing cost is lower, and the space occupied by the entire multi-channel valve is smaller. Therefore, the present invention effectively overcomes some practical problems in the prior art and thus has high utilization value and use significance.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Multiple-Way Valves (AREA)

Abstract

一种多通路阀组件、多通路阀总成及热管理系统,该多通路阀组件包括壳体组件(200)和阀体(100),壳体组件(200)具有内腔,内腔中设有底面(211),底面(211)设置有多个端口;阀体(100)可回转的设置在内腔中,阀体(100)上设置有至少两条互不连通的流道(101~105),各流道(101~105)均为轨迹处于阀体(100)的端面上的平面型流道,每条流道(101~105)用于连通至少两个端口;其中,阀体(100)上设置有各流道(101~105)的端面始终紧贴在底面(211)上,且阀体(100)相对壳体(200)组件具有至少两个转动档位,当转动阀体(100)切换转动档位时,与各流道连接的端口被切换。该多通路阀组件的流道为设置在阀体端面的平面型流道,端口也设置在壳体的相应端面,流道的加工更简单、加工成本更低,占用空间更小。

Description

多通路阀组件、多通路阀总成及热管理系统 技术领域
本发明涉及汽车热管理领域,具体涉及一种多通路阀组件、多通路阀总成及热管理系统。
背景技术
热管理即利用加热或冷却手段对被管理对象的温度进行调节和控制,利用流体介质对汽车进行热管理是一种较为常用的热管理手段,即通过加热/冷却的部件对流体介质加热/冷却,再通过流体介质与被管理对象进行热交换,目前,大多数热管理系统中,被管理对象各自配置有三通阀、四通阀等阀门与相应的冷却/加热部件连接,通过切换这些阀门切换各回路,从而实现热管理,但这种热管理系统中具有多个阀和多个用于驱动这些阀的驱动元件,不仅占用空间大,布置困难,而且成本高。
现有一种多通路阀,其具有壳体和可回转的设置在壳体内的阀芯,壳体的外壁上具有多个端口,阀芯采用圆柱体结构,阀芯内具有多条流道,且每条流道的入口和出口均处于阀芯的外壁上,通过转动阀芯,使各流道的入口和出口连接不同的端口,也能够实现各回路的切换,这种多通路阀虽然集成度较高,但在是使用状态下仍然会占用较大的空间。
发明内容
鉴于以上现有技术的缺点,本发明的目的在于提供一种多通路阀组件、多通路阀总成及热管理系统,以改善现有多通路阀占用空间较大问题。
为实现上述目的及其它相关目的,本发明提供如下技术方案:
一种多通路阀组件,包括壳体组件和阀体,所述壳体组件具有内腔,所述内腔中设有底面,所述底面设置有多个端口;所述阀体可回转的设置在所述内腔中,所述阀体上设置有至少两条互不连通的流道,各所述流道均为轨迹处于所述阀体的端面上的平面型流道,每条所述流道用于连通至少两个端口;其中,所述阀体上设置有各所述流道的端面始终紧贴在所述底面上,且所述阀体相对所述壳体组件具有至少两个转动档位,当转动所述阀体切换所述转动档位时,与各所述流道连接的端口被切换。
在一些实施例中,每条所述流道具有至少两处用于与所述端口连接的接入点,且每处接 入点与至少一个所述端口具有相等的回转半径。
在一些实施例中,按回转半径分组,各所述端口至少分为两组端口组,单组端口组的各所述端口具有相同的回转半径。
在一些实施例中,所述阀体的端面分为中心封闭区域和至少一个环形封闭区域,所述中心封闭区域及各所述环形封闭区域由内至外依次设置,所述中心封闭区域具有虚拟外轮廓,每个所述环形封闭区域均具有虚拟内轮廓和虚拟外轮廓,
