WO2022236560A1 - 车路协同时间同步方法、车路协同时间同步装置及系统 - Google Patents

车路协同时间同步方法、车路协同时间同步装置及系统 Download PDF

Info

Publication number
WO2022236560A1
WO2022236560A1 PCT/CN2021/092715 CN2021092715W WO2022236560A1 WO 2022236560 A1 WO2022236560 A1 WO 2022236560A1 CN 2021092715 W CN2021092715 W CN 2021092715W WO 2022236560 A1 WO2022236560 A1 WO 2022236560A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
ntp server
time
server
ntp
Prior art date
Application number
PCT/CN2021/092715
Other languages
English (en)
French (fr)
Inventor
张子期
邓堃
Original Assignee
浙江吉利控股集团有限公司
吉利汽车研究院(宁波)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江吉利控股集团有限公司, 吉利汽车研究院(宁波)有限公司 filed Critical 浙江吉利控股集团有限公司
Priority to PCT/CN2021/092715 priority Critical patent/WO2022236560A1/zh
Priority to CN202180091821.9A priority patent/CN116830487A/zh
Publication of WO2022236560A1 publication Critical patent/WO2022236560A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/06Synchronising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • H04W4/44Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P] for communication between vehicles and infrastructures, e.g. vehicle-to-cloud [V2C] or vehicle-to-home [V2H]

