WO2022234823A1 - Resin material and multilayer printed wiring board - Google Patents

Resin material and multilayer printed wiring board Download PDF

Info

Publication number
WO2022234823A1
WO2022234823A1 PCT/JP2022/019363 JP2022019363W WO2022234823A1 WO 2022234823 A1 WO2022234823 A1 WO 2022234823A1 JP 2022019363 W JP2022019363 W JP 2022019363W WO 2022234823 A1 WO2022234823 A1 WO 2022234823A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin material
resin
curing agent
weight
less
Prior art date
Application number
PCT/JP2022/019363
Other languages
French (fr)
Japanese (ja)
Inventor
久美子 西中
達史 林
英寛 出口
悠太 大當
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to CN202280032844.7A priority Critical patent/CN117255820A/en
Priority to JP2022538329A priority patent/JPWO2022234823A1/ja
Priority to KR1020237027212A priority patent/KR20240004223A/en
Publication of WO2022234823A1 publication Critical patent/WO2022234823A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/44Amides
    • C08G59/46Amides together with other curing agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/62Alcohols or phenols
    • C08G59/621Phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2363/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/005Additives being defined by their particle size in general

Definitions

  • the present invention relates to resin materials containing epoxy compounds.
  • the present invention also relates to a multilayer printed wiring board using the above resin material.
  • a resin material is used to form an insulating layer for insulation between internal layers and to form an insulating layer positioned on a surface layer.
  • Wiring which is generally made of metal, is laminated on the surface of the insulating layer.
  • a resin film obtained by forming the resin material into a film may be used.
  • the above resin materials and resin films are used as insulating materials for multilayer printed wiring boards including build-up films.
  • Patent Document 1 discloses a resin composition containing (A) an epoxy resin, (B) a polymer compound, (C) a fluorine atom-containing alkoxysilane compound, and (D) an inorganic filler.
  • the polymer compound is selected from a polybutadiene structure, a polysiloxane structure, a poly(meth)acrylate structure, a polyalkylene structure, a polyalkyleneoxy structure, a polyisoprene structure, a polyisobutylene structure, and a polycarbonate structure. It is a polymer compound having one or more structures that are
  • Patent Document 2 discloses a resin composition containing (A) a resin having an aliphatic polycarbonate skeleton and (B) an inorganic and/or organic filler.
  • substrates that require a low dielectric loss tangent are becoming larger and more multilayered, and the weight of the substrate is increasing. Along with this, chipping of the cured material layer at the edges of the substrate tends to occur during handling and transportation of the substrate.
  • Patent Documents 1 and 2 describe a resin material containing a resin having a polycarbonate structure.
  • the resins having a polycarbonate structure described in Patent Documents 1 and 2 are not curing agents.
  • the dielectric loss tangent of the cured product can be reduced to some extent.
  • the desmear property may be lowered, or chipping may occur in the cured material layer at the edges of the substrate.
  • the objects of the present invention are 1) to reduce the dielectric loss tangent of the cured product, 2) to effectively remove smear by desmear treatment, 3) to increase the plating peel strength, and 4) to provide a substrate. It is an object of the present invention to provide a resin material capable of making it difficult for chipping to occur in a cured material layer at the end. Another object of the present invention is to provide a multilayer printed wiring board using the resin material.
  • an epoxy compound, a filler, and a curing agent are included, wherein the filler has an average particle size of 2.0 ⁇ m or less, and the curing agent has a carbonate structure and an epoxy group.
  • a resin material is provided that includes a first curing agent having reactive functional groups.
  • the content of the filler is 50% by weight or more and 90% by weight or less in 100% by weight of the components excluding the solvent in the resin material.
  • the first curing agent has a molecular weight of 20,000 or less.
  • the curing agent contains a second curing agent that does not have a carbonate structure.
  • the second curing agent contains an active ester compound.
  • the resin material contains polyimide resin.
  • the resin material is a resin film.
  • the resin material according to the present invention is suitably used for forming insulating layers in multilayer printed wiring boards.
  • the present invention comprises a circuit board, a plurality of insulating layers disposed on a surface of the circuit board, and a metal layer disposed between the plurality of insulating layers, wherein A multilayer printed wiring board is provided in which at least one layer is a cured product of the resin material described above.
  • a resin material according to the present invention includes an epoxy compound, a filler, and a curing agent, wherein the filler has an average particle size of 2.0 ⁇ m or less, and the curing agent has a carbonate structure and reacts with an epoxy group.
  • a first curing agent with possible functional groups is included. Since the resin material according to the present invention has the above configuration, 1) the dielectric loss tangent of the cured product can be lowered, 2) smear can be effectively removed by desmear treatment, and 3). The plating peel strength can be increased, and 4) chipping of the cured product layer at the edge of the substrate can be prevented.
  • FIG. 1 is a cross-sectional view schematically showing a multilayer printed wiring board using a resin material according to one embodiment of the present invention.
  • a resin material according to the present invention includes an epoxy compound, a filler, and a curing agent, wherein the filler has an average particle size of 2.0 ⁇ m or less, and the curing agent has a carbonate structure and reacts with an epoxy group.
  • a first curing agent with possible functional groups is included.
  • the resin material according to the present invention has the above configuration, 1) the dielectric loss tangent of the cured product can be lowered, 2) smear can be effectively removed by desmear treatment, and 3). All of the effects of 1)-4) can be exhibited, namely that the peel strength of the plating can be increased and 4) chipping of the cured product layer at the edge of the substrate can be prevented.
  • the curing agent contains the first curing agent having a carbonate structure and a functional group capable of reacting with an epoxy group.
  • the carbonate structure inside is less likely to undergo phase separation in the cured product. Therefore, since a uniform cured product can be obtained, chipping of the cured product layer at the edge of the substrate can be prevented.
  • the curing agent contains the first curing agent, uniform cross-linking of the first curing agent and the epoxy compound can be achieved after the formation of the through-holes. The resulting smear can be uniformly etched by the desmear treatment, and the smear can be effectively removed.
  • the curing agent contains the first curing agent, it is possible to prevent smear from being partially excessively etched due to phase separation of the carbonate structure. Peel strength can be increased.
  • the filler has an average particle size of 2.0 ⁇ m or less, the first curing agent and the epoxy compound are uniformly crosslinked even in the vicinity of the filler. It is possible to make it difficult for chipping to occur in the cured product layer of the part. As a result, smear can be removed more efficiently.
  • the resin material according to the present invention may be a resin composition or a resin film.
  • the resin composition has fluidity.
  • the resin composition may be in the form of a paste.
  • the pasty form includes a liquid form.
  • the resin material according to the present invention is preferably a resin film because of its excellent handleability.
  • the resin material according to the present invention is preferably a thermosetting resin material.
  • the resin film is preferably a thermosetting resin film.
  • the resin material includes an epoxy compound.
  • Conventionally known epoxy compounds can be used as the epoxy compound.
  • the epoxy compound is an organic compound having at least one epoxy group. Only one type of the epoxy compound may be used, or two or more types may be used in combination.
  • epoxy compounds examples include bisphenol A type epoxy compounds, bisphenol F type epoxy compounds, bisphenol S type epoxy compounds, phenol novolac type epoxy compounds, biphenyl type epoxy compounds, biphenyl novolac type epoxy compounds, biphenol type epoxy compounds, and naphthalene type epoxy compounds.
  • fluorene type epoxy compound, phenol aralkyl type epoxy compound, naphthol aralkyl type epoxy compound, dicyclopentadiene type epoxy compound, anthracene type epoxy compound, epoxy compound having adamantane skeleton, epoxy compound having tricyclodecane skeleton, naphthylene ether type Epoxy compounds, epoxy compounds having a triazine core in the skeleton, and the like are included.
  • the epoxy compound may be a glycidyl ether compound.
  • the glycidyl ether compound is a compound having at least one glycidyl ether group.
  • the epoxy compound preferably contains an epoxy compound having an aromatic skeleton, a naphthalene skeleton or More preferably, it contains an epoxy compound having a phenyl skeleton.
  • the epoxy compound preferably contains an epoxy compound that is liquid at 25°C and an epoxy compound that is solid at 25°C.
  • the viscosity at 25°C of the epoxy compound that is liquid at 25°C is preferably 1000 mPa ⁇ s or less, more preferably 500 mPa ⁇ s or less.
  • the viscosity of the epoxy compound can be measured using, for example, a dynamic viscoelasticity measuring device ("VAR-100" manufactured by Rheological Instruments).
  • the molecular weight of the epoxy compound is preferably 1000 or less. In this case, even if the filler content is 50% by weight or more in 100% by weight of the components excluding the solvent in the resin material, a resin material with high fluidity can be obtained when forming the insulating layer. Therefore, when an uncured resin material or a B-stage resin material is laminated on a circuit board, the filler can be uniformly present. "100% by weight of the components excluding the solvent in the resin material” means "100% by weight of the components excluding the solvent in the resin material" when the resin material contains the solvent, and when the resin material does not contain the solvent means "100% by weight of resin material".
  • the molecular weight of the epoxy compound means the molecular weight that can be calculated from the structural formula when the epoxy compound is not a polymer and when the structural formula of the epoxy compound can be specified. Moreover, when the said epoxy compound is a polymer, it means the weight average molecular weight in terms of polystyrene measured by gel permeation chromatography (GPC).
  • the content of the epoxy compound is preferably 5% by weight or more, more preferably 10% by weight or more, preferably 25% by weight or less, and more preferably 20% by weight in 100% by weight of the components excluding the solvent in the resin material. It is below. When the content of the epoxy compound is not less than the above lower limit and not more than the above upper limit, the above effects 1) to 4) can be exhibited more effectively.
  • the content of the epoxy compound is preferably 15% by weight or more, more preferably 25% by weight or more, still more preferably 35% by weight or more, and preferably 60% by weight in 100% by weight of the components excluding the filler and solvent in the resin material. % by weight or less.
  • the content of the epoxy compound is not less than the above lower limit and not more than the above upper limit, the above effects 1) to 4) can be exhibited even more effectively.
  • the resin material contains a curing agent.
  • the curing agent includes a first curing agent having a carbonate structure and a functional group capable of reacting with an epoxy group.
  • the curing agent may or may not contain a second curing agent that does not have a carbonate structure.
  • the first curing agent is a compound (curing agent) having a carbonate structure and a functional group capable of reacting with an epoxy group.
  • the first curing agent has a functional group capable of reacting with an epoxy group.
  • the first curing agent has a functional group capable of reacting with the epoxy group of the epoxy compound. Only one kind of the first curing agent may be used, or two or more kinds thereof may be used in combination.
  • Examples of functional groups that can react with the epoxy groups include amino groups, hydroxyl groups, active ester groups, cyanate ester groups, carbodiimide groups, maleimide groups, and benzoxazine groups.
  • the functional group capable of reacting with the epoxy group is preferably a maleimide group, a hydroxyl group, or an active ester group.
  • the first curing agent preferably has an aliphatic ring. From the viewpoint of enhancing the heat resistance of the cured product, the first curing agent preferably has an aromatic ring. From the viewpoint of further lowering the dielectric loss tangent of the cured product and increasing the heat resistance of the cured product, the first curing agent preferably has an aliphatic ring and an aromatic ring.
  • the first curing agent preferably has a phenol structure or an active ester structure.
  • the active ester structure is, for example, a structure represented by the following formula (10A).
  • R1 represents an aliphatic chain, an aliphatic ring or an aromatic ring
  • R2 represents an aromatic ring
  • the first curing agent preferably contains a phenol carbonate compound (a compound having a carbonate structure and a phenol structure), and a phenol carbonate compound ( A compound having a carbonate structure and a phenol structure) is more preferred.
  • a phenol carbonate compound a compound having a carbonate structure and a phenol structure
  • the effect of 3) above can be exhibited more effectively.
  • the first curing agent is preferably a compound represented by the following formula (3).
  • X1 and X2 each represent a hydroxyl group or an active ester group
  • R1 represents an aliphatic ring
  • R2 and R3 each represent a skeleton derived from a bisphenol compound
  • n is 1 or more.
  • X1 and X2 may be the same or different.
  • R2 and R3 may be the same or different.
  • n may represent an integer of 500 or less, an integer of 200 or less, an integer of 100 or less, or an integer of 50 or less.
  • n preferably represents an integer such that the molecular weight of the first curing agent is 2000 or more.
  • n preferably represents an integer such that the molecular weight of the first curing agent is 20,000 or less.
  • the first curing agent should be an active ester carbonate compound (a carbonate structure and an active compound having an ester structure).
  • the first curing agent is an active ester carbonate compound (a carbonate structure and an active compound having an ester structure).
  • the molecular weight of the first curing agent is preferably 2000 or more, more preferably 3000 or more, preferably 20000 or less, more preferably 15000 or less.
  • the above effects 1) to 4) can be exhibited more effectively.
  • the molecular weight of the first curing agent means the molecular weight that can be calculated from the structural formula.
  • curing agent is a polymer, it means the weight average molecular weight in polystyrene conversion measured by the gel permeation chromatography (GPC).
  • the glass transition temperature of the first curing agent is preferably 30°C or higher, more preferably 50°C or higher, and preferably 150°C or lower, more preferably 120°C or lower.
  • the plating peel strength can be further increased.
  • the glass transition temperature of the first curing agent is equal to or lower than the upper limit, the curability of the resin material can be further improved, and the dielectric loss tangent of the cured product can be further improved.
  • the content of the first curing agent in 100% by weight of the curing agent is preferably 10% by weight or more, more preferably 20% by weight or more, preferably 60% by weight or less, and more preferably 55% by weight or less. .
  • the content of the first curing agent is at least the above lower limit, the above effects 1) and 2) can be exhibited more effectively.
  • the content of the first curing agent is equal to or less than the upper limit, the above effects 3) and 4) can be exhibited more effectively.
  • the content of the first curing agent with respect to 100 parts by weight of the epoxy compound is preferably 10 parts by weight or more, more preferably 20 parts by weight or more, preferably 70 parts by weight or less, and more preferably 60 parts by weight or less.
  • the content of the first curing agent is equal to or more than the lower limit and equal to or less than the upper limit, the above effects 1) to 4) can be exhibited more effectively.
  • the content of the first curing agent in 100% by weight of the components excluding the solvent in the resin material is preferably 0.5% by weight or more, more preferably 1% by weight or more, and preferably 20% by weight or less. Preferably, it is 15% by weight or less.
  • the content of the first curing agent is not less than the lower limit and not more than the upper limit, the above effects 1) to 4) can be exhibited more effectively.
  • the content of the first curing agent is preferably 2.5% by weight or more, more preferably 5% by weight or more, and preferably 35% by weight or less in 100% by weight of the components excluding the filler and solvent in the resin material. , more preferably 30% by weight or less.
  • the content of the first curing agent is not less than the lower limit and not more than the upper limit, the above effects 1) to 4) can be exhibited more effectively.
  • "100% by weight of components excluding fillers and solvents in the resin material” means “100% by weight of components excluding fillers and solvents in the resin material” when the resin material contains a solvent. When not containing, it means “100% by weight of the components excluding the filler in the resin material”.
  • the second curing agent is a compound (curing agent) that does not have a carbonate structure.
  • the curing agent preferably contains the second curing agent. Only one kind of the second curing agent may be used, or two or more kinds thereof may be used in combination.
  • the second curing agent preferably has a functional group capable of reacting with an epoxy group.
  • the second curing agent preferably has a functional group capable of reacting with the epoxy group of the epoxy compound.
  • Examples of the second curing agent include active ester compounds, phenol compounds (phenol curing agents), cyanate ester compounds (cyanate ester curing agents), carbodiimide compounds (carbodiimide curing agents), oxazoline compounds, maleimide compounds, benzoxazine compounds (benzo oxazine curing agent), amine compounds (amine curing agent), thiol compounds (thiol curing agent), phosphine compounds, dicyandiamide, acid anhydrides, and the like.
  • the second curing agent preferably contains an active ester compound, a phenol compound, a cyanate ester compound, a carbodiimide compound, an oxazoline compound, or a maleimide compound, more preferably an active ester compound or a phenol compound, and an active ester More preferably, it contains a compound.
  • the dielectric loss tangent of the cured product can be further reduced, and the thermal dimensional stability of the cured product can be further enhanced.
  • the second curing agent preferably contains an active ester compound.
  • the second curing agent preferably contains a phenol compound.
  • the active ester compound is a compound that contains at least one ester bond in its structure and that has an aliphatic chain, an aliphatic ring, or an aromatic ring bonded to both sides of the ester bond.
  • An active ester compound is obtained, for example, by a condensation reaction between a carboxylic acid compound or a thiocarboxylic acid compound and a hydroxy compound or a thiol compound.
  • Examples of active ester compounds include compounds represented by the following formula (1). Only one kind of the active ester compound may be used, or two or more kinds thereof may be used in combination.
  • X1 represents an aliphatic chain-containing group, an aliphatic ring-containing group, or an aromatic ring-containing group
  • X2 represents an aromatic ring-containing group
  • Preferred examples of the aromatic ring-containing group include an optionally substituted benzene ring and an optionally substituted naphthalene ring.
  • a hydrocarbon group is mentioned as said substituent. The number of carbon atoms in the hydrocarbon group is preferably 12 or less, more preferably 6 or less, still more preferably 4 or less.
  • the combination of X1 and X2 includes a combination of a benzene ring which may have a substituent and a benzene ring which may have a substituent, and a combination of a benzene ring, which may have a substituent, and a naphthalene ring, which may have a substituent. Furthermore, in the above formula (1), the combination of X1 and X2 includes a combination of an optionally substituted naphthalene ring and an optionally substituted naphthalene ring.
  • the above active ester compound is not particularly limited. From the viewpoint of further improving the thermal dimensional stability and flame retardancy of the cured product, the active ester compound is preferably an active ester compound having two or more aromatic rings. From the viewpoint of reducing the dielectric loss tangent of the cured product and enhancing the thermal dimensional stability of the cured product, the active ester compound more preferably has a naphthalene ring in the main chain skeleton.
  • Phenolic compounds examples include novolak-type phenol, biphenol-type phenol, naphthalene-type phenol, dicyclopentadiene-type phenol, aralkyl-type phenol, and dicyclopentadiene-type phenol. As for the said phenol compound, only 1 type may be used and 2 or more types may be used together.
  • phenol compounds Commercially available products of the above phenol compounds include novolak phenol (manufactured by DIC Corporation "TD-2091”), biphenyl novolak phenol (manufactured by Meiwa Kasei Co., Ltd. "MEH-7851”), aralkyl phenol compounds (manufactured by Meiwa Kasei Co., Ltd. "MEH -7800”), and phenols having an aminotriazine skeleton (manufactured by DIC “LA-1356” and “LA-3018-50P”).
  • Cyanate ester compound examples include novolak-type cyanate-ester resins, bisphenol-type cyanate-ester resins, and prepolymers obtained by partially trimerizing these.
  • Examples of the novolak-type cyanate ester resins include phenol novolac-type cyanate ester resins and alkylphenol-type cyanate ester resins.
  • Examples of the bisphenol type cyanate ester resin include bisphenol A type cyanate ester resin, bisphenol E type cyanate ester resin and tetramethylbisphenol F type cyanate ester resin. As for the said cyanate ester compound, only 1 type may be used and 2 or more types may be used together.
  • cyanate ester compounds include phenol novolac type cyanate ester resins (“PT-30” and “PT-60” manufactured by Lonza Japan Co., Ltd.) and prepolymers in which bisphenol type cyanate ester resins are trimerized (Lonza Japan “BA-230S”, “BA-3000S”, “BTP-1000S” and “BTP-6020S” manufactured by the same company).
  • the carbodiimide compound is a compound having a structural unit represented by the following formula (2).
  • the right end and left end are bonding sites with other groups. Only one kind of the carbodiimide compound may be used, or two or more kinds thereof may be used in combination.
  • X is an alkylene group, an alkylene group to which a substituent is bonded, a cycloalkylene group, a cycloalkylene group to which a substituent is bonded, an arylene group, or an arylene group to which a substituent is bonded group, and p is an integer of 1-5.
  • the multiple X's may be the same or different.
  • At least one X is an alkylene group, a group in which a substituent is bonded to an alkylene group, a cycloalkylene group, or a group in which a substituent is bonded to a cycloalkylene group.
  • carbodiimide compounds include "Carbodilite V-02B”, “Carbodilite V-03”, “Carbodilite V-04K”, “Carbodilite V-07”, “Carbodilite V-09”, and “Carbodilite V-09” manufactured by Nisshinbo Chemical Co., Ltd. 10M-SP” and “Carbodilite 10M-SP (improved)", and “Stabaxol P", “Stabaxol P400” and "Hykasil 510" manufactured by Rhein Chemie.
  • maleimide compounds examples include N-phenylmaleimide and N-alkylbismaleimide.
  • the maleimide compound may be a bismaleimide compound. Only one type of the maleimide compound may be used, or two or more types may be used in combination.
  • the maleimide compound may or may not have an aromatic ring.
  • the maleimide compound preferably has an aromatic ring.
  • the nitrogen atom in the maleimide skeleton and the aromatic ring are bonded.
  • the molecular weight of the maleimide compound is preferably 500 or more, more preferably 1000 or more, preferably less than 30,000, and more preferably less than 20,000.
  • the molecular weight of the maleimide compound means the molecular weight that can be calculated from the structural formula. Further, the molecular weight of the maleimide compound means the weight average molecular weight in terms of polystyrene measured by gel permeation chromatography (GPC) when the maleimide compound is a polymer.
  • GPC gel permeation chromatography
  • maleimide compounds examples include “BMI-4000” and “BMI-5100” manufactured by Daiwa Kasei Kogyo Co., Ltd., and Designer Molecules Inc. and “BMI-3000” manufactured by K.K.
  • Benzoxazine compounds examples include Pd-type benzoxazine and Fa-type benzoxazine. Only one kind of the benzoxazine compound may be used, or two or more kinds thereof may be used in combination.
  • Acid anhydride examples include tetrahydrophthalic anhydride and alkylstyrene-maleic anhydride copolymer. Only one kind of the acid anhydride may be used, or two or more kinds thereof may be used in combination.
  • the content of the second curing agent with respect to 100 parts by weight of the epoxy compound is preferably 40 parts by weight or more, more preferably 45 parts by weight or more, preferably 90 parts by weight or less, and more preferably 85 parts by weight or less.
  • the content of the second curing agent is the above lower limit or more and the above upper limit or less, the curability can be further improved, the thermal dimensional stability of the cured product is further improved, and the remaining unreacted components are reduced. Volatilization can be further suppressed.
  • the content of the curing agent (total content of the first curing agent and the second curing agent) with respect to 100 parts by weight of the epoxy compound is preferably 80 parts by weight or more, more preferably 85 parts by weight or more. is 135 parts by weight or less, more preferably 130 parts by weight or less.
  • the content of the curing agent is not less than the above lower limit and not more than the above upper limit, the curability can be further improved, the thermal dimensional stability of the cured product is further improved, and the remaining unreacted components are more volatilized. can be further suppressed.
  • the total content of the epoxy compound and the curing agent (the total content of the epoxy compound, the first curing agent, and the second curing agent) in 100% by weight of the components excluding the filler and solvent in the resin material ) is preferably 50% by weight or more, more preferably 60% by weight or more, preferably 98% by weight or less, and more preferably 95% by weight or less.
  • the curability can be further improved, and the thermal dimensional stability of the cured product can be further improved.
  • the resin material contains a filler.
  • the average particle size of the filler is 2.0 ⁇ m or less.
  • the filler may be an organic filler, an inorganic filler, or a mixture of an organic filler and an inorganic filler. Only one kind of the filler may be used, or two or more kinds thereof may be used in combination.
  • organic filler examples include benzoxazine resin particles, benzoxazole resin particles, fluororesin particles, acrylic resin particles, and styrene resin particles.
  • fluororesin particles By using fluororesin particles as the organic filler, the dielectric constant of the cured product can be further lowered.
  • the said organic filler only 1 type may be used and 2 or more types may be used together.
  • Examples of the inorganic filler include silica, talc, clay, mica, hydrotalcite, alumina, magnesium oxide, aluminum hydroxide, aluminum nitride, and boron nitride. Only one kind of the inorganic filler may be used, or two or more kinds thereof may be used in combination.
  • the filler is preferably an inorganic filler.
  • the dielectric loss tangent of the cured product can be further reduced.
  • the inorganic filler is preferably silica or alumina, more preferably silica, and even more preferably fused silica.
  • silica as a filler, the coefficient of thermal expansion of the cured product is further lowered, and the dielectric loss tangent of the cured product is further lowered. Also, the dielectric constant of the cured product can be improved.
  • the shape of silica is preferably spherical.
  • the inorganic filler is preferably spherical, more preferably spherical silica.
  • the surface roughness of the surface of the cured product is effectively reduced, and the adhesive strength between the cured product and the metal layer is effectively increased.
  • the inorganic filler is spherical silica, the curing of the resin is promoted regardless of the curing environment, the glass transition temperature of the cured product is effectively increased, and the thermal linear expansion coefficient of the cured product is effectively reduced. can do.
  • the aspect ratio of the inorganic filler is preferably 2 or less, more preferably 1.5 or less.
  • the inorganic filler is preferably surface-treated, more preferably surface-treated with a coupling agent, and even more preferably surface-treated with a silane coupling agent.
  • a coupling agent preferably surface-treated with a coupling agent
  • a silane coupling agent By surface-treating the inorganic filler, the surface roughness of the surface of the roughened cured product is further reduced, and the adhesive strength between the cured product and the metal layer is further increased.
  • finer wiring can be formed on the surface of the cured product, and even better inter-wiring insulation reliability and interlayer insulation reliability are imparted to the cured product. can do.
  • Examples of the above coupling agents include silane coupling agents, titanium coupling agents and aluminum coupling agents.
  • Examples of the silane coupling agent include methacrylsilane, acrylsilane, aminosilane, imidazolesilane, vinylsilane, and epoxysilane.
  • the average particle size of the filler is 2.0 ⁇ m or less.
  • the average particle size of the filler is preferably 0.1 ⁇ m or more, more preferably 0.3 ⁇ m or more, preferably 1.8 ⁇ m or less, and more preferably 1.6 ⁇ m or less.
  • the average particle size of the filler may exceed 0.5 ⁇ m, may be 1.0 ⁇ m or more, may be 1 ⁇ m or less, may be less than 1 ⁇ m, or may be 0.5 ⁇ m or less. may be less than 0.5 ⁇ m, and may be 0.3 ⁇ m or less.
  • the average particle size of the inorganic filler is preferably 0.1 ⁇ m or more, more preferably 0.3 ⁇ m or more, preferably 1.8 ⁇ m or less, and more preferably 1.6 ⁇ m or less.
  • the average particle size of the inorganic filler is at least the lower limit and at most the upper limit, the surface roughness after etching can be reduced and the peel strength of the plating can be increased, and the adhesion between the insulating layer and the metal layer is improved. can enhance sexuality.
  • the average particle size of the inorganic filler may exceed 0.5 ⁇ m, may be 1.0 ⁇ m or more, may be 1 ⁇ m or less, may be less than 1 ⁇ m, or may be 0.5 ⁇ m or less. It may be less than 0.5 ⁇ m, or it may be 0.3 ⁇ m or less.
  • the average particle size of the organic filler is preferably 0.1 ⁇ m or more, more preferably 0.3 ⁇ m or more, preferably 1.8 ⁇ m or less, and more preferably 1.6 ⁇ m or less. .
  • the average particle size of the organic filler is the lower limit or more and the upper limit or less, the surface roughness after etching can be reduced and the plating peel strength can be increased, and the adhesion between the insulating layer and the metal layer can be improved. can enhance sexuality.
  • the average particle size of the organic filler may exceed 0.5 ⁇ m, may be 1.0 ⁇ m or more, may be 1 ⁇ m or less, may be less than 1 ⁇ m, or may be 0.5 ⁇ m or less. It may be less than 0.5 ⁇ m, or it may be 0.3 ⁇ m or less.
  • a median diameter (d50) value of 50% is adopted as the average particle diameter of the above fillers (inorganic filler and organic filler).
  • the average particle size is preferably the average particle size of primary particles.
  • the average particle size can be measured using a laser diffraction scattering type particle size distribution analyzer.
  • the content of the filler is preferably 50% by weight or more, more preferably 60% by weight or more, preferably 90% by weight or less, and more preferably 85% by weight or less in 100% by weight of the components excluding the solvent in the resin material. , more preferably 80% by weight or less.
  • the filler content is at least the lower limit, the dielectric loss tangent is effectively lowered.
  • the content of the filler is equal to or less than the above upper limit, the thermal dimensional stability of the cured product can be enhanced, and warpage of the cured product can be effectively suppressed.
  • the content of the filler is at least the lower limit and at most the upper limit, the surface roughness of the surface of the cured product can be further reduced, and finer wiring can be formed on the surface of the cured product.
  • the content of the filler is equal to or more than the lower limit and equal to or less than the upper limit, it is possible to lower the coefficient of thermal expansion of the cured product and to improve the smear removability.
  • the resin material preferably contains a curing accelerator. However, the resin material may not contain a curing accelerator. The use of the curing accelerator makes the curing speed even faster. By rapidly curing the resin material, the crosslinked structure in the cured product becomes uniform and the number of unreacted functional groups is reduced, resulting in a high crosslink density.
  • the curing accelerator is not particularly limited, and conventionally known curing accelerators can be used. Only one kind of the curing accelerator may be used, or two or more kinds thereof may be used in combination.
  • curing accelerator examples include anionic curing accelerators such as imidazole compounds, cationic curing accelerators such as amine compounds, and curing accelerators other than anionic and cationic curing accelerators such as phosphorus compounds and organometallic compounds. , and radical curing accelerators such as peroxides.
  • imidazole compound examples include 2-undecylimidazole, 2-heptadecylimidazole, 2-methylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole, 1-benzyl- 2-methylimidazole, 1-benzyl-2-phenylimidazole, 1,2-dimethylimidazole, 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-ethyl-4-methylimidazole, 1-cyanoethyl-2-un Decylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-undecylimidazolium trimellitate, 1-cyanoethyl-2-phenylimidazolium trimellitate, 2,4-diamino-6-[2' -methylimidazolyl-(1′)]-eth-
  • amine compounds examples include diethylamine, triethylamine, diethylenetetramine, triethylenetetramine and 4,4-dimethylaminopyridine.
  • Examples of the phosphorus compounds include triphenylphosphine compounds.
  • organometallic compounds examples include zinc naphthenate, cobalt naphthenate, tin octylate, cobalt octylate, bisacetylacetonate cobalt (II) and trisacetylacetonate cobalt (III).
  • Examples of the above peroxides include dicumyl peroxide and perhexyl 25B.
  • the curing accelerator preferably contains the anionic curing accelerator, and more preferably contains the imidazole compound.
  • the content of the anionic curing accelerator is preferably 20% by weight or more, more preferably 100% by weight of the curing accelerator. is 50% by weight or more, more preferably 70% by weight or more, and most preferably 100% by weight (total amount). Therefore, the hardening accelerator is most preferably the anionic hardening accelerator.
  • the content of the curing accelerator is not particularly limited.
  • the content of the curing accelerator is preferably 0.01% by weight or more, more preferably 0.05% by weight or more, and preferably 5% by weight or less in 100% by weight of the components excluding the filler and solvent in the resin material, More preferably, it is 3% by weight or less.
  • the content of the curing accelerator is equal to or more than the lower limit and equal to or less than the upper limit, the resin material is efficiently cured. If the content of the curing accelerator is within a more preferable range, the storage stability of the resin material will be further increased, and a more favorable cured product will be obtained.
  • the resin material may or may not contain a thermosetting compound other than the epoxy compound.
  • a thermosetting compound other than the epoxy compound only one type may be used, or two or more types may be used in combination.
  • Thermosetting compounds other than the above epoxy compounds include vinyl compounds, styrene compounds, oxetane compounds, polyarylate compounds, diallyl phthalate compounds, acrylate compounds, episulfide compounds, (meth)acrylic compounds, amino compounds, unsaturated polyester compounds, polyurethanes. compounds, and silicone compounds.
  • the resin material may contain a thermoplastic resin.
  • the thermoplastic resin include polyimide resin, phenoxy resin and polyvinyl acetal resin. Only one kind of the thermoplastic resin may be used, or two or more kinds thereof may be used in combination.
  • the thermoplastic resin is preferably a polyimide resin or a phenoxy resin, more preferably a polyimide resin.
  • the resin material preferably contains a polyimide resin or a phenoxy resin, and more preferably contains a polyimide resin.
  • the resin material does not contain or contains a polyimide resin.
  • the resin material may or may not contain a polyimide resin.
  • the resin material does not contain or contains a phenoxy resin.
  • the resin material may contain no phenoxy resin or may contain a phenoxy resin.
  • the thermoplastic resin is preferably a polyimide resin.
  • the resin material preferably contains polyimide resin.
  • the resin material may not contain a phenoxy resin.
  • the polyimide resin is preferably a polyimide resin obtained by a method of reacting tetracarboxylic dianhydride and dimer diamine.
  • tetracarboxylic dianhydride examples include pyromellitic dianhydride, 3,3′,4,4′-benzophenonetetracarboxylic dianhydride, 3,3′,4,4′-biphenylsulfonetetra Carboxylic dianhydride, 1,4,5,8-naphthalenetetracarboxylic dianhydride, 2,3,6,7-naphthalenetetracarboxylic dianhydride, 3,3′,4,4′-biphenyl ether Tetracarboxylic dianhydride, 3,3′,4,4′-dimethyldiphenylsilanetetracarboxylic dianhydride, 3,3′,4,4′-tetraphenylsilanetetracarboxylic dianhydride, 1,2 ,3,4-furantetracarboxylic dianhydride, 4,4′-bis(3,4-dicarboxyphenoxy)diphenyl sulfide dianhydride,
  • dimer diamine examples include Versamin 551 (trade name, manufactured by BASF Japan Ltd., 3,4-bis(1-aminoheptyl)-6-hexyl-5-(1-octenyl)cyclohexene) and Versamin 552 (trade name).
  • Versamin 551 trade name, manufactured by BASF Japan Ltd., 3,4-bis(1-aminoheptyl)-6-hexyl-5-(1-octenyl)cyclohexene
  • Versamin 552 trade name
  • Cognix Japan Co., Ltd. a hydrogenated product of Versamin 551
  • PRIAMINE 1075 PRIAMINE 1074
  • the polyimide resin may have an acid anhydride structure, a maleimide structure, or a citraconimide structure at its terminal.
  • the polyimide resin and the epoxy compound can be reacted.
  • the thermal dimensional stability of the cured product can be enhanced.
  • the thermoplastic resin preferably contains a phenoxy resin.
  • the resin material preferably contains a phenoxy resin.
  • the use of the phenoxy resin suppresses the deterioration of the embedding properties of the resin film in the holes or irregularities of the circuit board and the non-uniformity of the inorganic filler.
  • the use of a phenoxy resin makes it possible to adjust the melt viscosity, so that the dispersibility of the inorganic filler is improved, and in the curing process, the resin composition or B-staged product is less likely to wet and spread in unintended regions.
  • the above phenoxy resin is not particularly limited. Conventionally known phenoxy resins can be used as the phenoxy resin. Only one type of the phenoxy resin may be used, or two or more types may be used in combination.
  • phenoxy resins examples include phenoxy resins having a skeleton such as a bisphenol A skeleton, a bisphenol F skeleton, a bisphenol S skeleton, a biphenyl skeleton, a novolac skeleton, a naphthalene skeleton, and an imide skeleton.
  • phenoxy resin Commercial products of the phenoxy resin include, for example, Nippon Steel & Sumikin Chemical Co., Ltd. "YP50”, “YP55” and “YP70”, and Mitsubishi Chemical Corporation "1256B40", “4250”, “4256H40", “4275”, “ YX6954BH30” and “YX8100BH30”.
  • the weight-average molecular weight of the thermoplastic resin, the polyimide resin, and the phenoxy resin is preferably 5,000 or more, more preferably 10,000 or more, and preferably 100,000 or less. Preferably it is 50000 or less.
  • the weight average molecular weight of the thermoplastic resin, polyimide resin, and phenoxy resin means the weight average molecular weight in terms of polystyrene measured by gel permeation chromatography (GPC).
  • the contents of the thermoplastic resin, the polyimide resin and the phenoxy resin are not particularly limited.
  • the content of the thermoplastic resin (when the thermoplastic resin is a polyimide resin or a phenoxy resin, the content of the polyimide resin or the phenoxy resin) in 100% by weight of the components excluding the filler and solvent in the resin material is preferably is 1% by weight or more, more preferably 2% by weight or more, preferably 30% by weight or less, and more preferably 20% by weight or less.
  • the content of the thermoplastic resin is equal to or more than the lower limit and equal to or less than the upper limit, the embedding property of the resin film into the holes or unevenness of the circuit board is improved.
  • thermoplastic resin When the content of the thermoplastic resin is equal to or higher than the lower limit, formation of the resin film becomes easier, and an even better insulating layer can be obtained. If the content of the thermoplastic resin is equal to or less than the upper limit, the thermal expansion coefficient of the cured product will be even lower. When the content of the thermoplastic resin is equal to or less than the upper limit, the surface roughness of the cured product is further reduced, and the adhesive strength between the cured product and the metal layer is further increased.
  • the resin material does not contain or contains a solvent.
  • the resin material may or may not contain a solvent.
  • the solvent By using the solvent, the viscosity of the resin material can be controlled within a suitable range, and the coatability of the resin material can be improved.
  • the solvent may be used to obtain a slurry containing the inorganic filler. Only one of the above solvents may be used, or two or more thereof may be used in combination.
  • Examples of the solvent include acetone, methanol, ethanol, butanol, 2-propanol, 2-methoxyethanol, 2-ethoxyethanol, 1-methoxy-2-propanol, 2-acetoxy-1-methoxypropane, toluene, xylene, methyl ethyl ketone, N,N-dimethylformamide, methyl isobutyl ketone, N-methyl-pyrrolidone, n-hexane, cyclohexane, cyclohexanone and mixtures such as naphtha.
  • the boiling point of the solvent is preferably 200°C or lower, more preferably 180°C or lower.
  • the content of the solvent in the resin composition is not particularly limited. The content of the solvent can be appropriately changed in consideration of the coatability of the resin composition.
  • the content of the solvent in 100% by weight of the B-stage film is preferably 0.5% by weight or more, more preferably 1% by weight or more, and preferably 10% by weight. % or less, more preferably 5 wt % or less.
  • the above resin materials contain leveling agents, flame retardants, coupling agents, coloring agents, antioxidants, ultraviolet degradation inhibitors, antifoaming agents, etc. agents, thickeners, thixotropic agents, and the like.
  • Examples of the above coupling agents include silane coupling agents, titanium coupling agents and aluminum coupling agents.
  • Examples of the silane coupling agent include vinylsilane, aminosilane, imidazolesilane and epoxysilane.
  • a resin film (B-stage product/B-stage film) is obtained by molding the resin composition described above into a film.
  • the resin material is preferably a resin film.
  • the resin film is preferably a B-stage film.
  • Examples of methods for obtaining a resin film by molding a resin composition into a film include the following methods.
  • An extrusion molding method in which a resin composition is melt-kneaded using an extruder, extruded, and then molded into a film using a T-die, a circular die, or the like.
  • a casting molding method in which a resin composition containing a solvent is cast and molded into a film.
  • An extrusion molding method or a casting molding method is preferable because it can be used for thinning.
  • Film includes sheets.
  • a resin film that is a B-stage film can be obtained by molding the resin composition into a film and drying it by heating at, for example, 50° C. to 150° C. for 1 minute to 10 minutes to the extent that thermal curing does not proceed excessively. can.
  • a film-like resin composition that can be obtained through the drying process as described above is called a B-stage film.
  • the B-stage film is in a semi-cured state.
  • a semi-cured product is not completely cured and may be further cured.
  • the resin film does not have to be a prepreg. If the resin film is not a prepreg, no migration occurs along the glass cloth or the like. In addition, when the resin film is laminated or precured, the unevenness due to the glass cloth does not occur on the surface.
  • the resin film can be used in the form of a laminated film comprising a metal foil or base film and a resin film laminated on the surface of the metal foil or base film.
  • the metal foil is preferably copper foil.
  • Examples of the base film of the laminated film include polyester resin films such as polyethylene terephthalate film and polybutylene terephthalate film, olefin resin films such as polyethylene film and polypropylene film, and polyimide resin films.
  • the surface of the base film may be subjected to release treatment, if necessary.
  • the thickness of the resin film is preferably 5 ⁇ m or more and preferably 200 ⁇ m or less.
  • the thickness of the insulating layer formed of the resin film is preferably equal to or greater than the thickness of the conductor layer (metal layer) forming the circuit.
  • the thickness of the insulating layer is preferably 5 ⁇ m or more and preferably 200 ⁇ m or less.
  • the average coefficient of linear expansion (CTE) of the resulting cured product from 25° C. to 150° C. under a tensile load of 33 mN is preferably 33 ppm/° C. or less, more preferably 30 ppm/° C. or less, and still more preferably 27 ppm. /°C or less, particularly preferably 24 ppm/°C or less, most preferably 22 ppm/°C or less.
  • the average coefficient of linear expansion (CTE) of the cured product may be 17 ppm/°C or higher, or 19 ppm/°C or higher.
  • the average coefficient of linear expansion (CTE) of the cured product is measured as follows.
  • a film-shaped resin material (resin film) is heated at 130°C for 60 minutes for temporary curing, and then heated at 200°C for 90 minutes to obtain a cured product of the resin material.
  • the obtained cured product is cut into a size of 3 mm ⁇ 25 mm.
  • a thermomechanical analyzer for example, "EXSTAR TMA/SS6100” manufactured by SII Nanotechnology Co., Ltd.
  • the cut cured product was measured from 25 ° C. to Calculate the average coefficient of linear expansion (ppm/°C) up to 150°C.
  • the above resin material is suitably used for forming a mold resin for embedding a semiconductor chip in a semiconductor device.
  • the above resin material is suitably used for liquid crystal polymer (LCP) substitute applications, millimeter wave antenna applications, and rewiring layer applications.
  • LCP liquid crystal polymer
  • the above resin material is not limited to the above applications, and is suitable for general wiring formation applications.
  • the above resin material is suitably used as an insulating material.
  • the above resin material is suitably used for forming an insulating layer in a printed wiring board.
  • the printed wiring board is obtained, for example, by heating and pressurizing the resin material.
  • a member to be laminated having a metal layer on its surface can be laminated on one or both sides of the resin film. It is possible to suitably obtain a laminated structure comprising a member to be laminated having a metal layer on its surface and a resin film laminated on the surface of the metal layer, wherein the resin film is the resin material described above.
  • a method for laminating the resin film and the member to be laminated having the metal layer on the surface thereof is not particularly limited, and a known method can be used. For example, using a device such as a parallel plate press or a roll laminator, the resin film can be laminated on a member to be laminated having a metal layer on its surface while applying pressure with or without heating.
  • the material of the metal layer is preferably copper.
  • the member to be laminated having the metal layer on its surface may be a metal foil such as copper foil.
  • the above resin material is suitably used to obtain a copper-clad laminate.
  • An example of the copper-clad laminate is a copper-clad laminate comprising a copper foil and a resin film laminated on one surface of the copper foil.
  • the thickness of the copper foil of the copper clad laminate is not particularly limited.
  • the thickness of the copper foil is preferably 1 ⁇ m or more and 100 ⁇ m or less.
  • the copper foil preferably has fine irregularities on its surface.
  • a method for forming the unevenness is not particularly limited. Examples of the method for forming the unevenness include a forming method using a known chemical solution.
  • the above resin material is suitably used to obtain a multilayer substrate.
  • the multi-layer board is a multi-layer board comprising a circuit board and an insulating layer laminated on the circuit board.
  • the insulating layer of this multilayer substrate is formed of the above resin material.
  • the insulating layer of the multilayer substrate may be formed of the resin film of the laminated film by using the laminated film.
  • the insulating layer is preferably laminated on the surface of the circuit board on which the circuit is provided. A part of the insulating layer is preferably embedded between the circuits.
  • the surface of the insulating layer opposite to the surface on which the circuit board is laminated is roughened.
  • a conventionally known roughening treatment method can be used for the roughening treatment method, and is not particularly limited.
  • the surface of the insulating layer may be subjected to a swelling treatment before the roughening treatment.
  • the multilayer substrate further includes a copper plating layer laminated on the roughened surface of the insulating layer.
  • the multilayer board is a multilayer board that includes a circuit board and a plurality of insulating layers laminated on the surface of the circuit board. At least one of the plurality of insulating layers arranged on the circuit board is formed using the resin material.
  • the multilayer substrate preferably further includes a circuit laminated on at least one surface of the insulating layer formed using the resin film.
  • multilayer printed wiring boards require high insulation reliability due to insulating layers.
  • insulation reliability can be effectively improved by exhibiting the effects of the present invention. Therefore, the resin material according to the present invention is suitably used for forming insulating layers in multilayer printed wiring boards.
  • the multilayer printed wiring board includes, for example, a circuit board, a plurality of insulating layers arranged on the surface of the circuit board, and metal layers arranged between the plurality of insulating layers. At least one of the insulating layers is a cured product of the resin material.
  • FIG. 1 is a cross-sectional view schematically showing a multilayer printed wiring board using a resin material according to one embodiment of the present invention.
  • a plurality of insulating layers 13 to 16 are laminated on the upper surface 12a of the circuit board 12.
  • the insulating layers 13 to 16 are hardened layers.
  • a metal layer 17 is formed on a partial region of the upper surface 12 a of the circuit board 12 .
  • the insulating layers 13 to 15 other than the insulating layer 16 positioned on the outer surface opposite to the circuit board 12 side have a metal layer 17 formed on a partial region of the upper surface.
  • Metal layer 17 is a circuit.
  • a metal layer 17 is arranged between the circuit board 12 and the insulating layer 13 and between the laminated insulating layers 13 to 16, respectively.
  • the lower metal layer 17 and the upper metal layer 17 are connected to each other by at least one of via-hole connection and through-hole connection (not shown).
  • the insulating layers 13 to 16 are formed from the cured resin material.
  • the surfaces of the insulating layers 13-16 are roughened, fine holes (not shown) are formed in the surfaces of the insulating layers 13-16.
  • the metal layer 17 reaches inside the fine holes.
  • the widthwise dimension (L) of the metal layer 17 and the widthwise dimension (S) of the portion where the metal layer 17 is not formed can be reduced.
  • good insulation reliability is imparted between the upper metal layer and the lower metal layer that are not connected by via-hole connections and through-hole connections (not shown).
  • the resin material is preferably used to obtain a cured product that is roughened or desmeared.
  • the cured product also includes a pre-cured product that can be further cured.
  • the cured product is preferably subjected to a roughening treatment.
  • the cured product is preferably subjected to a swelling treatment before the roughening treatment.
  • the cured product is preferably subjected to swelling treatment after precuring and before roughening treatment, and further cured after roughening treatment.
  • the cured product does not necessarily have to be subjected to a swelling treatment.
  • the swelling treatment method for example, a method of treating the cured product with an aqueous solution or an organic solvent dispersion solution of a compound containing ethylene glycol as a main component is used.
  • the swelling liquid used for the swelling treatment generally contains an alkali as a pH adjuster or the like.
  • the swelling liquid preferably contains sodium hydroxide.
  • the swelling treatment is performed by treating the cured product with a 40% by weight ethylene glycol aqueous solution or the like at a treatment temperature of 30° C. to 85° C. for 1 minute to 30 minutes.
  • the temperature of the swelling treatment is preferably in the range of 50.degree. C. to 85.degree.
  • the temperature of the swelling treatment is too low, the swelling treatment takes a long time, and the adhesive strength between the cured product and the metal layer tends to decrease.
  • a chemical oxidizing agent such as a manganese compound, a chromium compound, or a persulfate compound is used. These chemical oxidants are used as aqueous solutions or organic solvent dispersion solutions after water or organic solvents are added.
  • the roughening liquid used for the roughening treatment generally contains an alkali as a pH adjuster or the like.
  • the roughening liquid preferably contains sodium hydroxide.
  • Examples of the manganese compound include potassium permanganate and sodium permanganate.
  • Examples of the chromium compound include potassium dichromate and anhydrous potassium chromate.
  • Examples of the persulfate compound include sodium persulfate, potassium persulfate and ammonium persulfate.
  • the arithmetic mean roughness Ra of the surface of the cured product is preferably 10 nm or more, preferably less than 300 nm, more preferably less than 200 nm, still more preferably less than 150 nm.
  • the adhesive strength between the cured product and the metal layer is increased, and finer wiring is formed on the surface of the insulating layer. Furthermore, conductor loss can be suppressed, and signal loss can be kept low.
  • the arithmetic mean roughness Ra is measured according to JIS B0601:1994.
  • Through-holes may be formed in the cured product obtained by precuring the resin material.
  • Vias, through holes, or the like are formed as through holes in the multilayer substrates and the like.
  • vias can be formed by irradiation with a laser such as a CO2 laser.
  • the diameter of the via is not particularly limited, it is about 60 ⁇ m to 80 ⁇ m. Due to the formation of the through-holes, smears, which are residues of the resin derived from the resin component contained in the cured product, are often formed at the bottom of the vias.
  • the surface of the cured product is preferably desmeared.
  • the desmearing treatment may also serve as the roughening treatment.
  • a desmearing liquid used for desmearing generally contains an alkali.
  • the desmear treatment liquid preferably contains sodium hydroxide.
  • the surface roughness of the surface of the desmeared cured product is sufficiently reduced.
  • Curing agent First Curing Agent: Phenol carbonate compound ("FTC509” manufactured by Gunei Chemical Co., Ltd., molecular weight 4000, glass transition temperature 110 ° C.) Active ester carbonate compound-containing liquid (“FTC509ES” manufactured by Gunei Chemical Co., Ltd., molecular weight 4000, solid content 55% by weight, glass transition temperature 33°C)
  • Second curing agent Phenolic compound-containing liquid ("LA-1356” manufactured by DIC, solid content 60% by weight) Active ester compound-containing liquid (manufactured by DIC "HPC-8000L-65T", solid content 65% by weight)
  • Imidazole compound (2-phenyl-4-methylimidazole, "2P4MZ" manufactured by Shikoku Kasei Kogyo Co., Ltd.
  • Slurry containing silica 1 slurry containing spherical silica that is surface-treated with a silane coupling agent, average particle size 0.1 ⁇ m, prepared by the following preparation method
  • Slurry containing silica 2 slurry containing spherical silica that is surface-treated with a silane coupling agent, average particle size 0.5 ⁇ m, prepared by the following preparation method
  • Slurry containing silica 3 slurry containing spherical silica that is surface-treated with a silane coupling agent, average particle size 2.0 ⁇ m, prepared by the following preparation method
  • Slurry containing silica 4 slurry containing spherical silica that is surface-treated with a silane coupling agent, average particle size 2.5 ⁇ m, prepared by the following preparation method
  • silica 1-containing slurry ⁇ Method for preparing silica 1-containing slurry> Silica (“Seahoster KE-S10” manufactured by Nippon Shokubai Co., Ltd.) was surface-treated with a silane coupling agent having an N-phenyl-3-aminopropyl group (“KBM-573” manufactured by Shin-Etsu Chemical Co., Ltd.). Cyclohexanone (“037-05096” manufactured by Wako Pure Chemical Industries, Ltd.) was added to the resulting surface-treated product so as to have a content of 50% by weight to obtain a silica 1-containing slurry.
  • Polyimide resin-containing liquid polyimide resin-containing liquid (nonvolatile content 26.8% by weight) which is a reaction product of tetracarboxylic dianhydride and dimer diamine, synthesized according to Synthesis Example 1 below)
  • Phenoxy resin-containing liquid weight average molecular weight 39000, "YX6954BH30” manufactured by Mitsubishi Chemical Corporation, solid content 30% by weight
  • Carbonate resin weight average molecular weight 1000, "C-1015N” manufactured by Kuraray Co., Ltd.
  • the weight average molecular weights of the first curing agent and the thermoplastic resin were determined by GPC (gel permeation chromatography) as follows.
  • Examples 1 to 7 and Comparative Examples 1 to 3 The components shown in Tables 1 and 2 below were blended in the amounts shown in Tables 1 and 2 below (unit: parts by weight of solid content) and stirred at room temperature until a uniform solution was obtained to obtain a resin material.
  • Preparation of resin film Using an applicator, apply the obtained resin material on the release-treated surface of a release-treated PET film (“XG284” manufactured by Toray Industries, Inc., thickness 25 ⁇ m), and then place in a gear oven at 100° C. for 2 minutes. Dry for 30 seconds to evaporate the solvent. Thus, a laminated film (laminated film of PET film and resin film) in which a resin film (B stage film) having a thickness of 40 ⁇ m was laminated on the PET film was obtained.
  • XG284 manufactured by Toray Industries, Inc., thickness 25 ⁇ m
  • Dielectric loss tangent (Df) of cured product The resulting resin film was heated at 180° C. for 30 minutes for temporary curing, and then heated at 200° C. for 90 minutes to obtain a cured product.
  • the resulting cured product was cut into a size of 2 mm in width and 80 mm in length, and 10 sheets were superimposed and measured by Kanto Denshi Applied Development Co., Ltd.'s "Cavity Resonance Perturbation Method Dielectric Constant Measurement Device CP521" and Keysight Technologies, Inc.'s " Using a network analyzer N5224A PNA, the dielectric loss tangent was measured at room temperature (23° C.) and a frequency of 5.8 GHz by the cavity resonance method.
  • Dielectric loss tangent is less than 2.8 ⁇ 10 -3 ⁇ : Dielectric loss tangent is 2.8 ⁇ 10 -3 or more and less than 2.9 ⁇ 10 -3 ⁇ : Dielectric loss tangent is 2.9 ⁇ 10 -3 or more Less than 3.0 ⁇ 10 ⁇ 3 ⁇ : Dielectric loss tangent is 3.0 ⁇ 10 ⁇ 3 or more
  • a laminate A was obtained in which semi-cured resin films were laminated on both sides of the CCL substrate.
  • Via (through hole) formation A CO 2 laser (manufactured by Hitachi Via Mechanics Co., Ltd.) was applied to the semi-cured product of the resin film of the obtained laminate A, and a via (through hole) having a diameter of 65 ⁇ m at the upper end and a diameter of 45 ⁇ m at the lower end (bottom) holes) were formed.
  • a laminate B was obtained in which the semi-cured resin film was laminated on the CCL substrate and vias (through holes) were formed in the semi-cured resin film.
  • Laminate B after the swelling treatment was placed in a roughening aqueous solution of potassium permanganate (“Concentrate Compact CP” manufactured by Atotech Japan Co., Ltd.) at 80° C. and shaken for 30 minutes.
  • a cleaning solution (“Reduction Securigant P” manufactured by Atotech Japan Co., Ltd.) at 25°C, it was cleaned with pure water to obtain an evaluation sample.
  • the bottom of the evaluation sample via was observed with a scanning electron microscope (SEM), and the maximum smear length from the wall surface of the via bottom was measured.
  • SEM scanning electron microscope
  • Electroless plating treatment The surface of the roughened cured product of the evaluation sample obtained in the evaluation of “(2) desmear property (removability of residue at bottom of via)” was washed with an alkaline cleaner (“Cleaner Securigant” manufactured by Atotech Japan Co., Ltd.) at 60 ° C. 902") for 5 minutes and degreased. After washing, the cured product was treated with a pre-dip liquid ("Pre-dip Neogant B" manufactured by Atotech Japan Co., Ltd.) at 25°C for 2 minutes. Thereafter, the cured product was treated with an activator liquid (“Activator Neogant 834” manufactured by Atotech Japan Co., Ltd.) at 40° C. for 5 minutes to attach a palladium catalyst. Next, the cured product was treated with a reducing liquid (“Reducer Neogant WA” manufactured by Atotech Japan Co., Ltd.) at 30° C. for 5 minutes.
  • an alkaline cleaner (“Cleaner Securigant” manufactured by Atotech
  • the cured product is placed in a chemical copper solution ("Basic Printgant MSK-DK”, “Copper Printgant MSK”, “Stabilizer Printgant MSK”, and “Reducer Cu” manufactured by Atotech Japan Co., Ltd.) for electroless plating. was carried out until the plating thickness reached about 0.5 ⁇ m. After electroless plating, an annealing treatment was performed at a temperature of 120° C. for 30 minutes in order to remove residual hydrogen gas. All the steps up to the step of electroless plating were carried out with a beaker scale of 2 liters of the processing liquid, while shaking the cured product.
  • Electroplating treatment Next, the electroless-plated cured product was electroplated until the plating thickness reached 25 ⁇ m.
  • copper sulfate solution (“Copper sulfate pentahydrate” manufactured by Wako Pure Chemical Industries, “Sulfuric acid” manufactured by Wako Pure Chemical Industries, Ltd. “Basic Leveler Cupalaside HL” manufactured by Atotech Japan, “ Electrolytic plating was carried out until the thickness of the plating reached about 25 ⁇ m by applying a current of 0.6 A/cm 2 using a correction agent "Capalacid GS").
  • the cured product was heated at 200° C. for 60 minutes to further cure the cured product.
  • a cured product having a copper plating layer laminated on the upper surface was obtained.
  • Plating peel strength measurement In the surface of the copper plating layer of the hardened product on which the obtained copper plating layer was laminated, 10 mm-wide strip-shaped cuts were made at 5 mm intervals at a total of 6 locations. Set the hardened product with the copper plating layer laminated on the upper surface in a 90° peel tester ("TE-3001" manufactured by Tester Sangyo Co., Ltd.), pick up the edge of the notched copper plating layer with a gripper, and make a via The peel strength (plating peel strength) was measured by peeling the copper plating layer by 20 mm while avoiding the portion where was formed. The peel strength (plating peel strength) was measured for each of the six notch points, and the average value of the plating peel strength was obtained. Plating peel strength was determined according to the following criteria.
  • the resin film was semi-cured by heating at 100° C. for 30 minutes and then at 180° C. for 30 minutes. Then, (a) swelling treatment and (b) permanganate treatment were performed in the same manner as in the evaluation of “(2) desmear property (removability of residue on via bottom)”. Then, it was heated at 200° C. for 60 minutes to obtain a laminate D in which two cured resin film layers were laminated on both sides of the CCL substrate. By repeating the same treatment, a laminate E was obtained in which 8 cured resin film layers were laminated on both sides of the CCL substrate.
  • the obtained laminate E was dropped from a height of 1 m a total of 20 times.
  • the presence or absence of chipping of the cured product layer of the resin film at the edge of the substrate was checked using a microscope each time the substrate was dropped.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)

