WO2022234764A1 - Electric contact member, brush, and rotator - Google Patents

Electric contact member, brush, and rotator Download PDF

Info

Publication number
WO2022234764A1
WO2022234764A1 PCT/JP2022/017492 JP2022017492W WO2022234764A1 WO 2022234764 A1 WO2022234764 A1 WO 2022234764A1 JP 2022017492 W JP2022017492 W JP 2022017492W WO 2022234764 A1 WO2022234764 A1 WO 2022234764A1
Authority
WO
WIPO (PCT)
Prior art keywords
contact member
electrical contact
particles
metal
low
Prior art date
Application number
PCT/JP2022/017492
Other languages
French (fr)
Japanese (ja)
Inventor
祥広 足立
敬弘 野須
純哉 関川
Original Assignee
株式会社デンソー
国立大学法人静岡大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー, 国立大学法人静岡大学 filed Critical 株式会社デンソー
Priority to JP2023518654A priority Critical patent/JPWO2022234764A1/ja
Publication of WO2022234764A1 publication Critical patent/WO2022234764A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R39/00Rotary current collectors, distributors or interrupters
    • H01R39/02Details for dynamo electric machines
    • H01R39/18Contacts for co-operation with commutator or slip-ring, e.g. contact brush
    • H01R39/20Contacts for co-operation with commutator or slip-ring, e.g. contact brush characterised by the material thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R4/00Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation
    • H01R4/58Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation characterised by the form or material of the contacting members
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K13/00Structural associations of current collectors with motors or generators, e.g. brush mounting plates or connections to windings; Disposition of current collectors in motors or generators; Arrangements for improving commutation

