WO2022234804A1 - Method for decomposing cured product of curable resin composition - Google Patents

Method for decomposing cured product of curable resin composition Download PDF

Info

Publication number
WO2022234804A1
WO2022234804A1 PCT/JP2022/019091 JP2022019091W WO2022234804A1 WO 2022234804 A1 WO2022234804 A1 WO 2022234804A1 JP 2022019091 W JP2022019091 W JP 2022019091W WO 2022234804 A1 WO2022234804 A1 WO 2022234804A1
Authority
WO
WIPO (PCT)
Prior art keywords
cured product
group
resin composition
atoms
curable resin
Prior art date
Application number
PCT/JP2022/019091
Other languages
French (fr)
Japanese (ja)
Inventor
直房 宮川
究 寺田
栄一 西原
隼 本橋
律子 設楽
Original Assignee
日本化薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本化薬株式会社 filed Critical 日本化薬株式会社
Priority to JP2023518676A priority Critical patent/JPWO2022234804A1/ja
Publication of WO2022234804A1 publication Critical patent/WO2022234804A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/14Polycondensates modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J11/00Recovery or working-up of waste materials
    • C08J11/04Recovery or working-up of waste materials of polymers
    • C08J11/10Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation
    • C08J11/16Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with inorganic material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Definitions

  • the present invention after the cured product of the curable resin composition is used for a specific purpose, it can be easily dismantled by exposing it to a specific compound, and various materials in the cured product can be recycled (reused or separated for disposal). It relates to a method for decomposing a cured product of a curable resin composition.
  • Curable resins such as epoxy resins and acrylate resins become strong cured products by three-dimensional cross-linking with energy such as heat and light. Therefore, it is used in many applications such as electrical and electronic parts, building material parts, automobile parts, and composite materials such as GFRP (glass fiber reinforced plastic) and CFRP (carbon fiber reinforced plastic) that require reliability.
  • GFRP glass fiber reinforced plastic
  • CFRP carbon fiber reinforced plastic
  • curable resins having three-dimensional crosslinks are difficult to decompose when intended, and are not suitable for recycling. Therefore, there is a demand for a curable resin product that can be easily dismantled when it is no longer needed, but can meet the demand for high reliability due to three-dimensional cross-linking during use.
  • the object of the present invention is to provide a method for decomposing a curable resin that exhibits little change in physical properties and excellent high-temperature durability even when exposed to an environment of 200°C.
  • a curable resin composition in which a cured product of a curable resin composition containing a resin represented by the following formula (1) is decomposed using at least one of an ammonium fluoride salt and a tetraalkylammonium fluoride salt. Decomposition method of the cured product.
  • each of R 1 to R 4 is a substituent containing C and H atoms and optionally one or more atoms selected from O, Si and N atoms.
  • R 1 to R 4 may be the same or different, and one or more of R 1 to R 4 have a curable functional group.
  • R 5 represent hydrogen atoms or all represent alkyl groups having 1 to 10 carbon atoms. In formula (2), when all of R 5 are alkyl groups, a plurality of R 5 may be the same or different).
  • a cured product of a curable resin composition having a specific structure can be decomposed by exposing it to an ammonium fluoride salt and/or a tetraalkylammonium fluoride salt.
  • FIG. 5 is a diagram showing the appearance of Comparative Example 1 and Examples 1 to 4 after 5 hours from placing them in a THF solution of tetrabutylammonium fluoride salt.
  • FIG. 2 is a diagram showing the appearance of Comparative Example 1 and Examples 1 to 4 after 24 hours from placing them in a THF solution of tetrabutylammonium fluoride salt.
  • FIG. 5 is a diagram showing the appearance of Comparative Example 1 and Examples 1 to 4 after 52 hours from placing them in a THF solution of tetrabutylammonium fluoride salt.
  • 1 is a diagram showing the appearance of Comparative Example 1 and Examples 1 to 4 after 172 hours from placing them in a THF solution of tetrabutylammonium fluoride salt.
  • FIG. 5 is a diagram showing the appearance of Comparative Example 1 and Examples 1 to 4 after 5 hours from placing them in a THF solution of tetrabutylammonium fluoride salt.
  • atoms include all isotopes.
  • curable resin composition containing a resin represented by the following general formula (1) will be described.
  • R 1 to R 4 are substituents each containing C and H atoms and optionally one or more atoms selected from O, Si and N atoms. R 1 to R 4 may be the same or different. One or more of R 1 to R 4 have a curable functional group.
  • Substituents containing C and H atoms and optionally containing one or more atoms selected from O, Si and N atoms include aliphatic, alicyclic and aromatic substituents having 1 to 10 carbon atoms, hetero Examples include cyclic substituents and substituents containing a silicone skeleton, and curing agents such as epoxy groups, acrylate groups, maleimide groups, phenol groups, carboxylic acid groups, carboxylic anhydride groups, thiol groups, amino groups, hydrazide groups, etc. It may contain a functional group.
  • Aliphatic, alicyclic and aromatic substituents having 1 to 10 carbon atoms include methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, nonyl group and decanyl group. , isopropyl group, isobutyl group, isopentyl group, neopentyl group, isohexyl group, cyclohexyl group, phenyl group, 1-naphthyl group, 2-naphthyl group and the like.
  • Heterocyclic substituents include pyridyl groups, furanyl groups, pyrimidylyl groups, and the like.
  • At least one of the resins represented by the general formula (1) has a curable functional group.
  • Curable functional groups include epoxy group, (meth)acrylate group, maleimide group, phenol group, carboxylic acid group, carboxylic acid anhydride group, thiol group, amino group, hydrazide group and the like.
  • An acrylate group and a maleimide group are preferable from the viewpoint of decomposability.
  • An epoxy group is a three-membered ring group consisting of two carbons and one oxygen.
  • a group containing an epoxy group is an organic group represented by the following formulas (3) and (4).
  • a maleimide group is an organic group represented by the following formula (5).
  • * represents a binding site
  • the epoxy resin represented by the formula (6) is, for example, X-40-2669
  • the epoxy resin represented by the formula (8) is, for example, KR-470, both of which are commercially available from Shin-Etsu Chemical Co., Ltd., etc. , you can also use these.
  • silicone-modified epoxy resins obtained by dealcoholization condensation of dialkoxysilane compounds or trialkoxysilane compounds represented by the following general formula (10) under alkaline or acidic conditions.
  • Ep represents an organic group having an epoxy group
  • R 6 represents an alkyl group having 1 to 6 carbon atoms, an aryl group, or an alkoxy group, respectively.
  • a plurality of R 6 in the formula may be the same or different, but at least two are alkoxy groups.
  • alkyl groups having 1 to 6 carbon atoms in R 6 include methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group and cyclohexyl group, and examples of aryl groups include phenyl group. and alkoxy groups include methoxy, ethoxy and propoxy groups.
  • the compound represented by the general formula (10) may be a single compound, or different compounds may be used to obtain a silicone-modified epoxy resin through dealcoholization condensation.
  • a reactive silicone oil having a (meth)acrylic group is exemplified as a resin having an acrylic group.
  • Reactive silicone oils having (meth)acrylic groups are commercially available as X-22-2445 (Shin-Etsu Chemical Co., Ltd.), 8SS-723 (Taisei Fine Chemical Co., Ltd.), Silaplane FM-0721 (JNC Co., Ltd.), etc. These can also be used.
  • the resin represented by the general formula (1) has an epoxy group, it can be mixed with an epoxy resin curing agent to obtain a curable resin composition.
  • epoxy resin curing agent examples include amine-based curing agents, phenol-based curing agents, acid anhydride-based curing agents, polyvalent carboxylic acid-based curing agents, thiol-based curing agents, imidazole-based curing agents, cationic curing agents, and dicyandiamide. and each commercially available curing agent can be used.
  • the curable resin composition optionally contains a filler, a solvent, Antioxidants, light stabilizers, leveling agents and flame retardants may also be included.
  • the resin represented by the general formula (1) is a resin having a (meth)acrylate group, it can be mixed with a photopolymerization initiator to obtain a curable resin composition.
  • photopolymerization initiator intramolecular cleavage type benzoin derivatives, ⁇ -hydroxyacetophenone, benzyl ketal, ⁇ -aminoacetophenone, acylphosphine oxide, titanocene, O-acyloxime type photopolymerization initiator, hydrogen abstraction Benzophenone and thioxanthone are exemplified as types.
  • the curable resin composition optionally contains a filler, Solvents, antioxidants, light stabilizers, leveling agents and flame retardants may also be included.
  • the resin represented by the general formula (1) is a resin having a maleimide group
  • it can be mixed with an anionic curing agent such as imidazole and/or a radical generator to obtain a curable resin composition.
  • anionic curing agent examples include 2-ethyl-4-methylimidazole, 2-phenyl-1-benzyl-1H-imidazole, 2,4-diamino-6-[2-(2-methyl-1-imidazolyl)ethyl]- 1,3,5-triazine, 2-phenyl-4-methyl-5-hydroxymethylimidazole, 1-benzylimidazole, 2,4-diamino-6-[2-(2-undecyl-1-imidazolyl)ethyl ]-1,3,5-triazine, 2,4-diamino-6-[2-(2-methyl-1-imidazolyl)ethyl]-1,3,5-triazine.
  • radical generator examples include benzoin derivatives, ⁇ -hydroxyacetophenone, benzyl ketal, ⁇ -aminoacetophenone, acylphosphine oxide, titanocenes, O-acyloxime photopolymerization initiators, benzophenone, thioxanthone, and organic peroxides. be done.
  • the curable resin composition when obtaining a curable resin composition by mixing a resin having a maleimide group represented by the general formula (1) with an anionic curing agent such as imidazole and / or a radical generator, the curable resin composition is optionally It may also contain fillers, solvents, antioxidants, light stabilizers, leveling agents and flame retardants.
  • the curable resin composition can be obtained by uniformly mixing at room temperature or under heating.
  • the resin composition is sufficiently mixed using an extruder, kneader, triple roll, universal mixer, planetary mixer, homomixer, homodisper, bead mill or the like until uniform, and if necessary, the resin composition is mixed with a SUS mesh or the like. It is prepared by carrying out a filtration treatment of a substance.
  • the resin composition As a method of curing the resin composition, it can be cured by heating or light irradiation.
  • heating methods such as hot air circulation, infrared rays, and high frequency can be used.
  • Heating conditions are preferably, for example, 80 to 230° C. for about 1 minute to 24 hours.
  • For the purpose of reducing the stress generated inside the resin composition during heat curing for example, after precuring at 80 to 120 ° C. for 30 minutes to 5 hours, 120 to 180 ° C. under the conditions of 30 minutes to 10 hours. It can be post-cured.
  • Light irradiation can be performed by irradiating the resin composition with light from a light source such as a high-pressure mercury lamp, an extra-high pressure mercury lamp, a low-pressure mercury lamp, a metal halide lamp, or an LED. Curing can also be accelerated by heating, for example, at 80 to 230° C. for about 1 minute to 24 hours after light irradiation.
  • a light source such as a high-pressure mercury lamp, an extra-high pressure mercury lamp, a low-pressure mercury lamp, a metal halide lamp, or an LED.
  • Curing can also be accelerated by heating, for example, at 80 to 230° C. for about 1 minute to 24 hours after light irradiation.
  • the cured product of the curable resin composition containing the resin represented by the general formula (1) has a Tg measured by DMA (Dynamic Mechanical Analysis) of preferably 50°C or higher, more preferably 100°C or higher. It is preferably 150° C. or higher, and more preferably 150° C. or higher.
  • Tg measured by DMA (Dynamic Mechanical Analysis)
  • the cured product of the curable resin composition containing the resin represented by the general formula (1) preferably has a storage modulus of 500 MPa or more, and preferably 1000 MPa or more, as measured by DMA at room temperature (30°C). is more preferable, and 2000 MPa or more is even more preferable.
  • the storage elastic modulus of the cured product of the curable resin composition containing the resin represented by the general formula (1) is 500 MPa or more. Furthermore, it is preferable from the viewpoint of the durability of the cured product to maintain sufficient Tg and storage elastic modulus even after being left in a high-temperature environment.
  • the high temperature environment is preferably 100° C. or higher, more preferably 180° C. or higher, and further preferably 230° C. or higher from the viewpoint of the durability of the cured product in the use environment.
  • a curable resin composition containing the resin represented by the formula (1) is dissolved in a solvent such as toluene, xylene, acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclopentanone, dimethylformamide, dimethylacetamide, N-methylpyrrolidone.
  • a curable resin composition varnish a prepreg obtained by impregnating a substrate such as glass fiber, carbon fiber, polyester fiber, polyamide fiber, alumina fiber, paper with the curable resin composition varnish and drying by heating.
  • a cured product of the curable resin composition containing the resin represented by the formula (1) can be obtained by hot press molding.
  • the solvent is usually used in an amount of 10 to 70% by mass, preferably 15 to 70% by mass in the mixture of the curable resin composition containing the resin represented by the formula (1) and the solvent. It is also possible to obtain an epoxy resin cured product containing reinforcing fibers such as carbon fibers by the RTM (Resin Transfer Molding) method from the liquid composition.