Abstract

The present invention provides a resin material which is capable of: (1) decreasing the dielectric loss tangent of a cured product thereof; (2) effectively removing smear by means of a desmear treatment; (3) enhancing the plating peel strength; and (4) making a cured product layer at the edge of a substrate less susceptible to the occurrence of cracks. A resin material according to the present invention contains an epoxy compound, a filler and a curing agent; the filler has an average particle diameter of 2.0 μm or less; and the curing agent contains a first curing agent which has a carbonate structure, while having a functional group that is reactive with an epoxy group.

Description

樹脂材料及び多層プリント配線板Resin materials and multilayer printed wiring boards
 本発明は、エポキシ化合物を含む樹脂材料に関する。また、本発明は、上記樹脂材料を用いた多層プリント配線板に関する。 The present invention relates to resin materials containing epoxy compounds. The present invention also relates to a multilayer printed wiring board using the above resin material.
 従来、半導体装置、積層板及びプリント配線板等の電子部品を得るために、様々な樹脂材料が用いられている。例えば、多層プリント配線板では、内部の層間を絶縁するための絶縁層を形成したり、表層部分に位置する絶縁層を形成したりするために、樹脂材料が用いられている。上記絶縁層の表面には、一般に金属である配線が積層される。また、上記絶縁層を形成するために、上記樹脂材料がフィルム化された樹脂フィルムが用いられることがある。上記樹脂材料及び上記樹脂フィルムは、ビルドアップフィルムを含む多層プリント配線板用の絶縁材料等として用いられている。 Conventionally, various resin materials have been used to obtain electronic components such as semiconductor devices, laminates and printed wiring boards. For example, in a multilayer printed wiring board, a resin material is used to form an insulating layer for insulation between internal layers and to form an insulating layer positioned on a surface layer. Wiring, which is generally made of metal, is laminated on the surface of the insulating layer. Moreover, in order to form the insulating layer, a resin film obtained by forming the resin material into a film may be used. The above resin materials and resin films are used as insulating materials for multilayer printed wiring boards including build-up films.
 下記の特許文献1には、(A)エポキシ樹脂と、(B)高分子化合物と、(C)フッ素原子含有アルコキシシラン化合物と、(D)無機充填材とを含む樹脂組成物が開示されている。この樹脂組成物では、(B)高分子化合物が、ポリブタジエン構造、ポリシロキサン構造、ポリ(メタ)アクリレート構造、ポリアルキレン構造、ポリアルキレンオキシ構造、ポリイソプレン構造、ポリイソブチレン構造、及びポリカーボネート構造から選択される1種以上の構造を有する高分子化合物である。 Patent Document 1 below discloses a resin composition containing (A) an epoxy resin, (B) a polymer compound, (C) a fluorine atom-containing alkoxysilane compound, and (D) an inorganic filler. there is In this resin composition, (B) the polymer compound is selected from a polybutadiene structure, a polysiloxane structure, a poly(meth)acrylate structure, a polyalkylene structure, a polyalkyleneoxy structure, a polyisoprene structure, a polyisobutylene structure, and a polycarbonate structure. It is a polymer compound having one or more structures that are
 下記の特許文献2には、(A)脂肪族ポリカーボネート骨格を有する樹脂と、(B)無機及び/又は有機フィラーとを含む樹脂組成物が開示されている。 Patent Document 2 below discloses a resin composition containing (A) a resin having an aliphatic polycarbonate skeleton and (B) an inorganic and/or organic filler.
特開2018-150440号公報JP 2018-150440 A 特開2007-284555号公報JP 2007-284555 A
 硬化物の誘電正接が低くなるように設計された従来の樹脂材料では、デスミア処理によってスミアを効果的に除去することができなかったり、金属層に対するメッキピール強度を高めることができなかったりすることがある。 Conventional resin materials, which are designed to have a low dielectric loss tangent of cured products, cannot effectively remove smears by desmearing, and cannot increase the peel strength of the plating to the metal layer. There is
 また、低い誘電正接が要求される基板では、大型化及び多層化が進み、基板の重量が重くなっている。それに伴って、基板の取り扱い時及び輸送時に、基板端部の硬化物層に欠けが生じやすくなっている。 In addition, substrates that require a low dielectric loss tangent are becoming larger and more multilayered, and the weight of the substrate is increasing. Along with this, chipping of the cured material layer at the edges of the substrate tends to occur during handling and transportation of the substrate.
 ところで、上記特許文献1,2には、ポリカーボネート構造を有する樹脂を含む樹脂材料が記載されている。しかしながら、上記特許文献1,2に記載のポリカーボネート構造を有する樹脂は、硬化剤ではない。上記特許文献1,2に記載のようなポリカーボネート構造を有する樹脂を用いると、硬化物の誘電正接をある程度小さくすることができる。しかしながら、ポリカーボネート構造を有する樹脂を用いた場合であっても、デスミア性が低下したり、基板端部の硬化物層に欠けが生じたりすることがある。 By the way, the above Patent Documents 1 and 2 describe a resin material containing a resin having a polycarbonate structure. However, the resins having a polycarbonate structure described in Patent Documents 1 and 2 are not curing agents. When a resin having a polycarbonate structure as described in Patent Documents 1 and 2 is used, the dielectric loss tangent of the cured product can be reduced to some extent. However, even when a resin having a polycarbonate structure is used, the desmear property may be lowered, or chipping may occur in the cured material layer at the edges of the substrate.
 本発明の目的は、1)硬化物の誘電正接を低くすることができ、2)デスミア処理によってスミアを効果的に除去することができ、3)メッキピール強度を高めることができ、4)基板端部の硬化物層における欠けを生じにくくすることができる樹脂材料を提供することである。また、本発明は、上記樹脂材料を用いた多層プリント配線板を提供することも目的とする。 The objects of the present invention are 1) to reduce the dielectric loss tangent of the cured product, 2) to effectively remove smear by desmear treatment, 3) to increase the plating peel strength, and 4) to provide a substrate. It is an object of the present invention to provide a resin material capable of making it difficult for chipping to occur in a cured material layer at the end. Another object of the present invention is to provide a multilayer printed wiring board using the resin material.
 本発明の広い局面によれば、エポキシ化合物と、フィラーと、硬化剤とを含み、前記フィラーの平均粒子径が2.0μm以下であり、前記硬化剤が、カーボネート構造を有しかつエポキシ基と反応可能な官能基を有する第1の硬化剤を含む、樹脂材料が提供される。 According to a broad aspect of the present invention, an epoxy compound, a filler, and a curing agent are included, wherein the filler has an average particle size of 2.0 μm or less, and the curing agent has a carbonate structure and an epoxy group. A resin material is provided that includes a first curing agent having reactive functional groups.
 本発明に係る樹脂材料のある特定の局面では、樹脂材料中の溶剤を除く成分100重量%中、前記フィラーの含有量が50重量%以上90重量%以下である。 In a specific aspect of the resin material according to the present invention, the content of the filler is 50% by weight or more and 90% by weight or less in 100% by weight of the components excluding the solvent in the resin material.
 本発明に係る樹脂材料のある特定の局面では、前記第1の硬化剤の分子量が20000以下である。 In a specific aspect of the resin material according to the present invention, the first curing agent has a molecular weight of 20,000 or less.
 本発明に係る樹脂材料のある特定の局面では、前記硬化剤が、カーボネート構造を有さない第2の硬化剤を含む。 In a specific aspect of the resin material according to the present invention, the curing agent contains a second curing agent that does not have a carbonate structure.
 本発明に係る樹脂材料のある特定の局面では、前記第2の硬化剤が、活性エステル化合物を含む。 In a specific aspect of the resin material according to the present invention, the second curing agent contains an active ester compound.
 本発明に係る樹脂材料のある特定の局面では、前記樹脂材料は、ポリイミド樹脂を含む。 In a specific aspect of the resin material according to the present invention, the resin material contains polyimide resin.
 本発明に係る樹脂材料のある特定の局面では、前記樹脂材料は、樹脂フィルムである。 In a specific aspect of the resin material according to the present invention, the resin material is a resin film.
 本発明に係る樹脂材料は、多層プリント配線板において、絶縁層を形成するために好適に用いられる。 The resin material according to the present invention is suitably used for forming insulating layers in multilayer printed wiring boards.
 本発明の広い局面によれば、回路基板と、前記回路基板の表面上に配置された複数の絶縁層と、複数の前記絶縁層間に配置された金属層とを備え、複数の前記絶縁層の内の少なくとも1層が、上述した樹脂材料の硬化物である、多層プリント配線板が提供される。 According to a broad aspect of the present invention, the present invention comprises a circuit board, a plurality of insulating layers disposed on a surface of the circuit board, and a metal layer disposed between the plurality of insulating layers, wherein A multilayer printed wiring board is provided in which at least one layer is a cured product of the resin material described above.
 本発明に係る樹脂材料は、エポキシ化合物と、フィラーと、硬化剤とを含み、上記フィラーの平均粒子径が2.0μm以下であり、上記硬化剤が、カーボネート構造を有しかつエポキシ基と反応可能な官能基を有する第1の硬化剤を含む。本発明に係る樹脂材料では、上記の構成が備えられているので、1)硬化物の誘電正接を低くすることができ、2)デスミア処理によってスミアを効果的に除去することができ、3)メッキピール強度を高めることができ、4)基板端部の硬化物層における欠けを生じにくくすることができる。 A resin material according to the present invention includes an epoxy compound, a filler, and a curing agent, wherein the filler has an average particle size of 2.0 μm or less, and the curing agent has a carbonate structure and reacts with an epoxy group. A first curing agent with possible functional groups is included. Since the resin material according to the present invention has the above configuration, 1) the dielectric loss tangent of the cured product can be lowered, 2) smear can be effectively removed by desmear treatment, and 3). The plating peel strength can be increased, and 4) chipping of the cured product layer at the edge of the substrate can be prevented.
図1は、本発明の一実施形態に係る樹脂材料を用いた多層プリント配線板を模式的に示す断面図である。FIG. 1 is a cross-sectional view schematically showing a multilayer printed wiring board using a resin material according to one embodiment of the present invention.
 以下、本発明の詳細を説明する。 The details of the present invention will be described below.
 本発明に係る樹脂材料は、エポキシ化合物と、フィラーと、硬化剤とを含み、上記フィラーの平均粒子径が2.0μm以下であり、上記硬化剤が、カーボネート構造を有しかつエポキシ基と反応可能な官能基を有する第1の硬化剤を含む。 A resin material according to the present invention includes an epoxy compound, a filler, and a curing agent, wherein the filler has an average particle size of 2.0 μm or less, and the curing agent has a carbonate structure and reacts with an epoxy group. A first curing agent with possible functional groups is included.
 本発明に係る樹脂材料では、上記の構成が備えられているので、1)硬化物の誘電正接を低くすることができ、2)デスミア処理によってスミアを効果的に除去することができ、3)メッキピール強度を高めることができ、4)基板端部の硬化物層における欠けを生じにくくすることができるという、1)-4)の効果を全て発揮することができる。 Since the resin material according to the present invention has the above configuration, 1) the dielectric loss tangent of the cured product can be lowered, 2) smear can be effectively removed by desmear treatment, and 3). All of the effects of 1)-4) can be exhibited, namely that the peel strength of the plating can be increased and 4) chipping of the cured product layer at the edge of the substrate can be prevented.
 本発明に係る樹脂材料では、上記硬化剤が、カーボネート構造を有しかつエポキシ基と反応可能な官能基を有する第1の硬化剤を含むので、上記樹脂材料の硬化時に上記第1の硬化剤中のカーボネート構造が硬化物中で相分離しにくい。したがって、均一な硬化物が得られるため、基板端部の硬化物層における欠けを生じにくくすることができる。また、本発明に係る樹脂材料では、上記硬化剤が、上記第1の硬化剤を含むので、上記第1の硬化剤と上記エポキシ化合物とが均一に架橋されることにより、貫通孔の形成後に生じるスミアをデスミア処理によって均一にエッチングすることができ、スミアを効果的に除去することができる。さらに、本発明に係る樹脂材料では、上記硬化剤が、上記第1の硬化剤を含むので、カーボネート構造が相分離することによりスミアが部分的に過剰にエッチングされることを防止できるため、メッキピール強度を高めることができる。 In the resin material according to the present invention, the curing agent contains the first curing agent having a carbonate structure and a functional group capable of reacting with an epoxy group. The carbonate structure inside is less likely to undergo phase separation in the cured product. Therefore, since a uniform cured product can be obtained, chipping of the cured product layer at the edge of the substrate can be prevented. In addition, in the resin material according to the present invention, since the curing agent contains the first curing agent, uniform cross-linking of the first curing agent and the epoxy compound can be achieved after the formation of the through-holes. The resulting smear can be uniformly etched by the desmear treatment, and the smear can be effectively removed. Furthermore, in the resin material according to the present invention, since the curing agent contains the first curing agent, it is possible to prevent smear from being partially excessively etched due to phase separation of the carbonate structure. Peel strength can be increased.
 また、本発明に係る樹脂材料では、フィラーの平均粒子径が2.0μm以下であるので、上記フィラーの近傍においても、第1の硬化剤とエポキシ化合物とが均一に架橋されるため、基板端部の硬化物層における欠けを生じにくくすることができる。結果として、より一層効率的にスミアを除去することができる。 In addition, in the resin material according to the present invention, since the filler has an average particle size of 2.0 μm or less, the first curing agent and the epoxy compound are uniformly crosslinked even in the vicinity of the filler. It is possible to make it difficult for chipping to occur in the cured product layer of the part. As a result, smear can be removed more efficiently.
 本発明に係る樹脂材料は、樹脂組成物であってもよく、樹脂フィルムであってもよい。上記樹脂組成物は、流動性を有する。上記樹脂組成物は、ペースト状であってもよい。上記ペースト状には液状が含まれる。取扱性に優れることから、本発明に係る樹脂材料は、樹脂フィルムであることが好ましい。 The resin material according to the present invention may be a resin composition or a resin film. The resin composition has fluidity. The resin composition may be in the form of a paste. The pasty form includes a liquid form. The resin material according to the present invention is preferably a resin film because of its excellent handleability.
 本発明に係る樹脂材料は、熱硬化性樹脂材料であることが好ましい。上記樹脂材料が樹脂フィルムである場合には、該樹脂フィルムは、熱硬化性樹脂フィルムであることが好ましい。 The resin material according to the present invention is preferably a thermosetting resin material. When the resin material is a resin film, the resin film is preferably a thermosetting resin film.
 以下、本発明に係る樹脂材料に用いられる各成分の詳細、及び本発明に係る樹脂材料の用途などを説明する。 Details of each component used in the resin material according to the present invention and applications of the resin material according to the present invention will be described below.
 [エポキシ化合物]
 上記樹脂材料は、エポキシ化合物を含む。上記エポキシ化合物として、従来公知のエポキシ化合物を使用可能である。上記エポキシ化合物は、少なくとも1個のエポキシ基を有する有機化合物である。上記エポキシ化合物は、1種のみが用いられてもよく、2種以上が併用されてもよい。
[Epoxy compound]
The resin material includes an epoxy compound. Conventionally known epoxy compounds can be used as the epoxy compound. The epoxy compound is an organic compound having at least one epoxy group. Only one type of the epoxy compound may be used, or two or more types may be used in combination.
 上記エポキシ化合物としては、ビスフェノールA型エポキシ化合物、ビスフェノールF型エポキシ化合物、ビスフェノールS型エポキシ化合物、フェノールノボラック型エポキシ化合物、ビフェニル型エポキシ化合物、ビフェニルノボラック型エポキシ化合物、ビフェノール型エポキシ化合物、ナフタレン型エポキシ化合物、フルオレン型エポキシ化合物、フェノールアラルキル型エポキシ化合物、ナフトールアラルキル型エポキシ化合物、ジシクロペンタジエン型エポキシ化合物、アントラセン型エポキシ化合物、アダマンタン骨格を有するエポキシ化合物、トリシクロデカン骨格を有するエポキシ化合物、ナフチレンエーテル型エポキシ化合物、及びトリアジン核を骨格に有するエポキシ化合物等が挙げられる。 Examples of the epoxy compounds include bisphenol A type epoxy compounds, bisphenol F type epoxy compounds, bisphenol S type epoxy compounds, phenol novolac type epoxy compounds, biphenyl type epoxy compounds, biphenyl novolac type epoxy compounds, biphenol type epoxy compounds, and naphthalene type epoxy compounds. , fluorene type epoxy compound, phenol aralkyl type epoxy compound, naphthol aralkyl type epoxy compound, dicyclopentadiene type epoxy compound, anthracene type epoxy compound, epoxy compound having adamantane skeleton, epoxy compound having tricyclodecane skeleton, naphthylene ether type Epoxy compounds, epoxy compounds having a triazine core in the skeleton, and the like are included.
 上記エポキシ化合物は、グリシジルエーテル化合物であってもよい。上記グリシジルエーテル化合物とは、グリシジルエーテル基を少なくとも1個有する化合物である。 The epoxy compound may be a glycidyl ether compound. The glycidyl ether compound is a compound having at least one glycidyl ether group.
 硬化物の誘電正接をより一層低くし、かつ硬化物の熱寸法安定性及び難燃性を高める観点からは、上記エポキシ化合物は、芳香族骨格を有するエポキシ化合物を含むことが好ましく、ナフタレン骨格又はフェニル骨格を有するエポキシ化合物を含むことがより好ましい。 From the viewpoint of further lowering the dielectric loss tangent of the cured product and improving the thermal dimensional stability and flame retardancy of the cured product, the epoxy compound preferably contains an epoxy compound having an aromatic skeleton, a naphthalene skeleton or More preferably, it contains an epoxy compound having a phenyl skeleton.
 硬化物の誘電正接をより一層低くする観点からは、上記エポキシ化合物は、25℃で液状のエポキシ化合物と、25℃で固形のエポキシ化合物とを含むことが好ましい。 From the viewpoint of further lowering the dielectric loss tangent of the cured product, the epoxy compound preferably contains an epoxy compound that is liquid at 25°C and an epoxy compound that is solid at 25°C.
 上記25℃で液状のエポキシ化合物の25℃での粘度は、1000mPa・s以下であることが好ましく、500mPa・s以下であることがより好ましい。 The viscosity at 25°C of the epoxy compound that is liquid at 25°C is preferably 1000 mPa·s or less, more preferably 500 mPa·s or less.
 上記エポキシ化合物の粘度は、例えば動的粘弾性測定装置(レオロジカ・インスツルメンツ社製「VAR-100」)等を用いて測定することができる。 The viscosity of the epoxy compound can be measured using, for example, a dynamic viscoelasticity measuring device ("VAR-100" manufactured by Rheological Instruments).
 上記エポキシ化合物の分子量は1000以下であることが好ましい。この場合には、樹脂材料中の溶剤を除く成分100重量%中、フィラーの含有量が50重量%以上であっても、絶縁層の形成時に流動性が高い樹脂材料が得られる。このため、樹脂材料の未硬化物又はBステージ化物を回路基板上にラミネートした場合に、フィラーを均一に存在させることができる。「樹脂材料中の溶剤を除く成分100重量%」とは、樹脂材料が溶剤を含む場合に、「樹脂材料中の溶剤を除く成分100重量%」を意味し、樹脂材料が溶剤を含まない場合に、「樹脂材料100重量%」を意味する。 The molecular weight of the epoxy compound is preferably 1000 or less. In this case, even if the filler content is 50% by weight or more in 100% by weight of the components excluding the solvent in the resin material, a resin material with high fluidity can be obtained when forming the insulating layer. Therefore, when an uncured resin material or a B-stage resin material is laminated on a circuit board, the filler can be uniformly present. "100% by weight of the components excluding the solvent in the resin material" means "100% by weight of the components excluding the solvent in the resin material" when the resin material contains the solvent, and when the resin material does not contain the solvent means "100% by weight of resin material".
 上記エポキシ化合物の分子量は、上記エポキシ化合物が重合体ではない場合、及び上記エポキシ化合物の構造式が特定できる場合は、当該構造式から算出できる分子量を意味する。また、上記エポキシ化合物が重合体である場合は、ゲルパーミエーションクロマトグラフィー(GPC)により測定されたポリスチレン換算での重量平均分子量を意味する。 The molecular weight of the epoxy compound means the molecular weight that can be calculated from the structural formula when the epoxy compound is not a polymer and when the structural formula of the epoxy compound can be specified. Moreover, when the said epoxy compound is a polymer, it means the weight average molecular weight in terms of polystyrene measured by gel permeation chromatography (GPC).
 上記樹脂材料中の溶剤を除く成分100重量%中、上記エポキシ化合物の含有量は、好ましくは5重量%以上、より好ましくは10重量%以上、好ましくは25重量%以下、より好ましくは20重量%以下である。上記エポキシ化合物の含有量が上記下限以上及び上記上限以下であると、上記の1)-4)の効果をより一層効果的に発揮させることができる。 The content of the epoxy compound is preferably 5% by weight or more, more preferably 10% by weight or more, preferably 25% by weight or less, and more preferably 20% by weight in 100% by weight of the components excluding the solvent in the resin material. It is below. When the content of the epoxy compound is not less than the above lower limit and not more than the above upper limit, the above effects 1) to 4) can be exhibited more effectively.
 上記樹脂材料中のフィラー及び溶剤を除く成分100重量%中、上記エポキシ化合物の含有量は、好ましくは15重量%以上、より好ましくは25重量%以上、更に好ましくは35重量%以上、好ましくは60重量%以下である。上記エポキシ化合物の含有量が上記下限以上及び上記上限以下であると、上記の1)-4)の効果を更により一層効果的に発揮させることができる。 The content of the epoxy compound is preferably 15% by weight or more, more preferably 25% by weight or more, still more preferably 35% by weight or more, and preferably 60% by weight in 100% by weight of the components excluding the filler and solvent in the resin material. % by weight or less. When the content of the epoxy compound is not less than the above lower limit and not more than the above upper limit, the above effects 1) to 4) can be exhibited even more effectively.
 [硬化剤]
 上記樹脂材料は、硬化剤を含む。上記の1)-4)の効果を発揮させる観点から、上記硬化剤は、カーボネート構造を有しかつエポキシ基と反応可能な官能基を有する第1の硬化剤を含む。上記硬化剤は、カーボネート構造を有さない第2の硬化剤を含んでいてもよく、含んでいなくてもよい。
[Curing agent]
The resin material contains a curing agent. From the viewpoint of exhibiting the effects of 1) to 4) above, the curing agent includes a first curing agent having a carbonate structure and a functional group capable of reacting with an epoxy group. The curing agent may or may not contain a second curing agent that does not have a carbonate structure.
 <第1の硬化剤>
 上記第1の硬化剤は、カーボネート構造を有しかつエポキシ基と反応可能な官能基を有する化合物(硬化剤)である。上記第1の硬化剤は、カーボネート構造(-O-C(=O)-O-)を有する。上記第1の硬化剤は、エポキシ基と反応可能な官能基を有する。上記第1の硬化剤は、上記エポキシ化合物のエポキシ基と反応可能な官能基を有する。上記第1の硬化剤は、1種のみが用いられてもよく、2種以上が併用されてもよい。
<First Curing Agent>
The first curing agent is a compound (curing agent) having a carbonate structure and a functional group capable of reacting with an epoxy group. The first curing agent has a carbonate structure (--OC(=O)--O--). The first curing agent has a functional group capable of reacting with an epoxy group. The first curing agent has a functional group capable of reacting with the epoxy group of the epoxy compound. Only one kind of the first curing agent may be used, or two or more kinds thereof may be used in combination.
 上記エポキシ基と反応可能な官能基としては、アミノ基、水酸基、活性エステル基、シアネートエステル基、カルボジイミド基、マレイミド基及びベンゾオキサジン基等が挙げられる。 Examples of functional groups that can react with the epoxy groups include amino groups, hydroxyl groups, active ester groups, cyanate ester groups, carbodiimide groups, maleimide groups, and benzoxazine groups.
 硬化物の誘電正接をより一層低くする観点からは、上記エポキシ基と反応可能な官能基は、マレイミド基、水酸基又は活性エステル基であることが好ましい。 From the viewpoint of further lowering the dielectric loss tangent of the cured product, the functional group capable of reacting with the epoxy group is preferably a maleimide group, a hydroxyl group, or an active ester group.
 硬化物の誘電正接をより一層低くする観点からは、上記第1の硬化剤は、脂肪族環を有することが好ましい。硬化物の耐熱性を高める観点からは、上記第1の硬化剤は、芳香族環を有することが好ましい。硬化物の誘電正接をより一層低くし、かつ、硬化物の耐熱性を高める観点からは、上記第1の硬化剤は、脂肪族環と芳香族環とを有することが好ましい。 From the viewpoint of further lowering the dielectric loss tangent of the cured product, the first curing agent preferably has an aliphatic ring. From the viewpoint of enhancing the heat resistance of the cured product, the first curing agent preferably has an aromatic ring. From the viewpoint of further lowering the dielectric loss tangent of the cured product and increasing the heat resistance of the cured product, the first curing agent preferably has an aliphatic ring and an aromatic ring.
 上記第1の硬化剤は、フェノール構造又は活性エステル構造を有することが好ましい。 The first curing agent preferably has a phenol structure or an active ester structure.
 なお、活性エステル構造とは、例えば、下記式(10A)で表される構造である。 The active ester structure is, for example, a structure represented by the following formula (10A).
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 上記式(10A)中、R1は、脂肪族鎖、脂肪族環又は芳香族環を表し、R2は、芳香族環を表す。 In the above formula (10A), R1 represents an aliphatic chain, an aliphatic ring or an aromatic ring, and R2 represents an aromatic ring.
 上記の1)-4)の効果をバランスよく発揮させる観点からは、上記第1の硬化剤は、フェノールカーボネート化合物(カーボネート構造とフェノール構造とを有する化合物)を含むことが好ましく、フェノールカーボネート化合物(カーボネート構造とフェノール構造とを有する化合物)であることがより好ましい。特に、フェノールカーボネート化合物(カーボネート構造とフェノール構造とを有する化合物の使用により、上記の3)の効果をより一層効果的に発揮させることができる。 From the viewpoint of exhibiting the effects of 1) to 4) above in a well-balanced manner, the first curing agent preferably contains a phenol carbonate compound (a compound having a carbonate structure and a phenol structure), and a phenol carbonate compound ( A compound having a carbonate structure and a phenol structure) is more preferred. In particular, by using a phenol carbonate compound (a compound having a carbonate structure and a phenol structure), the effect of 3) above can be exhibited more effectively.
 上記の1)-4)の効果をバランスよく発揮させる観点からは、上記第1の硬化剤は、下記式(3)で表される化合物であることが好ましい。 From the viewpoint of exhibiting the above effects 1) to 4) in a well-balanced manner, the first curing agent is preferably a compound represented by the following formula (3).
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 上記式(3)中、X1及びX2はそれぞれ、水酸基、又は活性エステル基を表し、R1は、脂肪族環を表し、R2及びR3はそれぞれ、ビスフェノール化合物に由来する骨格を表し、nは1以上の整数を表す。上記式(3)中、X1及びX2は、同一であってもよく、異なっていてもよい。上記式(3)中、R2及びR3は、同一であってもよく、異なっていてもよい。上記式(3)中、nは、500以下の整数を表してもよく、200以下の整数を表してもよく、100以下の整数を表してもよく、50以下の整数を表してもよい。上記式(3)中、nは、上記第1の硬化剤の分子量が2000以上となる整数を表すことが好ましい。上記式(3)中、nは、上記第1の硬化剤の分子量が20000以下となる整数を表すことが好ましい。 In the above formula (3), X1 and X2 each represent a hydroxyl group or an active ester group, R1 represents an aliphatic ring, R2 and R3 each represent a skeleton derived from a bisphenol compound, and n is 1 or more. represents an integer of In formula (3) above, X1 and X2 may be the same or different. In formula (3) above, R2 and R3 may be the same or different. In the formula (3), n may represent an integer of 500 or less, an integer of 200 or less, an integer of 100 or less, or an integer of 50 or less. In the formula (3), n preferably represents an integer such that the molecular weight of the first curing agent is 2000 or more. In the formula (3), n preferably represents an integer such that the molecular weight of the first curing agent is 20,000 or less.