Definitions

  • the present disclosure relates to electrical contact members, brushes, and rotating machines.
  • Patent Document 1 zinc as a low boiling point material having a boiling point lower than that of copper is added to the electrical contact member, and zinc vapor increases the vapor density during arc discharge to suppress the electron velocity.
  • Techniques for reducing electromagnetic noise have been disclosed.
  • the conventional technology has the following issues. That is, zinc is more difficult to thermally ionize than copper. Therefore, according to the prior art, it is necessary to add a large amount of zinc in order to reduce electromagnetic noise. Therefore, zinc oxide tends to deposit on the surface of the mating material such as the commutator, and the contact resistance tends to increase. Further, if this electrical contact member is applied to a motor brush or the like, there is a possibility that problems such as a decrease in motor efficiency may occur.
  • An object of the present disclosure is to provide an electrical contact member capable of reducing electromagnetic noise without adding a large amount of zinc, and a brush and rotating machine using the same.
  • One aspect of the present disclosure has a contact surface for facing a mating member, carbon particles; copper particles; a low ionization voltage metal having a lower ionization voltage than copper;
  • An electrical contact member comprising:
  • Another aspect of the present disclosure is a brush having the electrical contact member.
  • Yet another aspect of the present disclosure is a rotating machine having the brush.
  • the electrical contact member has the above configuration. Therefore, in the electrical contact member, when arc discharge occurs between the contact surface and the mating material, thermal ionization of the low ionization voltage metal occurs prior to the copper that constitutes the copper particles that are the conductive material. , the electron density in the arc space increases. Therefore, according to the electrical contact member, compared to the case where the electron density in the arc space is low, the force for moving electrons when the same current is applied, that is, the electric field intensity can be reduced. Therefore, the electrical contact member can reduce electromagnetic noise without adding a large amount of zinc.
  • the brush has the electrical contact member. Therefore, in the above brush, thermal ionization of the low ionization voltage metal occurs during arc discharge when sliding contact and separation are performed between the commutator, which is the mating material, and the contact surface of the electrical contact member, and the arc space The electron density in is increased, making it possible to reduce electromagnetic noise.
  • the rotating machine has the brush.
  • the rotating machine described above can eliminate a filter composed of coils, capacitors, and the like, a metal shield housing, and the like. Therefore, according to the rotating machine, it is possible to reduce the size, weight, and cost of the rotating machine.
  • FIG. 1 is a diagram schematically showing a brush of Embodiment 1 to which the electrical contact member of Embodiment 1 is applied;
  • FIG. 2 is a diagram schematically illustrating a part of a scanning electron microscope image of the contact surface of the electrical contact member of Embodiment 1
  • FIG. 3 is an explanatory diagram for explaining the electrical contact member and the brush of Embodiment 3
  • (a) is a spherical powder of low ionization voltage metal used for manufacturing the electrical contact member and brush of Embodiment 3
  • FIG. 1 is a diagram schematically showing a brush of Embodiment 1 to which the electrical contact member of Embodiment 1 is applied
  • FIG. 2 is a diagram schematically illustrating a part of a scanning electron microscope image of the contact surface of the electrical contact member of Embodiment 1
  • FIG. 3 is an explanatory diagram for explaining the electrical contact member and the brush of Embodiment 3
  • (a) is a spherical powder of low ionization
  • FIG. 11 is a diagram showing an example
  • (b) is a diagram showing an example of foil-like powder of a low-ionization voltage metal used for manufacturing the electrical contact member and the brush of Embodiment 3
  • 4A and 4B are explanatory diagrams for explaining the electrical contact member and the brush of Embodiment 4
  • FIG. 5 is a cross-sectional view along the axial direction of the shaft of the rotating machine of Embodiment 5
  • FIG. 6 is a diagram schematically showing brushes and a commutator in a rotating machine of Embodiment 5
  • FIG. 7 is a diagram showing the relationship between temperature (K) and electron density (m ⁇ 3 ) for each element of Cu, Al, and Zn, obtained in Experimental Example 1.
  • FIG. 8 is a diagram showing the filter voltage values (dB) for the brushes of samples 1 to 4 obtained in Experimental Example 2.
  • FIG. 9 is a scanning electron microscope image of the contact surfaces of the brushes of Samples 1 to 4 obtained in Experimental Example 2.
  • (a) is Sample 1
  • (b) is Sample 2
  • (c) is a scanning electron microscope image of sample 3
  • (d) is a scanning electron microscope image of sample 4;
  • FIG. 1 An electrical contact member and a brush according to Embodiment 1 will be described with reference to FIGS. 1 and 2.
  • FIG. 1 and 2 the electrical contact member 1 of this embodiment has a contact surface 11 to face a mating member (not shown in FIGS. 1 and 2).
  • the electrical contact member 1 contains carbon particles 12, copper particles 13, and a low ionization voltage metal 14 whose ionization voltage is lower than that of copper.
  • the electrical contact member 1 can be suitably used for applications in which an arc is generated between the contact surface 11 and the mating member during use.
  • the electrical contact member 1 can be suitably used for applications in which the contact surface 11 is in sliding contact with a mating member during use.
  • the electrical contact member 1 can be used, for example, as a brush (electrical machine brush) of a rotating machine such as a motor or a generator, an arc welding rod, or the like.
  • the contact surface 11 may be in contact with the mating member, or may be separated from the mating member.
  • FIG. 1 shows an example in which the electrical contact member 1 is applied to a brush 10 of a rotating machine (not shown in FIG. 1).
  • the brush 10 of this embodiment has the electrical contact member 1 of this embodiment.
  • the brush 10 has a contact portion 101 including the electrical contact member 1 and a lead wire 102 connected to the contact portion 101 .
  • the lead wire 102 is sometimes called a pigtail, and is a portion through which electricity supplied from the outside flows.
  • the brush 10 supplies power through a commutator to an armature coil wound around an iron core provided in a rotor of a rotating machine.
  • the mating member is a commutator that constitutes a part of the rotor in the rotating machine
  • the contact surface 11 is a surface that makes sliding contact with and separates from the mating member.
  • the contact portion 101 may be composed of the electrical contact member 1 as illustrated in FIG. A configuration including a separate member different from the member 1 may be employed. As an example of the latter, for example, an example in which the electrical contact member 1 is formed as a surface layer on the surface of another member can be cited.
  • the electrical contact member 1 contains carbon particles 12, as illustrated in FIG.
  • the carbon particles 12 form a lubricating film on the mating material when sliding contact and separation are performed between the mating material and the contact surface 11, and are particles useful for preventing fusion with the mating material.
  • As the carbon particles 12, graphite particles can be exemplified as a suitable one from the viewpoint of lubricating coating formability, conductivity, cost, material procurement, and the like.
  • the electrical contact member 1 contains copper particles 13, as illustrated in FIG.
  • the copper particles 13 are base particles of the electrical contact member 1 and are important particles mainly for imparting electrical properties such as conductivity to the electrical contact member 1 .
  • the electrical contact member 1 contains a low ionization voltage metal 14, as illustrated in FIG.
  • the low ionization voltage metal 14 is a metal with a lower ionization voltage than copper.
  • the low ionization voltage metal 14 is a metal different from copper.
  • the ionization voltage of copper is specifically 7.73 eV. Accordingly, the low ionization voltage metal 14 is selected from metals having an ionization voltage lower than 7.73 eV. The lower the ionization voltage, the less heat energy (J) required for thermal ionization and the increased electron density in the arc space.
  • Examples of the low ionization voltage metal 14 include Al (aluminum) (ionization voltage: 5.99 eV), Cr (chromium) (ionization voltage: 6.77 eV), Mg (magnesium) (ionization voltage: 7.65 eV), Rb (Rubidium) (ionization voltage: 4.18 eV), Ce (cesium) (ionization voltage: 3.89 eV), and the like can be exemplified. These can be used alone or in combination of two or more.
  • the low ionization voltage metal 14 has a sufficiently low ionization voltage compared to copper, can exist as a solid near room temperature, and can maintain the shape of the electrical contact member 1. , Cr, or the like.
  • the low ionization voltage metal 14 more preferably has a lower ionization voltage, can increase the electron density by adding a small amount, becomes metal vapor at a temperature lower than the boiling point of copper, and is thermally ionized.
  • Al is preferable from the viewpoint that the electrical contact member 1 can be hardened by sintering at a time (for example, when firing at a firing temperature of about 400° C. or higher and 1000° C. or lower).
  • the melting point and boiling point of each metal are Al (melting point: 660°C, boiling point: 2467°C), Cr (melting point: 1857°C, boiling point: 2672°C), Mg (melting point: 639°C, boiling point: 1090°C), Rb (melting point: 39°C, boiling point: 688°C) and Ce (melting point: 29°C, boiling point: 678°C).
  • the low ionization voltage metal 14 is not limited to being a single element, and similar effects can be obtained even if it is contained as a compound (including thermal separation and thermal reduction).
  • the low-ionization voltage metal 14 may be included in the electrical contact member 1 as particles of the low-ionization-voltage metal 14 (hereinafter sometimes referred to as low-ionization-voltage metal particles 140), for example, as illustrated in FIG. can.
  • the electrical contact member 1 can be relatively easily manufactured by molding and firing a mixed powder containing carbon powder, copper powder, and low-ionization-voltage metal powder.
  • the low ionization voltage metal 14 can be included in the electrical contact member 1 as, for example, a coating layer (not shown) that covers the surfaces of the copper particles 13 . In this case, the coating layer can be formed by vapor-depositing the low ionization voltage metal 14 on the surface of the copper particles 13, or the like.
  • FIG. 2 shows an example in which the electrical contact member 1 includes carbon particles 12 , copper particles 13 , and low-ionization-voltage metal particles 140 .
  • the electrical contact member 1 can be composed of a sintered body containing a plurality of carbon particles 12 , a plurality of copper particles 13 and a plurality of low-ionization-voltage metal particles 140 .
  • the electrical contact member 1 can further contain a low boiling point metal (not shown).
  • a low boiling point metal is a metal with a boiling point lower than that of copper. According to this configuration, the low boiling point metal becomes metal vapor at a temperature lower than the boiling point of copper, and the air in the arc space can be eliminated. Nitrogen and oxygen contained in the air are difficult to thermally ionize, so the metal vapor of the low boiling point metal removes the air in the arc space, promoting the thermal ionization of the low ionization voltage metal and increasing the electron density in the arc space. easier.
  • the boiling point of copper is specifically 2567°C. Accordingly, the low boiling point metal can be selected from metals having a boiling point below 2567°C.
  • the low boiling point metal is a metal different from the low ionization voltage metal 14, and if it has a boiling point lower than that of copper, it may have an ionization voltage lower than that of nitrogen or oxygen and higher than that of copper.
  • low boiling point metals examples include Zn (zinc) (boiling point: 907°C, ionization voltage: 9.39 eV), Mg (magnesium) (boiling point: 1090°C, ionization voltage: 7.65 eV), and the like. . These can be used alone or in combination of two or more.
  • Zn can be selected as the low-boiling-point metal from the viewpoint that it has a lower boiling point and is easy to obtain the effect of removing air in the arc.
  • Mg can be selected from the viewpoint that it has a lower boiling point than copper and an increase in electron density due to thermal ionization because it has a lower ionization voltage than copper.
  • the low boiling point metal can be contained in the electrical contact member 1 as, for example, low boiling point metal particles (hereinafter sometimes referred to as low boiling point metal particles).
  • the electrical contact member 1 can be relatively easily manufactured by molding and firing a mixed powder containing carbon powder, copper powder, low-ionization-voltage metal powder, and low-boiling-point metal powder. .
  • the electrical contact member 1 may specifically include, for example, carbon particles 12, copper particles 13, low ionization voltage metal particles 140, and low boiling point metal particles.
  • the electrical contact member 1 includes a plurality of carbon particles 12, a plurality of copper particles 13, a plurality of low ionization voltage metal particles 140, and a plurality of low boiling point metal particles. It can consist of a body.
  • the electrical contact member 1 has a circle 3 with a diameter of 50 ⁇ m at any position on the scanning electron microscope (hereinafter sometimes referred to as SEM) image of the contact surface 11. Even if they are arranged, it is possible to have a configuration in which the low ionization voltage metal 14 that fits within the circle 3 exists.
  • a circle 3 with a diameter of 50 ⁇ m is related to the arc bright spot diameter of the arc generated between the contact surface 11 and the mating member.
  • Arc voltage varies depending on the material with which the arc bright spot is in contact. According to the above configuration, the material forming the electrical contact member 1 can be reduced in particle size and uniformly dispersed.
  • the above configuration even if an arc is generated at any position on the contact surface 11 and the arc moves, it is advantageous in suppressing arc voltage fluctuations. Further, according to the above configuration, regardless of the position and movement of the arc, the low-ionization-voltage metal 14 that fits within the diameter of the bright spot of the arc is always likely to exist. Therefore, according to the above configuration, thermal ionization of the low ionization voltage metal 14 can be reliably generated regardless of the position and movement of the arc, and the electron density in the arc space can be increased.
  • the electrical contact member 1 When the electrical contact member 1 contains a low boiling point metal, the electrical contact member 1 is a low boiling point metal that fits within the circle 3 in the SEM image of the contact surface 11 regardless of the position of the circle 3 on the SEM image. can be configured to exist. According to the above configuration, the material forming the electrical contact member 1 can be reduced in particle size and uniformly dispersed. According to the above configuration, even if an arc is generated at any position on the contact surface 11 and the arc moves, it is advantageous in suppressing arc voltage fluctuations. Moreover, according to the above configuration, regardless of the position or movement of the arc, it is easy to always have the low boiling point metal within the diameter of the bright spot of the arc. Therefore, according to the above configuration, the metal vapor of the low boiling point metal can be reliably generated regardless of the position and movement of the arc, and the air in the arc space can be eliminated by the metal vapor of the low boiling point metal. be possible.
  • the contact surface 11 can be polished as necessary.
  • the presence of the low-ionization-voltage metal 14 within the circle 3 means that the low-ionization-voltage metal 14 whose entire outline is within the circle 3 exists. Further, the presence of a low boiling point metal that fits within the circle 3 means that there is a low boiling point metal whose entire outline is within the circle 3 .
  • the outline of the circle 3 passes over the low ionization voltage metal 14 or the low boiling point metal (the outline of the circle 3 overlaps the low ionization voltage metal 14, or the outline of the circle 3 and the low boiling point metal overlap) are excluded.
  • the contours of the low ionization voltage metal 14 and the low boiling point metal are, for example, when the low ionization voltage metal 14 and the low boiling point metal are contained in the electrical contact member 1 as particles, the low ionization voltage metal particles 140 and the low boiling point metal Particle outline.
  • the electrical contact member 1 has carbon particles 12 that fit within the circle 3 in the SEM image of the contact surface 11 even when the circle 3 with a diameter of 50 ⁇ m is placed at any position on the SEM image. can be configured to exist. According to the above configuration, the material forming the electrical contact member 1 can be reduced in particle size and uniformly dispersed. According to the above configuration, even if an arc is generated at any position on the contact surface 11 and the arc moves, it is advantageous in suppressing arc voltage fluctuations.
  • the electrical contact member 1 has copper particles 13 that fit within the circle 3 in the SEM image of the contact surface 11 even when the circle 3 with a diameter of 50 ⁇ m is placed at any position on the SEM image.
  • the material forming the electrical contact member 1 can be reduced in particle size and uniformly dispersed. According to the above configuration, even if an arc is generated at any position on the contact surface 11 and the arc moves, it is advantageous in suppressing arc voltage fluctuations.
  • the meaning of the carbon particles 12 within the circle 3 and the copper particles 13 within the circle 3 can be understood by applying the above description of the low ionization voltage metal 14 within the circle 3 mutatis mutandis.
  • each material particle (carbon particles 12, copper particles 13, low ionization voltage metal particles 140, low boiling point metal particles, etc.) constituting the electrical contact member 1 can be made small and uniformly dispersed. .
  • the contact surface 11 of the electrical contact member 1 When the contact surface 11 of the electrical contact member 1 is in sliding contact with the mating member, such as when the electrical contact member 1 is applied to a brush, the contact surface 11 wears due to the sliding contact, so the arc generation position is different. Easy to position. Therefore, in the above case, even when the contact surface 11 is in sliding contact with the mating member, the arc voltage fluctuation can be suppressed regardless of the position and movement of the arc.
  • the size of the low ionization voltage metal 14 can be set to 1/2 or less of the diameter of the circle 3. Moreover, when the electrical contact member 1 contains a low boiling point metal, the size of the low boiling point metal can be set to 1/2 or less of the diameter of the circle 3 . According to these configurations, arc voltage fluctuations can be easily suppressed regardless of the position and movement of the arc.
  • the size of the low ionization voltage metal 14 and the low boiling point metal is preferably 2/5 or less of the diameter of the circle 3 from the viewpoint of ensuring the above-mentioned effects, more preferably the diameter of the circle 3 3/10 or less, more preferably 1/5 or less of the diameter of the circle 3, still more preferably 1/10 or less of the diameter of the circle 3.
  • a size confirmation circle (not shown) having a predetermined diameter is applied to the circle 3 having a diameter of 50 ⁇ m on the SEM image of the contact surface 11, and the size is confirmed in the entire area of the SEM image.
  • the low ionization voltage metal 14 being contained within the size confirmation circle means that the entire contour of each low ionization voltage metal 14 is within the size confirmation circle.
  • the low boiling point metal being contained within the size confirmation circle means that the entire contour of each low boiling point metal is within the size confirmation circle.
  • the outline of the size confirmation circle passes over the low ionization voltage metal 14 or the low boiling point metal (the outline of the size confirmation circle overlaps the low ionization voltage metal 14, or the size Those where the outline of the confirmation circle and the low boiling point metal overlap) are excluded.
  • the low ionization voltage metal 14 and the low boiling point metal are contained in the electrical contact member 1 as particles, the low ionization voltage metal particles 140 and the low boiling point metal particles are granulated. diameter.
  • each particle size of the carbon particles 12, the copper particles 13, and the low-ionization-voltage metal particles 140 can be set to 1/2 or less of the diameter of the circle 3.
  • the particle size of the low boiling point metal particles should be 1/2 or less of the diameter of the circle 3.
  • the particle diameters of the carbon particles 12, the copper particles 13, the low-ionization-voltage metal particles 140, and the low-boiling-point metal particles are preferably equal to the diameter of the circle 3 from the viewpoint of ensuring the above-described effects.
  • the particle diameters of the carbon particles 12 and the copper particles 13 can be understood by applying the description of the sizes of the low ionization voltage metal 14 and the low boiling point metal described above.
  • the content of the carbon particles 12 is 25 mass from the viewpoint of effectively suppressing fusion between the contact surface 11 and the mating member when the contact surface 11 is brought into sliding contact with the mating member. % or more and 85 mass % or less.
  • the content of the copper particles 13 can be selected from the range of 15% by mass or more and 75% by mass or less from the viewpoint of electrical properties such as electrical conductivity of the electrical contact member 1 .
  • the content of the low-ionization voltage metal 14 is selected from the range of 2% by mass or more and 75% by mass or less from the viewpoints of ensuring the effect of addition, suppressing deterioration of electrical and mechanical coupling, raw material cost, etc. be able to.
  • the content of the low boiling point metal can be selected from the range of 2% by mass or more and 30% by mass or less from the viewpoint of ensuring the effect of the addition and suppressing the increase of the insulating oxide film.
  • the selection of the mass % is performed so that the total is 100 mass %.
  • the electrical contact member 1 of the present embodiment when arc discharge occurs between the contact surface 11 and the mating member, the low ionization voltage metal 14 precedes the copper constituting the copper particles 13 that are the conductive material. thermal ionization occurs, increasing the electron density in the arc space. Therefore, according to the electrical contact member 1 of the present embodiment, compared to the case where the electron density in the arc space is low, the force for moving electrons when the same current is applied, that is, the electric field strength can be reduced. Therefore, the electrical contact member 1 of this embodiment can reduce electromagnetic noise without adding a large amount of zinc.
  • the brush 10 of this embodiment has the electrical contact member 1 of this embodiment. Therefore, in the brush 10 of the present embodiment, during arc discharge when sliding contact and separation are performed between the commutator as a mating material and the contact surface 11 of the electrical contact member 1, the low ionization voltage metal 14 Thermal ionization occurs, increasing the electron density in the arc space and making it possible to reduce electromagnetic noise.
  • Embodiment 2 An electrical contact member and a brush of Embodiment 2 will be described. It should be noted that, of the reference numerals used in the second and subsequent embodiments, the same reference numerals as those used in the previously described embodiments represent the same components and the like as those in the previously described embodiments, unless otherwise specified.
  • part or all of the copper particles 13 are replaced with replacement particles (not shown) made of a metal different from copper.
  • at least part of the copper particles 13 are replaced with replacement particles.
  • substituted particles examples include Al particles and Cr particles.
  • the replacement particles are Al particles, there are advantages such as light weight, low cost, easy material procurement, and low risk of depletion of reserves.
  • the substituted particles are Cr particles, there are advantages such as increased mechanical strength and improved wear resistance.
  • the electrical contact member 1 includes, for example, carbon particles 12 and copper particles 13. , replacement particles, or a configuration including carbon particles 12 and replacement particles.
  • the brush 10 of this embodiment has the electrical contact member 1 of this embodiment.
  • Embodiment 1 The description of the copper particles in Embodiment 1 can be applied mutatis mutandis to the replacement particles. Other configurations and effects are the same as those of the first embodiment.
  • FIG. 3(a) is a diagram showing an example of spherical powder of low ionization voltage metal 14 used for manufacturing the electrical contact member 1 and the brush 10 (described later) of Embodiment 3, and FIG. 3(b).
  • FIG. 10 is a view showing an example of foil-like powder of a low-ionization-voltage metal 14 used for manufacturing an electrical contact member 1 and a brush 10 (described later) of Embodiment 3.
  • the material of the spherical powder and the foil-like powder of the low ionization voltage metal 14 illustrated in FIG. 3 is specifically Al.
  • the low-ionization-voltage metal 14 is composed of spherical particles
  • carbon powder for containing the carbon particles 12 and the low-ionization-voltage metal 14 composed of spherical particles are used when manufacturing the electrical contact member 1.
  • a mixed powder containing spherical powder of the low ionization voltage metal 14 for inclusion is prepared. Since the spherical powder of the low ionization voltage metal 14 is excellent in uniform dispersibility with the carbon powder, according to the above configuration, the low ionization voltage metal 14 composed of the carbon particles 12 and spherical particles is excellent in uniform dispersibility.
  • An electrical contact member 1 is obtained.
  • the spherical powder of the low-ionization-voltage metal 14 can be prepared using, for example, an atomizing method.
  • the low ionization voltage metal 14 is composed of foil-like particles
  • the contact between the spherical particles is less than when the low-ionization-voltage metal 14 is composed of foil-shaped particles. Since the surface of the particles is smooth, the mechanical and electrical coupling forces are small, and the spherical particles may fall off during sliding, which may increase the electrical resistance of the electrical contact member 1 .
  • the foil-like particles tend to entangle with each other, so that the mechanical and electrical bonding strengths are improved, and the foil-like particles fall off during sliding. Therefore, it is possible to suppress an increase in the electrical resistance of the electrical contact member 1 .
  • a powder obtained by pulverizing the foil of the low-ionization-voltage metal 14 (pulverized foil powder) can be suitably used.
  • the shape of the low ionization voltage metal 14 included in the electrical contact member 1 can be specified by observing the cross-sectional cut surface of the electrical contact member 1 with an SEM or the like.
  • Spherical particles have a perfect circular or elliptical outer shape.
  • foil-like particles the outer shape of the corners of the particles is neither perfect circle nor ellipse. Therefore, both particles can be distinguished relatively easily.
  • Other configurations and effects are the same as those of the electrical contact members 1 of the first and second embodiments.
  • the brush 10 of this embodiment has the electrical contact member 1 of this embodiment. Therefore, when the electrical contact member 1 has the low ionization voltage metal 14 composed of spherical particles, the carbon particles 12 and the low ionization voltage metal 14 composed of spherical particles are uniformly dispersed. is obtained. In addition, when the electrical contact member 1 has the low ionization voltage metal 14 composed of foil-like particles, the foil-like particles are less likely to fall off during sliding, and an increase in electrical resistance due to this can be suppressed. A brush 10 is obtained. Other configurations and effects are the same as those of the brushes 10 of the first and second embodiments.
  • Embodiment 4 An electrical contact member and a brush according to Embodiment 4 will be described with reference to FIG.
  • the low ionization voltage metal 14 is included in the electrical contact member 1 as particles of the low ionization voltage metal 14 (low ionization voltage metal particles 140).
  • the microstructure of the low ionization voltage metal particles 140 is at least one of the microstructures illustrated in FIGS. can be A specific description will be given below.
  • FIG. 4(a) the entire surface of the low ionization voltage metal particles 140 is covered with an oxide film 141. In FIG. No missing portion 141a is generated in the oxide film 141, and no partial metal bonding is generated between the low ionization voltage metal particles 140.
  • FIG. The electrical contact member 1 having the microstructure illustrated in FIG. 4(a) is, for example, heated to a temperature that does not exceed the melting point of the low ionization voltage metal 14 (does not cause deformation) during firing in the manufacture of the electrical contact member 1. It can be produced by firing at.
  • the low ionization voltage metal 14 is Al
  • the melting point of Al is about 660.degree.
  • FIG. 4(b) for example, firing at a temperature exceeding the melting point of the low ionization voltage metal 14 causes deformation of the particles due to melting.
  • the surface of the low ionization voltage metal particles 140 is covered with an oxide film 141 .
  • the oxide film 141 has a partial defect 141a, and the low ionization voltage metal particles 140 are partially metal-bonded in the defect 141a.
  • the metal bonding may be specifically, for example, fusion bonding.
  • low ionization voltage metal particles 140 having an oxide film 141 with no defects 141a may be included.
  • the electrical contact member 1 having a microstructure as illustrated in FIG. 4(b) has a lower ionization voltage than the electrical contact member 1 having a microstructure as illustrated in FIG. 4(a). Due to the partial metal bonding between them, the mechanical bonding strength and the electrical bonding strength are improved, the low ionization voltage metal particles 140 are less likely to fall off during sliding, and an increase in the electrical resistance of the electrical contact member 1 can be suppressed. Become.
  • the material of the low-ionization-voltage metal particles 140 is Al
  • a thin oxide film 141 (for example, about 5 nm) tends to be formed on the surface of the low-ionization-voltage metal particles 140 during firing.
  • the oxide film 141 reduces the mechanical bonding force between particles and increases electrical resistance due to its insulating properties. Therefore, according to the electrical contact member 1 having the microstructure illustrated in FIG. It becomes possible to fully exhibit the effect of this.
  • the density of the partial metal bonding can differ, for example, in the depth direction of the electrical contact member 1 . This is because the firing temperature may differ in the depth direction of the electrical contact member 1 during manufacturing.
  • the microstructure of the low ionization voltage metal particles 140 in the electrical contact member 1 is obtained by EPMA (X-ray elemental mapping) analysis of the cross-sectional cut surface of the electrical contact member 1, and the oxide film 141 provided on the surface of the low ionization voltage metal particles 140 It can be grasped by confirming the presence or absence of the missing portion 141a. If there is a missing portion 141a in the oxide film 141, it can be said that metal bonding between the low ionization voltage metal particles 140 has occurred.
  • Other configurations and effects are the same as those of the electrical contact members 1 of the first and second embodiments.
  • the brush 10 of this embodiment has the electrical contact member 1 of this embodiment.
  • the oxide film 141 on the surface of the low ionization voltage metal particles 140 has a defect 141a, and the low ionization voltage metal particles 140 are partially metal-bonded at the defect 141a.
  • the low ionization voltage metal particles 140 are less likely to come off during sliding, and the brush 10 can be obtained which can suppress an increase in electrical resistance caused by this.
  • Other configurations and effects are the same as those of the brushes 10 of the first and second embodiments.
  • FIG. 5 A rotating machine according to Embodiment 5 will be described with reference to FIGS. 5 and 6.
  • FIG. 6 the rotating machine 2 of this embodiment has the brush 10 of the first embodiment.
  • the rotating machine 2 is a rotating electrical machine, and more specifically, is configured as a DC motor with brushes.
  • the rotating machine 2 can be used, for example, as a motor for driving an on-vehicle device, a motor for driving household electricity, a motor for driving general industrial machines, and a motor for driving various devices.
  • the rotating machine 2 may be configured as an electric motor, or may be configured as a motor-generator having both functions of an electric motor and a generator.
  • the axial direction of the shaft 20 constituting the rotating machine 2 is indicated by the arrow X
  • the radial direction of the shaft 20 is indicated by the arrow Y, unless otherwise specified.
  • the direction of rotation, which is one of the circumferential directions of the shaft 20, is indicated by an arrow Za.
  • the rotating machine 2 has a cylindrical shaft 20 that is a rotating shaft, and is configured such that the shaft 20 is rotationally driven by electric power supplied from the power source E.
  • the rotating machine 2 includes a housing 22 composed of a case 23 and a cover 24, and a plurality of components for rotationally driving the shaft 20.
  • the plurality of components are accommodated within the housing 22.
  • the plurality of components include a plurality of supports 25 that rotatably support the shaft 20, a rotor 220 as a rotor, a commutator 231, two brushes 10, 10, and a magnet 240 as a stator. include.
  • the rotor 220 is fixed to the shaft 20.
  • the rotor 220 has an iron core 221 formed by laminating a plurality of electromagnetic steel sheets and an armature coil 222 , and the armature coil 222 is wound around the iron core 221 .
  • the magnet 240 is fixed to the inner surface of the case 23 forming the housing 22 with a gap between it and the rotor 220 .
  • the magnet 240 has a function of applying a magnetic field to the armature coil 222, and is configured as a magnetic field permanent magnet (S pole and N pole) having mutually different polarities.
  • the commutator 231 has a plurality of commutator segments 232 and is electrically connected to the armature coils 222 . As shown in FIG. 6 , a plurality of commutator segments 232 are arranged side by side in the circumferential direction of the shaft 20 in the commutator 231 . Adjacent commutator bars 232 are circumferentially spaced from each other and electrically connected to each other by armature coils 222 .
  • Both of the two brushes 10 are rectangular brushes that are electrically connected to the power source E and are in sliding contact with the plurality of commutator segments 232 as the commutator 231 rotates.
  • One first brush 10 is electrically connected to the positive terminal of the power supply E.
  • the other second brush 10 is configured to be electrically connected to the negative terminal of the power source E and paired with the first brush 10 .
  • the two brushes 10 are arranged at positions shifted by 180° in the circumferential direction. Therefore, the first brush 10 can be called a "positive brush” and the second brush 10 can be called a "negative brush”.
  • the first brush 10 is capable of sliding contact and separation with the plurality of commutator bars 232 , and when slidingly contacted or separated, the first brush 10 is relatively potential with respect to the plurality of commutator bars 232 . becomes higher.
  • the second brush 10 is capable of sliding contact and separation with the plurality of commutator bars 232, and when slidingly contacted or separated, the second brush 10 is relatively potential with respect to the plurality of commutator bars 232. becomes lower.
  • each of the plurality of commutator bars 232 can be on the high potential side or the low potential side depending on the sliding contact relationship with the two brushes 10 .
  • both of the two brushes 10 are constructed using the electrical contact member 1 .
  • the rotating machine 2 of this embodiment has the brush 10 of the first embodiment. Therefore, in the rotating machine 2 of the present embodiment, it is possible to eliminate filters configured by coils, capacitors, and the like, metal shield housings, and the like as countermeasures against electromagnetic noise. Therefore, according to the rotating machine 2 of the present embodiment, it is possible to reduce the size, weight, and cost of the rotating machine 2 .
  • the input power of the rotating machine 2 is not particularly limited, but can be, for example, 10 W or more and 800 W or less.
  • the effect of the above-described electrical contact member 1 is sufficiently exhibited in relation to the size of the diameter of the arc bright spot of the arc formed between the electrical contact member 1 of the brush and the commutator 231. be able to.
  • the rotating machine 2 has the brush 10 of Embodiment 1
  • the rotating machine 2 may have the brush 10 having the electrical contact member 1 of Embodiments 2 to 4. good.
  • the electrical contact member containing copper particles by using Al instead of Zn, that is, by using a low ionization voltage metal such as Al, which has a lower ionization voltage than Cu, the contact surface and the counterpart material When an arc discharge occurs between them, the thermal ionization of the low ionization voltage metal occurs prior to the copper that constitutes the copper particles that are the conductive material, and it becomes possible to increase the electron density in the arc space. I can say. Therefore, according to such an electrical contact member, compared with the case where the electron density in the arc space is small, the force for moving electrons when the same current is applied, that is, the electric field strength can be reduced. It can be said that it is possible to reduce electromagnetic noise without adding
  • Example 2 Cu (copper) powder with an average particle size of 50 ⁇ m and C (graphite) powder with an average particle size of 5 ⁇ m are blended in a mass ratio of 50:50 (about 20:80 in volume ratio), stirred and mixed. did. Next, the obtained mixed powder was compression-molded in a mold. Next, the obtained compression-molded body was sintered in a deoxidized atmosphere at a temperature at which the components did not undergo thermal change, and was sintered. Thus, a sample 1 brush was produced.
  • the average particle size of the raw material powder refers to the particle size when the volume integrated value in the particle size distribution determined by the laser diffraction/scattering method is 50% (the same shall apply hereinafter).
  • a sample 2 brush was prepared in the same manner as in the preparation of the sample 1 brush, except that the materials were stirred and mixed so as to improve the uniform dispersibility.
  • FIG. 8 shows filter voltage values (dB) for the brushes of samples 1 to 4.
  • FIG. 9 shows SEM images of the contact surfaces of the brushes of Samples 1 to 4.
  • the white part is Cu and the gray part is C.
  • Example 3 Cu (copper) powder with an average particle size of 5 ⁇ m, C (graphite) powder with an average particle size of 10 ⁇ m, and Al (aluminum) powder with an average particle size of 5 ⁇ m are blended in a mass ratio of 50:45:5. , were stirred and mixed using a ball mill. Next, the obtained mixed powder was compression-molded in a mold. Next, the obtained compression-molded body was sintered in a deoxidized atmosphere at a temperature at which the components did not undergo thermal change, and was sintered. Thus, a sample 6 brush was obtained. Note that the brush of Sample 6 contains Al particles as the low ionization voltage metal particles.
  • Cu (copper) powder with an average particle size of 5 ⁇ m, C (graphite) powder with an average particle size of 10 ⁇ m, Al (aluminum) powder with an average particle size of 5 ⁇ m, and Zn (zinc) powder with an average particle size of 5 ⁇ m are mixed by mass. They were blended in a ratio of 50:40:5:5 and stirred and mixed using a ball mill. Next, the obtained mixed powder was compression-molded in a mold. Next, the obtained compression-molded body was sintered in a deoxidized atmosphere at a temperature at which the components did not undergo thermal change, and was sintered. Thus, a sample 7 brush was obtained.
  • the brush of Sample 7 contains Al particles as low-ionization-voltage metal particles and Zn particles as low-boiling-point particles.
  • the electrical contact member according to Item 1 wherein the particle size of the material particles is set to be 1/2 or less of the diameter of the circle. According to the electrical contact member of item 2, it is possible to ensure that the material particles constituting the electrical contact member are present within the circle.
  • the material particles include copper particles, Item 3.
  • the material particles include low ionization voltage metal particles having a lower ionization voltage than copper, Item 4.
  • Some or all of the copper particles are replaced with replacement particles composed of a metal different from copper, Item 4.
  • a brush comprising the electrical contact member according to any one of items 1 to 9. According to the brush of item 10, it is possible to obtain a brush capable of suppressing arc voltage fluctuations regardless of the position and movement of the arc.
  • Item 11 Item 11.