所述阀体的端面上设置有至少两组流道组件,且一组所述流道组件对应处于其中一个封闭区域内,每组流道组件对应一组所述端口组件,每组流道组件均包括至少两条流道,且在相对应的流道组件和端口组中,各所述端口的回转半径与各所述接入点的回转半径相等。
在一些实施例中,所述中心封闭区域内的所述流道组件包括第一流道、第二流道和第三流道,所述第一流道具有第一接入点和第二接入点;所述第二流道具有第三接入点和第四接入点;所述第三流道具有第五接入点和第六接入点;其中,所述第二流道隔在所述第一流道和第三流道之间,使所述第一接入点、第三接入点、第五接入点、第六接入点、第四接入点和第二接入点沿周向方向依次均布设置,且各组所述端口组中,回转半径最小的所述端口组具有四个沿周向均布的所述端口。
在一些实施例中,其中至少一所述环形封闭区域内设置的流道组件为外流道组件,所述外流道组件包括第四流道和第五流道,所述第四流道和所述第五流道为各处回转半径相等的等曲率圆弧流道,且与所述外流道组件对应的所述端口组也具有四个沿轴向均布的所述端口。
在一些实施例中,所述阀体端面上设置有跨区域流道,所述跨区域流道中至少有两个回转半径互不相等的接入点。
在一些实施例中,所述壳体组件内设置有弹性压紧件,所述弹性压紧件用于将所述阀体压紧在所述内腔中,使所述阀体上设置有所述流道的端面被压紧在所述端面上。
相应的,本发明还提供一种多通路阀总成,包括驱动件和上述任一种所述的多通路阀组件,所述驱动件用于带动所述阀体在所述壳体组件的内腔中回转。
相应的,本发明还提供一种热管理系统,其用于管理各对象的温度,其包括至少一个加热元件、至少一个冷却元件,还包括上述任一种所述的多通路阀组件,各所述加热元件、冷 却元件和各所述对象各自与相应的所述端口连接。
综上所述,本发明中,流道为设置在阀体端面的平面型流道,端口也设置在壳体的相应端面,流道的加工更简单、加工成本更低,占用空间更小。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明的多通路阀总成于一实施例中的三维结构示意图;
图2为图1的多通路阀总成于一实施例中爆炸视图;
图3为图2中阀体的结构示意图;
图4为图2中壳体的结构示意图;
图5为图2对应的多通路阀组件中,各流道与端口位置关系示意图;
图6为图5的各流道和端口在切换至另一档位后的位置关系示意图;
图7为图5的各流道和端口在切换至又一档位后的位置关系示意图;
图8为图5的各流道和端口在切换至再一档位后的位置关系示意图;
图9为多通阀组件在另一实施方式中,各流道与端口的状态位置关系示意图;
图10为图9的各流道和端口在切换至另一档位后的位置关系示意图;
图11为图9的各流道和端口在切换至又一档位后的位置关系示意图;
图12为多通路阀组在还有一实施例中,各流道与端口的一种状态位置关系示意图;
图13为图12的各流道和端口在切换至另一档位后的位置关系示意图;
图14为图13的各流道和端口在切换至又一档位后的位置关系示意图;
图15为图14的各流道和端口在切换至另一档位后的位置关系示意图;
图16为多通路阀组在又一实施例中,各流道与端口的一种状态位置关系示意图;
图17为多通路阀组在再一实施例中,各流道与端口的一种状态位置关系示意图;
图18为多通路阀组在又有一实施例中,各流道与端口的一种状态位置关系示意图。
元件标号说明
100、阀体;110、第一端面;101、第一流道;102、第二流道;103、第三流道;104、 第四流道;105、第五流道;
200、壳体组件;210、壳体;220、端盖;211、底面;
1、第一端口;2、第二端口;3、第三端口;4、第四端口;5、第五端口;6、第六端口;7、第七端口;8、第八端口。
300、弹性压紧件;400、驱动件。
具体实施方式