 上記の1),2),4)の効果、特に、上記の1)の効果をより一層効果的に発揮させる観点からは、上記第1の硬化剤は、活性エステルカーボネート化合物(カーボネート構造と活性エステル構造とを有する化合物)を含むことが好ましい。上記の1),2),4)の効果、特に、上記の1)の効果を更に一層効果的に発揮させる観点からは、上記第1の硬化剤は、活性エステルカーボネート化合物(カーボネート構造と活性エステル構造とを有する化合物)であることがより好ましい。 From the viewpoint of exhibiting the above effects 1), 2) and 4), particularly the above effect 1) more effectively, the first curing agent should be an active ester carbonate compound (a carbonate structure and an active compound having an ester structure). From the viewpoint of exhibiting the effects of 1), 2), and 4) above, particularly the effect of 1) above more effectively, the first curing agent is an active ester carbonate compound (a carbonate structure and an active compound having an ester structure).
 上記第1の硬化剤の分子量は、好ましくは2000以上、より好ましくは3000以上、好ましくは20000以下、より好ましくは15000以下である。上記第1の硬化剤の分子量が上記下限以上及び上記上限以下であると、上記の1)-4)の効果をより一層効果的に発揮することができる。 The molecular weight of the first curing agent is preferably 2000 or more, more preferably 3000 or more, preferably 20000 or less, more preferably 15000 or less. When the molecular weight of the first curing agent is not less than the lower limit and not more than the upper limit, the above effects 1) to 4) can be exhibited more effectively.
 上記第1の硬化剤の分子量は、上記第1の硬化剤の構造式が特定できる場合は、当該構造式から算出できる分子量を意味する。また、上記第1の硬化剤が重合体である場合は、ゲルパーミエーションクロマトグラフィー(GPC)により測定されたポリスチレン換算での重量平均分子量を意味する。 When the structural formula of the first curing agent can be identified, the molecular weight of the first curing agent means the molecular weight that can be calculated from the structural formula. Moreover, when the said 1st hardening|curing agent is a polymer, it means the weight average molecular weight in polystyrene conversion measured by the gel permeation chromatography (GPC).
 上記第1の硬化剤のガラス転移温度は、好ましくは30℃以上、より好ましくは50℃以上であり、好ましくは150℃以下、より好ましくは120℃以下である。上記第1の硬化剤のガラス転移温度が上記下限以上であると、メッキピール強度をより一層高めることができる。上記第1の硬化剤のガラス転移温度が上記上限以下であると、上記樹脂材料の硬化性をより一層良好にすることができ、硬化物の誘電正接をより一層良好にすることができる。 The glass transition temperature of the first curing agent is preferably 30°C or higher, more preferably 50°C or higher, and preferably 150°C or lower, more preferably 120°C or lower. When the glass transition temperature of the first curing agent is equal to or higher than the lower limit, the plating peel strength can be further increased. When the glass transition temperature of the first curing agent is equal to or lower than the upper limit, the curability of the resin material can be further improved, and the dielectric loss tangent of the cured product can be further improved.
 上記第1の硬化剤の市販品としては、例えば、群栄化学社製「FTC509」及び「FTC509ES」、並びに、旭化成ケミカルズ社製「T6002」及び「T6001」等が挙げられる。 Commercially available products of the first curing agent include, for example, "FTC509" and "FTC509ES" manufactured by Gunei Chemical Co., Ltd., and "T6002" and "T6001" manufactured by Asahi Kasei Chemicals.
 上記硬化剤100重量%中、上記第1の硬化剤の含有量は、好ましくは10重量%以上、より好ましくは20重量%以上、好ましくは60重量%以下、より好ましくは55重量%以下である。上記第1の硬化剤の含有量が上記下限以上であると、上記の1),2)の効果をより一層効果的に発揮することができる。上記第1の硬化剤の含有量が上記上限以下であると、上記の3),4)の効果をより一層効果的に発揮することができる。 The content of the first curing agent in 100% by weight of the curing agent is preferably 10% by weight or more, more preferably 20% by weight or more, preferably 60% by weight or less, and more preferably 55% by weight or less. . When the content of the first curing agent is at least the above lower limit, the above effects 1) and 2) can be exhibited more effectively. When the content of the first curing agent is equal to or less than the upper limit, the above effects 3) and 4) can be exhibited more effectively.
 上記エポキシ化合物100重量部に対する上記第1の硬化剤の含有量は、好ましくは10重量部以上、より好ましくは20重量部以上、好ましくは70重量部以下、より好ましくは60重量部以下である。上記第1の硬化剤の含有量が上記下限以上及び上記上限以下であると、上記の1)-4)の効果をより一層効果的に発揮することができる。 The content of the first curing agent with respect to 100 parts by weight of the epoxy compound is preferably 10 parts by weight or more, more preferably 20 parts by weight or more, preferably 70 parts by weight or less, and more preferably 60 parts by weight or less. When the content of the first curing agent is equal to or more than the lower limit and equal to or less than the upper limit, the above effects 1) to 4) can be exhibited more effectively.
 上記樹脂材料中の溶剤を除く成分100重量%中、上記第1の硬化剤の含有量は、好ましくは0.5重量%以上、より好ましくは1重量%以上、好ましくは20重量%以下、より好ましくは15重量%以下である。上記第1の硬化剤の含有量が上記下限以上及び上記上限以下であると、上記の1)-4)の効果をより一層効果的に発揮させることができる。 The content of the first curing agent in 100% by weight of the components excluding the solvent in the resin material is preferably 0.5% by weight or more, more preferably 1% by weight or more, and preferably 20% by weight or less. Preferably, it is 15% by weight or less. When the content of the first curing agent is not less than the lower limit and not more than the upper limit, the above effects 1) to 4) can be exhibited more effectively.
 上記樹脂材料中のフィラー及び溶剤を除く成分100重量%中、上記第1の硬化剤の含有量は、好ましくは2.5重量%以上、より好ましくは5重量%以上、好ましくは35重量%以下、より好ましくは30重量%以下である。上記第1の硬化剤の含有量が上記下限以上及び上記上限以下であると、上記の1)-4)の効果をより一層効果的に発揮させることができる。「樹脂材料中のフィラー及び溶剤を除く成分100重量%」とは、樹脂材料が溶剤を含む場合に、「樹脂材料中のフィラー及び溶剤を除く成分100重量%」を意味し、樹脂材料が溶剤を含まない場合に、「樹脂材料中のフィラーを除く成分100重量%」を意味する。 The content of the first curing agent is preferably 2.5% by weight or more, more preferably 5% by weight or more, and preferably 35% by weight or less in 100% by weight of the components excluding the filler and solvent in the resin material. , more preferably 30% by weight or less. When the content of the first curing agent is not less than the lower limit and not more than the upper limit, the above effects 1) to 4) can be exhibited more effectively. "100% by weight of components excluding fillers and solvents in the resin material" means "100% by weight of components excluding fillers and solvents in the resin material" when the resin material contains a solvent. When not containing, it means "100% by weight of the components excluding the filler in the resin material".
 <第2の硬化剤>
 上記第2の硬化剤は、カーボネート構造を有さない化合物(硬化剤)である。上記硬化剤は、上記第2の硬化剤を含むことが好ましい。上記第2の硬化剤は、1種のみが用いられてもよく、2種以上が併用されてもよい。
<Second Curing Agent>
The second curing agent is a compound (curing agent) that does not have a carbonate structure. The curing agent preferably contains the second curing agent. Only one kind of the second curing agent may be used, or two or more kinds thereof may be used in combination.
 上記第2の硬化剤は、エポキシ基と反応可能な官能基を有することが好ましい。上記第2の硬化剤は、上記エポキシ化合物のエポキシ基と反応可能な官能基を有することが好ましい。 The second curing agent preferably has a functional group capable of reacting with an epoxy group. The second curing agent preferably has a functional group capable of reacting with the epoxy group of the epoxy compound.
 上記第2の硬化剤としては、活性エステル化合物、フェノール化合物(フェノール硬化剤)、シアネートエステル化合物(シアネートエステル硬化剤)、カルボジイミド化合物(カルボジイミド硬化剤)、オキサゾリン化合物、マレイミド化合物、ベンゾオキサジン化合物(ベンゾオキサジン硬化剤)、アミン化合物(アミン硬化剤)、チオール化合物(チオール硬化剤)、ホスフィン化合物、ジシアンジアミド、及び酸無水物等が挙げられる。 Examples of the second curing agent include active ester compounds, phenol compounds (phenol curing agents), cyanate ester compounds (cyanate ester curing agents), carbodiimide compounds (carbodiimide curing agents), oxazoline compounds, maleimide compounds, benzoxazine compounds (benzo oxazine curing agent), amine compounds (amine curing agent), thiol compounds (thiol curing agent), phosphine compounds, dicyandiamide, acid anhydrides, and the like.
 上記第2の硬化剤は、活性エステル化合物、フェノール化合物、シアネートエステル化合物、カルボジイミド化合物、オキサゾリン化合物、又はマレイミド化合物を含むことが好ましく、活性エステル化合物、又はフェノール化合物を含むことがより好ましく、活性エステル化合物を含むことが更に好ましい。この場合には、硬化物の誘電正接をより一層低くすることができ、かつ硬化物の熱寸法安定性をより一層高めることができる。硬化物の誘電正接をより一層低くする観点からは、上記第2の硬化剤は、活性エステル化合物を含むことが好ましい。メッキピール強度をより一層高める観点からは、上記第2の硬化剤は、フェノール化合物を含むことが好ましい。 The second curing agent preferably contains an active ester compound, a phenol compound, a cyanate ester compound, a carbodiimide compound, an oxazoline compound, or a maleimide compound, more preferably an active ester compound or a phenol compound, and an active ester More preferably, it contains a compound. In this case, the dielectric loss tangent of the cured product can be further reduced, and the thermal dimensional stability of the cured product can be further enhanced. From the viewpoint of further lowering the dielectric loss tangent of the cured product, the second curing agent preferably contains an active ester compound. From the viewpoint of further increasing the plating peel strength, the second curing agent preferably contains a phenol compound.
 活性エステル化合物:
 上記活性エステル化合物とは、構造体中にエステル結合を少なくとも1つ含み、かつ、エステル結合の両側に脂肪族鎖、脂肪族環又は芳香族環が結合している化合物をいう。活性エステル化合物は、例えばカルボン酸化合物又はチオカルボン酸化合物と、ヒドロキシ化合物又はチオール化合物との縮合反応によって得られる。活性エステル化合物の例としては、下記式(1)で表される化合物が挙げられる。上記活性エステル化合物は、1種のみが用いられてもよく、2種以上が併用されてもよい。
Active ester compound:
The active ester compound is a compound that contains at least one ester bond in its structure and that has an aliphatic chain, an aliphatic ring, or an aromatic ring bonded to both sides of the ester bond. An active ester compound is obtained, for example, by a condensation reaction between a carboxylic acid compound or a thiocarboxylic acid compound and a hydroxy compound or a thiol compound. Examples of active ester compounds include compounds represented by the following formula (1). Only one kind of the active ester compound may be used, or two or more kinds thereof may be used in combination.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 上記式(1)中、X1は、脂肪族鎖を含む基、脂肪族環を含む基又は芳香族環を含む基を表し、X2は、芳香族環を含む基を表す。上記芳香族環を含む基の好ましい例としては、置換基を有していてもよいベンゼン環、及び置換基を有していてもよいナフタレン環等が挙げられる。上記置換基としては、炭化水素基が挙げられる。該炭化水素基の炭素数は、好ましくは12以下、より好ましくは6以下、更に好ましくは4以下である。 In the above formula (1), X1 represents an aliphatic chain-containing group, an aliphatic ring-containing group, or an aromatic ring-containing group, and X2 represents an aromatic ring-containing group. Preferred examples of the aromatic ring-containing group include an optionally substituted benzene ring and an optionally substituted naphthalene ring. A hydrocarbon group is mentioned as said substituent. The number of carbon atoms in the hydrocarbon group is preferably 12 or less, more preferably 6 or less, still more preferably 4 or less.
 上記式(1)中、X1及びX2の組み合わせとしては、置換基を有していてもよいベンゼン環と、置換基を有していてもよいベンゼン環との組み合わせ、置換基を有していてもよいベンゼン環と、置換基を有していてもよいナフタレン環との組み合わせが挙げられる。さらに、上記式(1)中、X1及びX2の組み合わせとしては、置換基を有していてもよいナフタレン環と、置換基を有していてもよいナフタレン環との組み合わせが挙げられる。 In the above formula (1), the combination of X1 and X2 includes a combination of a benzene ring which may have a substituent and a benzene ring which may have a substituent, and a combination of a benzene ring, which may have a substituent, and a naphthalene ring, which may have a substituent. Furthermore, in the above formula (1), the combination of X1 and X2 includes a combination of an optionally substituted naphthalene ring and an optionally substituted naphthalene ring.
 上記活性エステル化合物は特に限定されない。硬化物の熱寸法安定性及び難燃性をより一層高める観点からは、上記活性エステル化合物は、2個以上の芳香族環を有する活性エステル化合物であることが好ましい。硬化物の誘電正接を低くし、かつ硬化物の熱寸法安定性を高める観点からは、上記活性エステル化合物は、主鎖骨格中にナフタレン環を有することがより好ましい。 The above active ester compound is not particularly limited. From the viewpoint of further improving the thermal dimensional stability and flame retardancy of the cured product, the active ester compound is preferably an active ester compound having two or more aromatic rings. From the viewpoint of reducing the dielectric loss tangent of the cured product and enhancing the thermal dimensional stability of the cured product, the active ester compound more preferably has a naphthalene ring in the main chain skeleton.
 上記活性エステル化合物の市販品としては、DIC社製「HPC-8000-65T」、「EXB9416-70BK」及び「HPC8150-62T」等が挙げられる。 Commercially available products of the above active ester compounds include "HPC-8000-65T", "EXB9416-70BK" and "HPC8150-62T" manufactured by DIC.
 フェノール化合物:
 上記フェノール化合物としては、ノボラック型フェノール、ビフェノール型フェノール、ナフタレン型フェノール、ジシクロペンタジエン型フェノール、アラルキル型フェノール及びジシクロペンタジエン型フェノール等が挙げられる。上記フェノール化合物は、1種のみが用いられてもよく、2種以上が併用されてもよい。
Phenolic compounds:
Examples of the phenol compound include novolak-type phenol, biphenol-type phenol, naphthalene-type phenol, dicyclopentadiene-type phenol, aralkyl-type phenol, and dicyclopentadiene-type phenol. As for the said phenol compound, only 1 type may be used and 2 or more types may be used together.
 上記フェノール化合物の市販品としては、ノボラック型フェノール(DIC社製「TD-2091」)、ビフェニルノボラック型フェノール(明和化成社製「MEH-7851」)、アラルキル型フェノール化合物(明和化成社製「MEH-7800」)、並びにアミノトリアジン骨格を有するフェノール(DIC社製「LA-1356」及び「LA-3018-50P」)等が挙げられる。 Commercially available products of the above phenol compounds include novolak phenol (manufactured by DIC Corporation "TD-2091"), biphenyl novolak phenol (manufactured by Meiwa Kasei Co., Ltd. "MEH-7851"), aralkyl phenol compounds (manufactured by Meiwa Kasei Co., Ltd. "MEH -7800”), and phenols having an aminotriazine skeleton (manufactured by DIC “LA-1356” and “LA-3018-50P”).
 シアネートエステル化合物:
 上記シアネートエステル化合物としては、ノボラック型シアネートエステル樹脂、ビスフェノール型シアネートエステル樹脂、並びにこれらが一部三量化されたプレポリマー等が挙げられる。上記ノボラック型シアネートエステル樹脂としては、フェノールノボラック型シアネートエステル樹脂及びアルキルフェノール型シアネートエステル樹脂等が挙げられる。上記ビスフェノール型シアネートエステル樹脂としては、ビスフェノールA型シアネートエステル樹脂、ビスフェノールE型シアネートエステル樹脂及びテトラメチルビスフェノールF型シアネートエステル樹脂等が挙げられる。上記シアネートエステル化合物は、1種のみが用いられてもよく、2種以上が併用されてもよい。
Cyanate ester compound:
Examples of the cyanate ester compound include novolak-type cyanate-ester resins, bisphenol-type cyanate-ester resins, and prepolymers obtained by partially trimerizing these. Examples of the novolak-type cyanate ester resins include phenol novolac-type cyanate ester resins and alkylphenol-type cyanate ester resins. Examples of the bisphenol type cyanate ester resin include bisphenol A type cyanate ester resin, bisphenol E type cyanate ester resin and tetramethylbisphenol F type cyanate ester resin. As for the said cyanate ester compound, only 1 type may be used and 2 or more types may be used together.
 上記シアネートエステル化合物の市販品としては、フェノールノボラック型シアネートエステル樹脂(ロンザジャパン社製「PT-30」及び「PT-60」)、並びにビスフェノール型シアネートエステル樹脂が三量化されたプレポリマー(ロンザジャパン社製「BA-230S」、「BA-3000S」、「BTP-1000S」及び「BTP-6020S」)等が挙げられる。 Commercially available products of the above cyanate ester compounds include phenol novolac type cyanate ester resins (“PT-30” and “PT-60” manufactured by Lonza Japan Co., Ltd.) and prepolymers in which bisphenol type cyanate ester resins are trimerized (Lonza Japan "BA-230S", "BA-3000S", "BTP-1000S" and "BTP-6020S" manufactured by the same company).
 カルボジイミド化合物:
 上記カルボジイミド化合物は、下記式(2)で表される構造単位を有する化合物である。下記式(2)において、右端部及び左端部は、他の基との結合部位である。上記カルボジイミド化合物は、1種のみが用いられてもよく、2種以上が併用されてもよい。
Carbodiimide compounds:
The carbodiimide compound is a compound having a structural unit represented by the following formula (2). In the following formula (2), the right end and left end are bonding sites with other groups. Only one kind of the carbodiimide compound may be used, or two or more kinds thereof may be used in combination.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 上記式(2)中、Xは、アルキレン基、アルキレン基に置換基が結合した基、シクロアルキレン基、シクロアルキレン基に置換基が結合した基、アリーレン基、又はアリーレン基に置換基が結合した基を表し、pは1~5の整数を表す。Xが複数存在する場合、複数のXは同一であってもよく、異なっていてもよい。 In the above formula (2), X is an alkylene group, an alkylene group to which a substituent is bonded, a cycloalkylene group, a cycloalkylene group to which a substituent is bonded, an arylene group, or an arylene group to which a substituent is bonded group, and p is an integer of 1-5. When there are multiple X's, the multiple X's may be the same or different.
 好適な一つの形態において、少なくとも1つのXは、アルキレン基、アルキレン基に置換基が結合した基、シクロアルキレン基、又はシクロアルキレン基に置換基が結合した基である。 In one preferred embodiment, at least one X is an alkylene group, a group in which a substituent is bonded to an alkylene group, a cycloalkylene group, or a group in which a substituent is bonded to a cycloalkylene group.
 上記カルボジイミド化合物の市販品としては、日清紡ケミカル社製「カルボジライト V-02B」、「カルボジライト V-03」、「カルボジライト V-04K」、「カルボジライト V-07」、「カルボジライト V-09」、「カルボジライト 10M-SP」、及び「カルボジライト 10M-SP(改)」、並びに、ラインケミー社製「スタバクゾールP」、「スタバクゾールP400」、及び「ハイカジル510」等が挙げられる。 Commercially available carbodiimide compounds include "Carbodilite V-02B", "Carbodilite V-03", "Carbodilite V-04K", "Carbodilite V-07", "Carbodilite V-09", and "Carbodilite V-09" manufactured by Nisshinbo Chemical Co., Ltd. 10M-SP" and "Carbodilite 10M-SP (improved)", and "Stabaxol P", "Stabaxol P400" and "Hykasil 510" manufactured by Rhein Chemie.
 マレイミド化合物:
 上記マレイミド化合物としては、N-フェニルマレイミド及びN-アルキルビスマレイミド等が挙げられる。上記マレイミド化合物は、ビスマレイミド化合物であってもよい。上記マレイミド化合物は、1種のみが用いられてもよく、2種以上が併用されてもよい。
Maleimide compounds:
Examples of the maleimide compound include N-phenylmaleimide and N-alkylbismaleimide. The maleimide compound may be a bismaleimide compound. Only one type of the maleimide compound may be used, or two or more types may be used in combination.
 上記マレイミド化合物は、芳香族環を有していてもよく、有していなくてもよい。上記マレイミド化合物は、芳香族環を有することが好ましい。 The maleimide compound may or may not have an aromatic ring. The maleimide compound preferably has an aromatic ring.
 上記マレイミド化合物では、マレイミド骨格における窒素原子と、芳香族環とが結合していることが好ましい。 In the above maleimide compound, it is preferable that the nitrogen atom in the maleimide skeleton and the aromatic ring are bonded.
 本発明の効果を効果的に発揮する観点からは、上記マレイミド化合物の分子量は、好ましくは500以上、より好ましくは1000以上、好ましくは30000未満、より好ましくは20000未満である。 From the viewpoint of effectively exhibiting the effects of the present invention, the molecular weight of the maleimide compound is preferably 500 or more, more preferably 1000 or more, preferably less than 30,000, and more preferably less than 20,000.
 上記マレイミド化合物の分子量は、上記マレイミド化合物が重合体ではない場合、及び上記マレイミド化合物の構造式が特定できる場合は、当該構造式から算出できる分子量を意味する。また、上記マレイミド化合物の分子量は、上記マレイミド化合物が重合体である場合は、ゲルパーミエーションクロマトグラフィー(GPC)により測定されたポリスチレン換算での重量平均分子量を意味する。 When the maleimide compound is not a polymer and when the structural formula of the maleimide compound can be identified, the molecular weight of the maleimide compound means the molecular weight that can be calculated from the structural formula. Further, the molecular weight of the maleimide compound means the weight average molecular weight in terms of polystyrene measured by gel permeation chromatography (GPC) when the maleimide compound is a polymer.
 上記マレイミド化合物の市販品としては、例えば、大和化成工業社製「BMI-4000」及び「BMI-5100」、並びにDesigner Molecules Inc.製「BMI-3000」等が挙げられる。 Examples of commercially available maleimide compounds include "BMI-4000" and "BMI-5100" manufactured by Daiwa Kasei Kogyo Co., Ltd., and Designer Molecules Inc. and "BMI-3000" manufactured by K.K.
 ベンゾオキサジン化合物:
 上記ベンゾオキサジン化合物としては、P-d型ベンゾオキサジン、及びF-a型ベンゾオキサジン等が挙げられる。上記ベンゾオキサジン化合物は、1種のみが用いられてもよく、2種以上が併用されてもよい。
Benzoxazine compounds:
Examples of the benzoxazine compound include Pd-type benzoxazine and Fa-type benzoxazine. Only one kind of the benzoxazine compound may be used, or two or more kinds thereof may be used in combination.
 上記ベンゾオキサジン化合物の市販品としては、四国化成工業社製「P-d型」等が挙げられる。 Commercially available products of the above benzoxazine compounds include "Pd type" manufactured by Shikoku Kasei Kogyo Co., Ltd.
 酸無水物:
 上記酸無水物としては、テトラヒドロフタル酸無水物、及びアルキルスチレン-無水マレイン酸共重合体等が挙げられる。上記酸無水物は、1種のみが用いられてもよく、2種以上が併用されてもよい。
Acid anhydride:
Examples of the acid anhydride include tetrahydrophthalic anhydride and alkylstyrene-maleic anhydride copolymer. Only one kind of the acid anhydride may be used, or two or more kinds thereof may be used in combination.
 上記酸無水物の市販品としては、新日本理化社製「リカシッド TDA-100」等が挙げられる。 Commercially available products of the above acid anhydrides include "Rikacid TDA-100" manufactured by Shin Nippon Rika.
 上記エポキシ化合物100重量部に対する上記第2の硬化剤の含有量は、好ましくは40重量部以上、より好ましくは45重量部以上、好ましくは90重量部以下、より好ましくは85重量部以下である。上記第2の硬化剤の含有量が上記下限以上及び上記上限以下であると、硬化性をより一層良好にすることができ、硬化物の熱寸法安定性をより一層高め、残存未反応成分の揮発をより一層抑制できる。 The content of the second curing agent with respect to 100 parts by weight of the epoxy compound is preferably 40 parts by weight or more, more preferably 45 parts by weight or more, preferably 90 parts by weight or less, and more preferably 85 parts by weight or less. When the content of the second curing agent is the above lower limit or more and the above upper limit or less, the curability can be further improved, the thermal dimensional stability of the cured product is further improved, and the remaining unreacted components are reduced. Volatilization can be further suppressed.
 上記エポキシ化合物100重量部に対する上記硬化剤の含有量(第1の硬化剤と第2の硬化剤との合計の含有量)は、好ましくは80重量部以上、より好ましくは85重量部以上、好ましくは135重量部以下、より好ましくは130重量部以下である。上記硬化剤の含有量が上記下限以上及び上記上限以下であると、硬化性をより一層良好にすることができ、硬化物の熱寸法安定性をより一層高め、残存未反応成分の揮発をより一層抑制できる。 The content of the curing agent (total content of the first curing agent and the second curing agent) with respect to 100 parts by weight of the epoxy compound is preferably 80 parts by weight or more, more preferably 85 parts by weight or more. is 135 parts by weight or less, more preferably 130 parts by weight or less. When the content of the curing agent is not less than the above lower limit and not more than the above upper limit, the curability can be further improved, the thermal dimensional stability of the cured product is further improved, and the remaining unreacted components are more volatilized. can be further suppressed.
 上記樹脂材料中のフィラー及び溶剤を除く成分100重量%中、上記エポキシ化合物と上記硬化剤との合計の含有量(エポキシ化合物と第1の硬化剤と第2の硬化剤との合計の含有量)は、好ましくは50重量%以上、より好ましくは60重量%以上、好ましくは98重量%以下、より好ましくは95重量%以下である。上記合計の含有量が上記下限以上及び上記上限以下であると、硬化性をより一層良好にすることができ、硬化物の熱寸法安定性をより一層高めることができる。 The total content of the epoxy compound and the curing agent (the total content of the epoxy compound, the first curing agent, and the second curing agent) in 100% by weight of the components excluding the filler and solvent in the resin material ) is preferably 50% by weight or more, more preferably 60% by weight or more, preferably 98% by weight or less, and more preferably 95% by weight or less. When the total content is equal to or more than the lower limit and equal to or less than the upper limit, the curability can be further improved, and the thermal dimensional stability of the cured product can be further improved.
 [フィラー]
 上記樹脂材料は、フィラーを含む。上記フィラーの平均粒子径は2.0μm以下である。上記フィラーは、有機フィラーであってもよく、無機フィラーであってもよく、有機フィラーと無機フィラーとの混合物であってもよい。上記フィラーは、1種のみが用いられてもよく、2種以上が併用されてもよい。
[Filler]
The resin material contains a filler. The average particle size of the filler is 2.0 μm or less. The filler may be an organic filler, an inorganic filler, or a mixture of an organic filler and an inorganic filler. Only one kind of the filler may be used, or two or more kinds thereof may be used in combination.
 上記有機フィラーとしては、ベンゾオキサジン樹脂粒子、ベンゾオキサゾール樹脂粒子、フッ素樹脂粒子、アクリル樹脂粒子及びスチレン樹脂粒子等が挙げられる。上記有機フィラーとしてフッ素樹脂粒子を用いることにより、硬化物の誘電率をより一層低くすることができる。上記有機フィラーは、1種のみが用いられてもよく、2種以上が併用されてもよい。 Examples of the organic filler include benzoxazine resin particles, benzoxazole resin particles, fluororesin particles, acrylic resin particles, and styrene resin particles. By using fluororesin particles as the organic filler, the dielectric constant of the cured product can be further lowered. As for the said organic filler, only 1 type may be used and 2 or more types may be used together.
 上記無機フィラーしては、シリカ、タルク、クレイ、マイカ、ハイドロタルサイト、アルミナ、酸化マグネシウム、水酸化アルミニウム、窒化アルミニウム、及び窒化ホウ素等が挙げられる。上記無機フィラーは、1種のみが用いられてもよく、2種以上が併用されてもよい。 Examples of the inorganic filler include silica, talc, clay, mica, hydrotalcite, alumina, magnesium oxide, aluminum hydroxide, aluminum nitride, and boron nitride. Only one kind of the inorganic filler may be used, or two or more kinds thereof may be used in combination.
 上記フィラーは、無機フィラーであることが好ましい。この場合には、硬化物の誘電正接をより一層低くすることができる。また、硬化物の熱による寸法変化をより一層小さくすることができる。 The filler is preferably an inorganic filler. In this case, the dielectric loss tangent of the cured product can be further reduced. In addition, it is possible to further reduce the dimensional change of the cured product due to heat.