Abstract

An electric contact member (1) has a contact surface (11) for facing an counterpart member. The electric contact member (1) includes: carbon particles (12); copper particles (13); and a low ionization-potential metal (14) having a lower ionization potential than copper. A brush (10) comprises the electric contact member (1). A rotator (2) comprises the brush (10). In a scanning electron microscope image of the contact surface (11) of the electric contact member (1), the low ionization-potential metal (14) is preferably provided within a circle (3) having a diameter of 50 μm, regardless of where the circle (3) is disposed on the scanning electron microscope image.

Description

電気接点部材、ブラシ、および、回転機Electrical contact members, brushes, and rotating machines 関連出願の相互参照Cross-reference to related applications
 本出願は、2021年5月7日に出願された日本出願番号2021-079010号に基づくもので、ここにその記載内容を援用する。 This application is based on Japanese Application No. 2021-079010 filed on May 7, 2021, and the contents thereof are incorporated herein.
 本開示は、電気接点部材、ブラシ、および、回転機に関する。 The present disclosure relates to electrical contact members, brushes, and rotating machines.
 従来、様々な分野において、相手材との電気的接続を図るために電気接点部材が用いられている。例えば、モータ等の回転機の分野では、相手材である整流子に摺動接触させる接点面を備えたブラシが知られている。 Conventionally, in various fields, electrical contact members have been used to achieve electrical connection with mating materials. For example, in the field of rotating machines such as motors, there are known brushes having contact surfaces that are brought into sliding contact with a mating commutator.
 具体的には例えば、特許文献1に、電気接点部材に銅の沸点よりも沸点が低い低沸点材としての亜鉛を加え、亜鉛蒸気によりアーク放電時の蒸気密度を高めて電子速度を小さく抑え、電磁ノイズの低減を図る技術が開示されている。 Specifically, for example, in Patent Document 1, zinc as a low boiling point material having a boiling point lower than that of copper is added to the electrical contact member, and zinc vapor increases the vapor density during arc discharge to suppress the electron velocity. Techniques for reducing electromagnetic noise have been disclosed.
特開2020-68653号公報JP 2020-68653 A
 従来技術には、次の課題がある。すなわち、亜鉛は、銅よりも熱電離し難い。そのため、従来技術によれば、電磁ノイズの低減を図るためには、亜鉛を大量に添加する必要がある。それ故、整流子等の相手材の表面に酸化亜鉛が堆積しやすく、接触抵抗が増加しやすい。また、この電気接点部材をモータのブラシ等に適用した場合には、モータ効率の低下等の不具合が生じるおそれがある。 The conventional technology has the following issues. That is, zinc is more difficult to thermally ionize than copper. Therefore, according to the prior art, it is necessary to add a large amount of zinc in order to reduce electromagnetic noise. Therefore, zinc oxide tends to deposit on the surface of the mating material such as the commutator, and the contact resistance tends to increase. Further, if this electrical contact member is applied to a motor brush or the like, there is a possibility that problems such as a decrease in motor efficiency may occur.
 本開示は、亜鉛を大量に添加しなくても、電磁ノイズを低減することが可能な電気接点部材、また、これを用いたブラシ、回転機を提供することを目的とする。 An object of the present disclosure is to provide an electrical contact member capable of reducing electromagnetic noise without adding a large amount of zinc, and a brush and rotating machine using the same.
 本開示の一態様は、相手材に対向させるための接点面を有しており、
 カーボン粒子と、
 銅粒子と、
 銅よりも電離電圧が低い低電離電圧金属と、
 を含む、電気接点部材にある。
One aspect of the present disclosure has a contact surface for facing a mating member,
carbon particles;
copper particles;
a low ionization voltage metal having a lower ionization voltage than copper;
An electrical contact member comprising:
 本開示の他の態様は、上記電気接点部材を有する、ブラシにある。 Another aspect of the present disclosure is a brush having the electrical contact member.
 本開示のさらに他の態様は、上記ブラシを有する、回転機にある。 Yet another aspect of the present disclosure is a rotating machine having the brush.
 上記電気接点部材は、上記構成を有する。そのため、上記電気接点部材では、接点面と相手材との間にてアーク放電が生じた場合に、導電材料である銅粒子を構成する銅よりも先行して低電離電圧金属の熱電離が生じ、アーク空間における電子密度が増大する。それ故、上記電気接点部材によれば、アーク空間における電子密度が小さい場合に比べ、同じ電流を流す際の電子を移動させる力、つまり、電界強度を小さくすることができる。したがって、上記電気接点部材は、亜鉛を大量に添加しなくても、電磁ノイズを低減することが可能になる。 The electrical contact member has the above configuration. Therefore, in the electrical contact member, when arc discharge occurs between the contact surface and the mating material, thermal ionization of the low ionization voltage metal occurs prior to the copper that constitutes the copper particles that are the conductive material. , the electron density in the arc space increases. Therefore, according to the electrical contact member, compared to the case where the electron density in the arc space is low, the force for moving electrons when the same current is applied, that is, the electric field intensity can be reduced. Therefore, the electrical contact member can reduce electromagnetic noise without adding a large amount of zinc.
 上記ブラシは、上記電気接点部材を有する。そのため、上記ブラシでは、相手材となる整流子と電気接点部材の接点面との間で摺動接触および開離が行われるときのアーク放電時に、低電離電圧金属の熱電離が生じ、アーク空間における電子密度が増大し、電磁ノイズを低減することが可能になる。 The brush has the electrical contact member. Therefore, in the above brush, thermal ionization of the low ionization voltage metal occurs during arc discharge when sliding contact and separation are performed between the commutator, which is the mating material, and the contact surface of the electrical contact member, and the arc space The electron density in is increased, making it possible to reduce electromagnetic noise.
 上記回転機は、上記ブラシを有する。そのため、上記回転機は、電磁ノイズ対策として、コイルやコンデンサなどによって構成されるフィルター、金属製のシールド筐体などを削減することが可能になる。そのため、上記回転機によれば、回転機の小型化、軽量化、低コスト化などを図ることが可能になる。 The rotating machine has the brush. As a countermeasure against electromagnetic noise, therefore, the rotating machine described above can eliminate a filter composed of coils, capacitors, and the like, a metal shield housing, and the like. Therefore, according to the rotating machine, it is possible to reduce the size, weight, and cost of the rotating machine.
 なお、請求の範囲に記載した括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものであり、本開示の技術的範囲を限定するものではない。 It should be noted that the symbols in parentheses described in the claims indicate the correspondence with specific means described in the embodiments described later, and do not limit the technical scope of the present disclosure.
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、実施形態1の電気接点部材を適用した実施形態1のブラシを模式的に示した図であり、 図2は、実施形態1の電気接点部材における接点面の走査型電子顕微鏡像の一部を模式的に例示した図であり、 図3は、実施形態3の電気接点部材およびブラシを説明するための説明図であり、(a)は、実施形態3の電気接点部材およびブラシの製造に用いられる低電離電圧金属の球体状粉末の一例を示した図であり、(b)は、実施形態3の電気接点部材およびブラシの製造に用いられる低電離電圧金属の箔状粉末の一例を示した図であり、 図4は、実施形態4の電気接点部材およびブラシを説明するための説明図であり、(a)は、酸化皮膜に欠損部が生じていない低電離電圧金属粒子を模式的に示した図であり、(b)は、酸化皮膜に欠損部が生じており、当該欠損部にて低電離電圧金属粒子同士が部分的に金属接合している状態を模式的に示した図であり、 図5は、実施形態5の回転機についてシャフトの軸方向に沿った断面図であり、 図6は、実施形態5の回転機におけるブラシと整流子とを模式的に示した図であり、 図7は、実験例1において得られた、Cu、Al、Znの各元素についての温度(K)と電子密度(m-3)との関係を示した図であり、 図8は、実験例2において得られた、試料1~試料4のブラシについてのフィルタ電圧値(dB)を示した図であり、 図9は、実験例2において得られた、試料1~試料4のブラシにおける接点面の走査型電子顕微鏡像を示した図であり、(a)は試料1、(b)は試料2、(c)は試料3、(d)は試料4の走査型電子顕微鏡像である。
The above and other objects, features and advantages of the present disclosure will become more apparent from the following detailed description with reference to the accompanying drawings. The drawing is
FIG. 1 is a diagram schematically showing a brush of Embodiment 1 to which the electrical contact member of Embodiment 1 is applied; FIG. 2 is a diagram schematically illustrating a part of a scanning electron microscope image of the contact surface of the electrical contact member of Embodiment 1, FIG. 3 is an explanatory diagram for explaining the electrical contact member and the brush of Embodiment 3, (a) is a spherical powder of low ionization voltage metal used for manufacturing the electrical contact member and brush of Embodiment 3 FIG. 11 is a diagram showing an example, and (b) is a diagram showing an example of foil-like powder of a low-ionization voltage metal used for manufacturing the electrical contact member and the brush of Embodiment 3, 4A and 4B are explanatory diagrams for explaining the electrical contact member and the brush of Embodiment 4, and FIG. There is, (b) is a diagram schematically showing a state in which a defect is generated in the oxide film, and the low ionization voltage metal particles are partially metal-bonded at the defect, FIG. 5 is a cross-sectional view along the axial direction of the shaft of the rotating machine of Embodiment 5, FIG. 6 is a diagram schematically showing brushes and a commutator in a rotating machine of Embodiment 5, FIG. 7 is a diagram showing the relationship between temperature (K) and electron density (m −3 ) for each element of Cu, Al, and Zn, obtained in Experimental Example 1. FIG. 8 is a diagram showing the filter voltage values (dB) for the brushes of samples 1 to 4 obtained in Experimental Example 2. FIG. 9 is a scanning electron microscope image of the contact surfaces of the brushes of Samples 1 to 4 obtained in Experimental Example 2. (a) is Sample 1, (b) is Sample 2, ( c) is a scanning electron microscope image of sample 3, and (d) is a scanning electron microscope image of sample 4;
(実施形態1)
 実施形態1の電気接点部材およびブラシについて、図1、図2を用いて説明する。図1、図2に例示されるように、本実施形態の電気接点部材1は、相手材(図1、図2では不図示)に対向させるための接点面11を有している。電気接点部材1は、カーボン粒子12と、銅粒子13と、銅よりも電離電圧が低い低電離電圧金属14と、を含んでいる。
(Embodiment 1)
An electrical contact member and a brush according to Embodiment 1 will be described with reference to FIGS. 1 and 2. FIG. As illustrated in FIGS. 1 and 2, the electrical contact member 1 of this embodiment has a contact surface 11 to face a mating member (not shown in FIGS. 1 and 2). The electrical contact member 1 contains carbon particles 12, copper particles 13, and a low ionization voltage metal 14 whose ionization voltage is lower than that of copper.
 電気接点部材1は、使用時に接点面11と相手材との間にアークが生じる用途等に好適に用いることができる。また、電気接点部材1は、使用時に接点面11が相手材と摺動接触する用途等に好適に用いることができる。電気接点部材1は、具体的には、例えば、モータ、発電機等の回転機のブラシ(電機ブラシ)、アーク溶接棒等に用いることができる。なお、接点面11は、相手材と接触してよいし、相手材と離れていてもよい。 The electrical contact member 1 can be suitably used for applications in which an arc is generated between the contact surface 11 and the mating member during use. In addition, the electrical contact member 1 can be suitably used for applications in which the contact surface 11 is in sliding contact with a mating member during use. Specifically, the electrical contact member 1 can be used, for example, as a brush (electrical machine brush) of a rotating machine such as a motor or a generator, an arc welding rod, or the like. In addition, the contact surface 11 may be in contact with the mating member, or may be separated from the mating member.
 図1では、電気接点部材1を回転機(図1では不図示)のブラシ10に適用した例が示されている。本実施形態のブラシ10は、本実施形態の電気接点部材1を有している。具体的には、ブラシ10は、電気接点部材1を備える接点部101と、接点部101に接続されたリード線102とを有している。なお、リード線102は、ピッグテールと称されることがあり、外部から供給される電気が流れる部分である。ブラシ10は、回転機の回転子に設けられる鉄心に巻回された電機子コイルに対して、整流子を通じて給電を行うものである。この場合、相手材は、回転機における回転子の一部を構成する整流子であり、接点面11は、相手材と摺動接触および開離する面となる。なお、接点部101は、図1に例示されるように、電気接点部材1から構成されていてもよいし、図示はしないが、電気接点部材1と、電気接点部材1に結合され、電気接点部材1とは異なる別部材とを有する構成などとされていてもよい。後者の例としては、例えば、別部材の表面に電気接点部材1が表面層として形成されている例などを挙げることができる。 FIG. 1 shows an example in which the electrical contact member 1 is applied to a brush 10 of a rotating machine (not shown in FIG. 1). The brush 10 of this embodiment has the electrical contact member 1 of this embodiment. Specifically, the brush 10 has a contact portion 101 including the electrical contact member 1 and a lead wire 102 connected to the contact portion 101 . The lead wire 102 is sometimes called a pigtail, and is a portion through which electricity supplied from the outside flows. The brush 10 supplies power through a commutator to an armature coil wound around an iron core provided in a rotor of a rotating machine. In this case, the mating member is a commutator that constitutes a part of the rotor in the rotating machine, and the contact surface 11 is a surface that makes sliding contact with and separates from the mating member. The contact portion 101 may be composed of the electrical contact member 1 as illustrated in FIG. A configuration including a separate member different from the member 1 may be employed. As an example of the latter, for example, an example in which the electrical contact member 1 is formed as a surface layer on the surface of another member can be cited.
 電気接点部材1は、図2に例示されるように、カーボン粒子12を含む。カーボン粒子12は、相手材と接点面11との間で摺動接触および開離が行われる際に、相手材へ潤滑被膜を形成し、相手材との融着を防止するために有用な粒子である。カーボン粒子12としては、潤滑被膜の形成性、導電性、コスト、素材調達などの観点から、黒鉛粒子を好適なものとして例示することができる。 The electrical contact member 1 contains carbon particles 12, as illustrated in FIG. The carbon particles 12 form a lubricating film on the mating material when sliding contact and separation are performed between the mating material and the contact surface 11, and are particles useful for preventing fusion with the mating material. is. As the carbon particles 12, graphite particles can be exemplified as a suitable one from the viewpoint of lubricating coating formability, conductivity, cost, material procurement, and the like.
 電気接点部材1は、図2に例示されるように、銅粒子13を含む。銅粒子13は、電気接点部材1の基材粒子であり、主に電気接点部材1に導電性等の電気特性を付与するために重要な粒子である。 The electrical contact member 1 contains copper particles 13, as illustrated in FIG. The copper particles 13 are base particles of the electrical contact member 1 and are important particles mainly for imparting electrical properties such as conductivity to the electrical contact member 1 .
 電気接点部材1は、図2に例示されるように、低電離電圧金属14を含む。低電離電圧金属14は、銅よりも電離電圧が低い金属である。また、低電離電圧金属14は、銅とは異なる金属である。銅の電離電圧は、具体的には、7.73eVである。したがって、低電離電圧金属14は、7.73eVよりも低い電離電圧を有する金属から選択される。電離電圧が低いほど、少ない熱エネルギ(J)で熱電離し、アーク空間における電子密度を増大させることができる。 The electrical contact member 1 contains a low ionization voltage metal 14, as illustrated in FIG. The low ionization voltage metal 14 is a metal with a lower ionization voltage than copper. Also, the low ionization voltage metal 14 is a metal different from copper. The ionization voltage of copper is specifically 7.73 eV. Accordingly, the low ionization voltage metal 14 is selected from metals having an ionization voltage lower than 7.73 eV. The lower the ionization voltage, the less heat energy (J) required for thermal ionization and the increased electron density in the arc space.
 低電離電圧金属14としては、例えば、Al(アルミニウム)(電離電圧:5.99eV)、Cr(クロム)(電離電圧:6.77eV)、Mg(マグネシウム)(電離電圧:7.65eV)、Rb(ルビジウム)(電離電圧:4.18eV)、Ce(セシウム)(電離電圧:3.89eV)などを例示することができる。これらは1種または2種以上併用することができる。低電離電圧金属14は、電離電圧が銅に比べて十分に低い、常温付近で固体として存在することができ、電気接点部材1の形状を保持することができるなどの観点から、好ましくは、Al、Crなどであるとよい。これらは1種または2種以上併用することができる。低電離電圧金属14は、より好ましくは、電離電圧がより低く、少量の添加で電子密度の増大を図ることができる、銅の沸点より低温で金属蒸気となり熱電離する、電気接点部材1の焼成時(例えば焼成温度400℃以上1000℃以下程度の焼成時等)に焼結によって電気接点部材1を固めることができるなどの観点から、Alであるとよい。なお、各金属の融点、沸点は、Al(融点:660℃、沸点:2467℃)、Cr(融点:1857℃、沸点:2672℃)、Mg(融点:639℃、沸点:1090℃)、Rb(融点:39℃、沸点:688℃)、Ce(融点:29℃、沸点:678℃)である。また、これら低電離電圧金属14は、単独元素に限らず、化合物(熱分離、熱還元含む)として含まれていても同様の効果が得られる。 Examples of the low ionization voltage metal 14 include Al (aluminum) (ionization voltage: 5.99 eV), Cr (chromium) (ionization voltage: 6.77 eV), Mg (magnesium) (ionization voltage: 7.65 eV), Rb (Rubidium) (ionization voltage: 4.18 eV), Ce (cesium) (ionization voltage: 3.89 eV), and the like can be exemplified. These can be used alone or in combination of two or more. The low ionization voltage metal 14 has a sufficiently low ionization voltage compared to copper, can exist as a solid near room temperature, and can maintain the shape of the electrical contact member 1. , Cr, or the like. These can be used alone or in combination of two or more. The low ionization voltage metal 14 more preferably has a lower ionization voltage, can increase the electron density by adding a small amount, becomes metal vapor at a temperature lower than the boiling point of copper, and is thermally ionized. Al is preferable from the viewpoint that the electrical contact member 1 can be hardened by sintering at a time (for example, when firing at a firing temperature of about 400° C. or higher and 1000° C. or lower). The melting point and boiling point of each metal are Al (melting point: 660°C, boiling point: 2467°C), Cr (melting point: 1857°C, boiling point: 2672°C), Mg (melting point: 639°C, boiling point: 1090°C), Rb (melting point: 39°C, boiling point: 688°C) and Ce (melting point: 29°C, boiling point: 678°C). Further, the low ionization voltage metal 14 is not limited to being a single element, and similar effects can be obtained even if it is contained as a compound (including thermal separation and thermal reduction).
 低電離電圧金属14は、例えば、図2に例示されるように、低電離電圧金属14の粒子(以下、低電離電圧金属粒子140ということがある。)として電気接点部材1に含まれることができる。この構成によれば、カーボン粉末、銅粉末、および、低電離電圧金属粉末を含む混合粉を成形し、焼成することによって比較的簡易に電気接点部材1を製造することができる。また、上記以外にも、例えば、低電離電圧金属14は、例えば、銅粒子13の表面を覆う被覆層(不図示)などとして電気接点部材1に含まれることもできる。この場合、被覆層は、銅粒子13の表面に低電離電圧金属14を蒸着することなどによって形成されることができる。 The low-ionization voltage metal 14 may be included in the electrical contact member 1 as particles of the low-ionization-voltage metal 14 (hereinafter sometimes referred to as low-ionization-voltage metal particles 140), for example, as illustrated in FIG. can. According to this configuration, the electrical contact member 1 can be relatively easily manufactured by molding and firing a mixed powder containing carbon powder, copper powder, and low-ionization-voltage metal powder. In addition to the above, the low ionization voltage metal 14 can be included in the electrical contact member 1 as, for example, a coating layer (not shown) that covers the surfaces of the copper particles 13 . In this case, the coating layer can be formed by vapor-depositing the low ionization voltage metal 14 on the surface of the copper particles 13, or the like.
 図2では、具体的には、電気接点部材1が、カーボン粒子12と、銅粒子13と、低電離電圧金属粒子140と、を含む例が示されている。より具体的には、電気接点部材1は、複数のカーボン粒子12と、複数の銅粒子13と、複数の低電離電圧金属粒子140と、を含む焼結体より構成することができる。 Specifically, FIG. 2 shows an example in which the electrical contact member 1 includes carbon particles 12 , copper particles 13 , and low-ionization-voltage metal particles 140 . More specifically, the electrical contact member 1 can be composed of a sintered body containing a plurality of carbon particles 12 , a plurality of copper particles 13 and a plurality of low-ionization-voltage metal particles 140 .
 電気接点部材1は、低沸点金属(不図示)をさらに含むことができる。低沸点金属は、銅よりも沸点が低い金属である。この構成によれば、銅の沸点よりも低温で低沸点金属が金属蒸気となり、アーク空間の空気を排除することができる。空気に含まれる窒素や酸素は熱電離し難いため、低沸点金属の金属蒸気によってアーク空間の空気が排除されることにより、低電離電圧金属の熱電離が促進され、アーク空間における電子密度を増大させやすくなる。なお、銅の沸点は、具体的には、2567℃である。したがって、低沸点金属は、2567℃よりも低い沸点を有する金属から選択されることができる。低沸点金属は、低電離電圧金属14とは異なる金属であり、銅よりも沸点が低ければ、電離電圧は窒素や酸素より低く銅より高いものであってもよい。 The electrical contact member 1 can further contain a low boiling point metal (not shown). A low boiling point metal is a metal with a boiling point lower than that of copper. According to this configuration, the low boiling point metal becomes metal vapor at a temperature lower than the boiling point of copper, and the air in the arc space can be eliminated. Nitrogen and oxygen contained in the air are difficult to thermally ionize, so the metal vapor of the low boiling point metal removes the air in the arc space, promoting the thermal ionization of the low ionization voltage metal and increasing the electron density in the arc space. easier. Note that the boiling point of copper is specifically 2567°C. Accordingly, the low boiling point metal can be selected from metals having a boiling point below 2567°C. The low boiling point metal is a metal different from the low ionization voltage metal 14, and if it has a boiling point lower than that of copper, it may have an ionization voltage lower than that of nitrogen or oxygen and higher than that of copper.