以下通过特定的具体实例说明本发明的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本发明的其它优点与功效。本发明还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本发明的精神下进行各种修饰或改变。需说明的是,在不冲突的情况下,以下实施例及实施例中的特征可以相互组合。还应当理解,本发明实施例中使用的术语是为了描述特定的具体实施方案,而不是为了限制本发明的保护范围。下列实施例中未注明具体条件的试验方法,通常按照常规条件,或者按照各制造商所建议的条件。
请参阅图1至图17。须知,本说明书附图所绘示的结构、比例、大小等,均仅用以配合说明书所揭示的内容,以供熟悉此技术的人士了解与阅读,并非用以限定本发明可实施的限定条件,故不具技术上的实质意义,任何结构的修饰、比例关系的改变或大小的调整,在不影响本发明所能产生的功效及所能达成的目的下,均应仍落在本发明所揭示的技术内容所能涵盖的范围内。同时,本说明书中所引用的如“上”、“下”、“左”、“右”、“中间”及“一”等的用语,亦仅为便于叙述的明了,而非用以限定本发明可实施的范围,其相对关系的改变或调整,在无实质变更技术内容下,当亦视为本发明可实施的范畴。
当实施例给出数值范围时,应理解,除非本发明另有说明,每个数值范围的两个端点以及两个端点之间任何一个数值均可选用。除非另外定义,本发明中使用的所有技术和科学术语与本技术领域的技术人员对现有技术的掌握及本发明的记载,还可以使用与本发明实施例中所述的方法、设备、材料相似或等同的现有技术的任何方法、设备和材料来实现本发明。
下述各实施例的多通路阀可应用于车辆的热管理系统中,尤其是适用于电动车辆的热管理系统中。
请结合参阅图1至图17,本发明提供的多通路阀组件,包括具有内腔的壳体组件200和可回转的设置在内腔中的阀体100,内腔中设有底面211,该底面211上设置有多个端口,阀 体100上设置有至少两条互不连通的流道(参见标号101~105),各流道均为轨迹处于阀体100的端面上的平面型流道,每条流道用于连通至少两个端口;此处及下述各实施例中,将设置各流道的端面定义为第一端面110,第一端面110始终紧贴在底面211上,且阀体100相对壳体组件200具有至少两个转动档位,当转动阀体100切换转动档位时,与各流道连接的端口被切换。此处的端口为用于供壳体210外的管路接入相应流道的端口。
为便于理解转动阀体100切换转动档位的过程中,分别参见图5至图8对应的多通路阀组件、图9至图11的多通路阀组件、图12至图15的多通路阀组件、图16和图17,各附图中,端口的截面形状为圆形,各端口的标号各自对应相应的数字序号,如数字需要1、2、3…8,在实际实施过程中,端口的截面没有限制,只要能够供流体介质通过即可,端口的数量也不限于8个,而是根据需求进行设置;各附图中,各流道的标号各自对应相应的标号,如标号101、102、103、104、105,在热管理过程中,手动或自动转动将阀体100按特定角度转动即可切换转动档位,使各流道连接的端口被切换,例如,图1至图15的各附图中,切换的转动角度为60度的倍数,在实际实施过程中,切换角度根据端口和流道的布置方式确定,而并不限于60度的倍数。
本发明的多通路阀组件中,流道为设置在阀体端面的平面型流道,使得流道的加工更简单、加工成本更低;并且端口也设置在壳体的相应端面,相较将端口设置在壳体组件侧壁的方式,不仅能使得整个多通路阀占用的空间更小,还能使得该端口与热管理系统中各管路的管接头连接后,整个连接结构所占用的空间进一步缩小。
图16中,各流道采用直线型流道、折线型流道,图9至图11中,各流道均采用等曲率的圆弧流道,在实际实施过程中,参见图5至17,流道的种类可以包括直线型流道、折线型流道、等曲率圆弧流道、变曲率圆弧流道、直线圆弧组合型流道、折线圆弧组合型流道中的一种或至少两种。
在一些实施例中,参见图5至图17,每条流道具有至少两处用于与端口连接的接入点,且每处接入点与至少一个端口具有相等的回转半径。例如,图5至图8中的流道101具有3个接入点,这3个接入点即为图3中标注的接入点A、B、C。