 上記無機フィラーは、シリカ又はアルミナであることが好ましく、シリカであることがより好ましく、溶融シリカであることが更に好ましい。この場合には、樹脂材料の硬化物の表面の表面粗さを小さくし、硬化物と金属層との接着強度をより一層高くし、かつ硬化物の表面により一層微細な配線を形成し、かつ硬化物により良好な絶縁信頼性を付与することができる。特に、フィラーとしてシリカを用いることにより、硬化物の熱膨張率がより一層低くなり、また、硬化物の誘電正接がより一層低くなる。また、硬化物の誘電率を良好にすることができる。シリカの形状は球状であることが好ましい。 The inorganic filler is preferably silica or alumina, more preferably silica, and even more preferably fused silica. In this case, the surface roughness of the surface of the cured product of the resin material is reduced, the adhesive strength between the cured product and the metal layer is further increased, finer wiring is formed on the surface of the cured product, and Better insulation reliability can be imparted to the cured product. In particular, by using silica as a filler, the coefficient of thermal expansion of the cured product is further lowered, and the dielectric loss tangent of the cured product is further lowered. Also, the dielectric constant of the cured product can be improved. The shape of silica is preferably spherical.
 上記無機フィラーは、球状であることが好ましく、球状シリカであることがより好ましい。この場合には、硬化物の表面の表面粗さが効果的に小さくなり、更に硬化物と金属層との接着強度が効果的に高くなる。また、上記無機フィラーが球状シリカである場合には、硬化環境によらず、樹脂の硬化を進め、硬化物のガラス転移温度を効果的に高くし、硬化物の熱線膨張係数を効果的に小さくすることができる。 The inorganic filler is preferably spherical, more preferably spherical silica. In this case, the surface roughness of the surface of the cured product is effectively reduced, and the adhesive strength between the cured product and the metal layer is effectively increased. Further, when the inorganic filler is spherical silica, the curing of the resin is promoted regardless of the curing environment, the glass transition temperature of the cured product is effectively increased, and the thermal linear expansion coefficient of the cured product is effectively reduced. can do.
 上記無機フィラーが球状である場合には、上記無機フィラーのアスペクト比は、好ましくは2以下、より好ましくは1.5以下である。 When the inorganic filler is spherical, the aspect ratio of the inorganic filler is preferably 2 or less, more preferably 1.5 or less.
 上記無機フィラーは、表面処理されていることが好ましく、カップリング剤による表面処理物であることがより好ましく、シランカップリング剤による表面処理物であることが更に好ましい。上記無機フィラーが表面処理されていることにより、粗化硬化物の表面の表面粗さがより一層小さくなり、硬化物と金属層との接着強度がより一層高くなる。また、上記無機フィラーが表面処理されていることにより、硬化物の表面により一層微細な配線を形成することができ、かつより一層良好な配線間絶縁信頼性及び層間絶縁信頼性を硬化物に付与することができる。 The inorganic filler is preferably surface-treated, more preferably surface-treated with a coupling agent, and even more preferably surface-treated with a silane coupling agent. By surface-treating the inorganic filler, the surface roughness of the surface of the roughened cured product is further reduced, and the adhesive strength between the cured product and the metal layer is further increased. In addition, since the inorganic filler is surface-treated, finer wiring can be formed on the surface of the cured product, and even better inter-wiring insulation reliability and interlayer insulation reliability are imparted to the cured product. can do.
 上記カップリング剤としては、シランカップリング剤、チタンカップリング剤及びアルミニウムカップリング剤等が挙げられる。上記シランカップリング剤としては、メタクリルシラン、アクリルシラン、アミノシラン、イミダゾールシラン、ビニルシラン、及びエポキシシラン等が挙げられる。 Examples of the above coupling agents include silane coupling agents, titanium coupling agents and aluminum coupling agents. Examples of the silane coupling agent include methacrylsilane, acrylsilane, aminosilane, imidazolesilane, vinylsilane, and epoxysilane.
 上記の1)-4)の効果、特に、上記の2),4)の効果をより一層効果的に発揮させる観点から、上記フィラーの平均粒子径は2.0μm以下である。 From the viewpoint of more effectively exhibiting the effects of 1) to 4) above, especially the effects of 2) and 4) above, the average particle size of the filler is 2.0 μm or less.
 上記フィラーの平均粒子径は、好ましくは0.1μm以上、より好ましくは0.3μm以上、好ましくは1.8μm以下、より好ましくは1.6μm以下である。上記フィラーの平均粒子径が上記下限以上及び上記上限以下であると、エッチング後の表面粗度を小さくし、かつメッキピール強度を高くすることができ、また、絶縁層と金属層との密着性を高めることができる。上記フィラーの平均粒子径は、0.5μmを超えていてもよく、1.0μm以上であってもよく、1μm以下であってもよく、1μm未満であってもよく、0.5μm以下であってもよく、0.5μm未満であってもよく、0.3μm以下であってもよい。
The average particle size of the filler is preferably 0.1 µm or more, more preferably 0.3 µm or more, preferably 1.8 µm or less, and more preferably 1.6 µm or less. When the average particle size of the filler is the lower limit or more and the upper limit or less, the surface roughness after etching can be reduced, and the plating peel strength can be increased, and the adhesion between the insulating layer and the metal layer. can increase The average particle size of the filler may exceed 0.5 μm, may be 1.0 μm or more, may be 1 μm or less, may be less than 1 μm, or may be 0.5 μm or less. may be less than 0.5 μm, and may be 0.3 μm or less.
 上記フィラーが無機フィラーである場合に、該無機フィラー平均粒子径は、好ましくは0.1μm以上、より好ましくは0.3μm以上、好ましくは1.8μm以下、より好ましくは1.6μm以下である。上記無機フィラーの平均粒子径が上記下限以上及び上記上限以下であると、エッチング後の表面粗度を小さくし、かつメッキピール強度を高くすることができ、また、絶縁層と金属層との密着性を高めることができる。上記無機フィラーの平均粒子径は、0.5μmを超えていてもよく、1.0μm以上であってもよく、1μm以下であってもよく、1μm未満であってもよく、0.5μm以下であってもよく、0.5μm未満であってもよく、0.3μm以下であってもよい。 When the filler is an inorganic filler, the average particle size of the inorganic filler is preferably 0.1 µm or more, more preferably 0.3 µm or more, preferably 1.8 µm or less, and more preferably 1.6 µm or less. When the average particle size of the inorganic filler is at least the lower limit and at most the upper limit, the surface roughness after etching can be reduced and the peel strength of the plating can be increased, and the adhesion between the insulating layer and the metal layer is improved. can enhance sexuality. The average particle size of the inorganic filler may exceed 0.5 μm, may be 1.0 μm or more, may be 1 μm or less, may be less than 1 μm, or may be 0.5 μm or less. It may be less than 0.5 μm, or it may be 0.3 μm or less.
 上記フィラーが有機フィラーである場合に、該有機フィラーの平均粒子径は、好ましくは0.1μm以上、より好ましくは0.3μm以上、好ましくは1.8μm以下、より好ましくは1.6μm以下である。上記有機フィラーの平均粒子径が上記下限以上及び上記上限以下であると、エッチング後の表面粗度を小さくし、かつメッキピール強度を高くすることができ、また、絶縁層と金属層との密着性を高めることができる。上記有機フィラーの平均粒子径は、0.5μmを超えていてもよく、1.0μm以上であってもよく、1μm以下であってもよく、1μm未満であってもよく、0.5μm以下であってもよく、0.5μm未満であってもよく、0.3μm以下であってもよい。 When the filler is an organic filler, the average particle size of the organic filler is preferably 0.1 µm or more, more preferably 0.3 µm or more, preferably 1.8 µm or less, and more preferably 1.6 µm or less. . When the average particle size of the organic filler is the lower limit or more and the upper limit or less, the surface roughness after etching can be reduced and the plating peel strength can be increased, and the adhesion between the insulating layer and the metal layer can be improved. can enhance sexuality. The average particle size of the organic filler may exceed 0.5 μm, may be 1.0 μm or more, may be 1 μm or less, may be less than 1 μm, or may be 0.5 μm or less. It may be less than 0.5 μm, or it may be 0.3 μm or less.
 上記フィラー(無機フィラー及び有機フィラー)の平均粒子径として、50%となるメディアン径(d50)の値が採用される。上記平均粒子径は、一次粒子の平均粒子径であることが好ましい。上記平均粒子径は、レーザー回折散乱方式の粒度分布測定装置を用いて測定可能である。 A median diameter (d50) value of 50% is adopted as the average particle diameter of the above fillers (inorganic filler and organic filler). The average particle size is preferably the average particle size of primary particles. The average particle size can be measured using a laser diffraction scattering type particle size distribution analyzer.
 上記樹脂材料中の溶剤を除く成分100重量%中、上記フィラーの含有量は、好ましくは50重量%以上、より好ましくは60重量%以上、好ましくは90重量%以下、より好ましくは85重量%以下、更に好ましくは80重量%以下である。上記フィラーの含有量が上記下限以上であると、誘電正接が効果的に低くなる。上記フィラーの含有量が上記上限以下であると、硬化物の熱寸法安定性を高め、硬化物の反りを効果的に抑えることができる。上記フィラーの含有量が上記下限以上及び上記上限以下であると、硬化物の表面の表面粗さをより一層小さくすることができ、かつ硬化物の表面により一層微細な配線を形成することができる。さらに、上記フィラーの含有量が上記下限以上及び上記上限以下であると、硬化物の熱膨張率を低くすることと同時に、スミア除去性を良好にすることも可能である。 The content of the filler is preferably 50% by weight or more, more preferably 60% by weight or more, preferably 90% by weight or less, and more preferably 85% by weight or less in 100% by weight of the components excluding the solvent in the resin material. , more preferably 80% by weight or less. When the filler content is at least the lower limit, the dielectric loss tangent is effectively lowered. When the content of the filler is equal to or less than the above upper limit, the thermal dimensional stability of the cured product can be enhanced, and warpage of the cured product can be effectively suppressed. When the content of the filler is at least the lower limit and at most the upper limit, the surface roughness of the surface of the cured product can be further reduced, and finer wiring can be formed on the surface of the cured product. . Furthermore, when the content of the filler is equal to or more than the lower limit and equal to or less than the upper limit, it is possible to lower the coefficient of thermal expansion of the cured product and to improve the smear removability.
 [硬化促進剤]
 上記樹脂材料は、硬化促進剤を含むことが好ましい。ただし、上記樹脂材料は、硬化促進剤を含まなくてもよい。上記硬化促進剤の使用により、硬化速度がより一層速くなる。樹脂材料を速やかに硬化させることで、硬化物における架橋構造が均一になると共に、未反応の官能基数が減り、結果的に架橋密度が高くなる。上記硬化促進剤は特に限定されず、従来公知の硬化促進剤を使用可能である。上記硬化促進剤は、1種のみが用いられてもよく、2種以上が併用されてもよい。
[Curing accelerator]
The resin material preferably contains a curing accelerator. However, the resin material may not contain a curing accelerator. The use of the curing accelerator makes the curing speed even faster. By rapidly curing the resin material, the crosslinked structure in the cured product becomes uniform and the number of unreacted functional groups is reduced, resulting in a high crosslink density. The curing accelerator is not particularly limited, and conventionally known curing accelerators can be used. Only one kind of the curing accelerator may be used, or two or more kinds thereof may be used in combination.
 上記硬化促進剤としては、例えば、イミダゾール化合物等のアニオン性硬化促進剤、アミン化合物等のカチオン性硬化促進剤、リン化合物及び有機金属化合物等のアニオン性及びカチオン性硬化促進剤以外の硬化促進剤、並びに過酸化物等のラジカル性硬化促進剤等が挙げられる。 Examples of the curing accelerator include anionic curing accelerators such as imidazole compounds, cationic curing accelerators such as amine compounds, and curing accelerators other than anionic and cationic curing accelerators such as phosphorus compounds and organometallic compounds. , and radical curing accelerators such as peroxides.
 上記イミダゾール化合物としては、2-ウンデシルイミダゾール、2-ヘプタデシルイミダゾール、2-メチルイミダゾール、2-エチル-4-メチルイミダゾール、2-フェニルイミダゾール、2-フェニル-4-メチルイミダゾール、1-ベンジル-2-メチルイミダゾール、1-ベンジル-2-フェニルイミダゾール、1,2-ジメチルイミダゾール、1-シアノエチル-2-メチルイミダゾール、1-シアノエチル-2-エチル-4-メチルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾール、1-シアノエチル-2-フェニルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾリウムトリメリテイト、1-シアノエチル-2-フェニルイミダゾリウムトリメリテイト、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-ウンデシルイミダゾリル-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-エチル-4’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジンイソシアヌル酸付加物、2-フェニルイミダゾールイソシアヌル酸付加物、2-メチルイミダゾールイソシアヌル酸付加物、2-フェニル-4,5-ジヒドロキシメチルイミダゾール及び2-フェニル-4-メチル-5-ジヒドロキシメチルイミダゾール等が挙げられる。 Examples of the imidazole compound include 2-undecylimidazole, 2-heptadecylimidazole, 2-methylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole, 1-benzyl- 2-methylimidazole, 1-benzyl-2-phenylimidazole, 1,2-dimethylimidazole, 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-ethyl-4-methylimidazole, 1-cyanoethyl-2-un Decylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-undecylimidazolium trimellitate, 1-cyanoethyl-2-phenylimidazolium trimellitate, 2,4-diamino-6-[2' -methylimidazolyl-(1′)]-ethyl-s-triazine, 2,4-diamino-6-[2′-undecylimidazolyl-(1′)]-ethyl-s-triazine, 2,4-diamino- 6-[2′-ethyl-4′-methylimidazolyl-(1′)]-ethyl-s-triazine, 2,4-diamino-6-[2′-methylimidazolyl-(1′)]-ethyl-s -triazine isocyanurate, 2-phenylimidazole isocyanurate, 2-methylimidazole isocyanurate, 2-phenyl-4,5-dihydroxymethylimidazole and 2-phenyl-4-methyl-5-dihydroxymethylimidazole etc.
 上記アミン化合物としては、ジエチルアミン、トリエチルアミン、ジエチレンテトラミン、トリエチレンテトラミン及び4,4-ジメチルアミノピリジン等が挙げられる。 Examples of the amine compounds include diethylamine, triethylamine, diethylenetetramine, triethylenetetramine and 4,4-dimethylaminopyridine.
 上記リン化合物としては、トリフェニルホスフィン化合物等が挙げられる。 Examples of the phosphorus compounds include triphenylphosphine compounds.
 上記有機金属化合物としては、ナフテン酸亜鉛、ナフテン酸コバルト、オクチル酸スズ、オクチル酸コバルト、ビスアセチルアセトナートコバルト(II)及びトリスアセチルアセトナートコバルト(III)等が挙げられる。 Examples of the organometallic compounds include zinc naphthenate, cobalt naphthenate, tin octylate, cobalt octylate, bisacetylacetonate cobalt (II) and trisacetylacetonate cobalt (III).
 上記過酸化物としてはジクミルペルオキシド、及びパーヘキシル25B等が挙げられる。 Examples of the above peroxides include dicumyl peroxide and perhexyl 25B.
 硬化温度をより一層低く抑え、硬化物の反りを効果的に抑える観点からは、上記硬化促進剤は、上記アニオン性硬化促進剤を含むことが好ましく、上記イミダゾール化合物を含むことがより好ましい。 From the viewpoint of further suppressing the curing temperature and effectively suppressing warping of the cured product, the curing accelerator preferably contains the anionic curing accelerator, and more preferably contains the imidazole compound.
 硬化温度をより一層低く抑え、硬化物の反りを効果的に抑える観点からは、上記硬化促進剤100重量%中、上記アニオン性硬化促進剤の含有量は、好ましくは20重量%以上、より好ましくは50重量%以上、更に好ましくは70重量%以上、最も好ましくは100重量%(全量)である。したがって、上記硬化促進剤は、上記アニオン性硬化促進剤であることが最も好ましい。 From the viewpoint of further suppressing the curing temperature and effectively suppressing the warp of the cured product, the content of the anionic curing accelerator is preferably 20% by weight or more, more preferably 100% by weight of the curing accelerator. is 50% by weight or more, more preferably 70% by weight or more, and most preferably 100% by weight (total amount). Therefore, the hardening accelerator is most preferably the anionic hardening accelerator.
 上記硬化促進剤の含有量は特に限定されない。樹脂材料中のフィラー及び溶剤を除く成分100重量%中、上記硬化促進剤の含有量は、好ましくは0.01重量%以上、より好ましくは0.05重量%以上、好ましくは5重量%以下、より好ましくは3重量%以下である。上記硬化促進剤の含有量が上記下限以上及び上記上限以下であると、樹脂材料が効率的に硬化する。上記硬化促進剤の含有量がより好ましい範囲であれば、樹脂材料の保存安定性がより一層高くなり、かつより一層良好な硬化物が得られる。 The content of the curing accelerator is not particularly limited. The content of the curing accelerator is preferably 0.01% by weight or more, more preferably 0.05% by weight or more, and preferably 5% by weight or less in 100% by weight of the components excluding the filler and solvent in the resin material, More preferably, it is 3% by weight or less. When the content of the curing accelerator is equal to or more than the lower limit and equal to or less than the upper limit, the resin material is efficiently cured. If the content of the curing accelerator is within a more preferable range, the storage stability of the resin material will be further increased, and a more favorable cured product will be obtained.
 [エポキシ化合物以外の熱硬化性化合物]
 上記樹脂材料は、エポキシ化合物以外の熱硬化性化合物を含んでいてもよく、含んでいなくてもよい。上記エポキシ化合物以外の熱硬化性化合物は、1種のみが用いられてもよく、2種以上が併用されてもよい。
[Thermosetting compound other than epoxy compound]
The resin material may or may not contain a thermosetting compound other than the epoxy compound. As for the thermosetting compounds other than the epoxy compound, only one type may be used, or two or more types may be used in combination.
 上記エポキシ化合物以外の熱硬化性化合物としては、ビニル化合物、スチレン化合物、オキセタン化合物、ポリアリレート化合物、ジアリルフタレート化合物、アクリレート化合物、エピスルフィド化合物、(メタ)アクリル化合物、アミノ化合物、不飽和ポリエステル化合物、ポリウレタン化合物、及びシリコーン化合物等が挙げられる。 Thermosetting compounds other than the above epoxy compounds include vinyl compounds, styrene compounds, oxetane compounds, polyarylate compounds, diallyl phthalate compounds, acrylate compounds, episulfide compounds, (meth)acrylic compounds, amino compounds, unsaturated polyester compounds, polyurethanes. compounds, and silicone compounds.
 [熱可塑性樹脂]
 上記樹脂材料は、熱可塑性樹脂を含んでいてもよい。上記熱可塑性樹脂としては、ポリイミド樹脂、フェノキシ樹脂及びポリビニルアセタール樹脂等が挙げられる。上記熱可塑性樹脂は、1種のみが用いられてもよく、2種以上が併用されてもよい。
[Thermoplastic resin]
The resin material may contain a thermoplastic resin. Examples of the thermoplastic resin include polyimide resin, phenoxy resin and polyvinyl acetal resin. Only one kind of the thermoplastic resin may be used, or two or more kinds thereof may be used in combination.
 本発明の効果を効果的に発揮させる観点からは、上記熱可塑性樹脂は、ポリイミド樹脂、又はフェノキシ樹脂であることが好ましく、ポリイミド樹脂であることがより好ましい。本発明の効果を効果的に発揮させる観点からは、上記樹脂材料は、ポリイミド樹脂、又はフェノキシ樹脂を含むことが好ましく、ポリイミド樹脂を含むことがより好ましい。上記樹脂材料は、ポリイミド樹脂を含まないか又は含む。上記樹脂材料は、ポリイミド樹脂を含んでいてもよく、ポリイミド樹脂を含んでいなくてもよい。上記樹脂材料は、フェノキシ樹脂を含まないか又は含む。上記樹脂材料は、フェノキシ樹脂を含んでいなくてもよく、フェノキシ樹脂を含んでいてもよい。 From the viewpoint of effectively exhibiting the effects of the present invention, the thermoplastic resin is preferably a polyimide resin or a phenoxy resin, more preferably a polyimide resin. From the viewpoint of effectively exhibiting the effects of the present invention, the resin material preferably contains a polyimide resin or a phenoxy resin, and more preferably contains a polyimide resin. The resin material does not contain or contains a polyimide resin. The resin material may or may not contain a polyimide resin. The resin material does not contain or contains a phenoxy resin. The resin material may contain no phenoxy resin or may contain a phenoxy resin.
 上記の1)-4)の効果をより一層効果的に発揮させる観点及びハンドリング性を高める観点から、上記熱可塑性樹脂は、ポリイミド樹脂であることが好ましい。樹脂材料は、ポリイミド樹脂を含むことが好ましい。上記樹脂材料が、ポリイミド樹脂を含む場合に、上記樹脂材料は、フェノキシ樹脂を含んでいなくてもよい。 From the viewpoint of more effectively exhibiting the effects of 1) to 4) above and from the viewpoint of improving handling properties, the thermoplastic resin is preferably a polyimide resin. The resin material preferably contains polyimide resin. When the resin material contains a polyimide resin, the resin material may not contain a phenoxy resin.
 溶解性を良好にする観点からは、上記ポリイミド樹脂は、テトラカルボン酸二無水物とダイマージアミンとを反応させる方法によって得られたポリイミド樹脂であることが好ましい。 From the viewpoint of improving solubility, the polyimide resin is preferably a polyimide resin obtained by a method of reacting tetracarboxylic dianhydride and dimer diamine.
 上記テトラカルボン酸二無水物としては、例えば、ピロメリット酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’-ビフェニルスルホンテトラカルボン酸二無水物、1,4,5,8-ナフタレンテトラカルボン酸二無水物、2,3,6,7-ナフタレンテトラカルボン酸二無水物、3,3’,4,4’-ビフェニルエーテルテトラカルボン酸二無水物、3,3’,4,4’-ジメチルジフェニルシランテトラカルボン酸二無水物、3,3’,4,4’-テトラフェニルシランテトラカルボン酸二無水物、1,2,3,4-フランテトラカルボン酸二無水物、4,4’-ビス(3,4-ジカルボキシフェノキシ)ジフェニルスルフィド二無水物、4,4’-ビス(3,4-ジカルボキシフェノキシ)ジフェニルスルホン二無水物、4,4’-ビス(3,4-ジカルボキシフェノキシ)ジフェニルプロパン二無水物、3,3’,4,4’-パーフルオロイソプロピリデンジフタル酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、ビス(フタル酸)フェニルホスフィンオキサイド二無水物、p-フェニレン-ビス(トリフェニルフタル酸)二無水物、m-フェニレン-ビス(トリフェニルフタル酸)二無水物、ビス(トリフェニルフタル酸)-4,4’-ジフェニルエーテル二無水物、及びビス(トリフェニルフタル酸)-4,4’-ジフェニルメタン二無水物等が挙げられる。 Examples of the tetracarboxylic dianhydride include pyromellitic dianhydride, 3,3′,4,4′-benzophenonetetracarboxylic dianhydride, 3,3′,4,4′-biphenylsulfonetetra Carboxylic dianhydride, 1,4,5,8-naphthalenetetracarboxylic dianhydride, 2,3,6,7-naphthalenetetracarboxylic dianhydride, 3,3′,4,4′-biphenyl ether Tetracarboxylic dianhydride, 3,3′,4,4′-dimethyldiphenylsilanetetracarboxylic dianhydride, 3,3′,4,4′-tetraphenylsilanetetracarboxylic dianhydride, 1,2 ,3,4-furantetracarboxylic dianhydride, 4,4′-bis(3,4-dicarboxyphenoxy)diphenyl sulfide dianhydride, 4,4′-bis(3,4-dicarboxyphenoxy)diphenyl Sulfone dianhydride, 4,4'-bis(3,4-dicarboxyphenoxy)diphenylpropane dianhydride, 3,3',4,4'-perfluoroisopropylidene diphthalic dianhydride, 3,3 ',4,4'-biphenyltetracarboxylic dianhydride, bis(phthalic acid)phenylphosphine oxide dianhydride, p-phenylene-bis(triphenylphthalic acid) dianhydride, m-phenylene-bis(triphenyl phthalic acid) dianhydride, bis(triphenylphthalic acid)-4,4'-diphenylether dianhydride, and bis(triphenylphthalic acid)-4,4'-diphenylmethane dianhydride.
 上記ダイマージアミンとしては、例えば、バーサミン551(商品名、BASFジャパン社製、3,4-ビス(1-アミノヘプチル)-6-ヘキシル-5-(1-オクテニル)シクロヘキセン)、バーサミン552(商品名、コグニクスジャパン社製、バーサミン551の水添物)、PRIAMINE1075、及びPRIAMINE1074(商品名、いずれもクローダジャパン社製)等が挙げられる。 Examples of the dimer diamine include Versamin 551 (trade name, manufactured by BASF Japan Ltd., 3,4-bis(1-aminoheptyl)-6-hexyl-5-(1-octenyl)cyclohexene) and Versamin 552 (trade name). , Cognix Japan Co., Ltd., a hydrogenated product of Versamin 551), PRIAMINE 1075, and PRIAMINE 1074 (trade names, both manufactured by Croda Japan).
 上記ポリイミド樹脂は末端に、酸無水物構造、マレイミド構造、又はシトラコンイミド構造を有していてもよい。この場合には、上記ポリイミド樹脂と上記エポキシ化合物とを反応させることができる。上記ポリイミド化合物と上記エポキシ化合物とを反応させることにより、硬化物の熱寸法安定性を高めることができる。 The polyimide resin may have an acid anhydride structure, a maleimide structure, or a citraconimide structure at its terminal. In this case, the polyimide resin and the epoxy compound can be reacted. By reacting the polyimide compound with the epoxy compound, the thermal dimensional stability of the cured product can be enhanced.
 硬化環境によらず、誘電正接を効果的に低くし、かつ、金属配線の密着性を効果的に高める観点からは、上記熱可塑性樹脂は、フェノキシ樹脂を含むことが好ましい。上記樹脂材料は、フェノキシ樹脂を含むことが好ましい。また、フェノキシ樹脂の使用により、樹脂フィルムの回路基板の穴又は凹凸に対する埋め込み性の悪化及び無機フィラーの不均一化が抑えられる。また、フェノキシ樹脂の使用により、溶融粘度を調整可能であるために無機フィラーの分散性が良好になり、かつ硬化過程で、意図しない領域に樹脂組成物又はBステージ化物が濡れ拡がり難くなる。 From the viewpoint of effectively lowering the dielectric loss tangent and effectively increasing the adhesion of the metal wiring regardless of the curing environment, the thermoplastic resin preferably contains a phenoxy resin. The resin material preferably contains a phenoxy resin. In addition, the use of the phenoxy resin suppresses the deterioration of the embedding properties of the resin film in the holes or irregularities of the circuit board and the non-uniformity of the inorganic filler. In addition, the use of a phenoxy resin makes it possible to adjust the melt viscosity, so that the dispersibility of the inorganic filler is improved, and in the curing process, the resin composition or B-staged product is less likely to wet and spread in unintended regions.
 上記フェノキシ樹脂は特に限定されない。上記フェノキシ樹脂として、従来公知のフェノキシ樹脂を使用可能である。上記フェノキシ樹脂は、1種のみが用いられてもよく、2種以上が併用されてもよい。 The above phenoxy resin is not particularly limited. Conventionally known phenoxy resins can be used as the phenoxy resin. Only one type of the phenoxy resin may be used, or two or more types may be used in combination.
 上記フェノキシ樹脂としては、例えば、ビスフェノールA型の骨格、ビスフェノールF型の骨格、ビスフェノールS型の骨格、ビフェニル骨格、ノボラック骨格、ナフタレン骨格及びイミド骨格などの骨格を有するフェノキシ樹脂等が挙げられる。 Examples of the phenoxy resin include phenoxy resins having a skeleton such as a bisphenol A skeleton, a bisphenol F skeleton, a bisphenol S skeleton, a biphenyl skeleton, a novolac skeleton, a naphthalene skeleton, and an imide skeleton.
 上記フェノキシ樹脂の市販品としては、例えば、新日鉄住金化学社製「YP50」、「YP55」及び「YP70」、並びに三菱化学社製「1256B40」、「4250」、「4256H40」、「4275」、「YX6954BH30」及び「YX8100BH30」等が挙げられる。 Commercial products of the phenoxy resin include, for example, Nippon Steel & Sumikin Chemical Co., Ltd. "YP50", "YP55" and "YP70", and Mitsubishi Chemical Corporation "1256B40", "4250", "4256H40", "4275", " YX6954BH30" and "YX8100BH30".
 保存安定性により一層優れた樹脂フィルムを得る観点からは、上記熱可塑性樹脂、上記ポリイミド樹脂及び上記フェノキシ樹脂の重量平均分子量は、好ましくは5000以上、より好ましくは10000以上、好ましくは100000以下、より好ましくは50000以下である。 From the viewpoint of obtaining a resin film with even better storage stability, the weight-average molecular weight of the thermoplastic resin, the polyimide resin, and the phenoxy resin is preferably 5,000 or more, more preferably 10,000 or more, and preferably 100,000 or less. Preferably it is 50000 or less.
 上記熱可塑性樹脂、上記ポリイミド樹脂及び上記フェノキシ樹脂の上記重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)により測定されたポリスチレン換算での重量平均分子量を意味する。 The weight average molecular weight of the thermoplastic resin, polyimide resin, and phenoxy resin means the weight average molecular weight in terms of polystyrene measured by gel permeation chromatography (GPC).
 上記熱可塑性樹脂、上記ポリイミド樹脂及び上記フェノキシ樹脂の含有量は特に限定されない。樹脂材料中のフィラー及び溶剤を除く成分100重量%中、上記熱可塑性樹脂の含有量(熱可塑性樹脂がポリイミド樹脂又はフェノキシ樹脂である場合には、ポリイミド樹脂又はフェノキシ樹脂の含有量)は、好ましくは1重量%以上、より好ましくは2重量%以上、好ましくは30重量%以下、より好ましくは20重量%以下である。上記熱可塑性樹脂の含有量が上記下限以上及び上記上限以下であると、樹脂フィルムの回路基板の穴又は凹凸に対する埋め込み性が良好になる。上記熱可塑性樹脂の含有量が上記下限以上であると、樹脂フィルムの形成がより一層容易になり、より一層良好な絶縁層が得られる。上記熱可塑性樹脂の含有量が上記上限以下であると、硬化物の熱膨張率がより一層低くなる。上記熱可塑性樹脂の含有量が上記上限以下であると、硬化物の表面の表面粗さがより一層小さくなり、硬化物と金属層との接着強度がより一層高くなる。 The contents of the thermoplastic resin, the polyimide resin and the phenoxy resin are not particularly limited. The content of the thermoplastic resin (when the thermoplastic resin is a polyimide resin or a phenoxy resin, the content of the polyimide resin or the phenoxy resin) in 100% by weight of the components excluding the filler and solvent in the resin material is preferably is 1% by weight or more, more preferably 2% by weight or more, preferably 30% by weight or less, and more preferably 20% by weight or less. When the content of the thermoplastic resin is equal to or more than the lower limit and equal to or less than the upper limit, the embedding property of the resin film into the holes or unevenness of the circuit board is improved. When the content of the thermoplastic resin is equal to or higher than the lower limit, formation of the resin film becomes easier, and an even better insulating layer can be obtained. If the content of the thermoplastic resin is equal to or less than the upper limit, the thermal expansion coefficient of the cured product will be even lower. When the content of the thermoplastic resin is equal to or less than the upper limit, the surface roughness of the cured product is further reduced, and the adhesive strength between the cured product and the metal layer is further increased.