 低沸点金属としては、例えば、Zn(亜鉛)(沸点:907℃、電離電圧:9.39eV)、Mg(マグネシウム)(沸点:1090℃、電離電圧:7.65eV)などを例示することができる。これらは1種または2種以上併用することができる。低沸点金属としては、沸点がより低く、アーク中の空気排除効果が得やすいなどの観点から、Znを選択することができる。また、低沸点金属としては、銅よりも沸点が低い上、銅よりも電離電圧が低いために熱電離による電子密度の増大化も期待できるなどの観点から、Mgを選択することができる。 Examples of low boiling point metals include Zn (zinc) (boiling point: 907°C, ionization voltage: 9.39 eV), Mg (magnesium) (boiling point: 1090°C, ionization voltage: 7.65 eV), and the like. . These can be used alone or in combination of two or more. Zn can be selected as the low-boiling-point metal from the viewpoint that it has a lower boiling point and is easy to obtain the effect of removing air in the arc. In addition, as the low boiling point metal, Mg can be selected from the viewpoint that it has a lower boiling point than copper and an increase in electron density due to thermal ionization because it has a lower ionization voltage than copper.
 低沸点金属は、例えば、低沸点金属の粒子(以下、低沸点金属粒子ということがある。)として電気接点部材1に含まれることができる。この構成によれば、カーボン粉末、銅粉末、低電離電圧金属粉末、および、低沸点金属粉末を含む混合粉を成形し、焼成することによって比較的簡易に電気接点部材1を製造することができる。 The low boiling point metal can be contained in the electrical contact member 1 as, for example, low boiling point metal particles (hereinafter sometimes referred to as low boiling point metal particles). According to this configuration, the electrical contact member 1 can be relatively easily manufactured by molding and firing a mixed powder containing carbon powder, copper powder, low-ionization-voltage metal powder, and low-boiling-point metal powder. .
 図示はしないが、電気接点部材1は、具体的には、例えば、カーボン粒子12と、銅粒子13と、低電離電圧金属粒子140と、低沸点金属粒子とを含む構成とすることができる。この場合、より具体的には、電気接点部材1は、複数のカーボン粒子12と、複数の銅粒子13と、複数の低電離電圧金属粒子140と、複数の低沸点金属粒子とを含む焼結体より構成することができる。 Although not shown, the electrical contact member 1 may specifically include, for example, carbon particles 12, copper particles 13, low ionization voltage metal particles 140, and low boiling point metal particles. In this case, more specifically, the electrical contact member 1 includes a plurality of carbon particles 12, a plurality of copper particles 13, a plurality of low ionization voltage metal particles 140, and a plurality of low boiling point metal particles. It can consist of a body.
 電気接点部材1は、図2に例示されるように、接点面11の走査型電子顕微鏡(以下、SEMということがある。)像において、SEM像上のいずれの位置に直径50μmの円3を配置した場合でも、円3内に収まる低電離電圧金属14が存在する構成とすることができる。直径50μmの円3は、接点面11と相手材との間に発生するアークのアーク輝点径と関係がある。アーク電圧は、アーク輝点が接する材質によって変化する。上記構成によれば、電気接点部材1を構成する材料の小粒径化、均一分散化が促進される。上記構成によれば、接点面11のいずれの位置にてアークが生じ、また、アークが移動した場合でも、アーク電圧変動の抑制に有利となる。また、上記構成によれば、アークの位置、移動によらずに、アーク輝点径内に収まる低電離電圧金属14を常に存在させやすくなる。そのため、上記構成によれば、アークの位置、移動によらずに、低電離電圧金属14の熱電離を確実に生じさせることができ、アーク空間における電子密度を増大させることが可能になる。 As illustrated in FIG. 2, the electrical contact member 1 has a circle 3 with a diameter of 50 μm at any position on the scanning electron microscope (hereinafter sometimes referred to as SEM) image of the contact surface 11. Even if they are arranged, it is possible to have a configuration in which the low ionization voltage metal 14 that fits within the circle 3 exists. A circle 3 with a diameter of 50 μm is related to the arc bright spot diameter of the arc generated between the contact surface 11 and the mating member. Arc voltage varies depending on the material with which the arc bright spot is in contact. According to the above configuration, the material forming the electrical contact member 1 can be reduced in particle size and uniformly dispersed. According to the above configuration, even if an arc is generated at any position on the contact surface 11 and the arc moves, it is advantageous in suppressing arc voltage fluctuations. Further, according to the above configuration, regardless of the position and movement of the arc, the low-ionization-voltage metal 14 that fits within the diameter of the bright spot of the arc is always likely to exist. Therefore, according to the above configuration, thermal ionization of the low ionization voltage metal 14 can be reliably generated regardless of the position and movement of the arc, and the electron density in the arc space can be increased.
 電気接点部材1が低沸点金属を含む場合、電気接点部材1は、接点面11のSEM像において、SEM像上のいずれの位置に円3を配置した場合でも、円3内に収まる低沸点金属が存在する構成とすることができる。上記構成によれば、電気接点部材1を構成する材料の小粒径化、均一分散化が促進される。上記構成によれば、接点面11のいずれの位置にてアークが生じ、また、アークが移動した場合でも、アーク電圧変動の抑制に有利となる。また、上記構成によれば、アークの位置、移動によらずに、アーク輝点径内に収まる低沸点金属を常に存在させやすくなる。そのため、上記構成によれば、アークの位置、移動によらずに、低沸点金属の金属蒸気を確実に生じさせることができ、この低沸点金属の金属蒸気によってアーク空間の空気を排除することが可能になる。 When the electrical contact member 1 contains a low boiling point metal, the electrical contact member 1 is a low boiling point metal that fits within the circle 3 in the SEM image of the contact surface 11 regardless of the position of the circle 3 on the SEM image. can be configured to exist. According to the above configuration, the material forming the electrical contact member 1 can be reduced in particle size and uniformly dispersed. According to the above configuration, even if an arc is generated at any position on the contact surface 11 and the arc moves, it is advantageous in suppressing arc voltage fluctuations. Moreover, according to the above configuration, regardless of the position or movement of the arc, it is easy to always have the low boiling point metal within the diameter of the bright spot of the arc. Therefore, according to the above configuration, the metal vapor of the low boiling point metal can be reliably generated regardless of the position and movement of the arc, and the air in the arc space can be eliminated by the metal vapor of the low boiling point metal. be possible.
 上述した構成を満たすことは、接点面11のSEM像上に直径50μmの円3を当てて、SEM像の全領域において円3を動かし、各位置において円3内に収まる低電離電圧金属14や低沸点金属が存在することを確認することによる。SEM像を取得するにあたり、接点面11は、必要に応じて研磨することができる。なお、円3内に収まる低電離電圧金属14が存在するとは、低電離電圧金属14の外形輪郭全体が円3内に入っている低電離電圧金属14が存在することを意味する。また、円3内に収まる低沸点金属が存在するとは、低沸点金属の外形輪郭全体が円3内に入っている低沸点金属が存在することを意味する。この際、円3の外形線が低電離電圧金属14、または、低沸点金属上を通るもの(円3の外形線と低電離電圧金属14が重なるものや、円3の外形線と低沸点金属が重なるもの)については除外する。低電離電圧金属14、低沸点金属の外形輪郭は、例えば、低電離電圧金属14、低沸点金属が粒子として電気接点部材1に含まれる場合には、低電離電圧金属粒子140、低沸点金属の粒子外形である。 Satisfying the above-described configuration involves placing a circle 3 with a diameter of 50 μm on the SEM image of the contact surface 11, moving the circle 3 over the entire area of the SEM image, and finding a low ionization voltage metal 14 or By confirming the presence of low boiling point metals. In acquiring the SEM image, the contact surface 11 can be polished as necessary. The presence of the low-ionization-voltage metal 14 within the circle 3 means that the low-ionization-voltage metal 14 whose entire outline is within the circle 3 exists. Further, the presence of a low boiling point metal that fits within the circle 3 means that there is a low boiling point metal whose entire outline is within the circle 3 . At this time, the outline of the circle 3 passes over the low ionization voltage metal 14 or the low boiling point metal (the outline of the circle 3 overlaps the low ionization voltage metal 14, or the outline of the circle 3 and the low boiling point metal overlap) are excluded. The contours of the low ionization voltage metal 14 and the low boiling point metal are, for example, when the low ionization voltage metal 14 and the low boiling point metal are contained in the electrical contact member 1 as particles, the low ionization voltage metal particles 140 and the low boiling point metal Particle outline.
 電気接点部材1は、図2に例示されるように、接点面11のSEM像において、SEM像上のいずれの位置に直径50μmの円3を配置した場合でも、円3内に収まるカーボン粒子12が存在する構成とすることができる。上記構成によれば、電気接点部材1を構成する材料の小粒径化、均一分散化が促進される。上記構成によれば、接点面11のいずれの位置にてアークが生じ、また、アークが移動した場合でも、アーク電圧変動の抑制に有利となる。 As illustrated in FIG. 2 , the electrical contact member 1 has carbon particles 12 that fit within the circle 3 in the SEM image of the contact surface 11 even when the circle 3 with a diameter of 50 μm is placed at any position on the SEM image. can be configured to exist. According to the above configuration, the material forming the electrical contact member 1 can be reduced in particle size and uniformly dispersed. According to the above configuration, even if an arc is generated at any position on the contact surface 11 and the arc moves, it is advantageous in suppressing arc voltage fluctuations.
 電気接点部材1は、図2に例示されるように、接点面11のSEM像において、SEM像上のいずれの位置に直径50μmの円3を配置した場合でも、円3内に収まる銅粒子13が存在する構成とすることができる。上記構成によれば、電気接点部材1を構成する材料の小粒径化、均一分散化が促進される。上記構成によれば、接点面11のいずれの位置にてアークが生じ、また、アークが移動した場合でも、アーク電圧変動の抑制に有利となる。なお、円3内に収まるカーボン粒子12、円3内に収まる銅粒子13の意味については、円3内に収まる低電離電圧金属14についての上述の説明を準用して理解することができる。 As illustrated in FIG. 2, the electrical contact member 1 has copper particles 13 that fit within the circle 3 in the SEM image of the contact surface 11 even when the circle 3 with a diameter of 50 μm is placed at any position on the SEM image. can be configured to exist. According to the above configuration, the material forming the electrical contact member 1 can be reduced in particle size and uniformly dispersed. According to the above configuration, even if an arc is generated at any position on the contact surface 11 and the arc moves, it is advantageous in suppressing arc voltage fluctuations. The meaning of the carbon particles 12 within the circle 3 and the copper particles 13 within the circle 3 can be understood by applying the above description of the low ionization voltage metal 14 within the circle 3 mutatis mutandis.
 図2では、具体的には、電気接点部材1が、接点面11のSEM像において、SEM像上のいずれの位置に円3を配置した場合でも、円3内に収まるカーボン粒子12と、円3内に収まる銅粒子13と、円3内に収まる低電離電圧金属粒子140と、を含む例が示されている。また、図示はしないが、電気接点部材1は、円3内に収まる低沸点金属粒子をさらに含んでいてもよい。これらの場合には、電気接点部材1を構成する各材料粒子(カーボン粒子12、銅粒子13、低電離電圧金属粒子140、低沸点金属粒子等)の小粒径化、均一分散化が図られる。電気接点部材1がブラシに適用される場合等、電気接点部材1の接点面11が相手材と摺動接触する場合には、接点面11が摺動接触により摩耗するため、アーク発生位置が異なる位置となりやすい。そのため、上記の場合には、接点面11が相手材と摺動接触する場合であっても、アークの位置、移動によらずに、アーク電圧変動を抑制することができる。 Specifically, in FIG. 2, in the SEM image of the contact surface 11 of the electrical contact member 1, the carbon particles 12 that fit within the circle 3 and the circle An example is shown with copper particles 13 falling within circle 3 and low ionization voltage metal particles 140 falling within circle 3 . Although not shown, the electrical contact member 1 may further contain low boiling point metal particles that fit within the circle 3 . In these cases, each material particle (carbon particles 12, copper particles 13, low ionization voltage metal particles 140, low boiling point metal particles, etc.) constituting the electrical contact member 1 can be made small and uniformly dispersed. . When the contact surface 11 of the electrical contact member 1 is in sliding contact with the mating member, such as when the electrical contact member 1 is applied to a brush, the contact surface 11 wears due to the sliding contact, so the arc generation position is different. Easy to position. Therefore, in the above case, even when the contact surface 11 is in sliding contact with the mating member, the arc voltage fluctuation can be suppressed regardless of the position and movement of the arc.
 電気接点部材1において、低電離電圧金属14の大きさは、円3の直径の1/2以下とされることができる。また、電気接点部材1が低沸点金属を含む場合、低沸点金属の大きさは、円3の直径の1/2以下とされることができる。これらの構成によれば、アークの位置、移動によらずに、アーク電圧変動を抑制しやすくなる。 In the electrical contact member 1, the size of the low ionization voltage metal 14 can be set to 1/2 or less of the diameter of the circle 3. Moreover, when the electrical contact member 1 contains a low boiling point metal, the size of the low boiling point metal can be set to 1/2 or less of the diameter of the circle 3 . According to these configurations, arc voltage fluctuations can be easily suppressed regardless of the position and movement of the arc.
 低電離電圧金属14、低沸点金属の大きさは、好ましくは、上述した作用効果を確実なものとするなどの観点から、円3の直径の2/5以下、より好ましくは、円3の直径の3/10以下、さらに好ましくは、円3の直径の1/5以下、さらにより好ましくは、円3の直径の1/10以下とすることができる。 The size of the low ionization voltage metal 14 and the low boiling point metal is preferably 2/5 or less of the diameter of the circle 3 from the viewpoint of ensuring the above-mentioned effects, more preferably the diameter of the circle 3 3/10 or less, more preferably 1/5 or less of the diameter of the circle 3, still more preferably 1/10 or less of the diameter of the circle 3.
 上記構成を満たすことは、接点面11のSEM像上に直径50μmの円3に対して所定の直径を有する大きさ確認用円(不図示)を当てて、SEM像の全領域において大きさ確認用円を動かし、各位置において大きさ確認用円内に低電離電圧金属14、低沸点金属が収まっていることを確認することによる。なお、大きさ確認用円内に低電離電圧金属14が収まっているとは、各低電離電圧金属14の外形輪郭全体が大きさ確認用円内に入っていることを意味する。また、大きさ確認用円内に低沸点金属が収まっているとは、各低沸点金属の外形輪郭全体が大きさ確認用円内に入っていることを意味する。この際、大きさ確認用円の外形線が低電離電圧金属14、または、低沸点金属上を通るもの(大きさ確認用円の外形線と低電離電圧金属14とが重なるものや、大きさ確認用円の外形線と低沸点金属とが重なるもの)については除外する。低電離電圧金属14、低沸点金属の大きさは、低電離電圧金属14、低沸点金属が粒子として電気接点部材1に含まれる場合には、低電離電圧金属粒子140、低沸点金属粒子の粒径である。 To satisfy the above configuration, a size confirmation circle (not shown) having a predetermined diameter is applied to the circle 3 having a diameter of 50 μm on the SEM image of the contact surface 11, and the size is confirmed in the entire area of the SEM image. By moving the circle for size confirmation at each position, it is confirmed that the low ionization voltage metal 14 and the low boiling point metal are contained within the circle for size confirmation. The low ionization voltage metal 14 being contained within the size confirmation circle means that the entire contour of each low ionization voltage metal 14 is within the size confirmation circle. Further, the low boiling point metal being contained within the size confirmation circle means that the entire contour of each low boiling point metal is within the size confirmation circle. At this time, the outline of the size confirmation circle passes over the low ionization voltage metal 14 or the low boiling point metal (the outline of the size confirmation circle overlaps the low ionization voltage metal 14, or the size Those where the outline of the confirmation circle and the low boiling point metal overlap) are excluded. When the low ionization voltage metal 14 and the low boiling point metal are contained in the electrical contact member 1 as particles, the low ionization voltage metal particles 140 and the low boiling point metal particles are granulated. diameter.
 図2では、具体的には、カーボン粒子12、銅粒子13、および、低電離電圧金属粒子140の各粒径が、円3の直径の1/2以下とされることができる。また、図示はしないが、電気接点部材1は、円3内に収まる低沸点金属粒子をさらに含んでいる場合には、低沸点金属粒子の粒径は、円3の直径の1/2以下とされることができる。なお、カーボン粒子12、銅粒子13、低電離電圧金属粒子140、低沸点金属粒子の各粒径は、好ましくは、上述した作用効果を確実なものとするなどの観点から、円3の直径の2/5以下、より好ましくは、円3の直径の3/10以下、さらに好ましくは、円3の直径の1/5以下、さらにより好ましくは、円3の直径の1/10以下とすることができる。なお、カーボン粒子12、銅粒子13の粒径については、上述した低電離電圧金属14、低沸点金属の大きさについての説明を準用して理解することができる。 Specifically, in FIG. 2, each particle size of the carbon particles 12, the copper particles 13, and the low-ionization-voltage metal particles 140 can be set to 1/2 or less of the diameter of the circle 3. Although not shown, if the electrical contact member 1 further contains low boiling point metal particles that fit within the circle 3, the particle size of the low boiling point metal particles should be 1/2 or less of the diameter of the circle 3. can be The particle diameters of the carbon particles 12, the copper particles 13, the low-ionization-voltage metal particles 140, and the low-boiling-point metal particles are preferably equal to the diameter of the circle 3 from the viewpoint of ensuring the above-described effects. 2/5 or less, more preferably 3/10 or less of the diameter of the circle 3, more preferably 1/5 or less of the diameter of the circle 3, still more preferably 1/10 or less of the diameter of the circle 3 can be done. The particle diameters of the carbon particles 12 and the copper particles 13 can be understood by applying the description of the sizes of the low ionization voltage metal 14 and the low boiling point metal described above.
 電気接点部材1において、カーボン粒子12の含有量は、接点面11を相手材へ摺動接触させる場合に接点面11と相手材との融着を効果的に抑制するなどの観点から、25質量%以上85質量%以下の範囲から選択されることができる。また、銅粒子13の含有量は、電気接点部材1の導電性等の電気特性などの観点から、15質量%以上75質量%以下の範囲から選択されることができる。低電離電圧金属14の含有量は、添加による効果を確実なものとし、また、電気および機械結合低下の抑制、原料コストなどの観点から、2質量%以上75質量%以下の範囲から選択されることができる。また、低沸点金属の含有量は、添加による効果を確実なものとする、絶縁酸化皮膜の増加抑制などの観点から、2質量%以上30質量%以下の範囲から選択されることができる。なお、上記質量%の選択は、合計で100質量%となるように行うものとする。 In the electrical contact member 1, the content of the carbon particles 12 is 25 mass from the viewpoint of effectively suppressing fusion between the contact surface 11 and the mating member when the contact surface 11 is brought into sliding contact with the mating member. % or more and 85 mass % or less. Moreover, the content of the copper particles 13 can be selected from the range of 15% by mass or more and 75% by mass or less from the viewpoint of electrical properties such as electrical conductivity of the electrical contact member 1 . The content of the low-ionization voltage metal 14 is selected from the range of 2% by mass or more and 75% by mass or less from the viewpoints of ensuring the effect of addition, suppressing deterioration of electrical and mechanical coupling, raw material cost, etc. be able to. In addition, the content of the low boiling point metal can be selected from the range of 2% by mass or more and 30% by mass or less from the viewpoint of ensuring the effect of the addition and suppressing the increase of the insulating oxide film. In addition, the selection of the mass % is performed so that the total is 100 mass %.
 本実施形態の電気接点部材1では、接点面11と相手材との間にてアーク放電が生じた場合に、導電材料である銅粒子13を構成する銅よりも先行して低電離電圧金属14の熱電離が生じ、アーク空間における電子密度が増大する。それ故、本実施形態の電気接点部材1によれば、アーク空間における電子密度が小さい場合に比べ、同じ電流を流す際における電子を移動させる力、つまり、電界強度を小さくすることができる。したがって、本実施形態の電気接点部材1は、亜鉛を大量に添加しなくても、電磁ノイズを低減することが可能になる。 In the electrical contact member 1 of the present embodiment, when arc discharge occurs between the contact surface 11 and the mating member, the low ionization voltage metal 14 precedes the copper constituting the copper particles 13 that are the conductive material. thermal ionization occurs, increasing the electron density in the arc space. Therefore, according to the electrical contact member 1 of the present embodiment, compared to the case where the electron density in the arc space is low, the force for moving electrons when the same current is applied, that is, the electric field strength can be reduced. Therefore, the electrical contact member 1 of this embodiment can reduce electromagnetic noise without adding a large amount of zinc.
 本実施形態のブラシ10は、本実施形態の電気接点部材1を有する。そのため、本実施形態のブラシ10では、相手材となる整流子と電気接点部材1の接点面11との間で摺動接触および開離が行われるときのアーク放電時に、低電離電圧金属14の熱電離が生じ、アーク空間における電子密度が増大し、電磁ノイズを低減することが可能になる。 The brush 10 of this embodiment has the electrical contact member 1 of this embodiment. Therefore, in the brush 10 of the present embodiment, during arc discharge when sliding contact and separation are performed between the commutator as a mating material and the contact surface 11 of the electrical contact member 1, the low ionization voltage metal 14 Thermal ionization occurs, increasing the electron density in the arc space and making it possible to reduce electromagnetic noise.
(実施形態2)
 実施形態2の電気接点部材およびブラシについて説明する。なお、実施形態2以降において用いられる符号のうち、既出の実施形態において用いた符号と同一のものは、特に示さない限り、既出の実施形態におけるものと同様の構成要素等を表す。
(Embodiment 2)