  • the curable resin composition containing the resin represented by formula (1) can also be used as a modifier for film-type compositions. Specifically, it can be used to improve flexibility and the like in the B stage.
  • a curable resin composition containing the resin represented by the formula (1) is applied on the release film with the varnish, the solvent is removed under heating, and the B stage is applied.
  • a sheet-like adhesive is obtained by curing. This sheet-like adhesive can be used as an interlayer insulating layer in multilayer substrates and the like.
  • thermosetting resins such as epoxy resins are used are mentioned as applications in which the curable resin composition containing the resin represented by the formula (1) is used.
  • Adhesives include adhesives for civil engineering, construction, automobiles, general office and medical use, as well as adhesives for electronic materials.
  • adhesives for electronic materials include interlayer adhesives for multilayer substrates such as build-up substrates, die bonding agents, adhesives for semiconductors such as underfill, underfill for BGA (Ball Grid Array) reinforcement, anisotropic Mounting adhesives such as electrically conductive film (ACF) and anisotropic conductive paste (ACP) can be used.
  • encapsulants include potting, dipping, transfer mold encapsulation for electronic elements such as capacitors, transistors, diodes, light-emitting diodes, ICs and LSIs, COB (Chip on Board) and COF (Chip on Board) of ICs and LSIs. on Film), TAB (Tape Automated Bonding), potting sealing for mounting, etc., underfill for flip chip, QFP (Quad Flat Package), BGA, CSP (Chip Size Package), etc. When mounting IC packages sealing (including reinforcing underfill).
  • electronic elements such as capacitors, transistors, diodes, light-emitting diodes, ICs and LSIs, COB (Chip on Board) and COF (Chip on Board) of ICs and LSIs. on Film), TAB (Tape Automated Bonding), potting sealing for mounting, etc., underfill for flip chip, QFP (Quad Flat Package), BGA, CSP (Chip Size Package
  • the cured product of the curable resin composition containing the resin represented by the formula (1) can be used for various applications including optical component materials.
  • Materials for optical parts refer to materials in general used for the purpose of allowing light such as visible light, infrared rays, ultraviolet rays, X-rays, and lasers to pass through the material. More specifically, in addition to lamp-type, SMD-type, and other LED sealing materials, there are the following.
  • Substrate materials in the field of liquid crystal displays liquid crystal display peripheral materials such as light guide plates, prism sheets, polarizing plates, retardation plates, viewing angle correction films, adhesives, and liquid crystal films such as polarizer protective films.
  • LED molding materials, LED sealing materials, front glass protective films, front glass replacement materials, adhesives used in devices, substrate materials for plasma addressed liquid crystal (PALC) displays, light guide plates, prism sheets, polarizing plates , retardation plate, viewing angle correction film, adhesive, polarizer protective film, front glass protective film in organic EL (electroluminescence) display, front glass alternative material, adhesive, and various field emission displays (FED) They are film substrates, front glass protective films, front glass replacement materials, and adhesives.
  • VD video disc
  • CD/CD-ROM compact disc
  • CD-R/RW compact disc
  • DVD-R/DVD-RAM digital versatile disc
  • MO/MD organic light-emitting diode
  • PD phase change disc
  • Blu-ray Disc registered trademark
  • materials for still camera lenses, viewfinder prisms, target prisms, viewfinder covers, and light receiving sensors. It is also a video camera taking lens and viewfinder. They also include projection lenses for projection televisions, protective films, sealing materials, and adhesives. Materials for optical sensing equipment lenses, sealing materials, adhesives, films, etc.
  • materials for optical sensing equipment lenses, sealing materials, adhesives, films, etc. In the field of optical components, it is used for fiber materials around optical switches in optical communication systems, lenses, waveguides, element sealing materials, adhesives, and the like. These include optical fiber materials, ferrules, sealing materials, and adhesives around optical connectors.
  • Optical passive components and optical circuit components include lenses, waveguides, LED sealing materials, LED packaging materials, LED reflector materials, CCD sealing materials, and adhesives.
  • OEICs optoelectronic integrated circuits
  • semiconductor integrated circuit peripheral materials it is a resist material for microlithography for LSI and super LSI materials.
  • Next-generation organic materials with optical and electronic functions include peripheral materials for organic EL devices, organic photorefractive devices, optical amplification devices that are light-light conversion devices, optical computing devices, substrate materials for organic solar cells, fiber materials, and devices. sealing materials, adhesives, etc.
  • the cured product of the curable resin composition containing the resin represented by formula (1) can be decomposed by exposing it to an ammonium fluoride salt and/or a tetraalkylammonium fluoride salt.
  • an ammonium fluoride salt and/or a tetraalkylammonium fluoride salt This makes it possible to recycle reinforcing fibers cured together with the cured product of the curable resin composition, such as glass fibers of GFRP (glass fiber reinforced plastic) and carbon fibers of CFRP (carbon fiber reinforced plastic). Therefore, the decomposition method provided by the present invention is extremely useful for recycling many parts such as electrical and electronic parts, building material parts, automobile parts, and composite materials such as GFRP and CFRP in a recycling society.
  • ammonium fluoride salts and tetraalkylammonium fluoride salts will be described.
  • Ammonium fluoride salts and tetraalkylammonium fluoride salts are compounds represented by the following formula (2).
  • Ammonium fluoride salts are compounds of formula ( 2 ) in which all R5 represent hydrogen atoms.
  • a tetraalkylammonium fluoride salt is a compound represented by formula (2) in which all R 5 represent an alkyl group having 1 to 10 carbon atoms, and a plurality of R 5 may be the same or different. do not have.
  • alkyl groups having 1 to 10 carbon atoms represented by R 5 include methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, tertiary butyl group, pentyl group, isopentyl group, neopentyl group and hexyl. group, isohexyl group, heptyl group, isoheptyl group, octyl group, isooctyl group, nonyl group, isononyl group, decyl group, isodecyl group, cyclohexyl group, etc., and butyl group is preferable from the viewpoint of availability in the market.
  • the ammonium fluoride salt and the tetraalkylammonium fluoride salt can be used alone or mixed to form an aqueous solution or an organic solvent solution. It is preferable to use at least one of an ammonium fluoride salt and a tetraalkylammonium fluoride salt in the form of an aqueous solution or a solution of an organic solvent, since the decomposability of the cured product is accelerated.
  • the organic solvent tetrahydrofuran (THF), dimethylsulfoxide, dimethylformamide, methanol, ethanol, isopropyl alcohol, and acetonitrile are preferred, and tetrahydrofuran is more preferred.
  • the concentration is preferably 0.1 to 5 mol/L from the viewpoint of the decomposition rate, and 0.5 to 0.5 mol/L. 2 mol/L is more preferred.
  • the ratio of the total mass of Si atoms and O atoms bonded to Si atoms in the cured product to the mass of the cured product of the curable resin composition containing the resin represented by the general formula (1) is 1% by mass or more. It is preferably at least 5% by mass, more preferably at least 10% by mass.
  • the ratio of the total mass of Si atoms and O atoms bonded to Si atoms in the cured product to the mass of the cured product of the curable resin composition containing the resin represented by the general formula (1) is 1% by mass or more. If there is, the decomposition reaction of the cured product proceeds efficiently.
  • a cured product of a curable resin composition containing the resin represented by the formula (1) is reacted with at least one of an ammonium fluoride salt and a tetraalkylammonium fluoride salt to decompose the cured product.
  • Some decomposition products can be obtained.
  • the resulting decomposition products contain Si—F bonds.
  • the resulting decomposition product When the resulting decomposition product is used as a strength imparting agent or filler for a curable resin, it can be used as it is, but if the decomposition product contains a solvent, it is preferable to use it after removing the solvent. It is also preferable to use the decomposition product after purifying it by a method such as distillation, filtration, recrystallization or column chromatography.
  • ratios, percentages, parts, etc. are based on mass unless otherwise specified.
  • X to Y indicates a range from X to Y, and the range includes X,Y.
  • Comparative Example 1 and Examples 1-4; X-40-2669 represented by the following formula (6) [manufactured by Shin-Etsu Chemical Co., Ltd., an epoxy resin having a silicone skeleton, the ratio of the mass of the silicone skeleton (Si-O-Si) to the mass of the epoxy resin having a silicone skeleton is 18.8% by mass], CEL2021P (3′,4′-epoxycyclohexylmethyl 3,4-epoxycyclohexane carboxylate manufactured by Daicel Corporation), Rikacid MH as an epoxy resin curing agent (manufactured by New Japan Chemical Co., Ltd., methyl hexa Hydrophthalic anhydride) and U-CAT18X (manufactured by San-Apro Co., Ltd., epoxy resin curing accelerator) as a curing accelerator are weighed in a polyethylene container at the ratio shown in Table 1 below, and mixed well with a spoon. The mixture was stirred for 2 minutes using a vacuum stirring and def
  • test piece creation The obtained epoxy resin compositions of Comparative Examples and Examples 1 to 4 were cast into a stainless steel mold having a length of 120 mm, a width of 4 mm and a height of 10 mm. The cast product was precured at 120° C. for 1 hour and then cured at 150° C. for 3 hours to obtain a cured epoxy resin. The obtained epoxy resin cured product was molded using an electric diamond cutter to obtain a test piece for degradability test having a length of 10 mm, a width of 4 mm and a height of 4 mm.
  • the obtained epoxy resin cured product was molded into a width of 5 mm and a length of 25 mm, and DMA (Dynamic Mechanical Analysis) was measured under the following conditions to read the storage elastic modulus and Tg (glass transition temperature) at 30°C.
  • the obtained epoxy resin cured product was molded into a width of 5 mm and a length of 25 mm, left in an oven at 250° C. for 5 hours, cooled to room temperature, and then measured for DMA in the same manner.
  • Model: Viscoelastic spectrometer EXSTAR DMS6100 Measurement temperature: 30°C to 280°C Heating rate: 2°C/min Frequency: 1Hz Measurement mode: Glass transition temperature (Tg) measured by tensile vibration DMA method: The temperature at the maximum point of the loss coefficient (tan ⁇ E′′/E′) represented by the quotient of the storage elastic modulus (E′) and the loss elastic modulus (E′′) when the DMA was measured was read. The ratio (mass%) of the total mass of Si atoms and O atoms bonded to Si atoms in the formulation, the storage elastic modulus and Tg (glass transition point) at 30 ° C. of the cured product measured by the DMA test, and the cured product to 200 Table 1 shows the storage modulus and Tg (glass transition point) at 30°C measured by the DMA test after standing at °C for 5 hours.
  • ⁇ Degradability test> Each test piece obtained as described above was placed in a 10 cc glass sample bottle, and 2 g of a 1M (mol/L) tetrabutylammonium fluoride salt in tetrahydrofuran (THF) solution was added thereto. A THF solution was added to the sample bottle, and the sample bottle was allowed to stand in an environment of 20 to 25°C. After adding the THF solution to the sample bottle, remove the test piece from the sample bottle after 5 hours, 24 hours, 52 hours, and 172 hours, wash the test piece with water, wipe off water droplets on the surface of the test piece, and remove the test piece. After drying for 24 hours at 25° C., the mass of the specimen was measured.
  • THF tetrabutylammonium fluoride salt in tetrahydrofuran
  • Table 1 shows relative values of the mass of the test piece after drying when the mass of the test piece before being placed in the sample bottle is 100. In addition, 5 hours, 24 hours, 52 hours, and 172 hours after adding the THF solution to the sample bottle, the test pieces were taken out from the sample bottle, washed and dried, and the appearance of the test pieces was photographed. Appearances of the test pieces are shown in FIGS. 1 to 4, respectively.
  • Example 1 As shown in Table 1, in Comparative Example 1, as time passed after immersion in the THF solution, the test piece swelled and the mass of the test piece increased, but no significant change in appearance was observed. .
  • Example 1 the mass of the test piece decreased as time passed after being immersed in the THF solution.
  • Example 2 the mass of the test piece tended to decrease as time passed after being immersed in the THF solution.
  • Example 3 the mass of the test piece decreased as time passed after being immersed in the THF solution.
  • Example 3 cracks were found in the test piece after 172 hours.
  • Example 4 the mass of the test piece decreased as time passed after being immersed in the THF solution, the mass of the test piece decreased to 18% after 52 hours, and the test piece disappeared after 172 hours. did.
  • the method of decomposing the cured product of Examples 1 to 4, in which the cured product containing the specific structure is immersed in a fluoride salt solution, has a Tg of 150° C. or higher and a storage modulus of 2000 MPa or higher at room temperature (30° C.).
  • the decomposition method provided by the present invention can contribute to the realization of a recycling-oriented society in which various materials in the cured product are recycled.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Epoxy Resins (AREA)