 [溶剤]
 上記樹脂材料は、溶剤を含まないか又は含む。上記樹脂材料は、溶剤を含んでいてもよく、溶剤を含んでいなくてもよい。上記溶剤の使用により、樹脂材料の粘度を好適な範囲に制御でき、樹脂材料の塗工性を高めることができる。また、上記溶剤は、上記無機フィラーを含むスラリーを得るために用いられてもよい。上記溶剤は1種のみが用いられてもよく、2種以上が併用されてもよい。
[solvent]
The resin material does not contain or contains a solvent. The resin material may or may not contain a solvent. By using the solvent, the viscosity of the resin material can be controlled within a suitable range, and the coatability of the resin material can be improved. Moreover, the solvent may be used to obtain a slurry containing the inorganic filler. Only one of the above solvents may be used, or two or more thereof may be used in combination.
 上記溶剤としては、アセトン、メタノール、エタノール、ブタノール、2-プロパノール、2-メトキシエタノール、2-エトキシエタノール、1-メトキシ-2-プロパノール、2-アセトキシ-1-メトキシプロパン、トルエン、キシレン、メチルエチルケトン、N,N-ジメチルホルムアミド、メチルイソブチルケトン、N-メチル-ピロリドン、n-ヘキサン、シクロヘキサン、シクロヘキサノン及び混合物であるナフサ等が挙げられる。 Examples of the solvent include acetone, methanol, ethanol, butanol, 2-propanol, 2-methoxyethanol, 2-ethoxyethanol, 1-methoxy-2-propanol, 2-acetoxy-1-methoxypropane, toluene, xylene, methyl ethyl ketone, N,N-dimethylformamide, methyl isobutyl ketone, N-methyl-pyrrolidone, n-hexane, cyclohexane, cyclohexanone and mixtures such as naphtha.
 上記溶剤の多くは、上記樹脂組成物をフィルム状に成形するときに、除去されることが好ましい。従って、上記溶剤の沸点は好ましくは200℃以下、より好ましくは180℃以下である。上記樹脂組成物中の上記溶剤の含有量は特に限定されない。上記樹脂組成物の塗工性などを考慮して、上記溶剤の含有量は適宜変更可能である。 Most of the solvent is preferably removed when the resin composition is formed into a film. Therefore, the boiling point of the solvent is preferably 200°C or lower, more preferably 180°C or lower. The content of the solvent in the resin composition is not particularly limited. The content of the solvent can be appropriately changed in consideration of the coatability of the resin composition.
 上記樹脂材料がBステージフィルムである場合には、上記Bステージフィルム100重量%中、上記溶剤の含有量は、好ましくは0.5重量%以上、より好ましくは1重量%以上、好ましくは10重量%以下、より好ましくは5重量%以下である。 When the resin material is a B-stage film, the content of the solvent in 100% by weight of the B-stage film is preferably 0.5% by weight or more, more preferably 1% by weight or more, and preferably 10% by weight. % or less, more preferably 5 wt % or less.
 [他の成分]
 耐衝撃性、耐熱性、樹脂の相溶性及び作業性等の改善を目的として、上記樹脂材料は、レベリング剤、難燃剤、カップリング剤、着色剤、酸化防止剤、紫外線劣化防止剤、消泡剤、増粘剤、及び揺変性付与剤等を含んでいてもよい。
[Other ingredients]
For the purpose of improving impact resistance, heat resistance, resin compatibility, workability, etc., the above resin materials contain leveling agents, flame retardants, coupling agents, coloring agents, antioxidants, ultraviolet degradation inhibitors, antifoaming agents, etc. agents, thickeners, thixotropic agents, and the like.
 上記カップリング剤としては、シランカップリング剤、チタンカップリング剤及びアルミニウムカップリング剤等が挙げられる。上記シランカップリング剤としては、ビニルシラン、アミノシラン、イミダゾールシラン及びエポキシシラン等が挙げられる。 Examples of the above coupling agents include silane coupling agents, titanium coupling agents and aluminum coupling agents. Examples of the silane coupling agent include vinylsilane, aminosilane, imidazolesilane and epoxysilane.
 (樹脂フィルム)
 上述した樹脂組成物をフィルム状に成形することにより樹脂フィルム(Bステージ化物/Bステージフィルム)が得られる。上記樹脂材料は、樹脂フィルムであることが好ましい。樹脂フィルムは、Bステージフィルムであることが好ましい。
(resin film)
A resin film (B-stage product/B-stage film) is obtained by molding the resin composition described above into a film. The resin material is preferably a resin film. The resin film is preferably a B-stage film.
 樹脂組成物をフィルム状に成形して、樹脂フィルムを得る方法としては、以下の方法が挙げられる。押出機を用いて、樹脂組成物を溶融混練し、押出した後、Tダイ又はサーキュラーダイ等により、フィルム状に成形する押出成形法。溶剤を含む樹脂組成物をキャスティングしてフィルム状に成形するキャスティング成形法。従来公知のその他のフィルム成形法。薄型化に対応可能であることから、押出成形法又はキャスティング成形法が好ましい。フィルムにはシートが含まれる。 Examples of methods for obtaining a resin film by molding a resin composition into a film include the following methods. An extrusion molding method in which a resin composition is melt-kneaded using an extruder, extruded, and then molded into a film using a T-die, a circular die, or the like. A casting molding method in which a resin composition containing a solvent is cast and molded into a film. Other film forming methods known in the art. An extrusion molding method or a casting molding method is preferable because it can be used for thinning. Film includes sheets.
 樹脂組成物をフィルム状に成形し、熱による硬化が進行し過ぎない程度に、例えば50℃~150℃で1分間~10分間加熱乾燥させることにより、Bステージフィルムである樹脂フィルムを得ることができる。 A resin film that is a B-stage film can be obtained by molding the resin composition into a film and drying it by heating at, for example, 50° C. to 150° C. for 1 minute to 10 minutes to the extent that thermal curing does not proceed excessively. can.
 上述のような乾燥工程により得ることができるフィルム状の樹脂組成物をBステージフィルムと称する。上記Bステージフィルムは、半硬化状態にある。半硬化物は、完全に硬化しておらず、硬化がさらに進行され得る。 A film-like resin composition that can be obtained through the drying process as described above is called a B-stage film. The B-stage film is in a semi-cured state. A semi-cured product is not completely cured and may be further cured.
 上記樹脂フィルムは、プリプレグでなくてもよい。上記樹脂フィルムがプリプレグではない場合には、ガラスクロス等に沿ってマイグレーションが生じなくなる。また、樹脂フィルムをラミネート又はプレキュアする際に、表面にガラスクロスに起因する凹凸が生じなくなる。 The resin film does not have to be a prepreg. If the resin film is not a prepreg, no migration occurs along the glass cloth or the like. In addition, when the resin film is laminated or precured, the unevenness due to the glass cloth does not occur on the surface.
 上記樹脂フィルムは、金属箔又は基材フィルムと、該金属箔又は基材フィルムの表面に積層された樹脂フィルムとを備える積層フィルムの形態で用いることができる。上記金属箔は銅箔であることが好ましい。 The resin film can be used in the form of a laminated film comprising a metal foil or base film and a resin film laminated on the surface of the metal foil or base film. The metal foil is preferably copper foil.
 上記積層フィルムの上記基材フィルムとしては、ポリエチレンテレフタレートフィルム及びポリブチレンテレフタレートフィルム等のポリエステル樹脂フィルム、ポリエチレンフィルム及びポリプロピレンフィルム等のオレフィン樹脂フィルム、並びにポリイミド樹脂フィルム等が挙げられる。上記基材フィルムの表面は、必要に応じて、離型処理されていてもよい。 Examples of the base film of the laminated film include polyester resin films such as polyethylene terephthalate film and polybutylene terephthalate film, olefin resin films such as polyethylene film and polypropylene film, and polyimide resin films. The surface of the base film may be subjected to release treatment, if necessary.
 樹脂フィルムの硬化度をより一層均一に制御する観点からは、上記樹脂フィルムの厚さは、好ましくは5μm以上であり、好ましくは200μm以下である。上記樹脂フィルムを回路の絶縁層として用いる場合、上記樹脂フィルムにより形成された絶縁層の厚さは、回路を形成する導体層(金属層)の厚さ以上であることが好ましい。上記絶縁層の厚さは、好ましくは5μm以上であり、好ましくは200μm以下である。 From the viewpoint of more uniformly controlling the degree of curing of the resin film, the thickness of the resin film is preferably 5 μm or more and preferably 200 μm or less. When the resin film is used as an insulating layer of a circuit, the thickness of the insulating layer formed of the resin film is preferably equal to or greater than the thickness of the conductor layer (metal layer) forming the circuit. The thickness of the insulating layer is preferably 5 μm or more and preferably 200 μm or less.
 (樹脂材料の他の詳細)
 上記樹脂材料を130℃で60分間加熱して仮硬化させた後、200℃で90分間加熱し、樹脂材料の硬化物を得る。この場合に、得られた硬化物の引っ張り荷重33mNでの25℃~150℃までの平均線膨張係数(CTE)は、好ましくは33ppm/℃以下、より好ましくは30ppm/℃以下、更に好ましくは27ppm/℃以下、特に好ましくは24ppm/℃以下、最も好ましくは22ppm/℃以下である。上記硬化物の平均線膨張係数(CTE)は、17ppm/℃以上であってもよく、19ppm/℃以上であってもよい。
(other details of resin material)
The above resin material is heated at 130° C. for 60 minutes to temporarily harden, and then heated at 200° C. for 90 minutes to obtain a cured product of the resin material. In this case, the average coefficient of linear expansion (CTE) of the resulting cured product from 25° C. to 150° C. under a tensile load of 33 mN is preferably 33 ppm/° C. or less, more preferably 30 ppm/° C. or less, and still more preferably 27 ppm. /°C or less, particularly preferably 24 ppm/°C or less, most preferably 22 ppm/°C or less. The average coefficient of linear expansion (CTE) of the cured product may be 17 ppm/°C or higher, or 19 ppm/°C or higher.
 上記硬化物の平均線膨張係数(CTE)は、より具体的には、以下のようにして測定される。 More specifically, the average coefficient of linear expansion (CTE) of the cured product is measured as follows.
 フィルム状の樹脂材料(樹脂フィルム)を130℃で60分間加熱して仮硬化させた後、200℃で90分間加熱して、樹脂材料の硬化物を得る。得られた硬化物を3mm×25mmの大きさに裁断する。熱機械的分析装置(例えば、エスアイアイ・ナノテクノロジー社製「EXSTAR TMA/SS6100」)を用いて、引っ張り荷重33mN及び昇温速度5℃/分の条件で、裁断された硬化物の25℃~150℃までの平均線膨張係数(ppm/℃)を算出する。 A film-shaped resin material (resin film) is heated at 130°C for 60 minutes for temporary curing, and then heated at 200°C for 90 minutes to obtain a cured product of the resin material. The obtained cured product is cut into a size of 3 mm×25 mm. Using a thermomechanical analyzer (for example, "EXSTAR TMA/SS6100" manufactured by SII Nanotechnology Co., Ltd.), under the conditions of a tensile load of 33 mN and a temperature increase rate of 5 ° C./min, the cut cured product was measured from 25 ° C. to Calculate the average coefficient of linear expansion (ppm/°C) up to 150°C.
 (半導体装置、プリント配線板、銅張積層板及び多層プリント配線板)
 上記樹脂材料は、半導体装置において半導体チップを埋め込むモールド樹脂を形成するために好適に用いられる。
(Semiconductor devices, printed wiring boards, copper clad laminates and multilayer printed wiring boards)
The above resin material is suitably used for forming a mold resin for embedding a semiconductor chip in a semiconductor device.
 上記樹脂材料は、液晶ポリマー(LCP)の代替用途、ミリ波アンテナ用途、再配線層用途に好適に用いられる。また、上記樹脂材料は、上記用途に限らず、配線形成用途全般として、好適に用いられる。 The above resin material is suitably used for liquid crystal polymer (LCP) substitute applications, millimeter wave antenna applications, and rewiring layer applications. In addition, the above resin material is not limited to the above applications, and is suitable for general wiring formation applications.
 上記樹脂材料は、絶縁材料として好適に用いられる。上記樹脂材料は、プリント配線板において絶縁層を形成するために好適に用いられる。 The above resin material is suitably used as an insulating material. The above resin material is suitably used for forming an insulating layer in a printed wiring board.
 上記プリント配線板は、例えば、上記樹脂材料を加熱加圧成形することにより得られる。 The printed wiring board is obtained, for example, by heating and pressurizing the resin material.
 上記樹脂フィルムに対して、片面又は両面に金属層を表面に有する積層対象部材を積層できる。金属層を表面に有する積層対象部材と、上記金属層の表面上に積層された樹脂フィルムとを備え、上記樹脂フィルムが、上述した樹脂材料である、積層構造体を好適に得ることができる。上記樹脂フィルムと上記金属層を表面に有する積層対象部材とを積層する方法は特に限定されず、公知の方法を用いることができる。例えば、平行平板プレス機又はロールラミネーター等の装置を用いて、加熱しながら又は加熱せずに加圧しながら、上記樹脂フィルムを、金属層を表面に有する積層対象部材に積層可能である。 A member to be laminated having a metal layer on its surface can be laminated on one or both sides of the resin film. It is possible to suitably obtain a laminated structure comprising a member to be laminated having a metal layer on its surface and a resin film laminated on the surface of the metal layer, wherein the resin film is the resin material described above. A method for laminating the resin film and the member to be laminated having the metal layer on the surface thereof is not particularly limited, and a known method can be used. For example, using a device such as a parallel plate press or a roll laminator, the resin film can be laminated on a member to be laminated having a metal layer on its surface while applying pressure with or without heating.
 上記金属層の材料は銅であることが好ましい。 The material of the metal layer is preferably copper.
 上記金属層を表面に有する積層対象部材は、銅箔等の金属箔であってもよい。 The member to be laminated having the metal layer on its surface may be a metal foil such as copper foil.
 上記樹脂材料は、銅張積層板を得るために好適に用いられる。上記銅張積層板の一例として、銅箔と、該銅箔の一方の表面に積層された樹脂フィルムとを備える銅張積層板が挙げられる。 The above resin material is suitably used to obtain a copper-clad laminate. An example of the copper-clad laminate is a copper-clad laminate comprising a copper foil and a resin film laminated on one surface of the copper foil.
 上記銅張積層板の上記銅箔の厚さは特に限定されない。上記銅箔の厚さは、1μm以上100μm以下であることが好ましい。また、上記樹脂材料の硬化物と銅箔との接着強度を高めるために、上記銅箔は微細な凹凸を表面に有することが好ましい。凹凸の形成方法は特に限定されない。上記凹凸の形成方法としては、公知の薬液を用いた処理による形成方法等が挙げられる。 The thickness of the copper foil of the copper clad laminate is not particularly limited. The thickness of the copper foil is preferably 1 μm or more and 100 μm or less. In order to increase the adhesive strength between the cured resin material and the copper foil, the copper foil preferably has fine irregularities on its surface. A method for forming the unevenness is not particularly limited. Examples of the method for forming the unevenness include a forming method using a known chemical solution.
 上記樹脂材料は、多層基板を得るために好適に用いられる。 The above resin material is suitably used to obtain a multilayer substrate.
 上記多層基板の一例として、回路基板と、該回路基板上に積層された絶縁層とを備える多層基板が挙げられる。この多層基板の絶縁層が、上記樹脂材料により形成されている。また、多層基板の絶縁層が、積層フィルムを用いて、上記積層フィルムの上記樹脂フィルムにより形成されていてもよい。上記絶縁層は、回路基板の回路が設けられた表面上に積層されていることが好ましい。上記絶縁層の一部は、上記回路間に埋め込まれていることが好ましい。 An example of the multi-layer board is a multi-layer board comprising a circuit board and an insulating layer laminated on the circuit board. The insulating layer of this multilayer substrate is formed of the above resin material. Moreover, the insulating layer of the multilayer substrate may be formed of the resin film of the laminated film by using the laminated film. The insulating layer is preferably laminated on the surface of the circuit board on which the circuit is provided. A part of the insulating layer is preferably embedded between the circuits.
 上記多層基板では、上記絶縁層の上記回路基板が積層された表面とは反対側の表面が粗化処理されていることが好ましい。 In the multilayer substrate, it is preferable that the surface of the insulating layer opposite to the surface on which the circuit board is laminated is roughened.
 粗化処理方法は、従来公知の粗化処理方法を用いることができ、特に限定されない。上記絶縁層の表面は、粗化処理の前に膨潤処理されていてもよい。 A conventionally known roughening treatment method can be used for the roughening treatment method, and is not particularly limited. The surface of the insulating layer may be subjected to a swelling treatment before the roughening treatment.
 また、上記多層基板は、上記絶縁層の粗化処理された表面に積層された銅めっき層をさらに備えることが好ましい。 Further, it is preferable that the multilayer substrate further includes a copper plating layer laminated on the roughened surface of the insulating layer.
 また、上記多層基板の他の例として、回路基板と、該回路基板の表面上に積層された絶縁層と、該絶縁層の上記回路基板が積層された表面とは反対側の表面に積層された銅箔とを備える多層基板が挙げられる。上記絶縁層が、銅箔と該銅箔の一方の表面に積層された樹脂フィルムとを備える銅張積層板を用いて、上記樹脂フィルムを硬化させることにより形成されていることが好ましい。さらに、上記銅箔はエッチング処理されており、銅回路であることが好ましい。 Further, as another example of the multilayer board, a circuit board, an insulating layer laminated on the surface of the circuit board, and a surface of the insulating layer laminated on the surface opposite to the surface on which the circuit board is laminated. and a copper foil. It is preferable that the insulating layer is formed by using a copper clad laminate comprising a copper foil and a resin film laminated on one surface of the copper foil, and curing the resin film. Furthermore, the copper foil is preferably etched and is a copper circuit.
 上記多層基板の他の例として、回路基板と、該回路基板の表面上に積層された複数の絶縁層とを備える多層基板が挙げられる。上記回路基板上に配置された上記複数の絶縁層の内の少なくとも1層が、上記樹脂材料を用いて形成される。上記多層基板は、上記樹脂フィルムを用いて形成されている上記絶縁層の少なくとも一方の表面に積層されている回路をさらに備えることが好ましい。 Another example of the multilayer board is a multilayer board that includes a circuit board and a plurality of insulating layers laminated on the surface of the circuit board. At least one of the plurality of insulating layers arranged on the circuit board is formed using the resin material. The multilayer substrate preferably further includes a circuit laminated on at least one surface of the insulating layer formed using the resin film.
 多層基板のうち多層プリント配線板においては、絶縁層による高い絶縁信頼性が求められる。本発明に係る樹脂材料では、本発明の効果を発揮することによって絶縁信頼性を効果的に高めることができる。従って、本発明に係る樹脂材料は、多層プリント配線板において、絶縁層を形成するために好適に用いられる。 Among multilayer boards, multilayer printed wiring boards require high insulation reliability due to insulating layers. In the resin material according to the present invention, insulation reliability can be effectively improved by exhibiting the effects of the present invention. Therefore, the resin material according to the present invention is suitably used for forming insulating layers in multilayer printed wiring boards.
 上記多層プリント配線板は、例えば、回路基板と、上記回路基板の表面上に配置された複数の絶縁層と、複数の上記絶縁層間に配置された金属層とを備える。上記絶縁層の内の少なくとも1層が、上記樹脂材料の硬化物である。 The multilayer printed wiring board includes, for example, a circuit board, a plurality of insulating layers arranged on the surface of the circuit board, and metal layers arranged between the plurality of insulating layers. At least one of the insulating layers is a cured product of the resin material.
 図1は、本発明の一実施形態に係る樹脂材料を用いた多層プリント配線板を模式的に示す断面図である。 FIG. 1 is a cross-sectional view schematically showing a multilayer printed wiring board using a resin material according to one embodiment of the present invention.
 図1に示す多層プリント配線板11では、回路基板12の上面12aに、複数の絶縁層13~16が積層されている。絶縁層13~16は、硬化物層である。回路基板12の上面12aの一部の領域には、金属層17が形成されている。複数の絶縁層13~16のうち、回路基板12側とは反対の外側の表面に位置する絶縁層16以外の絶縁層13~15には、上面の一部の領域に金属層17が形成されている。金属層17は回路である。回路基板12と絶縁層13の間、及び積層された絶縁層13~16の各層間に、金属層17がそれぞれ配置されている。下方の金属層17と上方の金属層17とは、図示しないビアホール接続及びスルーホール接続の内の少なくとも一方により互いに接続されている。 In the multilayer printed wiring board 11 shown in FIG. 1, a plurality of insulating layers 13 to 16 are laminated on the upper surface 12a of the circuit board 12. The insulating layers 13 to 16 are hardened layers. A metal layer 17 is formed on a partial region of the upper surface 12 a of the circuit board 12 . Of the plurality of insulating layers 13 to 16, the insulating layers 13 to 15 other than the insulating layer 16 positioned on the outer surface opposite to the circuit board 12 side have a metal layer 17 formed on a partial region of the upper surface. ing. Metal layer 17 is a circuit. A metal layer 17 is arranged between the circuit board 12 and the insulating layer 13 and between the laminated insulating layers 13 to 16, respectively. The lower metal layer 17 and the upper metal layer 17 are connected to each other by at least one of via-hole connection and through-hole connection (not shown).
 多層プリント配線板11では、絶縁層13~16が、上記樹脂材料の硬化物により形成されている。本実施形態では、絶縁層13~16の表面が粗化処理されているので、絶縁層13~16の表面に図示しない微細な孔が形成されている。また、微細な孔の内部に金属層17が至っている。また、多層プリント配線板11では、金属層17の幅方向寸法(L)と、金属層17が形成されていない部分の幅方向寸法(S)とを小さくすることができる。また、多層プリント配線板11では、図示しないビアホール接続及びスルーホール接続で接続されていない上方の金属層と下方の金属層との間に、良好な絶縁信頼性が付与されている。 In the multilayer printed wiring board 11, the insulating layers 13 to 16 are formed from the cured resin material. In this embodiment, since the surfaces of the insulating layers 13-16 are roughened, fine holes (not shown) are formed in the surfaces of the insulating layers 13-16. Also, the metal layer 17 reaches inside the fine holes. Moreover, in the multilayer printed wiring board 11, the widthwise dimension (L) of the metal layer 17 and the widthwise dimension (S) of the portion where the metal layer 17 is not formed can be reduced. Moreover, in the multilayer printed wiring board 11, good insulation reliability is imparted between the upper metal layer and the lower metal layer that are not connected by via-hole connections and through-hole connections (not shown).
 (粗化処理及び膨潤処理)
 上記樹脂材料は、粗化処理又はデスミア処理される硬化物を得るために用いられることが好ましい。上記硬化物には、更に硬化が可能な予備硬化物も含まれる。
(Roughening treatment and swelling treatment)
The resin material is preferably used to obtain a cured product that is roughened or desmeared. The cured product also includes a pre-cured product that can be further cured.
 上記樹脂材料を予備硬化させることにより得られた硬化物の表面に微細な凹凸を形成するために、硬化物は粗化処理されることが好ましい。粗化処理の前に、硬化物は膨潤処理されることが好ましい。硬化物は、予備硬化の後、かつ粗化処理される前に、膨潤処理されており、さらに粗化処理の後に硬化されていることが好ましい。ただし、硬化物は、必ずしも膨潤処理されなくてもよい。 In order to form fine unevenness on the surface of the cured product obtained by precuring the resin material, the cured product is preferably subjected to a roughening treatment. The cured product is preferably subjected to a swelling treatment before the roughening treatment. The cured product is preferably subjected to swelling treatment after precuring and before roughening treatment, and further cured after roughening treatment. However, the cured product does not necessarily have to be subjected to a swelling treatment.
 上記膨潤処理の方法としては、例えば、エチレングリコールなどを主成分とする化合物の水溶液又は有機溶媒分散溶液などにより、硬化物を処理する方法が用いられる。膨潤処理に用いる膨潤液は、一般にpH調整剤などとして、アルカリを含む。膨潤液は、水酸化ナトリウムを含むことが好ましい。具体的には、例えば、上記膨潤処理は、40重量%エチレングリコール水溶液等を用いて、処理温度30℃~85℃で1分間~30分間、硬化物を処理することにより行なわれる。上記膨潤処理の温度は50℃~85℃の範囲内であることが好ましい。上記膨潤処理の温度が低すぎると、膨潤処理に長時間を要し、更に硬化物と金属層との接着強度が低くなる傾向がある。 As the swelling treatment method, for example, a method of treating the cured product with an aqueous solution or an organic solvent dispersion solution of a compound containing ethylene glycol as a main component is used. The swelling liquid used for the swelling treatment generally contains an alkali as a pH adjuster or the like. The swelling liquid preferably contains sodium hydroxide. Specifically, for example, the swelling treatment is performed by treating the cured product with a 40% by weight ethylene glycol aqueous solution or the like at a treatment temperature of 30° C. to 85° C. for 1 minute to 30 minutes. The temperature of the swelling treatment is preferably in the range of 50.degree. C. to 85.degree. When the temperature of the swelling treatment is too low, the swelling treatment takes a long time, and the adhesive strength between the cured product and the metal layer tends to decrease.
 上記粗化処理には、例えば、マンガン化合物、クロム化合物又は過硫酸化合物などの化学酸化剤等が用いられる。これらの化学酸化剤は、水又は有機溶剤が添加された後、水溶液又は有機溶媒分散溶液として用いられる。粗化処理に用いられる粗化液は、一般にpH調整剤などとしてアルカリを含む。粗化液は、水酸化ナトリウムを含むことが好ましい。 For the roughening treatment, for example, a chemical oxidizing agent such as a manganese compound, a chromium compound, or a persulfate compound is used. These chemical oxidants are used as aqueous solutions or organic solvent dispersion solutions after water or organic solvents are added. The roughening liquid used for the roughening treatment generally contains an alkali as a pH adjuster or the like. The roughening liquid preferably contains sodium hydroxide.
 上記マンガン化合物としては、過マンガン酸カリウム及び過マンガン酸ナトリウム等が挙げられる。上記クロム化合物としては、重クロム酸カリウム及び無水クロム酸カリウム等が挙げられる。上記過硫酸化合物としては、過硫酸ナトリウム、過硫酸カリウム及び過硫酸アンモニウム等が挙げられる。 Examples of the manganese compound include potassium permanganate and sodium permanganate. Examples of the chromium compound include potassium dichromate and anhydrous potassium chromate. Examples of the persulfate compound include sodium persulfate, potassium persulfate and ammonium persulfate.
 硬化物の表面の算術平均粗さRaは、好ましくは10nm以上であり、好ましくは300nm未満、より好ましくは200nm未満、更に好ましくは150nm未満である。この場合には、硬化物と金属層との接着強度が高くなり、更に絶縁層の表面により一層微細な配線が形成される。さらに、導体損失を抑えることができ、信号損失を低く抑えることができる。上記算術平均粗さRaは、JIS B0601:1994に準拠して測定される。 The arithmetic mean roughness Ra of the surface of the cured product is preferably 10 nm or more, preferably less than 300 nm, more preferably less than 200 nm, still more preferably less than 150 nm. In this case, the adhesive strength between the cured product and the metal layer is increased, and finer wiring is formed on the surface of the insulating layer. Furthermore, conductor loss can be suppressed, and signal loss can be kept low. The arithmetic mean roughness Ra is measured according to JIS B0601:1994.
 (デスミア処理)
 上記樹脂材料を予備硬化させることにより得られた硬化物に、貫通孔が形成されることがある。上記多層基板などでは、貫通孔として、ビア又はスルーホール等が形成される。例えば、ビアは、COレーザー等のレーザーの照射により形成できる。ビアの直径は特に限定されないが、60μm~80μm程度である。上記貫通孔の形成により、ビア内の底部には、硬化物に含まれている樹脂成分に由来する樹脂の残渣であるスミアが形成されることが多い。
(Desmear treatment)
Through-holes may be formed in the cured product obtained by precuring the resin material. Vias, through holes, or the like are formed as through holes in the multilayer substrates and the like. For example, vias can be formed by irradiation with a laser such as a CO2 laser. Although the diameter of the via is not particularly limited, it is about 60 μm to 80 μm. Due to the formation of the through-holes, smears, which are residues of the resin derived from the resin component contained in the cured product, are often formed at the bottom of the vias.