An electrical contact member and a brush of Embodiment 2 will be described. It should be noted that, of the reference numerals used in the second and subsequent embodiments, the same reference numerals as those used in the previously described embodiments represent the same components and the like as those in the previously described embodiments, unless otherwise specified.
 本実施形態の電気接点部材1は、銅粒子13の一部または全部が、銅とは異なる金属より構成される置換粒子(不図示)に置換されたものである。つまり、本実施形態の電気接点部材1は、銅粒子13の少なくとも一部が置換粒子に置換されたものである。 In the electrical contact member 1 of this embodiment, part or all of the copper particles 13 are replaced with replacement particles (not shown) made of a metal different from copper. In other words, in the electrical contact member 1 of the present embodiment, at least part of the copper particles 13 are replaced with replacement particles.
 置換粒子としては、例えば、Al粒子、Cr粒子などを例示することができる。置換粒子がAl粒子の場合には、軽量、低価格、素材調達容易、埋蔵枯渇リスクが小さいなどの利点がある。また、置換粒子がCr粒子の場合には、機械強度増加、耐摩耗性向上などの利点がある。 Examples of substituted particles include Al particles and Cr particles. When the replacement particles are Al particles, there are advantages such as light weight, low cost, easy material procurement, and low risk of depletion of reserves. Further, when the substituted particles are Cr particles, there are advantages such as increased mechanical strength and improved wear resistance.
 なお、置換粒子がAl粒子である場合等、置換粒子を構成する金属を低電離電圧金属として機能させることができる場合には、電気接点部材1は、例えば、カーボン粒子12と、銅粒子13と、置換粒子とを含む構成としたり、また、カーボン粒子12と、置換粒子とを含む構成としたりすることができる。 In the case where the replacement particles are Al particles or the like, when the metal constituting the replacement particles can function as a low ionization voltage metal, the electrical contact member 1 includes, for example, carbon particles 12 and copper particles 13. , replacement particles, or a configuration including carbon particles 12 and replacement particles.
 また、本実施形態のブラシ10は、本実施形態の電気接点部材1を有している。 Further, the brush 10 of this embodiment has the electrical contact member 1 of this embodiment.
 なお、実施形態1における銅粒子についての説明は、置換粒子の説明として準用することができる。その他の構成および効果は実施形態1と同様である。 The description of the copper particles in Embodiment 1 can be applied mutatis mutandis to the replacement particles. Other configurations and effects are the same as those of the first embodiment.
(実施形態3)
 実施形態3の電気接点部材およびブラシについて図3を用いて説明する。実施形態3の電気接点部材1において、低電離電圧金属14は、球体状粒子または箔状粒子より構成されている。図3(a)は、実施形態3の電気接点部材1およびブラシ10(後述する)の製造に用いられる低電離電圧金属14の球体状粉末の一例を示した図であり、図3(b)は、実施形態3の電気接点部材1およびブラシ10(後述する)の製造に用いられる低電離電圧金属14の箔状粉末の一例を示した図である。なお、図3に例示した低電離電圧金属14の球体状粉末および箔状粉末の材質は、具体的にはAlである。
(Embodiment 3)
An electrical contact member and a brush according to Embodiment 3 will be described with reference to FIG. In the electrical contact member 1 of Embodiment 3, the low ionization voltage metal 14 is composed of spherical particles or foil-like particles. FIG. 3(a) is a diagram showing an example of spherical powder of low ionization voltage metal 14 used for manufacturing the electrical contact member 1 and the brush 10 (described later) of Embodiment 3, and FIG. 3(b). [Fig. 10] is a view showing an example of foil-like powder of a low-ionization-voltage metal 14 used for manufacturing an electrical contact member 1 and a brush 10 (described later) of Embodiment 3. [Fig. The material of the spherical powder and the foil-like powder of the low ionization voltage metal 14 illustrated in FIG. 3 is specifically Al.
 低電離電圧金属14が球体状粒子より構成される場合には、電気接点部材1の製造時に、カーボン粒子12を含有させるためのカーボン粉末と、球体状粒子より構成される低電離電圧金属14を含有させるための低電離電圧金属14の球体状粉末とを含む混合粉が準備される。低電離電圧金属14の球体状粉末はカーボン粉末との均一分散性に優れるため、上記構成によれば、カーボン粒子12、球体状粒子より構成される低電離電圧金属14の均一分散性に優れた電気接点部材1が得られる。低電離電圧金属14の球体状粉末は、例えば、アトマイズ法などを用いて準備することができる。 When the low-ionization-voltage metal 14 is composed of spherical particles, carbon powder for containing the carbon particles 12 and the low-ionization-voltage metal 14 composed of spherical particles are used when manufacturing the electrical contact member 1. A mixed powder containing spherical powder of the low ionization voltage metal 14 for inclusion is prepared. Since the spherical powder of the low ionization voltage metal 14 is excellent in uniform dispersibility with the carbon powder, according to the above configuration, the low ionization voltage metal 14 composed of the carbon particles 12 and spherical particles is excellent in uniform dispersibility. An electrical contact member 1 is obtained. The spherical powder of the low-ionization-voltage metal 14 can be prepared using, for example, an atomizing method.
 一方、低電離電圧金属14が箔状粒子より構成される場合には、次の利点がある。上述のように低電離電圧金属14が球体状粒子より構成される場合には、低電離電圧金属14が箔状粒子より構成される場合に比べて、球体状粒子同士の接触が少なく、球体状粒子の表面が滑らかであるために、機械結合力および電気結合力が小さく、摺動時に球体状粒子が脱落し、これにより電気接点部材1の電気抵抗が大きくなるおそれがある。これに対し、低電離電圧金属14が箔状粒子より構成される場合には、箔状粒子同士が絡み合いやすいために、機械結合力および電気結合力が向上し、摺動時に箔状粒子が脱落し難く、電気接点部材1の電気抵抗の増加を抑制することが可能になる。電気接点部材1の製造時に用いる低電離電圧金属14の箔状粉末としては、例えば、低電離電圧金属14の箔を粉砕した粉(箔粉砕粉)などを好適に用いることができる。 On the other hand, when the low ionization voltage metal 14 is composed of foil-like particles, there are the following advantages. As described above, when the low-ionization-voltage metal 14 is composed of spherical particles, the contact between the spherical particles is less than when the low-ionization-voltage metal 14 is composed of foil-shaped particles. Since the surface of the particles is smooth, the mechanical and electrical coupling forces are small, and the spherical particles may fall off during sliding, which may increase the electrical resistance of the electrical contact member 1 . On the other hand, when the low ionization voltage metal 14 is composed of foil-like particles, the foil-like particles tend to entangle with each other, so that the mechanical and electrical bonding strengths are improved, and the foil-like particles fall off during sliding. Therefore, it is possible to suppress an increase in the electrical resistance of the electrical contact member 1 . As the foil-like powder of the low-ionization voltage metal 14 used in manufacturing the electrical contact member 1, for example, a powder obtained by pulverizing the foil of the low-ionization-voltage metal 14 (pulverized foil powder) can be suitably used.
 なお、電気接点部材1に含まれる低電離電圧金属14の形状は、電気接点部材1の断面カット面をSEMなどにより観察することにより特定することができる。球体状粒子は、粒子外形が真円状または楕円状を呈する。一方、箔状粒子は、粒子の隅部分の外形が真円状または楕円状を呈していない。そのため、両粒子は、比較的容易に区別することができる。その他の構成および効果は、実施形態1、2の電気接点部材1と同様である。 The shape of the low ionization voltage metal 14 included in the electrical contact member 1 can be specified by observing the cross-sectional cut surface of the electrical contact member 1 with an SEM or the like. Spherical particles have a perfect circular or elliptical outer shape. On the other hand, in foil-like particles, the outer shape of the corners of the particles is neither perfect circle nor ellipse. Therefore, both particles can be distinguished relatively easily. Other configurations and effects are the same as those of the electrical contact members 1 of the first and second embodiments.
 本実施形態のブラシ10は、本実施形態の電気接点部材1を有している。そのため、電気接点部材1が球体状粒子より構成される低電離電圧金属14を有する場合には、カーボン粒子12、球体状粒子より構成される低電離電圧金属14の均一分散性に優れたブラシ10が得られる。また、電気接点部材1が箔状粒子より構成される低電離電圧金属14を有する場合には、摺動時に箔状粒子同士が脱落し難く、これによる電気抵抗の増加を抑制することが可能なブラシ10が得られる。その他の構成および効果は実施形態1、2のブラシ10と同様である。 The brush 10 of this embodiment has the electrical contact member 1 of this embodiment. Therefore, when the electrical contact member 1 has the low ionization voltage metal 14 composed of spherical particles, the carbon particles 12 and the low ionization voltage metal 14 composed of spherical particles are uniformly dispersed. is obtained. In addition, when the electrical contact member 1 has the low ionization voltage metal 14 composed of foil-like particles, the foil-like particles are less likely to fall off during sliding, and an increase in electrical resistance due to this can be suppressed. A brush 10 is obtained. Other configurations and effects are the same as those of the brushes 10 of the first and second embodiments.
(実施形態4)
 実施形態4の電気接点部材およびブラシについて図4を用いて説明する。図4に例示されるように、実施形態4の電気接点部材1において、低電離電圧金属14は、低電離電圧金属14の粒子(低電離電圧金属粒子140)として電気接点部材1に含まれている。低電離電圧金属粒子140を含む電気接点部材1において、低電離電圧金属粒子140の微構造は、図4(a)および図4(b)に例示されるような微構造のうち少なくとも一方の構造とすることができる。以下、具体的に説明する。
(Embodiment 4)
An electrical contact member and a brush according to Embodiment 4 will be described with reference to FIG. As illustrated in FIG. 4, in the electrical contact member 1 of Embodiment 4, the low ionization voltage metal 14 is included in the electrical contact member 1 as particles of the low ionization voltage metal 14 (low ionization voltage metal particles 140). there is In the electrical contact member 1 containing the low ionization voltage metal particles 140, the microstructure of the low ionization voltage metal particles 140 is at least one of the microstructures illustrated in FIGS. can be A specific description will be given below.
 図4(a)において、低電離電圧金属粒子140は、表面全体が酸化皮膜141で覆われている。酸化皮膜141に欠損部141aは生じておらず、低電離電圧金属粒子140同士に部分的な金属接合は生じていない。図4(a)に例示されるような微構造を有する電気接点部材1は、例えば、電気接点部材1の製造における焼成時に、低電離電圧金属14の融点を超えない(変形を生じない)温度にて焼成することにより製造することができる。なお、低電離電圧金属14が例えばAlの場合、Alの融点は約660℃である。 In FIG. 4(a), the entire surface of the low ionization voltage metal particles 140 is covered with an oxide film 141. In FIG. No missing portion 141a is generated in the oxide film 141, and no partial metal bonding is generated between the low ionization voltage metal particles 140. FIG. The electrical contact member 1 having the microstructure illustrated in FIG. 4(a) is, for example, heated to a temperature that does not exceed the melting point of the low ionization voltage metal 14 (does not cause deformation) during firing in the manufacture of the electrical contact member 1. It can be produced by firing at. When the low ionization voltage metal 14 is Al, for example, the melting point of Al is about 660.degree.
 一方、図4(b)においては、例えば、低電離電圧金属14の融点を超える温度による焼成により、溶融による粒子の変形が生じる。低電離電圧金属粒子140は、表面が酸化皮膜141で覆われている。但し、酸化皮膜141に部分的に欠損部141aが存在し、当該欠損部141aにおいて低電離電圧金属粒子140同士に部分的な金属接合が生じている。なお、上記金属接合は、具体的には例えば、溶融結合とすることができる。また、図4(b)に例示されるように、欠損部141aが生じていない酸化皮膜141を有する低電離電圧金属粒子140が含まれていてもよい。図4(b)に例示されるような微構造を有する電気接点部材1は、例えば、電気接点部材1の製造における焼成時に、低電離電圧金属14の融点以上の温度にて焼成することにより製造することができる。図4(b)に例示されるような微構造を有する電気接点部材1は、図4(a)に例示されるような微構造を有する電気接点部材1に比べて、低電離電圧金属粒子140同士の部分的な金属接合により、機械結合力および電気結合力が向上し、摺動時に低電離電圧金属粒子140が脱落し難く、電気接点部材1の電気抵抗の増加を抑制することが可能になる。とりわけ、低電離電圧金属粒子140の材質がAlの場合には、焼成時に低電離電圧金属粒子140の表面に薄い酸化皮膜141(例えば、約5nm程度)が生じやすい。酸化皮膜141は、粒子間の機械結合力を低下させ、絶縁性であるために電気抵抗の増加につながる。そのため、図4(b)に例示されるような微構造を有する電気接点部材1によれば、酸化皮膜141の欠損部141aにて低電離電圧金属粒子140同士が部分的に金属接合していることによる効果を十分に発揮することが可能になる。なお、部分的な金属接合の密度は、例えば、電気接点部材1の深さ方向において異なることができる。なぜなら、電気接点部材1の深さ方向において焼成温度が異なることが製造上生じうるからである。 On the other hand, in FIG. 4(b), for example, firing at a temperature exceeding the melting point of the low ionization voltage metal 14 causes deformation of the particles due to melting. The surface of the low ionization voltage metal particles 140 is covered with an oxide film 141 . However, the oxide film 141 has a partial defect 141a, and the low ionization voltage metal particles 140 are partially metal-bonded in the defect 141a. In addition, the metal bonding may be specifically, for example, fusion bonding. Moreover, as illustrated in FIG. 4B, low ionization voltage metal particles 140 having an oxide film 141 with no defects 141a may be included. The electrical contact member 1 having a microstructure as exemplified in FIG. 4B is manufactured by, for example, firing at a temperature equal to or higher than the melting point of the low ionization voltage metal 14 during firing in the manufacture of the electrical contact member 1. can do. The electrical contact member 1 having a microstructure as illustrated in FIG. 4(b) has a lower ionization voltage than the electrical contact member 1 having a microstructure as illustrated in FIG. 4(a). Due to the partial metal bonding between them, the mechanical bonding strength and the electrical bonding strength are improved, the low ionization voltage metal particles 140 are less likely to fall off during sliding, and an increase in the electrical resistance of the electrical contact member 1 can be suppressed. Become. In particular, when the material of the low-ionization-voltage metal particles 140 is Al, a thin oxide film 141 (for example, about 5 nm) tends to be formed on the surface of the low-ionization-voltage metal particles 140 during firing. The oxide film 141 reduces the mechanical bonding force between particles and increases electrical resistance due to its insulating properties. Therefore, according to the electrical contact member 1 having the microstructure illustrated in FIG. It becomes possible to fully exhibit the effect of this. It should be noted that the density of the partial metal bonding can differ, for example, in the depth direction of the electrical contact member 1 . This is because the firing temperature may differ in the depth direction of the electrical contact member 1 during manufacturing.
 なお、電気接点部材1における低電離電圧金属粒子140の微構造は、電気接点部材1の断面カット面をEPMA(X線元素マッピング)分析し、低電離電圧金属粒子140が表面に備える酸化皮膜141の欠損部141aの有無を確認することにより把握することができる。酸化皮膜141の欠損部141aがあれば、低電離電圧金属粒子140同士の金属接合が生じているということができる。その他の構成および効果は、実施形態1、2の電気接点部材1と同様である。 In addition, the microstructure of the low ionization voltage metal particles 140 in the electrical contact member 1 is obtained by EPMA (X-ray elemental mapping) analysis of the cross-sectional cut surface of the electrical contact member 1, and the oxide film 141 provided on the surface of the low ionization voltage metal particles 140 It can be grasped by confirming the presence or absence of the missing portion 141a. If there is a missing portion 141a in the oxide film 141, it can be said that metal bonding between the low ionization voltage metal particles 140 has occurred. Other configurations and effects are the same as those of the electrical contact members 1 of the first and second embodiments.
 本実施形態のブラシ10は、本実施形態の電気接点部材1を有している。とりわけ、電気接点部材1において、低電離電圧金属粒子140の表面における酸化皮膜141に欠損部141aが生じており、当該欠損部141aにて低電離電圧金属粒子140同士が部分的に金属接合している場合には、摺動時に低電離電圧金属粒子140同士が脱落し難く、これによる電気抵抗の増加を抑制することが可能なブラシ10が得られる。その他の構成および効果は実施形態1、2のブラシ10と同様である。 The brush 10 of this embodiment has the electrical contact member 1 of this embodiment. In particular, in the electrical contact member 1, the oxide film 141 on the surface of the low ionization voltage metal particles 140 has a defect 141a, and the low ionization voltage metal particles 140 are partially metal-bonded at the defect 141a. In this case, the low ionization voltage metal particles 140 are less likely to come off during sliding, and the brush 10 can be obtained which can suppress an increase in electrical resistance caused by this. Other configurations and effects are the same as those of the brushes 10 of the first and second embodiments.
(実施形態5)
 実施形態5の回転機について、図5、図6を用いて説明する。図5、図6に例示されるように、本実施形態の回転機2は、実施形態1のブラシ10を有する。回転機2は、具体的には、回転電機であり、より具体的には、ブラシ付き直流モータとして構成されている。回転機2は、例えば、車載装置の駆動用モータ、家庭用電気の駆動用モータ、一般産業用機械の駆動用モータをはじめ、各種の機器の駆動用モータなどに使用可能である。回転機2は、電動機として構成されてもよいし、電動機と発電機の2つの機能を併せ持つ電動発電機として構成されてもよい。
(Embodiment 5)
A rotating machine according to Embodiment 5 will be described with reference to FIGS. 5 and 6. FIG. As illustrated in FIGS. 5 and 6, the rotating machine 2 of this embodiment has the brush 10 of the first embodiment. Specifically, the rotating machine 2 is a rotating electrical machine, and more specifically, is configured as a DC motor with brushes. The rotating machine 2 can be used, for example, as a motor for driving an on-vehicle device, a motor for driving household electricity, a motor for driving general industrial machines, and a motor for driving various devices. The rotating machine 2 may be configured as an electric motor, or may be configured as a motor-generator having both functions of an electric motor and a generator.
 本実施形態では、特に断わらない限り、回転機2を構成するシャフト20の軸方向を矢印Xで示し、シャフト20の径方向を矢印Yで示すものとする。また、シャフト20の周方向のうちの一方向である回転方向を矢印Zaで示すものとする。 In this embodiment, the axial direction of the shaft 20 constituting the rotating machine 2 is indicated by the arrow X, and the radial direction of the shaft 20 is indicated by the arrow Y, unless otherwise specified. The direction of rotation, which is one of the circumferential directions of the shaft 20, is indicated by an arrow Za.
 回転機2は、回転軸である円柱状のシャフト20を備え、電源Eから供給される電力によってこのシャフト20が回転駆動されるように構成されている。この回転機2は、ケース23とカバー24とによって構成されたハウジング22と、シャフト20を回転駆動するための複数の構成要素とを備え、ハウジング22内にこれら複数の構成要素が収容されている。複数の構成要素には、シャフト20を回転可能に支持する複数の支持部25と、ロータとしての回転子220と、整流子231と、2つのブラシ10、10と、ステータとしての磁石240とが含まれている。 The rotating machine 2 has a cylindrical shaft 20 that is a rotating shaft, and is configured such that the shaft 20 is rotationally driven by electric power supplied from the power source E. The rotating machine 2 includes a housing 22 composed of a case 23 and a cover 24, and a plurality of components for rotationally driving the shaft 20. The plurality of components are accommodated within the housing 22. . The plurality of components include a plurality of supports 25 that rotatably support the shaft 20, a rotor 220 as a rotor, a commutator 231, two brushes 10, 10, and a magnet 240 as a stator. include.
 回転子220は、シャフト20に固定されている。回転子220は、複数の電磁鋼板が積層されてなる鉄心221と、電機子コイル222とを有し、鉄心221に電機子コイル222が巻かれている。 The rotor 220 is fixed to the shaft 20. The rotor 220 has an iron core 221 formed by laminating a plurality of electromagnetic steel sheets and an armature coil 222 , and the armature coil 222 is wound around the iron core 221 .
 磁石240は、ハウジング22を構成するケース23の内面に回転子220との間に隙間を隔てて固定されている。磁石240は、電機子コイル222に界磁を与える機能を有するものであり、互いに極性の異なる界磁用の永久磁石(S極およびN極)として構成されている。 The magnet 240 is fixed to the inner surface of the case 23 forming the housing 22 with a gap between it and the rotor 220 . The magnet 240 has a function of applying a magnetic field to the armature coil 222, and is configured as a magnetic field permanent magnet (S pole and N pole) having mutually different polarities.
 整流子231は、複数の整流子片232を有し、電機子コイル222に電気的に接続されている。図6に示されるように、整流子231において複数の整流子片232はシャフト20の周方向に並べて配置されている。隣接する整流子片232は、周方向に互いに離間しており、且つ電機子コイル222によって互いに電気的に接続されている。 The commutator 231 has a plurality of commutator segments 232 and is electrically connected to the armature coils 222 . As shown in FIG. 6 , a plurality of commutator segments 232 are arranged side by side in the circumferential direction of the shaft 20 in the commutator 231 . Adjacent commutator bars 232 are circumferentially spaced from each other and electrically connected to each other by armature coils 222 .
 2つのブラシ10はいずれも、電源Eに電気的に接続され、かつ、整流子231の回転に伴って複数の整流子片232に摺動接触する矩形状のブラシである。一方の第1のブラシ10は、電源Eの正極端子に電気的に接続されている。他方の第2のブラシ10は、電源Eの負極端子に電気的に接続されて第1のブラシ10と対をなすように構成されている。2つのブラシ10は、周方向に180°ずれた位置に配置されている。このため、第1のブラシ10を「正ブラシ」といい、第2のブラシ10を「負ブラシ」ということもできる。 Both of the two brushes 10 are rectangular brushes that are electrically connected to the power source E and are in sliding contact with the plurality of commutator segments 232 as the commutator 231 rotates. One first brush 10 is electrically connected to the positive terminal of the power supply E. As shown in FIG. The other second brush 10 is configured to be electrically connected to the negative terminal of the power source E and paired with the first brush 10 . The two brushes 10 are arranged at positions shifted by 180° in the circumferential direction. Therefore, the first brush 10 can be called a "positive brush" and the second brush 10 can be called a "negative brush".