Abstract

The present invention provides a method for decomposing a curable resin which is not susceptible to change in the physical properties even if exposed to an environment at 200°C, and which exhibits excellent durability at high temperatures. A method for decomposing a cured product of a curable resin composition, wherein a cured product of a curable resin composition that contains a resin represented by formula (1) is decomposed with use of at least one of an ammonium fluoride salt and a tetraalkylammonium fluoride salt. (In formula (1), each of R1 to R4 independently represents a substituent which contains a C atom and an H atom, while optionally containing one or more atoms that are selected from among an O atom, an Si atom and an N atom; the R1 to R4 moieties may be the same as or different from each other; and one or more moieties among the R1 to R4 moieties have a curable functional group.)

Description

硬化性樹脂組成物の硬化物の分解方法Method for decomposing cured product of curable resin composition
 本発明は硬化性樹脂組成物の硬化物を目的別使用に供した後に、特定の化合物に晒すことで容易に解体し、硬化物中の各種素材のリサイクル(再利用もしくは分別廃棄処理)を可能とする硬化性樹脂組成物の硬化物の分解方法に関するものである。 In the present invention, after the cured product of the curable resin composition is used for a specific purpose, it can be easily dismantled by exposing it to a specific compound, and various materials in the cured product can be recycled (reused or separated for disposal). It relates to a method for decomposing a cured product of a curable resin composition.
 エポキシ樹脂、アクリレート樹脂といった硬化性樹脂は、熱、光などのエネルギーにより三次元架橋をすることで強固な硬化物となる。そのため、信頼性が要求される電気電子部品、建材用部品、自動車用部品、GFRP(ガラス繊維強化プラスチック)やCFRP(炭素繊維強化プラスチック)等の複合材等数多くの用途に用いられている。
 近年、環境問題、埋め立て処理規制等により使用後の製品をリサイクル(再利用もしくは分別廃棄処理)させるため、不要となった時には容易に解体できる製品が求められている。しかし、三次元架橋を有する硬化性樹脂は意図した際に分解することが困難であり、リサイクルには適さない。そのため、不要となった時に容易に解体できるが、使用に供されている際は三次元架橋により高い信頼性の要求に応えられる硬化性樹脂製品が要求されている。
Curable resins such as epoxy resins and acrylate resins become strong cured products by three-dimensional cross-linking with energy such as heat and light. Therefore, it is used in many applications such as electrical and electronic parts, building material parts, automobile parts, and composite materials such as GFRP (glass fiber reinforced plastic) and CFRP (carbon fiber reinforced plastic) that require reliability.
In recent years, in order to recycle (reuse or separate disposal) products after use due to environmental problems, landfill disposal regulations, etc., products that can be easily dismantled when no longer needed have been desired. However, curable resins having three-dimensional crosslinks are difficult to decompose when intended, and are not suitable for recycling. Therefore, there is a demand for a curable resin product that can be easily dismantled when it is no longer needed, but can meet the demand for high reliability due to three-dimensional cross-linking during use.
 このような要求に対して、たとえばアセタール結合を有するエポキシ樹脂が提案されている(特許文献1参照)。しかしながらこのようなアセタール結合は200℃程度の温度で分解してしまう。そのため自動車や航空機のエンジン部周辺等の高温になる部位には使用できない問題があった。 In response to such demands, for example, an epoxy resin having an acetal bond has been proposed (see Patent Document 1). However, such an acetal bond decomposes at a temperature of about 200°C. Therefore, there is a problem that it cannot be used in high-temperature areas such as the engine parts of automobiles and aircraft.
日本国特許第4775622号公報Japanese Patent No. 4775622
 本発明は200℃の環境下に晒されても物性変化が低く高温耐久性に優れる硬化性樹脂の分解方法を提供することを目的とするものである。 The object of the present invention is to provide a method for decomposing a curable resin that exhibits little change in physical properties and excellent high-temperature durability even when exposed to an environment of 200°C.
 本発明者らは前記したような実状に鑑み、鋭意検討した結果、特定の骨格を有する硬化性樹脂組成物の硬化物をアンモニウムフッ化物塩及び又はテトラアルキルアンモニウムフッ化物塩で晒すことにより上記課題を解決することを見出し、本発明を完成させるに至った。 In view of the actual situation as described above, the present inventors have made intensive studies, and as a result, the above problem has been solved by exposing a cured product of a curable resin composition having a specific skeleton to an ammonium fluoride salt and/or a tetraalkylammonium fluoride salt. The present invention has been completed.
 すなわち本発明は、下記[1]~[5]に関する。
[1] 下記式(1)で表される樹脂を含む硬化性樹脂組成物の硬化物を、アンモニウムフッ化物塩及びテトラアルキルアンモニウムフッ化物塩の少なくとも1つを用いて分解する硬化性樹脂組成物の硬化物の分解方法。
That is, the present invention relates to the following [1] to [5].
[1] A curable resin composition in which a cured product of a curable resin composition containing a resin represented by the following formula (1) is decomposed using at least one of an ammonium fluoride salt and a tetraalkylammonium fluoride salt. Decomposition method of the cured product.
Figure JPOXMLDOC01-appb-C000004
 
Figure JPOXMLDOC01-appb-C000004
 
(式(1)中、R~Rはそれぞれ、C及びH原子を含み、任意でO、Si及びN原子から選択される原子を1つ以上含む置換基である。R~Rは互いに同じであっても異なっていても構わない。R~Rの一つ以上は硬化性官能基を有する。) (In formula (1), each of R 1 to R 4 is a substituent containing C and H atoms and optionally one or more atoms selected from O, Si and N atoms. R 1 to R 4 may be the same or different, and one or more of R 1 to R 4 have a curable functional group.)
[2] 前記硬化性官能基は、エポキシ基、(メタ)アクリレート基及びマレイミド基から選ばれる少なくとも一つである、[1]に記載の硬化性樹脂組成物の硬化物の分解方法。
[3] アンモニウムフッ化物塩及びテトラアルキルアンモニウムフッ化物塩が下記式(2)で表される[1]又は[2]に記載の硬化性樹脂組成物の硬化物の分解方法。
[2] The method for decomposing a cured product of a curable resin composition according to [1], wherein the curable functional group is at least one selected from an epoxy group, a (meth)acrylate group and a maleimide group.
[3] A method for decomposing a cured product of a curable resin composition according to [1] or [2], wherein the ammonium fluoride salt and the tetraalkylammonium fluoride salt are represented by the following formula (2).
Figure JPOXMLDOC01-appb-C000005
 
Figure JPOXMLDOC01-appb-C000005
 
 (式(2)中、Rは全て水素原子を表すか、又は全て炭素数1~10のアルキル基を表す。式(2)中、Rが全てアルキル基の場合、複数存在するRは互いに同一であっても異なっていても構わない。) (In formula (2), all of R 5 represent hydrogen atoms or all represent alkyl groups having 1 to 10 carbon atoms. In formula (2), when all of R 5 are alkyl groups, a plurality of R 5 may be the same or different).
[4] 硬化物に対する、硬化物中のSi原子およびSi原子に結合するO原子の合計質量の比率が1質量%以上である、[1]~[3]のいずれか一項に記載の硬化性樹脂組成物の硬化物の分解方法。
[5] 下記式(1)で表される樹脂を含む硬化性樹脂組成物の硬化物と、アンモニウムフッ化物塩及びテトラアルキルアンモニウムフッ化物塩の少なくとも1つとの反応物。
Figure JPOXMLDOC01-appb-C000006
 
 (式(1)中、R~Rはそれぞれ、C及びH原子を含み、O、Si及びN原子から選択される原子を1つ以上含む置換基である。R~Rは互いに同じであっても異なっていても構わない。R~Rの一つ以上は硬化性官能基を有する。)
[4] Curing according to any one of [1] to [3], wherein the ratio of the total mass of Si atoms and O atoms bonded to Si atoms in the cured product is 1% by mass or more with respect to the cured product. A method for decomposing a cured product of a flexible resin composition.
[5] A reaction product of a cured product of a curable resin composition containing a resin represented by the following formula (1) and at least one of an ammonium fluoride salt and a tetraalkylammonium fluoride salt.
Figure JPOXMLDOC01-appb-C000006

(In formula (1), each of R 1 to R 4 is a substituent containing C and H atoms and one or more atoms selected from O, Si and N atoms. R 1 to R 4 are They may be the same or different, and one or more of R 1 to R 4 have a curable functional group.)
 本発明によれば、特定の構造を有する硬化性樹脂組成物の硬化物をアンモニウムフッ化物塩及び又はテトラアルキルアンモニウムフッ化物塩で晒すことにより分解できる。 According to the present invention, a cured product of a curable resin composition having a specific structure can be decomposed by exposing it to an ammonium fluoride salt and/or a tetraalkylammonium fluoride salt.
比較例1及び実施例1~実施例4をテトラブチルアンモニウムフッ化物塩のTHF溶液に入れてから5時間後の外観を示す図である。FIG. 5 is a diagram showing the appearance of Comparative Example 1 and Examples 1 to 4 after 5 hours from placing them in a THF solution of tetrabutylammonium fluoride salt. 比較例1及び実施例1~実施例4をテトラブチルアンモニウムフッ化物塩のTHF溶液に入れてから24時間後の外観を示す図である。FIG. 2 is a diagram showing the appearance of Comparative Example 1 and Examples 1 to 4 after 24 hours from placing them in a THF solution of tetrabutylammonium fluoride salt. 比較例1及び実施例1~実施例4をテトラブチルアンモニウムフッ化物塩のTHF溶液に入れてから52時間後の外観を示す図である。FIG. 5 is a diagram showing the appearance of Comparative Example 1 and Examples 1 to 4 after 52 hours from placing them in a THF solution of tetrabutylammonium fluoride salt. 比較例1及び実施例1~実施例4をテトラブチルアンモニウムフッ化物塩のTHF溶液に入れてから172時間後の外観を示す図である。1 is a diagram showing the appearance of Comparative Example 1 and Examples 1 to 4 after 172 hours from placing them in a THF solution of tetrabutylammonium fluoride salt. FIG.
 以下、本発明をさらに詳細に説明する。
 本明細書において、「原子」は全同位体を含む。
 まず、下記一般式(1)で表される樹脂を含む硬化性樹脂組成物について説明する。
The present invention will now be described in more detail.
As used herein, "atoms" include all isotopes.
First, a curable resin composition containing a resin represented by the following general formula (1) will be described.
Figure JPOXMLDOC01-appb-C000007
 
Figure JPOXMLDOC01-appb-C000007
 
 式(1)中、R~Rはそれぞれ、C及びH原子を含み、任意でO、Si及びN原子から選択される原子を1つ以上含む置換基である。R~Rは互いに同じであっても異なっていても構わない。R~Rの一つ以上は硬化性官能基を有する。 In formula (1), R 1 to R 4 are substituents each containing C and H atoms and optionally one or more atoms selected from O, Si and N atoms. R 1 to R 4 may be the same or different. One or more of R 1 to R 4 have a curable functional group.
 C及びH原子を含み、任意でO、Si及びN原子から選択される原子を1つ以上含む置換基としては、炭素数1~10の脂肪族、脂環式、芳香族置換基や、複素環式置換基、シリコーン骨格を含有する置換基が挙げられ、エポキシ基、アクリレート基、マレイミド基、フェノール基、カルボン酸基、カルボン酸無水物基、チオール基、アミノ基、ヒドラジド基などの硬化性官能基を含んでいても良い。 Substituents containing C and H atoms and optionally containing one or more atoms selected from O, Si and N atoms include aliphatic, alicyclic and aromatic substituents having 1 to 10 carbon atoms, hetero Examples include cyclic substituents and substituents containing a silicone skeleton, and curing agents such as epoxy groups, acrylate groups, maleimide groups, phenol groups, carboxylic acid groups, carboxylic anhydride groups, thiol groups, amino groups, hydrazide groups, etc. It may contain a functional group.
 炭素数1~10の脂肪族、脂環式、芳香族置換基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、へキシル基、ヘプチル基、オクチル基、ノニル基、デカニル基、イソプロピル基、イソブチル基、イソペンチル基、ネオペンチル基、イソヘキシル基、シクロヘキシル基、フェニル基、1-ナフチル基、2-ナフチル基等が挙げられる。 Aliphatic, alicyclic and aromatic substituents having 1 to 10 carbon atoms include methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, nonyl group and decanyl group. , isopropyl group, isobutyl group, isopentyl group, neopentyl group, isohexyl group, cyclohexyl group, phenyl group, 1-naphthyl group, 2-naphthyl group and the like.
 複素環式置換基としては、ピリジル基、フラニル基、ピリミジリル基等が挙げられる。 Heterocyclic substituents include pyridyl groups, furanyl groups, pyrimidylyl groups, and the like.
 前記一般式(1)で表される樹脂中一つ以上は硬化性官能基を有する。硬化性官能基はエポキシ基、(メタ)アクリレート基、マレイミド基、フェノール基、カルボン酸基、カルボン酸無水物基、チオール基、アミノ基、ヒドラジド基などが例示され、中でもエポキシ基、(メタ)アクリレート基、マレイミド基が分解性の観点から好ましい。 At least one of the resins represented by the general formula (1) has a curable functional group. Curable functional groups include epoxy group, (meth)acrylate group, maleimide group, phenol group, carboxylic acid group, carboxylic acid anhydride group, thiol group, amino group, hydrazide group and the like. An acrylate group and a maleimide group are preferable from the viewpoint of decomposability.
 エポキシ基は、炭素2個と酸素1個からなる3員環の基である。エポキシ基を含む基は、下記式(3)、(4)で表される有機基である。 An epoxy group is a three-membered ring group consisting of two carbons and one oxygen. A group containing an epoxy group is an organic group represented by the following formulas (3) and (4).
Figure JPOXMLDOC01-appb-C000008
 
 式(3)、(4)中、*は結合部位を表す。
Figure JPOXMLDOC01-appb-C000008

In formulas (3) and (4), * represents a binding site.
 マレイミド基は、下記式(5)で表される有機基である。 A maleimide group is an organic group represented by the following formula (5).
Figure JPOXMLDOC01-appb-C000009
 
 式(5)中、*は結合部位を表す。
Figure JPOXMLDOC01-appb-C000009

In formula (5), * represents a binding site.
 前記一般式(1)で表される樹脂の内、エポキシ基を有するエポキシ樹脂として下記式(6)~(9)で表される化合物が例示される。 Among the resins represented by the general formula (1), compounds represented by the following formulas (6) to (9) are exemplified as epoxy resins having an epoxy group.
Figure JPOXMLDOC01-appb-C000010
 
Figure JPOXMLDOC01-appb-C000010
 
 前記式(6)で表されるエポキシ樹脂は例えばX-40-2669として、前記式(8)で表されるエポキシ樹脂は例えばKR-470として、いずれも信越化学工業社等から市販されており、これらを使用することもできる。 The epoxy resin represented by the formula (6) is, for example, X-40-2669, and the epoxy resin represented by the formula (8) is, for example, KR-470, both of which are commercially available from Shin-Etsu Chemical Co., Ltd., etc. , you can also use these.
 さらに、下記一般式(10)で表される、ジアルコキシシラン化合物又はトリアルコキシシラン化合物を、アルカリ又は酸性条件下、脱アルコール縮合により得られる、シリコーン変性エポキシ樹脂も例示される。 Further examples include silicone-modified epoxy resins obtained by dealcoholization condensation of dialkoxysilane compounds or trialkoxysilane compounds represented by the following general formula (10) under alkaline or acidic conditions.
Figure JPOXMLDOC01-appb-C000011
 
 前記一般式(10)中、Epはエポキシ基を有する有機基を、Rはそれぞれ炭素数1~6のアルキル基、アリール基、アルコキシ基を表す。式中複数存在するRは同一であっても異なっても良いが、少なくとも二つはアルコキシ基である。
Figure JPOXMLDOC01-appb-C000011

In the general formula (10), Ep represents an organic group having an epoxy group, and R 6 represents an alkyl group having 1 to 6 carbon atoms, an aryl group, or an alkoxy group, respectively. A plurality of R 6 in the formula may be the same or different, but at least two are alkoxy groups.
 Rにおける炭素数1~6のアルキル基としては例えばメチル基、エチル基、プロピル基、ブチル基、ペンチル基、へキシル基、シクロへキシル基が挙げられ、アリール基としてはフェニル基が挙げられ、アルコキシ基としては、メトキシ基、エトキシ基、プロポキシ基等が挙げられる。 Examples of alkyl groups having 1 to 6 carbon atoms in R 6 include methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group and cyclohexyl group, and examples of aryl groups include phenyl group. and alkoxy groups include methoxy, ethoxy and propoxy groups.
 前記一般式(10)で表される化合物は単一であっても良いし、異なる化合物同士を用いて脱アルコール縮合によりシリコーン変性エポキシ樹脂を得ても良い。 The compound represented by the general formula (10) may be a single compound, or different compounds may be used to obtain a silicone-modified epoxy resin through dealcoholization condensation.
 前記一般式(1)で表される樹脂の内、アクリル基を有する樹脂として(メタ)アクリル基を有する反応性シリコーンオイルが例示される。 Among the resins represented by the general formula (1), a reactive silicone oil having a (meth)acrylic group is exemplified as a resin having an acrylic group.
 (メタ)アクリル基を有する反応性シリコーンオイルは例えばX-22-2445(信越化学工業社)、8SS-723(大成ファインケミカル社)、サイラプレーンFM-0721(JNC社)等として市販されており、これらを使用することもできる。 Reactive silicone oils having (meth)acrylic groups are commercially available as X-22-2445 (Shin-Etsu Chemical Co., Ltd.), 8SS-723 (Taisei Fine Chemical Co., Ltd.), Silaplane FM-0721 (JNC Co., Ltd.), etc. These can also be used.
 前記一般式(1)で表される樹脂がエポキシ基を有する場合、エポキシ樹脂硬化剤と混合して、硬化性樹脂組成物を得ることができる。 When the resin represented by the general formula (1) has an epoxy group, it can be mixed with an epoxy resin curing agent to obtain a curable resin composition.
 前記エポキシ樹脂硬化剤としては例えば、アミン系硬化剤、フェノール系硬化剤、酸無水物系硬化剤、多価カルボン酸系硬化剤、チオール系硬化剤、イミダゾール系硬化剤、カチオン系硬化剤、ジシアンジアミドが挙げられ、それぞれ市販されている硬化剤を用いることができる。 Examples of the epoxy resin curing agent include amine-based curing agents, phenol-based curing agents, acid anhydride-based curing agents, polyvalent carboxylic acid-based curing agents, thiol-based curing agents, imidazole-based curing agents, cationic curing agents, and dicyandiamide. and each commercially available curing agent can be used.
 また、前記一般式(1)で表されエポキシ基を有する樹脂を、エポキシ樹脂硬化剤と混合して、硬化性樹脂組成物を得る場合、硬化性樹脂組成物は、任意に充填剤、溶剤、酸化防止剤、光安定剤、レベリング剤、難燃剤を含んでいても良い。 Further, when a resin having an epoxy group represented by the general formula (1) is mixed with an epoxy resin curing agent to obtain a curable resin composition, the curable resin composition optionally contains a filler, a solvent, Antioxidants, light stabilizers, leveling agents and flame retardants may also be included.
 前記一般式(1)で表される樹脂が(メタ)アクリレート基を有する樹脂の場合、光重合開始剤と混合して、硬化性樹脂組成物を得ることができる。 When the resin represented by the general formula (1) is a resin having a (meth)acrylate group, it can be mixed with a photopolymerization initiator to obtain a curable resin composition.
 前記光重合開始剤としては分子内開裂型として、ベンゾイン誘導体、α―ヒドロキシアセトフェノン、ベンジルケタール、α―アミノアセトフェノン、アシルフォスフィンオキサイド、チタノセン類、O-アシルオキシム型光重合開始剤が、水素引き抜き型として、ベンゾフェノン、チオキサントンが例示される。 As the photopolymerization initiator, intramolecular cleavage type benzoin derivatives, α-hydroxyacetophenone, benzyl ketal, α-aminoacetophenone, acylphosphine oxide, titanocene, O-acyloxime type photopolymerization initiator, hydrogen abstraction Benzophenone and thioxanthone are exemplified as types.
 また、前記一般式(1)で表され(メタ)アクリレート基を有する樹脂を、光重合開始剤と混合して、硬化性樹脂組成物を得る場合、硬化性樹脂組成物は任意に充填剤、溶剤、酸化防止剤、光安定剤、レベリング剤、難燃剤を含んでいても良い。 Further, when a resin having a (meth)acrylate group represented by the general formula (1) is mixed with a photopolymerization initiator to obtain a curable resin composition, the curable resin composition optionally contains a filler, Solvents, antioxidants, light stabilizers, leveling agents and flame retardants may also be included.
 前記一般式(1)で表される樹脂がマレイミド基を有する樹脂の場合、イミダゾール等アニオン硬化剤及び/又はラジカル発生剤と混合して硬化性樹脂組成物を得ることができる。 When the resin represented by the general formula (1) is a resin having a maleimide group, it can be mixed with an anionic curing agent such as imidazole and/or a radical generator to obtain a curable resin composition.
 前記アニオン硬化剤としては2-エチル-4-メチルイミダゾール、2-フェニル-1-ベンジル-1H-イミダゾール、2,4-ジアミノ-6-[2-(2-メチル-1-イミダゾリル)エチル]-1,3,5-トリアジン、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾ-ル、1-ベンジルイミダゾール、2,4-ジアミノ-6-[2-(2-ウンデシル-1-イミダゾリル)エチル] -1,3,5-トリアジン、2,4-ジアミノ-6-[2-(2-メチル-1-イミダゾリル)エチル]-1,3,5-トリアジンが例示される。 Examples of the anionic curing agent include 2-ethyl-4-methylimidazole, 2-phenyl-1-benzyl-1H-imidazole, 2,4-diamino-6-[2-(2-methyl-1-imidazolyl)ethyl]- 1,3,5-triazine, 2-phenyl-4-methyl-5-hydroxymethylimidazole, 1-benzylimidazole, 2,4-diamino-6-[2-(2-undecyl-1-imidazolyl)ethyl ]-1,3,5-triazine, 2,4-diamino-6-[2-(2-methyl-1-imidazolyl)ethyl]-1,3,5-triazine.
 前記ラジカル発生剤としてはベンゾイン誘導体、α―ヒドロキシアセトフェノン、ベンジルケタール、α―アミノアセトフェノン、アシルフォスフィンオキサイド、チタノセン類、O-アシルオキシム型光重合開始剤、ベンゾフェノン、チオキサントン、有機過酸化物が例示される。 Examples of the radical generator include benzoin derivatives, α-hydroxyacetophenone, benzyl ketal, α-aminoacetophenone, acylphosphine oxide, titanocenes, O-acyloxime photopolymerization initiators, benzophenone, thioxanthone, and organic peroxides. be done.
 また、前記一般式(1)で表されマレイミド基を有する樹脂を、イミダゾール等アニオン硬化剤及び/又はラジカル発生剤と混合して硬化性樹脂組成物を得る場合、硬化性樹脂組成物は任意に充填剤、溶剤、酸化防止剤、光安定剤、レベリング剤、難燃剤を含んでいても良い。 Further, when obtaining a curable resin composition by mixing a resin having a maleimide group represented by the general formula (1) with an anionic curing agent such as imidazole and / or a radical generator, the curable resin composition is optionally It may also contain fillers, solvents, antioxidants, light stabilizers, leveling agents and flame retardants.
 硬化性樹脂組成物は常温もしくは加温下で均一に混合することにより得られる。例えば、押出機、ニーダー、三本ロール、万能ミキサー、プラネタリーミキサー、ホモミキサー、ホモディスパー、ビーズミル等を用いて均一になるまで樹脂組成物を充分に混合し、必要によりSUSメッシュ等により樹脂組成物のろ過処理を行うことにより調製される。 The curable resin composition can be obtained by uniformly mixing at room temperature or under heating. For example, the resin composition is sufficiently mixed using an extruder, kneader, triple roll, universal mixer, planetary mixer, homomixer, homodisper, bead mill or the like until uniform, and if necessary, the resin composition is mixed with a SUS mesh or the like. It is prepared by carrying out a filtration treatment of a substance.
 樹脂組成物の硬化方法として加熱や光照射によって硬化することができる。加熱は、熱風循環式、赤外線、高周波等の方法が使用できる。加熱条件は例えば80~230℃で1分~24時間程度が好ましい。加熱硬化の際に樹脂組成物の内部に発生する応力を低減する目的で、例えば80~120℃、30分~5時間予備硬化させた後に、120~180℃、30分~10時間の条件で後硬化させることができる。光照射は高圧水銀ランプ、超高圧水銀ランプ、低圧水銀ランプ、メタルハライドランプ、LEDなどの光源の光線を樹脂組成物に照射することで硬化する事ができる。光照射の後例えば80~230℃で1分~24時間程度加温することで硬化を促進することもできる。 As a method of curing the resin composition, it can be cured by heating or light irradiation. For heating, methods such as hot air circulation, infrared rays, and high frequency can be used. Heating conditions are preferably, for example, 80 to 230° C. for about 1 minute to 24 hours. For the purpose of reducing the stress generated inside the resin composition during heat curing, for example, after precuring at 80 to 120 ° C. for 30 minutes to 5 hours, 120 to 180 ° C. under the conditions of 30 minutes to 10 hours. It can be post-cured. Light irradiation can be performed by irradiating the resin composition with light from a light source such as a high-pressure mercury lamp, an extra-high pressure mercury lamp, a low-pressure mercury lamp, a metal halide lamp, or an LED. Curing can also be accelerated by heating, for example, at 80 to 230° C. for about 1 minute to 24 hours after light irradiation.
 前記一般式(1)で表される樹脂を含む硬化性樹脂組成物の硬化物はDMA(Dynamic Mechanical Analysis)によって測定したTgが50℃以上であることが好ましく、100℃以上であることがより好ましく、150℃以上あることがさらに好ましい。前記一般式(1)で表される樹脂を含む硬化性樹脂組成物の硬化物のTgが50℃以上であると十分な耐久性が得られる。前記一般式(1)で表される樹脂を含む硬化性樹脂組成物の硬化物は室温(30℃)でのDMAによって測定した貯蔵弾性率が500MPa以上であることが好ましく、1000MPa以上であることがより好ましく、2000MPa以上あることがさらに好ましい。前記一般式(1)で表される樹脂を含む硬化性樹脂組成物の硬化物の貯蔵弾性率が500MPa以上であると十分な耐久性が得られる。さらには高温環境に放置された後にも十分なTgおよび貯蔵弾性率を保つことが、硬化物の耐久性の観点から好ましい。高温環境とは100℃以上が好ましく、180℃以上がより好ましく、230℃以上であることが硬化物の使用環境での耐久性の観点からさらに好ましい。 The cured product of the curable resin composition containing the resin represented by the general formula (1) has a Tg measured by DMA (Dynamic Mechanical Analysis) of preferably 50°C or higher, more preferably 100°C or higher. It is preferably 150° C. or higher, and more preferably 150° C. or higher. When the cured product of the curable resin composition containing the resin represented by the general formula (1) has a Tg of 50°C or higher, sufficient durability can be obtained. The cured product of the curable resin composition containing the resin represented by the general formula (1) preferably has a storage modulus of 500 MPa or more, and preferably 1000 MPa or more, as measured by DMA at room temperature (30°C). is more preferable, and 2000 MPa or more is even more preferable. Sufficient durability is obtained when the storage elastic modulus of the cured product of the curable resin composition containing the resin represented by the general formula (1) is 500 MPa or more. Furthermore, it is preferable from the viewpoint of the durability of the cured product to maintain sufficient Tg and storage elastic modulus even after being left in a high-temperature environment. The high temperature environment is preferably 100° C. or higher, more preferably 180° C. or higher, and further preferably 230° C. or higher from the viewpoint of the durability of the cured product in the use environment.
 前記式(1)で表される樹脂を含む硬化性樹脂組成物をトルエン、キシレン、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロペンタノン、ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン等の溶剤に溶解させ、硬化性樹脂組成物ワニスとし、ガラス繊維、カ-ボン繊維、ポリエステル繊維、ポリアミド繊維、アルミナ繊維、紙などの基材に硬化性樹脂組成物ワニスを含浸させて加熱乾燥して得たプリプレグを熱プレス成形することにより前記式(1)で表される樹脂を含む硬化性樹脂組成物の硬化物とすることができる。この際の溶剤は、前記式(1)で表される樹脂を含む硬化性樹脂組成物と該溶剤の混合物中で通常10~70質量%、好ましくは15~70質量%を占める量を用いる。また液状組成物のままRTM(Resin Transfer Molding)方式でカーボン繊維等の強化繊維を含有するエポキシ樹脂硬化物を得ることもできる。 A curable resin composition containing the resin represented by the formula (1) is dissolved in a solvent such as toluene, xylene, acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclopentanone, dimethylformamide, dimethylacetamide, N-methylpyrrolidone. , as a curable resin composition varnish, a prepreg obtained by impregnating a substrate such as glass fiber, carbon fiber, polyester fiber, polyamide fiber, alumina fiber, paper with the curable resin composition varnish and drying by heating. A cured product of the curable resin composition containing the resin represented by the formula (1) can be obtained by hot press molding. In this case, the solvent is usually used in an amount of 10 to 70% by mass, preferably 15 to 70% by mass in the mixture of the curable resin composition containing the resin represented by the formula (1) and the solvent. It is also possible to obtain an epoxy resin cured product containing reinforcing fibers such as carbon fibers by the RTM (Resin Transfer Molding) method from the liquid composition.
 また前記式(1)で表される樹脂を含む硬化性樹脂組成物をフィルム型組成物の改質剤としても使用できる。具体的にはBステージにおける可撓性等を向上させる場合に用いることができる。このようなフィルム型の樹脂組成物を得る場合は、前記式(1)で表される樹脂を含む硬化性樹脂組成物を剥離フィルム上に前記ワニスを塗布し加熱下で溶剤を除去、Bステージ化を行うことによりシート状の接着剤を得る。このシート状接着剤は多層基板などにおける層間絶縁層として使用することが出来る。 The curable resin composition containing the resin represented by formula (1) can also be used as a modifier for film-type compositions. Specifically, it can be used to improve flexibility and the like in the B stage. When obtaining such a film-type resin composition, a curable resin composition containing the resin represented by the formula (1) is applied on the release film with the varnish, the solvent is removed under heating, and the B stage is applied. A sheet-like adhesive is obtained by curing. This sheet-like adhesive can be used as an interlayer insulating layer in multilayer substrates and the like.
 更に、前記式(1)で表される樹脂を含む硬化性樹脂組成物が使用される用途としてエポキシ樹脂等の熱硬化性樹脂が使用される一般の用途が挙げられる。例えば、接着剤、塗料、コーティング剤、成形材料(シート、フィルム、CFRP、GFRP等を含む)、絶縁材料(プリント基板、電線被覆等を含む)、封止材の他、基板用のシアネート樹脂組成物や、レジスト用硬化剤としてアクリル酸エステル系樹脂等、他樹脂等への添加剤等の用途が挙げられる。 Furthermore, general applications in which thermosetting resins such as epoxy resins are used are mentioned as applications in which the curable resin composition containing the resin represented by the formula (1) is used. For example, adhesives, paints, coating agents, molding materials (including sheets, films, CFRP, GFRP, etc.), insulating materials (including printed circuit boards, wire coatings, etc.), sealing materials, cyanate resin compositions for substrates and as a curing agent for resists, such as acrylic acid ester-based resins, and as an additive to other resins.
 接着剤としては、土木用、建築用、自動車用、一般事務用、医療用の接着剤の他、電子材料用の接着剤が挙げられる。これらのうち電子材料用の接着剤としては、ビルドアップ基板等の多層基板の層間接着剤、ダイボンディング剤、アンダーフィル等の半導体用接着剤、BGA(Ball Grid Array)補強用アンダーフィル、異方性導電性フィルム(ACF)、異方性導電性ペースト(ACP)等の実装用接着剤等が挙げられる。 Adhesives include adhesives for civil engineering, construction, automobiles, general office and medical use, as well as adhesives for electronic materials. Among them, adhesives for electronic materials include interlayer adhesives for multilayer substrates such as build-up substrates, die bonding agents, adhesives for semiconductors such as underfill, underfill for BGA (Ball Grid Array) reinforcement, anisotropic Mounting adhesives such as electrically conductive film (ACF) and anisotropic conductive paste (ACP) can be used.
 封止剤の用途としては、コンデンサ、トランジスタ、ダイオード、発光ダイオード、IC、LSIなどの電子素子用のポッティング、ディッピング、トランスファーモールド封止、IC、LSI類のCOB(Chip on Board)、COF(Chip on Film)、TAB(Tape Automated Bonding)などの実装用といったポッティング封止、フリップチップなどの用のアンダーフィル、QFP(Quad Flat Package)、BGA、CSP(Chip Size Package)などのICパッケージ類実装時の封止(補強用アンダーフィルを含む)などを挙げることができる。 Applications of encapsulants include potting, dipping, transfer mold encapsulation for electronic elements such as capacitors, transistors, diodes, light-emitting diodes, ICs and LSIs, COB (Chip on Board) and COF (Chip on Board) of ICs and LSIs. on Film), TAB (Tape Automated Bonding), potting sealing for mounting, etc., underfill for flip chip, QFP (Quad Flat Package), BGA, CSP (Chip Size Package), etc. When mounting IC packages sealing (including reinforcing underfill).
 前記式(1)で表される樹脂を含む硬化性樹脂組成物の硬化物は光学部品材料をはじめ各種用途に使用できる。光学部品材料とは、可視光、赤外線、紫外線、X線、レーザーなどの光をその材料中を通過させる用途に用いる材料一般を示す。より具体的には、ランプタイプ、SMDタイプ等のLED用封止材の他、以下のようなものが挙げられる。液晶ディスプレイ分野における基板材料、導光板、プリズムシート、偏向板、位相差板、視野角補正フィルム、接着剤、偏光子保護フィルムなどの液晶用フィルムなどの液晶表示装置周辺材料である。また、次世代フラットパネルディスプレイとして期待されるカラーPDP(プラズマディスプレイ)の封止材、反射防止フィルム、光学補正フィルム、ハウジング材、前面ガラスの保護フィルム、前面ガラス代替材料、接着剤、またLED表示装置に使用されるLEDのモールド材、LEDの封止材、前面ガラスの保護フィルム、前面ガラス代替材料、接着剤、またプラズマアドレス液晶(PALC)ディスプレイにおける基板材料、導光板、プリズムシート、偏向板、位相差板、視野角補正フィルム、接着剤、偏光子保護フィルム、また有機EL(エレクトロルミネッセンス)ディスプレイにおける前面ガラスの保護フィルム、前面ガラス代替材料、接着剤、またフィールドエミッションディスプレイ(FED)における各種フィルム基板、前面ガラスの保護フィルム、前面ガラス代替材料、接着剤である。光記録分野では、VD(ビデオディスク)、CD/CD-ROM、CD-R/RW、DVD-R/DVD-RAM、MO/MD、PD(相変化ディスク)、Blu-ray Disc(登録商標)、光カード用のディスク基板材料、ピックアップレンズ、保護フィルム、封止材、接着剤などである。 The cured product of the curable resin composition containing the resin represented by the formula (1) can be used for various applications including optical component materials. Materials for optical parts refer to materials in general used for the purpose of allowing light such as visible light, infrared rays, ultraviolet rays, X-rays, and lasers to pass through the material. More specifically, in addition to lamp-type, SMD-type, and other LED sealing materials, there are the following. Substrate materials in the field of liquid crystal displays, liquid crystal display peripheral materials such as light guide plates, prism sheets, polarizing plates, retardation plates, viewing angle correction films, adhesives, and liquid crystal films such as polarizer protective films. We also provide sealing materials, antireflection films, optical correction films, housing materials, front glass protective films, front glass substitute materials, adhesives, and LED displays for color PDPs (plasma displays), which are expected to become next-generation flat panel displays. LED molding materials, LED sealing materials, front glass protective films, front glass replacement materials, adhesives used in devices, substrate materials for plasma addressed liquid crystal (PALC) displays, light guide plates, prism sheets, polarizing plates , retardation plate, viewing angle correction film, adhesive, polarizer protective film, front glass protective film in organic EL (electroluminescence) display, front glass alternative material, adhesive, and various field emission displays (FED) They are film substrates, front glass protective films, front glass replacement materials, and adhesives. In the field of optical recording, VD (video disc), CD/CD-ROM, CD-R/RW, DVD-R/DVD-RAM, MO/MD, PD (phase change disc), Blu-ray Disc (registered trademark) , disc substrate materials for optical cards, pickup lenses, protective films, sealing materials, adhesives, and the like.
 光学機器分野では、スチールカメラのレンズ用材料、ファインダプリズム、ターゲットプリズム、ファインダーカバー、受光センサー部である。また、ビデオカメラの撮影レンズ、ファインダーである。またプロジェクションテレビの投射レンズ、保護フィルム、封止材、接着剤などである。光センシング機器のレンズ用材料、封止材、接着剤、フィルムなどである。光部品分野では、光通信システムでの光スイッチ周辺のファイバー材料、レンズ、導波路、素子の封止材、接着剤などである。光コネクタ周辺の光ファイバー材料、フェルール、封止材、接着剤などである。光受動部品、光回路部品ではレンズ、導波路、LEDの封止材、LEDのパッケージ材、LEDのリフレクタ材、CCDの封止材、接着剤などである。光電子集積回路(OEIC)周辺の基板材料、ファイバー材料、素子の封止材、接着剤などである。光ファイバー分野では、装飾ディスプレイ用照明・ライトガイドなど、工業用途のセンサー類、表示・標識類など、また通信インフラ用および家庭内のデジタル機器接続用の光ファイバーである。半導体集積回路周辺材料では、LSI、超LSI材料用のマイクロリソグラフィー用のレジスト材料である。自動車・輸送機分野では、自動車用のランプリフレクタ、ベアリングリテーナー、ギア部分、耐蝕コート、スイッチ部分、ヘッドランプ、エンジン内部品、電装部品、各種内外装品、駆動エンジン、ブレーキオイルタンク、自動車用防錆鋼板、インテリアパネル、内装材、保護・結束用ワイヤーネス、燃料ホース、自動車ランプ、ガラス代替品である。また、鉄道車輌用の複層ガラスである。また、航空機の構造材の靭性付与剤、エンジン周辺部材、保護・結束用ワイヤーネス、耐蝕コートである。建築分野では、内装・加工用材料、電気カバー、シート、ガラス中間膜、ガラス代替品、太陽電池周辺材料である。農業用では、ハウス被覆用フィルムである。次世代の光・電子機能有機材料としては、有機EL素子周辺材料、有機フォトリフラクティブ素子、光-光変換デバイスである光増幅素子、光演算素子、有機太陽電池周辺の基板材料、ファイバー材料、素子の封止材、接着剤などである。 In the field of optical equipment, materials for still camera lenses, viewfinder prisms, target prisms, viewfinder covers, and light receiving sensors. It is also a video camera taking lens and viewfinder. They also include projection lenses for projection televisions, protective films, sealing materials, and adhesives. Materials for optical sensing equipment lenses, sealing materials, adhesives, films, etc. In the field of optical components, it is used for fiber materials around optical switches in optical communication systems, lenses, waveguides, element sealing materials, adhesives, and the like. These include optical fiber materials, ferrules, sealing materials, and adhesives around optical connectors. Optical passive components and optical circuit components include lenses, waveguides, LED sealing materials, LED packaging materials, LED reflector materials, CCD sealing materials, and adhesives. Substrate materials, fiber materials, element sealing materials, adhesives, etc. around optoelectronic integrated circuits (OEICs). In the optical fiber field, there are optical fibers for lighting and light guides for decorative displays, industrial sensors, displays, signs, etc., as well as for communication infrastructure and for connecting digital devices in the home. Among semiconductor integrated circuit peripheral materials, it is a resist material for microlithography for LSI and super LSI materials. In the automotive and transportation fields, we are engaged in automotive lamp reflectors, bearing retainers, gear parts, corrosion-resistant coatings, switch parts, headlamps, internal engine parts, electrical components, various interior and exterior parts, drive engines, brake oil tanks, and automotive protection equipment. They are rusted steel plates, interior panels, interior materials, wire ties for protection and bundling, fuel hoses, automobile lamps, glass substitutes. Also, it is double glazing for railway vehicles. Further, it is a toughening agent for aircraft structural materials, engine peripheral parts, wire for protection and bundling, and corrosion-resistant coatings. In the construction field, they are interior/processing materials, electric covers, sheets, glass interlayer films, glass substitutes, and solar cell peripheral materials. For agriculture, it is a house covering film. Next-generation organic materials with optical and electronic functions include peripheral materials for organic EL devices, organic photorefractive devices, optical amplification devices that are light-light conversion devices, optical computing devices, substrate materials for organic solar cells, fiber materials, and devices. sealing materials, adhesives, etc.
 本発明によれば、前記式(1)で表される樹脂を含む硬化性樹脂組成物の硬化物をアンモニウムフッ化物塩及び/又はテトラアルキルアンモニウムフッ化物塩に晒すことにより分解できる。このことから硬化性樹脂組成物の硬化物と共に硬化している強化繊維、例えばGFRP(ガラス繊維強化プラスチック)のガラス繊維やCFRP(炭素繊維強化プラスチック)の炭素繊維等をリサイクルすることができる。従って本発明の提供する分解方法は、リサイクル社会における電気電子部品、建材用部品、自動車用部品、GFRPやCFRP等の複合材等数多くの部品のリサイクルに極めて有用である。 According to the present invention, the cured product of the curable resin composition containing the resin represented by formula (1) can be decomposed by exposing it to an ammonium fluoride salt and/or a tetraalkylammonium fluoride salt. This makes it possible to recycle reinforcing fibers cured together with the cured product of the curable resin composition, such as glass fibers of GFRP (glass fiber reinforced plastic) and carbon fibers of CFRP (carbon fiber reinforced plastic). Therefore, the decomposition method provided by the present invention is extremely useful for recycling many parts such as electrical and electronic parts, building material parts, automobile parts, and composite materials such as GFRP and CFRP in a recycling society.
 次に、アンモニウムフッ化物塩及びテトラアルキルアンモニウムフッ化物塩について述べる。 Next, ammonium fluoride salts and tetraalkylammonium fluoride salts will be described.
 アンモニウムフッ化物塩及びテトラアルキルアンモニウムフッ化物塩は下記式(2)で表される化合物である。 Ammonium fluoride salts and tetraalkylammonium fluoride salts are compounds represented by the following formula (2).
Figure JPOXMLDOC01-appb-C000012
 
Figure JPOXMLDOC01-appb-C000012
 
 アンモニウムフッ化物塩は、式(2)中、全てのRが水素原子を表す化合物である。テトラアルキルアンモニウムフッ化物塩は、式(2)中、全てのRが炭素数1~10のアルキル基を表す化合物であり、複数存在するRは互いに同一であっても異なっていても構わない。 Ammonium fluoride salts are compounds of formula ( 2 ) in which all R5 represent hydrogen atoms. A tetraalkylammonium fluoride salt is a compound represented by formula (2) in which all R 5 represent an alkyl group having 1 to 10 carbon atoms, and a plurality of R 5 may be the same or different. do not have.
 Rで表される炭素数1~10のアルキル基としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、ターシャリーブチル基、ペンチル基、イソペンチル基、ネオペンチル基、ヘキシル基、イソヘキシル基、ヘプチル基、イソヘプチル基、オクチル基、イソオクチル基、ノニル基、イソノニル基、デシル基、イソデシル基、シクロヘキシル基等が挙げられ、市場での入手容易性の観点からブチル基が好ましい。 Examples of alkyl groups having 1 to 10 carbon atoms represented by R 5 include methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, tertiary butyl group, pentyl group, isopentyl group, neopentyl group and hexyl. group, isohexyl group, heptyl group, isoheptyl group, octyl group, isooctyl group, nonyl group, isononyl group, decyl group, isodecyl group, cyclohexyl group, etc., and butyl group is preferable from the viewpoint of availability in the market.
 アンモニウムフッ化物塩及びテトラアルキルアンモニウムフッ化物塩は単独で、あるいは混合して水溶液や有機溶媒の溶液にしても使用することができる。アンモニウムフッ化物塩及びテトラアルキルアンモニウムフッ化物塩の少なくとも1つを水溶液や有機溶媒の溶液にしても使用することで硬化物の分解性が早くなるため好ましい。有機溶媒としては、テトラヒドロフラン(THF)、ジメチルスルホキシド、ジメチルホルムアミド、メタノール、エタノール、イソプロピルアルコール、アセトニトリルが好ましい有機溶媒として挙げられ、テトラヒドロフランがさらに好ましい有機溶媒として挙げられる。 The ammonium fluoride salt and the tetraalkylammonium fluoride salt can be used alone or mixed to form an aqueous solution or an organic solvent solution. It is preferable to use at least one of an ammonium fluoride salt and a tetraalkylammonium fluoride salt in the form of an aqueous solution or a solution of an organic solvent, since the decomposability of the cured product is accelerated. As the organic solvent, tetrahydrofuran (THF), dimethylsulfoxide, dimethylformamide, methanol, ethanol, isopropyl alcohol, and acetonitrile are preferred, and tetrahydrofuran is more preferred.
 アンモニウムフッ化物塩及び/又はテトラアルキルアンモニウムフッ化物塩を水溶液又は有機溶媒の溶液として硬化物の分解に供する場合の濃度は0.1~5mol/Lが分解速度の観点から好ましく、0.5~2mol/Lがさらに好ましい。 When the ammonium fluoride salt and/or tetraalkylammonium fluoride salt is used as an aqueous solution or a solution of an organic solvent for decomposition of the cured product, the concentration is preferably 0.1 to 5 mol/L from the viewpoint of the decomposition rate, and 0.5 to 0.5 mol/L. 2 mol/L is more preferred.
 前記一般式(1)で表される樹脂を含む硬化性樹脂組成物の硬化物の質量に対する、硬化物中のSi原子およびSi原子に結合するO原子の合計質量の比率は1質量%以上であることが好ましく、5質量%以上であることがより好ましく、10質量%以上であることがさらに好ましい。
 前記一般式(1)で表される樹脂を含む硬化性樹脂組成物の硬化物の質量に対する、硬化物中のSi原子およびSi原子に結合するO原子の合計質量の比率が1質量%以上であると、硬化物の分解反応が効率よく進行する。
The ratio of the total mass of Si atoms and O atoms bonded to Si atoms in the cured product to the mass of the cured product of the curable resin composition containing the resin represented by the general formula (1) is 1% by mass or more. It is preferably at least 5% by mass, more preferably at least 10% by mass.
The ratio of the total mass of Si atoms and O atoms bonded to Si atoms in the cured product to the mass of the cured product of the curable resin composition containing the resin represented by the general formula (1) is 1% by mass or more. If there is, the decomposition reaction of the cured product proceeds efficiently.
 前記式(1)で表される樹脂を含む硬化性樹脂組成物の硬化物とアンモニウムフッ化物塩及びテトラアルキルアンモニウムフッ化物塩の少なくとも1つを反応させ硬化物を分解することで、反応物である分解物を得ることができる。得られる分解物はSi-F結合を含む。得られた分解物を再度硬化性樹脂に添加することで、硬化性樹脂の強度付与剤、充填剤として用いることができる。 A cured product of a curable resin composition containing the resin represented by the formula (1) is reacted with at least one of an ammonium fluoride salt and a tetraalkylammonium fluoride salt to decompose the cured product. Some decomposition products can be obtained. The resulting decomposition products contain Si—F bonds. By adding the obtained decomposed product to the curable resin again, it can be used as a strength imparting agent and a filler for the curable resin.
 得られた分解物を硬化性樹脂の強度付与剤、充填剤として用いる場合、そのまま用いることもできるが、分解物が溶剤を含む場合は溶剤を除去してから用いる事が好ましい。また、蒸留、ろ過、再結晶、カラムクロマトグラフィー等の方法によって分解物を精製してから用いる事も好ましい。 When the resulting decomposition product is used as a strength imparting agent or filler for a curable resin, it can be used as it is, but if the decomposition product contains a solvent, it is preferable to use it after removing the solvent. It is also preferable to use the decomposition product after purifying it by a method such as distillation, filtration, recrystallization or column chromatography.
 本明細書において、比率、パーセント、部などは、特に断りのない限り、質量に基づくものである。本明細書において、「X~Y」という表現は、XからYまでの範囲を示し、その範囲はX、Yを含む。 In this specification, ratios, percentages, parts, etc. are based on mass unless otherwise specified. As used herein, the expression "X to Y" indicates a range from X to Y, and the range includes X,Y.
 以下、本発明を合成例、実施例により更に詳細に説明する。尚、本発明はこれら合成例、実施例に限定されるものではない。なお、合成例、実施例中の各物性値は以下の方法で測定した。ここで、部は特に断りのない限り質量部を表す。 Hereinafter, the present invention will be described in more detail by way of Synthesis Examples and Examples. The present invention is not limited to these Synthesis Examples and Examples. Each physical property value in Synthesis Examples and Examples was measured by the following methods. Here, parts represent parts by mass unless otherwise specified.
 比較例1及び実施例1~4;
 下記式(6)で表されるX-40-2669[信越化学工業社製、シリコーン骨格を有するエポキシ樹脂、シリコーン骨格を有するエポキシ樹脂の質量に対するシリコーン骨格(Si-O-Si)の質量の割合が18.8質量%]、CEL2021P(ダイセル社製、3’,4’-エポキシシクロへキシルメチル 3,4-エポキシシクロヘキサンカルボキシレート)、エポキシ樹脂硬化剤としてリカシッドMH(新日本理化社製、メチルヘキサヒドロフタル酸無水物)、硬化促進剤としてU-CAT18X(サンアプロ社製、エポキシ樹脂硬化促進剤)を下記表1に記載の量比でポリエチレン製容器に秤量し、薬さじでよく混合した後、真空撹拌脱泡装置にて2分間撹拌し、エポキシ樹脂組成物を得た。
Comparative Example 1 and Examples 1-4;
X-40-2669 represented by the following formula (6) [manufactured by Shin-Etsu Chemical Co., Ltd., an epoxy resin having a silicone skeleton, the ratio of the mass of the silicone skeleton (Si-O-Si) to the mass of the epoxy resin having a silicone skeleton is 18.8% by mass], CEL2021P (3′,4′-epoxycyclohexylmethyl 3,4-epoxycyclohexane carboxylate manufactured by Daicel Corporation), Rikacid MH as an epoxy resin curing agent (manufactured by New Japan Chemical Co., Ltd., methyl hexa Hydrophthalic anhydride) and U-CAT18X (manufactured by San-Apro Co., Ltd., epoxy resin curing accelerator) as a curing accelerator are weighed in a polyethylene container at the ratio shown in Table 1 below, and mixed well with a spoon. The mixture was stirred for 2 minutes using a vacuum stirring and defoaming device to obtain an epoxy resin composition.
Figure JPOXMLDOC01-appb-C000013
 
Figure JPOXMLDOC01-appb-C000013
 
 試験片作成;
 得られた比較例および実施例1~4のエポキシ樹脂組成物を、長さ120mm、幅4mm、高さ10mmに型取られたステンレス製金型に注型した。その注型物を、120℃×1時間の予備硬化の後150℃×3時間で硬化させ、エポキシ樹脂硬化物を得た。
 得られたエポキシ樹脂硬化物を、電動ダイヤモンドカッターを用いて成形し、長さ10mm、幅4mm、高さ4mmの分解性試験用の試験片を得た。
test piece creation;
The obtained epoxy resin compositions of Comparative Examples and Examples 1 to 4 were cast into a stainless steel mold having a length of 120 mm, a width of 4 mm and a height of 10 mm. The cast product was precured at 120° C. for 1 hour and then cured at 150° C. for 3 hours to obtain a cured epoxy resin.
The obtained epoxy resin cured product was molded using an electric diamond cutter to obtain a test piece for degradability test having a length of 10 mm, a width of 4 mm and a height of 4 mm.
 DMA(Dynamic Mechanical Analysis)試験;
 比較例および実施例1~4で得られたエポキシ樹脂組成物を、真空脱泡5分間実施後、40mm×25mm×高さ0.8mmになるように耐熱テープでダムを作成したガラス基板上に静かに注型した。その注型物を、120℃×1時間の予備硬化の後150℃×3時間で硬化させ、厚さ0.8mmのエポキシ樹脂硬化物を得た。
 得られたエポキシ樹脂硬化物を幅5mm長さ25mmに成形し、下記条件にてDMA(Dynamic Mechanical Analysis)を測定し、30℃における貯蔵弾性率、Tg(ガラス転移温度)を読み取った。
 また得られたエポキシ樹脂硬化物を幅5mm長さ25mmに成形し、250℃のオーブンに5時間放置し、室温まで冷却した後のDMAを同様に測定した。
<DMA測定条件>
メーカー:日立ハイテクサイエンス株式会社
機種:粘弾性スペクトロメータ EXSTAR DMS6100
測定温度:30℃~280℃
昇温速度:2℃/min
周波数:1Hz
測定モード:引張振動
DMA法により測定したガラス転移温度(Tg):
 DMAを測定した際の、貯蔵弾性率(E´)と損失弾性率(E´´)の商で表される損失係数(tanδ=E´´/E´)の極大点の温度を読み取った。
 配合物中のSi原子およびSi原子に結合するO原子の合計質量の比率(質量%)、硬化物をDMA試験で測定した30℃における貯蔵弾性率およびTg(ガラス転移点)、硬化物を200℃に5時間放置した後のDMA試験で測定した30℃における貯蔵弾性率およびTg(ガラス転移点)を表1に示す。
DMA (Dynamic Mechanical Analysis) test;
The epoxy resin compositions obtained in Comparative Examples and Examples 1 to 4 were subjected to vacuum degassing for 5 minutes, and then placed on a glass substrate on which a dam was created with heat-resistant tape so as to have a size of 40 mm × 25 mm × height 0.8 mm. Cast quietly. The cast product was precured at 120° C. for 1 hour and then cured at 150° C. for 3 hours to obtain a cured epoxy resin product having a thickness of 0.8 mm.
The obtained epoxy resin cured product was molded into a width of 5 mm and a length of 25 mm, and DMA (Dynamic Mechanical Analysis) was measured under the following conditions to read the storage elastic modulus and Tg (glass transition temperature) at 30°C.
The obtained epoxy resin cured product was molded into a width of 5 mm and a length of 25 mm, left in an oven at 250° C. for 5 hours, cooled to room temperature, and then measured for DMA in the same manner.
<DMA measurement conditions>
Manufacturer: Hitachi High-Tech Science Co., Ltd. Model: Viscoelastic spectrometer EXSTAR DMS6100
Measurement temperature: 30°C to 280°C
Heating rate: 2°C/min
Frequency: 1Hz
Measurement mode: Glass transition temperature (Tg) measured by tensile vibration DMA method:
The temperature at the maximum point of the loss coefficient (tan δ=E″/E′) represented by the quotient of the storage elastic modulus (E′) and the loss elastic modulus (E″) when the DMA was measured was read.
The ratio (mass%) of the total mass of Si atoms and O atoms bonded to Si atoms in the formulation, the storage elastic modulus and Tg (glass transition point) at 30 ° C. of the cured product measured by the DMA test, and the cured product to 200 Table 1 shows the storage modulus and Tg (glass transition point) at 30°C measured by the DMA test after standing at °C for 5 hours.
<分解性試験>
 前述のように得られた各試験片を10ccのガラス製サンプル瓶に各々入れ、そこに1M(mol/L)のテトラブチルアンモニウムフッ化物塩のテトラヒドロフラン(THF)溶液を2gずつ加えた。
 THF溶液をサンプル瓶に加え、サンプル瓶を20~25℃の環境に静置した。
 THF溶液をサンプル瓶に加えてから、5時間、24時間、52時間、172時間後にサンプル瓶から試験片を取り出し、試験片を水で洗浄し、試験片の表面の水滴を拭き取り、試験片を25℃で24時間乾燥させた後に試験片の質量を測定した。サンプル瓶に入れる前の試験片の質量を100としたときの、乾燥後の試験片の質量の相対値を表1に示す。
 また、THF溶液をサンプル瓶に加えてから5時間、24時間、52時間、172時間後にサンプル瓶から取り出した試験片を、洗浄、乾燥した後に試験片の外観を撮影した。試験片の外観を図1~4にそれぞれ示す。
<Degradability test>
Each test piece obtained as described above was placed in a 10 cc glass sample bottle, and 2 g of a 1M (mol/L) tetrabutylammonium fluoride salt in tetrahydrofuran (THF) solution was added thereto.
A THF solution was added to the sample bottle, and the sample bottle was allowed to stand in an environment of 20 to 25°C.
After adding the THF solution to the sample bottle, remove the test piece from the sample bottle after 5 hours, 24 hours, 52 hours, and 172 hours, wash the test piece with water, wipe off water droplets on the surface of the test piece, and remove the test piece. After drying for 24 hours at 25° C., the mass of the specimen was measured. Table 1 shows relative values of the mass of the test piece after drying when the mass of the test piece before being placed in the sample bottle is 100.
In addition, 5 hours, 24 hours, 52 hours, and 172 hours after adding the THF solution to the sample bottle, the test pieces were taken out from the sample bottle, washed and dried, and the appearance of the test pieces was photographed. Appearances of the test pieces are shown in FIGS. 1 to 4, respectively.
Figure JPOXMLDOC01-appb-T000014
 
Figure JPOXMLDOC01-appb-T000014
 
 表1に示すように、比較例1では、THF溶液に浸してから時間が経過するに連れて、試験片が膨潤し、試験片の質量が増加したものの、外観に大きな変化は見られなかった。
 一方、実施例1では、THF溶液に浸してから時間が経過するに連れて、試験片の質量が減少した。また、実施例1では、172時間後の試験片に割れが生じていた。
 実施例2では、THF溶液に浸してから時間が経過するに連れて、試験片の質量が減少する傾向が見られた。また、実施例2では、52時間後および172時間後の試験片に割れが生じていた。
 実施例3では、THF溶液に浸してから時間が経過するに連れて、試験片の質量が減少した。また、実施例3では、172時間後の試験片に割れが生じていた。
 実施例4では、THF溶液に浸してから時間が経過するに連れて、試験片の質量が減少し、52時間後の試験片では質量が18%まで減少し、172時間後には試験片が消失した。
 表1に示した硬化物の試験片をテトラブチルアンモニウムフッ化物塩の1M THF溶液に浸した際の質量の変化、および図1~4に示した試験片の外観変化から明らかなように、実施例1~4の特定の構造を含有する硬化物をフッ化物塩溶液に浸す硬化物の分解方法は、硬化物のTgが150℃以上、室温(30℃)での貯蔵弾性率が2000MPa以上ある十分な硬さ、さらには200℃の環境に放置された後にも十分なTgおよび貯蔵弾性率を有する硬化物であっても、室温にて充分に分解可能であることが明らかとなった。このことから、CFRPやGFRPなどの複合材料、接着剤、使用環境中に高温に晒される構造材等に特定構造の硬化物を用いることで、複合材料、接着剤、使用環境中に高温に晒される構造材等を容易に分解することが可能となる。したがって、本発明の提供する分解方法は、硬化物中の各種素材をリサイクルする循環型社会の実現に貢献できる。
As shown in Table 1, in Comparative Example 1, as time passed after immersion in the THF solution, the test piece swelled and the mass of the test piece increased, but no significant change in appearance was observed. .
On the other hand, in Example 1, the mass of the test piece decreased as time passed after being immersed in the THF solution. In Example 1, cracks were found in the test piece after 172 hours.
In Example 2, the mass of the test piece tended to decrease as time passed after being immersed in the THF solution. In Example 2, cracks were found in the test pieces after 52 hours and 172 hours.
In Example 3, the mass of the test piece decreased as time passed after being immersed in the THF solution. In Example 3, cracks were found in the test piece after 172 hours.
In Example 4, the mass of the test piece decreased as time passed after being immersed in the THF solution, the mass of the test piece decreased to 18% after 52 hours, and the test piece disappeared after 172 hours. did.
As is clear from the change in mass when the test piece of the cured product shown in Table 1 is immersed in a 1M THF solution of tetrabutylammonium fluoride salt, and the change in appearance of the test piece shown in FIGS. The method of decomposing the cured product of Examples 1 to 4, in which the cured product containing the specific structure is immersed in a fluoride salt solution, has a Tg of 150° C. or higher and a storage modulus of 2000 MPa or higher at room temperature (30° C.). It was found that even a cured product having sufficient hardness and sufficient Tg and storage elastic modulus even after being left in an environment of 200° C. can be sufficiently decomposed at room temperature. For this reason, by using a cured product with a specific structure for composite materials such as CFRP and GFRP, adhesives, and structural materials exposed to high temperatures in the usage environment, composite materials, adhesives, and materials exposed to high temperatures in the usage environment It is possible to easily dismantle the structural materials, etc. Therefore, the decomposition method provided by the present invention can contribute to the realization of a recycling-oriented society in which various materials in the cured product are recycled.
 本発明を特定の態様を参照して詳細に説明したが、本発明の精神と範囲を離れることなく様々な変更および修正が可能であることは、当業者にとって明らかである。
 なお、本願は、2021年5月6日付で出願された日本国特許出願(特願2021-078443)に基づいており、その全体が引用により援用される。また、ここに引用されるすべての参照は全体として取り込まれる。
Although the present invention has been described in detail with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention.
This application is based on a Japanese patent application (Japanese Patent Application No. 2021-078443) filed on May 6, 2021, the entirety of which is incorporated by reference. Also, all references cited herein are incorporated in their entirety.

Claims (5)

  1.  下記式(1)で表される樹脂を含む硬化性樹脂組成物の硬化物を、アンモニウムフッ化物塩及びテトラアルキルアンモニウムフッ化物塩の少なくとも1つを用いて分解する硬化性樹脂組成物の硬化物の分解方法。
    Figure JPOXMLDOC01-appb-C000001
     
     (式(1)中、R~Rはそれぞれ、C及びH原子を含み、任意でO、Si及びN原子から選択される原子を1つ以上含む置換基である。R~Rは互いに同じであっても異なっていても構わない。R~Rの一つ以上は硬化性官能基を有する。)
    A cured product of a curable resin composition containing a resin represented by the following formula (1) is decomposed using at least one of an ammonium fluoride salt and a tetraalkylammonium fluoride salt. decomposition method.
    Figure JPOXMLDOC01-appb-C000001

    (In formula (1), each of R 1 to R 4 is a substituent containing C and H atoms and optionally one or more atoms selected from O, Si and N atoms. R 1 to R 4 may be the same or different, and one or more of R 1 to R 4 have a curable functional group.)
  2.  前記硬化性官能基は、エポキシ基、(メタ)アクリレート基及びマレイミド基から選ばれる少なくとも一つである、請求項1に記載の硬化性樹脂組成物の硬化物の分解方法。  3. The method for decomposing a cured product of a curable resin composition according to claim 1, wherein the curable functional group is at least one selected from an epoxy group, a (meth)acrylate group and a maleimide group. 
  3.  アンモニウムフッ化物塩及びテトラアルキルアンモニウムフッ化物塩が下記式(2)で表される請求項1又は2に記載の硬化性樹脂組成物の硬化物の分解方法。
    Figure JPOXMLDOC01-appb-C000002
     
     (式(2)中、Rは全て水素原子を表すか、又は全て炭素数1~10のアルキル基を表す。式(2)中、Rが全てアルキル基の場合、複数存在するRは互いに同一であっても異なっていても構わない。)
    The method for decomposing a cured product of a curable resin composition according to claim 1 or 2, wherein the ammonium fluoride salt and the tetraalkylammonium fluoride salt are represented by the following formula (2).
    Figure JPOXMLDOC01-appb-C000002

    (In formula (2), all of R 5 represent hydrogen atoms or all represent alkyl groups having 1 to 10 carbon atoms. In formula (2), when all of R 5 are alkyl groups, a plurality of R 5 may be the same or different).
  4.  硬化物に対する、硬化物中のSi原子およびSi原子に結合するO原子の合計質量の比率が1質量%以上である、請求項1~3のいずれか一項に記載の硬化性樹脂組成物の硬化物の分解方法。 The curable resin composition according to any one of claims 1 to 3, wherein the ratio of the total mass of Si atoms and O atoms bonded to Si atoms in the cured product is 1% by mass or more with respect to the cured product. A method of decomposing a cured product.
  5.  下記式(1)で表される樹脂を含む硬化性樹脂組成物の硬化物と、アンモニウムフッ化物塩及びテトラアルキルアンモニウムフッ化物塩の少なくとも1つとの反応物。
    Figure JPOXMLDOC01-appb-C000003
     
     (式(1)中、R~Rはそれぞれ、C及びH原子を含み、任意でO、Si及びN原子から選択される原子を1つ以上含む置換基である。R~Rは互いに同じであっても異なっていても構わない。R~Rの一つ以上は硬化性官能基を有する。)
    A reaction product of a cured product of a curable resin composition containing a resin represented by the following formula (1) and at least one of an ammonium fluoride salt and a tetraalkylammonium fluoride salt.
    Figure JPOXMLDOC01-appb-C000003

    (In formula (1), each of R 1 to R 4 is a substituent containing C and H atoms and optionally one or more atoms selected from O, Si and N atoms. R 1 to R 4 may be the same or different, and one or more of R 1 to R 4 have a curable functional group.)
PCT/JP2022/019091 2021-05-06 2022-04-27 Method for decomposing cured product of curable resin composition WO2022234804A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023518676A JPWO2022234804A1 (en) 2021-05-06 2022-04-27

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-078443 2021-05-06
JP2021078443 2021-05-06

Publications (1)

Publication Number Publication Date
WO2022234804A1 true WO2022234804A1 (en) 2022-11-10

Family

ID=83932724

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/019091 WO2022234804A1 (en) 2021-05-06 2022-04-27 Method for decomposing cured product of curable resin composition

Country Status (2)

Country Link
JP (1) JPWO2022234804A1 (en)
WO (1) WO2022234804A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100090624A (en) * 2009-02-06 2010-08-16 엘지전자 주식회사 Superframe header structure and method for efficiently transmitting thereof
WO2020148968A1 (en) * 2019-01-15 2020-07-23 昭和電工株式会社 Decomposing/cleaning composition, method for cleaning adhesive polymer, and method for producing device wafer
JP2020126090A (en) * 2019-02-01 2020-08-20 富士フイルム株式会社 Photosensitive transfer material, method for manufacturing resin pattern, method for manufacturing circuit wiring, and method for manufacturing touch panel
KR20200111149A (en) * 2015-01-13 2020-09-28 동우 화인켐 주식회사 Composition for removing silicone polymer and manufacturing method of thin film substrate using the same
JP2020204047A (en) * 2016-12-14 2020-12-24 ローム アンド ハース エレクトロニック マテリアルズ エルエルシーRohm and Haas Electronic Materials LLC Method using silicon-containing underlayers

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100090624A (en) * 2009-02-06 2010-08-16 엘지전자 주식회사 Superframe header structure and method for efficiently transmitting thereof
KR20200111149A (en) * 2015-01-13 2020-09-28 동우 화인켐 주식회사 Composition for removing silicone polymer and manufacturing method of thin film substrate using the same
JP2020204047A (en) * 2016-12-14 2020-12-24 ローム アンド ハース エレクトロニック マテリアルズ エルエルシーRohm and Haas Electronic Materials LLC Method using silicon-containing underlayers
WO2020148968A1 (en) * 2019-01-15 2020-07-23 昭和電工株式会社 Decomposing/cleaning composition, method for cleaning adhesive polymer, and method for producing device wafer
KR20210082233A (en) * 2019-01-15 2021-07-02 쇼와 덴코 가부시키가이샤 Disassembled cleaning composition, method for cleaning adhesive polymer, and method for manufacturing device wafer
JP2020126090A (en) * 2019-02-01 2020-08-20 富士フイルム株式会社 Photosensitive transfer material, method for manufacturing resin pattern, method for manufacturing circuit wiring, and method for manufacturing touch panel

Also Published As

Publication number Publication date
JPWO2022234804A1 (en) 2022-11-10

Similar Documents

Publication Publication Date Title
JP5004146B2 (en) Epoxy resin and epoxy resin composition
TWI647248B (en) Epoxy resin composition, cured product thereof, and curable resin composition
JP5839149B2 (en) Polyamideimide resin, curable resin composition and cured product thereof
JP5580212B2 (en) Carboxylic acid compound and epoxy resin composition containing the same
WO2011043400A1 (en) Polycarboxylic acid composition, process for preparation thereof, and curable resin compositions containing the polycarboxylic acid composition
JP5775869B2 (en) Polyvalent carboxylic acid composition, curing agent composition, and curable resin composition containing the polyvalent carboxylic acid composition or the curing agent composition as a curing agent for epoxy resin
JP2017226737A (en) Polyamide-imide resin and method for producing the same
JP5294771B2 (en) Method for producing epoxy compound
JP6239587B2 (en) Polyvalent carboxylic acid composition, curing agent composition for epoxy resin, epoxy resin composition and cured product thereof
WO2022234804A1 (en) Method for decomposing cured product of curable resin composition
TWI659974B (en) Epoxy resin, curable resin composition, and cured product thereof
JP2010018538A (en) Method for producing epoxy compound
JP5294772B2 (en) Method for producing epoxy compound
JP5088952B2 (en) Epoxy resin, production method thereof and use thereof
JP4915895B2 (en) Production method of epoxy resin
JP6016647B2 (en) Epoxy resin and curable resin composition
JP4915896B2 (en) Production method of epoxy resin
JP2007204604A (en) Liquid epoxy resin, epoxy resin composition and cured product
JP5004147B2 (en) Liquid epoxy resin, epoxy resin composition and cured product thereof
JP2010083836A (en) Method for producing epoxy compound, and catalyst
JP2010209150A (en) Epoxy resin composition
JP2006213774A (en) Method for producing epoxy resin, and high-molecular-weight epoxy resin
JP5388531B2 (en) Method for producing epoxy compound
JP2005139285A (en) Liquid epoxy resin, epoxy resin composition and its cured material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22798910

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023518676

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22798910

Country of ref document: EP

Kind code of ref document: A1