在一些实施例中,按回转半径分组,各端口至少分为两组端口组,单组端口组的各端口具有相同的回转半径,例如,图5至图17中,均设置两组端口组,即第一端口组和第二端口组,第一端口组对应第一端口1、第二端口2、第三端口3和第四端口4,第二端口组对应第 五端口5、第六端口6和第七端口7。当然,在实际实施过程中,也可以只设置一组端口组,但设置两组或两组以上的端口组有利于形成更多档位。此处的组端口组中,单个端口组可以只设置一个端口,也可以包括两个或两个以上的端口,例如,图18中,设置三组端口组,第一组端口组中只有第一端口1、第二组端口组包含第二端口2、第三端口3、第四端口4,第三组端口组包含第五端口5、第六端口6、第七端口7和第八端口8。
为便于理解,下述各实施例中,参见图5、图9、图16,将第一端面110分为中心封闭区域m和至少一个环形封闭区域n,中心封闭区域m及各环形封闭区域由内至外依次设置,中心封闭区域具有虚拟外轮廓(详见各附图中的虚线轮廓),每个环形封闭区域均具有虚拟内轮廓和虚拟外轮廓(图未示)。其中,虚拟外轮廓和虚拟内轮廓并非真正的轮廓,只是为了便于理解各流道组件的分布方式,另外,此处的环形封闭也并非是指代两个圆圈围城的区域,虚拟外轮廓和虚拟内轮廓的具体轮廓没有限制,只要满足单个环形封闭区域的虚拟外轮廓围在虚拟内轮廓外即可。
在一些实施例中,第一端面上设置有至少两组流道组件,且一组流道组件对应处于其中一个封闭区域内,每组流道组件对应一组所述端口组件,每组流道组件均包括至少两条流道,且在相对应的流道组件和端口组中,各端口的回转半径与各所述接入点的回转半径相等。
具体的,例如,图5至图8中,第一端面110上设置有第一流道组件(包括流道101、102、103)和第二流道组件(104、105),第一流道组件的各流道处于中心封闭区域m内,第二流道组件的各流道组件处于环形封闭区域n内,第一流道组件的各接入点的回转半径相等,第二流道组件的各接入点的回转半径相等,第一流道组件对应的端口组中各端口的标号为标号1、2、3、4,第二流道组件对应端口组中各端口的标号为5、6、7、8。
当然,在实际实施过程中,参见图12、图17,第一端面110上也可以设置有跨区域流道,跨区域流道中至少有两个回转半径互不相等的接入点,也就是说第一端面110的各流道都的设置区域并不按照上述的中心封闭区域和环形区域的方式对应进行分组,跨区域流道的各接入点至少分布在两个封闭区域,例如,图12中,流道101共有三个接入点,其中两个接入点分布在标号m为的中心封闭区域,一个接入点分布在标号为n的环形封闭区域,图17中,流道101也有三个接入点,其中一个接入点分布在标号m为的环形封闭区域,两个接入点分布在标号为n的环形封闭区域,
在一些实施例中,结合参见图3、图5至图8,中心封闭区域m内的流道组件包括第一 流道101、第二流道102和第三流道103,第一流道101具有第一接入点A、第二接入点B和第三接入点C,第二流道102具有第四接入点D、第五接入点E,第三流道103具有第六接入点F、第七接入点G和第八接入点H,第二流道102隔在所述第一流道101和第三流道103之间,使所述第一接入点A、第二接入点B、第三接入点C、第四接入点D、第六接入点F、第七接入点G、第八接入点H和第五接入点E沿周向方向依次均布设置,且各组端口组中,回转半径最小的端口组具有四个沿周向均布的端口。
在一些实施例中,其中至少一环形封闭区域内设置的流道组件为外流道组件,参见3、图5至图8,设置了一组外流流道组件,该外流道组件包括第四流道104和第五流道105,第四流道104和第五流道105为各处回转半径相等的等曲率圆弧流道,若该组流道组件对应的回转半径为R,该第四流道和第五流道的弧长均大于与该回转半径对应的周长的四分之一,且与外流道组件对应的端口组也具有四个沿轴向均布的端口。
采用这种结构的多通路阀组件具有四个档位:当处于图5所示的状态时,第二端口2和第四端口4接通、第五端口5和第八端口8接通,第六端口6和第七端口7接通;当处于图6所示的状态时,第一端口1和第三端口3接通、第七端口7和第八端口8接通、第五端口5和第六端口6接通;当处于图7所示的状态时,第一端口1和第二端口2连通,第三端口3和第四端口4连通,第五端口5和第六端口6连通,第七端口7和第八端口8连通;当处于图8所示的状态时,第一端口1和第四端口4连通,第二端口2和第三端口3连通,第五端口5和第八端口8接通,第七端口7和第六端口6接通。
在实际实施过程中,参见图9至11,中心封闭区域m内的流道组件也可以不设置第二流道102,而是仅设置第一流道101和第三流道103,此时,共有三种档位,也能通过转动档位的切换实现端口与端口之间连接状态的切换,但设置该第二流道102,能够在体积不变的情况下形成更多档位。当然,在实际实施过程中,若采用图12至图15中这种具有跨区域流道的多通路阀门组件也能达到四个档位,但由于其流道跨越了区域,流道轨迹无法全部采用简单的等曲率弧线、直线,要实现其加工,虽然比现有多通路阀中流道的加工方式更简单,但其采用的设备比图5至图8所示的流道加工所需的设备要求更。
另外,在实际实施过程中,第二流道102最好采用直线型流道,第一流道101和第三流道103对称布置在第二流道102的两侧,第四流道104和第五流道105关于阀体的轴心中心对应,有利于使阀体的静平衡和动平衡能力,也就有利于避免流道因阀体偏移而发生渗漏。
在一些实施例中,壳体组件200内设置有弹性压紧件300,弹性压紧件300用于将阀体100压紧在内腔中,使第一端面110被压紧在底面211上,设置该弹性压紧件300有利于防止切换过程中流道脱离底面211而引起泄露的情况发生,提高了多通路阀组件工作时的可靠性。
具体的,在一些实施例中,该弹性压紧件300采用盘状结构,有利于均匀的压紧阀体100,减少流道内介质发生泄露的可能性。
在一些实施例中,壳体组件200包括具有开口的壳体210和可拆卸的安装在开口处的端盖220,该开口用于供阀体100沿轴向方向装入内腔中,装入阀体100时,阀体100朝向壳体210的底面211装入,然后再装入弹性压紧件300,最后安装端盖220即可。
相应的,本发明还提供一种多通路阀总成,包括电机和上述任一种所述的多通路阀组件,该驱动件400用于带动阀体100在壳体组件200的内腔中回转。其中,该驱动件400可以为电机。
在一些实施例中,参见图,驱动件400设置于阀体100上背对第一端面110的一侧,也就使得驱动件400处于阀体100的一端,而各端口以及使用状态下与各端口连接的管接头处于阀体100的另一端,驱动件400和各管接头均有足够的安装空间,整个多通路阀组件的外径尺寸可以控制在相对较小的尺寸范围内。
为了实现驱动件400带动阀体100回转,驱动件400与阀体100之间设置有传扭结构,例如,图中,阀体100上设置有凸台,该凸台依次贯穿该弹性压紧件300和该端盖220,该凸台上开设有用于供电机的输出轴配合插入的安装孔,该输出轴具有方轴段,该方轴段配合插入该安装孔中实现传钮,在实际实施过程中,这种传钮结构占用的空间小,在实际实施过程中,若输出轴和安装孔的尺寸较大,则可以通过键连接的方式实现传扭。
相应的,本发明还提供一种热管理系统,其用于管理各对象的温度,其包括至少一个加热元件、至少一个冷却元件,该热管理系统还包括上述任一种多通路阀组件,各加热元件、冷却元件和各对象各自与相应的端口连接,使得切换该多通阀组件时,各对象(被管理对象)被切换至与相应的加热元件或冷却元件连接,或被切换至与各加热元件、冷却元件均断开连 接的状态。
综上所述,本发明中,流道的加工更简单、加工成本更低,且整个多通路阀占用的空间更小。所以,本发明有效克服了现有技术中的一些实际问题从而有很高的利用价值和使用意义。
上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何熟悉此技术的人士皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,举凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。

Claims (10)

  1. 一种多通路阀组件,其特征在于,包括:
    壳体组件,所述壳体组件具有内腔,所述内腔设置有底面,所述底面上设置有多个端口;
    阀体,所述阀体可回转的设置在所述内腔中,所述阀体上设置有至少两条互不连通的流道,各所述流道均为轨迹处于所述阀体的端面上的平面型流道,每条所述流道用于连通至少两个端口;
    其中,所述阀体上设置有各所述流道的端面始终紧贴在所述底面上,且所述阀体相对所述壳体组件具有至少两个转动档位,当转动所述阀体切换所述转动档位时,与各所述流道连接的端口被切换。
  2. 根据权利要求1所述的多通路阀组件,其特征在于:每条所述流道具有至少两处用于与所述端口连接的接入点,且每处接入点与至少一个所述端口具有相等的回转半径。
  3. 根据权利要求2所述的多通路阀组件,其特征在于:按回转半径分组,各所述端口至少分为两组端口组,单组端口组的各所述端口具有相同的回转半径。
  4. 根据权利要求3所述的多通路阀组件,其特征在于:
    所述阀体的端面分为中心封闭区域和至少一个环形封闭区域,所述中心封闭区域及各所述环形封闭区域由内至外依次设置,所述中心封闭区域具有虚拟外轮廓,每个所述环形封闭区域均具有虚拟内轮廓和虚拟外轮廓,
    所述阀体的端面上设置有至少两组流道组件,且一组所述流道组件对应处于其中一个封闭区域内,每组流道组件对应一组所述端口组件,每组流道组件均包括至少两条流道,且在相对应的流道组件和端口组中,各所述端口的回转半径与各所述接入点的回转半径相等。
  5. 根据权利要求4所述的多通路阀组件,其特征在于,所述中心封闭区域内的所述流道组件包括:
    第一流道,所述第一流道具有第一接入点、第二接入点、第三接入点;
    第二流道,所述第二流道具有第四接入点和第五接入点;
    第三流道,所述第三流道具有和第六接入点、第七接入点和第八接入点;
    其中,所述第二流道隔在所述第一流道和第三流道之间,使所述第一接入点、第二接入点、第三接入点、第四接入点、第六接入点、第七接入点、第八接入点和第五接入点沿周向方向依次均布设置,且各组所述端口组中,回转半径最小的所述端口组具有四个沿周向均布的所述端口。
  6. 根据权利要求5所述的多通路阀组件,其特征在于:其中至少一所述环形封闭区域内设置的流道组件为外流道组件,所述外流道组件包括第四流道和第五流道,所述第四流道和所述第五流道为各处回转半径相等的等曲率圆弧流道,且与所述外流道组件对应的所述端口组也具有四个沿轴向均布的所述端口。
  7. 根据权利要求3所述的多通路阀组件,其特征在于:所述阀体端面上设置有跨区域流道,所述跨区域流道中至少有两个回转半径互不相等的接入点。
  8. 根据权利要求1~7中任一项所述的多通路阀组件,其特征在于:所述壳体组件内设置有弹性压紧件,所述弹性压紧件用于将所述阀体压紧在所述内腔中,使所述阀体上设置有所述流道的端面被压紧在所述端面上。
  9. 一种多通路阀总成,其特征在于,包括驱动件和权利要求1~9项中任一所述的多通路阀组件,所述驱动件用于带动所述阀体在所述壳体组件的内腔中回转。
  10. 热管理系统,其用于管理各对象的温度,其包括至少一个加热元件、至少一个冷却元件,其特征在于:还包括权利要求1~8项中任一项所述的多通路阀组件,各所述加热元件、冷却元件和各所述对象各自与相应的所述端口连接。
PCT/CN2021/093406 2021-05-12 2021-05-12 多通路阀组件、多通路阀总成及热管理系统 WO2022236745A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2021/093406 WO2022236745A1 (zh) 2021-05-12 2021-05-12 多通路阀组件、多通路阀总成及热管理系统
CN202180081912.4A CN116568951A (zh) 2021-05-12 2021-05-12 多通路阀组件、多通路阀总成及热管理系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/093406 WO2022236745A1 (zh) 2021-05-12 2021-05-12 多通路阀组件、多通路阀总成及热管理系统

Publications (1)

Publication Number Publication Date
WO2022236745A1 true WO2022236745A1 (zh) 2022-11-17

Family

ID=84027923

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/093406 WO2022236745A1 (zh) 2021-05-12 2021-05-12 多通路阀组件、多通路阀总成及热管理系统

Country Status (2)

Country Link
CN (1) CN116568951A (zh)
WO (1) WO2022236745A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024114149A1 (zh) * 2022-11-29 2024-06-06 安徽威灵汽车部件有限公司 多通阀、热管理系统及车辆

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR7903281A (pt) * 1978-06-05 1980-01-15 Voest Alpine Ag Valvula distribuidora
CN101109469A (zh) * 2007-08-16 2008-01-23 邹建仁 一种塑料水龙头
CN201186887Y (zh) * 2008-03-10 2009-01-28 陕西雷光环保科技有限公司 一种多功能平面阀离子交换净水设备
CN101418865A (zh) * 2007-10-22 2009-04-29 深圳迈瑞生物医疗电子股份有限公司 旋转集成阀

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR7903281A (pt) * 1978-06-05 1980-01-15 Voest Alpine Ag Valvula distribuidora
CN101109469A (zh) * 2007-08-16 2008-01-23 邹建仁 一种塑料水龙头
CN101418865A (zh) * 2007-10-22 2009-04-29 深圳迈瑞生物医疗电子股份有限公司 旋转集成阀
CN201186887Y (zh) * 2008-03-10 2009-01-28 陕西雷光环保科技有限公司 一种多功能平面阀离子交换净水设备

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024114149A1 (zh) * 2022-11-29 2024-06-06 安徽威灵汽车部件有限公司 多通阀、热管理系统及车辆

Also Published As

Publication number Publication date
CN116568951A (zh) 2023-08-08

Similar Documents

Publication Publication Date Title
EP4310372A1 (en) Multi-port valve, and thermal management system provided with same and application thereof
WO2022236745A1 (zh) 多通路阀组件、多通路阀总成及热管理系统
CN113864490B (zh) 一种多通阀
US11454330B1 (en) Multi-level rotary plug valve
CN111720591A (zh) 分配阀和制冷系统
US20240117883A1 (en) Multi-way valve
JP2023528531A (ja) プラグバルブの密封用可変シリンダー壁
EP4357650A1 (en) Multi-port valve and thermal management system having multi-port valve
US11796073B2 (en) Six port valve
US20240200669A1 (en) Temperature control system, vehicle, energy storage system, and multi-port valve
US20240117885A1 (en) Driver and control valve
WO2022170549A1 (zh) 一体式多通电磁阀和汽车热管理系统
US20230358325A1 (en) Multi-ports valve and thermal management system having same
CN106763902B (zh) 阀芯及阀门
WO2023143068A1 (zh) 多通切换阀、热管理系统及车辆
KR20230091808A (ko) 로터리 디스크 밸브
CN114923003A (zh) 可切换多个通道流通状态的控制阀
CN219317695U (zh) 十二通阀、冷却系统及汽车
CN217355662U (zh) 可切换多个通道流通状态的控制阀
CN214999510U (zh) 阀芯装置及控制阀
CN217463309U (zh) 一种用于集成式水壶的电子多通阀
CN115628304B (zh) 一种新能源汽车热管理系统用八通阀
WO2024063071A1 (ja) 流路切替装置
CN211574330U (zh) 一种流体流量调节装置
US20240229945A9 (en) Multi-port valve and thermal management system having multi-port valve

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21941318

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180081912.4

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21941318

Country of ref document: EP

Kind code of ref document: A1