 第1のブラシ10は、複数の整流子片232に対して摺動接触および開離が可能であり、摺動接触あるいは開離するときに、複数の整流子片232に対して相対的に電位が高くなる。第2のブラシ10は、複数の整流子片232に対して摺動接触および開離が可能であり、摺動接触あるいは開離するときに、複数の整流子片232に対して相対的に電位が低くなる。このように、複数の整流子片232のそれぞれは、2つのブラシ10との摺動接触の関係に応じて高電位側あるいは低電位側になり得る。本実施形態では、2つのブラシ10の両方が、電気接点部材1を用いて構成されている。 The first brush 10 is capable of sliding contact and separation with the plurality of commutator bars 232 , and when slidingly contacted or separated, the first brush 10 is relatively potential with respect to the plurality of commutator bars 232 . becomes higher. The second brush 10 is capable of sliding contact and separation with the plurality of commutator bars 232, and when slidingly contacted or separated, the second brush 10 is relatively potential with respect to the plurality of commutator bars 232. becomes lower. Thus, each of the plurality of commutator bars 232 can be on the high potential side or the low potential side depending on the sliding contact relationship with the two brushes 10 . In this embodiment, both of the two brushes 10 are constructed using the electrical contact member 1 .
 本実施形態の回転機2は、実施形態1のブラシ10を有する。そのため、本実施形態の回転機2は、電磁ノイズ対策として、コイルやコンデンサなどによって構成されるフィルター、金属製のシールド筐体などを削減することが可能になる。そのため、本実施形態の回転機2によれば、回転機2の小型化、軽量化、低コスト化などを図ることが可能になる。 The rotating machine 2 of this embodiment has the brush 10 of the first embodiment. Therefore, in the rotating machine 2 of the present embodiment, it is possible to eliminate filters configured by coils, capacitors, and the like, metal shield housings, and the like as countermeasures against electromagnetic noise. Therefore, according to the rotating machine 2 of the present embodiment, it is possible to reduce the size, weight, and cost of the rotating machine 2 .
 なお、本実施形態において、回転機2の入力電力は、特に限定されないが、例えば、10W以上800W以下などとすることができる。この場合には、ブラシが有する電気接点部材1と整流子231との間にて形成されるアークのアーク輝点径の大きさとの関係において、上述した電気接点部材1の効果を十分に発揮させることができる。 In addition, in the present embodiment, the input power of the rotating machine 2 is not particularly limited, but can be, for example, 10 W or more and 800 W or less. In this case, the effect of the above-described electrical contact member 1 is sufficiently exhibited in relation to the size of the diameter of the arc bright spot of the arc formed between the electrical contact member 1 of the brush and the commutator 231. be able to.
 また、本実施形態では、回転機2が実施形態1のブラシ10を有する場合について説明したが、回転機2は、実施形態2~4の電気接点部材1を有するブラシ10を有していてもよい。 Further, in the present embodiment, the case where the rotating machine 2 has the brush 10 of Embodiment 1 has been described, but the rotating machine 2 may have the brush 10 having the electrical contact member 1 of Embodiments 2 to 4. good.
(実験例1)
 Cu(電離電圧:7.72eV)、Al(電離電圧:5.99eV)、Zn(電離電圧:9.39eV)の各元素について、温度と、1m当たりの熱電離した電子数で定義される電子密度との関係を、シミュレーションにより求めた。このシミュレーションでは、Cu、Al、Znの各元素が、温度に関わらず、大気圧で、全てガス化(気体化)していると仮定した。この際、各元素は100%金属ガス状態であるとし、空気(N、O)の混入はないものとした。また、電子密度は、各元素毎に熱電離するエネルギから電離する電子数を計算にて求めた。図7に、Cu、Al、Znの各元素についての温度(K)と電子密度(m-3)との関係を示す。なお、本実験例では、入力電力が50Wクラスの小型のブラシ付き直流モータを想定し、アーク放電温度を4000K(ケルビン)と設定した。
(Experimental example 1)
For each element Cu (ionization voltage: 7.72 eV), Al (ionization voltage: 5.99 eV), and Zn (ionization voltage: 9.39 eV) , it is defined by temperature and the number of thermally ionized electrons per 1m The relationship with electron density was determined by simulation. In this simulation, it was assumed that the elements Cu, Al, and Zn were all gasified (vaporized) at atmospheric pressure regardless of temperature. At this time, it was assumed that each element was in a 100% metallic gas state and that no air (N 2 , O 2 ) was mixed. Further, the electron density was obtained by calculating the number of electrons ionized from the thermally ionized energy for each element. FIG. 7 shows the relationship between temperature (K) and electron density (m −3 ) for each element of Cu, Al, and Zn. In this experimental example, a compact brushed DC motor with an input power of 50 W was assumed, and the arc discharge temperature was set to 4000 K (Kelvin).
 図7によれば、以下のことがわかる。Cu、Al、Znの各元素は、いずれも10000K(9727℃)超で、ほぼ100%電離する(電子密度が飽和する)。Znは、Cuよりも電離電圧が高い。一方、Alは、Cuよりも電離電圧が低い。アーク放電温度の4000K程度付近では、Alは、Znに比べ、アーク空間における電子密度を増加させることができる。このことから、銅粒子を含む電気接点部材において、Znに代えてAlを用いる、つまり、Alのような、Cuよりも電離電圧が低い低電離電圧金属を用いることにより、接点面と相手材との間にてアーク放電が生じた場合に、導電材料である銅粒子を構成する銅よりも先行して低電離電圧金属の熱電離が生じ、アーク空間における電子密度を増加させることが可能になるといえる。それ故、このような電気接点部材によれば、アーク空間における電子密度が小さい場合に比べ、同じ電流を流す際の電子を移動させる力、つまり、電界強度を小さくすることができ、亜鉛を大量に添加しなくても、電磁ノイズを低減することが可能になるといえる。 According to Figure 7, the following can be seen. Each element of Cu, Al, and Zn is almost 100% ionized (electron density is saturated) above 10000K (9727°C). Zn has a higher ionization voltage than Cu. On the other hand, Al has a lower ionization voltage than Cu. At around 4000K arc discharge temperature, Al can increase the electron density in the arc space compared to Zn. From this, in the electrical contact member containing copper particles, by using Al instead of Zn, that is, by using a low ionization voltage metal such as Al, which has a lower ionization voltage than Cu, the contact surface and the counterpart material When an arc discharge occurs between them, the thermal ionization of the low ionization voltage metal occurs prior to the copper that constitutes the copper particles that are the conductive material, and it becomes possible to increase the electron density in the arc space. I can say. Therefore, according to such an electrical contact member, compared with the case where the electron density in the arc space is small, the force for moving electrons when the same current is applied, that is, the electric field strength can be reduced. It can be said that it is possible to reduce electromagnetic noise without adding
(実験例2)
 平均粒径50μmのCu(銅)粉と、平均粒径5μmのC(黒鉛)粉とを、質量比で50:50(体積比で20:80程度)となるように配合し、撹拌、混合した。次いで、得られた混合粉を金型にて圧縮成形した。次いで、得られた圧縮成形体を、脱酸素雰囲気下、成分が熱変化しない温度にて焼成し、焼き固めた。これにより、試料1のブラシを作製した。なお、原料粉の平均粒径は、レーザ回折・散乱法によって求められた粒度分布における体積積算値が50%のときの粒径をいう(以下、同様)。
(Experimental example 2)
Cu (copper) powder with an average particle size of 50 μm and C (graphite) powder with an average particle size of 5 μm are blended in a mass ratio of 50:50 (about 20:80 in volume ratio), stirred and mixed. did. Next, the obtained mixed powder was compression-molded in a mold. Next, the obtained compression-molded body was sintered in a deoxidized atmosphere at a temperature at which the components did not undergo thermal change, and was sintered. Thus, a sample 1 brush was produced. The average particle size of the raw material powder refers to the particle size when the volume integrated value in the particle size distribution determined by the laser diffraction/scattering method is 50% (the same shall apply hereinafter).
 試料1のブラシの作製において、均一分散性がより向上するように撹拌、混合した点以外は同様にして、試料2のブラシを作製した。 A sample 2 brush was prepared in the same manner as in the preparation of the sample 1 brush, except that the materials were stirred and mixed so as to improve the uniform dispersibility.
 試料1のブラシの作製において、平均粒径20μmのCu粉と、平均粒径5μmのC粉とを、質量比で50:50(体積比で20:80程度)となるように配合した点以外は同様にして、試料3のブラシを作製した。 Except for the fact that Cu powder with an average particle size of 20 μm and C powder with an average particle size of 5 μm were blended so that the mass ratio was 50:50 (the volume ratio was about 20:80) in the preparation of the brush of Sample 1. prepared a sample 3 brush in the same manner.
 試料1のブラシの作製において、平均粒径2μmのCu粉と、平均粒径5μmのC粉とを、質量比で50:50(体積比で20:80程度)となるように配合した点以外は同様にして、試料4のブラシを作製した。 Except for the fact that Cu powder with an average particle size of 2 μm and C powder with an average particle size of 5 μm were blended so that the mass ratio was 50:50 (the volume ratio was about 20:80) in the preparation of the brush of Sample 1. prepared a sample 4 brush in the same manner.
 各ブラシを用いたモータ実機相当の摺動電気接点回路にて、電気接点間の電圧波形を取り込み、250MHzバンドバスフィルタ後のフィルタ電圧値(電圧波形の大きさ)を測定した。フィルタ電圧値の大きさは接触状態で変動するため、幅がある。そのため、同じ設定にてデータ計測を繰り返し、フィルタ電圧値の上限値、下限値、および、平均値を求めた。なお、各試料につき、サンプル数2、繰り返し数4でn=8とした。図8に、試料1~試料4のブラシについてのフィルタ電圧値(dB)を示す。また、図9に、試料1~試料4のブラシにおける接点面のSEM像を示す。なお、図9において、白色部分がCuであり、灰色部分がCである。 In a sliding electrical contact circuit equivalent to an actual motor using each brush, the voltage waveform between electrical contacts was captured, and the filtered voltage value (magnitude of the voltage waveform) after a 250 MHz bandpass filter was measured. Since the magnitude of the filter voltage value fluctuates depending on the contact state, there is a range. Therefore, data measurement was repeated with the same settings, and the upper limit value, lower limit value, and average value of the filter voltage values were obtained. For each sample, the number of samples was 2, the number of repetitions was 4, and n=8. FIG. 8 shows filter voltage values (dB) for the brushes of samples 1 to 4. FIG. 9 shows SEM images of the contact surfaces of the brushes of Samples 1 to 4. FIG. In addition, in FIG. 9, the white part is Cu and the gray part is C. As shown in FIG.
 図8、図9によれば、以下のことがわかる。図8、図9に示されるように、試料1のブラシでは、SEM像上に直径50μmの円を配置した場合に、電気接点部材を構成する各材料粒子(ここでは、Cu粒子、C粒子)が上記円内に収まって存在していない。そのため、試料1のブラシは、フィルタ電圧値の幅が大きくなった。そのため、試料1のブラシは、アークの位置、移動によらずに、アーク電圧変動を抑制することができないといえる。試料2のブラシも同様である。なお、試料2のブラシは、試料1のブラシと原料粒径を同じとして分散性のみ向上させたものである。これらに対し、試料3、試料4のブラシでは、SEM像いずれの位置に直径50μmの円を配置した場合でも、電気接点部材を構成する各材料粒子が上記円内に収まって存在している。そのため、試料3、試料4のブラシは、材料粒子の小粒径化、均一分散化が図られることにより、フィルタ電圧値の幅が小さくなった。この結果から、試料3、試料4のブラシによれば、アークの位置、移動によらずに、アーク電圧変動を抑制することができるといえる。また、試料1~試料4のブラシ同士を比較すると、材料粒子の小粒径化、均一分散化が促進されるほど、フィルタ電圧値の幅がより小さくなり、アーク電圧変動を抑制しやすくなることがわかる。また、材料粒子の粒径を上記円の直径の1/2以下とすることにより、材料粒子が上記円内に収まって存在する状態を確実なものとしやすくなることもわかる。  According to Figures 8 and 9, the following can be understood. As shown in FIGS. 8 and 9, with the brush of sample 1, when a circle with a diameter of 50 μm is placed on the SEM image, each material particle (here, Cu particles and C particles) constituting the electrical contact member does not exist within the above circle. Therefore, the brush of sample 1 had a wide range of filter voltage values. Therefore, it can be said that the brush of sample 1 cannot suppress the arc voltage fluctuation regardless of the position and movement of the arc. The same applies to the sample 2 brush. The brush of sample 2 had the same raw material particle size as the brush of sample 1, but only the dispersibility was improved. On the other hand, in the brushes of Samples 3 and 4, each material particle constituting the electrical contact member exists within the circle regardless of the position of the SEM image where the circle with a diameter of 50 μm is placed. Therefore, in the brushes of Samples 3 and 4, the width of the filter voltage value was narrowed by reducing the particle size of the material particles and achieving uniform dispersion. From this result, it can be said that the brushes of Samples 3 and 4 can suppress the arc voltage fluctuation regardless of the position and movement of the arc. In addition, when comparing the brushes of Samples 1 to 4, the smaller the particle size of the material particles and the more uniform dispersion is promoted, the smaller the width of the filter voltage value becomes, making it easier to suppress arc voltage fluctuations. I understand. It is also found that by setting the particle size of the material particles to 1/2 or less of the diameter of the circle, it becomes easier to ensure that the material particles are present within the circle.
(実験例3)
 平均粒径5μmのCu(銅)粉と、平均粒径10μmのC(黒鉛)粉と、平均粒径5μmのAl(アルミニウム)粉を、質量比で50:45:5となるように配合し、ボールミルを用いて撹拌、混合した。次いで、得られた混合粉を金型にて圧縮成形した。次いで、得られた圧縮成形体を、脱酸素雰囲気下、成分が熱変化しない温度にて焼成し、焼き固めた。これにより、試料6のブラシを得た。なお、試料6のブラシは、低電離電圧金属粒子として、Al粒子を含む。
(Experimental example 3)
Cu (copper) powder with an average particle size of 5 μm, C (graphite) powder with an average particle size of 10 μm, and Al (aluminum) powder with an average particle size of 5 μm are blended in a mass ratio of 50:45:5. , were stirred and mixed using a ball mill. Next, the obtained mixed powder was compression-molded in a mold. Next, the obtained compression-molded body was sintered in a deoxidized atmosphere at a temperature at which the components did not undergo thermal change, and was sintered. Thus, a sample 6 brush was obtained. Note that the brush of Sample 6 contains Al particles as the low ionization voltage metal particles.
 平均粒径5μmのCu(銅)粉と、平均粒径10μmのC(黒鉛)粉と、平均粒径5μmのAl(アルミニウム)粉と、平均粒径5μmのZn(亜鉛)粉とを、質量比で50:40:5:5となるように配合し、ボールミルを用いて撹拌、混合した。次いで、得られた混合粉を金型にて圧縮成形した。次いで、得られた圧縮成形体を、脱酸素雰囲気下、成分が熱変化しない温度にて焼成し、焼き固めた。これにより、試料7のブラシを得た。なお、試料7のブラシは、低電離電圧金属粒子として、Al粒子を含み、低沸点粒子として、Zn粒子を含む。 Cu (copper) powder with an average particle size of 5 μm, C (graphite) powder with an average particle size of 10 μm, Al (aluminum) powder with an average particle size of 5 μm, and Zn (zinc) powder with an average particle size of 5 μm are mixed by mass. They were blended in a ratio of 50:40:5:5 and stirred and mixed using a ball mill. Next, the obtained mixed powder was compression-molded in a mold. Next, the obtained compression-molded body was sintered in a deoxidized atmosphere at a temperature at which the components did not undergo thermal change, and was sintered. Thus, a sample 7 brush was obtained. The brush of Sample 7 contains Al particles as low-ionization-voltage metal particles and Zn particles as low-boiling-point particles.
 本開示は、上記各実施形態、各実験例に限定されるものではなく、その要旨を逸脱しない範囲において種々の変更が可能である。すなわち、本開示は、実施形態に準拠して記述されたが、本開示は、当該実施形態や構造等に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。また、各実施形態、各実験例、以下の参考形態に示される各構成および各効果は、それぞれ任意に組み合わせることができる。 The present disclosure is not limited to the above embodiments and experimental examples, and various modifications can be made without departing from the scope of the present disclosure. That is, although the present disclosure has been described in accordance with embodiments, it is understood that the present disclosure is not limited to such embodiments, structures, and the like. The present disclosure also includes various modifications and modifications within the equivalent range. In addition, various combinations and configurations, as well as other combinations and configurations, including single elements, more, or less, are within the scope and spirit of this disclosure. Moreover, each configuration and each effect shown in each embodiment, each experiment example, and the following reference forms can be combined arbitrarily.
 以下に参考形態の例を付記する。
[項1]
 相手材に対向させるための接点面を有する電気接点部材であって、
 上記接点面の走査型電子顕微鏡像において、
 上記走査型電子顕微鏡像上のいずれの位置に直径50μmの円を配置した場合でも、
 上記電気接点部材を構成する材料粒子が上記円内に収まって存在する、
 電気接点部材。
 上記項1の電気接点部材によれば、電気接点部材1を構成する材料粒子の小粒径化、均一分散化が図られる。そのため、上記項1の電気接点部材によれば、接点面のいずれの位置にてアークが生じ、また、アークが移動した場合でも、アーク電圧変動を抑制するという課題を解決することができる。
[項2]
 上記材料粒子の粒径は、上記円の直径の1/2以下とされている、項1に記載の電気接点部材。
 上記項2の電気接点部材によれば、上記電気接点部材を構成する材料粒子が上記円内に収まって存在する状態を確実なものとすることができる。
[項3]
 上記材料粒子は、銅粒子を含み、
 上記銅粒子の粒径は、上記円の直径の1/2以下とされている、項1または項2に記載の電気接点部材。
[項4]
 上記材料粒子は、銅よりも電離電圧が低い低電離電圧金属粒子を含み、
 上記低電離電圧金属粒子の粒径は、上記円の直径の1/2以下とされている、項1から項3のいずれか1項に記載の電気接点部材。
[項5]
 上記低電離電圧金属粒子を構成する金属は、AlおよびCrからなる群より選択される少なくとも1種の金属である、項4に記載の電気接点部材。
[項6]
 上記材料粒子は、銅よりも沸点が低い低沸点金属粒子を含み、
 上記低沸点金属粒子の粒径は、上記円の直径の1/2以下とされている、項1から項5のいずれか1項に記載の電気接点部材。
[項7]
 上記低沸点金属粒子を構成する金属は、ZnおよびMgからなる群より選択される少なくとも1種の金属である、項6に記載の電気接点部材。
[項8]
 上記材料粒子は、カーボン粒子を含み、
 上記カーボン粒子の粒径は、上記円の直径の1/2以下とされている、項1から項7のいずれか1項に記載の電気接点部材。
[項9]
 上記銅粒子の一部または全部が、銅とは異なる金属より構成される置換粒子に置換されている、
 項3に記載の電気接点部材。
[項10]
 項1から項9のいずれか1項に記載の電気接点部材を有する、ブラシ。
 項10のブラシによれば、アークの位置、移動によらずに、アーク電圧変動を抑制することが可能なブラシが得られる。
[項11]
 項10に記載のブラシを有する、回転機。
 項11の回転機によれば、アークの位置、移動によらずに、アーク電圧変動を抑制することが可能なブラシを有する、回転機が得られる。
Examples of reference forms are added below.
[Section 1]
An electrical contact member having a contact surface for facing a mating member,
In the scanning electron microscope image of the contact surface,
Even if a circle with a diameter of 50 μm is placed at any position on the scanning electron microscope image,
The material particles that make up the electrical contact member are present within the circle.
Electrical contact member.
According to the electrical contact member of item 1, the particle size of the material particles constituting the electrical contact member 1 can be reduced and uniformly dispersed. Therefore, according to the electrical contact member of item 1 above, it is possible to solve the problem of suppressing the arc voltage fluctuation even when the arc is generated at any position on the contact surface and the arc moves.
[Section 2]
Item 2. The electrical contact member according to Item 1, wherein the particle size of the material particles is set to be 1/2 or less of the diameter of the circle.
According to the electrical contact member of item 2, it is possible to ensure that the material particles constituting the electrical contact member are present within the circle.
[Section 3]
The material particles include copper particles,
Item 3. The electrical contact member according to item 1 or item 2, wherein the particle diameter of the copper particles is set to be 1/2 or less of the diameter of the circle.
[Section 4]
The material particles include low ionization voltage metal particles having a lower ionization voltage than copper,
Item 4. The electrical contact member according to any one of Items 1 to 3, wherein the particle size of the low ionization voltage metal particles is set to 1/2 or less of the diameter of the circle.
[Section 5]
Item 5. The electrical contact member according to Item 4, wherein the metal constituting the low ionization voltage metal particles is at least one metal selected from the group consisting of Al and Cr.
[Section 6]
The material particles contain low boiling point metal particles having a boiling point lower than that of copper,
Item 6. The electrical contact member according to any one of Items 1 to 5, wherein the particle size of the low boiling point metal particles is set to be 1/2 or less of the diameter of the circle.
[Section 7]
Item 7. The electrical contact member according to Item 6, wherein the metal constituting the low boiling point metal particles is at least one metal selected from the group consisting of Zn and Mg.
[Item 8]
The material particles include carbon particles,
Item 8. The electrical contact member according to any one of Items 1 to 7, wherein the particle diameter of the carbon particles is 1/2 or less of the diameter of the circle.
[Item 9]
Some or all of the copper particles are replaced with replacement particles composed of a metal different from copper,
Item 4. The electrical contact member according to item 3.
[Item 10]
A brush comprising the electrical contact member according to any one of items 1 to 9.
According to the brush of item 10, it is possible to obtain a brush capable of suppressing arc voltage fluctuations regardless of the position and movement of the arc.
[Item 11]
Item 11. A rotating machine having the brush according to item 10.
According to the rotating machine of item 11, it is possible to obtain a rotating machine having brushes capable of suppressing arc voltage fluctuations regardless of the position and movement of the arc.

Claims (9)

  1.  相手材に対向させるための接点面(11)を有しており、
     カーボン粒子(12)と、
     銅粒子(13)と、
     銅よりも電離電圧が低い低電離電圧金属(14)と、
     を含む、電気接点部材(1)。
    It has a contact surface (11) for facing the mating material,
    carbon particles (12);
    copper particles (13);
    a low ionization voltage metal (14) having a lower ionization voltage than copper;
    An electrical contact member (1) comprising:
  2.  上記接点面の走査型電子顕微鏡像において、
     上記走査型電子顕微鏡像上のいずれの位置に直径50μmの円(3)を配置した場合でも、
     上記円内に収まる上記低電離電圧金属が存在する、請求項1に記載の電気接点部材。
    In the scanning electron microscope image of the contact surface,
    Even if the circle (3) with a diameter of 50 μm is placed at any position on the scanning electron microscope image,
    2. The electrical contact member of claim 1, wherein there is said low ionization voltage metal that falls within said circle.
  3.  上記低電離電圧金属の大きさは、上記円の直径の1/2以下とされている、請求項2に記載の電気接点部材。 The electrical contact member according to claim 2, wherein the size of the low ionization voltage metal is 1/2 or less of the diameter of the circle.
  4.  上記低電離電圧金属は、AlおよびCrからなる群より選択される少なくとも1種の金属である、請求項1から請求項3のいずれか1項に記載の電気接点部材。 The electrical contact member according to any one of claims 1 to 3, wherein the low ionization voltage metal is at least one metal selected from the group consisting of Al and Cr.
  5.  銅よりも沸点が低い低沸点金属をさらに含む、請求項1から請求項4のいずれか1項に記載の電気接点部材。 The electrical contact member according to any one of claims 1 to 4, further comprising a low boiling point metal having a boiling point lower than that of copper.
  6.  上記低沸点金属は、ZnおよびMgからなる群より選択される少なくとも1種の金属である、請求項5に記載の電気接点部材。 The electrical contact member according to claim 5, wherein the low boiling point metal is at least one metal selected from the group consisting of Zn and Mg.
  7.  上記銅粒子の一部または全部が、銅とは異なる金属より構成される置換粒子に置換されている、
     請求項1から請求項6のいずれか1項に記載の電気接点部材。
    Some or all of the copper particles are replaced with replacement particles composed of a metal different from copper,
    The electrical contact member according to any one of claims 1 to 6.
  8.  請求項1から請求項7のいずれか1項に記載の電気接点部材を有する、ブラシ(10)。 A brush (10) having the electrical contact member according to any one of claims 1 to 7.
  9.  請求項8に記載のブラシを有する、回転機(2)。 A rotating machine (2) having the brush according to claim 8.
PCT/JP2022/017492 2021-05-07 2022-04-11 Electric contact member, brush, and rotator WO2022234764A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023518654A JPWO2022234764A1 (en) 2021-05-07 2022-04-11