 上記スミアを除去するために、硬化物の表面は、デスミア処理されることが好ましい。デスミア処理が粗化処理を兼ねることもある。 In order to remove the smear, the surface of the cured product is preferably desmeared. The desmearing treatment may also serve as the roughening treatment.
 上記デスミア処理には、上記粗化処理と同様に、例えば、マンガン化合物、クロム化合物又は過硫酸化合物等の化学酸化剤等が用いられる。これらの化学酸化剤は、水又は有機溶剤が添加された後、水溶液又は有機溶媒分散溶液として用いられる。デスミア処理に用いられるデスミア処理液は、一般にアルカリを含む。デスミア処理液は、水酸化ナトリウムを含むことが好ましい。 For the desmear treatment, chemical oxidizing agents such as manganese compounds, chromium compounds, or persulfate compounds are used in the same manner as the roughening treatment. These chemical oxidants are used as aqueous solutions or organic solvent dispersion solutions after water or organic solvents are added. A desmearing liquid used for desmearing generally contains an alkali. The desmear treatment liquid preferably contains sodium hydroxide.
 上記樹脂材料の使用により、デスミア処理された硬化物の表面の表面粗さが十分に小さくなる。 By using the above resin material, the surface roughness of the surface of the desmeared cured product is sufficiently reduced.
 以下、実施例及び比較例を挙げることにより、本発明を具体的に説明する。本発明は、以下の実施例に限定されない。 The present invention will be specifically described below by giving examples and comparative examples. The invention is not limited to the following examples.
 以下の材料を用意した。 "I prepared the following materials."
 (エポキシ化合物)
 ビフェニル型エポキシ化合物(日本化薬製「NC3000L」)
 ビスフェノールF型エポキシ化合物(DIC社製「830S」)
(epoxy compound)
Biphenyl-type epoxy compound ("NC3000L" manufactured by Nippon Kayaku)
Bisphenol F type epoxy compound ("830S" manufactured by DIC)
 (硬化剤)
 第1の硬化剤:
 フェノールカーボネート化合物(群栄化学社製「FTC509」、分子量4000、ガラス転移温度110℃)
 活性エステルカーボネート化合物含有液(群栄化学社製「FTC509ES」、分子量4000、固形分55重量%、ガラス転移温度33℃)
(curing agent)
First Curing Agent:
Phenol carbonate compound ("FTC509" manufactured by Gunei Chemical Co., Ltd., molecular weight 4000, glass transition temperature 110 ° C.)
Active ester carbonate compound-containing liquid ("FTC509ES" manufactured by Gunei Chemical Co., Ltd., molecular weight 4000, solid content 55% by weight, glass transition temperature 33°C)
 第2の硬化剤:
 フェノール化合物含有液(DIC社製「LA-1356」、固形分60重量%)
 活性エステル化合物含有液(DIC社製「HPC-8000L-65T」、固形分65重量%)
Second curing agent:
Phenolic compound-containing liquid ("LA-1356" manufactured by DIC, solid content 60% by weight)
Active ester compound-containing liquid (manufactured by DIC "HPC-8000L-65T", solid content 65% by weight)
 (硬化促進剤)
 イミダゾール化合物(2-フェニル-4-メチルイミダゾール、四国化成工業社製「2P4MZ」)
(Curing accelerator)
Imidazole compound (2-phenyl-4-methylimidazole, "2P4MZ" manufactured by Shikoku Kasei Kogyo Co., Ltd.)
 (フィラー:無機フィラー)
 シリカ1含有スラリー(シランカップリング剤による表面処理物である球状シリカを含むスラリー、平均粒子径0.1μm、以下の作製方法により作製)
 シリカ2含有スラリー(シランカップリング剤による表面処理物である球状シリカを含むスラリー、平均粒子径0.5μm、以下の作製方法により作製)
 シリカ3含有スラリー(シランカップリング剤による表面処理物である球状シリカを含むスラリー、平均粒子径2.0μm、以下の作製方法により作製)
 シリカ4含有スラリー(シランカップリング剤による表面処理物である球状シリカを含むスラリー、平均粒子径2.5μm、以下の作製方法により作製)
(Filler: inorganic filler)
Slurry containing silica 1 (slurry containing spherical silica that is surface-treated with a silane coupling agent, average particle size 0.1 μm, prepared by the following preparation method)
Slurry containing silica 2 (slurry containing spherical silica that is surface-treated with a silane coupling agent, average particle size 0.5 μm, prepared by the following preparation method)
Slurry containing silica 3 (slurry containing spherical silica that is surface-treated with a silane coupling agent, average particle size 2.0 μm, prepared by the following preparation method)
Slurry containing silica 4 (slurry containing spherical silica that is surface-treated with a silane coupling agent, average particle size 2.5 μm, prepared by the following preparation method)
 <シリカ1含有スラリーの作製方法>
 シリカ(日本触媒社製「シーホスターKE-S10」)を、N-フェニル-3-アミノプロピル基を有するシランカップリング剤(信越化学工業社製「KBM-573」)で表面処理した。得られた表面処理物に対して、50重量%の含有量となるようにシクロヘキサノン(和光純薬工業社製「037-05096」)を添加して、シリカ1含有スラリーを得た。
<Method for preparing silica 1-containing slurry>
Silica (“Seahoster KE-S10” manufactured by Nippon Shokubai Co., Ltd.) was surface-treated with a silane coupling agent having an N-phenyl-3-aminopropyl group (“KBM-573” manufactured by Shin-Etsu Chemical Co., Ltd.). Cyclohexanone (“037-05096” manufactured by Wako Pure Chemical Industries, Ltd.) was added to the resulting surface-treated product so as to have a content of 50% by weight to obtain a silica 1-containing slurry.
 <シリカ2含有スラリーの作製方法>
 シリカ(アドマテックス社製「SO-C2」)を、N-フェニル-3-アミノプロピル基を有するシランカップリング剤(信越化学工業社製「KBM-573」)で表面処理した。得られた表面処理物に対して、50重量%の含有量となるようにシクロヘキサノン(和光純薬工業社製「037-05096」)を添加して、シリカ2含有スラリーを得た。
<Method for preparing slurry containing silica 2>
Silica (“SO-C2” manufactured by Admatechs) was surface-treated with a silane coupling agent having an N-phenyl-3-aminopropyl group (“KBM-573” manufactured by Shin-Etsu Chemical Co., Ltd.). Cyclohexanone (“037-05096” manufactured by Wako Pure Chemical Industries, Ltd.) was added to the resulting surface-treated product so as to have a content of 50% by weight to obtain a silica 2-containing slurry.
 <シリカ3含有スラリーの作製方法>
 シリカ(アドマテックス社製「SO-C6」)を、N-フェニル-3-アミノプロピル基を有するシランカップリング剤(信越化学工業社製「KBM-573」)で表面処理した。得られた表面処理物に対して、50重量%の含有量となるようにシクロヘキサノン(和光純薬工業社製「037-05096」)を添加して、シリカ3含有スラリーを得た。
<Method for preparing slurry containing silica 3>
Silica ("SO-C6" manufactured by Admatechs) was surface-treated with a silane coupling agent having an N-phenyl-3-aminopropyl group ("KBM-573" manufactured by Shin-Etsu Chemical Co., Ltd.). Cyclohexanone (“037-05096” manufactured by Wako Pure Chemical Industries, Ltd.) was added to the resulting surface-treated product so as to have a content of 50% by weight to obtain a silica 3-containing slurry.
 <シリカ4含有スラリーの作製方法>
 シリカ(日本触媒社製「シーホスターKE-S250」)を、N-フェニル-3-アミノプロピル基を有するシランカップリング剤(信越化学工業社製「KBM-573」)で表面処理した。得られた表面処理物に対して、50重量%の含有量となるようにシクロヘキサノン(和光純薬工業社製「037-05096」)を添加して、シリカ4含有スラリーを得た。
<Method for preparing slurry containing silica 4>
Silica (“Seahoster KE-S250” manufactured by Nippon Shokubai Co., Ltd.) was surface-treated with a silane coupling agent having an N-phenyl-3-aminopropyl group (“KBM-573” manufactured by Shin-Etsu Chemical Co., Ltd.). Cyclohexanone (“037-05096” manufactured by Wako Pure Chemical Industries, Ltd.) was added to the obtained surface-treated product so as to have a content of 50% by weight to obtain a silica 4-containing slurry.
 (熱可塑性樹脂)
 ポリイミド樹脂含有液(テトラカルボン酸二無水物とダイマージアミンとの反応物であるポリイミド樹脂含有液(不揮発分26.8重量%)、以下の合成例1に従って合成)
 フェノキシ樹脂含有液(重量平均分子量39000、三菱ケミカル社製「YX6954BH30」、固形分30重量%)
 カーボネート樹脂(重量平均分子量1000、クラレ社製「C-1015N」)
(Thermoplastic resin)
Polyimide resin-containing liquid (polyimide resin-containing liquid (nonvolatile content 26.8% by weight) which is a reaction product of tetracarboxylic dianhydride and dimer diamine, synthesized according to Synthesis Example 1 below)
Phenoxy resin-containing liquid (weight average molecular weight 39000, "YX6954BH30" manufactured by Mitsubishi Chemical Corporation, solid content 30% by weight)
Carbonate resin (weight average molecular weight 1000, "C-1015N" manufactured by Kuraray Co., Ltd.)
 <合成例1>
 撹拌機、分水器、温度計及び窒素ガス導入管を備えた反応容器に、テトラカルボン酸二無水物(SABICジャパン合同会社製「BisDA-1000」)300.0gと、シクロヘキサノン665.5gとを入れ、反応容器中の溶液を60℃まで加熱した。次いで、反応容器中に、ダイマージアミン(クローダジャパン社製「PRIAMINE1075」)89.0gと、1,3-ビスアミノメチルシクロヘキサン(三菱ガス化学社製)54.7gとを滴下した。次いで、反応容器中に、メチルシクロヘキサン121.0gと、エチレングリコールジメチルエーテル423.5gとを添加し、140℃で10時間かけてイミド化反応を行った。このようにして、ポリイミド樹脂含有液(不揮発分26.8重量%)を得た。得られたポリイミド化合物の分子量(重量平均分子量)は20000であった。なお、酸成分/アミン成分のモル比は1.04であった。
<Synthesis Example 1>
A reaction vessel equipped with a stirrer, a water separator, a thermometer and a nitrogen gas inlet tube was charged with 300.0 g of tetracarboxylic dianhydride ("BisDA-1000" manufactured by SABIC Japan LLC) and 665.5 g of cyclohexanone. and the solution in the reaction vessel was heated to 60°C. Then, 89.0 g of dimer diamine (“PRIAMINE 1075” manufactured by Croda Japan) and 54.7 g of 1,3-bisaminomethylcyclohexane (manufactured by Mitsubishi Gas Chemical Company, Inc.) were dropped into the reaction vessel. Then, 121.0 g of methylcyclohexane and 423.5 g of ethylene glycol dimethyl ether were added to the reactor, and imidization reaction was carried out at 140° C. for 10 hours. Thus, a polyimide resin-containing liquid (26.8% by weight of non-volatile content) was obtained. The molecular weight (weight average molecular weight) of the obtained polyimide compound was 20,000. The molar ratio of acid component/amine component was 1.04.
 上記第1の硬化剤及び上記熱可塑性樹脂の重量平均分子量はGPC(ゲルパーミエーションクロマトグラフィー)測定により以下のようにして求めた。 The weight average molecular weights of the first curing agent and the thermoplastic resin were determined by GPC (gel permeation chromatography) as follows.
 島津製作所社製の高速液体クロマトグラフシステムを使用し、テトラヒドロフラン(THF)を展開媒として、カラム温度40℃、流速1.0ml/分で測定を行った。検出器として「SPD-10A」を用い、カラムはShodex社製「KF-804L」(排除限界分子量400,000)を2本直列につないで使用した。標準ポリスチレンとして、東ソー社製「TSKスタンダードポリスチレン」を用い、重量平均分子量Mw=354,000、189,000、98,900、37,200、17,100、9,830、5,870、2,500、1,050、500の物質を使用して較正曲線を作成し、分子量の計算を行った。 Using a high-performance liquid chromatograph system manufactured by Shimadzu Corporation, tetrahydrofuran (THF) was used as a developing medium, and measurement was performed at a column temperature of 40°C and a flow rate of 1.0 ml/min. "SPD-10A" was used as a detector, and two "KF-804L" columns (exclusion limit molecular weight: 400,000) manufactured by Shodex were connected in series. As standard polystyrene, "TSK Standard Polystyrene" manufactured by Tosoh Corporation was used, and weight average molecular weight Mw = 354,000, 189,000, 98,900, 37,200, 17,100, 9,830, 5,870, 2, A calibration curve was generated using 500, 1,050, 500 substances and molecular weight calculations were performed.
 (実施例1~7及び比較例1~3)
 下記の表1,2に示す成分を下記の表1,2に示す配合量(単位は固形分重量部)で配合し、均一な溶液となるまで常温で撹拌し、樹脂材料を得た。
(Examples 1 to 7 and Comparative Examples 1 to 3)
The components shown in Tables 1 and 2 below were blended in the amounts shown in Tables 1 and 2 below (unit: parts by weight of solid content) and stirred at room temperature until a uniform solution was obtained to obtain a resin material.
 樹脂フィルムの作製:
 アプリケーターを用いて、離型処理されたPETフィルム(東レ社製「XG284」、厚み25μm)の離型処理面上に得られた樹脂材料を塗工した後、100℃のギヤオーブン内で2分30秒間乾燥し、溶剤を揮発させた。このようにして、PETフィルム上に、厚さが40μmである樹脂フィルム(Bステージフィルム)が積層されている積層フィルム(PETフィルムと樹脂フィルムとの積層フィルム)を得た。
Preparation of resin film:
Using an applicator, apply the obtained resin material on the release-treated surface of a release-treated PET film (“XG284” manufactured by Toray Industries, Inc., thickness 25 μm), and then place in a gear oven at 100° C. for 2 minutes. Dry for 30 seconds to evaporate the solvent. Thus, a laminated film (laminated film of PET film and resin film) in which a resin film (B stage film) having a thickness of 40 μm was laminated on the PET film was obtained.
 [評価]
 (1)硬化物の誘電正接(Df)
 得られた樹脂フィルムを180℃で30分間加熱して仮硬化させた後、200℃で90分間加熱して、硬化物を得た。得られた硬化物を幅2mm、長さ80mmの大きさに裁断して10枚を重ね合わせて、関東電子応用開発社製「空洞共振摂動法誘電率測定装置CP521」及びキーサイトテクノロジー社製「ネットワークアナライザーN5224A PNA」を用いて、空洞共振法で常温(23℃)及び周波数5.8GHzにて誘電正接を測定した。
[evaluation]
(1) Dielectric loss tangent (Df) of cured product
The resulting resin film was heated at 180° C. for 30 minutes for temporary curing, and then heated at 200° C. for 90 minutes to obtain a cured product. The resulting cured product was cut into a size of 2 mm in width and 80 mm in length, and 10 sheets were superimposed and measured by Kanto Denshi Applied Development Co., Ltd.'s "Cavity Resonance Perturbation Method Dielectric Constant Measurement Device CP521" and Keysight Technologies, Inc.'s " Using a network analyzer N5224A PNA, the dielectric loss tangent was measured at room temperature (23° C.) and a frequency of 5.8 GHz by the cavity resonance method.
 [硬化物の誘電正接(Df)の判定基準]
 ○〇○:誘電正接が2.8×10-3未満
 ○〇:誘電正接が2.8×10-3以上2.9×10-3未満
 〇:誘電正接が2.9×10-3以上3.0×10-3未満
 ×:誘電正接が3.0×10-3以上
[Criteria for Dielectric Loss Tangent (Df) of Cured Material]
○○○: Dielectric loss tangent is less than 2.8×10 -3 ○○: Dielectric loss tangent is 2.8×10 -3 or more and less than 2.9×10 -3 〇: Dielectric loss tangent is 2.9×10 -3 or more Less than 3.0×10 −3 ×: Dielectric loss tangent is 3.0×10 −3 or more
 (2)デスミア性(ビア底の残渣の除去性)
 ラミネート・半硬化処理:
 CCL基板(日立化成工業社製「E-679FGR」)を、銅表面粗化剤(メック社製「メックエッチボンド CZ-8201」)に浸漬し、銅表面が粗化処理された100mm角のCCL基板を得た。真空加圧式ラミネーター機(名機製作所社製「MVLP-500」)を用いて、粗化処理されたCCL基板に、得られた積層フィルムをラミネート圧0.7MPa及びラミネート温度100℃で20秒間ラミネートし、更にプレス圧力1.0MPa及びプレス温度100℃で40秒間プレスした。積層フィルムのPETフィルムを剥がした後、100℃で30分間、次いで、180℃で30分間加熱し、樹脂フィルムを半硬化させた。このようにして、CCL基板の両面に樹脂フィルムの半硬化物が積層されている積層体Aを得た。
(2) Desmear property (removability of residue on bottom of via)
Lamination/semi-curing treatment:
A CCL substrate (“E-679FGR” manufactured by Hitachi Chemical Co., Ltd.) was immersed in a copper surface roughening agent (“Mec Etch Bond CZ-8201” manufactured by MEC Co., Ltd.) to form a 100 mm square CCL with a roughened copper surface. got the substrate. Using a vacuum pressurized laminator ("MVLP-500" manufactured by Meiki Seisakusho Co., Ltd.), the resulting laminated film was laminated on a roughened CCL substrate at a lamination pressure of 0.7 MPa and a lamination temperature of 100° C. for 20 seconds. and further pressed at a press pressure of 1.0 MPa and a press temperature of 100° C. for 40 seconds. After peeling off the PET film of the laminated film, the resin film was semi-cured by heating at 100° C. for 30 minutes and then at 180° C. for 30 minutes. Thus, a laminate A was obtained in which semi-cured resin films were laminated on both sides of the CCL substrate.
 ビア(貫通孔)形成:
 得られた積層体Aの樹脂フィルムの半硬化物に、COレーザー(日立ビアメカニクス社製)を用いて、上端での直径が65μm、下端(底部)での直径が45μmであるビア(貫通孔)を形成した。このようにして、CCL基板に樹脂フィルムの半硬化物が積層されており、かつ樹脂フィルムの半硬化物にビア(貫通孔)が形成されている積層体Bを得た。
Via (through hole) formation:
A CO 2 laser (manufactured by Hitachi Via Mechanics Co., Ltd.) was applied to the semi-cured product of the resin film of the obtained laminate A, and a via (through hole) having a diameter of 65 μm at the upper end and a diameter of 45 μm at the lower end (bottom) holes) were formed. Thus, a laminate B was obtained in which the semi-cured resin film was laminated on the CCL substrate and vias (through holes) were formed in the semi-cured resin film.
 ビアの底部の残渣の除去処理:
 (a)膨潤処理
 60℃の膨潤液(アトテックジャパン社製「スウェリングディップセキュリガントP」)に、得られた積層体Bを入れて、10分間揺動させた。その後、純水で洗浄した。
Via bottom residue removal process:
(a) Swelling Treatment The obtained laminate B was placed in a swelling liquid (“Swelling Dip Securigant P” manufactured by Atotech Japan) at 60° C. and shaken for 10 minutes. After that, it was washed with pure water.
 (b)過マンガン酸塩処理(粗化処理及びデスミア処理)
 80℃の過マンガン酸カリウム(アトテックジャパン社製「コンセントレートコンパクトCP」)粗化水溶液に、膨潤処理後の積層体Bを入れて、30分間揺動させた。次に、25℃の洗浄液(アトテックジャパン社製「リダクションセキュリガントP」)を用いて2分間処理した後、純水で洗浄を行い、評価サンプルを得た。
(b) Permanganate treatment (roughening treatment and desmear treatment)
Laminate B after the swelling treatment was placed in a roughening aqueous solution of potassium permanganate (“Concentrate Compact CP” manufactured by Atotech Japan Co., Ltd.) at 80° C. and shaken for 30 minutes. Next, after being treated for 2 minutes using a cleaning solution ("Reduction Securigant P" manufactured by Atotech Japan Co., Ltd.) at 25°C, it was cleaned with pure water to obtain an evaluation sample.
 評価サンプルのビアの底部を走査電子顕微鏡(SEM)にて観察し、ビア底の壁面からの最大スミア長を測定した。ビア底の残渣の除去性を以下の基準で判定した。 The bottom of the evaluation sample via was observed with a scanning electron microscope (SEM), and the maximum smear length from the wall surface of the via bottom was measured. The removability of the residue on the via bottom was evaluated according to the following criteria.
 [デスミア性(ビア底の残渣の除去性)の判定基準]
 ○○:最大スミア長が1μm未満
 ○:最大スミア長が1μm以上2μm未満
 △:最大スミア長が2μm以上3μm未満
 ×:最大スミア長が3μm以上
[Desmear property (removability of residue on via bottom) criteria]
○○: Maximum smear length less than 1 μm ○: Maximum smear length 1 μm or more and less than 2 μm △: Maximum smear length 2 μm or more and less than 3 μm ×: Maximum smear length 3 μm or more
 (3)メッキピール強度
 無電解めっき処理:
 「(2)デスミア性(ビア底の残渣の除去性)」の評価で得られた評価サンプルの粗化処理された硬化物の表面を、60℃のアルカリクリーナ(アトテックジャパン社製「クリーナーセキュリガント902」)で5分間処理し、脱脂洗浄した。洗浄後、上記硬化物を25℃のプリディップ液(アトテックジャパン社製「プリディップネオガントB」)で2分間処理した。その後、上記硬化物を40℃のアクチベーター液(アトテックジャパン社製「アクチベーターネオガント834」)で5分間処理し、パラジウム触媒を付けた。次に、30℃の還元液(アトテックジャパン社製「リデューサーネオガントWA」)により、硬化物を5分間処理した。
(3) Plating peel strength Electroless plating treatment:
The surface of the roughened cured product of the evaluation sample obtained in the evaluation of “(2) desmear property (removability of residue at bottom of via)” was washed with an alkaline cleaner (“Cleaner Securigant” manufactured by Atotech Japan Co., Ltd.) at 60 ° C. 902") for 5 minutes and degreased. After washing, the cured product was treated with a pre-dip liquid ("Pre-dip Neogant B" manufactured by Atotech Japan Co., Ltd.) at 25°C for 2 minutes. Thereafter, the cured product was treated with an activator liquid (“Activator Neogant 834” manufactured by Atotech Japan Co., Ltd.) at 40° C. for 5 minutes to attach a palladium catalyst. Next, the cured product was treated with a reducing liquid (“Reducer Neogant WA” manufactured by Atotech Japan Co., Ltd.) at 30° C. for 5 minutes.
 次に、上記硬化物を化学銅液(アトテックジャパン社製「ベーシックプリントガントMSK-DK」、「カッパープリントガントMSK」、「スタビライザープリントガントMSK」、及び「リデューサーCu」)に入れ、無電解めっきをめっき厚さが0.5μm程度になるまで実施した。無電解めっき後に、残留している水素ガスを除去するため、120℃の温度で30分間アニール処理した。なお、無電解めっきの工程までの全ての工程は、ビーカースケールで処理液を2Lとし、硬化物を揺動させながら実施した。 Next, the cured product is placed in a chemical copper solution ("Basic Printgant MSK-DK", "Copper Printgant MSK", "Stabilizer Printgant MSK", and "Reducer Cu" manufactured by Atotech Japan Co., Ltd.) for electroless plating. was carried out until the plating thickness reached about 0.5 μm. After electroless plating, an annealing treatment was performed at a temperature of 120° C. for 30 minutes in order to remove residual hydrogen gas. All the steps up to the step of electroless plating were carried out with a beaker scale of 2 liters of the processing liquid, while shaking the cured product.
 電解めっき処理:
 次に、無電解めっき処理された硬化物に、電解めっきをめっき厚さが25μmとなるまで実施した。電解銅めっきとして硫酸銅溶液(和光純薬工業社製「硫酸銅五水和物」、和光純薬工業社製「硫酸」、アトテックジャパン社製「ベーシックレベラーカパラシド HL」、アトテックジャパン社製「補正剤カパラシド GS」)を用いて、0.6A/cmの電流を流し、めっき厚さが25μm程度となるまで電解めっきを実施した。銅めっき処理後、硬化物を200℃で60分間加熱し、硬化物を更に硬化させた。このようにして、銅めっき層が上面に積層された硬化物を得た。
Electroplating treatment:
Next, the electroless-plated cured product was electroplated until the plating thickness reached 25 μm. As electrolytic copper plating, copper sulfate solution (“Copper sulfate pentahydrate” manufactured by Wako Pure Chemical Industries, “Sulfuric acid” manufactured by Wako Pure Chemical Industries, Ltd. “Basic Leveler Cupalaside HL” manufactured by Atotech Japan, “ Electrolytic plating was carried out until the thickness of the plating reached about 25 μm by applying a current of 0.6 A/cm 2 using a correction agent "Capalacid GS"). After the copper plating treatment, the cured product was heated at 200° C. for 60 minutes to further cure the cured product. Thus, a cured product having a copper plating layer laminated on the upper surface was obtained.
 メッキピール強度の測定:
 得られた銅めっき層が上面に積層された硬化物の銅めっき層の表面に10mm幅の短冊状の切込みを、5mm間隔で合計6箇所入れた。90°剥離試験機(テスター産業社製「TE-3001」)に銅めっき層が上面に積層された硬化物をセットし、つかみ具で切込みの入った銅めっき層の端部をつまみあげ、ビアが形成された箇所を避けて銅めっき層を20mm剥離して剥離強度(メッキピール強度)を測定した。6箇所の切り込み箇所に対してそれぞれ剥離強度(メッキピール強度)を測定し、メッキピール強度の平均値を求めた。メッキピール強度を下記の基準で判定した。
Plating peel strength measurement:
In the surface of the copper plating layer of the hardened product on which the obtained copper plating layer was laminated, 10 mm-wide strip-shaped cuts were made at 5 mm intervals at a total of 6 locations. Set the hardened product with the copper plating layer laminated on the upper surface in a 90° peel tester ("TE-3001" manufactured by Tester Sangyo Co., Ltd.), pick up the edge of the notched copper plating layer with a gripper, and make a via The peel strength (plating peel strength) was measured by peeling the copper plating layer by 20 mm while avoiding the portion where was formed. The peel strength (plating peel strength) was measured for each of the six notch points, and the average value of the plating peel strength was obtained. Plating peel strength was determined according to the following criteria.
 [メッキピール強度の判定基準]
 ○○:メッキピール強度の平均値が0.50kgf/cm以上
 ○:メッキピール強度の平均値が0.45kgf/cm以上0.50kgf/cm未満
 △:メッキピール強度の平均値が0.40kgf/cm以上0.45kgf/cm未満
 ×:メッキピール強度の平均値が0.40kgf/cm未満
[Criteria for plating peel strength]
○○: The average value of plating peel strength is 0.50 kgf/cm or more ○: The average value of plating peel strength is 0.45 kgf/cm or more and less than 0.50 kgf/cm △: The average value of plating peel strength is 0.40 kgf/cm cm or more and less than 0.45 kgf/cm ×: Average value of plating peel strength is less than 0.40 kgf/cm
 (4)基板端部の硬化物層における欠け
 「(2)デスミア性(ビア底の残渣の除去性)」の評価で得られた積層体Aに対して、「(2)デスミア性(ビア底の残渣の除去性)」の評価に記載の方法と同様にして、(a)膨潤処理及び(b)過マンガン酸塩処理を行った。次いで、200℃で60分間加熱し、積層体Cを得た。得られた積層体Cに対して、真空加圧式ラミネーター機(名機製作所社製「MVLP-500」)を用いて、得られた積層フィルムをラミネート圧0.7MPa及びラミネート温度100℃で20秒間ラミネートし、更にプレス圧力1.0MPa及びプレス温度100℃で40秒間プレスした。積層フィルムのPETフィルムを剥がした後、100℃で30分間、次いで、180℃で30分間加熱し、樹脂フィルムを半硬化させた。次いで、「(2)デスミア性(ビア底の残渣の除去性)」の評価に記載の方法と同様にして、(a)膨潤処理及び(b)過マンガン酸塩処理を行った。次いで、200℃で60分間加熱し、CCL基板の両面に2層の樹脂フィルムの硬化物層が積層されている積層体Dを得た。同様の処理を繰り返し行うことで、CCL基板の両面に8層の樹脂フィルムの硬化物層が積層されている積層体Eを得た。
(4) Chipping in the cured product layer at the edge of the substrate “(2) Desmear property (removability of residue at via bottom)” (a) swelling treatment and (b) permanganate treatment. Then, it was heated at 200° C. for 60 minutes to obtain a laminate C. Using a vacuum pressure laminator ("MVLP-500" manufactured by Meiki Seisakusho Co., Ltd.), the obtained laminated film was laminated to the obtained laminate C at a lamination pressure of 0.7 MPa and a lamination temperature of 100 ° C. for 20 seconds. It was laminated and further pressed at a press pressure of 1.0 MPa and a press temperature of 100° C. for 40 seconds. After peeling off the PET film of the laminated film, the resin film was semi-cured by heating at 100° C. for 30 minutes and then at 180° C. for 30 minutes. Then, (a) swelling treatment and (b) permanganate treatment were performed in the same manner as in the evaluation of “(2) desmear property (removability of residue on via bottom)”. Then, it was heated at 200° C. for 60 minutes to obtain a laminate D in which two cured resin film layers were laminated on both sides of the CCL substrate. By repeating the same treatment, a laminate E was obtained in which 8 cured resin film layers were laminated on both sides of the CCL substrate.
 得られた積層体Eを、1mの高さから合計20回落下させた。基板端部における樹脂フィルムの硬化物層の欠けの発生の有無を、落下させる毎に顕微鏡を用いて確認した。 The obtained laminate E was dropped from a height of 1 m a total of 20 times. The presence or absence of chipping of the cured product layer of the resin film at the edge of the substrate was checked using a microscope each time the substrate was dropped.
 [基板端部の硬化物層における欠けの判定基準]
 ○○:20回の落下で、基板端部の硬化物層において欠けが発生しない
 ○:11回以上19回以下の落下で、基板端部の硬化物層において欠けが発生する
 △:6回以上10回以下の落下で、基板端部の硬化物層において欠けが発生する
 ×:1回以上5回以下の落下で、基板端部の硬化物層において欠けが発生する
[Determination Criteria for Chipping in Cured Material Layer at Edge of Substrate]
○○: No chipping occurs in the cured product layer at the edge of the substrate after 20 drops ○: Chipping occurs in the cured product layer at the edge of the substrate after dropping 11 times or more and 19 times or less △: 6 times or more Cracking occurs in the cured product layer at the edge of the substrate when dropped 10 times or less. ×: Chipping occurs in the cured product layer at the edge of the substrate when dropped 1 to 5 times.
 組成及び結果を下記の表1,2に示す。 The composition and results are shown in Tables 1 and 2 below.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 11…多層プリント配線板
 12…回路基板
 12a…上面
 13~16…絶縁層
 17…金属層
DESCRIPTION OF SYMBOLS 11... Multilayer printed wiring board 12... Circuit board 12a... Upper surface 13-16... Insulating layer 17... Metal layer

Claims (9)

  1.  エポキシ化合物と、フィラーと、硬化剤とを含み、
     前記フィラーの平均粒子径が2.0μm以下であり、
     前記硬化剤が、カーボネート構造を有しかつエポキシ基と反応可能な官能基を有する第1の硬化剤を含む、樹脂材料。
    including an epoxy compound, a filler, and a curing agent;
    The average particle size of the filler is 2.0 μm or less,
    The resin material, wherein the curing agent includes a first curing agent having a carbonate structure and a functional group capable of reacting with an epoxy group.
  2.  樹脂材料中の溶剤を除く成分100重量%中、前記フィラーの含有量が50重量%以上90重量%以下である、請求項1に記載の樹脂材料。 The resin material according to claim 1, wherein the content of the filler is 50% by weight or more and 90% by weight or less in 100% by weight of the components excluding the solvent in the resin material.
  3.  前記第1の硬化剤の分子量が20000以下である、請求項1又は2に記載の樹脂材料。 The resin material according to claim 1 or 2, wherein the first curing agent has a molecular weight of 20,000 or less.
  4.  前記硬化剤が、カーボネート構造を有さない第2の硬化剤を含む、請求項1~3のいずれか1項に記載の樹脂材料。 The resin material according to any one of claims 1 to 3, wherein the curing agent includes a second curing agent that does not have a carbonate structure.
  5.  前記第2の硬化剤が、活性エステル化合物を含む、請求項4に記載の樹脂材料。 The resin material according to claim 4, wherein the second curing agent contains an active ester compound.
  6.  ポリイミド樹脂を含む、請求項1~5のいずれか1項に記載の樹脂材料。 The resin material according to any one of claims 1 to 5, which contains a polyimide resin.
  7.  樹脂フィルムである、請求項1~6のいずれか1項に記載の樹脂材料。 The resin material according to any one of claims 1 to 6, which is a resin film.
  8.  多層プリント配線板において、絶縁層を形成するために用いられる、請求項1~7のいずれか1項に記載の樹脂材料。 The resin material according to any one of claims 1 to 7, which is used for forming an insulating layer in a multilayer printed wiring board.
  9.  回路基板と、
     前記回路基板の表面上に配置された複数の絶縁層と、
     複数の前記絶縁層間に配置された金属層とを備え、
     複数の前記絶縁層の内の少なくとも1層が、請求項1~8のいずれか1項に記載の樹脂材料の硬化物である、多層プリント配線板。
    a circuit board;
    a plurality of insulating layers disposed on the surface of the circuit board;
    A metal layer disposed between the plurality of insulating layers,
    A multilayer printed wiring board, wherein at least one of the plurality of insulating layers is a cured product of the resin material according to any one of claims 1 to 8.
PCT/JP2022/019363 2021-05-07 2022-04-28 Resin material and multilayer printed wiring board WO2022234823A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202280032844.7A CN117255820A (en) 2021-05-07 2022-04-28 Resin material and multilayer printed wiring board
JP2022538329A JPWO2022234823A1 (en) 2021-05-07 2022-04-28
KR1020237027212A KR20240004223A (en) 2021-05-07 2022-04-28 Resin materials and multilayer printed wiring boards

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-079232 2021-05-07
JP2021079232 2021-05-07

Publications (1)

Publication Number Publication Date
WO2022234823A1 true WO2022234823A1 (en) 2022-11-10

Family

ID=83932756

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/019363 WO2022234823A1 (en) 2021-05-07 2022-04-28 Resin material and multilayer printed wiring board

Country Status (5)

Country Link
JP (1) JPWO2022234823A1 (en)
KR (1) KR20240004223A (en)
CN (1) CN117255820A (en)
TW (1) TW202311340A (en)
WO (1) WO2022234823A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11503792A (en) * 1995-02-07 1999-03-30 ビーエーエスエフ、コーポレーション Cathodic electrodeposition using cyclic carbonate curable coating composition
WO2018105282A1 (en) * 2016-12-09 2018-06-14 三菱瓦斯化学株式会社 Gas barrier film
JP2019089965A (en) * 2017-11-16 2019-06-13 群栄化学工業株式会社 Phenol carbonate resin, method for producing the same, resin varnish, and method for producing laminated plate

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007284555A (en) 2006-04-17 2007-11-01 Hitachi Chem Co Ltd Resin composition and coating film-forming material comprising the same
JP7066975B2 (en) 2017-03-10 2022-05-16 味の素株式会社 Resin composition, resin sheet, circuit board and semiconductor chip package

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11503792A (en) * 1995-02-07 1999-03-30 ビーエーエスエフ、コーポレーション Cathodic electrodeposition using cyclic carbonate curable coating composition
WO2018105282A1 (en) * 2016-12-09 2018-06-14 三菱瓦斯化学株式会社 Gas barrier film
JP2019089965A (en) * 2017-11-16 2019-06-13 群栄化学工業株式会社 Phenol carbonate resin, method for producing the same, resin varnish, and method for producing laminated plate

Also Published As

Publication number Publication date
KR20240004223A (en) 2024-01-11
CN117255820A (en) 2023-12-19
JPWO2022234823A1 (en) 2022-11-10
TW202311340A (en) 2023-03-16

Similar Documents

Publication Publication Date Title
JP6660513B1 (en) Resin material and multilayer printed wiring board
KR102649094B1 (en) Interlayer insulating material and multilayer printed wiring board
JP7332479B2 (en) Resin material, laminated structure and multilayer printed wiring board
JP7323314B2 (en) Resin materials, laminated films and multilayer printed wiring boards
JP7474064B2 (en) Resin materials and multilayer printed wiring boards
WO2021182207A1 (en) Resin material and multilayer printed wiring board
WO2021020563A1 (en) Resin material and multilayer printed wiring board
JP2021025051A (en) Resin material and multilayer printed wiring board
JP2021042295A (en) Resin material and multilayer printed board
JP2022161968A (en) Resin material and multilayer printed wiring board
JP7339731B2 (en) Resin materials and multilayer printed wiring boards
WO2022234823A1 (en) Resin material and multilayer printed wiring board
JP7254528B2 (en) Resin materials and multilayer printed wiring boards
JP7437215B2 (en) Resin materials and multilayer printed wiring boards
JP7478008B2 (en) Resin materials and multilayer printed wiring boards
JP7226954B2 (en) Resin materials and multilayer printed wiring boards
JP7305326B2 (en) Resin materials and multilayer printed wiring boards
JP7112438B2 (en) Cured body, B stage film and multilayer printed wiring board
JP7112439B2 (en) Cured body, B stage film and multilayer printed wiring board
JP7027382B2 (en) Resin film and multi-layer printed wiring board
JP2022134491A (en) Resin material and multilayer printed wiring board
JP2022134490A (en) Resin material and multilayer printed wiring board
WO2020196829A1 (en) Resin material and multilayer printed wiring board
JP2022052450A (en) Resin material and multilayer printed wiring board
JP2021017505A (en) Resin material and multilayer printed wiring board

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022538329

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22798928

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280032844.7

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22798928

Country of ref document: EP

Kind code of ref document: A1