Definitions

  • the invention relates to the field of time synchronization, in particular to a vehicle-road coordination time synchronization method, a vehicle-road coordination time synchronization device and system.
  • the vehicle perception system and the roadside perception system are relatively independent. It is very difficult to make full use of the vehicle and roadside perception information to achieve more comprehensive and accurate perception.
  • the traditional solution is based on the on-board perception system, supplemented by the roadside perception system.
  • the information provided by the roadside perception system is only used to remind and warn the driver;
  • the perception information that actually participates in the decision-making control in the automatic driving function is still provided by the on-board perception system.
  • the perception information provided by the roadside perception system only the information of traffic lights at intersections is used for decision-making and planning. The proportion and weight of the perception information provided by the roadside perception system in the decision-making is very low.
  • on-board sensors are Perceive the target at all times, and transmit it to the perception fusion module after the algorithm processing and transmission delay ⁇ veh ; at the same time, the roadside sensor Perceive the same target at all times, and transmit it to the perception fusion module after algorithm processing and transmission delay ⁇ road .
  • the fusion module cannot fuse the two frames of target information for the following reasons: 1. The perception fusion module cannot judge the actual sequence of the two frames of target information; 2. The perception fusion module cannot know the actual time difference of the two frames of target information. So the actual effect is that for the same object, there will be multiple ghosts, that is, a single object is perceived as multiple objects.
  • the traditional automatic driving time synchronization scheme only considers the on-board sensor system. It selects a master clock among the multiple CPU computing units in the car, and other sensors act as slave clocks to synchronize the master clock through the in-vehicle LAN. There is no specific choice for the master clock. Require. This is feasible in the case of bicycle intelligence, because the structure of the local area network in the bicycle is simple, the communication between the sensor and the CPU calculation unit does not need to go through routing, and the transmission delay is small and stable.
  • the shortcoming of this solution is that it is impossible to incorporate roadside sensors into the time synchronization system. stable.
  • the present invention is proposed to provide a vehicle-road coordination time synchronization method, a vehicle-road coordination time synchronization device and a system that overcome the above problems or at least partially solve the above problems.
  • An object of the first aspect of the present invention is to provide a vehicle-road coordination time synchronization method applied to vehicles in a vehicle-road coordination system, which can meet the requirements of automatic driving.
  • Another object of the present invention is to realize the time synchronization between the vehicle and the roadside equipment, and control the actual error at the microsecond level.
  • An object of the second aspect of the present invention is to provide a vehicle-road coordination time synchronization method applied to the roadside equipment of the vehicle-road coordination system, which can meet the requirements of automatic driving.
  • An object of the third aspect of the present invention is to provide a vehicle-road coordination time synchronization device applied to vehicles in a vehicle-road coordination system, which can meet the requirements of automatic driving.
  • An object of the fourth aspect of the present invention is to provide a vehicle-road coordination time synchronization device applied to the roadside equipment of the vehicle-road coordination system, which can meet the requirements of automatic driving.
  • An object of the fifth aspect of the present invention is to provide a vehicle-road collaborative time synchronization system to solve the basic problems that currently plague the vehicle-road collaborative sensing fusion, and to lay a solid foundation for promoting the vehicle-road collaborative sensing fusion.
  • a vehicle-road coordination time synchronization method which is applied to a vehicle of a vehicle-road coordination system, and the vehicle includes a vehicle-mounted GPS timing unit, a vehicle-mounted NTP server, and a plurality of vehicle-mounted sensors Data processing unit, the vehicle-mounted NTP server is respectively connected with the vehicle-mounted GPS timing unit and the first remote time server, and the vehicle-mounted GPS timing unit is configured to provide the vehicle-mounted NTP server with the first GPS when the GPS signal is normally obtained.
  • Timing signal the vehicle-road coordination system also includes roadside equipment, and the roadside equipment includes a vehicle-road coordination NTP server;
  • the vehicle-road coordination time synchronization method includes:
  • the vehicle-mounted NTP server does not receive the first GPS timing signal, simultaneously read the NTP level information of the vehicle-road coordination NTP server and the NTP level information of the first remote time server, and make the vehicle-mounted NTP The server is synchronized with the lower of the two;
  • a first synchronization instruction is sent to each of the on-vehicle sensor data processing units, so that each of the on-vehicle sensor data processing units synchronizes the time of the on-vehicle NTP server through the network time protocol.
  • the vehicle-mounted NTP server after the step of judging whether the vehicle-mounted NTP server receives the first GPS timing signal, it also includes:
  • the vehicle-mounted NTP server When the vehicle-mounted NTP server receives the first GPS timing signal, the vehicle-mounted NTP server is synchronized with the GPS hardware reference time.
  • the vehicle-mounted GPS timing unit includes a connected combined inertial navigation system and a signal expansion board, the signal expansion board is connected to the vehicle-mounted NTP server, and the vehicle also includes a vehicle terminal connected to the signal expansion board Lidar, to obtain the first GPS timing signal through the signal expansion board;
  • the vehicle-road coordination time synchronization method also includes:
  • the vehicle-end lidar When the vehicle-end lidar receives the first GPS timing signal, the vehicle-end lidar is synchronized with a GPS hardware reference time.
  • the step of judging whether the vehicle-side lidar has received the first GPS timing signal further includes:
  • the vehicle-end lidar When the vehicle-end lidar does not receive the first GPS timing signal, the vehicle-end lidar is synchronized with the time of the vehicle-mounted NTP server.
  • the step of synchronizing the vehicle-end lidar with the time of the vehicle-mounted NTP server includes:
  • test node Detecting the transmission delay when the test node in the local area network where the vehicle-end lidar is located communicates with the vehicle-mounted NTP server, the test node is connected to the vehicle-mounted NTP server through a switch;
  • the step of detecting the transmission delay when the test node in the local area network where the vehicle-end lidar is located communicates with the vehicle-mounted NTP server includes:
  • the clock offset C is calculated according to the following formula (1):
  • the step of determining the local time of the vehicle-end lidar according to the transmission delay and the local time of the vehicle-mounted NTP server includes:
  • the local time of the vehicle-mounted laser radar is set as the sum of the third moment and the transmission delay.
  • the vehicle-road coordination NTP server is timed by a roadside GPS timing unit or the second remote time server;
  • the NTP level of the vehicle-road coordinated NTP server is lower than the NTP level of the first remote time server
  • the step of synchronizing the on-board NTP server with the lower of the two includes:
  • the vehicle-mounted NTP server is synchronized with the vehicle-road coordinated NTP server.
  • a vehicle-road coordination time synchronization method is provided, which is applied to the roadside equipment of the vehicle-road coordination system, and the roadside equipment includes a roadside GPS timing unit, a vehicle-road coordination An NTP server and a plurality of roadside sensor data processing units, each of the roadside sensor data processing units is connected to the vehicle-road coordination NTP server, and the vehicle-road coordination NTP server is provided by the roadside GPS timing unit.
  • the vehicle-road coordination system also includes a vehicle, the vehicle includes a vehicle-mounted GPS time service unit and a vehicle-mounted NTP server, and the vehicle-mounted GPS time service unit is configured to obtain the GPS signal normally When providing the first GPS timing signal for the vehicle-mounted NTP server, the vehicle-mounted NTP server is connected to the vehicle-road coordination NTP server;
  • the vehicle-road coordination time synchronization method includes:
  • the vehicle-road coordination time synchronization method includes:
  • the vehicle-road coordination NTP server When the vehicle-road coordination NTP server receives the second GPS timing signal, the vehicle-road coordination NTP server synchronizes the GPS hardware reference time;
  • the GPS timing signal is sent when the NTP level of the vehicle-road coordination NTP server is lower than the NTP level of the first remote time server;
  • the NTP level of the vehicle-road coordination NTP server is lower than the NTP level of the first remote time server.
  • the method further includes:
  • the vehicle-road coordination NTP server When the vehicle-road coordination NTP server does not receive the second GPS timing signal, the vehicle-road coordination NTP server is synchronized with the time of the second remote time server.
  • a first vehicle-road coordination time synchronization device which is applied to vehicles of the vehicle-road coordination system
  • the vehicle-road coordination time synchronization device includes a vehicle-mounted GPS timing unit, NTP server and a plurality of vehicle-mounted sensor data processing units, memory and processor, described vehicle-mounted NTP server is connected with described vehicle-mounted GPS timing unit and the first remote time server respectively, is stored with control program in described memory, described control program When executed by the processor, it is used to implement the vehicle-road coordination time synchronization method applied to vehicles in the vehicle-road coordination system according to any one of the above.
  • a second vehicle-road coordination time synchronization device which is applied to the roadside equipment of the vehicle-road coordination system, and the vehicle-road coordination time synchronization device includes roadside GPS timing unit, a vehicle-road cooperative NTP server, a plurality of roadside sensor data processing units, memory and a processor, each of the roadside sensor data processing units is connected to the vehicle-road cooperative NTP server, and the vehicle-road cooperative NTP server.
  • the second GPS authorization signal is provided by the roadside GPS timing unit or the timing is provided by the second remote time server, and a control program is stored in the memory, and when the control program is executed by the processor, it is used to realize A vehicle-road coordination time synchronization method for roadside equipment of a road coordination system.
  • a vehicle-road coordination time synchronization system including a first vehicle-road coordination time synchronization device and a second vehicle-road coordination time synchronization device.
  • the vehicle-mounted NTP server when the vehicle-mounted NTP server receives the first GPS timing signal, the vehicle-mounted NTP server synchronizes the GPS hardware reference time, thereby obtaining accurate UTC time.
  • the vehicle-mounted NTP server does not receive the first GPS timing signal, it can obtain a more accurate time through the lower one of the vehicle-road coordination NTP server and the first remote time server to provide time, ensuring that the vehicle-mounted NTP The server's local time error does not accumulate over time.
  • the vehicle-mounted NTP server cannot obtain the first GPS timing signal, it can still obtain accurate time from the vehicle-road coordination NTP server that can obtain the second GPS authorization signal, so that the time of the automatic driving system of the entire vehicle can be compared with the UTC time.
  • the error is controlled at the microsecond level, which meets the requirements of vehicle-road cooperative automatic driving.
  • GPS timing signal (UTC time and PPS signal) by combining inertial navigation system and signal expansion board in the method of the present invention, provide to each laser radar and vehicle-mounted NTP server, make each laser radar and vehicle-mounted NTP server all Accurate GPS timing signals can be obtained.
  • the transmission delay is tested and then according to the transmission delay
  • the local time of the vehicle-side lidar can be determined by using the local time of the vehicle-mounted NTP server, which can maintain the error between the vehicle-mounted lidar and the time source.
  • FIG. 1 is a flowchart of a vehicle-road coordination time synchronization method applied to vehicles in a vehicle-road coordination system according to an embodiment of the present invention
  • Fig. 2 is a connection block diagram of a vehicle applied to a vehicle-road coordination system according to an embodiment of the present invention
  • FIG. 3 is a flowchart of a vehicle-road coordination time synchronization method applied to vehicles in a vehicle-road coordination system according to another embodiment of the present invention.
  • FIG. 4 is a flowchart of a vehicle-road coordination time synchronization method applied to roadside equipment in a vehicle-road coordination system according to an embodiment of the present invention
  • Fig. 5 is a connection block diagram of roadside equipment applied to a vehicle-road coordination system according to an embodiment of the present invention
  • Fig. 6 is a schematic diagram of NTP timing between the client computer and the server
  • Fig. 7 is a connection block diagram of a vehicle-road coordination time synchronization system according to an embodiment of the present invention.
  • Fig. 1 is a flowchart of a vehicle-road coordination time synchronization method applied to vehicles in a vehicle-road coordination system according to an embodiment of the present invention.
  • Fig. 2 is a connection block diagram of a vehicle applied to a vehicle-road coordination system according to an embodiment of the present invention.
  • the vehicle-road coordination time synchronization method in this embodiment is applied to vehicles in a vehicle-road coordination system, and the vehicle-road coordination system includes vehicles and roadside equipment.
  • the vehicle comprises a vehicle-mounted GPS timing unit 10, a vehicle-mounted NTP server 20 and a plurality of vehicle-mounted sensor data processing units 30, and the vehicle-mounted NTP server 20 is connected with the vehicle-mounted GPS timing unit 10 and the first remote time server 50 respectively, and the vehicle-mounted GPS
  • the timing unit 10 is configured to provide the vehicle-mounted NTP server 20 with a first GPS timing signal when the GPS signal is acquired normally.
  • the lengths of the wires transmitting the first GPS timing signal should be as short as possible and the same to ensure that the time delay caused by the wire transmission is as small as possible and the same, thereby ensuring the accuracy of the first GPS timing signal, which is easy to achieve on the vehicle side.
  • the vehicle-mounted GPS timing unit 10 here can provide pulse-per-second signal (PPS) and UTC time service signal, the time in the UTC time service signal corresponds to the rising edge of the PPS signal, and the vehicle-mounted NTP server 20 is a device that is deployed with NTP service in the vehicle , it can update its own time to UTC time at the rising edge of the PPS signal.
  • the on-vehicle sensor data processing unit 30 includes a general-purpose processing unit 31 corresponding to millimeter-wave radar, ultrasonic radar, and chassis sensors, and a dedicated processing unit 32 corresponding to the camera.
  • the roadside equipment includes a vehicle-road coordination NTP server 70 .
  • the vehicle-road coordination NTP server 70 is timed by the roadside GPS timing unit 60 or the second remote time server 90 .
  • the roadside GPS timing unit 60 provides a second GPS timing signal for the vehicle-road coordination NTP server 70 when the GPS signal is normally acquired.
  • the vehicle-road coordination time synchronization method in this embodiment includes:
  • Step S100 judging whether the vehicle-mounted NTP server 20 has received the first GPS timing signal, if not, proceed to step S200.
  • Step S200 simultaneously read the NTP level information of the vehicle-road coordination NTP server 70 and the NTP level information of the first remote time server 50, and synchronize the vehicle-mounted NTP server 20 with the lower level of the two.
  • the vehicle-road coordinated NTP server 70 is timed by the roadside GPS timing unit 60, the NTP level of the vehicle-road coordinated NTP server 70 is lower than the NTP level of the first remote time server 50.
  • the vehicle-mounted NTP server 20 and the vehicle-road coordinated NTP The server 70 is synchronized.
  • the vehicle-road coordination NTP server 70 When the vehicle-road coordination NTP server 70 is provided by the second remote time server 90, it is still necessary to determine the synchronization object of the vehicle-mounted NTP server 20 according to the NTP levels in the first remote time server 50 and the vehicle-road coordination NTP server 70. Since the levels of the first remote time server 50 and the second remote time server 90 are determined by their distance from the GPS time node, that is, the farther away from the GPS node, the higher the level.
  • the level information of the first remote time server 50 and the second remote time server 90 determined in the actual situation it is possible to judge the NTP level size of the first remote time server 50 and the vehicle-road coordination NTP server 70, such as the first remote