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021079010 2021-05-07
JP2021-079010 2021-05-07

Publications (1)

Publication Number Publication Date
WO2022234764A1 true WO2022234764A1 (en) 2022-11-10

Family

ID=83932405

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/017492 WO2022234764A1 (en) 2021-05-07 2022-04-11 Electric contact member, brush, and rotator

Country Status (2)

Country Link
JP (1) JPWO2022234764A1 (en)
WO (1) WO2022234764A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001327127A (en) * 2000-05-17 2001-11-22 Toshiba Ceramics Co Ltd Copper-carbon brush and its manufacturing method
JP2002369454A (en) * 2001-06-05 2002-12-20 Denso Corp Current application element for fuel pump dc motor, method of manufacturing the element, and fuel pump
JP2006164900A (en) * 2004-12-10 2006-06-22 Tokimec Inc Rotary brush
JP2015088306A (en) * 2013-10-30 2015-05-07 日産自動車株式会社 Slide contact member, motor, and dynamo
JP2021009788A (en) * 2019-07-01 2021-01-28 日本製鉄株式会社 Metal graphite brush

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001327127A (en) * 2000-05-17 2001-11-22 Toshiba Ceramics Co Ltd Copper-carbon brush and its manufacturing method
JP2002369454A (en) * 2001-06-05 2002-12-20 Denso Corp Current application element for fuel pump dc motor, method of manufacturing the element, and fuel pump
JP2006164900A (en) * 2004-12-10 2006-06-22 Tokimec Inc Rotary brush
JP2015088306A (en) * 2013-10-30 2015-05-07 日産自動車株式会社 Slide contact member, motor, and dynamo
JP2021009788A (en) * 2019-07-01 2021-01-28 日本製鉄株式会社 Metal graphite brush

Also Published As

Publication number Publication date
JPWO2022234764A1 (en) 2022-11-10

Similar Documents

Publication Publication Date Title
US10848016B2 (en) Magnetic powder dust core with entirely buried coil or magnet
JP4775566B2 (en) Rare earth permanent magnet, method of manufacturing the same, and rotating machine
EP3118971B1 (en) Rotary electrical machine and vehicle
CN109565227B (en) Releasing device for releasing electric interference
US20060006754A1 (en) D.C. brushless motor
JP4925466B2 (en) Carbon brush, carbon brush manufacturing method, and electric motor
Bernier et al. Additive manufacturing of soft and hard magnetic materials used in electrical machines
CN112789795B (en) Method for manufacturing rotor of rotating electrical machine
CN101258659B (en) Core and method for producing core
CN115769469A (en) Material layer for a lamination stack of an electric machine
WO2022234764A1 (en) Electric contact member, brush, and rotator
JP2005286145A (en) Method for manufacturing soft magnetic material, soft magnetic powder and dust core
WO2014024569A1 (en) Contact member and electric motor
KR20230098912A (en) Method of making a layer of material having at least one void
JP2007325401A (en) Carbon brush and manufacturing method therefor
JP4697581B2 (en) Permanent magnet body and manufacturing method thereof
JP2023045934A (en) Method for manufacturing r-t-b based sintered magnet
JP7228096B2 (en) Method for producing RTB based sintered magnet
JP4460629B1 (en) DC motor
KR20120001078A (en) Manufacturing method of precious metal inlay clad
US20210316365A1 (en) Method for producing a magnetic powder
JP2011061976A (en) Dc motor
JP2022149108A (en) Sliding contact member, brush, and rotating machine
WO2023106008A1 (en) Method for producing rare earth iron sintered magnet, apparatus for producing rare earth iron sintered magnet, and rare earth iron sintered magnet
JP2009206491A (en) Soft magnetic powder, soft magnetic material, and method for manufacturing soft magnetic material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22798871

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023518654

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE