WO2022236616A1 - 确定prs周期放大因子的方法、终端设备及存储介质 - Google Patents

确定prs周期放大因子的方法、终端设备及存储介质 Download PDF

Info

Publication number
WO2022236616A1
WO2022236616A1 PCT/CN2021/092867 CN2021092867W WO2022236616A1 WO 2022236616 A1 WO2022236616 A1 WO 2022236616A1 CN 2021092867 W CN2021092867 W CN 2021092867W WO 2022236616 A1 WO2022236616 A1 WO 2022236616A1
Authority
WO
WIPO (PCT)
Prior art keywords
prs
factor
terminal device
amplification factor
period
Prior art date
Application number
PCT/CN2021/092867
Other languages
English (en)
French (fr)
Inventor
张晋瑜
胡荣贻
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2021/092867 priority Critical patent/WO2022236616A1/zh
Priority to CN202180090211.7A priority patent/CN116783952A/zh
Publication of WO2022236616A1 publication Critical patent/WO2022236616A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management

Definitions

  • the present application relates to the communication field, and in particular to a method for determining a PRS period amplification factor, a terminal device and a storage medium.
  • New Radio adopts a muting mechanism (muting pattern) for Positioning Reference Signal (PRS, Positioning Reference Signal), where muting mechanism 1 will change the actual PRS transmission period.
  • the radio access network 4 Radio Access Network4, RAN4
  • the radio access network 4 needs to determine the total measurement period according to the actual PRS transmission period. Therefore, how to calculate the actual transmission period of the PRS according to the muting pattern is an urgent problem to be solved.
  • Embodiments of the present application provide a method for determining a PRS cycle amplification factor, a terminal device and a storage medium, which are used to effectively avoid the problem of insufficient PRS cycle amplification caused by blindly setting the upper limit of the PRS cycle amplification factor.
  • the first aspect of the embodiments of the present application provides a method for determining a PRS cycle amplification factor, the method is applied to a terminal device, and the method includes: determining the PRS cycle amplification factor according to configuration information of a positioning reference signal PRS muting mechanism.
  • a second aspect of the embodiments of this application provides a terminal device, which may include:
  • the processing module is configured to determine the PRS period amplification factor according to the configuration information of the positioning reference signal PRS muting mechanism.
  • a third aspect of the embodiments of the present application provides a terminal device, which may include:
  • a processor coupled to the memory
  • the processor is configured to determine a PRS period amplification factor according to a bit whose bit value is 1 included in the positioning reference signal PRS muting mechanism.
  • Yet another aspect of the embodiments of the present application provides a computer-readable storage medium, including instructions, which, when run on a processor, cause the processor to execute the method described in the first aspect of the present application.
  • Still another aspect of the embodiments of the present application discloses a computer program product, which, when the computer program product is run on a computer, causes the computer to execute the method described in the first aspect of the present application.
  • an application distribution platform is used to distribute computer program products, wherein, when the computer program products are run on a computer, the computer is made to execute the first aspect of the application the method described.
  • the terminal device determines the PRS period amplification factor according to the configuration information of the positioning reference signal PRS muting mechanism. The problem of insufficient PRS period amplification caused by blindly setting the upper limit of the PRS period amplification factor can be effectively avoided.
  • Figure 1A is a schematic diagram of two PRS muting mechanisms
  • FIG. 1B is a schematic diagram of dl-PRS-MutingBitRepetitionFactor in PRS muting mechanism 1 in the prior art
  • FIG. 2 is a system architecture diagram of a communication system applied in an embodiment of the present application
  • FIG. 3 is a schematic diagram of an embodiment of a method for determining a PRS period amplification factor in an embodiment of the present application
  • FIG. 4 is a schematic diagram of an embodiment of a terminal device in an embodiment of the present application.
  • FIG. 5 is a schematic diagram of an embodiment of a terminal device in the embodiment of the present application.
  • NR introduced a muting mechanism (muting pattern) when designing PRS.
  • muting pattern When the base station sends a PRS, it will not transmit the corresponding PRS of 0 in the muting pattern, and only transmit the corresponding PRS of 1 in the muting pattern. Specifically, it can be divided into the following two types:
  • Muting option 1 (MutingOption1): Muting is performed according to the PRS occasion at the periodic level, which may change the actual transmission period of the PRS. For example, in Figure 1A, the PRS period is 20ms, and the muting pattern is [1010], then the actual transmission period is 40ms.
  • a dl-PRS-MutingBitRepetitionFactor PRS muting bit repetition factor
  • Muting scheme 2 (MutingOption2): Muting is performed according to the PRS repetition instance level in the period. It will affect the number of PRS repetitions in each cycle, but will not affect the actual sending cycle of PRS. For example, the PRS in the figure repeats 4 times in each cycle, and the muting pattern is [1010], then the first and third repetition positions in each cycle will be sent.
  • the mapping manner of the PRS in the time slot (slot) in the protocol 38.211 can reflect the above two mute mechanisms.
  • the technical solution of this application mainly considers how to determine the amplification factor of the PRS cycle according to muting pattern option 1.
  • FIG. 1A it is a schematic diagram of two PRS muting mechanisms.
  • the purpose is to silence the PRS opportunity so that the UE can hear another PRS on the same resource.
  • Two muting methods are supported: Period level and Repeat level.
  • Purpose is to mute PRS chance so that UE can hear another PRS on the same resource
  • Two muting methods are supported:set-level vs repetition level Muting method 1:set-level.
  • the PRS mapping method in 38.211 is as follows:
  • the UE shall assume that the time slot and the number of frames satisfy The downlink PRS resource is being transmitted at the time;
  • the UE shall assume that downlink PRS resources are transmitted as described in clause 5.1.6.4 of [6, TS 38.214].
  • the UE shall assume the downlink PRS resource being transmitted when the slot and frame numbers fulfil
  • bitmap ⁇ b 2 the higher-layer parameter DL-PRS-MutingPattern is provided and bitmap ⁇ b 2 ⁇ but not bitmap ⁇ b 1 ⁇ is provided,and bit is set;
  • bit in the bitmap given by the higher-layer parameter DL-PRS-MutingPattern where L ⁇ 2,4,8,16,32 ⁇ is the size of the bitmap;
  • the slot offset is given by the higher-layer parameter DL-PRS-ResourceSetSlotOffset;
  • the downlink PRS resource slot offset is given by the higher-layer parameter DL-PRS-ResourceSlotOffset;
  • the periodicity is given by the higher-layer parameter DL-PRS-Periodicity
  • the time gap is given by the higher-layer parameter DL-PRS-ResourceTimeGap;
  • the UE shall assume the downlink PRS resource being transmitted as described in clause 5.1.6.4 of[6,TS 38.214].
  • LTE does not consider amplifying the period of the PRS signal according to the muting pattern.
  • NR does not consider the mute mechanism, it will greatly limit the application scenarios for measuring cycle indicators.
  • N_muting X*dl-prs-MutingBitRepetitionFactor
  • ⁇ X is the size of NR-MutingPattern-r16 of mutingOption1-r16.
  • the upper limit of N_muting is FFS
  • N_muting X*dl-PRS-mutingbitrepeationfactor-r16, where
  • L is the size of NR-MutingPattern-r16.
  • X is the size of NR-MutingPattern-r16 for mutingOption1-r16.
  • N_muting upper bound value is FFS
  • N_muting 1(effectively no type1 muting, corner case that should be avoided by the network)
  • N_muting X*dl-PRS-MutingBitRepetitionFactor-r16, where
  • L is the size of NR-MutingPattern-r16 for mutingOption1-r16.
  • NR adopts a mute mechanism for PRS, and the mute mechanism 1 will change the actual PRS transmission cycle.
  • the RAN4 needs to determine the total measurement period according to the actual PRS transmission period. Therefore, how to calculate the actual transmission period of the PRS according to the muting pattern is an urgent problem to be solved.
  • option A is mainly to avoid the situation that the SFN period exceeds 10240ms after the PRS period is enlarged, which is similar to the limitation in LTE.
  • Option B further limits the upper limit of the amplification factor for muting patterns of different lengths.
  • it is unreasonable to directly set the upper limit without considering the specific configuration in the muting pattern. For example, when muting pattern [1000] or [0010], it is not enough to only enlarge by 2 times according to the scheme of option B; but it should be enlarged by 4 times actually.
  • the technical solution of the embodiment of the present application can be applied to various communication systems, such as: Global System of Mobile communication (Global System of Mobile communication, GSM) system, code division multiple access (Code Division Multiple Access, CDMA) system, broadband code division multiple access (Wideband Code Division Multiple Access, WCDMA) system, General Packet Radio Service (GPRS), Long Term Evolution (LTE) system, Advanced long term evolution (LTE-A) system , New Radio (NR) system, evolution system of NR system, LTE (LTE-based access to unlicensed spectrum, LTE-U) system on unlicensed spectrum, NR (NR-based access to unlicensed spectrum) on unlicensed spectrum unlicensed spectrum (NR-U) system, Non-Terrestrial Networks (NTN) system, Universal Mobile Telecommunications System (UMTS), Wireless Local Area Networks (WLAN), Wireless Fidelity (Wireless Fidelity, WiFi), fifth-generation communication (5th-Generation, 5G) system or other communication systems, etc.
  • GSM Global System of Mobile
  • D2D Device to Device
  • M2M Machine to Machine
  • MTC Machine Type Communication
  • V2V Vehicle to Vehicle
  • V2X Vehicle to everything
  • the communication system in the embodiment of the present application may be applied to a carrier aggregation (Carrier Aggregation, CA) scenario, may also be applied to a dual connectivity (Dual Connectivity, DC) scenario, and may also be applied to an independent (Standalone, SA) deployment Web scene.
  • Carrier Aggregation, CA Carrier Aggregation
  • DC Dual Connectivity
  • SA independent deployment Web scene
  • the communication system in the embodiment of the present application may be applied to an unlicensed spectrum, where the unlicensed spectrum may also be considered as a shared spectrum; or, the communication system in the embodiment of the present application may also be applied to a licensed spectrum, where, Licensed spectrum can also be considered as non-shared spectrum.
  • the embodiments of the present application describe various embodiments in conjunction with network equipment and terminal equipment, wherein the terminal equipment may also be referred to as user equipment (User Equipment, UE), access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or user device, etc.
  • user equipment User Equipment, UE
  • access terminal user unit
  • user station mobile station
  • mobile station mobile station
  • remote station remote terminal
  • mobile device user terminal
  • terminal wireless communication device
  • wireless communication device user agent or user device
  • the terminal device can be a station (STAION, ST) in the WLAN, a cellular phone, a cordless phone, a Session Initiation Protocol (Session Initiation Protocol, SIP) phone, a wireless local loop (Wireless Local Loop, WLL) station, a personal digital processing (Personal Digital Assistant, PDA) devices, handheld devices with wireless communication functions, computing devices or other processing devices connected to wireless modems, vehicle-mounted devices, wearable devices, next-generation communication systems such as terminal devices in NR networks, or future Terminal equipment in the evolved public land mobile network (Public Land Mobile Network, PLMN) network, etc.
  • STAION, ST Session Initiation Protocol
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • the terminal device can be deployed on land, including indoor or outdoor, handheld, wearable or vehicle-mounted; it can also be deployed on water (such as ships, etc.); it can also be deployed in the air (such as aircraft, balloons and satellites) superior).
  • the terminal device may be a mobile phone (Mobile Phone), a tablet computer (Pad), a computer with a wireless transceiver function, a virtual reality (Virtual Reality, VR) terminal device, an augmented reality (Augmented Reality, AR) terminal Equipment, wireless terminal equipment in industrial control, wireless terminal equipment in self driving, wireless terminal equipment in remote medical, wireless terminal equipment in smart grid , wireless terminal equipment in transportation safety, wireless terminal equipment in smart city, or wireless terminal equipment in smart home.
  • a virtual reality (Virtual Reality, VR) terminal device an augmented reality (Augmented Reality, AR) terminal Equipment
  • wireless terminal equipment in industrial control wireless terminal equipment in self driving
  • wireless terminal equipment in remote medical wireless terminal equipment in smart grid
  • wireless terminal equipment in transportation safety wireless terminal equipment in smart city, or wireless terminal equipment in smart home.
  • the terminal device may also be a wearable device.
  • Wearable devices can also be called wearable smart devices, which is a general term for the application of wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories. Wearable devices are not only a hardware device, but also achieve powerful functions through software support, data interaction, and cloud interaction.
  • Generalized wearable smart devices include full-featured, large-sized, complete or partial functions without relying on smart phones, such as smart watches or smart glasses, etc., and only focus on a certain type of application functions, and need to cooperate with other devices such as smart phones Use, such as various smart bracelets and smart jewelry for physical sign monitoring.
  • the network device may be a device for communicating with the mobile device, and the network device may be an access point (Access Point, AP) in WLAN, a base station (Base Transceiver Station, BTS) in GSM or CDMA , or a base station (NodeB, NB) in WCDMA, or an evolved base station (Evolutional Node B, eNB or eNodeB) in LTE, or a relay station or access point, or a vehicle-mounted device, a wearable device, and an NR network
  • BTS Base Transceiver Station
  • NodeB, NB base station
  • Evolutional Node B, eNB or eNodeB evolved base station
  • LTE Long Term Evolutional Node B, eNB or eNodeB
  • gNB network equipment in the network or the network equipment in the future evolved PLMN network or the network equipment in the NTN network, etc.
  • the network device may have a mobile feature, for example, the network device may be a mobile device.
  • the network equipment may be a satellite or a balloon station.
  • the satellite can be a low earth orbit (low earth orbit, LEO) satellite, a medium earth orbit (medium earth orbit, MEO) satellite, a geosynchronous earth orbit (geosynchronous earth orbit, GEO) satellite, a high elliptical orbit (High Elliptical Orbit, HEO) satellite. ) Satellite etc.
  • the network device may also be a base station installed on land, water, and other locations.
  • the network device may provide services for a cell, and the terminal device communicates with the network device through the transmission resources (for example, frequency domain resources, or spectrum resources) used by the cell, and the cell may be a network device ( For example, a cell corresponding to a base station), the cell may belong to a macro base station, or may belong to a base station corresponding to a small cell (Small cell), and the small cell here may include: a metro cell (Metro cell), a micro cell (Micro cell), a pico cell ( Pico cell), Femto cell, etc. These small cells have the characteristics of small coverage and low transmission power, and are suitable for providing high-speed data transmission services.
  • the transmission resources for example, frequency domain resources, or spectrum resources
  • the cell may be a network device (
  • the cell may belong to a macro base station, or may belong to a base station corresponding to a small cell (Small cell)
  • the small cell here may include: a metro cell (Metro cell), a micro cell (Micro
  • the communication system may include a network device, and the network device may be a device for communicating with a terminal device (or called a communication terminal, terminal).
  • a network device can provide communication coverage for a specific geographic area, and can communicate with terminal devices located within the coverage area.
  • Figure 2 exemplarily shows one network device and two terminal devices.
  • the communication system may include multiple network devices and each network device may include other numbers of terminal devices within the coverage area. Examples are not limited to this.
  • the communication system may further include other network entities such as a network controller and a mobility management entity, which is not limited in this embodiment of the present application.
  • the network equipment may further include access network equipment and core network equipment. That is, the wireless communication system also includes multiple core networks for communicating with access network devices.
  • the access network device may be a long-term evolution (long-term evolution, LTE) system, a next-generation (mobile communication system) (next radio, NR) system or an authorized auxiliary access long-term evolution (LAA- Evolved base station (evolutional node B, referred to as eNB or e-NodeB) in the LTE) system macro base station, micro base station (also called “small base station"), pico base station, access point (access point, AP), Transmission point (transmission point, TP) or new generation base station (new generation Node B, gNodeB), etc.
  • LTE long-term evolution
  • NR next-generation
  • LAA- Evolved base station evolutional node B, referred to as eNB or e-NodeB
  • eNB access point
  • AP Transmission point
  • TP transmission point
  • a device with a communication function in the network/system in the embodiment of the present application may be referred to as a communication device.
  • the communication equipment may include network equipment and terminal equipment with communication functions, and the network equipment and terminal equipment may be the specific equipment described in the embodiments of this application, which will not be repeated here; communication
  • the device may also include other devices in the communication system, such as network controllers, mobility management entities and other network entities, which are not limited in this embodiment of the present application.
  • FIG. 3 it is a schematic diagram of an embodiment of the method for determining the PRS cycle amplification factor in the embodiment of the present application, which is applied to a terminal device.
  • the embodiment of the method Can include:
  • the determining the PRS period amplification factor according to the configuration information of the PRS muting mechanism may include: determining the PRS period amplification factor according to the bit value of 1 contained in the PRS muting mechanism. It can be understood that the configuration information is configured by the network side for the terminal device.
  • the determination of the PRS period amplification factor according to the bits included in the positioning reference signal PRS muting mechanism with a bit value of 1 may include but not limited to the following implementations:
  • Implementation 1 Determine the PRS period amplification factor according to the current length L' of the positioning reference signal PRS muting mechanism and the number N' of bits whose bit value is 1 contained in the current length L'; where L' ⁇ L, N' ⁇ N, L is the original length of the PRS muting mechanism, and N is the number of bits with a bit value of 1 contained in the original length.
  • the number N of bits whose bit value is 1 is less than or equal to the length L of the PRS muting mechanism.
  • the PRS period amplification factor is Or, X; wherein, X is a value determined according to the ratio of L' and N', said Bit repetition factor for preset PRS silence.
  • dl-PRS-MutingBitRepetitionFactor-r16 is optional, is dl-PRS-MutingBitRepetitionFactor-r16.
  • the PRS period amplification factor is determined according to the bit value of 1 included in the positioning reference signal PRS muting mechanism.
  • the PRS period is greater than or equal to the MGRP, that is, when the PRS transmission position of each period is within the MG, the embodiments of the present application can work well.
  • the MGRP is the largest MGRP, or the MGRP configured by the terminal device.
  • the PRS period is greater than or equal to the maximum MGRP period (for example, 160ms); or, when the PRS period is greater than or equal to the MGRP configured by the UE (for example, possible values are 20ms, 40ms, 80ms, 160ms).
  • X takes the value of L'/N' to take the smallest factor of L' upwards.
  • the period after the PRS signal is muted (muting) does not exceed 10240ms, indicating that all bits of the muting pattern are valid.
  • Tprs is the PRS period of the high-level signal configuration
  • L is the original length of muting pattern option 1.
  • the value of 3 appears, which cannot be divisible by 8, and the 8-bit muting pattern will have 2 more bits in groups of 3.
  • Scenario 2 Optional, in In the case of L' ⁇ L, N' ⁇ N; wherein, Tprs is the PRS period configured by the upper layer, L' is the length of the first L' bits in L, and N' is the length of the first L' bits in the The number of bits with a value of 1.
  • X takes the value of L'/N' to take the smallest factor of L' upwards.
  • each PRS group does not exceed 10240ms, but it exceeds 10240ms after being multiplied by the original length L of the muting pattern, which means that only the first L' bits in the muting pattern are valid.
  • Tprs is the PRS period of the high-level signal configuration
  • L is the original length of muting pattern option 1.
  • muting Pattern [a 0 a 1 a 2 ... a L-1 ], its original length is L, and the number of bits with a bit value of 1 is N, where N ⁇ L.
  • the terminal device determines the PRS cycle amplification factor according to the length of the positioning reference signal PRS muting mechanism and the position where the included bit value is 1.
  • the determining the PRS period amplification factor according to the length of the positioning reference signal PRS muting mechanism and the position where the included bit value is 1 may include: determining a factor of the length according to the length of the PRS muting mechanism; Determine the PRS cycle amplification factor according to the factor and the position where the bit value is 1.
  • determining the PRS cycle amplification factor according to the factor and the position where the bit value is 1 may include: judging whether there is a bit value that is 1 apart from the bit of the target factor, and if there is, the PRS The period amplification factor is the target factor, and the factor includes the target factor.
  • the target factors are selected in ascending order of the factors.
  • the judging whether there is a bit value apart from the target factor bit is 1, and if there is, the PRS cycle amplification factor is the target factor, and the factor includes the target factor, which may include: judging whether The bit value of every target factor bit that exists is 1, and if it exists, the PRS cycle amplification factor is the target factor.
  • the value of the factor is not 1.
  • the PRS period amplification factor may be determined according to the position where the bit value of the muting pattern is 1.
  • muting Pattern [a 0 a 1 a 2 ... a L-1 ], its length is L, and L has non-1 factors X1, X2,...XN, X1 ⁇ X2 ⁇ ...XN-1 ⁇ XL press Arrange from small to large in order to make the following judgments.
  • sub_pattern(s) [a s a s+Xi a s+2*Xi ... a s+(Mi-1)Xi ]. Where s is the starting position, and the value range is [0, Xi-1], and a total of Xi sub-bitmaps can be generated.
  • the scenarios applied in the implementation mode 2 may be the scenario 1 and the scenario 2 in the implementation mode 1, which will not be repeated here.
  • the terminal device can calculate the measurement period according to the PRS period amplification factor.
  • the terminal device completes the measurement and reports within the measurement period.
  • the terminal device determines the PRS period amplification factor according to the configuration information of the positioning reference signal PRS muting mechanism.
  • the PRS period amplification factor may be determined according to the bit value of 1 included in the positioning reference signal PRS muting mechanism; the terminal device calculates the measurement period according to the PRS period amplification factor; the terminal device performs measurement within the measurement period. The problem of insufficient PRS period amplification caused by blindly setting the upper limit of the PRS period amplification factor can be effectively avoided.
  • the terminal device determines the PRS period amplification factor according to the length L of the PRS muting mechanism of the positioning reference signal and the number N of bits whose bit value is 1, or, the terminal device determines the PRS cycle amplification factor according to the length of the PRS muting mechanism of the positioning reference signal and the number of bits contained in it. Where the bit value is 1, determine the PRS period amplification factor.
  • FIG. 4 it is a schematic diagram of an embodiment of the terminal device in the embodiment of the present application, which may include:
  • the processing module 401 is configured to determine a PRS period amplification factor according to configuration information of a positioning reference signal PRS muting mechanism.
  • the processing module 401 is specifically configured to determine the PRS period amplification factor according to the bit value of 1 included in the PRS muting mechanism of the positioning reference signal.
  • the processing module 401 is specifically configured to determine the PRS period amplification factor according to the current length L' of the positioning reference signal PRS muting mechanism and the number N' of bits whose bit value is 1 included in the current length L';
  • L' ⁇ L, N' ⁇ N, L is the original length of the PRS muting mechanism, and N is the number of bits with a bit value of 1 contained in the original length.
  • the PRS period amplification factor is Or, X; wherein, X is a value determined according to the ratio of L' and N', said Bit repetition factor for preset PRS silence.
  • X takes the value of L'/N' and takes the smallest factor of L' upward.
  • L' ⁇ L, N' ⁇ N wherein, Tprs is the PRS period configured by the upper layer, and L' is the length of the first L' bits in L.
  • the processing module 401 is specifically configured to determine the PRS period amplification factor according to the length of the PRS muting mechanism and the position where the included bit value is 1.
  • the processing module 401 is specifically configured to determine a factor of the length according to the length of the PRS muting mechanism; and determine a PRS cycle amplification factor according to the factor and the position where the bit value is 1.
  • the processing module 401 is specifically configured to judge whether there is a target factor whose bit values are all 1, and if so, the PRS cycle amplification factor is the target factor, and the factor includes the target factor.
  • the target factors are selected in ascending order of the factors.
  • the processing module 401 is specifically configured to judge whether every bit apart from the target factor has a bit value of 1, and if so, the PRS cycle amplification factor is the target factor.
  • the value of the factor is not 1.
  • the processing module 401 is further configured to calculate a measurement period according to the PRS period amplification factor; and perform measurement within the measurement period.
  • this embodiment of the present application further provides one or more types of terminal devices.
  • the terminal device in this embodiment of the present application may implement any implementation manner in the foregoing methods.
  • FIG. 5 it is a schematic diagram of another embodiment of the terminal device in the embodiment of the present application.
  • the terminal device is described by taking a mobile phone as an example, and may include: a radio frequency (radio frequency, RF) circuit 510, a memory 520, an input unit 530, Display unit 540, sensor 550, audio circuit 560, wireless fidelity (wireless fidelity, WiFi) module 570, processor 580, power supply 590 and other components.
  • RF radio frequency
  • the radio frequency circuit 510 includes a receiver 514 and a transmitter 512 .
  • the structure of the mobile phone shown in FIG. 5 is not limited to the mobile phone, and may include more or less components than shown in the figure, or combine some components, or arrange different components.
  • the RF circuit 510 can be used for sending and receiving information or receiving and sending signals during a call.
  • the processor 580 processes it; in addition, it sends the designed uplink data to the base station.
  • the RF circuit 510 includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier (low noise amplifier, LNA), a duplexer, and the like.
  • RF circuitry 510 may also communicate with networks and other devices via wireless communications.
  • the above wireless communication can use any communication standard or protocol, including but not limited to global system of mobile communication (global system of mobile communication, GSM), general packet radio service (general packet radio service, GPRS), code division multiple access (code division multiple access) multiple access (CDMA), wideband code division multiple access (WCDMA), long term evolution (LTE), e-mail, short message service (short messaging service, SMS), etc.
  • GSM global system of mobile communication
  • GPRS general packet radio service
  • code division multiple access code division multiple access
  • WCDMA wideband code division multiple access
  • LTE long term evolution
  • e-mail short message service
  • SMS short message service
  • the memory 520 can be used to store software programs and modules, and the processor 580 executes various functional applications and data processing of the mobile phone by running the software programs and modules stored in the memory 520 .
  • the memory 520 can mainly include a program storage area and a data storage area, wherein the program storage area can store an operating system, at least one application program required by a function (such as a sound playback function, an image playback function, etc.); Data created by the use of mobile phones (such as audio data, phonebook, etc.), etc.
  • the memory 520 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, flash memory device, or other volatile solid-state storage devices.
  • the input unit 530 can be used to receive input numbers or character information, and generate key signal input related to user settings and function control of the mobile phone.
  • the input unit 530 may include a touch panel 531 and other input devices 532 .
  • the touch panel 531 also referred to as a touch screen, can collect touch operations of the user on or near it (for example, the user uses any suitable object or accessory such as a finger or a stylus on the touch panel 531 or near the touch panel 531). operation), and drive the corresponding connection device according to the preset program.
  • the touch panel 531 may include two parts, a touch detection device and a touch controller.
  • the touch detection device detects the user's touch orientation, and detects the signal brought by the touch operation, and transmits the signal to the touch controller; the touch controller receives the touch information from the touch detection device, converts it into contact coordinates, and sends it to the to the processor 580, and can receive and execute commands sent by the processor 580.
  • the touch panel 531 can be implemented in various types such as resistive, capacitive, infrared, and surface acoustic wave.
  • the input unit 530 may also include other input devices 532 .
  • other input devices 532 may include but not limited to one or more of a physical keyboard, function keys (such as volume control keys, switch keys, etc.), trackball, mouse, joystick, and the like.
  • the display unit 540 may be used to display information input by or provided to the user and various menus of the mobile phone.
  • the display unit 540 may include a display panel 541.
  • the display panel 541 may be configured in the form of a liquid crystal display (liquid crystal display, LCD) or an organic light-emitting diode (OLED).
  • the touch panel 531 may cover the display panel 541, and when the touch panel 531 detects a touch operation on or near it, it transmits to the processor 580 to determine the type of the touch event, and then the processor 580 determines the type of the touch event according to the touch event.
  • the type provides a corresponding visual output on the display panel 541 .
  • the touch panel 531 and the display panel 541 are used as two independent components to realize the input and input functions of the mobile phone, in some embodiments, the touch panel 531 and the display panel 541 can be integrated to form a mobile phone. Realize the input and output functions of the mobile phone.
  • the handset may also include at least one sensor 550, such as a light sensor, motion sensor, and other sensors.
  • the light sensor can include an ambient light sensor and a proximity sensor, wherein the ambient light sensor can adjust the brightness of the display panel 541 according to the brightness of the ambient light, and the proximity sensor can turn off the display panel 541 and/or when the mobile phone is moved to the ear. or backlight.
  • the accelerometer sensor can detect the magnitude of acceleration in various directions (generally three axes), and can detect the magnitude and direction of gravity when it is stationary, and can be used to identify the application of mobile phone posture (such as horizontal and vertical screen switching, related Games, magnetometer attitude calibration), vibration recognition related functions (such as pedometer, tap), etc.; as for other sensors such as gyroscope, barometer, hygrometer, thermometer, infrared sensor, etc. repeat.
  • mobile phone posture such as horizontal and vertical screen switching, related Games, magnetometer attitude calibration
  • vibration recognition related functions such as pedometer, tap
  • other sensors such as gyroscope, barometer, hygrometer, thermometer, infrared sensor, etc. repeat.
  • the audio circuit 560, the speaker 561, and the microphone 562 can provide an audio interface between the user and the mobile phone.
  • the audio circuit 560 can transmit the electrical signal converted from the received audio data to the loudspeaker 561, and the loudspeaker 561 converts it into an audio signal output; After being received, it is converted into audio data, and then the audio data is processed by the output processor 580, and then sent to another mobile phone through the RF circuit 510, or the audio data is output to the memory 520 for further processing.
  • WiFi is a short-distance wireless transmission technology.
  • the mobile phone can help users send and receive emails, browse web pages, and access streaming media through the WiFi module 570, which provides users with wireless broadband Internet access.
  • Fig. 5 shows a WiFi module 570, it can be understood that it is not an essential component of the mobile phone, and can be completely omitted as required without changing the essence of the invention.
  • the processor 580 is the control center of the mobile phone. It uses various interfaces and lines to connect various parts of the entire mobile phone. By running or executing software programs and/or modules stored in the memory 520, and calling data stored in the memory 520, execution Various functions and processing data of the mobile phone, so as to monitor the mobile phone as a whole.
  • the processor 580 may include one or more processing units; preferably, the processor 580 may integrate an application processor and a modem processor, wherein the application processor mainly processes operating systems, user interfaces, and application programs, etc. , the modem processor mainly handles wireless communications. It can be understood that the foregoing modem processor may not be integrated into the processor 580 .
  • the mobile phone also includes a power supply 590 (such as a battery) for supplying power to each component.
  • a power supply 590 (such as a battery) for supplying power to each component.
  • the power supply can be logically connected to the processor 580 through the power management system, so as to realize functions such as managing charging, discharging, and power consumption management through the power management system.
  • the mobile phone may also include a camera, a Bluetooth module, etc., which will not be repeated here.
  • the processor 580 is configured to determine the PRS period amplification factor according to the configuration information of the positioning reference signal PRS muting mechanism.
  • the processor 580 is specifically configured to determine the PRS cycle amplification factor according to the bit value of 1 included in the PRS muting mechanism of the positioning reference signal.
  • the processor 580 is specifically configured to determine the PRS period amplification factor according to the current length L' of the positioning reference signal PRS muting mechanism and the number N' of bits whose bit value is 1 included in the current length L'; Wherein, L' ⁇ L, N' ⁇ N, L is the original length of the PRS muting mechanism, and N is the number of bits with a bit value of 1 contained in the original length.
  • the PRS period amplification factor is Or, X; wherein, X is a value determined according to the ratio of L' and N', said Bit repetition factor for preset PRS silence.
  • X takes the value of L'/N' and takes the smallest factor of L' upward.
  • L' ⁇ L, N' ⁇ N wherein, Tprs is the PRS period configured by the upper layer, and L' is the length of the first L' bits in L.
  • the processor 580 is specifically configured to determine the PRS period amplification factor according to the length of the PRS muting mechanism of the positioning reference signal and the position where the contained bit value is 1.
  • the processor 580 is specifically configured to determine a factor of the length according to the length of the PRS muting mechanism; and determine a PRS cycle amplification factor according to the factor and the position where the bit value is 1.
  • the processor 580 is specifically configured to determine whether there is a target factor bit apart from a bit whose bit values are all 1, and if yes, the PRS cycle amplification factor is the target factor, and the factor includes the target factor.
  • the target factors are selected in ascending order of the factors.
  • the processor 580 is specifically configured to judge whether there is a bit value of every bit apart from the target factor is 1, and if yes, the PRS cycle amplification factor is the target factor.
  • the value of the factor is not 1.
  • the processor 580 is further configured to calculate a measurement period according to the PRS period amplification factor; and perform measurement within the measurement period.
  • all or part of them may be implemented by software, hardware, firmware or any combination thereof.
  • software When implemented using software, it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions. When the computer program instructions are loaded and executed on the computer, the processes or functions according to the embodiments of the present application will be generated in whole or in part.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be transmitted from a website, computer, server, or data center Transmission to another website site, computer, server, or data center by wired (eg, coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be stored by a computer, or a data storage device such as a server or a data center integrated with one or more available media.
  • the available medium may be a magnetic medium (for example, a floppy disk, a hard disk, or a magnetic tape), an optical medium (for example, DVD), or a semiconductor medium (for example, a Solid State Disk (SSD)).
  • SSD Solid State Disk

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供了一种确定PRS周期放大因子的方法、终端设备及存储介质,用于有效地避免盲目设置PRS周期放大因子上限而造成的PRS周期放大不足的问题。本申请实施例应用于终端设备,可以包括:根据定位参考信号PRS静音机制的配置信息,确定PRS周期放大因子。

Description

确定PRS周期放大因子的方法、终端设备及存储介质 技术领域
本申请涉及通信领域,尤其涉及一种确定PRS周期放大因子的方法、终端设备及存储介质。
背景技术
新无线(NR,New Radio)为了减小不同小区之间的干扰,对定位参考信号(PRS,Positioning Reference Signal)采用静音机制(muting pattern),其中静音机制1会改变实际的PRS传输周期。而无线接入网4(Radio Access Network4,RAN4)在计算PRS周期时需要根据实际的PRS传输周期来确定总的测量周期。因此如何根据muting pattern来计算PRS实际传输周期是一个亟待解决的问题。
发明内容
本申请实施例提供了一种确定PRS周期放大因子的方法、终端设备及存储介质,用于有效地避免盲目设置PRS周期放大因子上限而造成的PRS周期放大不足的问题。
本申请实施例的第一方面提供一种确定PRS周期放大因子的方法,所述方法应用于终端设备,所述方法包括:根据定位参考信号PRS静音机制的配置信息,确定PRS周期放大因子。
本申请实施例的第二方面提供一种终端设备,可以包括:
处理模块,用于根据定位参考信号PRS静音机制的配置信息,确定PRS周期放大因子。
本申请实施例的第三方面提供一种终端设备,可以包括:
存储有可执行程序代码的存储器;
与所述存储器耦合的处理器;
处理器,用于根据定位参考信号PRS静音机制所包含比特值为1的比特,确定PRS周期放大因子。
本申请实施例又一方面提供一种计算机可读存储介质,包括指令,当其在处理器上运行时,使得处理器执行本申请第一方面所述的方法。
本申请实施例又一方面公开一种计算机程序产品,当所述计算机程序产品在计算机上运行时,使得所述计算机执行本申请第一方面所述的方法。
本申请实施例又一方面公开一种应用发布平台,所述应用发布平台用于发布计算机程序产品,其中,当所述计算机程序产品在计算机上运行时,使得所述计算机执行本申请第一方面所述的方法。
本申请实施例提供的技术方案中,具有如下有益效果:
在本申请实施例中,终端设备根据定位参考信号PRS静音机制的配置信息,确定PRS周期放大因子。可以有效地避免盲目设置PRS周期放大因子上限而造成的PRS周期放大不足的问题。
附图说明
图1A是两种PRS静音机制的一个示意图;
图1B是现有技术中PRS静音机制1中的dl-PRS-MutingBitRepetitionFactor的一个示意图;
图2为本申请实施例所应用的通信系统的系统架构图;
图3为本申请实施例中确定PRS周期放大因子的方法的一个实施例示意图;
图4为本申请实施例中终端设备的一个实施例示意图;
图5为本申请实施例中终端设备的一个实施例示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
下面对本申请实施例涉及的术语进行简要说明,如下所示:
1:新无线(NR,New Radio)中的定位参考信号(PRS,Positioning Reference Signal)配置
为了减小不同小区之间的干扰,NR设计PRS时引入了静音机制(muting pattern),基站发送PRS时,不会传输muting pattern中为0的对应PRS,只传输muting pattern中为1的对应PRS。具体可分为以下两种:
静音方案1(MutingOption1):是按照周期级别的PRS occasion来进行静音,可能会改变PRS实际传输的周期。例如图1A中PRS周期为20ms,muting pattern是[1010],那么实际传输的周期是40ms。可选地,还可以配置dl-PRS-MutingBitRepetitionFactor(PRS静音比特重复因子)参数,用于指示按照几个PRS周期为一组来做静音。如图1B所示,是现有技术中PRS静音机制1中的dl-PRS-MutingBitRepetitionFactor的一个示意图。其中,dl-PRS-MutingBitRepetitionFactor=2,则每两个周期的PRS会作为一组,对应muting pattern中的一比特信息。
静音方案2(MutingOption2):是按照周期内PRS重复实例级别来进行静音。会影响每个周期内的PRS重复次数,但并不会影响PRS实际的发送周期。例如图中PRS在每个周期内重复4次,muting pattern是[1010],那么每个周期内的第一和第三个重复位置才会发送。
协议38.211中PRS在时隙(slot)中的映射方式可以体现出以上两种静音机制。本申请技术方案主要考虑如何根据muting pattern option 1来确定PRS周期的放大因子。
如图1A所示,是两种PRS静音机制的一个示意图。
在图1A所示中,PRS传输的静音机制:
目的是使PRS机会静音,以便UE能够听到同一资源上的另一个PRS。支持两种静音方法:周期级别和重复级别。
静音方法1:周期级别。一个L比特位图指示哪个周期中的所有PRS集合应该被静音。L=2/4/8/16/32。比特=0表示静音。
静音方法2:重复级别。一个T比特位图指示所有PRS集合的哪些重复实例被静音。L=2/4/8/16/32。比特=0表示静音。
对应英文翻译如下:
Muting on PRS transmission:
Purpose is to mute PRS chance so that UE can hear another PRS on the same resource Two muting methods are supported:set-level vs repetition level Muting method 1:set-level.A L-bit bitmap indicate which periodicity all the PRS in the set are muted.L=2/4/8/16/32.Bit=0means muting.
Muting method 2:repetition level.A T-bit bitmap indicate which repetition of all PRS in the set are muted.L=2/4/8/16/32.Bit=0 means muting.
高层PRS配置参数
Figure PCTCN2021092867-appb-000001
Figure PCTCN2021092867-appb-000002
38.211中PRS映射方法,如下所示:
映射到下行链路PRS资源集中的时隙:
对于下行链路PRS资源集中的下行链路PRS资源,UE应假设当时隙和帧数满足
Figure PCTCN2021092867-appb-000003
时正在发射下行链路PRS资源;
满足下列条件之一:
-不提供更高层参数DL-PRS MutingPattern;
-提供上层参数DL PRS MutingPattern,提供比特位图{b 1}而非比特位图{b 2},并设置比特位
Figure PCTCN2021092867-appb-000004
-提供上层参数DL PRS MutingPattern,提供比特位图{b 2}而非比特位图{b 1},并设置比特位
Figure PCTCN2021092867-appb-000005
-提供了更高层的参数DL-PRS MutingPattern,并提供了比特位图{b 1}和{b 2},同时设置了比特位
Figure PCTCN2021092867-appb-000006
Figure PCTCN2021092867-appb-000007
-
Figure PCTCN2021092867-appb-000008
是由更高层参数DL PRS MutingPattern给出的比特位图中的
Figure PCTCN2021092867-appb-000009
比特位,其中L∈{2,4,8,16,32} 是比特位图的大小;
-
Figure PCTCN2021092867-appb-000010
是由更高层参数DL PRS MutingPattern给出的比特位图中的
Figure PCTCN2021092867-appb-000011
比特位;
-时隙偏移量
Figure PCTCN2021092867-appb-000012
由上层参数DL PRS resourcesetlotoffset给出;
-下行PRS资源时隙偏移量
Figure PCTCN2021092867-appb-000013
由上层参数DL PRS resourceslotofset给出;
-周期性
Figure PCTCN2021092867-appb-000014
由高层参数DL-PRS周期性给出;
-资源重复因子
Figure PCTCN2021092867-appb-000015
由高层参数DL PRS ResourceRepetitionFactor给出;
-静音重复因子
Figure PCTCN2021092867-appb-000016
由较高的层参数DL PRS mutingbitpeationfactor给出;
-时间间隔
Figure PCTCN2021092867-appb-000017
由高层参数DL PRS ResourceTimeGap给出;
对于配置的下行链路PRS资源集中的下行链路PRS资源,UE应假设如[6,TS 38.214]第5.1.6.4条所述发送下行链路PRS资源。
对应英文翻译如下所示:
Mapping to slots in a downlink PRS resource set:
For a downlink PRS resource in a downlink PRS resource set,the UE shall assume the downlink PRS resource being transmitted when the slot and frame numbers fulfil
Figure PCTCN2021092867-appb-000018
and one of the following conditions are fulfilled:
-the higher-layer parameter DL-PRS-MutingPattern is not provided;
-the higher-layer parameter DL-PRS-MutingPattern is provided and bitmap{b 1}but not bitmap{b 2}is provided,and bit
Figure PCTCN2021092867-appb-000019
is set;
-the higher-layer parameter DL-PRS-MutingPattern is provided and bitmap{b 2}but not bitmap{b 1}is provided,and bit
Figure PCTCN2021092867-appb-000020
is set;
-the higher-layer parameter DL-PRS-MutingPattern is provided and both bitmaps{b 1}and{b 2}are provided,and both bit
Figure PCTCN2021092867-appb-000021
and
Figure PCTCN2021092867-appb-000022
are set.
where
-
Figure PCTCN2021092867-appb-000023
is bit
Figure PCTCN2021092867-appb-000024
in the bitmap given by the higher-layer parameter DL-PRS-MutingPattern where L∈{2,4,8,16,32}is the size of the  bitmap;
-
Figure PCTCN2021092867-appb-000025
is bit
Figure PCTCN2021092867-appb-000026
in the bitmap given by the higher-layer parameter DL-PRS-MutingPattern;
-the slot offset
Figure PCTCN2021092867-appb-000027
is given by the higher-layer parameter DL-PRS-ResourceSetSlotOffset;
-the downlink PRS resource slot offset
Figure PCTCN2021092867-appb-000028
is given by the higher-layer parameter DL-PRS-ResourceSlotOffset;
-the periodicity
Figure PCTCN2021092867-appb-000029
is given by the higher-layer parameter DL-PRS-Periodicity;
-the repetition factor
Figure PCTCN2021092867-appb-000030
is given by the higher-layer parameter DL-PRS-ResourceRepetitionFactor;
-the muting repetition factor
Figure PCTCN2021092867-appb-000031
is given by the higher-layer parameter DL-PRS-MutingBitRepetitionFactor;
-the time gap
Figure PCTCN2021092867-appb-000032
is given by the higher-layer parameter DL-PRS-ResourceTimeGap;
For a downlink PRS resource in a downlink PRS resource set configured,the UE shall assume the downlink PRS resource being transmitted as described in clause 5.1.6.4 of[6,TS 38.214].
2:PRS测量周期
RAN 4在讨论PRS测量周期时,需要根据PRS的传输周期和测量间隔重复周期(Measurement Gap Repetition Period,MGRP)等确定一个基础的PRS采样周期。考虑到静音机制1可能会改变PRS传输的实际周期,在RAN4#98bis-e会议讨论中,达成如下结论。需要对PRS周期(高层配置的周期)进行N_muting倍的放大。但为了避免过度放大,对N_muting取值设置了上限,并给出了两种备选方案。
对于Tprs*dl-PRS-MutingBitRepetitionFactor-r16>10240ms的情况,经分析可以通过限制高层PRS配置来实现,比如长期演进(Long Term Evolution,LTE)的PRS有如下限制。
当UE接收到T REP-bit静音机制以及PRS周期T PRS时,对于超过10240子帧的相同小区(例如T REP×T PRS>10240子帧),UE应基于前n比特假设n比特静音机制,其中n=10240/T PRS。也可以写成n=floor[10240/Tprs]。
When the UE receives a T REP-bit muting pattern together with a PRS periodicity T PRS for the same cell which exceeds 10240 subframes(i.e.,T REP×T PRS>10240 subframes),the UE shall assume an n-bit muting pattern based on the first n-bits,where n=10240/T PRS.
LTE在定义PRS测量周期时并未考虑根据muting pattern对PRS信号的周期进行放大。 但NR如果不考虑静音机制会大大限制测量周期指标的应用场景。
相关协议如下所示:
如果应用静音方案1,则PRS资源的周期性将按N_muting倍进行放大
·N_muting=X*dl-prs-MutingBitRepetitionFactor;
·X是mutingOption1-r16的NR-MutingPattern-r16的大小。
·N_muting上限值为FFS
o方案A:
如果Tprs*dl-PRS-MUTINGBITTREPECTIONFACTOR-r16>10240ms
·N_muting=1(实际上没有类型1静音,网络应避免的拐角情况)
其他
·N_muting=X*dl-PRS-mutingbitrepeationfactor-r16,其中
·X=min(L,10240/(Tprs*dl-PRS-MutingBitRepeationFactor-r16)),以及
·对于mutingOption1-r16,L是NR-MutingPattern-r16的大小。
o选项B:
·如果Tprs*dl-PRS-MUTINGBITTREPECTIONFACTOR-r16>10240ms
N_muting=1
·其他
o N_muting=min{1,[X]},[X=2]
·其他
o N_muting=min{L,[Y]},[Y=8]
o不排除其他选择。
对应英文翻译如下:
Agreements:
If muting option 1 is applied,the periodicity of a PRS resource is scaled by N_muting
N_muting=X*dl-prs-MutingBitRepetitionFactor
X is the size of NR-MutingPattern-r16 for mutingOption1-r16.
N_muting upper bound value is FFS
Option A:
If Tprs*dl-PRS-MutingBitRepetitionFactor-r16>10240ms
N_muting=1(effectively no type1 muting,corner case that should be avoided by the network)
else
N_muting=X*dl-PRS-MutingBitRepetitionFactor-r16,where
X=min(L,10240/(Tprs*dl-PRS-MutingBitRepetitionFactor-r16))and
L is the size of NR-MutingPattern-r16 for mutingOption1-r16.
Option B:
If Tprs*dl-PRS-MutingBitRepetitionFactor-r16>10240ms
N_muting=1
Elseif L∈{2,4}
N_muting=min{L,[X]},[X=2]
Elseif L∈{6,8,16,32}
N_muting=min{L,[Y]},[Y=8]
Other options are not precluded。
NR为了减小不同小区之间的干扰,对PRS采用静音机制,其中静音机制1会改变实际的PRS传输周期。而RAN4在计算PRS周期时需要根据实际的PRS传输周期来确定总的测量周期。因此如何根据muting pattern来计算PRS实际传输周期是一个亟待解决的问题。
如上述技术所述,在确定PRS测量周期时需要根据muting pattern(静音机制1)对PRS周期进行放大。目前的备选方案中,option A主要是为了避免PRS周期放大之后超过10240ms的SFN周期的情况,与LTE中的限制比较类似。Option B在此基础上,对不同长度的muting pattern进一步限制了放大因子的上限。但是却没有考虑muting pattern中具体的配置而直接设置上限是不合理的。如当muting pattern=[1000]或[0010]时,按照option B的方案只能放大2倍是不足的;但实际应该放大4倍。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、先进的长期演进(Advanced long term evolution,LTE-A)系统、新无线(New Radio,NR)系统、NR系统的演进系统、非授权频谱上的LTE(LTE-based access to unlicensed spectrum,LTE-U)系统、非授权频谱上的NR(NR-based access to unlicensed spectrum,NR-U)系统、非地面通信网络(Non-Terrestrial Networks,NTN)系统、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、无线局域网(Wireless Local Area Networks,WLAN)、无线保真(Wireless Fidelity,WiFi)、第五代通信(5th-Generation,5G)系统或其他通信系统等。
通常来说,传统的通信系统支持的连接数有限,也易于实现,然而,随着通信技术的发展,移动通信系统将不仅支持传统的通信,还将支持例如,设备到设备(Device to Device,D2D)通信,机器到机器(Machine to Machine,M2M)通信,机器类型通信(Machine Type Communication,MTC),车辆间(Vehicle to Vehicle,V2V)通信,或车联网(Vehicle to everything,V2X)通信等,本申请实施例也可以应用于这些通信系统。
可选地,本申请实施例中的通信系统可以应用于载波聚合(Carrier Aggregation,CA)场景,也可以应用于双连接(Dual Connectivity,DC)场景,还可以应用于独立(Standalone,SA)布网场景。
可选地,本申请实施例中的通信系统可以应用于非授权频谱,其中,非授权频谱也可以认为是共享频谱;或者,本申请实施例中的通信系统也可以应用于授权频谱,其中,授权频谱也可以认为是非共享频谱。
本申请实施例结合网络设备和终端设备描述了各个实施例,其中,终端设备也可以称为用户设备(User Equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置等。
终端设备可以是WLAN中的站点(STAION,ST),可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)设备、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、下一代通信系统例如NR网络中的终端设备,或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)网络中的终端设备等。
在本申请实施例中,终端设备可以部署在陆地上,包括室内或室外、手持、穿戴或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。
在本申请实施例中,终端设备可以是手机(Mobile Phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(Virtual Reality,VR)终端设备、增强现实(Augmented Reality,AR)终端设备、工业控制(industrial control)中的无线终端设备、无人驾驶(self driving)中的无线终端设备、远程医疗(remote medical)中的无线终端设备、智能电网(smart grid)中的无线终端设备、运输安全(transportation safety)中的无线终端设备、智慧城市(smart city)中的无线终端设备或智慧家庭(smart home)中的无线终端设备等。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
在本申请实施例中,网络设备可以是用于与移动设备通信的设备,网络设备可以是WLAN中的接入点(Access Point,AP),GSM或CDMA中的基站(Base Transceiver Station,BTS),也可以是WCDMA中的基站(NodeB,NB),还可以是LTE中的演进型基站(Evolutional Node B,eNB或eNodeB),或者中继站或接入点,或者车载设备、可穿戴设备以及NR网络中的网络设备(gNB)或者未来演进的PLMN网络中的网络设备或者NTN网络中的网络设备等。
作为示例而非限定,在本申请实施例中,网络设备可以具有移动特性,例如网络设备可以为移动的设备。可选地,网络设备可以为卫星、气球站。例如,卫星可以为低地球轨道(low earth orbit,LEO)卫星、中地球轨道(medium earth orbit,MEO)卫星、地球同步轨道(geostationary earth orbit,GEO)卫星、高椭圆轨道(High Elliptical Orbit,HEO)卫星等。可选地,网络设备还可以为设置在陆地、水域等位置的基站。
在本申请实施例中,网络设备可以为小区提供服务,终端设备通过该小区使用的传输资源(例如,频域资源,或者说,频谱资源)与网络设备进行通信,该小区可以是网络设备(例如基站)对应的小区,小区可以属于宏基站,也可以属于小小区(Small cell)对应的基站,这里的小小区可以包括:城市小区(Metro cell)、微小区(Micro cell)、微微小区(Pico cell)、毫微微小区(Femto cell)等,这些小小区具有覆盖范围小、发射功率低的特点,适用于提供高速率的数据传输服务。
如图2所示,为本申请实施例所应用的通信系统的系统架构图。该通信系统可以包括网络设备,网络设备可以是与终端设备(或称为通信终端、终端)通信的设备。网络设备可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备进行通信。图2示例性地示出了一个网络设备和两个终端设备,可选地,该通信系统可以包括多个网络设备并且每个网络设备的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。可选地,该通信系统还可以包括网络控制器、移动管理实体等其他网络实体,本申请实施例对此不作限定。
其中,网络设备又可以包括接入网设备和核心网设备。即无线通信系统还包括用于与接入网设备进行通信的多个核心网。接入网设备可以是长期演进(long-term evolution,LTE)系统、下一代(移动通信系统)(next radio,NR)系统或者授权辅助接入长期演进(authorized auxiliary access long-term evolution,LAA-LTE)系统中的演进型基站(evolutional node B,简称可以为eNB或e-NodeB)宏基站、微基站(也称为“小基站”)、 微微基站、接入站点(access point,AP)、传输站点(transmission point,TP)或新一代基站(new generation Node B,gNodeB)等。
应理解,本申请实施例中网络/系统中具有通信功能的设备可称为通信设备。以图2示出的通信系统为例,通信设备可包括具有通信功能的网络设备和终端设备,网络设备和终端设备可以为本申请实施例中所述的具体设备,此处不再赘述;通信设备还可包括通信系统中的其他设备,例如网络控制器、移动管理实体等其他网络实体,本申请实施例中对此不做限定。
下面以实施例的方式,对本申请技术方案做进一步的说明,如图3所示,为本申请实施例中确定PRS周期放大因子的方法的一个实施例示意图,应用于终端设备,该方法实施例可以包括:
301、根据定位参考信号PRS静音机制的配置信息,确定PRS周期放大因子。
可选的,所述根据定位参考信号PRS静音机制的配置信息,确定PRS周期放大因子,可以包括:根据定位参考信号PRS静音机制所包含比特值为1的比特,确定PRS周期放大因子。可以理解的是,配置信息是网络侧为终端设备所配置的。
可选的,所述根据定位参考信号PRS静音机制所包含比特值为1的比特,确定PRS周期放大因子,可以包括但不限于以下的实现方式:
实现方式1、根据定位参考信号PRS静音机制的当前长度L’和所述当前长度L’中所包含比特值为1的比特个数N’,确定PRS周期放大因子;其中,L’≤L,N’≤N,L为所述PRS静音机制的原始长度,N为所述原始长度中所包含比特值为1的比特个数。
其中,所述比特值为1的比特个数N,小于等于所述PRS静音机制的长度L。
可选的,所述PRS周期放大因子为
Figure PCTCN2021092867-appb-000033
或,X;其中,X为根据L’和N’的比值确定的值,所述
Figure PCTCN2021092867-appb-000034
为预置的PRS静音比特重复因子。
可选的,
Figure PCTCN2021092867-appb-000035
为dl-PRS-MutingBitRepetitionFactor-r16。
可选的,当PRS周期大于或等于测量间隔重复周期(Measurement Gap Repetition Period,MGRP)时,根据定位参考信号PRS静音机制所包含比特值为1的比特,确定PRS周期放大因子。当PRS周期大于或等于MGRP时,即每个周期的PRS传输位置都在MG内时,本申请实施例能够较好地工作。
可选地,所述MGRP为最大的MGRP,或者,终端设备所配置的MGRP。示例性的,当PRS周期大于或等于最大的MGRP周期(例如160ms);或者,当PRS周期大于或等于该UE所配置的MGRP(例如可能的取值是20ms、40ms、80ms、160ms)。
场景1:可选的,在
Figure PCTCN2021092867-appb-000036
的情况下,L’=L,N’=N,其中,Tprs是高层配置的PRS周期。
(1)可选的,
Figure PCTCN2021092867-appb-000037
或,X=ceil[L’/N’],ceil表示向上取整。
(2)可选的,X取值为L’/N’向上取最小的L’的因数。示例性的,如果L’=8,N’=3,L’/N’=2.67,而8的因数为{8,4,2,1},向上取比2.67大的最小的因数则为4。因此最终放大倍数X=4。
(3)可选的,当所述PRS静音机制的当前长度L’为2的幂次时,
Figure PCTCN2021092867-appb-000038
或,X=2^(ceil[log2(L’/N’)]),ceil表示向上取整。示例性的,当muting pattern的当前长度L’为2的幂次时,如8/16/32等,向上最小因数的方法可等价替换为:X=2^(ceil[log2(L’/N’)])。
示例性的,如果
Figure PCTCN2021092867-appb-000039
即PRS信号静音(muting)之后的周期不超 过10240ms,说明muting pattern的所有比特位都是有效的。其中,Tprs是高层信号配置的PRS周期,L是muting pattern option 1的原始长度。
假设muting Pattern=[a 0a 1a 2...a L-1],其原始长度为L,其中比特值为1的比特个数为N,N≤L。则放大倍数为N_muting,其中,
Figure PCTCN2021092867-appb-000040
Figure PCTCN2021092867-appb-000041
或者,N_muting=X,而X=ceil[L’/N’]。
在上述场景1中,因为
Figure PCTCN2021092867-appb-000042
说明muting pattern的所有比特位都是有效的。所以,存在L’=L,N’=N;那么,可以根据muting pattern的原始长度L和原始长度L中所包含比特值为1的比特个数N,来确定PRS周期放大因子,也可以称为PRS周期放大倍数。所以,X=ceil[L’/N’]=ceil[L/N]。
Muting pattern原始长度为2比特时,N的取值为1,2;那么X的值可能是ceil[2/1]=2,ceil[2/2]=1;
Muting pattern原始长度为4比特时,N的取值为1,2,3,4;那么X的值可能是ceil[4/1]=4,ceil[4/2]=2,ceil[4/3]=2,ceil[4/4]=1;
Muting pattern原始长度为6比特时,N的取值为1,2,3,4,5,6;那么X的值可能是ceil[6/1]=6,ceil[6/2]=3,ceil[6/3]=2,ceil[6/4]=2,ceil[6/5]=2,ceil[6/6]=1;
Muting pattern原始长度为8比特时,N的取值为1,2,3,4,5,6,7,8;那么X的值可能是ceil[8/1]=8,ceil[8/2]=4,ceil[8/3]=3,ceil[8/4]=2,ceil[8/5]=2,ceil[8/6]=2,ceil[8/7]=2,ceil[8/8]=1。这时出现了3这个值,不能被8整除,8比特muting pattern按照3个为一组会多出2比特。
Muting pattern原始长度为16比特时,N的取值为1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16;那么X的取值可能是ceil[16/1]=16,ceil[16/2]=8,ceil[16/3]=6,ceil[16/4]=4,ceil[16/5]=4,ceil[16/6]=3,ceil[16/7]=3,ceil[16/8]=2,ceil[16/9]=2,...,ceil[16/16]=1。
Muting pattern原始长度为32比特时,N的取值为1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32;那么X的取值可能是ceil[32/1]=32,ceil[32/2]=16,ceil[32/3]=11,ceil[32/4]=8,ceil[32/5]=7,ceil[32/6]=6,ceil[32/7]=6,ceil[32/8]=4,ceil[32/9]=4,ceil[32/10]=4,ceil[32/11]=3,ceil[32/12]=3,ceil[32/13]=3,ceil[32/14]=3,ceil[32/15]=3,ceil[32/16]=2,ceil[32/17]=2,ceil[32/18]=2,...,ceil[32/32]=1。
以此类推其他原始长度muting pattern的PRS周期放大因子,此处不再一一赘述。
场景2:可选的,在
Figure PCTCN2021092867-appb-000043
的情况下,L’<L,N’<N;其中,Tprs是高层配置的PRS周期,L’为L中前L’个比特位的长度,N’为所述前L’个比特位中比特值为1的个数。
(1)可选的,
Figure PCTCN2021092867-appb-000044
或,X=ceil[L’/N’],ceil表示向上取整。
(2)可选的,X取值为L’/N’向上取最小的L’的因数。示例性的,如果L’=8,N=3,L’/N’=2.67,而8的因数为{8,4,2,1},向上取比2.67大的最小的因数则为4。因此最终放大倍数X=4。
(3)可选的,当所述PRS静音机制的当前长度L’为2的幂次时,
Figure PCTCN2021092867-appb-000045
或,X=2^(ceil[log2(L’/N’)]),ceil表示向上取整。示例性的,当muting pattern的当前长度L’为2的幂次时,如8/16/32等,向上最小因数的方法可等价替换为: X=2^(ceil[log2(L’/N’)])。
示例性的,如果
Figure PCTCN2021092867-appb-000046
Figure PCTCN2021092867-appb-000047
或,
Figure PCTCN2021092867-appb-000048
每个PRS组的长度没有超过10240ms,但是与muting pattern的原始长度L相乘后超过10240ms,这意味着muting pattern中只有前L’个比特位是有效的。其中,Tprs是高层信号配置的PRS周期,L是muting pattern option 1的原始长度。
假设muting Pattern=[a 0a 1a 2...a L-1],其原始长度为L,其中比特值为1的比特个数为N,N≤L。则放大倍数为N_muting,其中,
Figure PCTCN2021092867-appb-000049
或者,N_muting=X,而X=ceil[L’/N’],L’为muting pattern L中前L’个有效比特位的长度,N’是muting pattern的前L’个比特位中比特值为1的个数。
在上述场景2中,因为
Figure PCTCN2021092867-appb-000050
所以,存在L’<L,N’<N;长度L’为muting pattern原始长度L截断后的前L’比特位的长度,N’为长度L’中比特值为1的个数。那么,根据muting pattern的原始长度L和所包含比特值为1的比特个数N,来确定PRS周期放大因子,也可以称为PRS周期放大倍数。所以,X=ceil[L’/N’]。
需要说明的是,在场景3中,如果
Figure PCTCN2021092867-appb-000051
N_muting=1。由于每个PRS组的长度就已经超过了10240ms,相当于muting pattern没有实际作用。因此周期不需要放大。与现有技术方案中的两个方案相同,此处不再赘述。
实现方式2、终端设备根据定位参考信号PRS静音机制的长度和所包含比特值为1的位置,确定PRS周期放大因子。
可选的,所述根据定位参考信号PRS静音机制的长度和所包含比特值为1的位置,确定PRS周期放大因子,可以包括:根据所述PRS静音机制的长度,确定所述长度的因数;根据所述因数和所述比特值为1的位置,确定PRS周期放大因子。
可选的,所述根据所述因数和所述比特值为1的位置,确定PRS周期放大因子,可以包括:判断是否存在相隔目标因数比特位的比特值都为1,若存在则所述PRS周期放大因子为所述目标因数,所述因数包括所述目标因数。
可选的,所述目标因数按照所述因数从小到大排列的顺序选择。
可选的,所述判断是否存在相隔目标因数比特位的比特值都为1,若存在则所述PRS周期放大因子为所述目标因数,所述因数包括所述目标因数,可以包括:判断是否存在每相隔目标因数比特位的比特值都为1,若存在则所述PRS周期放大因子为所述目标因数。
可选的,所述因数的取值不为1。
示例性的,可以根据muting pattern的比特值为1所处的位置来确定PRS周期放大因子。假设muting Pattern=[a 0a 1a 2...a L-1],其长度为L,且L有非1的因数X1,X2,…XN,X1<X2<…XN-1<XL按从小到大排列依次进行下述判断。
如果Xi<L,Mi*Xi=L。取出mutingPattern中长度为Mi的部分比特,称为子位图,sub_pattern(s)=[a sa s+Xia s+2*Xi...a s+(Mi-1)Xi]。其中s为起始位置,取值范围是[0,Xi-1],一共可以生成Xi个子位图。
只要有一个s取值下对应的Mi个比特全部为1,则最终的X=Xi;
否则换下一个Xi+1,重复上述步骤;
如果Xi=L,则X=L。
(1)以L=8为例,按照下述顺序进行判断mutingPattern=[a 0a 1a 2a 3a 4a 5a 6a 7],X={1,2,4,8}。
如果a1a2a3a4a5a6a7全为1,就放大1倍;
如果a0a2a4a6=1111,或者,a1a3a5a7=1111,就放大2倍;
如果a0a4=11,或,a1a5=11,或,a2a6=11,或,a3a7=11,就放大4倍;
其他的放大8倍;
(2)以L=16为例,按照下述顺序进行判断mutingPattern=[a 0a 1a 2...a 13a 14a 15],X={1,2,4,8,16}。
如果mutingPattern全为1,就放大1倍;
如果a0a2a4a6a8a10a12a14=11111111,或者,a1a3a5a7a9a11a13a15=11111111,就放大2倍;
如果a0a4a8a12=1111,或,a1a5a9a13=1111,或,a2a6a10a14=1111,或,a3a7a11a15=1111,就放大4倍;
如果a0a8=11,或,a1a9=11,或,a2a10=11,或,a3a11=11,或,a4a12=11,或,a5a13=11,或,a6a14=11,或,a7a15=11,就放大8倍;
其他的放大16倍;
可类推到其他muting pattern的情况,此处不再一一赘述。
需要说明的是,实现方式2所应用的场景可以是实现方式1中的场景1和场景2,此处不再赘述。
302、根据所述PRS周期放大因子,计算测量周期。
终端设备可以根据PRS周期放大因子,计算测量周期。
303、在所述测量周期内进行测量。
终端设备在测量周期内完成测量并上报。
在本申请实施例中,终端设备根据定位参考信号PRS静音机制的配置信息,确定PRS周期放大因子。可选的,可以根据定位参考信号PRS静音机制所包含比特值为1的比特,确定PRS周期放大因子;终端设备根据PRS周期放大因子,计算测量周期;终端设备在所述测量周期内进行测量。可以有效地避免盲目设置PRS周期放大因子上限而造成的PRS周期放大不足的问题。进一步的,终端设备根据定位参考信号PRS静音机制的长度L和所包含比特值为1的比特个数N,确定PRS周期放大因子,或,终端设备根据定位参考信号PRS静音机制的长度和所包含比特值为1的位置,确定PRS周期放大因子。
如图4所示,为本申请实施例中终端设备的一个实施例示意图,可以包括:
处理模块401,用于根据定位参考信号PRS静音机制的配置信息,确定PRS周期放大因子。
可选的,处理模块401,具体用于根据定位参考信号PRS静音机制所包含比特值为1的比特,确定PRS周期放大因子。
可选的,处理模块401,具体用于根据定位参考信号PRS静音机制的当前长度L’和所述当前长度L’中所包含比特值为1的比特个数N’,确定PRS周期放大因子;其中,L’≤L,N’≤N,L为所述PRS静音机制的原始长度,N为所述原始长度中所包含比特值为1的比特个数。
可选的,所述PRS周期放大因子为
Figure PCTCN2021092867-appb-000052
或,X;其中,X为根据L’和N’的比值确定的值,所述
Figure PCTCN2021092867-appb-000053
为预置的PRS静音比特重复因子。
可选的,
Figure PCTCN2021092867-appb-000054
或,X=ceil[L’/N’],ceil表示向上取整。
可选的,X取值为L’/N’向上取最小的L’的因数。
可选的,当所述PRS静音机制的当前长度L’为2的幂次时,
Figure PCTCN2021092867-appb-000055
或,X=2^(ceil[log2(L’/N’)]),ceil表示向上取整。
可选的,在
Figure PCTCN2021092867-appb-000056
的情况下,L’=L,N’=N,其中,Tprs是高层配置的PRS周期。
可选的,在
Figure PCTCN2021092867-appb-000057
的情况下,L’<L,N’<N;其中,Tprs是高层配置的PRS周期,L’为L中前L’个比特位的长度。
可选的,处理模块401,具体用于根据定位参考信号PRS静音机制的长度和所包含比特值为1的位置,确定PRS周期放大因子。
可选的,处理模块401,具体用于根据所述PRS静音机制的长度,确定所述长度的因数;根据所述因数和所述比特值为1的位置,确定PRS周期放大因子。
可选的,处理模块401,具体用于判断是否存在相隔目标因数比特位的比特值都为1,若存在则所述PRS周期放大因子为所述目标因数,所述因数包括所述目标因数。
可选的,所述目标因数按照所述因数从小到大排列的顺序选择。
可选的,处理模块401,具体用于判断是否存在每相隔目标因数比特位的比特值都为1,若存在则所述PRS周期放大因子为所述目标因数。
可选的,所述因数的取值不为1。
可选的,处理模块401,还用于根据所述PRS周期放大因子,计算测量周期;在所述测量周期内进行测量。
与上述至少一个应用于终端设备的实施例的方法相对应地,本申请实施例还提供一种或多种终端设备。本申请实施例的终端设备可以实施上述方法中的任意一种实现方式。如图5所示,为本申请实施例中终端设备的另一个实施例示意图,终端设备以手机为例进行说明,可以包括:射频(radio frequency,RF)电路510、存储器520、输入单元530、显示单元540、传感器550、音频电路560、无线保真(wireless fidelity,WiFi)模块570、处理器580、以及电源590等部件。其中,射频电路510包括接收器514和发送器512。本领域技术人员可以理解,图5中示出的手机结构并不构成对手机的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
下面结合图5对手机的各个构成部件进行具体的介绍:
RF电路510可用于收发信息或通话过程中,信号的接收和发送,特别地,将基站的下行信息接收后,给处理器580处理;另外,将设计上行的数据发送给基站。通常,RF电路510包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器(low noise amplifier,LNA)、双工器等。此外,RF电路510还可以通过无线通信与网络和其他设备通信。上述无线通信可以使用任一通信标准或协议,包括但不限于全球移动通讯系统(global system of mobile communication,GSM)、通用分组无线服务(general packet radio service,GPRS)、码分多址(code division multiple access,CDMA)、宽带码分多址(wideband code division multiple access,WCDMA)、长期演进(long term evolution,LTE)、电子邮件、短消息服务(short messaging service,SMS)等。
存储器520可用于存储软件程序以及模块,处理器580通过运行存储在存储器520的软件程序以及模块,从而执行手机的各种功能应用以及数据处理。存储器520可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序(比如声音播放功能、图像播放功能等)等;存储数据区可存储根据手机的使用所创 建的数据(比如音频数据、电话本等)等。此外,存储器520可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
输入单元530可用于接收输入的数字或字符信息,以及产生与手机的用户设置以及功能控制有关的键信号输入。具体地,输入单元530可包括触控面板531以及其他输入设备532。触控面板531,也称为触摸屏,可收集用户在其上或附近的触摸操作(比如用户使用手指、触笔等任何适合的物体或附件在触控面板531上或在触控面板531附近的操作),并根据预先设定的程式驱动相应的连接装置。可选的,触控面板531可包括触摸检测装置和触摸控制器两个部分。其中,触摸检测装置检测用户的触摸方位,并检测触摸操作带来的信号,将信号传送给触摸控制器;触摸控制器从触摸检测装置上接收触摸信息,并将它转换成触点坐标,再送给处理器580,并能接收处理器580发来的命令并加以执行。此外,可以采用电阻式、电容式、红外线以及表面声波等多种类型实现触控面板531。除了触控面板531,输入单元530还可以包括其他输入设备532。具体地,其他输入设备532可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆等中的一种或多种。
显示单元540可用于显示由用户输入的信息或提供给用户的信息以及手机的各种菜单。显示单元540可包括显示面板541,可选的,可以采用液晶显示器(liquid crystal display,LCD)、有机发光二极管(organic light-Emitting diode,OLED)等形式来配置显示面板541。进一步的,触控面板531可覆盖显示面板541,当触控面板531检测到在其上或附近的触摸操作后,传送给处理器580以确定触摸事件的类型,随后处理器580根据触摸事件的类型在显示面板541上提供相应的视觉输出。虽然在图5中,触控面板531与显示面板541是作为两个独立的部件来实现手机的输入和输入功能,但是在某些实施例中,可以将触控面板531与显示面板541集成而实现手机的输入和输出功能。
手机还可包括至少一种传感器550,比如光传感器、运动传感器以及其他传感器。具体地,光传感器可包括环境光传感器及接近传感器,其中,环境光传感器可根据环境光线的明暗来调节显示面板541的亮度,接近传感器可在手机移动到耳边时,关闭显示面板541和/或背光。作为运动传感器的一种,加速计传感器可检测各个方向上(一般为三轴)加速度的大小,静止时可检测出重力的大小及方向,可用于识别手机姿态的应用(比如横竖屏切换、相关游戏、磁力计姿态校准)、振动识别相关功能(比如计步器、敲击)等;至于手机还可配置的陀螺仪、气压计、湿度计、温度计、红外线传感器等其他传感器,在此不再赘述。
音频电路560、扬声器561,传声器562可提供用户与手机之间的音频接口。音频电路560可将接收到的音频数据转换后的电信号,传输到扬声器561,由扬声器561转换为声音信号输出;另一方面,传声器562将收集的声音信号转换为电信号,由音频电路560接收后转换为音频数据,再将音频数据输出处理器580处理后,经RF电路510以发送给比如另一手机,或者将音频数据输出至存储器520以便进一步处理。
WiFi属于短距离无线传输技术,手机通过WiFi模块570可以帮助用户收发电子邮件、浏览网页和访问流式媒体等,它为用户提供了无线的宽带互联网访问。虽然图5示出了WiFi模块570,但是可以理解的是,其并不属于手机的必须构成,完全可以根据需要在不改变发明的本质的范围内而省略。
处理器580是手机的控制中心,利用各种接口和线路连接整个手机的各个部分,通过运行或执行存储在存储器520内的软件程序和/或模块,以及调用存储在存储器520内的数据,执行手机的各种功能和处理数据,从而对手机进行整体监控。可选的,处理器580可 包括一个或多个处理单元;优选的,处理器580可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到处理器580中。
手机还包括给各个部件供电的电源590(比如电池),优选的,电源可以通过电源管理系统与处理器580逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。尽管未示出,手机还可以包括摄像头、蓝牙模块等,在此不再赘述。
在本申请实施例中,处理器580,用于根据定位参考信号PRS静音机制的配置信息,确定PRS周期放大因子。
可选的,处理器580,具体用于根据定位参考信号PRS静音机制所包含比特值为1的比特,确定PRS周期放大因子。
可选的,处理器580,具体用于根据定位参考信号PRS静音机制的当前长度L’和所述当前长度L’中所包含比特值为1的比特个数N’,确定PRS周期放大因子;其中,L’≤L,N’≤N,L为所述PRS静音机制的原始长度,N为所述原始长度中所包含比特值为1的比特个数。
可选的,所述PRS周期放大因子为
Figure PCTCN2021092867-appb-000058
或,X;其中,X为根据L’和N’的比值确定的值,所述
Figure PCTCN2021092867-appb-000059
为预置的PRS静音比特重复因子。
可选的,
Figure PCTCN2021092867-appb-000060
或,X=ceil[L’/N’],ceil表示向上取整。
可选的,X取值为L’/N’向上取最小的L’的因数。
可选的,当所述PRS静音机制的当前长度L’为2的幂次时,
Figure PCTCN2021092867-appb-000061
或,X=2^(ceil[log2(L’/N’)]),ceil表示向上取整。
可选的,在
Figure PCTCN2021092867-appb-000062
的情况下,L’=L,N’=N,其中,Tprs是高层配置的PRS周期。
可选的,在
Figure PCTCN2021092867-appb-000063
的情况下,L’<L,N’<N;其中,Tprs是高层配置的PRS周期,L’为L中前L’个比特位的长度。
可选的,处理器580,具体用于根据定位参考信号PRS静音机制的长度和所包含比特值为1的位置,确定PRS周期放大因子。
可选的,处理器580,具体用于根据所述PRS静音机制的长度,确定所述长度的因数;根据所述因数和所述比特值为1的位置,确定PRS周期放大因子。
可选的,处理器580,具体用于判断是否存在相隔目标因数比特位的比特值都为1,若存在则所述PRS周期放大因子为所述目标因数,所述因数包括所述目标因数。
可选的,所述目标因数按照所述因数从小到大排列的顺序选择。
可选的,处理器580,具体用于判断是否存在每相隔目标因数比特位的比特值都为1,若存在则所述PRS周期放大因子为所述目标因数。
可选的,所述因数的取值不为1。
可选的,处理器580,还用于根据所述PRS周期放大因子,计算测量周期;在所述测量周期内进行测量。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质 中,或者从一个计算机可读存储介质向另一计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存储的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”、“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的实施例能够以除了在这里图示或描述的内容以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。

Claims (49)

  1. 一种确定PRS周期放大因子的方法,其特征在于,所述方法应用于终端设备,所述方法包括:
    根据定位参考信号PRS静音机制的配置信息,确定PRS周期放大因子。
  2. 根据权利要求1所述的方法,其特征在于,所述根据定位参考信号PRS静音机制的配置信息,确定PRS周期放大因子,包括:
    根据定位参考信号PRS静音机制所包含比特值为1的比特,确定PRS周期放大因子。
  3. 根据权利要求2所述的方法,其特征在于,所述根据定位参考信号PRS静音机制所包含比特值为1的比特,确定PRS周期放大因子,包括:
    根据定位参考信号PRS静音机制的当前长度L’和所述当前长度L’中所包含比特值为1的比特个数N’,确定PRS周期放大因子;
    其中,L’≤L,N’≤N,L为所述PRS静音机制的原始长度,N为所述原始长度中所包含比特值为1的比特个数。
  4. 根据权利要求3所述的方法,其特征在于,所述PRS周期放大因子为
    Figure PCTCN2021092867-appb-100001
    或,X;其中,X为根据L’和N’的比值确定的值,所述
    Figure PCTCN2021092867-appb-100002
    为预置的PRS静音比特重复因子。
  5. 根据权利要求4所述的方法,其特征在于,
    Figure PCTCN2021092867-appb-100003
    或,X=ceil[L’/N’],ceil表示向上取整。
  6. 根据权利要求4所述的方法,其特征在于,X取值为L’/N’向上取最小的L’的因数。
  7. 根据权利要求4所述的方法,其特征在于,当所述PRS静音机制的当前长度L’为2的幂次时,
    Figure PCTCN2021092867-appb-100004
    或,X=2^(ceil[log2(L’/N’)]),ceil表示向上取整。
  8. 根据权利要求5-7中任一项所述的方法,其特征在于,在
    Figure PCTCN2021092867-appb-100005
    的情况下,L’=L,N’=N,其中,Tprs是高层配置的PRS周期。
  9. 根据权利要求5-7中任一项所述的方法,其特征在于,在
    Figure PCTCN2021092867-appb-100006
    Figure PCTCN2021092867-appb-100007
    的情况下,L’<L,N’<N;其中,Tprs是高层配置的PRS周期,L’为L中前L’个比特位的长度。
  10. 根据权利要求2所述的方法,其特征在于,所述根据定位参考信号PRS静音机制所包含比特值为1的比特,确定PRS周期放大因子,包括:
    根据定位参考信号PRS静音机制的长度和所包含比特值为1的位置,确定PRS周期放大因子。
  11. 根据权利要求10所述的方法,其特征在于,所述根据定位参考信号PRS静音机制的长度和所包含比特值为1的位置,确定PRS周期放大因子,包括:
    根据所述PRS静音机制的长度,确定所述长度的因数;
    根据所述因数和所述比特值为1的位置,确定PRS周期放大因子。
  12. 根据权利要求11所述的方法,其特征在于,所述根据所述因数和所述比特值为1的位置,确定PRS周期放大因子,包括:
    判断是否存在相隔目标因数比特位的比特值都为1,若存在则所述PRS周期放大因子为所述目标因数,所述因数包括所述目标因数。
  13. 根据权利要求12所述的方法,其特征在于,所述目标因数按照所述因数从小到大排列的顺序选择。
  14. 根据权利要求12或13所述的方法,其特征在于,所述判断是否存在相隔目标因数比特位的比特值都为1,若存在则所述PRS周期放大因子为所述目标因数,所述因数包括所述目标因数,包括:
    判断是否存在每相隔目标因数比特位的比特值都为1,若存在则所述PRS周期放大因子为所述目标因数。
  15. 根据权利要求11-14中任一项所述的方法,其特征在于,所述因数的取值不为1。
  16. 根据权利要求1-15中任一项所述的方法,其特征在于,所述方法还包括:
    根据所述PRS周期放大因子,计算测量周期;
    在所述测量周期内进行测量。
  17. 一种终端设备,其特征在于,包括:
    处理模块,用于根据定位参考信号PRS静音机制的配置信息,确定PRS周期放大因子。
  18. 根据权利要求17所述的终端设备,其特征在于,
    所述处理模块,具体用于根据定位参考信号PRS静音机制所包含比特值为1的比特,确定PRS周期放大因子。
  19. 根据权利要求18所述的终端设备,其特征在于,
    所述处理模块,具体用于根据定位参考信号PRS静音机制的当前长度L’和所述当前长度L’中所包含比特值为1的比特个数N’,确定PRS周期放大因子;其中,L’≤L,N’≤N,L为所述PRS静音机制的原始长度,N为所述原始长度中所包含比特值为1的比特个数。
  20. 根据权利要求19所述的终端设备,其特征在于,所述PRS周期放大因子为
    Figure PCTCN2021092867-appb-100008
    或,X;其中,X为根据L’和N’的比值确定的值,所述
    Figure PCTCN2021092867-appb-100009
    为预置的PRS静音比特重复因子。
  21. 根据权利要求20所述的终端设备,其特征在于,
    Figure PCTCN2021092867-appb-100010
    或,X=ceil[L’/N’],ceil表示向上取整。
  22. 根据权利要求20所述的终端设备,其特征在于,X取值为L’/N’向上取最小的L’的因数。
  23. 根据权利要求20所述的终端设备,其特征在于,当所述PRS静音机制的当前长度L’为2的幂次时,
    Figure PCTCN2021092867-appb-100011
    或,X=2^(ceil[log2(L’/N’)]),ceil表示向上取整。
  24. 根据权利要求21-23中任一项所述的终端设备,其特征在于,在
    Figure PCTCN2021092867-appb-100012
    Figure PCTCN2021092867-appb-100013
    的情况下,L’=L,N’=N,其中,Tprs是高层配置的PRS周期。
  25. 根据权利要求21-23中任一项所述的终端设备,其特征在于,在
    Figure PCTCN2021092867-appb-100014
    Figure PCTCN2021092867-appb-100015
    的情况下,L’<L,N’<N;其中,Tprs是高层配置的PRS周期,L’为L中前L’个比特位的长度。
  26. 根据权利要求18所述的终端设备,其特征在于,
    所述处理模块,具体用于根据定位参考信号PRS静音机制的长度和所包含比特值为1的位置,确定PRS周期放大因子。
  27. 根据权利要求26所述的终端设备,其特征在于,
    所述处理模块,具体用于根据所述PRS静音机制的长度,确定所述长度的因数;根据所述因数和所述比特值为1的位置,确定PRS周期放大因子。
  28. 根据权利要求27所述的终端设备,其特征在于,
    所述处理模块,具体用于判断是否存在相隔目标因数比特位的比特值都为1,若存在则所述PRS周期放大因子为所述目标因数,所述因数包括所述目标因数。
  29. 根据权利要求28所述的终端设备,其特征在于,所述目标因数按照所述因数从小到大排列的顺序选择。
  30. 根据权利要求28或29所述的终端设备,其特征在于,
    所述处理模块,具体用于判断是否存在每相隔目标因数比特位的比特值都为1,若存在则所述PRS周期放大因子为所述目标因数。
  31. 根据权利要求27-30中任一项所述的终端设备,其特征在于,所述因数的取值不为1。
  32. 根据权利要求17-31中任一项所述的终端设备,其特征在于,
    所述处理模块,还用于根据所述PRS周期放大因子,计算测量周期;在所述测量周期内进行测量。
  33. 一种终端设备,其特征在于,包括:
    存储有可执行程序代码的存储器;
    与所述存储器耦合的处理器;
    所述处理器,用于根据定位参考信号PRS静音机制的配置信息,确定PRS周期放大因子。
  34. 根据权利要求33所述的终端设备,其特征在于,
    所述处理器,具体用于根据定位参考信号PRS静音机制所包含比特值为1的比特,确定PRS周期放大因子。
  35. 根据权利要求34所述的终端设备,其特征在于,
    所述处理器,具体用于根据定位参考信号PRS静音机制的当前长度L’和所述当前长度L’中所包含比特值为1的比特个数N’,确定PRS周期放大因子;其中,L’≤L,N’≤N,L为所述PRS静音机制的原始长度,N为所述原始长度中所包含比特值为1的比特个数。
  36. 根据权利要求35所述的终端设备,其特征在于,所述PRS周期放大因子为
    Figure PCTCN2021092867-appb-100016
    或,X;其中,X为根据L’和N’的比值确定的值,所述
    Figure PCTCN2021092867-appb-100017
    为预置的PRS静音比特重复因子。
  37. 根据权利要求36所述的终端设备,其特征在于,
    Figure PCTCN2021092867-appb-100018
    或,X=ceil[L’/N’],ceil表示向上取整。
  38. 根据权利要求36所述的终端设备,其特征在于,X取值为L’/N’向上取最小的L’的因数。
  39. 根据权利要求36所述的终端设备,其特征在于,当所述PRS静音机制的当前长度L’为2的幂次时,
    Figure PCTCN2021092867-appb-100019
    或,X=2^(ceil[log2(L’/N’)]),ceil表示向上取整。
  40. 根据权利要求37-39中任一项所述的终端设备,其特征在于,在
    Figure PCTCN2021092867-appb-100020
    Figure PCTCN2021092867-appb-100021
    的情况下,L’=L,N’=N,其中,Tprs是高层配置的PRS周期。
  41. 根据权利要求37-39中任一项所述的终端设备,其特征在于,在
    Figure PCTCN2021092867-appb-100022
    Figure PCTCN2021092867-appb-100023
    的情况下,L’<L,N’<N;其中,Tprs是高层配置的PRS周期,L’为L中前L’个比特位的长度。
  42. 根据权利要求34所述的终端设备,其特征在于,
    所述处理器,具体用于根据定位参考信号PRS静音机制的长度和所包含比特值为1的位置,确定PRS周期放大因子。
  43. 根据权利要求42所述的终端设备,其特征在于,
    所述处理器,具体用于根据所述PRS静音机制的长度,确定所述长度的因数;根据所述因数和所述比特值为1的位置,确定PRS周期放大因子。
  44. 根据权利要求43所述的终端设备,其特征在于,
    所述处理器,具体用于判断是否存在相隔目标因数比特位的比特值都为1,若存在则所述PRS周期放大因子为所述目标因数,所述因数包括所述目标因数。
  45. 根据权利要求44所述的终端设备,其特征在于,所述目标因数按照所述因数从小到大排列的顺序选择。
  46. 根据权利要求44或45所述的终端设备,其特征在于,
    所述处理器,具体用于判断是否存在每相隔目标因数比特位的比特值都为1,若存在则所述PRS周期放大因子为所述目标因数。
  47. 根据权利要求43-46中任一项所述的终端设备,其特征在于,所述因数的取值不为1。
  48. 根据权利要求33-47中任一项所述的终端设备,其特征在于,
    所述处理器,还用于根据所述PRS周期放大因子,计算测量周期;在所述测量周期内进行测量。
  49. 一种计算机可读存储介质,包括指令,当其在处理器上运行时,使得处理器执行如权利要求1-16中任一项所述的方法。
PCT/CN2021/092867 2021-05-10 2021-05-10 确定prs周期放大因子的方法、终端设备及存储介质 WO2022236616A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2021/092867 WO2022236616A1 (zh) 2021-05-10 2021-05-10 确定prs周期放大因子的方法、终端设备及存储介质
CN202180090211.7A CN116783952A (zh) 2021-05-10 2021-05-10 确定prs周期放大因子的方法、终端设备及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/092867 WO2022236616A1 (zh) 2021-05-10 2021-05-10 确定prs周期放大因子的方法、终端设备及存储介质

Publications (1)

Publication Number Publication Date
WO2022236616A1 true WO2022236616A1 (zh) 2022-11-17

Family

ID=84028988

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/092867 WO2022236616A1 (zh) 2021-05-10 2021-05-10 确定prs周期放大因子的方法、终端设备及存储介质

Country Status (2)

Country Link
CN (1) CN116783952A (zh)
WO (1) WO2022236616A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110999433A (zh) * 2017-08-10 2020-04-10 高通股份有限公司 用于参考信号时间差异测量的空隙的供应及使用
US20200267686A1 (en) * 2019-02-15 2020-08-20 Samsung Electronics Co., Ltd. Methods and apparatus for transmitting and receiving a positioning reference signal in a wireless communication system
CN112351489A (zh) * 2019-08-09 2021-02-09 株式会社Kt 用于执行定位的装置和方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110999433A (zh) * 2017-08-10 2020-04-10 高通股份有限公司 用于参考信号时间差异测量的空隙的供应及使用
US20200267686A1 (en) * 2019-02-15 2020-08-20 Samsung Electronics Co., Ltd. Methods and apparatus for transmitting and receiving a positioning reference signal in a wireless communication system
CN112351489A (zh) * 2019-08-09 2021-02-09 株式会社Kt 用于执行定位的装置和方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUAWEI HISILICON: "WF on UE PRS measurement requirements", 3GPP DRAFT; R4-2104076, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG4, no. Electronic Meeting; 20210125 - 20210205, 9 February 2021 (2021-02-09), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051979906 *

Also Published As

Publication number Publication date
CN116783952A (zh) 2023-09-19

Similar Documents

Publication Publication Date Title
EP3860197B1 (en) Csi report reporting method, terminal device and network device
CN106604314B (zh) WiFi漫游的网络接入方法及终端设备
KR102613437B1 (ko) 상향 링크 신호 송신 방법 및 장치
RU2736110C1 (ru) Способ и устройство передачи служебных сигналов
WO2018103439A1 (zh) 一种信息处理方法及终端设备
CN104837042B (zh) 数字多媒体数据的编码方法和装置
CN112788783B (zh) 一种中继连接建立方法及设备
CN111800794B (zh) 解调参考信号位置的确定方法及设备
CN111277998B (zh) 一种无线通信方法及终端设备
WO2020029760A1 (zh) 资源配置方法和装置
CN106550484B (zh) 一种直通呼叫通信方法及终端
WO2022151502A1 (zh) 配置srs传输资源的方法、终端设备及网络设备
CN113316176A (zh) 更新测量结果的方法,终端设备及存储介质
WO2022236616A1 (zh) 确定prs周期放大因子的方法、终端设备及存储介质
CN106815077B (zh) 一种基于智能设备架构的数据处理方法,及智能设备
CN112911666B (zh) 一种小区重选方法及装置
WO2022133727A1 (zh) Pusch重复传输方法及终端设备
WO2021018282A1 (zh) 网络切换方法、网络设备及终端
CN107534958B (zh) 信号传输方法、基站及用户设备
CN107484225B (zh) 一种网络接入控制方法、装置及用户终端
CN109565645B (zh) 组播业务传输方法、终端、基站和通信系统
WO2022141426A1 (zh) 一种切片信息的指示方法、终端设备及网络设备
WO2015078399A1 (zh) 无线覆盖的方法、装置和系统
CN110351889B (zh) 一种连接建立方法和设备
US11974251B2 (en) Method for determining paging cycle, and terminal device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21941192

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180090211.7

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21941192

Country of ref document: EP

Kind code of ref document: A1