  • the NTP level of the time server 50 is 3, the NTP level of the second remote time server 90 is 3, then the NTP level of the vehicle-road cooperative NTP server 70 served by the second remote time server 90 is then 4, and now the vehicle-mounted NTP server 20 Select the first remote time server 50 with a lower NTP level for time synchronization.
  • Step S300 after the synchronization is successful, send a first synchronization instruction to each vehicle sensor data processing unit 30, so that each vehicle sensor data processing unit 30 synchronizes the time of the vehicle NTP server 20 through the network time protocol.
  • the vehicle-mounted GPS timing unit 10 cannot normally obtain the GPS signal, and the vehicle-mounted NTP server 20 cannot obtain accurate and reliable UTC time by receiving the first GPS timing signal.
  • the error between the local time of the NTP server 20 and the UTC time will increase as the time when the vehicle-mounted GPS timing unit 10 cannot normally obtain the GPS signal increases.
  • the vehicle-mounted NTP server 20 of this embodiment can access the vehicle-road coordination NTP server 70 at the roadside end, and the vehicle-mounted NTP server 20 can be connected with the first remote time server 50 again, so it can be obtained from the vehicle-road coordination NTP server 70 and the first remote time
  • the server 50 obtains the time, and selects the one with the lower level (that is, the time is more accurate) to synchronize the time.
  • the vehicle-road coordination NTP server 70 can provide the second GPS authorization signal through the roadside GPS timing unit 60.
  • the vehicle-road coordination The NTP server 70 can provide accurate time.
  • the NTP level of the vehicle-road coordination NTP server 70 is 1, the NTP level of the vehicle-mounted NTP server 20 is 2, and the NTP level of the vehicle-mounted sensor data processing unit 30 is 3.
  • the vehicle-road coordination NTP server 70 may not provide accurate time, such as signal interruption, equipment failure, etc.
  • the vehicle-mounted NTP server 20 can also perform time synchronization through the first remote time server 50 .
  • the vehicle-mounted NTP server 20 at the vehicle end when the vehicle-mounted NTP server 20 at the vehicle end does not receive the first GPS timing signal, it can provide time through the lower one of the vehicle-road coordination NTP server 70 and the first remote time server 50, To obtain a more accurate time, to ensure that the local time error of the vehicle-mounted NTP server 20 will not accumulate over time.
  • the vehicle-mounted NTP server 20 cannot obtain the first GPS timing signal, it can still obtain the accurate time from the vehicle-road coordination NTP server 70 that can obtain the second GPS authorization signal, so that the time of the automatic driving system of the entire vehicle can be compared with UTC.
  • the time error is controlled at the microsecond level, which meets the requirements of vehicle-road cooperative automatic driving.
  • the vehicle-mounted NTP server 20 can only obtain time from the first remote time server 50 synchronization time or from the vehicle-road coordination NTP server 70 (at this moment, the vehicle-road coordination NTP server 70 synchronizes time from the second remote time server 90), although The time error of the vehicle-mounted NTP server 20 can be maintained, but the error level is inevitably reduced from the microsecond level to the millisecond level. Road coordination is switched to bicycle intelligence.
  • step S100 it also includes:
  • Step S400 when the vehicle-mounted NTP server 20 receives the first GPS timing signal, make the vehicle-mounted NTP server 20 synchronize the GPS hardware reference time. It can be seen that the vehicle-mounted NTP server 20 preferentially synchronizes the time from the vehicle-mounted GPS timing unit 10, so as to obtain accurate UTC time.
  • Fig. 3 is a flowchart of a vehicle-road coordination time synchronization method applied to vehicles in a vehicle-road coordination system according to another embodiment of the present invention.
  • the vehicle-mounted GPS timing unit 10 includes a connected integrated inertial navigation system 11 and a signal expansion board 12, where the integrated inertial navigation system 11 can be the integrated inertial navigation system 11 carried by the vehicle and Built-in GPS receiver module.
  • the signal expansion board 12 is connected to the vehicle-mounted NTP server 20 , and the vehicle also includes a vehicle-end lidar 40 connected to the signal expansion board 12 to obtain the first GPS timing signal through the signal expansion board 12 .
  • the vehicle-road coordination time synchronization method also includes:
  • step S500 it is judged whether the lidar 40 at the car end has received the first GPS timing signal, if so, go to step S600, otherwise go to step S700.
  • Step S600 making the vehicle-end lidar 40 synchronize the GPS hardware reference time.
  • step S700 the vehicle-side lidar 40 is synchronized with the time of the vehicle-mounted NTP server 20 .
  • GPS timing signal (UTC time) by signal expansion board 12 and PPS signal) are provided to each laser radar and vehicle-mounted NTP server 20, so that each laser radar and vehicle-mounted NTP server 20 can obtain accurate GPS timing signals.
  • step S700 includes:
  • Step S701 detecting the transmission delay when the test node in the local area network where the vehicle-end lidar 40 is located communicates with the vehicle-mounted NTP server 20 , and the test node is connected to the vehicle-mounted NTP server 20 through a switch.
  • Step S702 determining the local time of the vehicle-end lidar 40 according to the transmission delay and the local time of the vehicle-mounted NTP server 20 .
  • step S701 includes:
  • the clock offset C is calculated according to the following formula (1):
  • the transmission delay ⁇ T' is calculated according to the following formula (2):
  • Step S702 includes: sending a second synchronization instruction from the vehicle-mounted NTP server 20 to the vehicle-mounted laser radar at the third moment, the second synchronization command carrying a transmission delay; when the vehicle-mounted laser radar receives the second synchronization command, the local time of the vehicle-mounted laser radar Set as the sum of the third moment and the transmission delay, that is
  • T sync is the local time of the vehicle lidar, and T is the third moment.
  • the transmission delay of the vehicle lidar is the same as that of the test node. Therefore, in this embodiment, the calculated transmission delay of the test node is used as the transmission delay of the vehicle laser radar. delay. Since the transmission protocol of the vehicle-mounted lidar is different from that of the vehicle intranet, the time of the vehicle-mounted NTP server 20 cannot be directly synchronized through the NTP protocol. When the vehicle-mounted lidar of this embodiment cannot receive accurate and reliable hardware reference time, and it supports the method of sending instructions through the Ethernet port to configure the local time, the error between the vehicle-mounted lidar and the time source is maintained by the above method.
  • the simple command transmission time in the vehicle local area network is generally at the microsecond level. Through the above method, the error between the local time and UTC time of the vehicle lidar can be controlled within microseconds when the satellite signal is missing.
  • Fig. 4 is a flowchart of a vehicle-road coordination time synchronization method applied to a roadside device of a vehicle-road coordination system according to an embodiment of the present invention.
  • Fig. 5 is a connection block diagram of roadside equipment applied to a vehicle-road coordination system according to an embodiment of the present invention.
  • the roadside equipment includes a roadside GPS timing unit 60, a vehicle-road cooperative NTP server 70, and a plurality of roadside sensor data processing units 80, and each roadside sensor data processing unit 80 is connected to the vehicle.
  • the road-road coordinated NTP server 70 is connected, and the vehicle-road coordinated NTP server 70 provides a second GPS authorization signal from the roadside GPS timing unit 60 or is timed by the second remote time server 90 .
  • the multiple roadside sensor data processing units 80 include a general processing unit 81 corresponding to multiple cameras and millimeter-wave radars arranged on the roadside, and a dedicated processing unit 82 corresponding to multiple laser radars arranged on the roadside.
  • the vehicle-road coordination system also includes a vehicle.
  • the vehicle includes a vehicle-mounted GPS timing unit 10 and a vehicle-mounted NTP server 20.
  • the vehicle-mounted GPS timing unit 10 is configured to provide the vehicle-mounted NTP server 20 with a first GPS timing signal when the GPS signal is normally obtained.
  • the vehicle-mounted NTP server 20 is connected with the vehicle-road coordination NTP server 70.
  • the vehicle-road coordination time synchronization method applied to the roadside equipment of the vehicle-road coordination system includes:
  • Step S110 judging whether the vehicle-road coordination NTP server 70 has received the second GPS timing signal. If yes, go to step S120; otherwise, go to step S130.
  • Step S120 make the vehicle-road coordination NTP server 70 synchronize the GPS hardware reference time. Then step S140 is executed.
  • Step S130 making the vehicle-road coordination NTP server 70 synchronize the time of the second remote time server 90 .
  • Step S140 receiving the synchronization request sent by the vehicle-mounted NTP server 20, and responding to the synchronization request to provide the reference time for the vehicle-mounted NTP server 20 for synchronization, wherein the synchronization request is issued by the vehicle-mounted NTP server 20 when the first GPS timing signal is not received and the vehicle road Sent when the NTP level of the cooperative NTP server 70 is lower than the NTP level of the first remote time server 50 .
  • the vehicle-road coordinated NTP server 70 is timed by the roadside GPS timing unit 60 , the NTP level of the vehicle-road coordinated NTP server 70 is lower than the NTP level of the first remote time server 50 .
  • the vehicle-road coordination NTP server 70 When the vehicle-road coordination NTP server 70 is timed by the second remote time server 90, it is necessary to determine the first remote time server 50 and the vehicle-road coordination NTP according to the NTP levels of the first remote time server 50 and the second remote time server 90.
  • the size of the NTP level in the server 70, the determination of the specific size has been described in detail at step S200 above, and will not be repeated here.
  • Step S150 sending a third synchronization instruction to each roadside sensor data processing unit 80, so that each roadside sensor data processing unit 80 synchronizes the time of the vehicle-road coordination NTP server 70 through the network time protocol.
  • the execution order of step S140 and step S150 is not in particular order.
  • the vehicle-road cooperative NTP server 70 in this embodiment acquires the time through the roadside GPS timing unit 60 preferentially, and acquires the time through the second remote time server 90 when the time cannot be acquired through the roadside GPS timing unit 60 . Since the roadside GPS timing unit 60 is usually located in an open area, it is possible to obtain accurate satellite timing to ensure high precision of the time in the vehicle-road coordination NTP server 70 .
  • the vehicle-road cooperative NTP server 70 timed by the roadside GPS timing unit 60 can also provide time for the vehicle-mounted NTP server 20 that cannot be timed by the vehicle-mounted GPS timing unit 10, thereby ensuring that both the vehicle end and the road end can obtain accurate time , to ensure the precise synchronization of the clocks on the car side and the road side to meet the requirements of automatic driving.
  • the vehicle lidar can freely set the test node in the Ethernet, the time can be configured through the Ethernet (step S701 and step S702), while the lidar in the roadside equipment is usually provided by a third party, so it cannot To freely set up the test nodes, it is necessary to set up a dedicated data processor of the lidar to synchronize the vehicle-road coordination NTP server 70 .
  • Fig. 6 is a schematic diagram of NTP timing between the client and the server.
  • the client first sends an NTP message to the server (server), which includes the time stamp T1 when the message leaves the client.
  • the server receives the message, it fills in the message
  • the client computer receives the response message, it records the timestamp T4 returned by the message.
  • the client computer can calculate two key parameters by using the above four time parameters: the round-trip delay d of the NTP message and the clock skew t between the client computer and the server.
  • the client uses clock skew to adjust its local clock so that its time matches the server's time.
  • t can also be expressed as
  • t and d are only related to the difference between T2 and T1 and the difference between T3 and T4, but not to the difference between T2 and T3, that is, the final result has nothing to do with the time required by the server to process the request. Therefore, the client can calculate the time difference t through T1, T2, T3, and T4 to adjust the local clock.
  • Time synchronization between any two devices requiring time synchronization in the present invention can be realized according to the above principles.
  • the first vehicle-road coordination time synchronization device 100 applied to the vehicle of the vehicle-road coordination system in this embodiment includes a vehicle-mounted GPS timing unit 10, a vehicle-mounted NTP server 20, and a plurality of vehicle-mounted sensor data processing units 30, memory and processor, the vehicle-mounted NTP server 20 is connected with the vehicle-mounted GPS timing unit 10 and the first remote time server 50 respectively.
  • the vehicle-mounted GPS timing unit 10 includes a connected combined inertial navigation system 11 and a signal expansion board 12
  • the signal expansion board 12 is connected to the vehicle-mounted NTP server 20 .
  • the first vehicle-road coordination time synchronization device 100 also includes a vehicle-end lidar 40 connected to the signal expansion board 12, and a control program is stored in the memory.
  • the vehicle-road coordination time synchronization method may be a central processing unit (CPU for short), or a digital processing unit, and the like.
  • the processor sends and receives data through the communication interface.
  • the memory is used to store programs executed by the processor.
  • the memory is any medium that can be used to carry or store desired program code in the form of instructions or data structures and can be accessed by the computer, and it can also be a combination of multiple memories.
  • the above-mentioned computing programs can be downloaded from a computer-readable storage medium to a corresponding computing/processing device or downloaded to a computer or an external storage device via a network (such as the Internet, a local area network, a wide area network, and/or a wireless network).
  • the second vehicle-road coordination time synchronization device 200 applied to the roadside equipment of the vehicle-road coordination system in this embodiment includes a roadside GPS timing unit 60, a vehicle-road coordination NTP server 70, and a plurality of roadside sensors Data processing unit 80, memory and processor.
  • Each roadside sensor data processing unit 80 is all connected with the vehicle-road coordination NTP server 70, and the vehicle-road coordination NTP server 70 provides the second GPS authorization signal by the roadside GPS timing unit 60 or is timed by the second remote time server 90, stored in the memory
  • There is a control program and when the control program is executed by the processor, it is used to implement the vehicle-road coordination time synchronization method applied to roadside equipment in any embodiment or combination of embodiments above.
  • the processor may be a central processing unit (CPU for short), or a digital processing unit, and the like.
  • the processor sends and receives data through the communication interface.
  • the memory is used to store programs executed by the processor.
  • the memory is any medium that can be used to carry or store desired program code in the form of instructions or data structures and can be accessed by the computer, and it can also be a combination of multiple memories.
  • the above-mentioned computing programs can be downloaded from a computer-readable storage medium to a corresponding computing/processing device or downloaded to a computer or an external storage device via a network (such as the Internet, a local area network, a wide area network, and/or a wireless network).
  • Fig. 7 is a connection block diagram of a vehicle-road coordination time synchronization system 300 according to an embodiment of the present invention.
  • the vehicle-road coordination time synchronization system 300 includes a first vehicle-road coordination time synchronization device 100 applied to vehicles of the vehicle-road coordination system and a first vehicle-road coordination time synchronization device 100 applied to roadside equipment of the vehicle-road coordination system.
  • Two-vehicle-road coordination time synchronization device 200 Two-vehicle-road coordination time synchronization device 200.
  • the local time of the first vehicle-road coordination time synchronization device 100 applied to vehicles in the vehicle-road coordination system and the local time of the second vehicle-road coordination time synchronization device 200 applied to the roadside equipment of the vehicle-road coordination system are at
  • the car end or the roadside end can obtain normal GPS signals, it can be synchronized with UTC time, and the error can be controlled at the microsecond level under normal working conditions, and there are supporting solutions to ensure that the self-driving vehicle is in the tunnel and so on.
  • the special road section of the GPS signal can also maintain the local time of the vehicle-end perception system, avoiding the accumulation and expansion of its errors.
  • the deployment and implementation of this solution can solve the basic problems that currently plague the fusion of vehicle-road collaborative perception, and lay a solid foundation for promoting the fusion of vehicle-road collaborative perception.

Abstract

一种车路协同时间同步方法、车路协同时间同步装置及系统,属于时间同步领域。车路协同时间同步方法包括:判断车载NTP服务器(20)是否接收到第一GPS授时信号(S100);在车载NTP服务器(20)未接收到第一GPS授时信号时同时读取车路协同NTP服务器(70)的NTP层级信息和第一远程时间服务器的NTP(50)层级信息,并使车载NTP服务器(20)与两者中层级较低的一者同步(S200);在同步成功后,向各车载传感器数据处理单元(80)发送第一同步指令,以使各车载传感器数据处理单元(80)均通过网络时间协议同步车载NTP服务器(20)的时间(S300)。车路协同时间同步方法、同步装置及系统能够满足自动驾驶要求。

Description

车路协同时间同步方法、车路协同时间同步装置及系统 技术领域
本发明涉及时间同步领域,特别是涉及一种车路协同时间同步方法、车路协同时间同步装置及系统。
背景技术
目前车路协同驾驶的系统框架中,车载感知系统和路侧感知系统相对独立,想要充分利用车载和路侧的感知信息实现更全面、更准确的感知非常困难。现阶段,传统的方案是以车载感知系统为主,路侧感知系统为辅,在低级别的自动驾驶功能中,路侧感知系统提供的信息仅仅用于提醒、警示驾驶员;在高级别的自动驾驶功能中实际参与决策控制的感知信息依旧由车载感知系统提供,路侧感知系统提供的感知信息中只有路口交通信号灯信息用于决策规划。路侧感知系统提供的感知信息在决策中的比例和权重都很低,造成这种现象的原因有几点:1.目前路侧感知系统使用的传感器种类少,数量少,感知范围无法全方位覆盖路口;2.路侧感知无法与车载感知进行数据融合,造成这种现象的原因在于路侧感知系统没有与车载感知系统进行时间同步。考虑一个常见场景,车载感知系统和路侧感知系统独立,各自有一个时钟源,车端与路侧时间源的偏置是未知的。对于同一个目标,车载传感器在
Figure PCTCN2021092715-appb-000001
时刻感知到该目标,经过算法处理和传输的时延τ veh后传至感知融合模块;同时,路侧传感器在
Figure PCTCN2021092715-appb-000002
时刻感知到同一目标,经过算法处理和传输的时延τ road后传至感知融合模块。融合模块无法融合这两帧目标信息,原因有以下几点:1.感知融合模块无法判断这两帧目标信息实际先后关系;2.感知融合模块无法获知这两帧目标信息的实际时差。所以实际的效果的是对于同一个物体,会有多个重影,即单个物体感知为多个物体。
传统的自动驾驶时间同步方案只考虑了车载传感器系统,是在车载的多个CPU计算单元中选择了一个主时钟,其他传感器作为从时钟通过车内局域网同步主时钟,对主时钟的选择没有特定要求。这在单车智能的情况下是 可行的,因为单车的车内局域网结构简单,传感器与CPU计算单元通信不需要通过路由,传输时延小且稳定。但在车路协同的框架下,该方案的不足在于无法把路侧传感器纳入时间同步系统,原因在于路侧传感器与车载CPU计算单元的通信链路是复杂且多变的,其无线传输是不稳定的。若用同样的方案去同步路侧的传感器的时钟,受网络环境的影响,路侧传感器与车载CPU计算单元的时间同步效果无法达到车载传感器与车载CPU计算单元的时间同步相同的效果,无法满足自动驾驶要求。
发明内容
鉴于上述问题,提出了本发明以便提供一种克服上述问题或者至少部分地解决上述问题的车路协同时间同步方法、车路协同时间同步装置及系统。
本发明第一方面的一个目的是提供应用于车路协同系统的车辆的车路协同时间同步方法,能够满足自动驾驶要求。
本发明的另一个目的是要实现车辆和路侧设备的时间同步,将实际误差控制在微秒级。
本发明第二方面的一个目的是提供一种应用于车路协同系统的路侧设备的车路协同时间同步方法,能够满足自动驾驶要求。
本发明第三方面的一个目的是要提供一种应用于车路协同系统的车辆的车路协同时间同步装置,能够满足自动驾驶要求。
本发明第四方面的一个目的是要提供一种应用于车路协同系统的路侧设备的车路协同时间同步装置,能够满足自动驾驶要求。
本发明第五方面的一个目的是要提供一种车路协同时间同步系统,以解决目前困扰车路协同感知融合的基本问题,为推进车路协同感知融合打下坚实基础。
特别地,根据本发明实施例的第一方面,提供了一种车路协同时间同步方法,应用于车路协同系统的车辆,所述车辆包括车载GPS授时单元、车载NTP服务器和多个车载传感器数据处理单元,所述车载NTP服务器分别与所述车载GPS授时单元和第一远程时间服务器相连,所述车载GPS授时单元配置为在正常获取到GPS信号时为所述车载NTP服务器提供第一GPS授时信号;所述车路协同系统还包括路侧设备,所述路侧设备包括车路协同 NTP服务器;
所述车路协同时间同步方法包括:
判断所述车载NTP服务器是否接收到所述第一GPS授时信号;
在所述车载NTP服务器未接收到所述第一GPS授时信号时同时读取所述车路协同NTP服务器的NTP层级信息和所述第一远程时间服务器的NTP层级信息,并使所述车载NTP服务器与两者中层级较低的一者同步;
在同步成功后,向各所述车载传感器数据处理单元发送第一同步指令,以使各所述车载传感器数据处理单元均通过网络时间协议同步所述车载NTP服务器的时间。
可选地,判断所述车载NTP服务器是否接收到所述第一GPS授时信号的步骤之后还包括:
在所述车载NTP服务器接收到所述第一GPS授时信号时使所述车载NTP服务器同步GPS硬件参考时间。
可选地,所述车载GPS授时单元包括相连的组合惯性导航系统和信号扩展板,所述信号扩展板与所述车载NTP服务器相连,所述车辆还包括与所述信号扩展板相连的车端激光雷达,以通过所述信号扩展板获取所述第一GPS授时信号;
所述车路协同时间同步方法还包括:
判断所述车端激光雷达是否接收到所述第一GPS授时信号;
在所述车端激光雷达接收到所述第一GPS授时信号时使所述车端激光雷达同步GPS硬件参考时间。
可选地,判断所述车端激光雷达是否接收到所述第一GPS授时信号的步骤之后还包括:
在所述车端激光雷达未接收到所述第一GPS授时信号时使所述车端激光雷达同步所述车载NTP服务器的时间。
可选地,在所述车端激光雷达未接收到所述第一GPS授时信号时使所述车端激光雷达同步所述车载NTP服务器的时间的步骤包括:
检测所述车端激光雷达所在的局域网中的测试节点与所述车载NTP服务器通信时的传输时延,所述测试节点通过交换机与所述车载NTP服务器相连;
根据所述传输时延和所述车载NTP服务器的本地时间确定所述车端激 光雷达的本地时间。
可选地,检测所述车端激光雷达所在的局域网中的测试节点与所述车载NTP服务器通信时的传输时延的步骤包括:
从所述车载NTP服务器于第一发送时刻向所述测试节点传输携带所述第一发送时刻的第一数据包,记录所述测试节点接收所述第一数据包的第一接收时刻,计算所述第一接收时刻与所述第一发送时刻的差值A2B;
从所述测试节点于第二发送时刻向所述车载NTP服务器传输携带所述第二发送时刻的第二数据包,记录所述车载NTP服务器接收所述第二数据包的第二接收时刻,计算所述第二接收时刻与所述第二发送时刻的差值B2A;
根据下式(1)计算得到时钟偏移C:
C=(A2B-B2A)/2     (1);
根据下式(2)计算得到所述传输时延ΔT^':
ΔT^'=A2B–C        (2)。
可选地,根据所述传输时延和所述车载NTP服务器的本地时间确定所述车端激光雷达的本地时间的步骤包括:
从所述车载NTP服务器于第三时刻向所述车载激光雷达发送第二同步指令,所述第二同步指令携带所述传输时延;
在所述车载激光雷达接收到所述第二同步指令时将所述车载激光雷达的本地时间设置为所述第三时刻与所述传输时延的加和。
可选地,所述车路协同NTP服务器由路侧GPS授时单元或所述第二远程时间服务器授时;
当所述车路协同NTP服务器由所述路侧GPS授时单元授时时,所述车路协同NTP服务器的NTP层级低于所述第一远程时间服务器的NTP层级;
使所述车载NTP服务器与两者中层级较低的一者同步的步骤包括:
在所述车路协同NTP服务器由所述路侧GPS授时单元授时时,使所述车载NTP服务器与所述车路协同NTP服务器同步。
特别地,根据本发明实施例的第二方面,提供了一种车路协同时间同步方法,应用于车路协同系统的路侧设备,所述路侧设备包括路侧GPS授时单元、车路协同NTP服务器和多个路侧传感器数据处理单元,每一所述路侧传感器数据处理单元均与所述车路协同NTP服务器相连,所述车路协同NTP服务器由所述路侧GPS授时单元提供第二GPS授权信号或由第二远程 时间服务器授时;所述车路协同系统还包括车辆,所述车辆包括车载GPS授时单元和车载NTP服务器,所述车载GPS授时单元配置为在正常获取到GPS信号时为所述车载NTP服务器提供第一GPS授时信号,所述车载NTP服务器与所述车路协同NTP服务器相连;
所述车路协同时间同步方法包括:
所述车路协同时间同步方法包括:
判断所述车路协同NTP服务器是否接收到所述第二GPS授时信号;
在所述车路协同NTP服务器接收到所述第二GPS授时信号时使所述车路协同NTP服务器同步GPS硬件参考时间;
接收所述车载NTP服务器发送的同步请求,并响应所述同步请求为所述车载NTP服务器提供参考时间以供同步,其中,所述同步请求由所述车载NTP服务器在未接收到所述第一GPS授时信号且所述车路协同NTP服务器的NTP层级低于所述第一远程时间服务器的NTP层级时发出;
向每一所述路侧传感器数据处理单元发送第三同步指令,以使各所述路侧传感器数据处理单元均通过网络时间协议同步所述车路协同NTP服务器的时间。
可选地,当所述车路协同NTP服务器由所述路侧GPS授时单元授时时,所述车路协同NTP服务器的NTP层级低于所述第一远程时间服务器的NTP层级。
可选地,在判断所述车路协同NTP服务器是否接收到所述第二GPS授时信号之后,还包括:
在所述车路协同NTP服务器未接收到所述第二GPS授时信号时使所述车路协同NTP服务器同步所述第二远程时间服务器的时间。
特别地,根据本发明实施例的第三方面,提供了一种第一车路协同时间同步装置,应用于车路协同系统的车辆,所述车路协同时间同步装置包括车载GPS授时单元、车载NTP服务器和多个车载传感器数据处理单元、存储器和处理器,所述车载NTP服务器分别与所述车载GPS授时单元和第一远程时间服务器相连,所述存储器内存储有控制程序,所述控制程序被所述处理器执行时用于实现根据上述任一项应用于车路协同系统的车辆的车路协同时间同步方法。
特别地,根据本发明实施例的第四方面,提供了一种第二车路协同时间 同步装置,应用于车路协同系统的路侧设备,所述车路协同时间同步装置包括路侧GPS授时单元、车路协同NTP服务器、多个路侧传感器数据处理单元、存储器和处理器,每一所述路侧传感器数据处理单元均与所述车路协同NTP服务器相连,所述车路协同NTP服务器由所述路侧GPS授时单元提供第二GPS授权信号或由第二远程时间服务器授时,所述存储器内存储有控制程序,所述控制程序被所述处理器执行时用于实现根据应用于车路协同系统的路侧设备的车路协同时间同步方法。
特别地,根据本发明实施例的第五方面,提供了一种车路协同时间同步系统,包括第一车路协同时间同步装置和第二车路协同时间同步装置。
本发明的车路协同时间同步方法中,车载NTP服务器在接收到第一GPS授时信号时使车载NTP服务器同步GPS硬件参考时间,从而获取精确的UTC时间。车载NTP服务器在未接收到第一GPS授时信号的情况下,可以通过车路协同NTP服务器和第一远程时间服务器中层级较低的一者提供时间,来获取到较为准确的时间,保证车载NTP服务器的本地时间误差不会随时间累积。特别是,车载NTP服务器无法获取第一GPS授时信号时仍可以从能够获取第二GPS授权信号的车路协同NTP服务器获取准确的时间,从而可以把整个车端的自动驾驶系统的时间与UTC时间的误差控制在微秒级别,满足车路协同自动驾驶的要求。
进一步地,本发明的方法中通过组合惯性导航系统和信号扩展板扩展GPS授时信号(UTC时间和PPS信号),提供给每个激光雷达和车载NTP服务器,使得每个激光雷达和车载NTP服务器都能获取到准确的GPS授时信号。
进一步地,本发明的方法中,车载激光雷达在无法接收到准确可靠的硬件参考时间,且其支持通过以太网口发送指令配置本地时间的方式时,通过测试传输时延并进而根据传输时延和车载NTP服务器的本地时间来确定车端激光雷达的本地时间,可以保持车载激光雷达与时间源的误差。
上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,而可依照说明书的内容予以实施,并且为了让本发明的上述和其它目的、特征和优点能够更明显易懂,以下特举本发明的具体实施方式。
根据下文结合附图对本发明具体实施例的详细描述,本领域技术人员将 会更加明了本发明的上述以及其他目的、优点和特征。
附图说明
后文将参照附图以示例性而非限制性的方式详细描述本发明的一些具体实施例。附图中相同的附图标记标示了相同或类似的部件或部分。本领域技术人员应该理解,这些附图未必是按比例绘制的。附图中:
图1是根据本发明一个实施例的应用于车路协同系统的车辆的车路协同时间同步方法的流程图;
图2是根据本发明一个实施例的应用于车路协同系统的车辆的连接框图;
图3是根据本发明另一个实施例的应用于车路协同系统的车辆的车路协同时间同步方法的流程图;
图4是根据本发明一个实施例的应用于车路协同系统的路侧设备的车路协同时间同步方法的流程图;
图5是根据本发明一个实施例的应用于车路协同系统的路侧设备的连接框图;
图6是客户机和服务器之间NTP授时原理图;
图7是根据本发明一个实施例的车路协同时间同步系统的连接框图。
具体实施方式
下面将参照附图更详细地描述本公开的示例性实施例。虽然附图中显示了本公开的示例性实施例,然而应当理解,可以以各种形式实现本公开而不应被这里阐述的实施例所限制。相反,提供这些实施例是为了能够更透彻地理解本公开,并且能够将本公开的范围完整的传达给本领域的技术人员。
图1是根据本发明一个实施例的应用于车路协同系统的车辆的车路协同时间同步方法的流程图。图2是根据本发明一个实施例的应用于车路协同系统的车辆的连接框图。本实施例的车路协同时间同步方法应用于车路协同系统的车辆,车路协同系统包括车辆和路侧设备。如图2所示,车辆包括车载GPS授时单元10、车载NTP服务器20和多个车载传感器数据处理单元30,车载NTP服务器20分别与车载GPS授时单元10和第一远程时间服务器50相连,车载GPS授时单元10配置为在正常获取到GPS信号时为车载NTP服务器20提供第一GPS授时信号。传输第一GPS授时信号的各个导线长度应该尽量短且相同,以保证由导线传输引起的时延尽量小且相同,从而保证 第一GPS授时信号的准确性,这在车辆端是容易实现的。这里的车载GPS授时单元10能够提供秒脉冲信号(PPS)和UTC时间授时信号,UTC时间授时信号中的时间与PPS信号的上升沿对应,车载NTP服务器20是车辆的一个部署有NTP服务的设备,能够在PPS信号上升沿的时刻把自身的时间更新为UTC时间。可选地,车载传感器数据处理单元30包括毫米波雷达、超声波雷达及底盘传感器等对应的通用处理单元31以及摄像头对应的专用处理单元32。路侧设备包括车路协同NTP服务器70。车路协同NTP服务器70由路侧GPS授时单元60或第二远程时间服务器90授时。路侧GPS授时单元60在正常获取到GPS信号时为车路协同NTP服务器70提供第二GPS授时信号。
如图1所示,本实施例中的车路协同时间同步方法包括:
步骤S100,判断车载NTP服务器20是否接收到第一GPS授时信号,若否,则进入步骤S200。
步骤S200,同时读取车路协同NTP服务器70的NTP层级信息和第一远程时间服务器50的NTP层级信息,并使车载NTP服务器20与两者中层级较低的一者同步。当车路协同NTP服务器70由路侧GPS授时单元60授时时,车路协同NTP服务器70的NTP层级低于第一远程时间服务器50的NTP层级,此时使车载NTP服务器20与车路协同NTP服务器70同步。当车路协同NTP服务器70由第二远程时间服务器90授时时,则还是需要根据第一远程时间服务器50和车路协同NTP服务器70中NTP层级情况来确定车载NTP服务器20的同步对象。由于第一远程时间服务器50和第二远程时间服务器90的层级由其自身与GPS时间节点的远近决定,即离GPS节点越远则层级越高。因此根据实际情况中确定的第一远程时间服务器50和第二远程时间服务器90的层级信息,就可以判断出第一远程时间服务器50和车路协同NTP服务器70的NTP层级大小,例如第一远程时间服务器50的NTP层级为3、第二远程时间服务器90的NTP层级为3,那么由第二远程时间服务器90授时的车路协同NTP服务器70的NTP层级则为4,此时车载NTP服务器20选择NTP层级较低的第一远程时间服务器50进行时间同步。
步骤S300,在同步成功后,向各车载传感器数据处理单元30发送第一同步指令,以使各车载传感器数据处理单元30均通过网络时间协议同步车 载NTP服务器20的时间。
当自动驾驶车辆行驶在隧道等无法接收卫星信号的区域时,车载GPS授时单元10无法正常获取到GPS信号,车载NTP服务器20就无法通过接收第一GPS授时信号而获取准确可靠的UTC时间,车载NTP服务器20的本地时间与UTC时间的误差会随着车载GPS授时单元10无法正常获取到GPS信号的时间的增加而增大。本实施例的车载NTP服务器20能够访问路侧端的车路协同NTP服务器70,且车载NTP服务器20又能与第一远程时间服务器50相连,因此能够从车路协同NTP服务器70和第一远程时间服务器50获取时间,选取其中层级较低的(即时间更准确)一者同步时间。一般地,车路协同NTP服务器70能够通过路侧GPS授时单元60提供第二GPS授权信号,在车载NTP服务器20无法通过车辆的车载GPS授时单元10接收到第一GPS授时信号时,车路协同NTP服务器70能够提供准确的时间,此时车路协同NTP服务器70的NTP层级为1,车载NTP服务器20的NTP层级为2,车载传感器数据处理单元30的NTP层级则为3。当然,车路协同NTP服务器70也可能存在不能提供准确的时间的情况,例如信号中断、设备故障等,此时车载NTP服务器20还可以通过第一远程时间服务器50进行时间同步。因此,本实施例中车端的车载NTP服务器20在未接收到第一GPS授时信号的情况下,可以通过车路协同NTP服务器70和第一远程时间服务器50中层级较低的一者提供时间,来获取到较为准确的时间,保证车载NTP服务器20的本地时间误差不会随时间累积。特别是,车载NTP服务器20无法获取第一GPS授时信号时仍可以从能够获取第二GPS授权信号的车路协同NTP服务器70获取准确的时间,从而可以把整个车端的自动驾驶系统的时间与UTC时间的误差控制在微秒级别,满足车路协同自动驾驶的要求。
当然,在车载NTP服务器20无法获取到准确的时间信号时(即车载NTP服务器20无法从车载GPS授时单元10获取第一GPS授时信号,而车路协同NTP服务器70又没有获取到第二GPS授时信号时),车载NTP服务器20只能从第一远程时间服务器50同步时间或从车路协同NTP服务器70(此时车路协同NTP服务器70从第二远程时间服务器90同步时间)获取时间,虽然车载NTP服务器20的时间误差能够维持,但误差等级不可避免的从微秒级别降低为毫秒级别,在这种情况下,车路协同感知融合引入的 误检测大幅度增加,所以自动驾驶模式从车路协同切换为单车智能。
在一个实施例中,如图1所示,步骤S100之后还包括:
步骤S400,在车载NTP服务器20接收到第一GPS授时信号时使车载NTP服务器20同步GPS硬件参考时间。由此可知,车载NTP服务器20优先地从车辆的车载GPS授时单元10同步时间,从而获取精确的UTC时间。
图3是根据本发明另一个实施例的应用于车路协同系统的车辆的车路协同时间同步方法的流程图。另一个实施例中,如图2所示,车载GPS授时单元10包括相连的组合惯性导航系统11和信号扩展板12,这里的组合惯性导航系统11可以是车辆自带的组合惯性导航系统11且内置有GPS接收模块。信号扩展板12与车载NTP服务器20相连,车辆还包括与信号扩展板12相连的车端激光雷达40,以通过信号扩展板12获取第一GPS授时信号。
如图3所示,本实施例中,车路协同时间同步方法还包括:
步骤S500,判断车端激光雷达40是否接收到第一GPS授时信号,若是进入步骤S600,否则进入步骤S700。
步骤S600,使车端激光雷达40同步GPS硬件参考时间。
步骤S700,使车端激光雷达40同步车载NTP服务器20的时间。
对于现在主流的激光雷达厂家生成的激光雷达,都自带了GPS授时接口,可接收硬件参考时间实现时间同步,本实施例中组合惯性导航系统11通过信号扩展板12扩展GPS授时信号(UTC时间和PPS信号),提供给每个激光雷达和车载NTP服务器20,使得每个激光雷达和车载NTP服务器20都能获取到准确的GPS授时信号。
进一步的一个实施例中,如图3所示,步骤S700包括:
步骤S701,检测车端激光雷达40所在的局域网中的测试节点与车载NTP服务器20通信时的传输时延,测试节点通过交换机与车载NTP服务器20相连。
步骤S702,根据传输时延和车载NTP服务器20的本地时间确定车端激光雷达40的本地时间。
更进一步的,步骤S701包括:
从车载NTP服务器20于第一发送时刻向测试节点传输携带第一发送时刻的第一数据包,记录测试节点接收第一数据包的第一接收时刻,计算第一接收时刻与第一发送时刻的差值A2B;
从测试节点于第二发送时刻向车载NTP服务器20传输携带第二发送时刻的第二数据包,记录车载NTP服务器20接收第二数据包的第二接收时刻,计算第二接收时刻与第二发送时刻的差值B2A;
根据下式(1)计算得到时钟偏移C:
C=(A2B-B2A)/2       (1)
根据下式(2)计算得到传输时延ΔT′:
ΔT′=A2B–C       (2)
步骤S702包括:从车载NTP服务器20于第三时刻向车载激光雷达发送第二同步指令,第二同步指令携带传输时延;在车载激光雷达接收到第二同步指令时将车载激光雷达的本地时间设置为第三时刻与传输时延的加和,即
T sync=T+ΔT′      (3)
其中,T sync为车载激光雷达的本地时间,T为第三时刻。
在车载通信网络结构不发生变化的前提下,可以认为车载激光雷达的传输时延与测试节点的传输时延相同,因此本实施例中将计算的测试节点的传输时延作为车载激光雷达的传输时延。由于车载激光雷达的传输协议与车内网不同,因此无法直接通过NTP协议同步车载NTP服务器20的时间。本实施例的车载激光雷达在无法接收到准确可靠的硬件参考时间,且其支持通过以太网口发送指令配置本地时间的方式时,通过上述方法来保持车载激光雷达与时间源的误差。车载局域网内简单的指令传输时间一般在微秒级别,通过上述方法可以在缺失卫星信号时,将车载激光雷达的本地时间与UTC时间误差控制在微秒内。
图4是根据本发明一个实施例的应用于车路协同系统的路侧设备的车路协同时间同步方法的流程图。图5是根据本发明一个实施例的应用于车路协同系统的路侧设备的连接框图。一个实施例中,如图5所示,路侧设备包括路侧GPS授时单元60、车路协同NTP服务器70和多个路侧传感器数据处理单元80,每一路侧传感器数据处理单元80均与车路协同NTP服务器70相连,车路协同NTP服务器70由路侧GPS授时单元60提供第二GPS授权信号或由第二远程时间服务器90授时。可选地,多个路侧传感器数据处理单元80包括布置在路侧的多个摄像头和毫米波雷达对应的通用处理单元81以及布置在路侧的多个激光雷达对应的专用处理单元82。车路协同系统还包 括车辆,车辆包括车载GPS授时单元10和车载NTP服务器20,车载GPS授时单元10配置为在正常获取到GPS信号时为车载NTP服务器20提供第一GPS授时信号,车载NTP服务器20与车路协同NTP服务器70相连。
如图4所示,本实施例中,应用于车路协同系统的路侧设备的车路协同时间同步方法包括:
步骤S110,判断车路协同NTP服务器70是否接收到第二GPS授时信号。若是进入步骤S120;否则进入步骤S130。
步骤S120,使车路协同NTP服务器70同步GPS硬件参考时间。接着执行步骤S140。
步骤S130,使车路协同NTP服务器70同步第二远程时间服务器90的时间。
步骤S140,接收车载NTP服务器20发送的同步请求,并响应同步请求为车载NTP服务器20提供参考时间以供同步,其中,同步请求由车载NTP服务器20在未接收到第一GPS授时信号且车路协同NTP服务器70的NTP层级低于第一远程时间服务器50的NTP层级时发出。当车路协同NTP服务器70由路侧GPS授时单元60授时时,车路协同NTP服务器70的NTP层级低于第一远程时间服务器50的NTP层级。当车路协同NTP服务器70由第二远程时间服务器90授时时,则需要根据第一远程时间服务器50和第二远程时间服务器90的NTP层级大小来确定第一远程时间服务器50和车路协同NTP服务器70中NTP层级大小,具体大小的判断在前文步骤S200处已进行详述,在此不再赘述。
步骤S150,向每一路侧传感器数据处理单元80发送第三同步指令,以使各路侧传感器数据处理单元80均通过网络时间协议同步车路协同NTP服务器70的时间。这里步骤S140和步骤S150的执行顺序不分先后。
本实施例中的车路协同NTP服务器70优先通过路侧GPS授时单元60获取时间,在无法通过路侧GPS授时单元60获取时间时通过第二远程时间服务器90获取时间。由于路侧GPS授时单元60通常处于开阔区域,因此很大概率上能够获得准确的卫星授时,保证车路协同NTP服务器70中时间的高精度。并且,通过路侧GPS授时单元60授时的车路协同NTP服务器70还能为无法通过车载GPS授时单元10进行授时的车载NTP服务器20提供时间,从而保证车端和路端均能获得准确的时间,以保证车端和路端的时 钟的精确同步,以满足自动驾驶要求。
需要说明的是,车载激光雷达由于可以在以太网中自由设置测试节点,因此可以通过以太网配置时间(步骤S701和步骤S702),而路侧设备中的激光雷达通常由第三方提供,因此不能自由设置测试节点,需要设置激光雷达的专用数据处理器同步车路协同NTP服务器70。
图6是客户机和服务器之间NTP授时原理图。如图6所示,客户机(client)首先向服务器(server)发送一个NTP报文,其中包含了该报文离开客户机的时间戳T1,当服务器接收到该报文时,依次填入报文到达的时间戳T2、报文离开的时间戳T3,然后立即把报文返回给客户机。客户机在接收到响应报文时,记录报文返回的时间戳T4。客户机用上述4个时间参数就能够计算出2个关键参数:NTP报文的往返延迟d和客户机与服务器之间的时钟偏差t。客户机使用时钟偏差来调整本地时钟,以使其时间与服务器时间一致。
现根据已经获得的T1、T2、T3、T4,希望求得t以调整客户方时钟:
Figure PCTCN2021092715-appb-000003
假设NTP请求和回复报文传送延时相等,即d1=d2,代入式(4)则可解得:
Figure PCTCN2021092715-appb-000004
根据式(4),t也可表示为
t=(T2-T1)+d1=(T2-T1)+d/2       (6)
可以看出,t、d只与T2、T1差值及T3、T4差值相关,而与T2、T3差值无关,即最终的结果与服务器处理请求所需的时间无关。因此,客户端即可通过T1、T2、T3、T4计算出时差t去调整本地时钟。
根据上述原理可以实现本发明中需要进行时间同步的任意两个设备之间的时间同步。
如图2所示,在本实施例的应用于车路协同系统的车辆的第一车路协同时间同步装置100包括车载GPS授时单元10、车载NTP服务器20和多个 车载传感器数据处理单元30、存储器和处理器,车载NTP服务器20分别与车载GPS授时单元10和第一远程时间服务器50相连。进一步地,车载GPS授时单元10包括相连的组合惯性导航系统11和信号扩展板12,信号扩展板12与车载NTP服务器20相连。第一车路协同时间同步装置100还包括与信号扩展板12相连的车端激光雷达40,存储器内存储有控制程序,控制程序被处理器执行时用于实现上述应用于车路协同系统的车辆的车路协同时间同步方法。处理器可以是一个中央处理单元(central processing unit,简称CPU),或者为数字处理单元等等。处理器通过通信接口收发数据。存储器用于存储处理器执行的程序。存储器是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何介质,也可以是多个存储器的组合。上述计算程序可以从计算机可读存储介质下载到相应计算/处理设备或者经由网络(例如因特网、局域网、广域网和/或无线网络)下载到计算机或外部存储设备。
如图5所示,本实施例的应用于车路协同系统的路侧设备的第二车路协同时间同步装置200包括路侧GPS授时单元60、车路协同NTP服务器70、多个路侧传感器数据处理单元80、存储器和处理器。每一路侧传感器数据处理单元80均与车路协同NTP服务器70相连,车路协同NTP服务器70由路侧GPS授时单元60提供第二GPS授权信号或由第二远程时间服务器90授时,存储器内存储有控制程序,控制程序被处理器执行时用于实现前文任意实施例或实施例组合的应用于路侧设备的车路协同时间同步方法。处理器可以是一个中央处理单元(central processing unit,简称CPU),或者为数字处理单元等等。处理器通过通信接口收发数据。存储器用于存储处理器执行的程序。存储器是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何介质,也可以是多个存储器的组合。上述计算程序可以从计算机可读存储介质下载到相应计算/处理设备或者经由网络(例如因特网、局域网、广域网和/或无线网络)下载到计算机或外部存储设备。
图7是根据本发明一个实施例的车路协同时间同步系统300的连接框图。如图7所示,本实施例中,车路协同时间同步系统300包括应用于车路协同系统的车辆的第一车路协同时间同步装置100和应用于车路协同系统的路侧设备的第二车路协同时间同步装置200。
本实施例中应用于车路协同系统的车辆的第一车路协同时间同步装置 100的本地时间和应用于车路协同系统的路侧设备的第二车路协同时间同步装置200的本地时间在车端或路侧端能够获取到正常的GPS信号时都能与UTC时间同步,且误差在正常工况下能控制在微秒级,并且有配套的方案可以确保在自动驾驶车辆在隧道等无GPS信号的特殊路段也能维持车端感知系统的本地时间,避免其误差不断累积扩大。该方案的部署实施可以解决目前困扰车路协同感知融合的基本问题,为推进车路协同感知融合打下坚实基础。
至此,本领域技术人员应认识到,虽然本文已详尽示出和描述了本发明的示例性实施例,但是,在不脱离本发明精神和范围的情况下,仍可根据本发明公开的内容直接确定或推导出符合本发明原理的许多其他变型或修改。因此,本发明的范围应被理解和认定为覆盖了所有这些其他变型或修改。

Claims (14)

  1. 一种车路协同时间同步方法,应用于车路协同系统的车辆,所述车辆包括车载GPS授时单元、车载NTP服务器和多个车载传感器数据处理单元,所述车载NTP服务器分别与所述车载GPS授时单元和第一远程时间服务器相连,所述车载GPS授时单元配置为在正常获取到GPS信号时为所述车载NTP服务器提供第一GPS授时信号;所述车路协同系统还包括路侧设备,所述路侧设备包括车路协同NTP服务器;
    所述车路协同时间同步方法包括:
    判断所述车载NTP服务器是否接收到所述第一GPS授时信号;
    在所述车载NTP服务器未接收到所述第一GPS授时信号时同时读取所述车路协同NTP服务器的NTP层级信息和所述第一远程时间服务器的NTP层级信息,并使所述车载NTP服务器与两者中层级较低的一者同步;
    在同步成功后,向各所述车载传感器数据处理单元发送第一同步指令,以使各所述车载传感器数据处理单元均通过网络时间协议同步所述车载NTP服务器的时间。
  2. 根据权利要求1所述的车路协同时间同步方法,其中,判断所述车载NTP服务器是否接收到所述第一GPS授时信号的步骤之后还包括:
    在所述车载NTP服务器接收到所述第一GPS授时信号时使所述车载NTP服务器同步GPS硬件参考时间。
  3. 根据权利要求1或2所述的车路协同时间同步方法,其中,所述车载GPS授时单元包括相连的组合惯性导航系统和信号扩展板,所述信号扩展板与所述车载NTP服务器相连,所述车辆还包括与所述信号扩展板相连的车端激光雷达,以通过所述信号扩展板获取所述第一GPS授时信号;
    所述车路协同时间同步方法还包括:
    判断所述车端激光雷达是否接收到所述第一GPS授时信号;
    在所述车端激光雷达接收到所述第一GPS授时信号时使所述车端激光雷达同步GPS硬件参考时间。
  4. 根据权利要求3所述的车路协同时间同步方法,其中,判断所述车端 激光雷达是否接收到所述第一GPS授时信号的步骤之后还包括:
    在所述车端激光雷达未接收到所述第一GPS授时信号时使所述车端激光雷达同步所述车载NTP服务器的时间。
  5. 根据权利要求4所述的车路协同时间同步方法,其中,在所述车端激光雷达未接收到所述第一GPS授时信号时使所述车端激光雷达同步所述车载NTP服务器的时间的步骤包括:
    检测所述车端激光雷达所在的局域网中的测试节点与所述车载NTP服务器通信时的传输时延,所述测试节点通过交换机与所述车载NTP服务器相连;
    根据所述传输时延和所述车载NTP服务器的本地时间确定所述车端激光雷达的本地时间。
  6. 根据权利要求5所述的车路协同时间同步方法,其中,
    检测所述车端激光雷达所在的局域网中的测试节点与所述车载NTP服务器通信时的传输时延的步骤包括:
    从所述车载NTP服务器于第一发送时刻向所述测试节点传输携带所述第一发送时刻的第一数据包,记录所述测试节点接收所述第一数据包的第一接收时刻,计算所述第一接收时刻与所述第一发送时刻的差值A2B;
    从所述测试节点于第二发送时刻向所述车载NTP服务器传输携带所述第二发送时刻的第二数据包,记录所述车载NTP服务器接收所述第二数据包的第二接收时刻,计算所述第二接收时刻与所述第二发送时刻的差值B2A;
    根据下式(1)计算得到时钟偏移C:
    C=(A2B-B2A)/2  (1);
    根据下式(2)计算得到所述传输时延ΔT′:
    ΔT′=A2B–C  (2)。
  7. 根据权利要求5所述的车路协同时间同步方法,其中,
    根据所述传输时延和所述车载NTP服务器的本地时间确定所述车端激光雷达的本地时间的步骤包括:
    从所述车载NTP服务器于第三时刻向所述车载激光雷达发送第二同步 指令,所述第二同步指令携带所述传输时延;
    在所述车载激光雷达接收到所述第二同步指令时将所述车载激光雷达的本地时间设置为所述第三时刻与所述传输时延的加和。
  8. 根据权利要求1所述的车路协同时间同步方法,其中,所述车路协同NTP服务器由路侧GPS授时单元或所述第二远程时间服务器授时;
    当所述车路协同NTP服务器由所述路侧GPS授时单元授时时,所述车路协同NTP服务器的NTP层级低于所述第一远程时间服务器的NTP层级;
    使所述车载NTP服务器与两者中层级较低的一者同步的步骤包括:
    在所述车路协同NTP服务器由所述路侧GPS授时单元授时时,使所述车载NTP服务器与所述车路协同NTP服务器同步。
  9. 一种车路协同时间同步方法,应用于车路协同系统的路侧设备,所述路侧设备包括路侧GPS授时单元、车路协同NTP服务器和多个路侧传感器数据处理单元,每一所述路侧传感器数据处理单元均与所述车路协同NTP服务器相连,所述车路协同NTP服务器由所述路侧GPS授时单元提供第二GPS授权信号或由第二远程时间服务器授时;所述车路协同系统还包括车辆,所述车辆包括车载GPS授时单元和车载NTP服务器,所述车载GPS授时单元配置为在正常获取到GPS信号时为所述车载NTP服务器提供第一GPS授时信号,所述车载NTP服务器与所述车路协同NTP服务器相连;
    所述车路协同时间同步方法包括:
    判断所述车路协同NTP服务器是否接收到所述第二GPS授时信号;
    在所述车路协同NTP服务器接收到所述第二GPS授时信号时使所述车路协同NTP服务器同步GPS硬件参考时间;
    接收所述车载NTP服务器发送的同步请求,并响应所述同步请求为所述车载NTP服务器提供参考时间以供同步,其中,所述同步请求由所述车载NTP服务器在未接收到所述第一GPS授时信号且所述车路协同NTP服务器的NTP层级低于所述第一远程时间服务器的NTP层级时发出;
    向每一所述路侧传感器数据处理单元发送第三同步指令,以使各所述路侧传感器数据处理单元均通过网络时间协议同步所述车路协同NTP服务器的时间。
  10. 根据权利要求9所述的车路协同时间同步方法,其中,
    当所述车路协同NTP服务器由所述路侧GPS授时单元授时时,所述车路协同NTP服务器的NTP层级低于所述第一远程时间服务器的NTP层级。
  11. 根据权利要求9所述的车路协同时间同步方法,在判断所述车路协同NTP服务器是否接收到所述第二GPS授时信号之后,还包括:
    在所述车路协同NTP服务器未接收到所述第二GPS授时信号时使所述车路协同NTP服务器同步所述第二远程时间服务器的时间。
  12. 一种第一车路协同时间同步装置,应用于车路协同系统的车辆,所述车路协同时间同步装置包括车载GPS授时单元、车载NTP服务器和多个车载传感器数据处理单元、存储器和处理器,所述车载NTP服务器分别与所述车载GPS授时单元和第一远程时间服务器相连,所述存储器内存储有控制程序,所述控制程序被所述处理器执行时用于实现根据权利要求1-8中任一项所述的车路协同时间同步方法。
  13. 一种第二车路协同时间同步装置,应用于车路协同系统的路侧设备,所述车路协同时间同步装置包括路侧GPS授时单元、车路协同NTP服务器、多个路侧传感器数据处理单元、存储器和处理器,每一所述路侧传感器数据处理单元均与所述车路协同NTP服务器相连,所述车路协同NTP服务器由所述路侧GPS授时单元提供第二GPS授权信号或由第二远程时间服务器授时,所述存储器内存储有控制程序,所述控制程序被所述处理器执行时用于实现根据权利要求9-11中任一项所述的车路协同时间同步方法。
  14. 一种车路协同时间同步系统,包括权利要求12所述的第一车路协同时间同步装置和权利要求13所述的第二车路协同时间同步装置。
PCT/CN2021/092715 2021-05-10 2021-05-10 车路协同时间同步方法、车路协同时间同步装置及系统 WO2022236560A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2021/092715 WO2022236560A1 (zh) 2021-05-10 2021-05-10 车路协同时间同步方法、车路协同时间同步装置及系统
CN202180091821.9A CN116830487A (zh) 2021-05-10 2021-05-10 车路协同时间同步方法、车路协同时间同步装置及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/092715 WO2022236560A1 (zh) 2021-05-10 2021-05-10 车路协同时间同步方法、车路协同时间同步装置及系统

Publications (1)

Publication Number Publication Date
WO2022236560A1 true WO2022236560A1 (zh) 2022-11-17

Family

ID=84028673

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/092715 WO2022236560A1 (zh) 2021-05-10 2021-05-10 车路协同时间同步方法、车路协同时间同步装置及系统

Country Status (2)

Country Link
CN (1) CN116830487A (zh)
WO (1) WO2022236560A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116032412A (zh) * 2023-03-28 2023-04-28 之江实验室 多相机跨平台时间同步方法、装置、系统及电子设备
CN117118559A (zh) * 2023-10-25 2023-11-24 天翼交通科技有限公司 一种车路协同系统时钟同步的方法、装置、设备和介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108365906A (zh) * 2018-02-12 2018-08-03 天津天地伟业信息系统集成有限公司 通过gps、北斗和ntp实现设备自动校准时间的方法
JP2018160743A (ja) * 2017-03-22 2018-10-11 ソフトバンク株式会社 通信システム、基地局および時刻同期方法
CN109257813A (zh) * 2017-07-14 2019-01-22 西安绿行户外运动有限公司 第三代移动通讯系统中时间同步的方法
WO2019201438A1 (en) * 2018-04-18 2019-10-24 Huawei Technologies Duesseldorf Gmbh Techniques for network-based time synchronization for ue sidelink and/or uplink communication
US20200044760A1 (en) * 2016-10-05 2020-02-06 Convida Wireless, Llc Service layer time synchronization
CN112622928A (zh) * 2020-12-11 2021-04-09 上海商汤临港智能科技有限公司 自动驾驶系统及车辆

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200044760A1 (en) * 2016-10-05 2020-02-06 Convida Wireless, Llc Service layer time synchronization
JP2018160743A (ja) * 2017-03-22 2018-10-11 ソフトバンク株式会社 通信システム、基地局および時刻同期方法
CN109257813A (zh) * 2017-07-14 2019-01-22 西安绿行户外运动有限公司 第三代移动通讯系统中时间同步的方法
CN108365906A (zh) * 2018-02-12 2018-08-03 天津天地伟业信息系统集成有限公司 通过gps、北斗和ntp实现设备自动校准时间的方法
WO2019201438A1 (en) * 2018-04-18 2019-10-24 Huawei Technologies Duesseldorf Gmbh Techniques for network-based time synchronization for ue sidelink and/or uplink communication
CN112622928A (zh) * 2020-12-11 2021-04-09 上海商汤临港智能科技有限公司 自动驾驶系统及车辆

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116032412A (zh) * 2023-03-28 2023-04-28 之江实验室 多相机跨平台时间同步方法、装置、系统及电子设备
CN117118559A (zh) * 2023-10-25 2023-11-24 天翼交通科技有限公司 一种车路协同系统时钟同步的方法、装置、设备和介质
CN117118559B (zh) * 2023-10-25 2024-02-27 天翼交通科技有限公司 一种车路协同系统时钟同步的方法、装置、设备和介质

Also Published As

Publication number Publication date
CN116830487A (zh) 2023-09-29

Similar Documents

Publication Publication Date Title
WO2022236560A1 (zh) 车路协同时间同步方法、车路协同时间同步装置及系统
US11262459B2 (en) Enhanced object position detection
US20210006344A1 (en) Method, system, and device for seamless fault tolerant clock synchronization in a vehicle communication system
CN110880236B (zh) 路况信息处理方法、装置及系统
US11269077B2 (en) Flexible test board to improve sensor i/o coverage for autonomous driving platform
US10996681B2 (en) Time source recovery system for an autonomous driving vehicle
CN111788851B (zh) 车辆和用于控制车辆的方法
CN110620632B (zh) 一种时间同步方法及装置
US11488389B2 (en) Verifying timing of sensors used in autonomous driving vehicles
US20050020275A1 (en) Method, system and computer program product for positioning and synchronizing wireless communications nodes
CN103797735A (zh) 用于使车辆的车载电网中的网络参与者同步的方法和装置
CN106576214B (zh) 在没有gnss信号的情况下的时间戳产生
US20200209405A1 (en) Fpga based data acquisition card, data acquisition system and data acquisition method
CN107710753A (zh) 分散式同步的多传感器系统
US20150185021A1 (en) Method for measuring position of vehicle using cloud computing
JP2020123949A (ja) ビームアライメントフィードバックに基づくミリ波無線機の修正
CN112671497B (zh) 时间同步方法、装置和电子设备
JP2020079073A (ja) 自動運転車両用のタイムソースランキングシステム
US20210354719A1 (en) Synchronizing sensors of autonomous driving vehicles
CN114614934A (zh) 一种时间同步触发装置及方法
CN105101393A (zh) 无线同步方法及无线同步系统
CN113945956A (zh) 车载定位系统以及包括其的矿山车辆
CN106488406A (zh) 通信装置、通信系统与其相关的通信方法
CN113992469A (zh) 数据融合方法、装置、电子设备和计算机可读介质
US11662745B2 (en) Time determination of an inertial navigation system in autonomous driving systems

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21941136

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180091821.9

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE