WO2022234758A1 - Plant variant having improved glucosylceramide percentage content - Google Patents

Plant variant having improved glucosylceramide percentage content Download PDF

Info

Publication number
WO2022234758A1
WO2022234758A1 PCT/JP2022/017278 JP2022017278W WO2022234758A1 WO 2022234758 A1 WO2022234758 A1 WO 2022234758A1 JP 2022017278 W JP2022017278 W JP 2022017278W WO 2022234758 A1 WO2022234758 A1 WO 2022234758A1
Authority
WO
WIPO (PCT)
Prior art keywords
plant
glucosylceramide
seq
gene
mutant
Prior art date
Application number
PCT/JP2022/017278
Other languages
French (fr)
Japanese (ja)
Inventor
仁一郎 古賀
朋義 窪田
匡城 佐藤
絵美 湯本
久和 山根
皓司 宮本
洋貴 七久保
誠 矢沢
安藝雄 宮尾
洋彦 廣近
Original Assignee
学校法人帝京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人帝京大学 filed Critical 学校法人帝京大学
Priority to JP2023518651A priority Critical patent/JPWO2022234758A1/ja
Publication of WO2022234758A1 publication Critical patent/WO2022234758A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H1/00Processes for modifying genotypes ; Plants characterised by associated natural traits
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H1/00Processes for modifying genotypes ; Plants characterised by associated natural traits
    • A01H1/06Processes for producing mutations, e.g. treatment with chemicals or with radiation
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H6/00Angiosperms, i.e. flowering plants, characterised by their botanic taxonomy
    • A01H6/46Gramineae or Poaceae, e.g. ryegrass, rice, wheat or maize
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/105Plant extracts, their artificial duplicates or their derivatives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7028Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages
    • A61K31/7032Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a polyol, i.e. compounds having two or more free or esterified hydroxy groups, including the hydroxy group involved in the glycosidic linkage, e.g. monoglucosyldiacylglycerides, lactobionic acid, gangliosides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/18Magnoliophyta (angiosperms)
    • A61K36/88Liliopsida (monocotyledons)
    • A61K36/899Poaceae or Gramineae (Grass family), e.g. bamboo, corn or sugar cane
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/60Sugars; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/96Cosmetics or similar toiletry preparations characterised by the composition containing materials, or derivatives thereof of undetermined constitution
    • A61K8/97Cosmetics or similar toiletry preparations characterised by the composition containing materials, or derivatives thereof of undetermined constitution from algae, fungi, lichens or plants; from derivatives thereof
    • A61K8/9783Angiosperms [Magnoliophyta]
    • A61K8/9794Liliopsida [monocotyledons]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/16Emollients or protectives, e.g. against radiation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q17/00Barrier preparations; Preparations brought into direct contact with the skin for affording protection against external influences, e.g. sunlight, X-rays or other harmful rays, corrosive materials, bacteria or insect stings
    • A61Q17/04Topical preparations for affording protection against sunlight or other radiation; Topical sun tanning preparations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • A61Q19/08Anti-ageing preparations
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines

Definitions

  • the present invention relates to plant mutants with improved glucosylceramide content, plant-derived glucosylceramide-containing extracts extracted from the plant mutants, food compositions or pharmaceutical compositions containing them, and the like.
  • Glucosylceramide is a compound that exists widely in organisms such as animals, plants, and filamentous fungi, and is a type of glycolipid consisting of sphingosine bases, fatty acids, and glucose. Glucosylceramide is a compound that plays an important role in the body. In particular, when plant-derived glucosylceramide is ingested, it has the effect of improving skin moisturization, preventing skin damage caused by ultraviolet rays, and preventing colorectal cancer. (Non-Patent Documents 1-4), and is attracting attention as a functional material.
  • rice bran-derived glucosylceramide and konjac-derived glucosylceramide have already been commercialized as functional materials such as improving skin moisturization, and have formed a large market.
  • This plant-derived glucosylceramide is usually extracted from the plant body with an extraction solvent such as ethanol, and is produced by further purification if necessary. There is a problem that the cost becomes very high. In addition, even when the plant body is directly ingested without extracting glucosylceramide, such as cooked rice, the expected health effects cannot be sufficiently obtained because the glucosylceramide content in the plant body is extremely low. There is a problem.
  • the object of the present invention is to provide a plant mutant with a higher glucosylceramide content than before.
  • glucocerebrosidase an enzyme that hydrolyzes glucosylceramide and converts it into ceramide.
  • this glucocerebrosidase is known to exist mainly in animals, it is not known to exist in plants, except for a glucocerebrosidase belonging to glycoside hydrolase family 116 (GH116), which has been found in Arabidopsis thaliana. I didn't.
  • the present inventors have made extensive studies and found a gene (GH1 glucocerebrosidase gene) that belongs to glycoside hydrolase family 1 (GH1) and encodes a protein having glucocerebrosidase activity in plants, and further lacks its function.
  • the inventors have also found that the content of glucosylceramide in plants can be significantly increased by suppressing it, and thus completed the present invention.
  • GH1 glucocerebrosidase gene that belongs to glycoside hydrolase family 1 (GH1) and encodes a protein having glucocerebrosidase activity in plants, and further lacks its function.
  • GH1 glucocerebrosidase gene that belongs to glycoside hydrolase family 1 (GH1) and encodes a protein having glucocerebrosidase activity in plants, and further lacks its function.
  • the inventors have also found that the content of glucosylceramide in plants can be significantly increased by suppressing it, and thus completed the present invention.
  • the present invention is the following ⁇ 1> to ⁇ 12>.
  • ⁇ 1> A plant mutant in which one or more genes encoding a protein belonging to glycoside hydrolase family 1 and having glucocerebrosidase activity are defective or suppressed in function.
  • ⁇ 2> The plant mutant according to ⁇ 1>, wherein the plant mutant is a seed plant mutant.
  • ⁇ 3> The plant mutant according to ⁇ 2>, wherein the plant mutant is a gramineous plant mutant.
  • ⁇ 5> The plant mutant according to any one of ⁇ 1> to ⁇ 4>, wherein the function of the gene is deleted or suppressed by inserting a transposon endogenous in the genome into the gene.
  • ⁇ 6> The plant mutant according to ⁇ 5>, wherein the transposon is a retrotransposon.
  • ⁇ 7> A method for producing a plant-derived glucosylceramide-containing extract, comprising a step of extracting a glucosylceramide-containing material from the plant mutant according to any one of ⁇ 1> to ⁇ 6> using an extraction solvent.
  • ⁇ 8> A plant-derived glucosylceramide-containing extract extracted from the plant mutant according to any one of ⁇ 1> to ⁇ 6>.
  • ⁇ 9> A food composition comprising the plant mutant according to any one of ⁇ 1> to ⁇ 6> and/or the plant-derived glucosylceramide-containing extract according to ⁇ 8>.
  • ⁇ 10> A pharmaceutical composition comprising the plant mutant according to any one of ⁇ 1> to ⁇ 6> and/or the plant-derived glucosylceramide-containing extract according to ⁇ 8> as an active ingredient.
  • a method for improving moisture retention, wrinkles, and firmness of the skin, or preventing and treating damage caused by ultraviolet rays, comprising feeding or administering at least one selected from the group consisting of the pharmaceutical composition described in 1. above.
  • ⁇ 12> The plant mutant according to any one of ⁇ 1> to ⁇ 6>, the plant-derived glucosylceramide-containing extract according to ⁇ 8>, the food composition according to ⁇ 9>, or ⁇ 10>
  • a method for preventing or treating colorectal cancer comprising feeding or administering at least one selected from the group consisting of the pharmaceutical compositions described in 1.
  • a plant mutant with a higher glucosylceramide content it is possible to provide a plant mutant with a higher glucosylceramide content than before.
  • a plant-derived glucosylceramide-containing extract extracted from this plant mutant can also be provided.
  • food compositions and pharmaceutical compositions containing at least one of these can also be provided.
  • FIG. 1 shows the nucleotide sequences of PR1, PR2, PR3, and PR4 primers used for PCR in Example 2.
  • FIG. 1 shows the nucleotide sequences of PR5, PR6, PR7, and PR8 primers used for PCR in Example 2.
  • FIG. 1 shows the nucleotide sequences of primers PR9, PR10, PR11, and PR12 used for PCR in Example 2.
  • FIG. 1 shows the nucleotide sequences of primers PR9, PR10, PR11, and PR12 used for PCR in Example 2.
  • the present invention provides a plant mutant in which one or more genes encoding proteins belonging to glycoside hydrolase family 1 and having glucocerebrosidase activity are functionally deficient or suppressed (hereinafter referred to as "the plant of the present invention (Also referred to as "mutants”), plant-derived glucosylceramide-containing extracts extracted from the plant mutants of the present invention (hereinafter also referred to as "plant-derived glucosylceramide-containing extracts of the present invention”), A food composition containing the plant mutant and/or the plant-derived glucosylceramide-containing extract of the present invention (hereinafter also referred to as the "food composition of the present invention”), the plant mutant of the present invention and/or the present A pharmaceutical composition containing the plant-derived glucosylceramide-containing extract of the invention as an active ingredient (hereinafter also referred to as "the pharmaceutical composition of the present invention”), and the like.
  • the plant of the present invention Also referred to as "mutants
  • the plant mutant of the present invention is a mutant in which one or more genes encoding proteins belonging to glycoside hydrolase family 1 (GH1) and having glucocerebrosidase activity are functionally deficient or suppressed.
  • GH1 glucocerebrosidase gene this gene is also referred to as "GH1 glucocerebrosidase gene”.
  • glycoside hydrolase family 1 is a family of carbohydrate hydrolases classified into about 130 groups by the Carbohydrate Active Enzyme database (CAZy database, http://www.cazy.org/). , and glucocerebrosidases are known to belong to glycoside hydrolase family 1 (GH1), glycoside hydrolase family 30 (GH30), and glycoside hydrolase family 116 (GH116). ing.
  • the plant mutant of the present invention is a mutant in which the function of the GH1 glucocerebrosidase gene present in the plant genome is deleted or suppressed.
  • mutants in which at least one of the functions is deleted or suppressed may be used.
  • it is the main activity of glucocerebrosidase belonging to GH1 in the plant (involved in more than 50%, more than 60%, more than 70% of the total activity of glucocerebrosidase belonging to GH1 in the plant) )
  • Mutants in which the function of the GH1 glucocerebrosidase gene is deleted or suppressed are preferred.
  • mutants in which two or more GH1 glucocerebrosidase genes are functionally deficient or suppressed, or all GH1 glucocerebrosidase genes present in the genome are functionally deficient or suppressed.
  • a modified mutant is more preferable because it tends to have a higher glucosylceramide content.
  • This plant mutant includes not only mature plants, but also leaves, stems, roots, petals, calyx, pistils, anthers, pollen, seeds, germ of seeds, endosperm of seeds, bran on the surface of seeds, and temporary seeds. It may be at least one selected from the group consisting of roots and sporangia, and refers to all plant-derived substances.
  • the function of the GH1 glucocerebrosidase gene is deficient means a state in which the protein encoded by the GH1 glucocerebrosidase gene cannot be expressed (a state in which the gene cannot be transcribed or translated into a protein), or It means that the protein expressed from this gene has no glucocerebrosidase activity.
  • the function of the GH1 glucocerebrosidase gene is suppressed means that the expression level of the protein encoded by the GH1 glucocerebrosidase gene (transcription level of the gene or the amount of translation into protein) or glucocerebrosidase of the expressed protein In a state where the amount of sidase activity is significantly decreased (for example, decreased to 40% or less, further decreased to 30% or less, further decreased to 20% or less, further decreased to 10% or less compared to before suppression) It means that there is
  • this mutant is a plant (eukaryote)
  • "the function of one or more GH1 glucocerebrosidase genes is lost or suppressed” means that at least one GH1 glucocerebrosidase gene has an allele It means that both of the two genes (gene set) that make up the gene are functionally deficient or suppressed (homologous mutant).
  • a function-deficient or suppressed mutant means a mutant in which two or more sets of alleles described above are functionally deficient or suppressed (eg, double homozygous mutant).
  • the plant mutant of the present invention is produced by inserting a transposon into the GH1 glucocerebrosidase gene (its protein coding region or promoter region) to delete or suppress its function. preferably. Since the plant mutant of the present invention does not become a genetically modified plant, the plant mutant of the present invention has the function of the GH1 glucocerebrosidase gene inserted into the gene by transfer or the like of a transposon endogenous to the genome.
  • a plant mutant in which a transposon endogenous in the genome of the individual (wild type, etc.) before becoming this mutant is inserted by transposition etc. and this gene is deleted or suppressed More preferably, this transposon is a retrotransposon.
  • this transposon is a retrotransposon.
  • the above-mentioned transposons especially retrotransposons are inserted into any of the genes.
  • Transposons are mutagenizing genes that are ubiquitous not only in plant genomes, but also in animal, yeast, and bacterial genomes, and are also called mobile genes or transposable elements.
  • Tos17 retrotransposon Tos17
  • Tos17 retrotransposon Tos17
  • tissue culture to initiate transposition.
  • Tos17 retrotransposon Tos17
  • a large number of gene-disruption strains have been created by taking advantage of this property. Therefore, it is also possible to obtain a rice mutant (the plant mutant of the present invention) in which Tos17 is inserted into one or more GH1 glucocerebrosidase genes in rice to have its function deleted or suppressed.
  • transposons are classified into two classes according to their transposition mechanism.
  • Transposons belonging to class II transfer in the form of DNA without replication (transposons themselves are excised from the genome and transferred to other sites), and are also called DNA-type.
  • Examples of transposons belonging to class II include Ac/Ds, Spm/dSpm, and Mu of maize (Zea mays) (Cell 56, 181-191 (1989); Cell 35, 235-242 (1983); Proc. Natl. Acad. ), and nDart (Mol. Genet. Genomics 273, 150-157 (2005)).
  • Transposons belonging to class I are also called retrotransposons or retrotypes, and replicate and transpose via RNA intermediates (transcription, reverse transcription). Transposons belonging to this class I are ubiquitous and represent a significant portion of the plant genome, and some of these are activated under stress conditions such as wounding, pathogen attack and cell culture. Examples of transposons belonging to class I include Tnt1A and Tto1 of Nicotiana tabacum (Plant J., 5, 535-542 (1994); Plant Mol. Biol., 36, 365-376 (1988)), supra. and Tos 17 of fermented rice (Proc. Natl. Acad. Sci. USA, 93, 7783-7788 (1996)). Since the retrotransposon once inserted into the genome is never cut out, this retrotransposon is preferable because it can induce more stable mutations.
  • the rice retrotransposon Tos17 has a length of 4.3 kb and is complemented by two identical LTRs (long terminal repeats) that are 138 bp in length and the PBS (primer binding site). Transcription of Tos17 is strongly activated by tissue culture, and the copy number of Tos17 increases with culture time (in Nipponbare, which will be described later, the initial copy number of Tos17 is 2, but in plants regenerated after tissue culture This copy number is increased from 5 to 30). Tos17 then translocates in the rice genome and induces stable mutations. In addition, this Tos17 has the property of being easily inserted into the gene region.
  • the mutants obtained are also very stable, since there is no Tos17 activation in conditions other than tissue culture and little Tos17 transfer occurs in other conditions or after redifferentiation. Therefore, for example, in rice (such as Nipponbare), first, tissue culture is performed to induce the transfer of Tos17, and the obtained mutants are subjected to PCR screening, measurement of glucocerebrosidase activity, etc., and one or more GH1 glucocerebrosidase genes.
  • the rice mutant according to the present invention can be easily produced by selecting a mutant in which the function of is deleted or suppressed by Tos17, regenerating it into a plant, and further self-pollinated.
  • the plant mutant of the present invention is preferably a seed plant (angiosperm or gymnosperm) mutant from the viewpoint of industrial ease of use.
  • Seed plants include, but are not limited to, mallow plants, Chenopodiaceae plants, Rubiaceae plants, Cannabis plants, Hydrangea plants, Brassicaceae plants, Iridaceae plants, Gramineae plants, Araliaceae plants, Cucurbitaceae plants of the family Anacardiaceae, plants of the family Anacardiaceae, plants of the family Cyperaceae, plants of the family Bellflower, Asteraceae, plants of the camphor family, plants of the family Moraceae, plants of the poppy family, plants of the family Araceae, plants of the family Cactus, plants of the Labiatae family, plants of the family Nymphae, plants of the family Apiaceae , knotweed plant, ericaceous plant, camellia plant, solanaceous plant, caryophyllaceous plant, elm family plant, lotus plant, rose plant, lotus plant, amaryllidaceous plant, convolvulaceous plant, grape family plant, beech plants of the family Pe
  • seed plants include cotton, hibiscus, spinach, pigweed, beet, madder, gardenia, coffee tree, hemp, hop, hydrangea, Arabidopsis thaliana, rapeseed, Japanese radish, Chinese cabbage, cabbage, cauliflower, broccoli, komatsuna, bok choy, Wasabi, iris, Japanese iris, rice, timothy, wheat, corn, sorghum, barley, rye, sugar cane, oat, millet, foxtail millet, turf, reed, bamboo, bamboo grass, taranogi, udo, fatsia, cucumber, bitter gourd, melon, Watermelon, bitter gourd, pumpkin, loofah, sweet gourd, gourd, yugao, sumac, Japanese wax tree, star grass, bellflower, osmanthus, lettuce, gerbera, gazania, thistle, burdock, sunflower, cosmos, dand
  • the present inventor discovered the presence of the GH1 glucocerebrosidase gene in mallow, cruciferous, gramineous, cucurbitaceous, asteraceous, solanaceous, rosaceous, leguminous, and umbelliferous plants.
  • Japanese Patent Application No. 2020-88950 Plant mutants in which one or more GH1 glucocerebrosidase genes are deleted or suppressed in any of these plants are very useful because they tend to have a higher glucosylceramide content than conventional ones, and are particularly useful in rice. Plant variants of family plants are more preferred.
  • the present inventors have discovered that one rice cultivar, Oryza sativa L. cv. Nipponbare, has Os3BGlu6 and Os10BGlu34 genes as GH1 glucocerebrosidase genes (patent application 2020-88950, etc.).
  • the nucleotide sequence of this Os3BGlu6 gene is shown in SEQ ID NO: 1 of the sequence listing and FIG. 1
  • the nucleotide sequence of the Os10BGlu34 gene is shown in SEQ ID NO: 2 of the sequence listing and FIG.
  • the plant mutant of the present invention comprises the nucleotide sequence shown in SEQ ID NO: 1 in the sequence listing, nucleotide numbers 112 to 1566 in SEQ ID NO: 1, SEQ ID NO: 2, or nucleotide numbers 76 to 1533 in SEQ ID NO: 2.
  • Preferred are functionally deficient or suppressed mutants of one or more GH1 glucocerebrosidase genes comprising DNA. That is, at least one, more preferably all, of the GH1 glucocerebrosidase genes whose function is deleted or suppressed is preferably a gene containing any of the DNAs described above.
  • Nipponbare rice mutants are preferably mutants in which the functions of the Os3BGlu6 gene and/or the Os10BGlu34 gene are deleted or suppressed.
  • the Nipponbare rice mutant is more preferably a mutant in which at least the function of the Os3BGlu6 gene is deleted or suppressed, and further a mutant in which the functions of both the Os3BGlu6 gene and the Os10BGlu34 gene are deleted or suppressed ( A double homozygous mutant) is very suitable because it tends to have a higher glucosylceramide content.
  • nucleotide numbers 112 to 1566 in SEQ ID NO: 1, SEQ ID NO: 2, or nucleotide numbers 76 to 1533 in SEQ ID NO: 2 may be functionally deficient or suppressed. That is, at least one of the GH1 glucocerebrosidase genes whose function is deleted or suppressed may be a gene containing any of the above DNAs.
  • “several” means 20 or less, preferably 10 or less, more preferably 6 or less.
  • the plant mutant of the present invention has the nucleotide sequence shown in SEQ ID NO: 1 in the sequence listing, nucleotide numbers 112 to 1566 in SEQ ID NO: 1, SEQ ID NO: 2, or nucleotide numbers 76 to 1533 in SEQ ID NO: 2.
  • the function of one or more GH1 glucocerebrosidase genes containing a DNA capable of hybridizing with a DNA consisting of a complementary nucleotide sequence under stringent conditions may be deleted or suppressed. That is, at least one of the GH1 glucocerebrosidase genes whose function is deleted or suppressed may be a gene containing any of the above DNAs.
  • stringent conditions are conditions under which so-called specific hybrids are formed and non-specific hybrids are not formed.
  • specific hybrids are formed and non-specific hybrids are not formed.
  • SDS solution composition of 1 ⁇ SSC: 150 mM chloride sodium, 15 mM sodium citrate
  • the present inventors have found that at least one GH1 glucocerebrosidase gene is present in various seed plants.
  • the gene is a DNA consisting of a base sequence in which one or several bases are substituted, deleted, inserted or added in the base sequence shown in SEQ ID NO: 1 or 2, or SEQ ID NO: 1 or It is very likely that it contains a DNA that can hybridize under stringent conditions with a DNA consisting of a nucleotide sequence complementary to the nucleotide sequence shown in 2.
  • the present inventors have found that among the glucocerebrosidases in plants, those belonging to GH1 are dominant.
  • the GH1 glucocerebrosidase gene is identified using a homology search using the nucleotide sequence or amino acid sequence of the Os3BGlu6 gene or the Os10BGlu34 gene, screening by hybridization using at least a part of these DNAs, etc., and its function
  • the plant mutant of the present invention can be easily obtained from various plants by deleting or suppressing .
  • the function of one or more GH1 glucocerebrosidase genes is deficient or suppressed, so that the glucosylceramide content is higher than in the past.
  • at least one site selected from the group consisting of leaf, stem, root, petal, calyx, pistil, anther, pollen, seed, seed germ, seed endosperm, seed surface bran, rhizome, and sporangia The content of glucosylceramide is higher than before.
  • the plant mutant of the present invention has a higher glucosylceramide content in at least a part of the above-described sites than in the past, and includes those isolated from such sites.
  • a portion thereof may contain a portion having a glucosylceramide content of about the same level as the conventional one.
  • the glucosylceramide content may be 100 ⁇ g/g or more (0.01% by mass or more), further 200 ⁇ g/g or more (0.02% by mass or more), and further 300 ⁇ g/g or more (0.02% by mass or more). 03% by mass or more), 400 ⁇ g/g or more (0.04% by mass or more), and further 500 ⁇ g/g or more (0.05% by mass or more).
  • the glucosylceramide content may be 450 ⁇ g/g or more (0.045% by mass or more), or 480 ⁇ g/g or more (0.048% by mass or more). and may be 550 ⁇ g/g or more (0.055% by mass or more).
  • the glucosylceramide content rate may be 110 ⁇ g / g or more (0.011% by mass or more), and 150 ⁇ g / g or more (0.015% by mass or more). and may be 160 ⁇ g/g or more (0.016% by mass or more).
  • the mixture containing the germ and bran is preferably used as the raw material for extraction of the plant-derived glucosylceramide-containing extract, and in this case, the mixing ratio of the germ and the bran is also limited. However, it is preferable to use 2 to 4 parts by mass of rice bran per 1 part by mass of germ.
  • the glucosylceramide content in the part that can be used in this food composition is 20 ⁇ g / g or more (0.002% by mass or more), further may be 30 ⁇ g/g or more (0.003% by mass or more), and further 40 ⁇ g/g or more (0.004% by mass or more).
  • 0055% by mass or more may be 60 ⁇ g/g or more (0.006% by mass or more), and further may be 65 ⁇ g/g or more (0.0065% by mass or more).
  • the plant-derived glucosylceramide-containing extract of the present invention is a plant extract containing plant-derived glucosylceramide extracted from the plant mutant of the present invention as described above. This is performed by using an extraction solvent such as an extraction process using an aqueous solution containing an organic solvent such as alcohol or a surfactant from the plant mutant of the present invention (whole or part of the plant mutant of the present invention). It can be produced by a production method including a step of extracting a glucosylceramide-containing substance.
  • the extraction solvent is not particularly limited, but is preferably ethanol from the viewpoint of use of the extract in food compositions and the like.
  • This ethanol may be hydrous ethanol (for example, hydrous ethanol having an ethanol concentration of 80% by weight or more, further 90% by weight or more).
  • heat treatment for example, heat treatment at 40 to 80° C.
  • a crude purification step eg, concentration, etc.
  • the content of plant-derived glucosylceramide contained in the plant-derived glucosylceramide-containing extract of the present invention is not limited, but the lower limit is preferably 0.01% by mass or more. 02% by mass or more, more preferably 0.05% by mass or more, even more preferably 0.1% by mass or more, and even more preferably 0.2% by mass or more.
  • the upper limit is preferably 70% by mass or less, more preferably 50% by mass or less, even more preferably 40% by mass or less, further preferably 30% by mass or less, and 20% by mass. or less, more preferably 10% by mass or less.
  • the plant-derived glucosylceramide-containing extract of the present invention is considered to correspond to the case where the structure or characteristics of the substance are specified simply by indicating the state, but even if this is not the case, this Specific components other than glucosylceramide in the extract (other components derived from the plant mutant of the present invention) and composition ratios have not been clearly specified, and specifying all of these components is extremely costly. Circumstances exist where it is impossible or almost impractical to directly identify the structure or characteristics of the structure or characteristics of the structure or characteristics of the structure or characteristics.
  • plant-derived glucosylceramide-containing extract of the present invention for example, a plant-derived glucosylceramide-containing extract produced by the production method described above
  • plant mutant of the present invention Due to the action of plant-derived glucosylceramide, it can be expected to improve skin moisturization, prevent or treat skin damage caused by ultraviolet rays, prevent or treat colorectal cancer, etc.
  • the components other than the plant-derived glucosylceramide contained in these are also plant-derived, they can be safely used in food compositions and the like at low cost.
  • a food composition containing the plant mutant of the present invention (whole or a part of the plant mutant of the present invention), a food composition containing the plant-derived glucosylceramide-containing extract of the present invention, or the plant mutant of the present invention and the present
  • the food composition of the present invention rich in plant-derived glucosylceramide can be provided at a low cost.
  • the rice mutant of the present invention not only rice and brown rice, which are the seeds of the rice mutant, but also food compositions obtained by processing the brown rice into a food (food containing the rice mutant). It is possible to provide polished rice, rice flour, cooked rice foods (such as brown rice and processed cooked rice obtained by cooking polished rice), rice flour processed foods, etc., which are compositions) at a low price.
  • supplements which are food compositions containing a rice-derived glucosylceramide-containing extract extracted from the bran on the surface of brown rice (the bran on the surface of seeds), can be provided at a low cost.
  • “polished rice” means brown rice from which the germ and surface bran have been removed (scraped off by processing), and also includes rice from which part of the endosperm has been removed.
  • “Rice flour” is a product obtained by processing brown rice or polished rice into powder.
  • the food composition of the present invention can optionally contain other known ingredients in the food field, as long as they do not significantly affect the functionality of the plant-derived glucosylceramide.
  • the food composition of the present invention contains the plant mutant of the present invention and/or the plant-derived glucosylceramide-containing extract of the present invention as an active ingredient for improving skin moisturization, improving skin wrinkles, and improving skin firmness. It is also possible to provide a food composition for one or more uses selected from skin improvement, prevention of skin damage caused by ultraviolet rays, and prevention of colon cancer.
  • the pharmaceutical composition of the present invention can be obtained by incorporating the plant mutant of the present invention (whole or part of the plant mutant of the present invention) and/or the plant-derived glucosylceramide-containing extract of the present invention as an active ingredient. can provide.
  • the pharmaceutical composition of the present invention may, if necessary, further contain known components in the pharmaceutical field (excipients, binders, disintegrants, etc.) as long as they do not significantly affect the pharmacological action of the plant-derived glucosylceramide. , medically acceptable ingredients such as lubricants) can optionally be included.
  • the form may be a form suitable for oral administration such as tablets, capsules, granules, fine granules, powders, and syrups.
  • the pharmaceutical composition of the present invention is selected from improving skin moisture retention, improving skin wrinkles, improving skin firmness, preventing or treating skin damage caused by ultraviolet rays, and preventing or treating colorectal cancer. It can be suitably used for one or more pharmaceutical applications. Furthermore, in the same way, a product for improving skin moisturization, improving skin wrinkles, improving skin firmness, or preventing or treating skin damage caused by ultraviolet rays, containing the plant-derived glucosylceramide-containing extract of the present invention as an active ingredient. Cosmetic compositions can also be provided.
  • the present invention provides human with at least one selected from the group consisting of the plant mutant of the present invention, the plant-derived glucosylceramide-containing extract of the present invention, the food composition of the present invention, or the pharmaceutical composition of the present invention. It can be said that the present invention provides a therapeutic method for improving moisturization, wrinkle improvement, skin firmness improvement, or preventing damage caused by ultraviolet rays, which is characterized by feeding or administering to the skin. The same applies to the method of applying the above cosmetic compositions to human skin. Furthermore, the present invention provides human with at least one selected from the group consisting of the plant mutant of the present invention, the plant-derived glucosylceramide-containing extract of the present invention, the food composition of the present invention, or the pharmaceutical composition of the present invention. It can also be said to provide a colon cancer prevention or treatment method characterized by feeding or administration.
  • Example 1 Production of rice mutant
  • Japonica rice Oryza sativa L. cv. Nipponbare: Nipponbare
  • Hirochika et al. Proc. Natl. Acad. Sci. USA, 93, 7783-7788 (1996)
  • Callus initiation culture and cell suspension culture were performed.
  • the culture conditions for activating the retrotransposon Tos17 for gene disruption followed the method of Ohtsuki (rice protoplast culture system, Agriculture, Forestry and Fisheries Technical Information Association (1990)).
  • the fully-ripened seeds described above were cultured in MS medium supplemented with 2,4-dichlorophenoxyacetic acid (2,4-D) (25°C for 1 month) to induce callus.
  • the resulting callus was cultured in N6 liquid medium supplemented with 2,4-D for 5 months, and then transferred to a regeneration medium to obtain regenerated rice plants (first generation (M1) plants).
  • genomic DNA is obtained for each line, and thermal asymmetric interlaced (TAIL) PCR method.
  • TAIL thermal asymmetric interlaced
  • strains (NE1537, ND8040) in which Tos17 was transferred to the Os3BGlu6 gene and Tos17 in the Os10BGlu34 gene were identified.
  • a transferred line (NE4173) was selected.
  • this Os3BGlu6 gene homozygous mutant (homo NE1537, homozygous ND8040) and Os10BGlu34 gene homozygous mutant (homo NE4173) were emasculated in warm water (http://www.naro.affrc.go.jp/laboratory/tarc). /contents/school/kouhai/index.html) to obtain Os3BGlu6 gene and Os10BGlu34 gene double heterozygous deletion mutants (heterogeneous NE1537 x heterozygous NE4173, heterozygous ND8040 x heterozygous NE4173).
  • hetero NE1537 ⁇ heterozygous NE4173 heterozygous ND8040 ⁇ heterozygous NE4173
  • Os3BGlu6 gene and Os10BGlu34 gene double homozygous mutants homo NE1537 ⁇ homozygous NE4173, homozygous ND8040 ⁇ homozygous NE4173
  • the heterozygous deletion mutant refers to a mutant in which Tos17 is inserted only in one gene of a specific allele and the function of one gene is deleted
  • the homozygous deletion mutant refers to a specific It refers to a mutant in which Tos17 is inserted in both alleles of , resulting in loss of function in both genes.
  • a double heterozygous mutant is a mutant in which Tos17 is inserted only in one gene of each of the two specific alleles and the function of one of the genes is deleted. Point.
  • the double homozygous mutant refers to a mutant in which Tos17 is inserted into both genes of each of the two specific alleles and the functions of both genes are deleted.
  • Example 2 Confirmation of homozygous deletion mutants
  • PR3 SEQ ID NO: 5
  • PR4 SEQ ID NO: 6 and the nucleotide sequence shown in FIG. 3
  • KOD-FX DNA polymerase, manufactured by Toyobo Co., Ltd.
  • the PR1 and PR2 are PCR primer sets for amplifying the DNA fragment in the region spanning the Os3BGlu6 gene and Tos17, and the PR3 and PR4 are the region in the Os3BGlu6 gene (the region spanning the insertion site of Tos17).
  • a PCR primer set for amplifying DNA fragments When Tos17 is inserted into the Os3BGlu6 gene, the set of PR1 and PR2 can amplify the DNA fragment, but the set of PR3 and PR4 makes it difficult to amplify the DNA fragment because Tos17 is a very large DNA.
  • homozygous ND8040 produced in Example 1 was also confirmed to have Tos17 inserted in both Os3BGlu6 alleles.
  • Homo ND8040 rice leaves were used, and PR5 (nucleotide sequence shown in SEQ ID NO: 7 and FIG. 4) and PR6 (SEQ ID NO: 8 and (nucleotide sequence shown in FIG. 4) or PR7 (nucleotide sequence shown in SEQ ID NO: 9 and FIG. 4) and PR8 (nucleotide sequence shown in SEQ ID NO: 10 and FIG. PCR was performed by the same method.
  • the PR5 and PR6 are PCR primer sets for amplifying the DNA fragment in the region spanning the Os3BGlu6 gene and Tos17, and the PR7 and PR8 are the region in the Os3BGlu6 gene (the region spanning the insertion site of Tos17).
  • a PCR primer set for amplifying DNA fragments is provided.
  • PCR was performed by the same method.
  • the PR9 and PR10 are a PCR primer set for amplifying a DNA fragment in the region spanning the Os10BGlu34 gene and Tos17
  • PR11 and PR12 are the region in the Os10BGlu34 gene (the region spanning the insertion site of Tos17).
  • Example 3 Confirmation of double homozygous deletion mutant
  • Tos17 was inserted in both the Os3BGlu6 allele and the Os10BGlu34 allele in the homozygous NE1537 ⁇ homozygous NE4173 produced in Example 1.
  • PR1 and PR2, PR3 and PR4, PR9 and PR10, or PR11 and PR12 of Example 2 PCR was performed in the same manner as in Example 2, except for using a set of 4 primers.
  • the amplification of the DNA fragment was clearly confirmed when PCR was performed with the set of PR1 and PR2 and the set of PR9 and PR10, and the amplification of the DNA fragment was clearly confirmed when the set of PR3 and PR4 and the set of PR11 and PR12 was performed. Amplification was not clearly confirmed.
  • the base sequences of the DNA fragments amplified by the set of PR1 and PR2 and the set of PR9 and PR10 were analyzed by DNA sequencing. It was confirmed to be an Os3BGlu6 gene and Os10BGlu34 gene double homozygous deletion mutant in which Tos17 was inserted in both gene alleles.
  • homozygous ND8040x homozygous NE4173 produced in Example 1 also had Tos17 inserted in both Os3BGlu6 alleles and both Os10BGlu34 alleles.
  • PR5 and PR6, PR7 and PR8, PR9 and PR10, or PR11 and PR12 of Example 2 PCR was performed in the same manner as in Example 2, except for using a set of 4 primers.
  • the amplification of the DNA fragment was clearly confirmed when PCR was performed with the set of PR5 and PR6 and the set of PR9 and PR10, and the amplification of the DNA fragment was clearly confirmed when the set of PR7 and PR8 and the set of PR11 and PR12 was performed. Amplification was not clearly confirmed.
  • the base sequences of the DNA fragments amplified by the set of PR5 and PR6 and the set of PR9 and PR10 were analyzed by DNA sequencing, and homozygous ND8040 ⁇ homozygous NE4173 had Tos17 inserted into both alleles of the Os3BGlu6 gene and Os10BGlu34. It was confirmed to be an Os3BGlu6 gene and Os10BGlu34 gene double homozygous deletion mutant in which Tos17 was inserted in both gene alleles.
  • Example 4 Comparison of amount of glucosylceramide contained in seed germ of rice mutant
  • Five rice mutants prepared in Example 1 homo NE1537, homo ND8040, homo NE4173, homo NE1537 x homo NE4173, homo ND8040 x homo NE4173
  • a wild strain Neipponbare
  • this extracted sample was centrifuged at 15,000 rpm for 20 minutes, and 0.25-fold volume of 0.2 M HCl was added to the resulting supernatant and mixed. This was centrifuged at 15000 rpm for 20 minutes, the supernatant was subjected to LC-ESI-MS/MS (Liquid chromatography-electrospray ionization-tandem mass spectrometry), and the method of Yumoto et al. , 205-210).
  • LC-ESI-MS/MS Liquid chromatography-electrospray ionization-tandem mass spectrometry
  • ESI-MS/MS uses Agilent 6460 with Agilent 1200 separation module, and the high-performance liquid chromatography column uses TSKgel ODS-120A column (2.1 mm id ⁇ 30 cm, manufactured by Tosoh Corporation, registered trademark), Various glucosylceramides were eluted with appropriate methanol concentrations containing 0.1% formic acid and detected in the ESI-positive ion mode. Precursor ion m/z [M+H] + , product ion m/z, collision energy (eV), fragmentor voltage (V ) are shown in Table 1 below. The amounts of various glucosylceramides detected were obtained by using rice-derived glucosylceramide purchased from Nagara Science as a standard.
  • the amount of glucosylceramide contained in the embryos of homozygous NE1537, homozygous ND8040, and homozygous NE4173 was higher than that of the wild strain (strain in which neither the functions of the Os3BGlu6 gene nor the Os10BGlu34 gene were deleted or suppressed). was also found to be significantly higher. It was also revealed that the amount of glucosylceramide contained in the seed germ of homo NE1537 ⁇ homo NE4173 and homo ND8040 ⁇ homo NE4173 was even higher than that of homo NE1537, homo ND8040 and homo NE4173.
  • Example 5 Comparison I of the amount of glucosylceramide contained in the bran on the seed surface of rice mutants
  • 8 mL of ethanol was added to 20 grains of each of the 6 kinds of rice seeds from which the germ was removed in Example 4, and the seeds were shaken at 50°C to extract glucosylceramide contained in the bran on the surface of the seeds. . Then, this extracted sample was centrifuged at 15,000 rpm for 20 minutes, and the supernatant was concentrated to an appropriate concentration. analyzed. Then, the amount of glucosylceramide contained in the bran in one seed was calculated as the average value ⁇ standard error of 5 individuals. The results are shown in Table 3 below.
  • Example 6 Comparison II of the amount of glucosylceramide contained in the bran on the seed surface of rice mutants
  • the rice husks of each seed obtained from the five rice mutants produced in Example 1 (homo NE1537, homo ND8040, homo NE4173, homo NE1537 x homo NE4173, homo ND8040 x homo NE4173) and a wild strain (Nipponbare) were used. After peeling, the seeds (brown rice) are polished with a rice polishing machine (MK Seiko Co., Ltd., small rice polishing machine RICELON SM-201K), and the resulting mixture containing bran is sieved with a tea strainer to remove polished rice pieces and germ.
  • MK Seiko Co., Ltd., small rice polishing machine RICELON SM-201K rice polishing machine
  • rice bran is inexpensive and contains a large amount of glucosylceramide, many of the plant-derived glucosylceramides used in health foods are extracted from rice bran. From the results of Examples 5 and 6, it is presumed that by using rice bran obtained from at least one of the rice mutants described above, it is possible to produce glucosylceramide at a lower cost than before. It can be said that it is a useful rice mutant.
  • Example 7 Comparison of amount of glucosylceramide contained in parts other than bran and germ in seeds of rice mutants
  • ethanol was added to the 6 kinds of rice seeds, vigorously mixed, and the ethanol was discarded. This process was repeated three times to remove as much of the glucosylceramide remaining in the surface bran as possible. Then, 10 grains of each grain were finely ground in a mortar, 8 mL of ethanol was added, and the grains were shaken to extract glucosylceramide contained in portions other than the bran and germ in the rice seeds.
  • the amount of glucosylceramide in the extract was analyzed by LC-ESI-MS/MS in the same manner as in Example 4. Then, the amount of glucosylceramide contained in parts other than bran and germ in 1 g of seed was calculated as the average value ⁇ standard error of 5 individuals. The results are shown in Table 5 below. Also in Table 5 below, when the amount of glucosylceramide was significantly higher than that of the wild strain (5% significant), the asterisk * indicates that the amount of glucosylceramide was significantly higher than that of homo NE1537.
  • Example 8 Comparison of amount of glucosylceramide contained in cooked rice obtained by cooking polished rice obtained from seeds of rice mutant.
  • the seeds brown rice was polished with a rice polishing machine (MK Seiko Co., Ltd., small rice polishing machine RICELON SM-201K), and the polished rice was cooked in a rice cooker (Sanko Co., Ltd., two-stage high-speed rice cooker) in a conventional manner.

Abstract

Provided is a plant variant having a higher glucosylceramide percentage content than conventional strains. In the plant variant, the function of at least one gene encoding a protein that belongs to the glycoside hydrolase family-1 and that has a glucocerebrosidase activity is deficient or suppressed.

Description

グルコシルセラミド含有率が向上した植物変異体Plant mutants with enhanced glucosylceramide content
 本発明は、グルコシルセラミド含有率が向上した植物変異体、その植物変異体から抽出された植物由来グルコシルセラミド含有抽出物、それらを含む食品組成物または医薬組成物等に関する。 The present invention relates to plant mutants with improved glucosylceramide content, plant-derived glucosylceramide-containing extracts extracted from the plant mutants, food compositions or pharmaceutical compositions containing them, and the like.
 グルコシルセラミドは、動物、植物、糸状菌などの生物に幅広く存在する化合物であり、スフィンゴシン塩基、脂肪酸、およびグルコースからなる糖脂質の一種である。このグルコシルセラミドは、生体内において重要な役割を担う化合物であるが、特に、植物由来グルコシルセラミドを摂取すると、肌の保湿改善効果、紫外線による肌の損傷の予防効果、大腸がんの予防効果などが発揮されることが知られており(非特許文献1-4)、機能性素材として注目を集めている。 Glucosylceramide is a compound that exists widely in organisms such as animals, plants, and filamentous fungi, and is a type of glycolipid consisting of sphingosine bases, fatty acids, and glucose. Glucosylceramide is a compound that plays an important role in the body. In particular, when plant-derived glucosylceramide is ingested, it has the effect of improving skin moisturization, preventing skin damage caused by ultraviolet rays, and preventing colorectal cancer. (Non-Patent Documents 1-4), and is attracting attention as a functional material.
 例えば、植物由来グルコシルセラミドとしては、米糠由来グルコシルセラミドやこんにゃく由来グルコシルセラミドが肌の保湿改善などの機能性素材として既に商品化されており、大きな市場を形成している。 For example, as plant-derived glucosylceramides, rice bran-derived glucosylceramide and konjac-derived glucosylceramide have already been commercialized as functional materials such as improving skin moisturization, and have formed a large market.
 この植物由来グルコシルセラミドは、通常、エタノールなどの抽出溶媒によって植物体より抽出され、さらに必要に応じて精製などがされて製造されるが、植物体におけるグルコシルセラミド含有率が極めて低いために、製造コストが非常に高くなってしまうという課題がある。また、米飯食品などのように、グルコシルセラミドを抽出せずに直接植物体を摂取する場合にも、植物体におけるグルコシルセラミド含有率が極めて低いために、期待する健康効果等が十分に得られないという課題がある。 This plant-derived glucosylceramide is usually extracted from the plant body with an extraction solvent such as ethanol, and is produced by further purification if necessary. There is a problem that the cost becomes very high. In addition, even when the plant body is directly ingested without extracting glucosylceramide, such as cooked rice, the expected health effects cannot be sufficiently obtained because the glucosylceramide content in the plant body is extremely low. There is a problem.
 したがって、グルコシルセラミドの含有率が従来よりも高まった植物体(植物変異体)が得られれば、植物由来グルコシルセラミドの製造コストを低減でき、さらに大量製造も可能となり、産業上の価値は計り知れない。さらに、米飯食品などのように、直接植物体を摂取する場合も、期待する十分な健康効果等が得られやすいという大きな利点があるが、まだそのような植物体の報告はない。 Therefore, if a plant body (plant mutant) with a higher glucosylceramide content than before can be obtained, the production cost of plant-derived glucosylceramide can be reduced, and mass production becomes possible, and the industrial value is immeasurable. do not have. Furthermore, direct ingestion of plants such as cooked rice products has the great advantage that expected sufficient health effects are likely to be obtained, but there have been no reports of such plants yet.
 そこで本発明は、グルコシルセラミドの含有率が従来よりも高まった植物変異体を提供することを目的とする。 Therefore, the object of the present invention is to provide a plant mutant with a higher glucosylceramide content than before.
 上記課題を解決するために本発明者は、グルコシルセラミドを加水分解してセラミドに変換する酵素であるグルコセレブロシダーゼに着目した。このグルコセレブロシダーゼは、主に動物での存在が知られているが、シロイズナズナからグリコシドハイドロラーゼファミリー116(GH116)に属するグルコセレブロシダーゼが発見されている以外は、植物での存在は知られていなかった。 In order to solve the above problems, the present inventor focused on glucocerebrosidase, an enzyme that hydrolyzes glucosylceramide and converts it into ceramide. Although this glucocerebrosidase is known to exist mainly in animals, it is not known to exist in plants, except for a glucocerebrosidase belonging to glycoside hydrolase family 116 (GH116), which has been found in Arabidopsis thaliana. I didn't.
 そして本発明者は鋭意検討し、植物において、グリコシドハイドロラーゼファミリー1(GH1)に属し且つグルコセレブロシダーゼ活性を有するタンパク質をコードする遺伝子(GH1グルコセレブロシダーゼ遺伝子)を見出し、さらに、その機能を欠損または抑制させることにより、植物体のグルコシルセラミドの含有率が従来よりも有意に高まることを見出し、本発明を完成させた。なお、現在までに、GH1グルコセレブロシダーゼ遺伝子の機能が欠損または抑制された植物変異体の報告はない。 The present inventors have made extensive studies and found a gene (GH1 glucocerebrosidase gene) that belongs to glycoside hydrolase family 1 (GH1) and encodes a protein having glucocerebrosidase activity in plants, and further lacks its function. The inventors have also found that the content of glucosylceramide in plants can be significantly increased by suppressing it, and thus completed the present invention. To date, there have been no reports of plant mutants in which the function of the GH1 glucocerebrosidase gene has been deleted or suppressed.
 すなわち、本発明は次の<1>~<12>である。
<1>1以上の、グリコシドハイドロラーゼファミリー1に属し且つグルコセレブロシダーゼ活性を有するタンパク質をコードする遺伝子の機能が欠損または抑制された、植物変異体。
<2>前記植物変異体が、種子植物の変異体である、<1>に記載の植物変異体。
<3>前記植物変異体が、イネ科植物の変異体である、<2>に記載の植物変異体。
<4>以下の(a)、(b)、または(c)に示されるDNAを含む1以上の前記遺伝子の機能が欠損または抑制された、<1>~<3>のいずれか1つに記載の植物変異体。
(a)配列表の配列番号1、配列番号1のうち塩基番号112~1566、配列番号2、または配列番号2のうち塩基番号76~1533に示される塩基配列からなるDNA。
(b)配列表の配列番号1、配列番号1のうち塩基番号112~1566、配列番号2、または配列番号2のうち塩基番号76~1533に示される塩基配列において、1もしくは数個の塩基の置換、欠失、挿入、または付加がされた塩基配列からなるDNA。
(c)配列表の配列番号1、配列番号1のうち塩基番号112~1566、配列番号2、または配列番号2のうち塩基番号76~1533に示される塩基配列と相補的な塩基配列からなるDNAとストリンジェントな条件下でハイブリダイゼーションすることができるDNA。
<5>前記遺伝子の機能が、ゲノムに内在するトランスポゾンが前記遺伝子に挿入されて欠損または抑制された、<1>~<4>のいずれか1つに記載の植物変異体。
<6>前記トランスポゾンがレトロトランスポゾンである、<5>に記載の植物変異体。
<7><1>~<6>のいずれか1つに記載の植物変異体から抽出溶媒を用いてグルコシルセラミド含有物を抽出する工程を含む、植物由来グルコシルセラミド含有抽出物の製造方法。
<8><1>~<6>のいずれか1つに記載の植物変異体から抽出された、植物由来グルコシルセラミド含有抽出物。
<9><1>~<6>のいずれか1つに記載の植物変異体および/または<8>に記載の植物由来グルコシルセラミド含有抽出物を含む、食品組成物。
<10><1>~<6>のいずれか1つに記載の植物変異体および/または<8>に記載の植物由来グルコシルセラミド含有抽出物を有効成分として含む、医薬組成物。
That is, the present invention is the following <1> to <12>.
<1> A plant mutant in which one or more genes encoding a protein belonging to glycoside hydrolase family 1 and having glucocerebrosidase activity are defective or suppressed in function.
<2> The plant mutant according to <1>, wherein the plant mutant is a seed plant mutant.
<3> The plant mutant according to <2>, wherein the plant mutant is a gramineous plant mutant.
<4> Any one of <1> to <3>, in which the function of one or more of the genes containing the DNA shown in (a), (b), or (c) below is deleted or suppressed Plant mutants as described.
(a) DNA consisting of the base sequence shown in SEQ ID NO: 1, base numbers 112 to 1566 of SEQ ID NO: 1, SEQ ID NO: 2, or base numbers 76 to 1533 of SEQ ID NO: 2 in the sequence listing.
(b) SEQ ID NO: 1 in the sequence listing, base numbers 112 to 1566 in SEQ ID NO: 1, SEQ ID NO: 2, or base numbers 76 to 1533 in SEQ ID NO: 2, one or several bases DNA consisting of base sequences with substitutions, deletions, insertions, or additions.
(c) DNA consisting of a base sequence complementary to the base sequence shown in SEQ ID NO: 1 in the sequence listing, base numbers 112 to 1566 of SEQ ID NO: 1, SEQ ID NO: 2, or base numbers 76 to 1533 of SEQ ID NO: 2 DNA that can hybridize with under stringent conditions.
<5> The plant mutant according to any one of <1> to <4>, wherein the function of the gene is deleted or suppressed by inserting a transposon endogenous in the genome into the gene.
<6> The plant mutant according to <5>, wherein the transposon is a retrotransposon.
<7> A method for producing a plant-derived glucosylceramide-containing extract, comprising a step of extracting a glucosylceramide-containing material from the plant mutant according to any one of <1> to <6> using an extraction solvent.
<8> A plant-derived glucosylceramide-containing extract extracted from the plant mutant according to any one of <1> to <6>.
<9> A food composition comprising the plant mutant according to any one of <1> to <6> and/or the plant-derived glucosylceramide-containing extract according to <8>.
<10> A pharmaceutical composition comprising the plant mutant according to any one of <1> to <6> and/or the plant-derived glucosylceramide-containing extract according to <8> as an active ingredient.
<11><1>~<6>のいずれか1つに記載の植物変異体、<8>に記載の植物由来グルコシルセラミド含有抽出物、<9>に記載の食品組成物、または<10>に記載の医薬組成物からなる群から選ばれる少なくとも1つを給与または投与することを特徴とする、肌の保湿改善、しわ改善、ハリ改善、または紫外線による損傷予防治療方法。
<12><1>~<6>のいずれか1つに記載の植物変異体、<8>に記載の植物由来グルコシルセラミド含有抽出物、<9>に記載の食品組成物、または<10>に記載の医薬組成物からなる群から選ばれる少なくとも1つを給与または投与することを特徴とする、大腸がん予防または治療方法。
<11> The plant mutant according to any one of <1> to <6>, the plant-derived glucosylceramide-containing extract according to <8>, the food composition according to <9>, or <10> 3. A method for improving moisture retention, wrinkles, and firmness of the skin, or preventing and treating damage caused by ultraviolet rays, comprising feeding or administering at least one selected from the group consisting of the pharmaceutical composition described in 1. above.
<12> The plant mutant according to any one of <1> to <6>, the plant-derived glucosylceramide-containing extract according to <8>, the food composition according to <9>, or <10> A method for preventing or treating colorectal cancer, comprising feeding or administering at least one selected from the group consisting of the pharmaceutical compositions described in 1.
 本発明によれば、グルコシルセラミドの含有率が従来よりも高まった植物変異体を提供することができる。そして、この植物変異体から抽出された植物由来グルコシルセラミド含有抽出物も提供することができる。さらに、これらのうち少なくとも1つを含む食品組成物や医薬組成物も提供することができる。 According to the present invention, it is possible to provide a plant mutant with a higher glucosylceramide content than before. A plant-derived glucosylceramide-containing extract extracted from this plant mutant can also be provided. Furthermore, food compositions and pharmaceutical compositions containing at least one of these can also be provided.
イネ(日本晴)のOs3BGlu6遺伝子の塩基配列である。It is the base sequence of the Os3BGlu6 gene of rice (Nipponbare). イネ(日本晴)のOs10BGlu34遺伝子の塩基配列である。It is the base sequence of the Os10BGlu34 gene of rice (Nipponbare). 実施例2でのPCRに用いたプライマーであるPR1、PR2、PR3、およびPR4の塩基配列である。1 shows the nucleotide sequences of PR1, PR2, PR3, and PR4 primers used for PCR in Example 2. FIG. 実施例2でのPCRに用いたプライマーであるPR5、PR6、PR7、およびPR8の塩基配列である。1 shows the nucleotide sequences of PR5, PR6, PR7, and PR8 primers used for PCR in Example 2. FIG. 実施例2でのPCRに用いたプライマーであるPR9、PR10、PR11、およびPR12の塩基配列である。1 shows the nucleotide sequences of primers PR9, PR10, PR11, and PR12 used for PCR in Example 2. FIG.
 本発明について説明する。
 本発明は、1以上の、グリコシドハイドロラーゼファミリー1に属し且つグルコセレブロシダーゼ活性を有するタンパク質をコードする遺伝子の機能が欠損または抑制された植物変異体(以下においては、これを「本発明の植物変異体」ともいう)、本発明の植物変異体から抽出された植物由来グルコシルセラミド含有抽出物(以下においては、これを「本発明の植物由来グルコシルセラミド含有抽出物」ともいう)、本発明の植物変異体および/または本発明の植物由来グルコシルセラミド含有抽出物を含む食品組成物(以下においては、これを「本発明の食品組成物」ともいう)、本発明の植物変異体および/または本発明の植物由来グルコシルセラミド含有抽出物を有効成分として含む医薬組成物(以下においては、これを「本発明の医薬組成物」ともいう)等である。
The present invention will be described.
The present invention provides a plant mutant in which one or more genes encoding proteins belonging to glycoside hydrolase family 1 and having glucocerebrosidase activity are functionally deficient or suppressed (hereinafter referred to as "the plant of the present invention (Also referred to as "mutants"), plant-derived glucosylceramide-containing extracts extracted from the plant mutants of the present invention (hereinafter also referred to as "plant-derived glucosylceramide-containing extracts of the present invention"), A food composition containing the plant mutant and/or the plant-derived glucosylceramide-containing extract of the present invention (hereinafter also referred to as the "food composition of the present invention"), the plant mutant of the present invention and/or the present A pharmaceutical composition containing the plant-derived glucosylceramide-containing extract of the invention as an active ingredient (hereinafter also referred to as "the pharmaceutical composition of the present invention"), and the like.
 まず、本発明の植物変異体について詳細に説明する。
 本発明の植物変異体は、1以上の、グリコシドハイドロラーゼファミリー1(GH1)に属し且つグルコセレブロシダーゼ活性を有するタンパク質をコードする遺伝子の機能が欠損または抑制された変異体である。なお、以下においては、この遺伝子を「GH1グルコセレブロシダーゼ遺伝子」ともいう。
First, the plant mutant of the present invention will be described in detail.
The plant mutant of the present invention is a mutant in which one or more genes encoding proteins belonging to glycoside hydrolase family 1 (GH1) and having glucocerebrosidase activity are functionally deficient or suppressed. In the following, this gene is also referred to as "GH1 glucocerebrosidase gene".
 ここで、「グルコセレブロシダーゼ活性」とは、EC番号が(EC3.2.1.45)である酵素(グルコセレブロシダーゼ)が有する酵素活性であり、つまり糖脂質であるグルコシルセラミドのグルコースとセラミドのβ-1,4-グリコシル結合を加水分解してセラミドを生成する反応を触媒する活性である。また、「グリコシドハイドロラーゼファミリー(Glycoside Hydrolase family)1」とは、Carbohydrate Active enzyme database(CAZy databe,http://www.cazy.org/)によって130程度に分類された糖質加水分解酵素のファミリーの1つであり、グルコセレブロシダーゼは、グリコシドハイドロラーゼファミリー1(GH1)に属するもの、グリコシドハイドロラーゼファミリー30(GH30)に属するもの、およびグリコシドハイドロラーゼファミリー116(GH116)に属するものが知られている。 Here, the "glucocerebrosidase activity" is an enzymatic activity possessed by an enzyme (glucocerebrosidase) having an EC number of (EC 3.2.1.45), that is, the glucose and ceramide of the glycolipid glucosylceramide β-1,4-glycosyl bond is hydrolyzed to catalyze the reaction to produce ceramide. In addition, "Glycoside Hydrolase family 1" is a family of carbohydrate hydrolases classified into about 130 groups by the Carbohydrate Active Enzyme database (CAZy database, http://www.cazy.org/). , and glucocerebrosidases are known to belong to glycoside hydrolase family 1 (GH1), glycoside hydrolase family 30 (GH30), and glycoside hydrolase family 116 (GH116). ing.
 そして、本発明の植物変異体は、植物体のゲノムに存在するGH1グルコセレブロシダーゼ遺伝子について、その機能が欠損または抑制された変異体である。なお、GH1グルコセレブロシダーゼ遺伝子がゲノムに複数存在する植物体の場合、その少なくとも1つの機能が欠損または抑制された変異体であれば良い。特に、その植物体においてGH1に属するグルコセレブロシダーゼの活性主体である(その植物体におけるGH1に属するグルコセレブロシダーゼの活性全体の50%超、さらには60%超、さらには70%超に関与する)GH1グルコセレブロシダーゼ遺伝子の機能が欠損または抑制された変異体であると好ましい。しかしながら、このような植物体の場合には、2以上のGH1グルコセレブロシダーゼ遺伝子の機能が欠損または抑制された変異体、あるいは、ゲノムに存在する全てのGH1グルコセレブロシダーゼ遺伝子の機能が欠損または抑制された変異体であると、グルコシルセラミド含有率がより高いものとなり易いためさらに好適である。 The plant mutant of the present invention is a mutant in which the function of the GH1 glucocerebrosidase gene present in the plant genome is deleted or suppressed. In the case of plants having multiple GH1 glucocerebrosidase genes in the genome, mutants in which at least one of the functions is deleted or suppressed may be used. In particular, it is the main activity of glucocerebrosidase belonging to GH1 in the plant (involved in more than 50%, more than 60%, more than 70% of the total activity of glucocerebrosidase belonging to GH1 in the plant) ) Mutants in which the function of the GH1 glucocerebrosidase gene is deleted or suppressed are preferred. However, in the case of such plants, mutants in which two or more GH1 glucocerebrosidase genes are functionally deficient or suppressed, or all GH1 glucocerebrosidase genes present in the genome are functionally deficient or suppressed. A modified mutant is more preferable because it tends to have a higher glucosylceramide content.
 なお、この植物変異体とは、成長した植物成体ばかりでなく、その葉、茎、根、花びら、がく、めしべ、葯、花粉、種子、種子の胚芽、種子の胚乳、種子表面の糠、仮根、および胞子嚢からなる群から選ばれる少なくとも1つなどであっても良く、植物由来のもの全てを指す。 This plant mutant includes not only mature plants, but also leaves, stems, roots, petals, calyx, pistils, anthers, pollen, seeds, germ of seeds, endosperm of seeds, bran on the surface of seeds, and temporary seeds. It may be at least one selected from the group consisting of roots and sporangia, and refers to all plant-derived substances.
 また、この「GH1グルコセレブロシダーゼ遺伝子の機能が欠損された」とは、GH1グルコセレブロシダーゼ遺伝子がコードするタンパク質を発現できない状態(遺伝子の転写またはタンパク質への翻訳ができない状態)であるか、あるいはこの遺伝子から発現されたタンパク質がグルコセレブロシダーゼ活性を全く有さない状態であることを意味する。さらに、「GH1グルコセレブロシダーゼ遺伝子の機能が抑制された」とは、GH1グルコセレブロシダーゼ遺伝子がコードするタンパク質の発現量(遺伝子の転写量またはタンパク質への翻訳量)あるいは発現されたタンパク質のグルコセレブロシダーゼ活性量が有意に減少(例えば抑制される前との比較において40%以下に減少、さらには30%以下に減少、さらには20%以下に減少、さらには10%以下に減少)した状態であることを意味する。 In addition, "the function of the GH1 glucocerebrosidase gene is deficient" means a state in which the protein encoded by the GH1 glucocerebrosidase gene cannot be expressed (a state in which the gene cannot be transcribed or translated into a protein), or It means that the protein expressed from this gene has no glucocerebrosidase activity. Furthermore, "the function of the GH1 glucocerebrosidase gene is suppressed" means that the expression level of the protein encoded by the GH1 glucocerebrosidase gene (transcription level of the gene or the amount of translation into protein) or glucocerebrosidase of the expressed protein In a state where the amount of sidase activity is significantly decreased (for example, decreased to 40% or less, further decreased to 30% or less, further decreased to 20% or less, further decreased to 10% or less compared to before suppression) It means that there is
 そして、この変異体は植物(真核生物)であることから、「1以上のGH1グルコセレブロシダーゼ遺伝子の機能が欠損または抑制された」とは、少なくとも1つのGH1グルコセレブロシダーゼ遺伝子において、その対立遺伝子を構成する2つの遺伝子(遺伝子セット)がいずれも機能が欠損または抑制されていること(ホモ変異体であること)を意味する。よって、1つの対立遺伝子を構成する遺伝子セットのうちいずれか1つの機能が欠損または抑制されたヘテロ変異体は本発明の植物変異体に包含されず、また、2以上のGH1グルコセレブロシダーゼ遺伝子の機能が欠損または抑制された変異体とは、2セット以上の上記の対立遺伝子の機能が欠損または抑制された変異体(例えばダブルホモ変異体など)であることを意味する。 Since this mutant is a plant (eukaryote), "the function of one or more GH1 glucocerebrosidase genes is lost or suppressed" means that at least one GH1 glucocerebrosidase gene has an allele It means that both of the two genes (gene set) that make up the gene are functionally deficient or suppressed (homologous mutant). Therefore, heterozygous mutants in which the function of any one of the gene sets constituting one allele is deleted or suppressed are not included in the plant mutants of the present invention, and two or more GH1 glucocerebrosidase genes A function-deficient or suppressed mutant means a mutant in which two or more sets of alleles described above are functionally deficient or suppressed (eg, double homozygous mutant).
 ここで、GH1グルコセレブロシダーゼ遺伝子の機能を欠損または抑制する方法(本発明の植物変異体の作製方法)については、公知の遺伝子組み換え技術、ゲノム編集技術や、植物品種改良で用いられる交配技術などを用いることができ、特段限定はされないが、トランスポゾンをGH1グルコセレブロシダーゼ遺伝子(そのタンパク質コード領域またはプロモーター領域)に挿入することによってその機能を欠損または抑制して、本発明の植物変異体を作製するのが好ましい。なお、本発明の植物変異体が遺伝子組み換え植物とならないことから、本発明の植物変異体は、このGH1グルコセレブロシダーゼ遺伝子の機能が、そのゲノムに内在するトランスポゾンが転移等によりこの遺伝子に挿入されて欠損または抑制された植物変異体、つまりこの変異体となる前の個体(野生型など)のゲノムに内在するトランスポゾンが転移等により挿入されてこの遺伝子が欠損または抑制された植物変異体であるとより好ましく、特にこのトランスポゾンがレトロトランスポゾンであるとさらに好ましい。2以上のGH1グルコセレブロシダーゼ遺伝子の機能が欠損または抑制された植物変異体の場合には、いずれの遺伝子にも上記したトランスポゾン(特にレトロトランスポゾン)が挿入されたものであるのが好適である。 Here, with respect to the method of deleting or suppressing the function of the GH1 glucocerebrosidase gene (the method of producing the plant mutant of the present invention), known gene recombination techniques, genome editing techniques, crossing techniques used in plant breeding, etc. Although not particularly limited, the plant mutant of the present invention is produced by inserting a transposon into the GH1 glucocerebrosidase gene (its protein coding region or promoter region) to delete or suppress its function. preferably. Since the plant mutant of the present invention does not become a genetically modified plant, the plant mutant of the present invention has the function of the GH1 glucocerebrosidase gene inserted into the gene by transfer or the like of a transposon endogenous to the genome. In other words, a plant mutant in which a transposon endogenous in the genome of the individual (wild type, etc.) before becoming this mutant is inserted by transposition etc. and this gene is deleted or suppressed More preferably, this transposon is a retrotransposon. In the case of plant mutants in which two or more GH1 glucocerebrosidase genes are functionally deficient or suppressed, it is preferred that the above-mentioned transposons (especially retrotransposons) are inserted into any of the genes.
 トランスポゾンは、植物のゲノムだけでなく、動物、酵母、および細菌のゲノムにも遍在している変異誘発遺伝子であり、動く遺伝子、または転移因子とも呼ばれている。例えばイネ(Oryza sativa)においては、イネのゲノムに内在しているレトロトランスポゾンのうちの1種であるレトロトランスポゾンTos17(以下、単に「Tos17」という場合もある)が組織培養によって活性化され転移をする性質を利用して、多数の遺伝子破壊系統が作出されている。したがって、イネにおいて、このTos17が1以上のGH1グルコセレブロシダーゼ遺伝子に挿入されることによりその機能が欠損または抑制されたイネ変異体(本発明の植物変異体)を取得することもできる。 Transposons are mutagenizing genes that are ubiquitous not only in plant genomes, but also in animal, yeast, and bacterial genomes, and are also called mobile genes or transposable elements. For example, in rice (Oryza sativa), retrotransposon Tos17 (hereinafter, sometimes simply referred to as "Tos17"), which is one of the retrotransposons endogenous in the rice genome, is activated by tissue culture to initiate transposition. A large number of gene-disruption strains have been created by taking advantage of this property. Therefore, it is also possible to obtain a rice mutant (the plant mutant of the present invention) in which Tos17 is inserted into one or more GH1 glucocerebrosidase genes in rice to have its function deleted or suppressed.
 なお、トランスポゾンは、その転移機構により2つのクラスに分類されている。クラスIIに属するトランスポゾンは、複製することなくDNAの形態で転移する(トランスポゾン自身がゲノムから切り出されて他の部位に転移する)ものであり、DNA型とも呼ばれている。クラスIIに属するトランスポゾンの例としては、トウモロコシ(Zea mays)のAc/Ds、Spm/dSpm、およびMu(Cell 56、181-191(1989);Cell 35、235-242(1983);Proc.Natl.Acad.Sci.USA 82、4783-4787(1985))、キンギョソウ(Antirrhinum majus)のTam(EMBO J、3、1015-1019(1984))、イネのmPing(Nature 421、163-167(2003))、およびnDart(Mol.Genet.Genomics 273、150-157(2005))などが挙げられる。 It should be noted that transposons are classified into two classes according to their transposition mechanism. Transposons belonging to class II transfer in the form of DNA without replication (transposons themselves are excised from the genome and transferred to other sites), and are also called DNA-type. Examples of transposons belonging to class II include Ac/Ds, Spm/dSpm, and Mu of maize (Zea mays) (Cell 56, 181-191 (1989); Cell 35, 235-242 (1983); Proc. Natl. Acad. ), and nDart (Mol. Genet. Genomics 273, 150-157 (2005)).
 また、クラスIに属するトランスポゾンは、レトロトランスポゾンあるいはレトロ型とも呼ばれ、RNA中間体(転写、逆転写)を介して複製し、転移するものである。このクラスIに属するトランスポゾンは、植物ゲノム中に遍在してそのかなりの部分を占めており、これらのいくつかが、創傷、病原体の攻撃および細胞培養などのストレス条件下で活性化される。クラスIに属するトランスポゾンの例としては、タバコ(Nicotiana tabacum)のTnt1AおよびTto1(Plant J.、5、535-542(1994);Plant Mol.Biol.、36、365-376(1988))、前述したイネのTos17(Proc.Natl.Acad.Sci.USA、93、7783-7788(1996))などが挙げられる。なお、一度ゲノムに挿入されたレトロトランスポゾンは切り出されることがないため、このレトロトランスポゾンはより安定な変異を引き起こすことが可能であり好適である。 Transposons belonging to class I are also called retrotransposons or retrotypes, and replicate and transpose via RNA intermediates (transcription, reverse transcription). Transposons belonging to this class I are ubiquitous and represent a significant portion of the plant genome, and some of these are activated under stress conditions such as wounding, pathogen attack and cell culture. Examples of transposons belonging to class I include Tnt1A and Tto1 of Nicotiana tabacum (Plant J., 5, 535-542 (1994); Plant Mol. Biol., 36, 365-376 (1988)), supra. and Tos 17 of fermented rice (Proc. Natl. Acad. Sci. USA, 93, 7783-7788 (1996)). Since the retrotransposon once inserted into the genome is never cut out, this retrotransposon is preferable because it can induce more stable mutations.
 例えば、前述したイネのレトロトランスポゾンTos17は、4.3kbの長さを有し、138bpの長さである2つの同じLTR(長鎖末端反復)および開始メチオニンtRNAの3´末端に相補的なPBS(プライマー結合部位)を持つものである。Tos17の転写は、組織培養により強く活性化され、そして培養時間とともにTos17のコピー数が増加する(後述する日本晴では、当初のTos17のコピー数は2であるが、組織培養後に再生した植物体ではこのコピー数が5~30に増加している)。そして、Tos17はイネのゲノム中を転移し、安定な変異を引き起こす。また、このTos17は、遺伝子領域に挿入され易い性質を有する。さらに、組織培養以外の条件でのTos17活性化はなく、他の条件や再分化後のTos17転移はほとんど起こらないため、得られた変異体も非常に安定である。
 よって、例えばイネ(日本晴など)において、まず組織培養を行ってTos17の転移を誘発し、得られた変異体についてPCRスクリーニングやグルコセレブロシダーゼ活性の測定などを行って1以上のGH1グルコセレブロシダーゼ遺伝子の機能がTos17により欠損または抑制された変異体を選抜し、これを再生して植物体とし、さらに自家受粉する方法などにより、本発明に係るイネ変異体を容易に作製することができる。
For example, the rice retrotransposon Tos17, described above, has a length of 4.3 kb and is complemented by two identical LTRs (long terminal repeats) that are 138 bp in length and the PBS (primer binding site). Transcription of Tos17 is strongly activated by tissue culture, and the copy number of Tos17 increases with culture time (in Nipponbare, which will be described later, the initial copy number of Tos17 is 2, but in plants regenerated after tissue culture This copy number is increased from 5 to 30). Tos17 then translocates in the rice genome and induces stable mutations. In addition, this Tos17 has the property of being easily inserted into the gene region. Furthermore, the mutants obtained are also very stable, since there is no Tos17 activation in conditions other than tissue culture and little Tos17 transfer occurs in other conditions or after redifferentiation.
Therefore, for example, in rice (such as Nipponbare), first, tissue culture is performed to induce the transfer of Tos17, and the obtained mutants are subjected to PCR screening, measurement of glucocerebrosidase activity, etc., and one or more GH1 glucocerebrosidase genes. The rice mutant according to the present invention can be easily produced by selecting a mutant in which the function of is deleted or suppressed by Tos17, regenerating it into a plant, and further self-pollinated.
 このようにして、1以上のGH1グルコセレブロシダーゼ遺伝子の機能が欠損または抑制された本発明の植物変異体を取得することができる。そして、本発明の植物変異体は、産業上の利用のし易さなどの観点から、種子植物(被子植物または裸子植物)の変異体であるのが好ましい。 In this way, it is possible to obtain the plant mutant of the present invention in which the function of one or more GH1 glucocerebrosidase genes is deleted or suppressed. The plant mutant of the present invention is preferably a seed plant (angiosperm or gymnosperm) mutant from the viewpoint of industrial ease of use.
 種子植物としては、限定されるものではないが、アオイ科植物、アカザ科植物、アカネ科植物、アサ科植物、アジサイ科植物、アブラナ科植物、アヤメ科植物、イネ科植物、ウコギ科植物、ウリ科植物、ウルシ科植物、カヤツリグサ科植物、キキョウ科植物、キク科植物、クスノキ科植物、クワ科植物、ケシ科植物、サトイモ科植物、サボテン科植物、シソ科植物、スイレン科植物、セリ科植物、タデ科植物、ツツジ科植物、ツバキ科植物、ナス科植物、ナデシコ科植物、ニレ科植物、ハス科植物、バラ科植物、ハス科植物、ヒガンバナ科植物、ヒルガオ科植物、ブドウ科植物、ブナ科植物、ボタン科植物、マメ科植物、ミカン科植物、ミズアオイ科植物、モクセイ科植物、ヤシ科植物、ヤナギ科植物、ユリ科植物、ラン科植物、イチイ科植物、イチョウ科植物、スギ科植物、ソテツ科植物、ヒノキ科植物、マツ科植物などが具体例として示される。 Seed plants include, but are not limited to, mallow plants, Chenopodiaceae plants, Rubiaceae plants, Cannabis plants, Hydrangea plants, Brassicaceae plants, Iridaceae plants, Gramineae plants, Araliaceae plants, Cucurbitaceae plants of the family Anacardiaceae, plants of the family Anacardiaceae, plants of the family Cyperaceae, plants of the family Bellflower, Asteraceae, plants of the camphor family, plants of the family Moraceae, plants of the poppy family, plants of the family Araceae, plants of the family Cactus, plants of the Labiatae family, plants of the family Nymphae, plants of the family Apiaceae , knotweed plant, ericaceous plant, camellia plant, solanaceous plant, caryophyllaceous plant, elm family plant, lotus plant, rose plant, lotus plant, amaryllidaceous plant, convolvulaceous plant, grape family plant, beech plants of the family Peonies, plants of the family Peonies, plants of the family Leguminosae, plants of the family Rutaceae, plants of the family Apocynaceae, plants of the family Oleaceae, plants of the family Palm, plants of the family Salicaceae, plants of the family Liliaceae, plants of the family Orchidaceae, plants of the Yew family, plants of the Ginkgo family, plants of the Cedar family , Cycadaceous plants, Cupressaceae plants, Pinaceae plants, and the like are shown as specific examples.
 より具体的に種子植物を例示すると、ワタ、ハイビスカス、ホウレンソウ、アカザ、ビート、アカネ、クチナシ、コーヒーノキ、アサ、ホップ、アジサイ、シロイズナズナ、アブラナ、ダイコン、ハクサイ、キャベツ、カリフラワー、ブロッコリー、コマツマ、チンゲンサイ、ワサビ、カキツバタ、ハナショウブ、アヤメ、イネ、チモシー、コムギ、トウモロコシ、モロコシ、オオムギ、ライムギ、サトウキビ、エンバク、ヒエ、アワ、シバ、ヨシ、タケ、ササ、タラノキ、ウド、ヤツデ、キュウリ、ニガウリ、メロン、スイカ、ゴーヤ、カボチャ、ヘチマ、トウガン、ヒョウタン、ユウガオ、ウルシ、ハゼノキ、スターグラス、キキョウ、キンケイギク、レタス、ガーベラ、ガザニア、アザミ、ゴボウ、ヒマワリ、コスモス、タンポポ、キンセンカ、フキ、ブタクサ、クスノキ、ゲッケイジュ、クワ、イチジク、ヒナゲシ、ボタンウキクサ、サトイモ、サボテン、シソ、サルビア、ラベンダー、スイレン、ニンジン、セリ、セロリ、ソバ、タデ、ツツジ、ブルーベリー、シャクナゲ、ツバキ、トマト、ナス、タバコ、ペチュニア、トウガラシ、ジャガイモ、ナデシコ、カーネーション、カスミソウ、ハコベ、ケヤキ、ムクノキ、ハス、バラ、サクラ、アーモンド、アンズ、イチゴ、ウメ、リンゴ、ナシ、ビワ、モモ、ハス、ニンニク、ネギ、タマネギ、ヒルガオ、アサガオ、サツマイモ、ブドウ、ブナ、コナラ、クヌギ、クリ、ボタン、ダイズ、ソラマメ、クロマメ、フジ、ニホンフジ、ルピナス、インゲンマメ、エンドウ、アルファルファ、ラッカセイ、スイートピー、ミヤコグサ、ウンシュウミカン、サンショウ、ナツミカン、オレンジ、ライム、レモン、グレープフルーツ、カラタチ、ホテイアオイ、オリーブ、ジャスミン、ココヤシ、アブラヤシ、ナツメヤシ、シュロ、ポプラ、ヤナギ、ユリ、ヒメユリ、チューリップ、スイセン、コチョウラン、カトレヤ、バニラ、イチイ、ハンショウブ、イチョウ、スギ、ソテツ、ヒノキ、マツなどが示される。 More specific examples of seed plants include cotton, hibiscus, spinach, pigweed, beet, madder, gardenia, coffee tree, hemp, hop, hydrangea, Arabidopsis thaliana, rapeseed, Japanese radish, Chinese cabbage, cabbage, cauliflower, broccoli, komatsuna, bok choy, Wasabi, iris, Japanese iris, rice, timothy, wheat, corn, sorghum, barley, rye, sugar cane, oat, millet, foxtail millet, turf, reed, bamboo, bamboo grass, taranogi, udo, fatsia, cucumber, bitter gourd, melon, Watermelon, bitter gourd, pumpkin, loofah, sweet gourd, gourd, yugao, sumac, Japanese wax tree, star grass, bellflower, osmanthus, lettuce, gerbera, gazania, thistle, burdock, sunflower, cosmos, dandelion, calendula, butterbur, ragweed, camphor, camphor tree , mulberry, fig, poppy, botanical, taro, cactus, perilla, salvia, lavender, water lily, carrot, parsley, celery, buckwheat, knotweed, azalea, blueberry, rhododendron, camellia, tomato, eggplant, tobacco, petunia, hot pepper, Potato, dianthus, carnation, gypsophila, chickweed, zelkova, muku tree, lotus, rose, cherry, almond, apricot, strawberry, plum, apple, pear, loquat, peach, lotus, garlic, green onion, onion, bindweed, morning glory, sweet potato, Grapes, beech, konara oak, sawtooth oak, chestnut, button, soybean, broad bean, black bean, wisteria, Japanese wisteria, lupine, kidney bean, pea, alfalfa, peanut, sweet pea, Lotus japonicus, mandarin orange, Japanese pepper, natsumikan, orange, lime, lemon, Grapefruit, trifoliate, water hyacinth, olive, jasmine, coconut palm, oil palm, date palm, palm, poplar, willow, lily, sun lily, tulip, daffodil, moth orchid, cattleya, vanilla, yew, hanger, ginkgo, cedar, cycad, cypress, pine, etc. is shown.
 本発明者は、アオイ科植物、アブラナ科植物、イネ科植物、ウリ科植物、キク科植物、ナス科植物、バラ科植物、マメ科植物、セリ科植物などにおいて、GH1グルコセレブロシダーゼ遺伝子の存在を見出している(特願2020-88950)。これらの植物のいずれかにおいて、その1以上のGH1グルコセレブロシダーゼ遺伝子が欠損または抑制された植物変異体は、グルコシルセラミド含有率が従来よりも高いものとなり易いため非常に有用であり、特に、イネ科植物の植物変異体はより好適である。 The present inventor discovered the presence of the GH1 glucocerebrosidase gene in mallow, cruciferous, gramineous, cucurbitaceous, asteraceous, solanaceous, rosaceous, leguminous, and umbelliferous plants. (Japanese Patent Application No. 2020-88950). Plant mutants in which one or more GH1 glucocerebrosidase genes are deleted or suppressed in any of these plants are very useful because they tend to have a higher glucosylceramide content than conventional ones, and are particularly useful in rice. Plant variants of family plants are more preferred.
 例えば、イネの品種の1つである日本晴(Oryza sativa L. cv. Nipponbare)には、GH1グルコセレブロシダーゼ遺伝子として、Os3BGlu6遺伝子およびOs10BGlu34遺伝子が存在することを本発明者は見出している(特願2020-88950など)。このOs3BGlu6遺伝子の塩基配列を配列表の配列番号1および図1に示し、Os10BGlu34遺伝子の塩基配列を配列表の配列番号2および図2に示す。 For example, the present inventors have discovered that one rice cultivar, Oryza sativa L. cv. Nipponbare, has Os3BGlu6 and Os10BGlu34 genes as GH1 glucocerebrosidase genes (patent application 2020-88950, etc.). The nucleotide sequence of this Os3BGlu6 gene is shown in SEQ ID NO: 1 of the sequence listing and FIG. 1, and the nucleotide sequence of the Os10BGlu34 gene is shown in SEQ ID NO: 2 of the sequence listing and FIG.
 そして、本発明の植物変異体は、配列表の配列番号1、配列番号1のうち塩基番号112~1566、配列番号2、または配列番号2のうち塩基番号76~1533に示される塩基配列からなるDNAを含む1以上のGH1グルコセレブロシダーゼ遺伝子の機能が欠損または抑制された変異体であるのが好適である。つまり、その機能が欠損または抑制されるGH1グルコセレブロシダーゼ遺伝子の少なくとも1つ、より好ましくは全てが、上記したいずれかのDNAを含む遺伝子であるのが好適である。例えば、イネの日本晴の変異体であれば、Os3BGlu6遺伝子および/またはOs10BGlu34遺伝子の機能が欠損または抑制された変異体であるのが好適である。特に、このイネの日本晴の変異体は、少なくともOs3BGlu6遺伝子の機能が欠損または抑制された変異体であるとより好ましく、さらに、Os3BGlu6遺伝子およびOs10BGlu34遺伝子の両方の機能が欠損または抑制された変異体(ダブルホモ変異体)であると、グルコシルセラミド含有率がより高いものとなり易いため非常に好適である。 The plant mutant of the present invention comprises the nucleotide sequence shown in SEQ ID NO: 1 in the sequence listing, nucleotide numbers 112 to 1566 in SEQ ID NO: 1, SEQ ID NO: 2, or nucleotide numbers 76 to 1533 in SEQ ID NO: 2. Preferred are functionally deficient or suppressed mutants of one or more GH1 glucocerebrosidase genes comprising DNA. That is, at least one, more preferably all, of the GH1 glucocerebrosidase genes whose function is deleted or suppressed is preferably a gene containing any of the DNAs described above. For example, Nipponbare rice mutants are preferably mutants in which the functions of the Os3BGlu6 gene and/or the Os10BGlu34 gene are deleted or suppressed. In particular, the Nipponbare rice mutant is more preferably a mutant in which at least the function of the Os3BGlu6 gene is deleted or suppressed, and further a mutant in which the functions of both the Os3BGlu6 gene and the Os10BGlu34 gene are deleted or suppressed ( A double homozygous mutant) is very suitable because it tends to have a higher glucosylceramide content.
 例えば、Os3BGlu6遺伝子またはOs10BGlu34遺伝子の少なくとも一方の対立遺伝子に、イネの日本晴のゲノムに内在するレトロトランスポゾン(Tos17)が挿入されて、その機能が欠損または抑制されたイネの日本晴の変異体であると、遺伝子組み換え作物とはならないため好適である。例えば、上記遺伝子のタンパク質コード領域にTos17が挿入された場合、当該遺伝子の機能が欠損されることとなり、上記遺伝子のプロモーター領域にTos17が挿入された場合、当該遺伝子の機能が欠損あるいは抑制されることとなる。 For example, a rice Nipponbare mutant in which a retrotransposon (Tos17) endogenous to the rice Nipponbare genome is inserted into at least one allele of the Os3BGlu6 gene or Os10BGlu34 gene, and the function of which is deleted or suppressed. , is suitable because it does not become a genetically modified crop. For example, when Tos17 is inserted into the protein coding region of the gene, the function of the gene is lost, and when Tos17 is inserted into the promoter region of the gene, the function of the gene is lost or suppressed. It will happen.
 さらに、本発明の植物変異体は、配列表の配列番号1、配列番号1のうち塩基番号112~1566、配列番号2、または配列番号2のうち塩基番号76~1533に示される塩基配列において、1もしくは数個の塩基の置換、欠失、挿入、または付加がされた塩基配列からなるDNAを含む1以上のGH1グルコセレブロシダーゼ遺伝子の機能が欠損または抑制されたものであっても良い。つまり、その機能が欠損または抑制されるGH1グルコセレブロシダーゼ遺伝子の少なくとも1つが、上記したいずれかのDNAを含む遺伝子であっても良い。ここで、「数個」とは20個以下であることを意味し、10個以下であるのが好ましく、6個以下であるのがより好ましい。 Furthermore, in the plant mutant of the present invention, in the nucleotide sequence shown in SEQ ID NO: 1 in the sequence listing, nucleotide numbers 112 to 1566 in SEQ ID NO: 1, SEQ ID NO: 2, or nucleotide numbers 76 to 1533 in SEQ ID NO: 2, One or more GH1 glucocerebrosidase genes containing a DNA consisting of a base sequence in which one or several bases are substituted, deleted, inserted or added may be functionally deficient or suppressed. That is, at least one of the GH1 glucocerebrosidase genes whose function is deleted or suppressed may be a gene containing any of the above DNAs. Here, "several" means 20 or less, preferably 10 or less, more preferably 6 or less.
 さらには、本発明の植物変異体は、配列表の配列番号1、配列番号1のうち塩基番号112~1566、配列番号2、または配列番号2のうち塩基番号76~1533に示される塩基配列と相補的な塩基配列からなるDNAとストリンジェントな条件下でハイブリダイゼーションすることができるDNAを含む1以上のGH1グルコセレブロシダーゼ遺伝子の機能が欠損または抑制されたものであっても良い。つまり、その機能が欠損または抑制されるGH1グルコセレブロシダーゼ遺伝子の少なくとも1つが、上記したいずれかのDNAを含む遺伝子であっても良い。
 ここで、「ストリンジェントな条件」とは、いわゆる特異的なハイブリッドが形成され、非特異的なハイブリッドが形成されない条件である。一例を示せば、0.7~1.0M塩化ナトリウム存在下、65℃でハイブリダイゼーションを行った後、0.1~5×SSC、0.1%SDS溶液(1×SSCの組成:150mM塩化ナトリウム、15mMクエン酸ナトリウム)を使用し、60℃、好ましくは65℃、より好ましくは68℃での洗浄が1~3回行われる条件などが挙げられる。
Furthermore, the plant mutant of the present invention has the nucleotide sequence shown in SEQ ID NO: 1 in the sequence listing, nucleotide numbers 112 to 1566 in SEQ ID NO: 1, SEQ ID NO: 2, or nucleotide numbers 76 to 1533 in SEQ ID NO: 2. The function of one or more GH1 glucocerebrosidase genes containing a DNA capable of hybridizing with a DNA consisting of a complementary nucleotide sequence under stringent conditions may be deleted or suppressed. That is, at least one of the GH1 glucocerebrosidase genes whose function is deleted or suppressed may be a gene containing any of the above DNAs.
Here, "stringent conditions" are conditions under which so-called specific hybrids are formed and non-specific hybrids are not formed. For example, after hybridization at 65° C. in the presence of 0.7-1.0 M sodium chloride, 0.1-5×SSC, 0.1% SDS solution (composition of 1×SSC: 150 mM chloride sodium, 15 mM sodium citrate) and washing at 60° C., preferably 65° C., more preferably 68° C., one to three times.
 前述した特願2020-88950に示されるように、本発明者は、様々な種子植物などにおいてGH1グルコセレブロシダーゼ遺伝子が少なくとも1つ存在していることを見出している。そして、その遺伝子は、上記した配列番号1または2に示される塩基配列において1もしくは数個の塩基の置換、欠失、挿入、または付加がされた塩基配列からなるDNA、あるいは、配列番号1または2に示される塩基配列と相補的な塩基配列からなるDNAとストリンジェントな条件下でハイブリダイゼーションすることができるDNAを含む可能性が極めて高い。また、植物体においては、グルコセレブロシダーゼのうちGH1に属するものが支配的であることも本発明者は見出している。したがって、Os3BGlu6遺伝子またはOs10BGlu34遺伝子の塩基配列やアミノ酸配列を用いた相同性検索、これらの少なくとも一部のDNAを用いたハイブリダイゼーションによるスクリーニングなどを利用してGH1グルコセレブロシダーゼ遺伝子を特定し、その機能を欠損または抑制させることにより、各種植物体から本発明の植物変異体を容易に取得することができる。 As shown in the aforementioned Japanese Patent Application No. 2020-88950, the present inventors have found that at least one GH1 glucocerebrosidase gene is present in various seed plants. The gene is a DNA consisting of a base sequence in which one or several bases are substituted, deleted, inserted or added in the base sequence shown in SEQ ID NO: 1 or 2, or SEQ ID NO: 1 or It is very likely that it contains a DNA that can hybridize under stringent conditions with a DNA consisting of a nucleotide sequence complementary to the nucleotide sequence shown in 2. Furthermore, the present inventors have found that among the glucocerebrosidases in plants, those belonging to GH1 are dominant. Therefore, the GH1 glucocerebrosidase gene is identified using a homology search using the nucleotide sequence or amino acid sequence of the Os3BGlu6 gene or the Os10BGlu34 gene, screening by hybridization using at least a part of these DNAs, etc., and its function The plant mutant of the present invention can be easily obtained from various plants by deleting or suppressing .
 このような本発明の植物変異体は、1以上のGH1グルコセレブロシダーゼ遺伝子の機能が欠損または抑制されているため、グルコシルセラミドの含有率が従来よりも高いものとなる。例えば、葉、茎、根、花びら、がく、めしべ、葯、花粉、種子、種子の胚芽、種子の胚乳、種子表面の糠、仮根、および胞子嚢からなる群から選ばれる少なくとも1つの部位のグルコシルセラミドの含有率が従来よりも高いものとなる。なお、本発明の植物変異体は、上記したような部位の少なくとも一部のグルコシルセラミドの含有率が従来よりも高いものであり、このような部位を単離したものなども包含されるが、その一部にグルコシルセラミドの含有率が従来と同程度である部位を含むものであっても良い。また、限定されるものではないが、本発明の植物変異体またはその一部からグルコシルセラミド含有抽出物を抽出して機能性素材として用いる場合においては、この抽出原料として用いることが可能な部位におけるグルコシルセラミド含有率は100μg/g以上(0.01質量%以上)であって良く、さらには200μg/g以上(0.02質量%以上)であって良く、さらには300μg/g以上(0.03質量%以上)であって良く、さらには400μg/g以上(0.04質量%以上)であって良く、さらには500μg/g以上(0.05質量%以上)であって良い。例えば、イネ科植物変異体の種子の胚芽であれば、そのグルコシルセラミド含有率が450μg/g以上(0.045質量%以上)であって良く、480μg/g以上(0.048質量%以上)であって良く、550μg/g以上(0.055質量%以上)であって良い。また、イネ科植物変異体の種子の糠であれば、そのグルコシルセラミド含有率が110μg/g以上(0.011質量%以上)であって良く、150μg/g以上(0.015質量%以上)であって良く、160μg/g以上(0.016質量%以上)であって良い。なお、イネ科植物変異体の場合、この胚芽および糠を含む混合物を植物由来グルコシルセラミド含有抽出物の抽出原料とするのが好ましく、その場合の胚芽と糠との混合割合は、これも限定されるものではないが、胚芽1質量部に対して糠2~4質量部であると好適である。そして、本発明の植物変異体またはその一部を摂取する形態の機能性食品(食品組成物)として用いる場合においては、この食品組成物に用いることが可能な部位におけるグルコシルセラミド含有率は20μg/g以上(0.002質量%以上)であって良く、さらには30μg/g以上(0.003質量%以上)であって良く、さらには40μg/g以上(0.004質量%以上)であって良く、さらには50μg/g以上(0.005質量%以上)であって良く、さらには52μg/g以上(0.0052質量%以上)であって良く、さらには55μg/g以上(0.0055質量%以上)であって良く、さらには60μg/g以上(0.006質量%以上)であって良く、さらには65μg/g以上(0.0065質量%以上)であって良い。 In such plant mutants of the present invention, the function of one or more GH1 glucocerebrosidase genes is deficient or suppressed, so that the glucosylceramide content is higher than in the past. For example, at least one site selected from the group consisting of leaf, stem, root, petal, calyx, pistil, anther, pollen, seed, seed germ, seed endosperm, seed surface bran, rhizome, and sporangia The content of glucosylceramide is higher than before. In addition, the plant mutant of the present invention has a higher glucosylceramide content in at least a part of the above-described sites than in the past, and includes those isolated from such sites. A portion thereof may contain a portion having a glucosylceramide content of about the same level as the conventional one. In addition, although not limited, in the case of extracting a glucosylceramide-containing extract from the plant mutant of the present invention or a part thereof and using it as a functional material, The glucosylceramide content may be 100 μg/g or more (0.01% by mass or more), further 200 μg/g or more (0.02% by mass or more), and further 300 μg/g or more (0.02% by mass or more). 03% by mass or more), 400 μg/g or more (0.04% by mass or more), and further 500 μg/g or more (0.05% by mass or more). For example, if it is a seed germ of a gramineous plant mutant, the glucosylceramide content may be 450 μg/g or more (0.045% by mass or more), or 480 μg/g or more (0.048% by mass or more). and may be 550 μg/g or more (0.055% by mass or more). In addition, if it is the bran of the seed of the gramineous plant mutant, the glucosylceramide content rate may be 110 μg / g or more (0.011% by mass or more), and 150 μg / g or more (0.015% by mass or more). and may be 160 μg/g or more (0.016% by mass or more). In the case of a gramineous plant mutant, the mixture containing the germ and bran is preferably used as the raw material for extraction of the plant-derived glucosylceramide-containing extract, and in this case, the mixing ratio of the germ and the bran is also limited. However, it is preferable to use 2 to 4 parts by mass of rice bran per 1 part by mass of germ. When the plant mutant of the present invention or a part thereof is used as a functional food (food composition) in the form of ingestion, the glucosylceramide content in the part that can be used in this food composition is 20 μg / g or more (0.002% by mass or more), further may be 30 μg/g or more (0.003% by mass or more), and further 40 μg/g or more (0.004% by mass or more). may be 50 μg/g or more (0.005% by mass or more), further may be 52 μg/g or more (0.0052% by mass or more), and further 55 μg/g or more (0.0052% by mass or more). 0055% by mass or more), may be 60 μg/g or more (0.006% by mass or more), and further may be 65 μg/g or more (0.0065% by mass or more).
 次に、本発明の植物由来グルコシルセラミド含有抽出物およびその製造方法について詳細に説明する。 Next, the plant-derived glucosylceramide-containing extract of the present invention and the method for producing the same will be described in detail.
 本発明の植物由来グルコシルセラミド含有抽出物は、前述したような本発明の植物変異体から抽出された植物由来グルコシルセラミドを含有する植物抽出物である。これは、本発明の植物変異体(本発明の植物変異体全体あるいはその一部)から、アルコール等の有機溶媒や界面活性剤を含んだ水溶液等を用いた抽出工程などの、抽出溶媒を用いてグルコシルセラミド含有物を抽出する工程を含む製造方法によって製造することができる。なお、この抽出溶媒は、限定されるものではないが、抽出物の食品組成物などへの使用という観点から、エタノールであるのが好ましい。そして、このエタノールは、含水エタノール(例えば80重量%以上、さらには90重量%以上のエタノール濃度である含水エタノールなど)であっても良い。また、この抽出の工程では、必要に応じて加熱処理(例えば40~80℃の加熱処理)を行っても良い。さらに、必要に応じて、抽出溶媒の少なくとも一部を除去するなどのために粗精製工程(例えば濃縮など)を行っても良い。このような工程後に得られた、液状、粉状、顆粒状などの形態のものが本発明の植物由来グルコシルセラミド含有抽出物となる。 The plant-derived glucosylceramide-containing extract of the present invention is a plant extract containing plant-derived glucosylceramide extracted from the plant mutant of the present invention as described above. This is performed by using an extraction solvent such as an extraction process using an aqueous solution containing an organic solvent such as alcohol or a surfactant from the plant mutant of the present invention (whole or part of the plant mutant of the present invention). It can be produced by a production method including a step of extracting a glucosylceramide-containing substance. The extraction solvent is not particularly limited, but is preferably ethanol from the viewpoint of use of the extract in food compositions and the like. This ethanol may be hydrous ethanol (for example, hydrous ethanol having an ethanol concentration of 80% by weight or more, further 90% by weight or more). In addition, in this extraction step, heat treatment (for example, heat treatment at 40 to 80° C.) may be performed as necessary. Further, if necessary, a crude purification step (eg, concentration, etc.) may be performed to remove at least part of the extraction solvent. The plant-derived glucosylceramide-containing extract of the present invention in the form of liquid, powder, granule, or the like obtained after such steps is obtained.
 ここで、本発明の植物由来グルコシルセラミド含有抽出物に含まれる植物由来グルコシルセラミドの含有率は、限定されるものではないが、下限は、0.01質量%以上であるのが好ましく、0.02質量%以上であるのがより好ましく、0.05質量%以上であるのがさらに好ましく、0.1質量%以上であるのがさらに好ましく、0.2質量%以上であるのがさらに好ましい。そして上限は、70質量%以下であるのが好ましく、50質量%以下であるのがより好ましく、40質量%以下であるのがさらに好ましく、30質量%以下であるのがさらに好ましく、20質量%以下であるのがさらに好ましく、10質量%以下であるのがさらに好ましい。 Here, the content of plant-derived glucosylceramide contained in the plant-derived glucosylceramide-containing extract of the present invention is not limited, but the lower limit is preferably 0.01% by mass or more. 02% by mass or more, more preferably 0.05% by mass or more, even more preferably 0.1% by mass or more, and even more preferably 0.2% by mass or more. The upper limit is preferably 70% by mass or less, more preferably 50% by mass or less, even more preferably 40% by mass or less, further preferably 30% by mass or less, and 20% by mass. or less, more preferably 10% by mass or less.
 なお、本発明の植物由来グルコシルセラミド含有抽出物は、単に状態を示すことにより物の構造または特性を特定しているにすぎない場合に該当すると考えられるが、仮にそうでなかったとしても、この抽出物中のグルコシルセラミド以外の具体的な成分(本発明の植物変異体由来の他の成分)や組成比は明確に特定できておらず、また、この全ての成分の特定は著しく過大な経済的支出や時間を要するものであると考えられるため、その構造または特性により直接特定することが不可能であるか、またはおよそ実際的でないという事情が存在すると言える。 In addition, the plant-derived glucosylceramide-containing extract of the present invention is considered to correspond to the case where the structure or characteristics of the substance are specified simply by indicating the state, but even if this is not the case, this Specific components other than glucosylceramide in the extract (other components derived from the plant mutant of the present invention) and composition ratios have not been clearly specified, and specifying all of these components is extremely costly. Circumstances exist where it is impossible or almost impractical to directly identify the structure or characteristics of the structure or characteristics of the structure or characteristics of the structure or characteristics.
 このような本発明の植物由来グルコシルセラミド含有抽出物(例えば前述した製造方法により製造された植物由来グルコシルセラミド含有抽出物)や、前述した本発明の植物変異体を摂取することによって、これらに含まれる植物由来グルコシルセラミドの作用により、肌の保湿改善、紫外線による肌の損傷予防または治療、大腸がん予防または治療などが期待できる。また、これらに含まれる植物由来グルコシルセラミド以外の成分についても植物体由来のものであるため、これらは安全に且つ低コストで食品組成物などに用いることができるものである。 By ingesting such a plant-derived glucosylceramide-containing extract of the present invention (for example, a plant-derived glucosylceramide-containing extract produced by the production method described above) or the above-described plant mutant of the present invention, Due to the action of plant-derived glucosylceramide, it can be expected to improve skin moisturization, prevent or treat skin damage caused by ultraviolet rays, prevent or treat colorectal cancer, etc. In addition, since the components other than the plant-derived glucosylceramide contained in these are also plant-derived, they can be safely used in food compositions and the like at low cost.
 次に、本発明の植物変異体および/または本発明の植物由来グルコシルセラミド含有抽出物を含む、本発明の食品組成物、および本発明の医薬組成物について詳細に説明する。 Next, the food composition of the present invention and the pharmaceutical composition of the present invention containing the plant mutant of the present invention and/or the plant-derived glucosylceramide-containing extract of the present invention will be described in detail.
 本発明の植物変異体(本発明の植物変異体全体またはその一部)を含む食品組成物、本発明の植物由来グルコシルセラミド含有抽出物を含む食品組成物、あるいは本発明の植物変異体および本発明の植物由来グルコシルセラミド含有抽出物をいずれも含む食品組成物とすることにより、植物由来グルコシルセラミドを豊富に含む本発明の食品組成物を安価に提供することができる。例えば、本発明のイネ変異体からは、このイネ変異体の種子である籾や玄米だけでなく、この玄米に食品とするための加工が施された食品組成物(このイネ変異体を含む食品組成物)である精白米、米粉、米飯食品(玄米や精白米が炊飯等された加工米飯など)、米粉加工食品などを安価に提供することができる。また、玄米表面の糠(種子表面の糠)などから抽出されたイネ由来グルコシルセラミド含有抽出物を含む食品組成物であるサプリメントなども安価に提供することができる。ここで、「精白米」とは玄米から胚芽および表面の糠が除去された(加工により削り取られた)ものであり、さらに胚乳の一部が除去されたものも包含される。また、「米粉」とはこの玄米または精白米が粉状に加工されたものである。なお、本発明の食品組成物には、植物由来グルコシルセラミドの機能性などに大きな影響を与えない範囲において、必要に応じて、さらに食品分野における公知の成分を任意に含有させることができる。そして、本発明の食品組成物として、本発明の植物変異体および/または本発明の植物由来グルコシルセラミド含有抽出物を有効成分として含む、肌の保湿改善用、肌のしわ改善用、肌のハリ改善用、紫外線による肌の損傷予防用、および大腸がん予防用から選ばれる1以上の用途の食品組成物を提供することもできる。 A food composition containing the plant mutant of the present invention (whole or a part of the plant mutant of the present invention), a food composition containing the plant-derived glucosylceramide-containing extract of the present invention, or the plant mutant of the present invention and the present By preparing a food composition containing both the plant-derived glucosylceramide-containing extract of the present invention, the food composition of the present invention rich in plant-derived glucosylceramide can be provided at a low cost. For example, from the rice mutant of the present invention, not only rice and brown rice, which are the seeds of the rice mutant, but also food compositions obtained by processing the brown rice into a food (food containing the rice mutant It is possible to provide polished rice, rice flour, cooked rice foods (such as brown rice and processed cooked rice obtained by cooking polished rice), rice flour processed foods, etc., which are compositions) at a low price. In addition, supplements, which are food compositions containing a rice-derived glucosylceramide-containing extract extracted from the bran on the surface of brown rice (the bran on the surface of seeds), can be provided at a low cost. Here, "polished rice" means brown rice from which the germ and surface bran have been removed (scraped off by processing), and also includes rice from which part of the endosperm has been removed. "Rice flour" is a product obtained by processing brown rice or polished rice into powder. In addition, the food composition of the present invention can optionally contain other known ingredients in the food field, as long as they do not significantly affect the functionality of the plant-derived glucosylceramide. The food composition of the present invention contains the plant mutant of the present invention and/or the plant-derived glucosylceramide-containing extract of the present invention as an active ingredient for improving skin moisturization, improving skin wrinkles, and improving skin firmness. It is also possible to provide a food composition for one or more uses selected from skin improvement, prevention of skin damage caused by ultraviolet rays, and prevention of colon cancer.
 また、本発明の植物変異体(本発明の植物変異体全体またはその一部)および/または本発明の植物由来グルコシルセラミド含有抽出物を有効成分として含有させることにより、本発明の医薬組成物を提供することができる。なお、本発明の医薬組成物にも、植物由来グルコシルセラミドの薬理作用などに大きな影響を与えない範囲において、必要に応じて、さらに医薬分野における公知の成分(賦形剤、結合剤、崩壊剤、滑沢剤などの医学的に許容される成分)を任意に含有させることができる。また、その形態は、錠剤、カプセル剤、顆粒剤、細粒材、散剤、シロップ剤などの経口投与に適した形態であって良い。あるいは、非経口剤(点滴剤など)であっても良い。そして、この本発明の医薬組成物は、肌の保湿改善用、肌のしわ改善用、肌のハリ改善用、紫外線による肌の損傷予防または治療用、および大腸がん予防または治療用から選ばれる1以上の医薬用途として好適に使用することができる。
 さらに、同様にして、本発明の植物由来グルコシルセラミド含有抽出物を有効成分として含む肌の保湿改善用、肌のしわ改善用、肌のハリ改善用、あるいは紫外線による肌の損傷予防または治療用の化粧品組成物を提供することもできる。
In addition, the pharmaceutical composition of the present invention can be obtained by incorporating the plant mutant of the present invention (whole or part of the plant mutant of the present invention) and/or the plant-derived glucosylceramide-containing extract of the present invention as an active ingredient. can provide. In addition, the pharmaceutical composition of the present invention may, if necessary, further contain known components in the pharmaceutical field (excipients, binders, disintegrants, etc.) as long as they do not significantly affect the pharmacological action of the plant-derived glucosylceramide. , medically acceptable ingredients such as lubricants) can optionally be included. Moreover, the form may be a form suitable for oral administration such as tablets, capsules, granules, fine granules, powders, and syrups. Alternatively, it may be a parenteral drug (drop infusion, etc.). The pharmaceutical composition of the present invention is selected from improving skin moisture retention, improving skin wrinkles, improving skin firmness, preventing or treating skin damage caused by ultraviolet rays, and preventing or treating colorectal cancer. It can be suitably used for one or more pharmaceutical applications.
Furthermore, in the same way, a product for improving skin moisturization, improving skin wrinkles, improving skin firmness, or preventing or treating skin damage caused by ultraviolet rays, containing the plant-derived glucosylceramide-containing extract of the present invention as an active ingredient. Cosmetic compositions can also be provided.
 本発明は、言い換えれば、本発明の植物変異体、本発明の植物由来グルコシルセラミド含有抽出物、本発明の食品組成物、または本発明の医薬組成物からなる群から選ばれるすくなくとも1つをヒトに給与または投与することを特徴とする、肌の保湿改善、しわ改善、ハリ改善、または紫外線による損傷予防治療方法を提供するものであると言える。上記の化粧品組成物をヒトの肌に適用する方法も同様である。さらに、本発明は、本発明の植物変異体、本発明の植物由来グルコシルセラミド含有抽出物、本発明の食品組成物、または本発明の医薬組成物からなる群から選ばれるすくなくとも1つをヒトに給与または投与することを特徴とする、大腸がん予防または治療方法を提供するものであるとも言える。 In other words, the present invention provides human with at least one selected from the group consisting of the plant mutant of the present invention, the plant-derived glucosylceramide-containing extract of the present invention, the food composition of the present invention, or the pharmaceutical composition of the present invention. It can be said that the present invention provides a therapeutic method for improving moisturization, wrinkle improvement, skin firmness improvement, or preventing damage caused by ultraviolet rays, which is characterized by feeding or administering to the skin. The same applies to the method of applying the above cosmetic compositions to human skin. Furthermore, the present invention provides human with at least one selected from the group consisting of the plant mutant of the present invention, the plant-derived glucosylceramide-containing extract of the present invention, the food composition of the present invention, or the pharmaceutical composition of the present invention. It can also be said to provide a colon cancer prevention or treatment method characterized by feeding or administration.
 なお、上記において説明した実施形態は、本発明の理解を容易にするための一例に過ぎず、本発明を限定するものではない。 It should be noted that the embodiment described above is merely an example for facilitating understanding of the present invention, and does not limit the present invention.
 以下、本発明の実施例について説明するが、本発明は以下の実施例にも限定されるものではなく、本発明の技術的思想内において様々な変形が可能である。 Examples of the present invention will be described below, but the present invention is not limited to the following examples, and various modifications are possible within the technical concept of the present invention.
(実施例1:イネ変異体の作製)
 ジャポニカ種であるイネ(Oryza sativa L. cv. Nipponbare:日本晴)の完熟種子を出発材料として用い、Hirochikaらの方法(Proc.Natl.Acad.Sci.USA、93、7783-7788(1996))に従ってカルス開始培養および細胞懸濁培養を行った。遺伝子破壊を行うためのレトロトランスポゾンTos17を活性化する培養条件は、大槻の方法(イネ・プロトプラスト培養系、農林水産技術情報協会(1990))に従った。
(Example 1: Production of rice mutant)
Using ripe seeds of Japonica rice (Oryza sativa L. cv. Nipponbare: Nipponbare) as a starting material, according to the method of Hirochika et al. (Proc. Natl. Acad. Sci. USA, 93, 7783-7788 (1996)) Callus initiation culture and cell suspension culture were performed. The culture conditions for activating the retrotransposon Tos17 for gene disruption followed the method of Ohtsuki (rice protoplast culture system, Agriculture, Forestry and Fisheries Technical Information Association (1990)).
 具体的には、上記した完熟種子を2,4-ジクロロフェノキシ酢酸(2,4-D)を添加したMS培地で培養し(25℃、1ケ月間)、カルス誘導を行った。得られたカルスを、2,4-Dを添加したN6液体培地で5ヶ月間培養したのち、再分化培地に移し再分化イネ(第1世代(M1)植物体)を取得した。 Specifically, the fully-ripened seeds described above were cultured in MS medium supplemented with 2,4-dichlorophenoxyacetic acid (2,4-D) (25°C for 1 month) to induce callus. The resulting callus was cultured in N6 liquid medium supplemented with 2,4-D for 5 months, and then transferred to a regeneration medium to obtain regenerated rice plants (first generation (M1) plants).
 そして、この第1世代から取得した次の世代の再分化イネ(第2世代(M2)植物体)約20個体の葉より、系統ごとにゲノムDNAを取得し、Thermal asymmetric interlaced(TAIL)PCR法(Genomics、25、674-681(1995))、および、Suppression PCR法(Nucleic Acids Research、23、1087-1088(1995))を用いて各系統に挿入されたTos17の挿入部位隣接配列を取得し(Plant Biotechnology、15(4)、253-256(1998))、データベース化した(Plant Cell、15、1771-1780(2003))。そして、このデータベースから、GH1に属するグルコセレブロシダーゼをコードする遺伝子であるOs3BGlu6遺伝子(配列表の配列番号1および図1に示す塩基配列からなるDNAを含む遺伝子)およびOs10BGlu34遺伝子(配列表の配列番号2および図2に示す塩基配列からなるDNAを含む遺伝子)の塩基配列に合致する隣接塩基配列を検索することにより、Os3BGlu6遺伝子にTos17が転移した系統(NE1537、ND8040)、ならびにOs10BGlu34遺伝子にTos17が転移した系統(NE4173)を選抜した。 Then, from the leaves of about 20 regenerated rice plants (second generation (M2) plants) of the next generation obtained from this first generation, genomic DNA is obtained for each line, and thermal asymmetric interlaced (TAIL) PCR method. (Genomics, 25, 674-681 (1995)) and the suppression PCR method (Nucleic Acids Research, 23, 1087-1088 (1995)) were used to obtain the insertion site flanking sequences of Tos17 inserted into each strain. (Plant Biotechnology, 15(4), 253-256 (1998)) and databased (Plant Cell, 15, 1771-1780 (2003)). Then, from this database, the Os3BGlu6 gene (gene containing DNA consisting of the nucleotide sequence shown in SEQ ID NO: 1 and FIG. 1 in the sequence listing), which is a gene encoding glucocerebrosidase belonging to GH1, and the Os10BGlu34 gene (SEQ ID NO: in the sequence listing) 2 and FIG. 2), strains (NE1537, ND8040) in which Tos17 was transferred to the Os3BGlu6 gene and Tos17 in the Os10BGlu34 gene were identified. A transferred line (NE4173) was selected.
 なお、ここで得られたイネ系統(NE1537、ND8040、NE4173)はいずれもヘテロ欠損変異体であるため、それぞれを自家受粉することによって、Os3BGlu6遺伝子ホモ欠損変異体(ホモNE1537、ホモND8040)とOs10BGlu34遺伝子ホモ欠損変異体(ホモNE4173)とを取得した。 In addition, since the rice lines obtained here (NE1537, ND8040, NE4173) are all heterozygous mutants, by self-pollination of each, Os3BGlu6 gene homozygous mutants (homozy NE1537, homozygous ND8040) and Os10BGlu34 A gene homozygous deletion mutant (homozygous NE4173) was obtained.
 さらに、このOs3BGlu6遺伝子ホモ欠損変異体(ホモNE1537、ホモND8040)ならびにOs10BGlu34遺伝子ホモ欠損変異体(ホモNE4173)を温湯除雄法(http://www.naro.affrc.go.jp/laboratory/tarc/contents/school/kouhai/index.html)により他家受粉させ、Os3BGlu6遺伝子およびOs10BGlu34遺伝子ダブルヘテロ欠損変異体(ヘテロNE1537×ヘテロNE4173、ヘテロND8040×ヘテロNE4173)をそれぞれ取得した。さらに、これらのダブルヘテロ欠損変異体(ヘテロNE1537×ヘテロNE4173、ヘテロND8040×ヘテロNE4173)をそれぞれ自家受粉することによって、Os3BGlu6遺伝子およびOs10BGlu34遺伝子ダブルホモ欠損変異体(ホモNE1537×ホモNE4173、ホモND8040×ホモNE4173)を取得した。 Furthermore, this Os3BGlu6 gene homozygous mutant (homo NE1537, homozygous ND8040) and Os10BGlu34 gene homozygous mutant (homo NE4173) were emasculated in warm water (http://www.naro.affrc.go.jp/laboratory/tarc). /contents/school/kouhai/index.html) to obtain Os3BGlu6 gene and Os10BGlu34 gene double heterozygous deletion mutants (heterogeneous NE1537 x heterozygous NE4173, heterozygous ND8040 x heterozygous NE4173). Furthermore, by self-pollination of these double heterozygous mutants (hetero NE1537 × heterozygous NE4173, heterozygous ND8040 × heterozygous NE4173), Os3BGlu6 gene and Os10BGlu34 gene double homozygous mutants (homo NE1537 × homozygous NE4173, homozygous ND8040 × homozygous NE4173) was obtained.
 ここで、ヘテロ欠損変異体とは、特定の対立遺伝子のうち、片方の遺伝子にのみTos17が挿入されてその一方の遺伝子の機能が欠損された変異体を指し、ホモ欠損変異体とは、特定の対立遺伝子の両方にTos17が挿入されてこの両方の遺伝子の機能が欠損された変異体を指す。さらに、ダブルヘテロ欠損変異体とは、特定の2つの対立遺伝子において、その2つの対立遺伝子がいずれも片方の遺伝子にのみTos17が挿入されてそれらの一方の遺伝子の機能が欠損された変異体を指す。また、ダブルホモ欠損変異体とは、特定の2つの対立遺伝子において、その2つの対立遺伝子がいずれも両方の遺伝子にTos17が挿入されてこれらの両方の遺伝子の機能が欠損された変異体を指す。 Here, the heterozygous deletion mutant refers to a mutant in which Tos17 is inserted only in one gene of a specific allele and the function of one gene is deleted, and the homozygous deletion mutant refers to a specific It refers to a mutant in which Tos17 is inserted in both alleles of , resulting in loss of function in both genes. Furthermore, a double heterozygous mutant is a mutant in which Tos17 is inserted only in one gene of each of the two specific alleles and the function of one of the genes is deleted. Point. In addition, the double homozygous mutant refers to a mutant in which Tos17 is inserted into both genes of each of the two specific alleles and the functions of both genes are deleted.
(実施例2:ホモ欠損変異体の確認)
[ホモNE1537の確認]
 Os3BGlu6遺伝子内の塩基配列またはTos17内の配列より作製した4つのプライマーを用いてPCRを行うことによって、実施例1で作製されたホモNE1537がOs3BGlu6対立遺伝子の両方にTos17が挿入されていることを確認した。
(Example 2: Confirmation of homozygous deletion mutants)
[Confirmation of Homo NE1537]
By performing PCR using four primers prepared from the nucleotide sequence in the Os3BGlu6 gene or the sequence in Tos17, it was confirmed that Tos17 was inserted in both Os3BGlu6 alleles of homo NE1537 prepared in Example 1. confirmed.
 具体的には、ホモNE1537のイネの葉を約5mm切り取り、2×PCR buffer for KOD-FX(東洋紡社製)200μLおよびジルコニアビーズを予め入れておいたスクリューキャップ付エッペンチューブに入れ、FastPrep 24 Instrument(MP Biomedicals社製)のDNA破砕抽出プロトコールに従って破砕し、10000rpm、25℃、10minの条件で遠心分離した後に上清を回収し、抽出DNA溶液とした。この抽出DNA溶液に、F-プライマーおよびR-プライマーとして、PR1(配列番号3および図3に示す塩基配列)およびPR2(配列番号4および図3に示す塩基配列)、あるいは、PR3(配列番号5および図3に示す塩基配列)およびPR4(配列番号6および図3に示す塩基配列)の2種のプライマーのセットと、KOD‐FX(DNAポリメラーゼ、東洋紡社製)とを加え、94℃2分間、98℃10秒間、55℃30秒間、および68℃3分間を1サイクルとする反応条件を35サイクル繰り返すPCRを行った。 Specifically, about 5 mm of homozygous NE1537 rice leaves were cut off, 200 μL of 2×PCR buffer for KOD-FX (manufactured by Toyobo) and zirconia beads were placed in an Eppendorf tube with a screw cap in advance, and then subjected to FastPrep 24 Instrument. (manufactured by MP Biomedicals), followed by centrifugation at 10,000 rpm, 25° C., and 10 minutes, and the supernatant was recovered to obtain an extracted DNA solution. PR1 (nucleotide sequence shown in SEQ ID NO: 3 and shown in FIG. 3) and PR2 (nucleotide sequence shown in SEQ ID NO: 4 and shown in FIG. 3), or PR3 (SEQ ID NO: 5) was added to this extracted DNA solution as F-primer and R-primer. and the nucleotide sequence shown in FIG. 3) and PR4 (SEQ ID NO: 6 and the nucleotide sequence shown in FIG. 3) and KOD-FX (DNA polymerase, manufactured by Toyobo Co., Ltd.) were added and heated at 94° C. for 2 minutes. , 98° C. for 10 seconds, 55° C. for 30 seconds, and 68° C. for 3 minutes as one cycle were repeated 35 times for PCR.
 なお、このPR1およびPR2は、Os3BGlu6遺伝子とTos17とを跨ぐ領域のDNA断片を増幅するためのPCRプライマーセットであり、PR3およびPR4は、Os3BGlu6遺伝子内の領域(Tos17の挿入部位を跨ぐ領域)のDNA断片を増幅するためのPCRプライマーセットである。Os3BGlu6遺伝子にTos17が挿入されていると、PR1およびPR2のセットによりDNA断片を増幅することができるが、PR3およびPR4のセットではTos17が非常に大きいDNAであるためDNA断片の増幅が難しくなる。 The PR1 and PR2 are PCR primer sets for amplifying the DNA fragment in the region spanning the Os3BGlu6 gene and Tos17, and the PR3 and PR4 are the region in the Os3BGlu6 gene (the region spanning the insertion site of Tos17). A PCR primer set for amplifying DNA fragments. When Tos17 is inserted into the Os3BGlu6 gene, the set of PR1 and PR2 can amplify the DNA fragment, but the set of PR3 and PR4 makes it difficult to amplify the DNA fragment because Tos17 is a very large DNA.
 この結果、PR1およびPR2のセットによりPCRを行った時に明確にDNA断片の増幅が確認され、PR3およびPR4のセットによりPCRを行った時にはDNA断片の増幅が明確に確認されなかった。さらに、PR1およびPR2のセットにより増幅されたDNA断片の塩基配列をDNAシークエンスにより解析し、ホモNE1537が、Os3BGlu6遺伝子の対立遺伝子の両方にTos17が挿入されたOs3BGlu6遺伝子ホモ欠損変異体であることが確認された。 As a result, amplification of the DNA fragment was clearly confirmed when PCR was performed with the set of PR1 and PR2, and amplification of the DNA fragment was not clearly confirmed when PCR was performed with the set of PR3 and PR4. Furthermore, the base sequence of the DNA fragment amplified by the set of PR1 and PR2 was analyzed by DNA sequencing, and homozygous NE1537 was found to be an Os3BGlu6 gene homozygous deletion mutant in which Tos17 was inserted into both alleles of the Os3BGlu6 gene. confirmed.
[ホモND8040の確認]
 同様に、実施例1で作製されたホモND8040もOs3BGlu6対立遺伝子の両方にTos17が挿入されていることを確認した。
 具体的には、ホモND8040のイネの葉を用い、且つ、PCRのF-プライマーおよびR-プライマーとして、PR5(配列番号7および図4に示す塩基配列)およびPR6(配列番号8および図4に示す塩基配列)、あるいは、PR7(配列番号9および図4に示す塩基配列)およびPR8(配列番号10および図4に示す塩基配列)の2種のプライマーのセットを用いる以外はホモNE1537の確認と同じ方法により、PCRを行った。
[Confirmation of Homo ND8040]
Similarly, homozygous ND8040 produced in Example 1 was also confirmed to have Tos17 inserted in both Os3BGlu6 alleles.
Specifically, Homo ND8040 rice leaves were used, and PR5 (nucleotide sequence shown in SEQ ID NO: 7 and FIG. 4) and PR6 (SEQ ID NO: 8 and (nucleotide sequence shown in FIG. 4) or PR7 (nucleotide sequence shown in SEQ ID NO: 9 and FIG. 4) and PR8 (nucleotide sequence shown in SEQ ID NO: 10 and FIG. PCR was performed by the same method.
 なお、このPR5およびPR6は、Os3BGlu6遺伝子とTos17とを跨ぐ領域のDNA断片を増幅するためのPCRプライマーセットであり、PR7およびPR8は、Os3BGlu6遺伝子内の領域(Tos17の挿入部位を跨ぐ領域)のDNA断片を増幅するためのPCRプライマーセットである。 The PR5 and PR6 are PCR primer sets for amplifying the DNA fragment in the region spanning the Os3BGlu6 gene and Tos17, and the PR7 and PR8 are the region in the Os3BGlu6 gene (the region spanning the insertion site of Tos17). A PCR primer set for amplifying DNA fragments.
 この結果、PR5およびPR6のセットによりPCRを行った時に明確にDNA断片の増幅が確認され、PR7およびPR8のセットによりPCRを行った時にはDNA断片の増幅が明確に確認されなかった。さらに、PR5およびPR6のセットにより増幅されたDNA断片の塩基配列をDNAシークエンスにより解析し、ホモND8040が、Os3BGlu6遺伝子の対立遺伝子の両方にTos17が挿入されたOs3BGlu6遺伝子ホモ欠損変異体であることが確認された。 As a result, amplification of the DNA fragment was clearly confirmed when PCR was performed with the PR5 and PR6 set, and no DNA fragment amplification was clearly confirmed when the PCR was performed with the PR7 and PR8 set. Furthermore, the base sequence of the DNA fragment amplified by the set of PR5 and PR6 was analyzed by DNA sequencing, and it was found that homozygous ND8040 is an Os3BGlu6 gene homozygous deletion mutant in which Tos17 is inserted in both alleles of the Os3BGlu6 gene. confirmed.
[ホモNE4173の確認]
 Os10BGlu34遺伝子内の塩基配列またはTos17内の配列より作製した4つのプライマーを用いてPCRを行うことによって、実施例1で作製されたホモNE4173がOs10BGlu34対立遺伝子の両方にTos17が挿入されていることを確認した。
[Confirmation of Homo NE4173]
By performing PCR using four primers prepared from the nucleotide sequence in the Os10BGlu34 gene or the sequence in Tos17, it was confirmed that Tos17 was inserted in both of the Os10BGlu34 alleles in the homozygous NE4173 prepared in Example 1. confirmed.
 具体的には、ホモNE4173のイネの葉を用い、且つ、PCRのF-プライマーおよびR-プライマーとして、PR9(配列番号11および図5に示す塩基配列)およびPR10(配列番号12および図5に示す塩基配列)、あるいは、PR11(配列番号13および図5に示す塩基配列)およびPR12(配列番号14および図5に示す塩基配列)の2種のプライマーのセットを用いる以外はホモNE1537の確認と同じ方法により、PCRを行った。 Specifically, homozygous NE4173 rice leaves were used, and as the F-primer and R-primer for PCR, PR9 (nucleotide sequence shown in SEQ ID NO: 11 and FIG. 5) and PR10 (SEQ ID NO: 12 and (nucleotide sequence shown in FIG. 5) or PR11 (nucleotide sequence shown in SEQ ID NO: 13 and FIG. 5) and PR12 (nucleotide sequence shown in SEQ ID NO: 14 and FIG. 5). PCR was performed by the same method.
 なお、このPR9およびPR10は、Os10BGlu34遺伝子とTos17とを跨ぐ領域のDNA断片を増幅するためのPCRプライマーセットであり、PR11およびPR12は、Os10BGlu34遺伝子内の領域(Tos17の挿入部位を跨ぐ領域)のDNA断片を増幅するためのPCRプライマーセットである。 The PR9 and PR10 are a PCR primer set for amplifying a DNA fragment in the region spanning the Os10BGlu34 gene and Tos17, and PR11 and PR12 are the region in the Os10BGlu34 gene (the region spanning the insertion site of Tos17). A PCR primer set for amplifying DNA fragments.
 この結果、PR9およびPR10のセットによりPCRを行った時に明確にDNA断片の増幅が確認され、PR11およびPR12のセットによりPCRを行った時にはDNA断片の増幅が明確に確認されなかった。さらに、PR9およびPR10のセットにより増幅されたDNA断片の塩基配列をDNAシークエンスにより解析し、ホモNE4173が、Os10BGlu34遺伝子の対立遺伝子の両方にTos17が挿入されたOs10BGlu34遺伝子ホモ欠損変異体であることが確認された。 As a result, amplification of the DNA fragment was clearly confirmed when PCR was performed with the set of PR9 and PR10, and amplification of the DNA fragment was not clearly confirmed when PCR was performed with the set of PR11 and PR12. Furthermore, the base sequence of the DNA fragment amplified by the set of PR9 and PR10 was analyzed by DNA sequencing, and homozygous NE4173 was found to be an Os10BGlu34 gene homozygous deletion mutant in which Tos17 was inserted into both alleles of the Os10BGlu34 gene. confirmed.
(実施例3:ダブルホモ欠損変異体の確認)
[ホモNE1537×ホモNE4173]
 実施例2と同様に、実施例1で作製されたホモNE1537×ホモNE4173がOs3BGlu6対立遺伝子の両方およびOs10BGlu34対立遺伝子の両方にTos17が挿入されていることを確認した。
 具体的には、ホモNE1537×ホモNE4173のイネの葉を用い、且つ、PCRのF-プライマーおよびR-プライマーとして、実施例2のPR1およびPR2、PR3およびPR4、PR9およびPR10、あるいはPR11およびPR12の4種のプライマーのセットを用いる以外は実施例2と同じ方法により、PCRを行った。
(Example 3: Confirmation of double homozygous deletion mutant)
[Homo NE1537 x Homo NE4173]
As in Example 2, it was confirmed that Tos17 was inserted in both the Os3BGlu6 allele and the Os10BGlu34 allele in the homozygous NE1537×homozygous NE4173 produced in Example 1.
Specifically, using homo NE1537 × homo NE4173 rice leaves, and as F-primers and R-primers for PCR, PR1 and PR2, PR3 and PR4, PR9 and PR10, or PR11 and PR12 of Example 2 PCR was performed in the same manner as in Example 2, except for using a set of 4 primers.
 この結果、PR1およびPR2のセットならびにPR9およびPR10のセットによりPCRを行った時に明確にDNA断片の増幅が確認され、PR3およびPR4のセットならびにPR11およびPR12のセットによりPCRを行った時にはDNA断片の増幅が明確に確認されなかった。さらに、PR1およびPR2のセットならびにPR9およびPR10のセットにより増幅されたDNA断片の塩基配列をDNAシークエンスにより解析し、ホモNE1537×ホモNE4173が、Os3BGlu6遺伝子の対立遺伝子の両方にTos17が挿入され且つOs10BGlu34遺伝子の対立遺伝子の両方にTos17が挿入されたOs3BGlu6遺伝子およびOs10BGlu34遺伝子ダブルホモ欠損変異体であることが確認された。 As a result, the amplification of the DNA fragment was clearly confirmed when PCR was performed with the set of PR1 and PR2 and the set of PR9 and PR10, and the amplification of the DNA fragment was clearly confirmed when the set of PR3 and PR4 and the set of PR11 and PR12 was performed. Amplification was not clearly confirmed. Furthermore, the base sequences of the DNA fragments amplified by the set of PR1 and PR2 and the set of PR9 and PR10 were analyzed by DNA sequencing. It was confirmed to be an Os3BGlu6 gene and Os10BGlu34 gene double homozygous deletion mutant in which Tos17 was inserted in both gene alleles.
[ホモND8040×ホモNE4173]
 同様に、実施例1で作製されたホモND8040×ホモNE4173もOs3BGlu6対立遺伝子の両方およびOs10BGlu34対立遺伝子の両方にTos17が挿入されていることを確認した。
 具体的には、ホモND8040×ホモNE4173のイネの葉を用い、且つ、PCRのF-プライマーおよびR-プライマーとして、実施例2のPR5およびPR6、PR7およびPR8、PR9およびPR10、あるいはPR11およびPR12の4種のプライマーのセットを用いる以外は実施例2と同じ方法により、PCRを行った。
[Homo ND8040 x Homo NE4173]
Similarly, it was confirmed that homozygous ND8040x homozygous NE4173 produced in Example 1 also had Tos17 inserted in both Os3BGlu6 alleles and both Os10BGlu34 alleles.
Specifically, using homo ND8040 × homo NE4173 rice leaves, and as F-primers and R-primers for PCR, PR5 and PR6, PR7 and PR8, PR9 and PR10, or PR11 and PR12 of Example 2 PCR was performed in the same manner as in Example 2, except for using a set of 4 primers.
 この結果、PR5およびPR6のセットならびにPR9およびPR10のセットによりPCRを行った時に明確にDNA断片の増幅が確認され、PR7およびPR8のセットならびにPR11およびPR12のセットによりPCRを行った時にはDNA断片の増幅が明確に確認されなかった。さらに、PR5およびPR6のセットならびにPR9およびPR10のセットにより増幅されたDNA断片の塩基配列をDNAシークエンスにより解析し、ホモND8040×ホモNE4173が、Os3BGlu6遺伝子の対立遺伝子の両方にTos17が挿入され且つOs10BGlu34遺伝子の対立遺伝子の両方にTos17が挿入されたOs3BGlu6遺伝子およびOs10BGlu34遺伝子ダブルホモ欠損変異体であることが確認された。 As a result, the amplification of the DNA fragment was clearly confirmed when PCR was performed with the set of PR5 and PR6 and the set of PR9 and PR10, and the amplification of the DNA fragment was clearly confirmed when the set of PR7 and PR8 and the set of PR11 and PR12 was performed. Amplification was not clearly confirmed. Furthermore, the base sequences of the DNA fragments amplified by the set of PR5 and PR6 and the set of PR9 and PR10 were analyzed by DNA sequencing, and homozygous ND8040 × homozygous NE4173 had Tos17 inserted into both alleles of the Os3BGlu6 gene and Os10BGlu34. It was confirmed to be an Os3BGlu6 gene and Os10BGlu34 gene double homozygous deletion mutant in which Tos17 was inserted in both gene alleles.
(実施例4:イネ変異体の種子の胚芽中に含まれるグルコシルセラミド量の比較)
 実施例1で作製された5種のイネ変異体(ホモNE1537、ホモND8040、ホモNE4173、ホモNE1537×ホモNE4173、ホモND8040×ホモNE4173)および野生株(日本晴)を温室にて栽培し、それぞれの種子を採取した。そして、得られた各種子の籾殻を剥いた後、各種子から採取した胚芽20個をそれぞれ乳鉢にて細かくすりぶし、8mLのエタノールを加えて振とうすることにより、胚芽中に含まれているグルコシルセラミドを抽出した。そして、この抽出サンプルを15000rpmで20分間遠心分離し、得られた上清液に0.25倍量の0.2M HClを加え混合した。これを15000rpmで20分間遠心分離し、上清液をLC-ESI-MS/MS(Liquid chromatography-electrospray ionization-tandem mass spectrometry)に供し、湯本らの方法(Bioscience,Biotechnology,and Biochemistry(2021)85,205-210)に従って分析した。すなわち、ESI-MS/MSはAgilent 6460 with Agilent 1200 separation moduleを、高速液体クロマトグラフィーのカラムはTSKgel ODS-120A カラム(2.1mm i.d.×30cm、東ソー社製、登録商標)を用い、各種グルコシルセラミドに0.1%のギ酸を入れた適当なメタノール濃度で溶出し、ESI-ポジティブイオンモードで検出した。イネにおいて含有量が高いと考えられている8種のグルコシルセラミドを検出するためのプレカーサーイオンのm/z[M+H]、プロダクトイオンのm/z、コリジョンエネルギー(eV)、フラグメンター電圧(V)は下記表1の通りである。検出された各種グルコシルセラミド量は、長良サイエンス社から購入したイネ由来グルコシルセラミドを標品として求めた。最終的に、8種のグルコシルセラミド量を合算し、胚芽1g中に含まれるグルコシルセラミド量を5個体の平均値±標準誤差として求めた。この結果を下記表2に示す。なお、下記表2中において、野生株と比較してグルコシルセラミド量が有意に多かった場合(5%有意)には*印を記載し、ホモNE1537と比較してグルコシルセラミド量が有意に多かった場合(5%有意)には**印を記載し、ホモND8040と比較してグルコシルセラミド量が有意に多かった場合(5%有意)には***印を記載し、ホモNE4173と比較してグルコシルセラミド量が有意に多かった場合(5%有意)には****印を記載した。
(Example 4: Comparison of amount of glucosylceramide contained in seed germ of rice mutant)
Five rice mutants prepared in Example 1 (homo NE1537, homo ND8040, homo NE4173, homo NE1537 x homo NE4173, homo ND8040 x homo NE4173) and a wild strain (Nipponbare) were cultivated in a greenhouse, and Seeds were harvested. Then, after peeling off the husk of each seed obtained, 20 embryos collected from each seed were finely ground in a mortar, and 8 mL of ethanol was added and shaken to obtain the content of the embryo. Glucosylceramide was extracted. Then, this extracted sample was centrifuged at 15,000 rpm for 20 minutes, and 0.25-fold volume of 0.2 M HCl was added to the resulting supernatant and mixed. This was centrifuged at 15000 rpm for 20 minutes, the supernatant was subjected to LC-ESI-MS/MS (Liquid chromatography-electrospray ionization-tandem mass spectrometry), and the method of Yumoto et al. , 205-210). That is, ESI-MS/MS uses Agilent 6460 with Agilent 1200 separation module, and the high-performance liquid chromatography column uses TSKgel ODS-120A column (2.1 mm id × 30 cm, manufactured by Tosoh Corporation, registered trademark), Various glucosylceramides were eluted with appropriate methanol concentrations containing 0.1% formic acid and detected in the ESI-positive ion mode. Precursor ion m/z [M+H] + , product ion m/z, collision energy (eV), fragmentor voltage (V ) are shown in Table 1 below. The amounts of various glucosylceramides detected were obtained by using rice-derived glucosylceramide purchased from Nagara Science as a standard. Finally, the amounts of 8 kinds of glucosylceramide were totaled, and the amount of glucosylceramide contained in 1 g of embryo was calculated as the average value±standard error of 5 individuals. The results are shown in Table 2 below. In Table 2 below, when the amount of glucosylceramide was significantly higher than that of the wild strain (significant by 5%), an asterisk (*) indicates that the amount of glucosylceramide was significantly higher than that of homo NE1537. If the glucosylceramide amount was significantly higher than that of homo ND8040 (5% significant), *** was indicated, and if it was compared with homo NE4173, *** was indicated. When the amount of glucosylceramide was significantly high (significant at 5%), *** was marked.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 上記表2の結果から、ホモNE1537、ホモND8040、およびホモNE4173の胚芽に含まれているグルコシルセラミド量は、野生株(Os3BGlu6遺伝子およびOs10BGlu34遺伝子の機能がいずれも欠損および抑制されていない株)よりも明らかに多いことが分かった。そして、ホモNE1537×ホモNE4173およびホモND8040×ホモNE4173の種子の胚芽に含まれているグルコシルセラミド量は、ホモNE1537、ホモND8040、およびホモNE4173よりもさらに多いことも明らかになった。 From the results in Table 2 above, the amount of glucosylceramide contained in the embryos of homozygous NE1537, homozygous ND8040, and homozygous NE4173 was higher than that of the wild strain (strain in which neither the functions of the Os3BGlu6 gene nor the Os10BGlu34 gene were deleted or suppressed). was also found to be significantly higher. It was also revealed that the amount of glucosylceramide contained in the seed germ of homo NE1537×homo NE4173 and homo ND8040×homo NE4173 was even higher than that of homo NE1537, homo ND8040 and homo NE4173.
(実施例5:イネ変異体の種子表面の糠中に含まれるグルコシルセラミド量の比較I)
 実施例4において胚芽を取り除いた6種のイネ種子それぞれ20粒に対して8mLのエタノールを加えて、50℃で振とうすることにより、種子表面の糠中に含まれているグルコシルセラミドを抽出した。そして、この抽出サンプルを15000rpmで20分間遠心分離し、上清液を適当な濃度に濃縮した後、実施例4と同じ方法により、濃縮液のグルコシルセラミド量をLC-ESI-MS/MSにて分析した。そして、種子1粒中の糠に含まれているグルコシルセラミド量を5個体の平均値±標準誤差として求めた。この結果を下記表3に示す。なお、下記表3中においても、野生株と比較してグルコシルセラミド量が有意に多かった場合(5%有意)には*印を記載し、ホモNE1537と比較してグルコシルセラミド量が有意に多かった場合(5%有意)には**印を記載し、ホモND8040と比較してグルコシルセラミド量が有意に多かった場合(5%有意)には***印を記載し、ホモNE4173と比較してグルコシルセラミド量が有意に多かった場合(5%有意)には****印を記載した。
(Example 5: Comparison I of the amount of glucosylceramide contained in the bran on the seed surface of rice mutants)
8 mL of ethanol was added to 20 grains of each of the 6 kinds of rice seeds from which the germ was removed in Example 4, and the seeds were shaken at 50°C to extract glucosylceramide contained in the bran on the surface of the seeds. . Then, this extracted sample was centrifuged at 15,000 rpm for 20 minutes, and the supernatant was concentrated to an appropriate concentration. analyzed. Then, the amount of glucosylceramide contained in the bran in one seed was calculated as the average value±standard error of 5 individuals. The results are shown in Table 3 below. Also in Table 3 below, when the amount of glucosylceramide was significantly higher than that of the wild strain (5% significance), the asterisk (*) indicates that the amount of glucosylceramide was significantly higher than that of homo NE1537. If the amount of glucosylceramide was significantly higher than that of homo ND8040 (significant by 5%), a *** mark was indicated, and if it was compared with homo NE4173 When the amount of glucosylceramide was significantly higher (significant by 5%), *** was marked.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 上記表3の結果から、ホモNE1537、ホモND8040、およびホモNE4173の種子の糠に含まれているグルコシルセラミド量は、野生株よりも明らかに多いことが分かった。また、ホモNE1537×ホモNE4173およびホモND8040×ホモNE4173の種子の糠に含まれているグルコシルセラミド量は、ホモNE1537、ホモND8040、およびホモNE4173よりもさらに多いことも明らかになった。 From the results in Table 3 above, it was found that the amount of glucosylceramide contained in the bran of seeds of homo NE1537, homo ND8040, and homo NE4173 is clearly higher than that of the wild type. It was also revealed that the amount of glucosylceramide contained in the bran of seeds of homo NE1537×homo NE4173 and homo ND8040×homo NE4173 was even higher than homo NE1537, homo ND8040 and homo NE4173.
(実施例6:イネ変異体の種子表面の糠中に含まれるグルコシルセラミド量の比較II)
 実施例1で作製された5種のイネ変異体(ホモNE1537、ホモND8040、ホモNE4173、ホモNE1537×ホモNE4173、ホモND8040×ホモNE4173)および野生株(日本晴)から得られた各種子の籾殻を剥いた後、この種子(玄米)を精米機(エムケー精工社製、小型精米機RICELON SM-201K)によって精米し、得られた糠を含む混合物を茶こしによってふるいにかけ、白米片や胚芽を取り除き、種子表面の糠を採取した。次に、この糠に8mLのエタノールを加えて振とうすることにより、糠中に含まれているグルコシルセラミドを抽出した。そして、この抽出サンプルを15000rpmで20分間遠心分離し、上清液を適当な濃度に濃縮した後、実施例4と同じ方法により、濃縮液のグルコシルセラミド量をLC-ESI-MS/MSにて分析した。そして、糠1g中に含まれているグルコシルセラミド量を3個体の平均値±標準誤差として求めた。この結果を下記表4に示す。なお、下記表4中においても、野生株と比較してグルコシルセラミド量が有意に多かった場合(5%有意)には*印を記載し、ホモNE1537と比較してグルコシルセラミド量が有意に多かった場合(5%有意)には**印を記載し、ホモND8040と比較してグルコシルセラミド量が有意に多かった場合(5%有意)には***印を記載し、ホモNE4173と比較してグルコシルセラミド量が有意に多かった場合(5%有意)には****印を記載した。
(Example 6: Comparison II of the amount of glucosylceramide contained in the bran on the seed surface of rice mutants)
The rice husks of each seed obtained from the five rice mutants produced in Example 1 (homo NE1537, homo ND8040, homo NE4173, homo NE1537 x homo NE4173, homo ND8040 x homo NE4173) and a wild strain (Nipponbare) were used. After peeling, the seeds (brown rice) are polished with a rice polishing machine (MK Seiko Co., Ltd., small rice polishing machine RICELON SM-201K), and the resulting mixture containing bran is sieved with a tea strainer to remove polished rice pieces and germ. The bran on the seed surface was collected. Next, 8 mL of ethanol was added to the bran and the mixture was shaken to extract glucosylceramide contained in the bran. Then, this extracted sample was centrifuged at 15,000 rpm for 20 minutes, and the supernatant was concentrated to an appropriate concentration. analyzed. Then, the amount of glucosylceramide contained in 1 g of rice bran was determined as the average value±standard error of 3 individuals. The results are shown in Table 4 below. In Table 4 below, when the amount of glucosylceramide was significantly higher than that of the wild strain (5% significant), the * mark is indicated, and the amount of glucosylceramide was significantly higher than that of homo NE1537. If the amount of glucosylceramide was significantly higher than that of homo ND8040 (significant by 5%), a *** mark was indicated, and if it was compared with homo NE4173 When the amount of glucosylceramide was significantly higher (significant by 5%), *** was marked.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 上記表4の結果から、ホモNE1537、ホモND8040、およびホモNE4173の種子の糠に含まれているグルコシルセラミド量は、野生株よりも明らかに多いことが分かった。また、ホモNE1537×ホモNE4173およびホモND8040×ホモNE4173の種子の糠に含まれているグルコシルセラミド量は、ホモNE1537、ホモND8040、およびホモNE4173よりもさらに多いことも明らかになった。 From the results in Table 4 above, it was found that the amount of glucosylceramide contained in the bran of seeds of homo NE1537, homo ND8040, and homo NE4173 is clearly higher than that of the wild type. It was also revealed that the amount of glucosylceramide contained in the bran of seeds of homo NE1537×homo NE4173 and homo ND8040×homo NE4173 was even higher than homo NE1537, homo ND8040 and homo NE4173.
 米糠は安価であり、且つグルコシルセラミドが多く含まれているため、健康食品に使われている植物由来グルコシルセラミドは米糠から抽出されているものも多い。実施例5および実施例6の結果から、上記したイネ変異体の少なくとも1つから得られた米糠を用いることにより、従来よりもより安価にグルコシルセラミドを製造することができると推定され、これらは有用なイネ変異体であると言える。 Because rice bran is inexpensive and contains a large amount of glucosylceramide, many of the plant-derived glucosylceramides used in health foods are extracted from rice bran. From the results of Examples 5 and 6, it is presumed that by using rice bran obtained from at least one of the rice mutants described above, it is possible to produce glucosylceramide at a lower cost than before. It can be said that it is a useful rice mutant.
(実施例7:イネ変異体の種子中の糠および胚芽以外の部分に含まれるグルコシルセラミド量の比較)
 実施例5において種子表面の糠中に含まれているグルコシルセラミドを抽出した後の6種のイネ種子にエタノールを加え、激しく混合後、エタノールを廃棄した。この工程を3回繰り返し、表面の糠中に残っているグルコシルセラミドをできるだけ取り除いた。その後、それぞれ10粒を乳鉢にて細かくすりつぶした後、8mLのエタノールを加え、振とうすることにより、イネ種子中の糠および胚芽以外の部分に含まれているグルコシルセラミドを抽出した。その後は実施例4と同じ方法により、抽出液のグルコシルセラミド量をLC-ESI-MS/MSにて分析した。そして、種子1g中の糠および胚芽以外の部分に含まれているグルコシルセラミド量を5個体の平均値±標準誤差として求めた。この結果を下記表5に示す。なお、下記表5中においても、野生株と比較してグルコシルセラミド量が有意に多かった場合(5%有意)には*印を記載し、ホモNE1537と比較してグルコシルセラミド量が有意に多かった場合(5%有意)には**印を記載し、ホモND8040と比較してグルコシルセラミド量が有意に多かった場合(5%有意)には***印を記載し、ホモNE4173と比較してグルコシルセラミド量が有意に多かった場合(5%有意)には****印を記載した。
(Example 7: Comparison of amount of glucosylceramide contained in parts other than bran and germ in seeds of rice mutants)
After glucosylceramide contained in the bran on the surface of the seeds was extracted in Example 5, ethanol was added to the 6 kinds of rice seeds, vigorously mixed, and the ethanol was discarded. This process was repeated three times to remove as much of the glucosylceramide remaining in the surface bran as possible. Then, 10 grains of each grain were finely ground in a mortar, 8 mL of ethanol was added, and the grains were shaken to extract glucosylceramide contained in portions other than the bran and germ in the rice seeds. Thereafter, the amount of glucosylceramide in the extract was analyzed by LC-ESI-MS/MS in the same manner as in Example 4. Then, the amount of glucosylceramide contained in parts other than bran and germ in 1 g of seed was calculated as the average value±standard error of 5 individuals. The results are shown in Table 5 below. Also in Table 5 below, when the amount of glucosylceramide was significantly higher than that of the wild strain (5% significant), the asterisk * indicates that the amount of glucosylceramide was significantly higher than that of homo NE1537. If the amount of glucosylceramide was significantly higher than that of homo ND8040 (significant by 5%), a *** mark was indicated, and if it was compared with homo NE4173 When the amount of glucosylceramide was significantly higher (significant by 5%), *** was marked.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 上記表5の結果から、ホモNE1537およびホモND8040の種子の糠および胚芽以外の部分に含まれているグルコシルセラミド量は、野生株よりも明らかに多いことが分かった。また、ホモNE1537×ホモNE4173およびホモND8040×ホモNE4173の種子の糠および胚芽以外の部分に含まれているグルコシルセラミド量は、野生株やホモNE4173だけでなく、ホモNE1537およびホモND8040よりもさらに多いことも明らかになった。 From the results in Table 5 above, it was found that the amount of glucosylceramide contained in the parts other than the bran and germ of the seeds of homozygous NE1537 and homozygous ND8040 is clearly higher than that of the wild type. In addition, the amount of glucosylceramide contained in the parts other than the bran and germ of the seeds of homo NE1537×homo NE4173 and homo ND8040×homo NE4173 is higher than not only the wild type and homo NE4173 but also homo NE1537 and homo ND8040. also became clear.
 この結果は、これらのイネ変異体の種子の胚芽および糠を除いた胚乳部分にもグルコシルセラミドが多く含まれていることを示している。従って、上記したイネ変異体から得られた種子(主に胚乳部分)から製造される米飯食品(加工米飯等)や米加工品(米粉等)などは、イネ由来グルコシルセラミドが豊富に含まれているものとなり、健康食品(機能性食品)としても有用である。 This result indicates that the germ and bran-free endosperm of the seeds of these rice mutants also contain a large amount of glucosylceramide. Therefore, rice-derived glucosylceramide is abundantly contained in cooked rice foods (processed cooked rice, etc.) and processed rice products (rice flour, etc.) produced from seeds (mainly the endosperm portion) obtained from the above-described rice mutants. It is also useful as a health food (functional food).
(実施例8:イネ変異体の種子から得られた精白米を炊飯した炊飯米に含まれるグルコシルセラミド量の比較)
 実施例1で作製された2種のイネ変異体(ホモNE1537×ホモNE4173、ホモND8040×ホモNE4173)および野生株(日本晴)から得られた各種子の籾殻を剥いた後、この種子(玄米)を精米機(エムケー精工社製、小型精米機RICELON SM-201K)によって精米し、精米後の精白米を炊飯器(サンコー株製、2段式高速炊飯器)によって常法により炊飯した。得られた炊飯米10粒を乳鉢ですりつぶし、8mLのエタノールを加えて振とうすることにより炊飯米中に含まれているグルコシルセラミドを抽出した。そして、この抽出サンプルを15000rpmで20分間遠心分離し、上清液を適当な濃度に濃縮した後、実施例4と同じ方法により、濃縮液のグルコシルセラミド量をLC-ESI-MS/MSにて分析した。そして、炊飯米1g中に含まれているグルコシルセラミド量を5個体の平均値±標準誤差として求めた。この結果を下記表6に示す。なお、下記表6中においても、野生株と比較してグルコシルセラミド量が有意に多かった場合(5%有意)には*印を記載した。
(Example 8: Comparison of amount of glucosylceramide contained in cooked rice obtained by cooking polished rice obtained from seeds of rice mutant)
After dehulling each seed obtained from the two rice mutants prepared in Example 1 (homo NE1537×homo NE4173, homo ND8040×homo NE4173) and a wild strain (Nipponbare), the seeds (brown rice) was polished with a rice polishing machine (MK Seiko Co., Ltd., small rice polishing machine RICELON SM-201K), and the polished rice was cooked in a rice cooker (Sanko Co., Ltd., two-stage high-speed rice cooker) in a conventional manner. Ten grains of the obtained cooked rice were ground in a mortar, 8 mL of ethanol was added, and the mixture was shaken to extract glucosylceramide contained in the cooked rice. Then, this extracted sample was centrifuged at 15,000 rpm for 20 minutes, and the supernatant was concentrated to an appropriate concentration. analyzed. Then, the amount of glucosylceramide contained in 1 g of cooked rice was determined as the average value±standard error of 5 individuals. The results are shown in Table 6 below. In addition, in Table 6 below, when the amount of glucosylceramide was significantly higher than that of the wild strain (5% significant), the * mark was indicated.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 上記表6の結果から、ホモND8040×ホモNE4173、およびホモNE1537×ホモNE4173の炊飯米に含まれるグルコシルセラミド量は、野生株よりも有意に多いことが分かった。この結果より、上記のイネ変異体の少なくとも1つから得られた精白米を炊飯した炊飯米についても、従来よりもグルコシルセラミド含有量が高く、米飯食品(玄米や精白米が炊飯等された加工米飯など)に適用しても有用なものとなると言える。 From the results in Table 6 above, it was found that the amount of glucosylceramide contained in the cooked rice of homo ND8040 x homo NE4173 and homo NE1537 x homo NE4173 was significantly higher than that of the wild strain. From this result, it was found that the cooked rice obtained by cooking the polished rice obtained from at least one of the above rice mutants also has a higher glucosylceramide content than the conventional one, and is a cooked rice food (brown rice or polished rice that has been cooked, etc.). It can be said that it will be useful even if it is applied to boiled rice.
 この出願は、2021年5月6日に出願された日本出願である特願2021-78534を基礎とする優先権を主張し、その開示のすべてをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2021-78534 filed on May 6, 2021, and incorporates all of its disclosure herein.

Claims (10)

  1.  1以上の、グリコシドハイドロラーゼファミリー1に属し且つグルコセレブロシダーゼ活性を有するタンパク質をコードする遺伝子の機能が欠損または抑制された、植物変異体。 A plant mutant in which the function of one or more genes encoding a protein belonging to glycoside hydrolase family 1 and having glucocerebrosidase activity is deleted or suppressed.
  2.  前記植物変異体が、種子植物の変異体である、請求項1に記載の植物変異体。 The plant mutant according to claim 1, wherein the plant mutant is a seed plant mutant.
  3.  前記植物変異体が、イネ科植物の変異体である、請求項2に記載の植物変異体。 The plant mutant according to claim 2, wherein the plant mutant is a gramineous plant mutant.
  4.  以下の(a)、(b)、または(c)に示されるDNAを含む1以上の前記遺伝子の機能が欠損または抑制された、請求項1~3のいずれか1項に記載の植物変異体。
    (a)配列表の配列番号1、配列番号1のうち塩基番号112~1566、配列番号2、または配列番号2のうち塩基番号76~1533に示される塩基配列からなるDNA。
    (b)配列表の配列番号1、配列番号1のうち塩基番号112~1566、配列番号2、または配列番号2のうち塩基番号76~1533に示される塩基配列において、1もしくは数個の塩基の置換、欠失、挿入、または付加がされた塩基配列からなるDNA。
    (c)配列表の配列番号1、配列番号1のうち塩基番号112~1566、配列番号2、または配列番号2のうち塩基番号76~1533に示される塩基配列と相補的な塩基配列からなるDNAとストリンジェントな条件下でハイブリダイゼーションすることができるDNA。
    The plant mutant according to any one of claims 1 to 3, wherein the function of one or more of the genes comprising the DNA shown in (a), (b), or (c) below is deleted or suppressed. .
    (a) DNA consisting of the base sequence shown in SEQ ID NO: 1, base numbers 112 to 1566 of SEQ ID NO: 1, SEQ ID NO: 2, or base numbers 76 to 1533 of SEQ ID NO: 2 in the sequence listing.
    (b) SEQ ID NO: 1 in the sequence listing, base numbers 112 to 1566 in SEQ ID NO: 1, SEQ ID NO: 2, or base numbers 76 to 1533 in SEQ ID NO: 2, one or several bases DNA consisting of base sequences with substitutions, deletions, insertions, or additions.
    (c) DNA consisting of a base sequence complementary to the base sequence shown in SEQ ID NO: 1 in the sequence listing, base numbers 112 to 1566 of SEQ ID NO: 1, SEQ ID NO: 2, or base numbers 76 to 1533 of SEQ ID NO: 2 DNA that can hybridize with under stringent conditions.
  5.  前記遺伝子の機能が、ゲノムに内在するトランスポゾンが前記遺伝子に挿入されて欠損または抑制された、請求項1~4のいずれか1項に記載の植物変異体。 The plant mutant according to any one of claims 1 to 4, wherein the function of the gene is deleted or suppressed by inserting a transposon endogenous to the genome into the gene.
  6.  前記トランスポゾンがレトロトランスポゾンである、請求項5に記載の植物変異体。 The plant mutant according to claim 5, wherein said transposon is a retrotransposon.
  7.  請求項1~6のいずれか1項に記載の植物変異体から抽出溶媒を用いてグルコシルセラミド含有物を抽出する工程を含む、植物由来グルコシルセラミド含有抽出物の製造方法。 A method for producing a plant-derived glucosylceramide-containing extract, comprising a step of extracting a glucosylceramide-containing material from the plant mutant according to any one of claims 1 to 6 using an extraction solvent.
  8.  請求項1~6のいずれか1項に記載の植物変異体から抽出された、植物由来グルコシルセラミド含有抽出物。 A plant-derived glucosylceramide-containing extract extracted from the plant mutant according to any one of claims 1 to 6.
  9.  請求項1~6のいずれか1項に記載の植物変異体および/または請求項8に記載の植物由来グルコシルセラミド含有抽出物を含む、食品組成物。 A food composition comprising the plant mutant according to any one of claims 1 to 6 and/or the plant-derived glucosylceramide-containing extract according to claim 8.
  10.  請求項1~6のいずれか1項に記載の植物変異体および/または請求項8に記載の植物由来グルコシルセラミド含有抽出物を有効成分として含む、医薬組成物。 A pharmaceutical composition comprising the plant mutant according to any one of claims 1 to 6 and/or the plant-derived glucosylceramide-containing extract according to claim 8 as an active ingredient.
PCT/JP2022/017278 2021-05-06 2022-04-07 Plant variant having improved glucosylceramide percentage content WO2022234758A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023518651A JPWO2022234758A1 (en) 2021-05-06 2022-04-07

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021078534 2021-05-06
JP2021-078534 2021-05-06

Publications (1)

Publication Number Publication Date
WO2022234758A1 true WO2022234758A1 (en) 2022-11-10

Family

ID=83932172

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/017278 WO2022234758A1 (en) 2021-05-06 2022-04-07 Plant variant having improved glucosylceramide percentage content

Country Status (2)

Country Link
JP (1) JPWO2022234758A1 (en)
WO (1) WO2022234758A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017066115A (en) * 2015-10-02 2017-04-06 オリザ油化株式会社 Methods for producing compositions containing glucosylceramide
JP2020186185A (en) * 2019-05-13 2020-11-19 株式会社東洋新薬 Composition
JP2021182873A (en) * 2020-05-21 2021-12-02 学校法人帝京大学 Thermostable glucocerebrosidase

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017066115A (en) * 2015-10-02 2017-04-06 オリザ油化株式会社 Methods for producing compositions containing glucosylceramide
JP2020186185A (en) * 2019-05-13 2020-11-19 株式会社東洋新薬 Composition
JP2021182873A (en) * 2020-05-21 2021-12-02 学校法人帝京大学 Thermostable glucocerebrosidase

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
DATABASE Nucleotide ANONYMOUS : "Oryza sativa Japonica Group cDNA clone:001-207-A05, full insert sequen ", XP093000913, retrieved from NCBI *
HIROCHIKA HIROHIKO: "Discovery and contribution of an endogenous retrotransposon Tos17 to rice functional genomics and breeding science", IKUSHUGAKU KENKYU - BREEDING RESEARCH, NIHON IKUSHU GAKKAI, TOKYO, JP, vol. 11, no. 4, 1 January 2009 (2009-01-01), JP , pages 167 - 170, XP093000910, ISSN: 1344-7629, DOI: 10.1270/jsbbr.11.167 *
OPASSIRI RODJANA; POMTHONG BUSARAKUM; ONKOKSOONG TASSANEE; AKIYAMA TAKASHI; ESEN ASIM; KETUDAT CAIRNS JAMES R: "Analysis of rice glycosyl hydrolase family 1 and expression of Os4bglu12 β-glucosidase", BMC PLANT BIOLOGY, BIOMED CENTRAL, LONDON, GB, vol. 6, no. 1, 29 December 2006 (2006-12-29), GB , pages 33, XP021022659, ISSN: 1471-2229, DOI: 10.1186/1471-2229-6-33 *
WANG CHENGLIANG, CHEN SHUAI, DONG YANPING, REN RUIJUAN, CHEN DEFU, CHEN XIWEN: "Chloroplastic Os3BGlu6 contributes significantly to cellular ABA pools and impacts drought tolerance and photosynthesis in rice", NEW PHYTOLOGIST, WILEY-BLACKWELL PUBLISHING LTD., GB, vol. 226, no. 4, 1 May 2020 (2020-05-01), GB , pages 1042 - 1054, XP093000905, ISSN: 0028-646X, DOI: 10.1111/nph.16416 *

Also Published As

Publication number Publication date
JPWO2022234758A1 (en) 2022-11-10

Similar Documents

Publication Publication Date Title
CN102202498B (en) The Oleum Gossypii semen of improvement and application
AU2022204460A1 (en) Elite event canola ns-b50027-4
JP6594205B2 (en) Vanillin synthase
JP7127942B2 (en) Methods for targeted modification of double-stranded DNA
JP2018529370A (en) Potato cultivar Y9
AU2012212404A1 (en) Barley with modified SSIII
JP6230529B2 (en) Steviol glycoside enzyme and gene encoding the same
CN109996879A (en) The plant to flowering time with shortening
JP7033533B2 (en) Plants containing a low copy number of RI genes
WO2017218883A1 (en) Plants with reduced lipase 1 activity
JP2022091834A (en) Wheat with reduced lipoxygenase activity
TW201307566A (en) Utilization method of monoterpene glycosylation enzyme
Haq et al. Progresses of CRISPR/Cas9 genome editing in forage crops
WO2022234758A1 (en) Plant variant having improved glucosylceramide percentage content
US20220315940A1 (en) Germacrene a synthase mutants
JP2007517496A (en) Citrus sesquiterpene synthase, method for its production, and method of use
CN105936914B (en) The albumen and application of asparagus chalcone synthase genes and its coding
US20230183665A1 (en) Thermostable glucocerebrosidase
JP6165876B2 (en) Resveratrol biosynthesis rice and its use
Abdel-Rhman Improvement the production of maize (Zea mays L.) crop by using particle bombardment
Rathinavel et al. Marker-Assisted Genetic Enhancement of Provitamin A in Parental Lines of Sweet Corn Hybrids
EP2119786A1 (en) Increased production of health-promoting compounds in plants
WO2023041661A1 (en) Transgenic plants producing high levels of apocarotenoids compounds and uses thereof
Rommens et al. Intragenic vectors and marker-free transformation: tools for a greener biotechnology
Gómez-Gómez et al. Transgenic plants producing high levels of apocarotenoids compounds and uses thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22798865

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023518651

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22798865

Country of ref document: EP

Kind code of ref document: A1