WO2022234706A1 - 計算装置、計算方法、プログラム、制御装置、制御方法、制御プログラム - Google Patents

計算装置、計算方法、プログラム、制御装置、制御方法、制御プログラム Download PDF

Info

Publication number
WO2022234706A1
WO2022234706A1 PCT/JP2022/005452 JP2022005452W WO2022234706A1 WO 2022234706 A1 WO2022234706 A1 WO 2022234706A1 JP 2022005452 W JP2022005452 W JP 2022005452W WO 2022234706 A1 WO2022234706 A1 WO 2022234706A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat storage
storage mode
heat
well
simulation
Prior art date
Application number
PCT/JP2022/005452
Other languages
English (en)
French (fr)
Inventor
昌史 大茂
林日 崔
正頌 坂井
徹 山口
憲治 上田
Original Assignee
三菱重工サーマルシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工サーマルシステムズ株式会社 filed Critical 三菱重工サーマルシステムズ株式会社
Priority to KR1020237037412A priority Critical patent/KR20230164712A/ko
Priority to CN202280030217.XA priority patent/CN117321349A/zh
Publication of WO2022234706A1 publication Critical patent/WO2022234706A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/46Improving electric energy efficiency or saving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/48Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring prior to normal operation, e.g. pre-heating or pre-cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/65Electronic processing for selecting an operating mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24TGEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
    • F24T10/00Geothermal collectors
    • F24T10/20Geothermal collectors using underground water as working fluid; using working fluid injected directly into the ground, e.g. using injection wells and recovery wells
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B27/00Machines, plants or systems, using particular sources of energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/06Heat pumps characterised by the source of low potential heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0046Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater using natural energy, e.g. solar energy, energy from the ground
    • F24F2005/0053Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater using natural energy, e.g. solar energy, energy from the ground receiving heat-exchange fluid from a well
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • F24F2110/12Temperature of the outside air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/20Humidity
    • F24F2110/22Humidity of the outside air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/20Heat-exchange fluid temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/60Energy consumption
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24TGEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
    • F24T2201/00Prediction; Simulation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy

Definitions

  • the present disclosure relates to a computing device, computing method, program, control device, control method, and control program.
  • This application claims priority to Japanese Patent Application No. 2021-78637 filed on May 6, 2021, the contents of which are incorporated herein.
  • Patent Document 1 discloses a geothermal heat source equipped with a heat source well facility having a hot water well, a cold water well, well-side piping connecting them, and a heat source equipment having a refrigeration cycle equipped with a condenser and an evaporator.
  • a utilization system is proposed.
  • this geothermal heat utilization system it is possible to switch between a cool heat storage operation mode and a cold heat release operation mode according to the season.
  • the cold storage heat operation mode heat is exchanged between the evaporator of the heat source equipment and the well-side piping, and heat is exchanged between the condenser of the heat source equipment and the load.
  • the radiation cooling heat operation mode heat is exchanged between the condenser of the heat source equipment and the well-side piping, and heat is exchanged between the evaporator of the heat source equipment and the load.
  • the present disclosure has been made to solve the above problems, and provides a computing device, a computing method, a program, a control device, a control method, and a control program that can operate in a heat storage mode suitable for environmental conditions. for the purpose.
  • a computing device includes a hot water well, a cold water well, a well-side pipe connecting the hot water well and the cold water well, and a pump provided in the well-side pipe.
  • An underground heat storage auxiliary facility comprising a heat source well facility, a cooling tower, a refrigerator, and a refrigerant circuit connected to at least one of the cooling tower and the refrigerator and capable of exchanging heat with the well-side piping.
  • a calculation device for determining a heat storage mode when heat is stored in a heat utilization system comprising: an acquisition unit for acquiring simulation conditions; and a simulation result of a first heat storage mode including heat storage by the cooling tower based on the simulation conditions.
  • a second calculation unit that calculates a second simulation result that is a simulation result of a second heat storage mode including heat storage by the refrigerator based on the simulation conditions. and a determination unit that determines one of the first heat storage mode and the second heat storage mode based on the first simulation result and the second simulation result.
  • the calculation method includes a heat source well facility including a hot water well, a cold water well, a well-side pipe connecting the hot water well and the cold water well, and a pump provided in the well-side pipe, a cooling tower,
  • a geothermal heat utilization system including a refrigerator and a heat storage auxiliary equipment having a refrigerant circuit connected to at least one of the cooling tower and the refrigerator and capable of exchanging heat with the well-side piping
  • a program according to the present disclosure includes a heat source well facility including a hot water well, a cold water well, a well-side pipe connecting the hot water well and the cold water well, and a pump provided in the well-side pipe, a cooling tower, a refrigeration and a heat storage auxiliary equipment having a refrigerant circuit connected to at least one of the cooling tower and the refrigerator and capable of exchanging heat with the well-side piping.
  • a method for determining a heat storage mode comprising obtaining simulation conditions, calculating a first simulation result, which is a simulation result of a first heat storage mode including heat storage by the cooling tower, based on the simulation conditions, and calculating the simulation conditions.
  • a second simulation result which is a result of a simulation of a second heat storage mode including heat storage by the refrigerator, is calculated, and based on the first simulation result and the second simulation result, the first heat storage mode and the The computer is caused to execute a method of determining either one of the second heat storage mode and the second heat storage mode.
  • calculation device calculation method, program, control device, control method, and control program of the present disclosure, it is possible to operate in a heat storage mode suitable for environmental conditions.
  • FIG. 1 is a system diagram showing a schematic configuration of a geothermal heat utilization system according to an embodiment of the present disclosure
  • FIG. 1 is a block diagram showing a functional configuration of a geothermal heat utilization system according to an embodiment of the present disclosure
  • FIG. FIG. 4 is a diagram showing the flow of groundwater and medium when operating in the cooling operation mode in the geothermal heat utilization system according to the embodiment of the present disclosure
  • FIG. 4 is a diagram showing the flow of groundwater and medium when operating in the heating operation mode in the geothermal heat utilization system according to the embodiment of the present disclosure
  • FIG. 4 is a diagram showing flows of groundwater and medium when cold water heat storage operation is performed in the first heat storage mode in the geothermal heat utilization system according to the embodiment of the present disclosure
  • FIG. 1 Configuration of geothermal heat utilization system
  • the geothermal heat utilization system 1 includes a heat source well facility 10, an auxiliary heat storage facility 100, a heat exchanger 4 (see FIG. 1), and a computing device 200 (see FIG. 2). , and a control device 300 (see FIG. 2).
  • the heat source well equipment 10 mainly includes a hot water well 21 , a cold water well 22 , well-side piping 3 , and a pump 31 .
  • a hot water well 21 and a cold water well 22 each extend from the ground into the aquifer.
  • the hot water well 21 and the cold water well 22 are configured to take in groundwater from the aquifer, respectively, and return the groundwater from the inside of the hot water well 21 and the cold water well 22 to the aquifer.
  • the heat source well equipment 10 draws up groundwater from one of the hot water well 21 and the cold water well 22, performs heat exchange with the heat exchanger 4, and then supplies it to the other of the hot water well 21 and the cold water well 22 after heat exchange. Inject groundwater.
  • the heat source well equipment 10 has two operation modes: when groundwater is pumped up from the hot water well 21 and injected into the cold water well 22, and when groundwater is pumped up from the cold water well 22 and injected into the hot water well 21.
  • the well-side pipe 3 connects the hot water well 21 and the cold water well 22 . Both ends of the well-side pipe 3 extend inside the hot water well 21 and the cold water well 22 .
  • the well-side pipe 3 may have both ends immersed in the ground water of the hot water well 21 and the cold water well 22 so as to connect the hot water well 21 and the cold water well 22 .
  • a pump 31 is provided in the well-side pipe 3 .
  • Pumps 31 are provided at both ends of the well-side pipe 3, respectively.
  • a pump 31 pumps water from the hot water well 21 and the cold water well 22 to the well side pipe 3 .
  • the pumps 31 may be provided at both ends of the well-side pipe 3 and immersed in the groundwater in the hot water well 21 and the cold water well 22 .
  • the pump 31 may be able to change its output by inverter control.
  • the heat exchanger 4 exchanges heat between the groundwater in the well-side pipe 3 and the medium on the side of the auxiliary heat storage equipment 100 .
  • the heat exchanger 4 exchanges heat between groundwater pumped up from the hot water well 21 and flowing through the well-side pipe 3 and the medium on the side of the auxiliary heat storage equipment 100 .
  • the groundwater flows from the heat exchanger 4 through the well-side pipe 3 and is injected into the cold water well 22 .
  • the heat exchanger 4 exchanges heat between the groundwater pumped up from the cold water well 22 and flowing through the well-side pipe 3 and the medium on the side of the auxiliary heat storage equipment 100 .
  • the groundwater flows from the heat exchanger 4 through the well-side pipe 3 and is injected into the hot water well 21 .
  • the heat exchanger 4 may be provided in the middle of the well-side pipe 3 on the ground.
  • hot water means water with a temperature higher than the initial temperature of the groundwater in the aquifer
  • cold water means water with a temperature lower than the initial temperature of the groundwater in the aquifer. That is.
  • the initial ground temperature of groundwater in an aquifer is 18°C.
  • the auxiliary heat storage equipment 100 uses a medium that has undergone heat exchange with the groundwater in the well-side pipe 3 in the heat exchanger 4 .
  • the auxiliary heat storage facility 100 includes at least a cooling tower 130 , a heat source device 110 and a refrigerant circuit 101 .
  • the auxiliary heat storage facility 100 includes, for example, a heat source device 110, an air conditioner 120, a cooling tower 130, and a refrigerant circuit 101.
  • the heat storage auxiliary equipment 100 may configure an air conditioning system including a heat source device 110 and an air conditioner 120, for example.
  • the heat source device 110 may be a heat pump equipped with a condenser, an evaporator, a compressor, and the like.
  • the air conditioner 120 performs air conditioning of the space in which the air conditioner 120 is installed by exchanging heat with a medium (cold water) supplied from the heat source device 110 .
  • the cooling tower 130 cools the cooling water with heat of vaporization when the cooling water is brought into contact with the air and vaporized.
  • Cooling tower 130 circulates cooling water to and from second heat exchanger 140 .
  • the second heat exchanger 140 exchanges heat between the medium (cooling water) of the refrigerant circuit 101 on the air conditioning system side and the cooling water on the cooling tower 130 side.
  • the second heat exchanger 140 cools the medium of the refrigerant circuit 101 on the air conditioning system side by heat exchange with the cooling water cooled by the cooling tower 130 .
  • a refrigerator 150 is configured by the heat source device 110 and the cooling tower 130 .
  • the refrigerant circuit 101 forms a medium flow path between the heat exchanger 4 , the heat source device 110 , the air conditioner 120 and the second heat exchanger 140 .
  • the refrigerant circuit 101 is appropriately provided with a pump, an on-off valve, and the like (not shown). route.
  • the heat storage auxiliary equipment 100 can switch the operation mode between the cooling operation mode and the heating operation mode by switching the circulation route of the medium in the refrigerant circuit 101 .
  • the auxiliary heat storage equipment 100 performs cooling operation, and the hot water well 21 stores hot water heat.
  • the pump 31 of the cold water well 22 pumps groundwater and feeds it to the heat exchanger 4 .
  • the heat exchanger 4 exchanges heat between the groundwater in the well-side pipe 3 and the medium flowing through the refrigerant circuit 101 on the auxiliary heat storage equipment 100 side.
  • the medium (cooling water) cooled by the heat exchange in the heat exchanger 4 on the side of the auxiliary heat storage equipment 100 is sent to the heat source device 110, and is heat-exchanged with the medium (cold water) on the side of the air conditioner 120 in the heat source device 110. .
  • the air conditioner 120 connected to the heat source device 110 can cool the room.
  • the medium (cooling water) heated by the heat exchange in the heat source equipment 110 is sent to the heat exchanger 4 again, cooled, and then circulated.
  • the heat exchanger 4 heats the groundwater by exchanging heat between the heated medium and the groundwater flowing through the well-side pipe 3 .
  • Hot water heat is stored by injecting heated groundwater into the hot water well 21 through the well-side pipe 3 .
  • the auxiliary heat storage equipment 100 performs heating operation, and cold water heat storage is performed in the cold water well 22 .
  • the pump 31 of the hot water well 21 draws up underground water (hot water) and feeds it into the heat exchanger 4 .
  • the heat exchanger 4 exchanges heat between the groundwater in the well-side pipe 3 and the medium flowing through the refrigerant circuit 101 on the auxiliary heat storage equipment 100 side.
  • the medium heated by heat exchange in the heat exchanger 4 is sent to the heat source device 110 and heat exchanged in the heat source device 110 . Accordingly, the air conditioner 120 connected to the heat source device 110 can heat the room.
  • the medium cooled by heat exchange in the heat source equipment 110 is sent to the heat exchanger 4 again and circulated.
  • the heat exchanger 4 exchanges heat between the cooled medium and the groundwater flowing through the well-side pipe 3, thereby cooling the groundwater.
  • cold water heat is stored.
  • the geothermal heat utilization system 1 can store cold water heat in the cold water well 22 by cooling the groundwater in a state where the heating operation is not performed in winter (or at night) when the outside air temperature is low.
  • the geothermal heat utilization system 1 can switch the heat storage mode between a first heat storage mode including heat storage by the cooling tower 130 and a second heat storage mode including heat storage by the refrigerator 150. It is The geothermal heat utilization system 1 performs cold water heat storage in one of the first heat storage mode and the second heat storage mode under the control of the control device 300, which will be described later.
  • the cooling water cooled by the heat of vaporization when it is vaporized in contact with the atmosphere in the cooling tower 130 is sent to the second heat exchanger 140 .
  • the second heat exchanger 140 exchanges heat between the cooling water and the medium of the refrigerant circuit 101 . That is, the second heat exchanger 140 cools the medium of the refrigerant circuit 101 with the cooling water cooled by the cooling tower 130 .
  • the cooled medium is sent to the heat exchanger 4 and exchanges heat with the groundwater in the well-side piping 3 .
  • the pump 31 of the hot water well 21 draws up underground water (hot water) and feeds it into the heat exchanger 4 .
  • the groundwater in the well-side pipe 3 is cooled and poured into the cold water well 22 to store cold water heat.
  • cooling tower 130 and heat source device 110 are used as refrigerator 150 .
  • the pump 31 of the hot water well 21 draws up underground water (hot water) and feeds it into the heat exchanger 4 .
  • the medium is sent from the second heat exchanger 140 side to the heat source equipment 110 .
  • the heat source device 110 cools the medium (cold water) sent from the heat exchanger 4 side by heat exchange.
  • a medium (cold water) cooled by heat exchange in the heat source equipment 110 is sent to the heat exchanger 4 .
  • the heat exchanger 4 exchanges heat between the cooled medium and the groundwater flowing through the well-side pipe 3 to cool the groundwater.
  • the medium (cooling water) whose temperature has been raised by heat exchange with the medium (cold water) on the heat exchanger 4 side in the heat source device 110 is sent to the second heat exchanger 140 .
  • the second heat exchanger 140 cools the medium sent from the heat source equipment 110 by exchanging heat with the cooling water cooled by the cooling tower 130 .
  • the calculation device 200 determines a heat storage mode when heat is stored in the geothermal heat utilization system 1 .
  • the calculation device 200 performs a simulation calculation in advance as to which of the first heat storage mode and the second heat storage mode is appropriate for cold water heat storage when cold water heat storage is performed in the geothermal heat utilization system 1. I do.
  • the calculation device 200 determines one of the first heat storage mode and the second heat storage mode based on the result of the simulation calculation.
  • the computing device 200 is provided in the geothermal heat utilization system 1 . That is, the computing device 200 is provided at the installation location of the geothermal heat utilization system 1 .
  • Computing device 200 may, for example, be provided with control device 300 .
  • the computing device 200 may be incorporated in the control device 300 as part of the configuration of the control device 300 .
  • the computing device 200 may be provided at a location different from the installation location of the geothermal heat utilization system 1 .
  • the computing device 200 may be provided so as to be capable of data communication with the control device 300 via a wired or wireless external network.
  • the calculation device 200 functionally includes an acquisition unit 210 , a first calculation unit 220 , a second calculation unit 230 , a temperature calculation unit 240 and a determination unit 250 .
  • the Acquisition unit 210 acquires simulation conditions.
  • the acquisition unit 210 acquires simulation conditions that are prerequisites for simulation calculations that are performed to determine the heat storage mode.
  • the simulation conditions to be acquired include, for example, outside air conditions.
  • the outdoor conditions may include, for example, at least one of outdoor temperature and outdoor humidity.
  • the outside air conditions may include both the outside air temperature and the outside air humidity.
  • the outside air conditions include, for example, the outside air temperature (range) and the outside air humidity (range) assumed in the location (area) where the geothermal heat utilization system 1 is installed.
  • the simulation conditions acquired by the acquisition unit 210 may include the pumped water temperature and the upper limit water injection temperature.
  • the pumping temperature is the temperature of groundwater that can be pumped from the hot water well 21 .
  • the upper limit water injection temperature is the upper limit of the water injection temperature of the groundwater that is injected into the cold water well 22 when cold water heat storage is performed in the cold water well 22 .
  • the upper water injection temperature limit is, for example, the upper limit of the water injection temperature at which the temperature rise of the groundwater in the cold water well 22 is suppressed when groundwater is injected into the cold water well 22 .
  • the acquiring unit 210 acquires the outside air temperature and the outside air humidity to be acquired as virtual outside air conditions for performing the simulation.
  • the acquisition unit 210 may include the specifications of the equipment that constitutes the heat source well facility 10 and the auxiliary heat storage facility 100 as simulation conditions.
  • the equipment specifications include, for example, the pump 31 of the heat source well equipment 10, the heat source equipment 110 of the auxiliary heat storage equipment 100, the cooling tower 130, the pump (not shown) provided in the refrigerant circuit 101, and the medium of the auxiliary heat storage equipment 100 side. Specifications and the like may be included.
  • the obtaining unit 210 may obtain the simulation conditions by, for example, receiving input of numerical values of the respective simulation conditions by the operator.
  • the acquisition unit 210 may acquire the simulation conditions from, for example, a database that stores the specifications of each device that constitutes the heat source well facility 10 and the auxiliary heat storage facility 100 .
  • the first calculation unit 220 performs simulation calculation in the first heat storage mode including heat storage by the cooling tower 130 based on the simulation conditions acquired by the acquisition unit 210 .
  • the first calculator 220 performs a simulation calculation when operating in the first heat storage mode including heat storage using the cooling tower 130 as shown in FIG. 5 based on the simulation conditions.
  • the first calculation unit 220 performs a simulation calculation when cold water heat is stored in the cold water well 22 by cooling the medium using the cooling tower 130 .
  • the first calculator 220 varies the temperature and humidity within the ranges of the virtual outdoor air temperature and the virtual outdoor air humidity obtained as the virtual outdoor air conditions, and performs simulation calculations multiple times.
  • the first calculator 220 calculates (outputs) a first simulation result, which is a result obtained by simulation calculation.
  • the first calculation unit 220 may include at least one of water injection temperature, heat storage amount, and power as the first simulation result obtained by the simulation calculation.
  • the injected water temperature is the temperature of groundwater injected into the cold water well 22 from the well-side pipe 3 that exchanges heat with the refrigerant circuit 101 .
  • the heat storage amount is the amount of energy obtained by injecting water into the cold water well 22 from the well-side pipe 3 that has exchanged heat with the refrigerant circuit 101 .
  • the power required to store heat includes the pump 31 on the side of the heat source well facility 10 and various pumps (not shown) provided in the refrigerant circuit 101 of the auxiliary heat storage facility 100, which are required to store heat in the first heat storage mode. , is the power for operating the cooling tower 130 .
  • the second calculation unit 230 performs simulation calculation in the second heat storage mode including heat storage by the refrigerator 150 (the heat source device 110 and the cooling tower 130) based on the simulation conditions acquired by the acquisition unit 210.
  • the second calculation unit 230 performs a simulation calculation when operating in the second heat storage mode including heat storage using the refrigerator 150 as shown in FIG. 6 based on the simulation conditions.
  • the second calculation unit 230 performs a simulation calculation when cold water heat is stored in the cold water well 22 by cooling the medium using the refrigerator 150 .
  • the second calculator 230 varies the temperature and humidity within the ranges of the virtual outdoor air temperature and the virtual outdoor air humidity obtained as the virtual outdoor air conditions, and performs simulation calculations multiple times.
  • the second calculator 230 calculates (outputs) a second simulation result, which is the result obtained by the simulation calculation.
  • the second calculation unit 230 may include at least one of the injected water temperature, heat storage amount, and power as the second simulation result to be calculated.
  • the second calculation unit 230 may calculate the second simulation result such that the heat storage amount in the second heat storage mode is the same as the heat storage amount in the first heat storage mode.
  • the power calculated by the second calculation unit 230 operates the pump 31 on the heat source well equipment 10 side, various pumps (not shown) provided on the refrigerant circuit 101 side of the heat storage auxiliary equipment 100, the cooling tower 130, and the heat source equipment 110. It is the driving force for
  • the temperature calculation unit 240 calculates the limit outside air temperature at which the groundwater injection temperature that is injected into the cold water well 22 from the well-side pipe 3 that exchanges heat with the refrigerant circuit 101 becomes the upper limit injection temperature.
  • the determination unit 250 selects between the first heat storage mode and the second heat storage mode: Determine which heat storage mode.
  • the determining unit 250 may compare, for example, the injection water temperature, the heat storage amount, and the power included in the first simulation result and the second simulation result. As a result of comparing the first simulation result and the second simulation result, the determining unit 250 determines, for example, the first heat storage mode and the second heat storage mode, whichever has the lower water injection temperature, as the heat storage mode.
  • the determination unit 250 may determine the heat storage mode with the lower water injection temperature. As a result of comparing the first simulation result and the second simulation result, the determining unit 250 determines, for example, the first heat storage mode and the second heat storage mode, whichever has a larger heat storage amount, as the heat storage mode. The determination unit 250 determines, for example, the power required to store heat in the first heat storage mode and the power required to store heat in the second heat storage mode as a result of comparing the first simulation result and the second simulation result. based on the result of comparison with, the one with the smaller power is determined as the heat storage mode.
  • the determination unit 250 determines the power required to store heat in the first heat storage mode and the power required to store heat in the second heat storage mode. Based on the result of comparison with the power required to store heat in the mode, the mode with the smaller power may be determined as the heat storage mode.
  • the determination unit 250 selects the second heat storage mode as the heat storage mode under the condition of the virtual outside air temperature equal to or higher than the limit outside air temperature calculated by the temperature calculation unit 240 . This is because in the first heat storage mode using the cooling tower 130, when the outside air temperature is high, cooling in the cooling tower 130 cannot be sufficiently performed, and the water injection temperature may become equal to or higher than the upper water injection temperature limit.
  • the determination unit 250 compares a predetermined target cold water heat storage amount (for example, cold water heat storage is performed by predicting that the cold water heat storage amount and the hot water heat storage amount are equal) and the current cold water heat storage amount, and determines a large-capacity
  • a second heat storage mode in which cold water heat storage is possible may be determined as the heat storage mode. This is because in the first heat storage mode using the cooling tower 130, there is a possibility that a sufficient cold water heat storage amount cannot be obtained.
  • the determination unit 250 selects the determined heat storage mode from among the first heat storage mode and the second heat storage mode for each virtual outside air condition when the simulation calculation is performed. generates heat storage mode information associated with The determination unit 250 may generate heat storage mode information in which the determined heat storage mode is associated with the virtual outside air temperature (for example, every 1° C.) for which the simulation calculation was performed. The determination unit 250 may generate heat storage mode information in which the determined heat storage mode is associated with the simulated outside air humidity (for example, every 5%). The determining unit 250 may generate heat storage mode information that associates the determined heat storage mode with each combination of the virtual outside air temperature and the virtual humidity for which the simulation calculation was performed. The determination unit 250 outputs the generated accumulation mode information to the control device 300, which will be described later.
  • the operation of the computing device 200 of this embodiment will be described.
  • the operation of computing device 200 corresponds to an embodiment of a computing method.
  • the computing device 200 implements each step shown in FIG.
  • the acquisition unit 210 acquires simulation conditions (ST01: step of acquiring simulation conditions).
  • Acquisition unit 210 acquires outside air conditions (outside air temperature, outside air humidity) as simulation conditions.
  • the pumped water temperature and the upper limit water injection temperature may be further acquired as the simulation conditions.
  • the acquisition unit 210 uses the pump 31 of the heat source well equipment 10, the heat source equipment 110 of the auxiliary heat storage equipment 100, the cooling tower 130, the pump (not shown) provided in the refrigerant circuit 101, the auxiliary heat storage equipment 100 side as simulation conditions. You may acquire the specification of the medium of, etc. further.
  • the first calculation unit 220 performs simulation calculation of the first heat storage mode including heat storage by the cooling tower 130 based on the simulation conditions acquired by the acquisition unit 210, and obtains the first simulation result ( ST02: Step of performing simulation calculation in the first heat storage mode).
  • the second calculation unit 230 performs simulation calculation of the second heat storage mode including heat storage by the refrigerator 150 based on the simulation conditions acquired by the acquisition unit 210, and obtains the second simulation result ( ST03: Step of performing simulation calculation in the second heat storage mode).
  • the determination unit 250 determines the power required to store heat in the first heat storage mode based on the first simulation result obtained in ST02 and the second simulation result obtained in ST03, The power required to store heat in the second heat storage mode is compared (ST04: step of comparing the power in the first heat storage mode and the second heat storage mode).
  • the temperature calculation unit 240 calculates the limit outside air temperature at which the water injection temperature to the cold water well 22 becomes the upper limit water injection temperature when heat is stored in the first heat storage mode (ST05: first step of calculating the limit outside temperature in the heat storage mode).
  • ST05 may be performed in parallel with ST04 and ST05, or may be performed before or after ST03 and ST04.
  • the determination unit 250 determines the first heat storage mode based on the first simulation result calculated by the first calculation unit 220 and the second simulation result calculated by the second calculation unit 230.
  • One of the second heat storage modes is determined (ST06: step of determining heat storage mode).
  • the determination unit 250 may compare the water injection temperature, heat storage amount, and power included in the first simulation result and the second simulation result, and determine the heat storage mode so as to improve energy saving, for example.
  • the determining unit 250 may select the second heat storage mode as the heat storage mode so that the water injection temperature into the cold water well 22 does not exceed the upper limit water injection temperature, for example, at a virtual outside air temperature equal to or higher than the critical outside air temperature.
  • the determining unit 250 After performing ST06, the determining unit 250 generates heat storage mode information in which the determined heat storage mode is associated with each virtual outside air condition (ST07: step of generating heat storage mode information). The determining unit 250 outputs the generated accumulation mode information to the control device 300 .
  • the control device 300 controls operations of the geothermal heat utilization system 1 .
  • the control device 300 controls the operation of each part of the geothermal heat utilization system 1 in each of the cooling operation mode, the heating operation mode, the first heat storage mode, and the second heat storage mode.
  • the control device 300 operates in the heat storage mode determined by the computing device 200 when cold water heat storage is performed.
  • the control device 300 operates the geothermal heat utilization system 1 in a heat storage mode corresponding to the actual outside air conditions based on the actual outside air conditions during operation.
  • the control device 300 includes a mode information storage section 310 , an outside air condition acquisition section 320 and an operation control section 330 .
  • the mode information storage unit 310 stores heat storage mode information output from the computing device 200 .
  • the mode information storage unit 310 stores heat storage mode information associated with the heat storage mode determined for each computing device 200 and each virtual outside air condition.
  • the outside air condition acquisition unit 320 acquires the actual outside air condition.
  • the outside air condition acquisition unit 320 acquires at least one of the actual outside air temperature and the actual outside air humidity as the actual outside air condition.
  • the outside air condition acquisition unit 320 may acquire both the actual outside air temperature and the actual outside air temperature as the actual outside air conditions.
  • the outside air condition acquisition unit 320 may, for example, acquire the actual outside air temperature and the actual outside air humidity detected by a thermometer, a hygrometer, or the like at the location where the geothermal heat utilization system 1 is installed as the actual outside air conditions. .
  • the outside air condition acquiring unit 320 may, for example, acquire numerical values of the actual outside air temperature and the actual outside air humidity input by the operator.
  • the outside air condition acquisition unit 320 may acquire data on the actual outside air temperature and the actual outside air humidity via an external network.
  • the operation control unit 330 operates the geothermal heat utilization system 1 based on the heat storage mode stored in the mode information storage unit 310 . Based on the heat storage mode stored in the mode information storage unit 310 and the actual outside air condition, the operation control unit 330 uses geothermal heat in either the first heat storage mode or the second weak heat mode. Let system 1 run.
  • the operation control unit 330 refers to the heat storage mode information stored in the mode information storage unit 310 and acquires the heat storage mode associated with the virtual outside air condition corresponding to the acquired actual outside air condition.
  • the operation control unit 330 controls each part of the heat source well equipment 10 and the auxiliary heat storage equipment 100 in the acquired heat storage mode to perform the cold water heat storage operation.
  • control device 300 The operation of the control device 300 of this embodiment will be described.
  • the operation of the control device 300 corresponds to an embodiment of the control method.
  • the control device 300 implements each step shown in FIG.
  • the outside air condition acquisition unit 320 acquires the actual outside air condition (ST11: step of acquiring the actual outside air condition).
  • the operation control unit 330 After performing ST11, the operation control unit 330 refers to the heat storage mode information stored in the mode information storage unit 310, and acquires the heat storage mode associated with the virtual outside air condition corresponding to the acquired actual outside air condition (ST12 : a step of acquiring information on the heat storage mode corresponding to the actual outside air conditions).
  • the operation control unit 330 acquires the heat storage mode determined by the computing device 200 to be appropriate as a result of the comparison under the actual outside air conditions at that time, out of the first heat storage mode and the second heat storage mode.
  • the operation control unit 330 After performing ST12, the operation control unit 330 operates the geothermal heat utilization system 1 based on the acquired heat storage mode (ST13: step of operating the geothermal heat utilization system in the acquired heat storage mode).
  • ST13 step of operating the geothermal heat utilization system in the acquired heat storage mode.
  • the operation control unit 330 acquires the first heat storage mode corresponding to the actual outside air condition
  • the cold water heat storage is performed in the first heat storage mode.
  • the operation control unit 330 acquires the second heat storage mode corresponding to the actual outside air condition
  • the cold water heat storage is performed in the second heat storage mode.
  • the calculation device 200 provides the first simulation result when the first heat storage mode including heat storage by the cooling tower 130 is performed, and the result when the second heat storage mode including heat storage by the refrigerator 150 is performed.
  • a heat storage mode is determined based on the second simulation result.
  • the computing device 200 can determine the heat storage mode suitable for the environmental conditions with high accuracy based on the simulation.
  • the geothermal heat utilization system 1 can be operated in a heat storage mode suitable for environmental conditions.
  • the first simulation result and the second simulation result each include at least one of water injection temperature, heat storage amount, and power.
  • the determining unit 250 can properly determine the heat storage mode.
  • the determining unit 250 compares the power required to store heat in the first heat storage mode and the power required to store heat in the second heat storage mode. Accordingly, the determination unit 250 can select the heat storage mode that requires less power and is more energy-saving.
  • the second calculation unit 230 calculates the second simulation result so that the heat storage amount in the second heat storage mode is the same as the heat storage amount in the first heat storage mode.
  • the determination unit 250 selects an appropriate heat storage mode by comparing the first heat storage mode and the second heat storage mode with the same amount of heat stored in the first heat storage mode and the second heat storage mode. can do.
  • the determining unit 250 determines one of the first heat storage mode and the second heat storage mode in association with each virtual outside air condition of a plurality of virtual outside air conditions. . By determining the heat storage mode in association with the virtual outside air condition in this way, the geothermal heat utilization system 1 can be operated in an appropriate heat storage mode according to the actual outside air condition during operation.
  • the virtual outside air condition includes at least one of a virtual outside air temperature and a virtual outside air humidity.
  • the geothermal heat utilization system 1 can be operated in an appropriate heat storage mode according to the actual outside air temperature during operation and the actual outside air temperature.
  • the determination unit 250 selects the second heat storage mode as the heat storage mode at a virtual outside air temperature equal to or higher than the limit outside air temperature.
  • the heat storage mode suitable for the environmental conditions can be determined with high accuracy based on the simulation. can be done.
  • the geothermal heat utilization system 1 can be operated in a heat storage mode suitable for environmental conditions.
  • the control device 300 stores the mode information storage unit 310 storing the heat storage mode information related to the heat storage mode determined by the computing device 200, and based on the heat storage mode stored in the mode information storage unit 310, and an operation control unit 330 for operating the geothermal heat utilization system 1 .
  • the geothermal heat utilization system 1 can be operated in a heat storage mode suitable for the environmental conditions determined with high accuracy based on the simulation by the computing device 200 .
  • the operation control unit 330 operates the geothermal heat utilization system 1 based on the heat storage mode associated with the actual outside air condition acquired by the outside air condition acquisition unit 320 .
  • the geothermal heat utilization system 1 can be operated in a heat storage mode suitable for environmental conditions.
  • the geothermal heat utilization system 1 it is possible to operate the geothermal heat utilization system 1 in a heat storage mode suitable for the environmental conditions determined with high accuracy based on the simulation by the computing device 200. As a result, the geothermal heat utilization system 1 can be operated in a heat storage mode suitable for environmental conditions.
  • programs for realizing various functions of the computing device 200 and the control device 300 are recorded in a computer-readable recording medium, and the programs recorded in this recording medium are transferred to a microcomputer.
  • Various processing is performed by loading and executing the computer system.
  • various processes of the CPU of the computer system are stored in a computer-readable recording medium in the form of programs, and the above various processes are performed by reading and executing the programs by the computer.
  • Computer-readable recording media include magnetic disks, magneto-optical disks, CD-ROMs, DVD-ROMs, semiconductor memories, and the like.
  • the computer program may be distributed to a computer via a communication line, and the computer receiving the distribution may execute the program.
  • the computer 190 provided in each of the computing device 200 and the control device 300 includes a processor 195, a memory 196, a storage/reproducing device 197, and an Input Output Interface (hereinafter referred to as "IO I/F”). .) 198 and a communication interface (hereinafter referred to as “communication I/F”) 199 .
  • IO I/F Input Output Interface
  • communication I/F communication interface
  • processor 195 may be a CPU.
  • the memory 196 is a medium such as a random access memory (hereinafter referred to as "RAM") that temporarily stores data used by programs executed by the computing device 200 and the control device 300 respectively.
  • the storage/playback device 197 may be a device for storing data or the like in an external medium such as a CD-ROM, DVD, or flash memory, or playing data or the like from the external medium.
  • the IO I/F 198 may be an interface for inputting/outputting information between each of the computing device 200 and the control device 300 and another device.
  • the communication I/F 199 may be an interface that performs communication between each of the computing device 200 and the control device 300 and another device via a communication line such as the Internet or a dedicated communication line.
  • a computing device 200 includes a hot water well 21, a cold water well 22, a well-side pipe 3 connecting the hot water well 21 and the cold water well 22, and the well-side pipe 3 a heat source well facility 10 including a pump 31; a cooling tower 130; a refrigerator 150; A calculation device 200 for determining a heat storage mode when storing heat in the geothermal heat utilization system 1, which includes an auxiliary heat storage facility 100 having , a first calculation unit 220 that calculates a first simulation result that is the result of a simulation of the first heat storage mode including heat storage by the cooling tower 130, and a second heat storage including heat storage by the refrigerator 150 based on the simulation conditions A second calculation unit 230 that calculates a second simulation result that is a simulation result of the mode; and based on the first simulation result and the second simulation result, , and a determination unit 250 that determines one of the heat storage modes.
  • the calculation device 200 compares the first simulation result when the first heat storage mode including heat storage by the cooling tower 130 is performed and the second simulation result when the second heat storage mode including heat storage by the refrigerator 150 is performed. Based on this, the heat storage mode is determined. Thereby, the computing device 200 can determine the heat storage mode suitable for the environmental conditions with high accuracy based on the simulation. As a result, the geothermal heat utilization system 1 can be operated in a heat storage mode suitable for environmental conditions.
  • the computing device 200 according to the second aspect is the computing device 200 of (1), in which the first simulation result and the second simulation result are the heat exchanged with the refrigerant circuit 101, respectively. At least one of the temperature of water injected from the well-side pipe 3 to the cold water well 22, the amount of heat stored in the heat source well equipment 10, and the power required to store heat may be included.
  • the determining unit 250 can properly determine the heat storage mode.
  • the computing device 200 is the computing device 200 of (1) or (2), wherein the determination unit 250 includes power required to store heat in the first heat storage mode, The heat storage mode may be determined based on a comparison result between the power required to store heat in the second heat storage mode.
  • the determination unit 250 selects the heat storage mode with higher energy saving. can be selected.
  • a computing device 200 according to a fourth aspect is the computing device 200 according to any one of (1) to (3), wherein the second computing unit 230 determines that the heat storage amount in the second heat storage mode is The second simulation result may be calculated so as to be the same as the heat storage amount in the first heat storage mode.
  • the determination unit 250 selects an appropriate heat storage mode by comparing the first heat storage mode and the second heat storage mode with the same amount of heat stored in the first heat storage mode and the second heat storage mode. can do.
  • the computing device 200 according to the fifth aspect is the computing device 200 according to any one of (1) to (4), in which the determination unit 250 determines the Either one of the first heat storage mode and the second heat storage mode may be determined in association with each other.
  • the geothermal heat utilization system 1 can be operated in an appropriate heat storage mode according to the actual outside air conditions during operation.
  • the computing device 200 according to the sixth aspect is the computing device 200 of (5), wherein the virtual outside air condition may include at least one of a virtual outside air temperature and a virtual outside air humidity.
  • the geothermal heat utilization system 1 can be operated in an appropriate heat storage mode according to the actual outside air temperature during operation.
  • a computing device 200 is the computing device 200 of (5) or (6), in which in the first heat storage mode, from the well-side pipe 3 that exchanges heat with the refrigerant circuit 101 It further includes a temperature calculation unit 240 that calculates a limit outside air temperature at which the water injection temperature into the cold water well 22 becomes the upper limit water injection temperature, and the determination unit 250 calculates the second heat storage at the virtual outside temperature that is equal to or higher than the limit outside temperature.
  • a mode may be selected as the heat storage mode.
  • the geothermal heat utilization system 1 can be cooled by the cooling tower 130 when the actual outside air temperature is high. In the case where the temperature of injected water becomes high, cooling by the cooling tower 130 is not performed, and heat is stored using the refrigerator 150, thereby suppressing an increase in the temperature of injected water.
  • the calculation method according to the eighth aspect includes the hot water well 21, the cold water well 22, the well-side pipe 3 connecting the hot water well 21 and the cold water well 22, and the pump provided in the well-side pipe 3 31, a cooling tower 130, a refrigerator 150, and a refrigerant circuit 101 connected to at least one of the cooling tower 130 and the refrigerator 150 and capable of exchanging heat with the well-side piping 3,
  • a first simulation result which is a simulation result of a first heat storage mode including heat storage
  • a second simulation result which is a simulation result of a second heat storage mode including heat storage by the refrigerator 150, is calculated based on the simulation conditions.
  • One of the first heat storage mode and the second heat storage mode is determined based on the first simulation result and the second simulation result.
  • the geothermal heat utilization system 1 can be operated in a heat storage mode suitable for environmental conditions.
  • the program according to the ninth aspect includes a hot water well 21, a cold water well 22, a well-side pipe 3 connecting the hot water well 21 and the cold water well 22, and a pump 31 provided in the well-side pipe 3 , a cooling tower 130, a refrigerator 150, and a refrigerant circuit 101 connected to at least one of the cooling tower 130 and the refrigerator 150 and capable of exchanging heat with the well-side piping 3.
  • a method for determining a heat storage mode when storing heat in a geothermal heat utilization system 1 that includes a heat storage auxiliary equipment 100 having a calculating a first simulation result that is a simulation result of the first heat storage mode including and causing a computer to execute a method of determining one of the first heat storage mode and the second heat storage mode based on the first simulation result and the second simulation result.
  • the geothermal heat utilization system 1 can be operated in a heat storage mode suitable for environmental conditions.
  • the control device 300 includes a mode information storage unit 310 storing heat storage mode information about the heat storage mode determined by the computing device 200 according to any one of (1) to (7); and an operation control unit 330 for operating the geothermal heat utilization system 1 based on the heat storage mode stored in the mode information storage unit 310 .
  • the geothermal heat utilization system 1 can be operated in a heat storage mode suitable for the environmental conditions determined with high accuracy based on the simulation by the computing device 200.
  • a control device 300 is the control device 300 of (10), and includes an outside air condition acquisition unit 320 that acquires an actual outside air condition, and the operation control unit 330 acquires the outside air condition.
  • the geothermal heat utilization system 1 may be operated based on the heat storage mode associated with the actual outside air condition acquired by the unit 320 .
  • the geothermal heat utilization system 1 can be operated in a heat storage mode suitable for environmental conditions.
  • a control method stores heat storage mode information related to the heat storage mode determined by the computing device 200 according to any one of (1) to (7), and stores the stored heat storage mode. Based on the mode, the geothermal heat utilization system 1 is operated.
  • the geothermal heat utilization system 1 can be operated in a heat storage mode suitable for environmental conditions.
  • a control program stores heat storage mode information related to the heat storage mode determined by the computing device 200 according to any one of (1) to (7), and stores the stored heat storage mode information. Based on the mode, the computer executes a method for operating the geothermal heat utilization system 1 .
  • the geothermal heat utilization system 1 can be operated in a heat storage mode suitable for environmental conditions.
  • Operation control part ST01 Step of acquiring simulation conditions ST02 Step of performing simulation calculation in the first heat storage mode ST03 Step of performing simulation calculation in the second heat storage mode ST04 Power in the first heat storage mode and the second heat storage mode Step ST05 of comparing Step ST06 of calculating the limit outside air temperature in the first heat storage mode Step ST06 of determining the heat storage mode Step ST07 of generating heat storage mode information Step ST11 Step of acquiring actual outside air conditions Step ST12 Actual outside air conditions Step ST13 of acquiring the heat storage mode corresponding to the step of operating the geothermal heat utilization system in the acquired heat storage mode

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Fuzzy Systems (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Air Conditioning Control Device (AREA)
  • Central Air Conditioning (AREA)

Abstract

本開示の計算装置は、熱源井戸設備と、冷却塔、冷凍機、および冷媒回路、を有した蓄熱補助設備とを備える地中熱利用システムで蓄熱を行う際の蓄熱モードを決定する計算装置であって、シミュレーション条件を取得する取得部と、シミュレーション条件に基づき、冷却塔による蓄熱を含む第一蓄熱モードのシミュレーションの結果である第一シミュレーション結果を算出する第一算出部と、シミュレーション条件に基づき、冷凍機による蓄熱を含む第二蓄熱モードのシミュレーションの結果である第二シミュレーション結果を算出する第二算出部と、第一シミュレーション結果と第二シミュレーション結果とに基づき、第一蓄熱モードと第二蓄熱モードとのうち、いずれかの蓄熱モードを決定する決定部とを備える。

Description

計算装置、計算方法、プログラム、制御装置、制御方法、制御プログラム
 本開示は、計算装置、計算方法、プログラム、制御装置、制御方法、制御プログラムに関する。
 本願は、2021年5月6日に出願された特願2021-78637号に対して優先権を主張し、その内容をここに援用する。
 近年、地下水を温熱源又は冷熱源として利用する地中熱利用システムが提案されている。
 例えば、特許文献1には、温水井戸、冷水井戸、これらを接続する井戸側配管を有する熱源井戸設備と、凝縮器、及び蒸発器を備えた冷凍サイクルを有する熱源機とを備えた地中熱利用システムが提案されている。この地中熱利用システムでは、季節に応じて、蓄冷熱運転モードと、放冷熱運転モードとを切換可能とされている。蓄冷熱運転モードは、熱源機の蒸発器と井戸側配管との間で熱交換するとともに、熱源機の凝縮器と負荷との間で熱交換する。放冷熱運転モードは、熱源機の凝縮器と井戸側配管との間で熱交換するとともに、熱源機の蒸発器と負荷との間で熱交換する。
特開2018-173257号公報
 ところで、特許文献1に記載されたような地中熱利用システムでは、常に、より効率のよい運転を行うことが望まれている。例えば、気温や湿度といった環境条件は日々変化している。このため、夏期、冬期といった季節だけでなく、運転時の条件に合わせて、より適した運転モードで地中熱利用システムを運転するのが好ましい。
 本開示は、上記課題を解決するためになされたものであって、環境条件に合った蓄熱モードで運転することができる計算装置、計算方法、プログラム、制御装置、制御方法、制御プログラムを提供することを目的とする。
 上記課題を解決するために、本開示に係る計算装置は、温水井戸、冷水井戸、前記温水井戸と前記冷水井戸とを接続する井戸側配管、および前記井戸側配管に設けられたポンプ、を備える熱源井戸設備と、冷却塔、冷凍機、および、前記冷却塔および前記冷凍機の少なくとも一方に接続されて前記井戸側配管と熱交換可能な冷媒回路、を有した蓄熱補助設備とを備える地中熱利用システムで蓄熱を行う際の蓄熱モードを決定する計算装置であって、シミュレーション条件を取得する取得部と、前記シミュレーション条件に基づき、前記冷却塔による蓄熱を含む第一蓄熱モードのシミュレーションの結果である第一シミュレーション結果を算出する第一算出部と、前記シミュレーション条件に基づき、前記冷凍機による蓄熱を含む第二蓄熱モードのシミュレーションの結果である第二シミュレーション結果を算出する第二算出部と、前記第一シミュレーション結果と前記第二シミュレーション結果とに基づき、前記第一蓄熱モードと前記第二蓄熱モードとのうち、いずれかの蓄熱モードを決定する決定部とを備える。
 本開示に係る計算方法は、温水井戸、冷水井戸、前記温水井戸と前記冷水井戸とを接続する井戸側配管、および前記井戸側配管に設けられたポンプ、を備える熱源井戸設備と、冷却塔、冷凍機、および、前記冷却塔および前記冷凍機の少なくとも一方に接続されて前記井戸側配管と熱交換可能な冷媒回路、を有した蓄熱補助設備とを備える地中熱利用システムで蓄熱を行う際の蓄熱モードを決定する計算方法であって、シミュレーション条件を取得し、前記シミュレーション条件に基づき、前記冷却塔による蓄熱を含む第一蓄熱モードのシミュレーションの結果である第一シミュレーション結果を算出し、前記シミュレーション条件に基づき、前記冷凍機による蓄熱を含む第二蓄熱モードのシミュレーションの結果である第二シミュレーション結果を算出し、前記第一シミュレーション結果と前記第二シミュレーション結果とに基づき、前記第一蓄熱モードと前記第二蓄熱モードとのうち、いずれかの蓄熱モードを決定する。
 本開示に係るプログラムは、温水井戸、冷水井戸、前記温水井戸と前記冷水井戸とを接続する井戸側配管、および前記井戸側配管に設けられたポンプ、を備える熱源井戸設備と、冷却塔、冷凍機、および、前記冷却塔および前記冷凍機の少なくとも一方に接続されて前記井戸側配管と熱交換可能な冷媒回路、を有した蓄熱補助設備とを備える地中熱利用システムで蓄熱を行う際の蓄熱モードを決定する方法であって、シミュレーション条件を取得し、前記シミュレーション条件に基づき、前記冷却塔による蓄熱を含む第一蓄熱モードのシミュレーションの結果である第一シミュレーション結果を算出し、前記シミュレーション条件に基づき、前記冷凍機による蓄熱を含む第二蓄熱モードのシミュレーションの結果である第二シミュレーション結果を算出し、前記第一シミュレーション結果と前記第二シミュレーション結果とに基づき、前記第一蓄熱モードと前記第二蓄熱モードとのうち、いずれかの蓄熱モードを決定する方法をコンピュータに実行させる。
 本開示の計算装置、計算方法、プログラム、制御装置、制御方法、制御プログラムによれば、環境条件に合った蓄熱モードで運転することができる。
本開示の実施形態に係る地中熱利用システムの概略構成を示す系統図である。 本開示の実施形態に係る地中熱利用システムの機能構成を示すブロック図である。 本開示の実施形態に係る地中熱利用システムにおいて、冷房運転モードの運転を行う場合の地下水、媒体の流れを示す図である。 本開示の実施形態に係る地中熱利用システムにおいて、暖房運転モードの運転を行う場合の地下水、媒体の流れを示す図である。 本開示の実施形態に係る地中熱利用システムにおいて、第一蓄熱モードで冷水蓄熱運転を行う場合の地下水、媒体の流れを示す図である。 本開示の実施形態に係る地中熱利用システムにおいて、第二蓄熱モードで冷水蓄熱運転を行う場合の地下水、媒体の流れを示す図である。 本開示の実施形態に係る計算方法の流れを示すフローチャートである。 本開示の実施形態に係る制御方法の流れを示すフローチャートである。 本開示の実施形態に係る計算装置、制御装置がそれぞれ備えるコンピュータのハードウェア構成の例を示す図である。
 以下、本開示に係る実施形態について、図面を用いて説明する。すべての図面において同一または相当する構成には同一の符号を付し、共通する説明は省略する。
 <実施形態>
 本開示に係る地中熱利用システムの実施形態について、図1~図8を参照して説明する。
(地中熱利用システムの構成)
 図1、図2に示すように、地中熱利用システム1は、熱源井戸設備10と、蓄熱補助設備100と、熱交換器4(図1参照)と、計算装置200(図2参照)と、制御装置300(図2参照)とを主に備える。
(熱源井戸設備の構成)
 図1に示すように、熱源井戸設備10は、温水井戸21と、冷水井戸22と、井戸側配管3と、ポンプ31とを主に備える。
 温水井戸21、冷水井戸22は、それぞれ、地上から帯水層内に延びている。
 温水井戸21、冷水井戸22は、それぞれ、帯水層の地下水を取り込んだり、温水井戸21、冷水井戸22の内部から帯水層へ地下水を戻したりできるように構成されている。
 熱源井戸設備10は、温水井戸21および冷水井戸22のうちの一方から地下水をくみ上げ、熱交換器4で熱交換を行った後、温水井戸21および冷水井戸22のうちの他方に熱交換後の地下水を注入する。つまり、熱源井戸設備10は、温水井戸21から地下水をくみ上げて冷水井戸22に注水する場合と、冷水井戸22から地下水をくみ上げて温水井戸21に注水する場合の、2つの運転モードを有する。
 井戸側配管3は、温水井戸21と冷水井戸22とを接続する。
 井戸側配管3の両端は、温水井戸21、冷水井戸22の内部に延びている。
 例えば、井戸側配管3は、温水井戸21と冷水井戸22とを接続するように、温水井戸21と冷水井戸22との各地下水に両端が浸漬されていてもよい。
 井戸側配管3には、ポンプ31が設けられている。
 井戸側配管3の両端部には、ポンプ31がそれぞれ設けられている。
 ポンプ31は、温水井戸21、冷水井戸22から井戸側配管3に揚水する。
 例えば、ポンプ31は、井戸側配管3の両端に設けられ、温水井戸21、冷水井戸22内の地下水に浸漬されていてもよい。
 例えば、ポンプ31は、インバータ制御により出力を変更できてもよい。
 熱交換器4は、井戸側配管3内の地下水と蓄熱補助設備100側の媒体との間で熱交換する。
 例えば、熱交換器4は、温水井戸21からくみ上げられて井戸側配管3内を流れる地下水と、蓄熱補助設備100側の媒体との間で熱交換する。熱交換が行われた後の地下水は、熱交換器4から井戸側配管3内を流れ、冷水井戸22に注水される。
 例えば、熱交換器4は、冷水井戸22からくみ上げられて井戸側配管3内を流れる地下水と、蓄熱補助設備100側の媒体との間で熱交換する。熱交換が行われた後の地下水は、熱交換器4から井戸側配管3内を流れ、温水井戸21に注水される。
 例えば、熱交換器4は、地上において、井戸側配管3の途中に設けられていてもよい。
 熱交換器4を経た水が温水の場合、温水井戸21では温水蓄熱を行う。
 熱交換器4を経た水が冷水の場合、冷水井戸22では冷水蓄熱を行う。
 ここで「温水」とは、帯水層の地下水の初期地中温度より高い温度の水のことであり、「冷水」とは、帯水層の地下水の初期地中温度より低い温度の水のことである。
 例えば、帯水層の地下水の初期地中温度は18℃である。
(蓄熱補助設備の構成)
 蓄熱補助設備100は、蓄熱補助設備100は、熱交換器4で井戸側配管3内の地下水と熱交換を行った媒体を利用する。
 蓄熱補助設備100は、冷却塔130と、熱源機110と、冷媒回路101とを少なくとも備えている。
 本実施形態において、蓄熱補助設備100は、例えば、熱源機110と、空調機120と、冷却塔130と、冷媒回路101とを備えている。
 蓄熱補助設備100は、例えば、熱源機110と、空調機120とを備えた空気調和システムを構成してもよい。
 例えば、熱源機110は、コンデンサ、エバポレータ、コンプレッサ等を備えたヒートポンプであってもよい。
 空調機120は、熱源機110から供給される媒体(冷水)と熱交換することで、空調機120が設置された空間の空気調和を行う。
 冷却塔130は、冷却水を大気と接触させて気化させるときの気化熱により、冷却水を冷却する。冷却塔130は、第二熱交換器140との間で冷却水を循環させる。
 第二熱交換器140は、空気調和システム側の冷媒回路101の媒体(冷却水)と、冷却塔130側の冷却水との間で熱交換を行う。
 第二熱交換器140は、冷却塔130で冷却された冷却水との熱交換により、空気調和システム側の冷媒回路101の媒体を冷却する。
 上記熱源機110と、冷却塔130とにより、冷凍機150が構成されている。
 冷媒回路101は、熱交換器4と、熱源機110と、空調機120と、第二熱交換器140との間で、媒体の流路を形成する。
 冷媒回路101は、不図示のポンプ、開閉弁等が適宜設けられ、運転モードに応じ、熱交換器4、熱源機110、空調機120、および第二熱交換器140の間で、媒体を所定のルートで循環させる。
 例えば、蓄熱補助設備100は、冷媒回路101における媒体の循環ルートを切り換えることで、冷房運転モードと、暖房運転モードとで、運転モードの切換が可能とされている。
(冷房運転モードの構成)
 図3に示すように、冷房運転モードでは、蓄熱補助設備100側で冷房運転を行い、温水井戸21で温水蓄熱を行う。この場合、冷水井戸22のポンプ31は、地下水をくみ上げて熱交換器4に送り込む。熱交換器4は、井戸側配管3内の地下水と蓄熱補助設備100側の冷媒回路101を流れる媒体との間で熱交換を行う。蓄熱補助設備100側において、熱交換器4における熱交換により冷却された媒体(冷却水)は、熱源機110に送り込まれ、熱源機110において空調機120側の媒体(冷水)と熱交換される。これにより、熱源機110と接続された空調機120は、室内の冷房を行うことができる。他方、熱源機110における熱交換によって加熱された媒体(冷却水)は、熱交換器4に再び送りこまれて冷却された後循環する。熱交換器4では、加熱された媒体と井戸側配管3内を流れる地下水との熱交換を行うことで、地下水が加熱される。加熱された地下水を、井戸側配管3を通して温水井戸21に注水することで、温水蓄熱がなされる。
(暖房運転モードの構成)
 図4に示すように、暖房運転モードでは、蓄熱補助設備100側で暖房運転を行い、冷水井戸22で冷水蓄熱を行う。この場合、温水井戸21のポンプ31は、地下水(温水)をくみ上げて熱交換器4に送り込む。熱交換器4は、井戸側配管3内の地下水と蓄熱補助設備100側の冷媒回路101を流れる媒体との間で熱交換を行う。蓄熱補助設備100側において、熱交換器4における熱交換により加熱された媒体は、熱源機110に送り込まれ、熱源機110において熱交換される。これにより、熱源機110と接続された空調機120は、室内の暖房を行うことができる。他方、熱源機110における熱交換によって冷却された媒体は、熱交換器4に再び送りこまれて循環する。熱交換器4では、冷却された媒体と井戸側配管3内を流れる地下水との熱交換を行うことで、地下水が冷却される。冷却された地下水を、井戸側配管3を通して冷水井戸22に注水することで、冷水蓄熱がなされる。
 また、地中熱利用システム1は、外気温度が低い冬期(又は夜間)において、暖房運転を行っていない状態で地下水を冷却することで、冷水井戸22で冷水蓄熱を行うことができる。
 地中熱利用システム1は、冷水蓄熱を行う際、冷却塔130による蓄熱を含む第一蓄熱モードと、冷凍機150による蓄熱を含む第二蓄熱モードとの間で、蓄熱モードの切換が可能とされている。
 地中熱利用システム1は、後述する制御装置300の制御により、第一蓄熱モードと第二蓄熱モードとのうち、いずれかの蓄熱モードで冷水蓄熱を行う。
(第一蓄熱モードの構成)
 図5に示すように、第一蓄熱モードでは、冷却塔130で大気と接触させて気化させるときの気化熱により冷却した冷却水を、第二熱交換器140に送る。第二熱交換器140では、冷却水と、冷媒回路101の媒体との熱交換が行われる。つまり第二熱交換器140は、冷却塔130で冷却された冷却水によって、冷媒回路101の媒体を冷却する。冷却された媒体は、熱交換器4に送られ、井戸側配管3内の地下水と熱交換を行う。この場合、温水井戸21のポンプ31は、地下水(温水)をくみ上げて熱交換器4に送り込む。これによって、井戸側配管3内の地下水は冷却されて冷水井戸22に注水され、冷水蓄熱がなされる。
(第二蓄熱モードの構成)
 図6に示すように、第二蓄熱モードでは、冷却塔130と熱源機110とを冷凍機150として用いる。この場合、温水井戸21のポンプ31は、地下水(温水)をくみ上げて熱交換器4に送り込む。蓄熱補助設備100側において、媒体は、第二熱交換器140側から熱源機110に送り込まれる。熱源機110は、熱交換器4側から送られてくる媒体(冷水)を熱交換により冷却する。熱源機110における熱交換によって冷却された媒体(冷水)は、熱交換器4に送りこまれる。熱交換器4では、冷却された媒体と井戸側配管3内を流れる地下水との熱交換を行うことで、地下水が冷却される。冷却された地下水を、井戸側配管3を通して冷水井戸22に注水することで、冷水蓄熱がなされる。他方、熱源機110で熱交換器4側の媒体(冷水)との熱交換により温度上昇した媒体(冷却水)は、第二熱交換器140に送られる。第二熱交換器140は、熱源機110から送られた媒体を、冷却塔130で冷却された冷却水と熱交換することで冷却する。
(計算装置の構成)
 図2に示すように、計算装置200は、地中熱利用システム1で蓄熱を行う際の蓄熱モードを決定する。
 計算装置200は、地中熱利用システム1で、冷水蓄熱を行う場合に、第一蓄熱モードと第二蓄熱モードとのうち、どちらの蓄熱モードで冷水蓄熱を行うのが適切か、予めシミュレーション計算を行う。計算装置200は、シミュレーション計算の結果に基づき、第一蓄熱モードと第二蓄熱モードとのうち、いずれかの蓄熱モードを決定する。
 本実施形態において、計算装置200は、地中熱利用システム1に備えられている。つまり、計算装置200は、地中熱利用システム1の設置場所に設けられている。
 計算装置200は、例えば、制御装置300とともに設けられていてもよい。
 計算装置200は、制御装置300の一部の構成として、制御装置300に組み込まれていてもよい。
 また、計算装置200は、地中熱利用システム1の設置場所とは異なる場所に設けられていてもよい。
 例えば、計算装置200は、有線または無線を用いた外部ネットワークを介し、制御装置300とデータ通信可能に設けてもよい。
 計算装置200は、取得部210と、第一算出部220と、第二算出部230と、温度算出部240と、決定部250とを機能的に備えている。
 取得部210は、シミュレーション条件を取得する。
 取得部210は、蓄熱モードを決定するために行うシミュレーション計算の前提となるシミュレーション条件を取得する。
 取得するシミュレーション条件としては、例えば、外気条件がある。
 外気条件は、例えば、外気温度、および外気湿度の少なくとも一方を含むようにしてもよい。
 外気条件は、外気温度、および外気湿度の双方を含むようにしてもよい。
 本実施形態において、外気条件は、例えば、地中熱利用システム1が設置された場所(エリア)で想定される外気温度(範囲)、および外気湿度(範囲)を含む。
 取得部210で取得するシミュレーション条件としては、揚水温度、上限注水温度を含んでいてもよい。揚水温度は、温水井戸21で揚水できる地下水の温度である。上限注水温度は、冷水井戸22で冷水蓄熱を行う場合に、冷水井戸22に注水される地下水の注水温度の上限値である。上限注水温度は、例えば、冷水井戸22に地下水を注入したときに冷水井戸22内の地下水の温度上昇が抑えられる注水温度の上限値である。
 取得部210は、取得する外気温度、外気湿度を、シミュレーションを行うための仮想外気条件として取得する。
 取得部210は、シミュレーション条件として、熱源井戸設備10、蓄熱補助設備100を構成する機器の仕様を含むようにしてもよい。
 機器の仕様としては、例えば、熱源井戸設備10のポンプ31、蓄熱補助設備100の熱源機110、冷却塔130、冷媒回路101に設けられたポンプ(図示無し)、蓄熱補助設備100側の媒体の仕様等を含むようにしてもよい。
 取得部210は、例えばオペレータが各シミュレーション条件の数値等の入力を受け付けることによって、シミュレーション条件を取得してもよい。
 取得部210は、例えば、熱源井戸設備10、蓄熱補助設備100を構成する各機器の仕様を記憶したデータベース等から、シミュレーション条件を取得してもよい。
 第一算出部220は、取得部210で取得したシミュレーション条件に基づき、冷却塔130による蓄熱を含む第一蓄熱モードのシミュレーション計算を実施する。
 第一算出部220は、シミュレーション条件に基づいて、図5に示したような、冷却塔130を用いた蓄熱を含む第一蓄熱モードで運転を行った場合のシミュレーション計算を実施する。
 第一算出部220は、冷却塔130を用いて媒体を冷却することによって、冷水井戸22に冷水蓄熱を行った場合のシミュレーション計算を実施する。
 第一算出部220は、仮想外気条件として取得された、仮想外気温度、仮想外気湿度の範囲内で、温度、湿度を様々に異ならせて、複数回のシミュレーション計算を実施する。
 第一算出部220は、シミュレーション計算によって得られた結果である第一シミュレーション結果を算出(出力)する。
 第一算出部220は、シミュレーション計算により得られる第一シミュレーション結果として、注水温度、蓄熱量、動力、の少なくとも一つを含んでいてもよい。注水温度は、冷媒回路101と熱交換した井戸側配管3から冷水井戸22に注水される地下水の温度である。蓄熱量は、冷媒回路101と熱交換した井戸側配管3から冷水井戸22に注水することで得られるエネルギ量である。蓄熱を行うのに必要な動力とは、第一蓄熱モードで蓄熱するのに必要な、熱源井戸設備10側のポンプ31、蓄熱補助設備100の冷媒回路101に設けられた各種ポンプ(図示無し)、冷却塔130を動作させるための動力である。
 第二算出部230は、取得部210で取得したシミュレーション条件に基づき、冷凍機150(熱源機110、および冷却塔130)による蓄熱を含む第二蓄熱モードのシミュレーション計算を実施する。
 第二算出部230は、シミュレーション条件に基づいて、図6に示したような、冷凍機150を用いた蓄熱を含む第二蓄熱モードで運転を行った場合のシミュレーション計算を実施する。
 第二算出部230は、冷凍機150を用いて媒体を冷却することによって、冷水井戸22に冷水蓄熱を行った場合のシミュレーション計算を実施する。
 第二算出部230は、仮想外気条件として取得された、仮想外気温度、仮想外気湿度の範囲内で、温度、湿度を異ならせて、複数回のシミュレーション計算を実施する。
 第二算出部230は、シミュレーション計算によって得られた結果である第二シミュレーション結果を算出(出力)する。
 第二算出部230は、算出する第二シミュレーション結果として、注水温度、蓄熱量、動力、の少なくとも一つを含んでいてもよい。
 第二算出部230は、第二蓄熱モードにおける蓄熱量が第一蓄熱モードにおける蓄熱量と同じになるように、第二シミュレーション結果を算出するようにしてもよい。
 第二算出部230が算出する動力は、熱源井戸設備10側のポンプ31、蓄熱補助設備100の冷媒回路101側に設けられた各種ポンプ(図示無し)、冷却塔130、熱源機110を動作させるための動力である。
 温度算出部240は、第一蓄熱モードにおいて、冷媒回路101と熱交換した井戸側配管3から冷水井戸22に注水される地下水の注水温度が上限注水温度となる限界外気温度を算出する。
 決定部250は、第一算出部220で算出された第一シミュレーション結果と、第二算出部230で算出された第二シミュレーション結果とに基づき、第一蓄熱モードと第二蓄熱モードとのうち、いずれかの蓄熱モードを決定する。
 決定部250は、例えば、第一シミュレーション結果、第二シミュレーション結果に含まれる注水温度、蓄熱量、動力を比較するようにしてもよい。
 決定部250は、例えば、第一シミュレーション結果と第二シミュレーション結果との比較の結果、例えば、第一蓄熱モードと第二蓄熱モードとのうち、注水温度が低い方を蓄熱モードとして決定する。
 決定部250は、第二蓄熱モードにおける蓄熱量が第一蓄熱モードにおける蓄熱量と同じになるようにシミュレーションを行った場合、注水温度が低い方を蓄熱モードとして決定してもよい。
 決定部250は、例えば、第一シミュレーション結果と第二シミュレーション結果との比較の結果、例えば、第一蓄熱モードと第二蓄熱モードとのうち、蓄熱量が多い方を蓄熱モードとして決定する。
 決定部250は、例えば、第一シミュレーション結果と第二シミュレーション結果との比較の結果、例えば、第一蓄熱モードで蓄熱するのに必要な動力と、第二蓄熱モードで蓄熱するのに必要な動力との比較結果に基づき、動力が小さい方を蓄熱モードとして決定する。
 決定部250は、第二蓄熱モードにおける蓄熱量が第一蓄熱モードにおける蓄熱量と同じになるようにシミュレーションを行った場合、第一蓄熱モードで蓄熱するのに必要な動力と、第二蓄熱モードで蓄熱するのに必要な動力との比較結果に基づき、動力が小さい方を蓄熱モードとして決定するようにしてもよい。
 また、決定部250は、温度算出部240で算出される限界外気温度以上となる仮想外気温度の条件では、第二蓄熱モードを蓄熱モードとして選択する。冷却塔130を用いる第一蓄熱モードでは、外気温度が高い場合に、冷却塔130における冷却が十分に行えず、注水温度が上限注水温度以上となってしまうことがあるためである。
 決定部250は、予め定められた目標冷水蓄熱量(例えば冷水蓄熱量と温水蓄熱量が同等になるように予測して冷水蓄熱を行うなど)と現状の冷水蓄熱量を比較し、大容量の冷水蓄熱が可能な第二蓄熱モードを蓄熱モードとして決定してもよい。冷却塔130を用いる第一蓄熱モードでは、十分な冷水蓄熱量が得られない可能性があるためである。
 決定部250では、第一シミュレーション結果と第二シミュレーション結果とを比較した結果、第一蓄熱モードと第二蓄熱モードとのうち、決定した蓄熱モードを、シミュレーション計算を行ったときの仮想外気条件ごとに関連付けた蓄熱モード情報を生成する。
 決定部250は、決定した蓄熱モードを、シミュレーション計算を行った仮想外気温度(例えば、1℃ごと)に関連付けた蓄熱モード情報を生成してもよい。
 決定部250は、決定した蓄熱モードを、シミュレーション計算を行った仮想外気湿度(例えば、5%ごと)に関連付けた蓄熱モード情報を生成してもよい。
 決定部250は、決定した蓄熱モードを、シミュレーション計算を行った仮想外気温度と仮想湿度との各組み合わせに関連付けた蓄熱モード情報を生成してもよい。
 決定部250は、生成した蓄積モード情報を、後述する制御装置300に出力する。
 本実施形態の計算装置200の動作について説明する。
 計算装置200の動作は、計算方法の実施形態に相当する。
 計算装置200は、図7に示す各ステップを実施する。
 まず、取得部210は、シミュレーション条件を取得する(ST01:シミュレーション条件を取得するステップ)。取得部210は、シミュレーション条件として、外気条件(外気温度、外気湿度)を取得する。
 例えば、シミュレーション条件として、揚水温度、上限注水温度をさらに取得してもよい。
 例えば、取得部210は、シミュレーション条件として、熱源井戸設備10のポンプ31、蓄熱補助設備100の熱源機110、冷却塔130、冷媒回路101に設けられたポンプ(図示無し)、蓄熱補助設備100側の媒体の仕様等をさらに取得してもよい。
 ST01の実施に続いて、第一算出部220は、取得部210で取得したシミュレーション条件に基づき、冷却塔130による蓄熱を含む第一蓄熱モードのシミュレーション計算を実施し、第一シミュレーション結果を得る(ST02:第一蓄熱モードでのシミュレーション計算を実施するステップ)。
 ST02の実施に続いて、第二算出部230は、取得部210で取得したシミュレーション条件に基づき、冷凍機150による蓄熱を含む第二蓄熱モードのシミュレーション計算を実施し、第二シミュレーション結果を得る(ST03:第二蓄熱モードでのシミュレーション計算を実施するステップ)。
 ST03の実施に続いて、決定部250は、ST02で得られた第一シミュレーション結果と、ST03で得られた第二シミュレーション結果とに基づき、第一蓄熱モードで蓄熱するのに必要な動力と、第二蓄熱モードで蓄熱するのに必要な動力とを比較する(ST04:第一蓄熱モードと第二蓄熱モードとの動力を比較するステップ)。
 また、ST02の実施に続いて、温度算出部240は、第一蓄熱モードで蓄熱を行った場合、冷水井戸22に対する注水温度が、上限注水温度となる限界外気温度を算出する(ST05:第一蓄熱モードでの限界外気温度を算出するステップ)。ST05は、ST04、ST05を並行して行ってもよいし、ST03、ST04の前、または後に実施するようにしてもよい。
 ST04、およびST05の完了後、決定部250は、第一算出部220で算出された第一シミュレーション結果と、第二算出部230で算出された第二シミュレーション結果とに基づき、第一蓄熱モードと第二蓄熱モードとのうち、いずれかの蓄熱モードを決定する(ST06:蓄熱モードを決定するステップ)。決定部250は、第一シミュレーション結果、第二シミュレーション結果に含まれる注水温度、蓄熱量、動力を比較し、例えば省エネルギ性が高くなるように、蓄熱モードを決定してもよい。
 決定部250は、冷水井戸22に対する注水温度が上限注水温度を超えないように、例えば、限界外気温度以上となる仮想外気温度では、第二蓄熱モードを蓄熱モードとして選択してもよい。
 ST06の実施後、決定部250は、決定した蓄熱モードを仮想外気条件ごとに関連付けた蓄熱モード情報を、生成する(ST07:蓄熱モード情報を生成するステップ)。決定部250は、生成した蓄積モード情報を、制御装置300に出力する。
(制御装置の構成)
 図2に示すように、制御装置300は、地中熱利用システム1の動作を制御する。
 制御装置300は、冷房運転モード、暖房運転モード、第一蓄熱モード、第二蓄熱モードのそれぞれにおいて、地中熱利用システム1の各部の動作を制御する。
 制御装置300は、冷水蓄熱を行う場合、計算装置200で決定された蓄熱モードで運転する。
 制御装置300は、運転時における実外気条件に基づき、実外気条件に対応する蓄熱モードで、地中熱利用システム1の運転を行う。
 制御装置300は、モード情報記憶部310と、外気条件取得部320と、運転制御部330とを備える。
 モード情報記憶部310は、計算装置200から出力された蓄熱モード情報を記憶している。
 モード情報記憶部310は、計算装置200、仮想外気条件ごとに決定された蓄熱モードが関連付けられた蓄熱モード情報を記憶している。
 外気条件取得部320は、実外気条件を取得する。
 外気条件取得部320は、実外気条件として、実外気温度、および実外気湿度の少なくとも一方を取得する。
 外気条件取得部320は、実外気条件として、実外気温度、および実外気温度の双方を取得してもよい。
 外気条件取得部320は、例えば、温度計、湿度計等によって地中熱利用システム1が設けられている場所における実外気温度、実外気湿度の検出値を、実外気条件として取得してもよい。
 外気条件取得部320は、例えば、オペレータによって入力される実外気温度、実外気湿度の数値を取得するようにしてもよい。
 外気条件取得部320は、外部のネットワークを介して、実外気温度、実外気湿度のデータを取得するようにしてもよい。
 運転制御部330は、モード情報記憶部310に記憶された蓄熱モードに基づき、地中熱利用システム1を運転させる。
 運転制御部330は、モード情報記憶部310に記憶された蓄熱モードと、実外気条件とに基づき、第一蓄熱モードと第二次苦熱モードとのいずれかの蓄熱モードで、地中熱利用システム1を運転させる。
 運転制御部330は、モード情報記憶部310に記憶された蓄熱モード情報を参照し、取得された実外気条件に対応する仮想外気条件に関連付けられた蓄熱モードを取得する。
 運転制御部330は、取得された蓄熱モードで、熱源井戸設備10、蓄熱補助設備100の各部を制御し、冷水蓄熱運転を行う。
 本実施形態の制御装置300の動作について説明する。
 制御装置300の動作は、制御方法の実施形態に相当する。
 制御装置300は、図8に示す各ステップを実施する。
 まず、外気条件取得部320は、実外気条件を取得する(ST11:実外気条件を取得するステップ)。
 ST11の実施後、運転制御部330は、モード情報記憶部310に記憶された蓄熱モード情報を参照し、取得された実外気条件に対応する仮想外気条件に関連付けられた蓄熱モードを取得する(ST12:実外気条件に対応した蓄熱モードの情報を取得するステップ)。運転制御部330は、第一蓄熱モードと第二蓄熱モードとのうち、そのときの実外気条件において、比較の結果、適切であると計算装置200で決定された方の蓄熱モードを取得する。
 ST12の実施後、運転制御部330は、取得した蓄熱モードに基づき、地中熱利用システム1を運転させる(ST13:取得した蓄熱モードで地中熱利用システムを運転させるステップ)。
 運転制御部330は、実外気条件に対応して第一蓄熱モードを取得した場合、第一蓄熱モードで冷水蓄熱を行う。
 運転制御部330は、実外気条件に対応して第二蓄熱モードを取得した場合、第二蓄熱モードで冷水蓄熱を行う。
(作用及び効果)
 本実施形態によれば、計算装置200は、冷却塔130による蓄熱を含む第一蓄熱モードを行った場合の第一シミュレーション結果と、冷凍機150による蓄熱を含む第二蓄熱モードを行った場合の第二シミュレーション結果とに基づき、蓄熱モードを決定する。これにより、計算装置200は、環境条件に適した蓄熱モードを、シミュレーションに基づいて高い精度で決定することができる。その結果、地中熱利用システム1は、環境条件に合った蓄熱モードで運転することが可能となる。
 また本実施形態の一例によれば、第一シミュレーション結果、および第二シミュレーション結果は、それぞれ、注水温度、蓄熱量、および動力、の少なくとも一つを含む。
 これにより、冷却塔130による蓄熱を含む第一蓄熱モードと、冷凍機150による蓄熱を含む第二蓄熱モードとで、注水温度、蓄熱量、動力の少なくとも一つを比較することで、決定部250は、蓄熱モードを適切に決定することができる。
 また本実施形態の一例によれば、決定部250は、第一蓄熱モードで蓄熱するのに必要な動力と、第二蓄熱モードで蓄熱するのに必要な動力とを比較する。これにより、決定部250は、必要な動力が少なく、より省エネルギ性の高い蓄熱モードを選択することができる。
 また本実施形態の一例によれば、第二算出部230は、第二蓄熱モードにおける蓄熱量が第一蓄熱モードにおける蓄熱量と同じになるように、第二シミュレーション結果を算出する。これにより、第一蓄熱モードと第二蓄熱モードとで蓄熱量を同じにした状態で、第一蓄熱モードと第二蓄熱モードとを比較することで、決定部250は、適切な蓄熱モードを選択することができる。
 また本実施形態の一例によれば、決定部250は、複数の仮想外気条件の各仮想外気条件に関連付けて、第一蓄熱モードと第二蓄熱モードとのうち、いずれかの蓄熱モードを決定する。このように、仮想外気条件に関連付けて蓄熱モードを決定することによって、地中熱利用システム1は、運転時の実外気条件に応じた適切な蓄熱モードで運転を行うことが可能となる。
 また本実施形態の一例によれば、仮想外気条件は、仮想外気温度、および仮想外気湿度の少なくとも一方を含む。
 これにより、地中熱利用システム1は、運転時の実外気温、実外気温度に応じた適切な蓄熱モードで運転を行うことが可能となる。
 また本実施形態の一例によれば、決定部250は、限界外気温度以上となる仮想外気温度では、第二蓄熱モードを蓄熱モードとして選択する。
 これにより、実外気温が高く、冷却塔130による冷却を行うと注水温度が高くなってしまう場合に、地中熱利用システム1は、冷却塔130による冷却は行わず、冷凍機150を用いた蓄熱を行うことで、注水温度上昇を抑えることができる。
 本実施形態の計算方法によれば、第一シミュレーション結果と第二シミュレーション結果とに基づき、蓄熱モードを決定することによって、環境条件に適した蓄熱モードを、シミュレーションに基づいて高い精度で決定することができる。その結果、地中熱利用システム1は、環境条件に合った蓄熱モードで運転することが可能となる。
 本実施形態によれば、制御装置300は、計算装置200で決定された蓄熱モードに関する蓄熱モード情報が記憶されたモード情報記憶部310と、モード情報記憶部310に記憶された蓄熱モードに基づき、地中熱利用システム1を運転させる運転制御部330とを備える。
 これにより、地中熱利用システム1は、計算装置200によるシミュレーションに基づいて高い精度で決定された、環境条件に適した蓄熱モードで運転を行うことが可能となる。
 また本実施形態の一例によれば、運転制御部330は、外気条件取得部320で取得された実外気条件に関連付けられた蓄熱モードに基づき、地中熱利用システム1を運転させる。
 これにより、計算装置200によるシミュレーションに基づいて高い精度で決定された、環境条件に適した蓄熱モードで、地中熱利用システム1の運転を行うことが可能となる。その結果、地中熱利用システム1は、環境条件に合った蓄熱モードで運転することが可能となる。
 本実施形態における制御方法によれば、計算装置200によるシミュレーションに基づいて高い精度で決定された、環境条件に適した蓄熱モードで、地中熱利用システム1の運転を行うことが可能となる。その結果、地中熱利用システム1は、環境条件に合った蓄熱モードで運転することが可能となる。
<変形例>
 なお、上述の実施形態においては、計算装置200、制御装置300のそれぞれの各種機能を実現するためのプログラムを、コンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをマイコンといったコンピュータシステムに読み込ませ、実行することにより各種処理を行うものとしている。ここで、コンピュータシステムのCPUの各種処理の過程は、プログラムの形式でコンピュータ読み取り可能な記録媒体に記憶されており、このプログラムをコンピュータが読み出して実行することによって上記各種処理が行われる。また、コンピュータ読み取り可能な記録媒体とは、磁気ディスク、光磁気ディスク、CD-ROM、DVD-ROM、半導体メモリ等をいう。また、このコンピュータプログラムを通信回線によってコンピュータに配信し、この配信を受けたコンピュータが当該プログラムを実行するようにしてもよい。
 上述の実施形態において、計算装置200、制御装置300のそれぞれの各種機能を実現するためのプログラムを実行させるコンピュータ190のハードウェア構成の例について説明する。
 図9に示すように、計算装置200、制御装置300のそれぞれが備えるコンピュータ190は、プロセッサ195と、メモリ196と、記憶/再生装置197と、Input Output Interface(以下、「IO I/F」という。)198と、通信Interface(以下、「通信I/F」という。)199とを備える。
 例えば、プロセッサ195は、CPUであってもよい。
 例えば、メモリ196は、計算装置200、制御装置300のそれぞれで実行されるプログラムで使用されるデータ等を一時的に記憶するRandom Access Memory(以下、「RAM」という。)等の媒体であってもよい。
 例えば、記憶/再生装置197は、CD-ROM、DVD、フラッシュメモリ等の外部メディアへデータ等を記憶したり、外部メディアのデータ等を再生したりするための装置であってもよい。
 例えば、IO I/F198は、計算装置200、制御装置300のそれぞれと他の装置との間で情報等の入出力を行うためのインタフェースであってもよい。
 例えば、通信I/F199は、インターネット、専用通信回線等の通信回線を介して、計算装置200、制御装置300のそれぞれと他の装置との間で通信を行うインタフェースであってもよい。
<その他の実施形態>
 以上、本開示の実施形態を説明したが、この実施形態は、例として示したものであり、本開示の範囲を限定することは意図していない。この実施形態は、その他の様々な形態で実施されることが可能であり、本開示の要旨を逸脱しない範囲で種々の省略、置き換え、変更を行うことができる。この実施形態やその変形は、本開示の範囲や要旨に含まれると同様に、本開示の範囲とその均等の範囲に含まれるものとする。
<付記>
 実施形態に記載の計算装置200、計算方法、プログラム、制御装置300、制御方法、制御プログラムは、例えば以下のように把握される。
(1)第1の態様に係る計算装置200は、温水井戸21、冷水井戸22、前記温水井戸21と前記冷水井戸22とを接続する井戸側配管3、および前記井戸側配管3に設けられたポンプ31、を備える熱源井戸設備10と、冷却塔130、冷凍機150、および、前記冷却塔130および前記冷凍機150の少なくとも一方に接続されて前記井戸側配管3と熱交換可能な冷媒回路101、を有した蓄熱補助設備100とを備える地中熱利用システム1で蓄熱を行う際の蓄熱モードを決定する計算装置200であって、シミュレーション条件を取得する取得部210と、前記シミュレーション条件に基づき、前記冷却塔130による蓄熱を含む第一蓄熱モードのシミュレーションの結果である第一シミュレーション結果を算出する第一算出部220と、前記シミュレーション条件に基づき、前記冷凍機150による蓄熱を含む第二蓄熱モードのシミュレーションの結果である第二シミュレーション結果を算出する第二算出部230と、前記第一シミュレーション結果と前記第二シミュレーション結果とに基づき、前記第一蓄熱モードと前記第二蓄熱モードとのうち、いずれかの蓄熱モードを決定する決定部250とを備える。
 この計算装置200は、冷却塔130による蓄熱を含む第一蓄熱モードを行った場合の第一シミュレーション結果と、冷凍機150による蓄熱を含む第二蓄熱モードを行った場合の第二シミュレーション結果とに基づき、蓄熱モードを決定する。これにより、計算装置200は、環境条件に適した蓄熱モードを、シミュレーションに基づいて高い精度で決定することができる。その結果、地中熱利用システム1は、環境条件に合った蓄熱モードで運転することが可能となる。
(2)第2の態様に係る計算装置200は、(1)の計算装置200であって、前記第一シミュレーション結果、および前記第二シミュレーション結果は、それぞれ、前記冷媒回路101と熱交換した前記井戸側配管3から前記冷水井戸22に対する注水温度、前記熱源井戸設備10側での蓄熱量、および蓄熱を行うのに必要な動力、の少なくとも一つを含んでいてもよい。
 これにより、冷却塔130による蓄熱を含む第一蓄熱モードと、冷凍機150による蓄熱を含む第二蓄熱モードとで、注水温度、蓄熱量、動力の少なくとも一つを比較することで、決定部250は、蓄熱モードを適切に決定することができる。
(3)第3の態様に係る計算装置200は、(1)又は(2)の計算装置200であって、前記決定部250は、前記第一蓄熱モードで蓄熱するのに必要な動力と、前記第二蓄熱モードで蓄熱するのに必要な動力と、の比較結果に基づき、前記蓄熱モードを決定してもよい。
 これにより、第一蓄熱モードで蓄熱するのに必要な動力と、第二蓄熱モードで蓄熱するのに必要な動力とを比較することで、決定部250は、より省エネルギ性の高い蓄熱モードを選択することができる。
(4)第4の態様に係る計算装置200は、(1)から(3)の何れか一つの計算装置200であって、前記第二算出部230は、前記第二蓄熱モードにおける蓄熱量が前記第一蓄熱モードにおける蓄熱量と同じになるように、前記第二シミュレーション結果を算出してもよい。
 これにより、第一蓄熱モードと第二蓄熱モードとで蓄熱量を同じにした状態で、第一蓄熱モードと第二蓄熱モードとを比較することで、決定部250は、適切な蓄熱モードを選択することができる。
(5)第5の態様に係る計算装置200は、(1)から(4)の何れか一つの計算装置200であって、前記決定部250は、複数の仮想外気条件の各仮想外気条件に関連付けて、前記第一蓄熱モードと前記第二蓄熱モードとのうち、いずれかの蓄熱モードを決定してもよい。
 これにより、仮想外気条件に関連付けて蓄熱モードを決定することによって、地中熱利用システム1は、運転時の実外気条件に応じた適切な蓄熱モードで運転を行うことが可能となる。
(6)第6の態様に係る計算装置200は、(5)の計算装置200であって、前記仮想外気条件は、仮想外気温度、および仮想外気湿度の少なくとも一方を含んでいてもよい。
 これにより、地中熱利用システム1は、運転時の実外気温、実外気温度に応じた適切な蓄熱モードで運転を行うことが可能となる。
(7)第7の態様に係る計算装置200は、(5)または(6)の計算装置200であって、前記第一蓄熱モードにおいて、前記冷媒回路101と熱交換した前記井戸側配管3から前記冷水井戸22に対する注水温度が上限注水温度となる限界外気温度を算出する温度算出部240をさらに備え、前記決定部250は、前記限界外気温度以上となる前記仮想外気温度では、前記第二蓄熱モードを前記蓄熱モードとして選択してもよい。
 これにより、注水温度が上限注水温度以上となる仮想外気温度では、第二蓄熱モードを蓄熱モードとして選択することによって、地中熱利用システム1は、実外気温が高く、冷却塔130による冷却を行うと注水温度が高くなってしまう場合に、冷却塔130による冷却は行わず、冷凍機150を用いた蓄熱を行うことで、注水温度上昇を抑えることができる。
(8)第8の態様に係る計算方法は、温水井戸21、冷水井戸22、前記温水井戸21と前記冷水井戸22とを接続する井戸側配管3、および前記井戸側配管3に設けられたポンプ31、を備える熱源井戸設備10と、冷却塔130、冷凍機150、および、前記冷却塔130および前記冷凍機150の少なくとも一方に接続されて前記井戸側配管3と熱交換可能な冷媒回路101、を有した蓄熱補助設備100とを備える地中熱利用システム1で蓄熱を行う際の蓄熱モードを決定する計算方法であって、シミュレーション条件を取得し、前記シミュレーション条件に基づき、前記冷却塔130による蓄熱を含む第一蓄熱モードのシミュレーションの結果である第一シミュレーション結果を算出し、前記シミュレーション条件に基づき、前記冷凍機150による蓄熱を含む第二蓄熱モードのシミュレーションの結果である第二シミュレーション結果を算出し、前記第一シミュレーション結果と前記第二シミュレーション結果とに基づき、前記第一蓄熱モードと前記第二蓄熱モードとのうち、いずれかの蓄熱モードを決定する。
 これにより、第一シミュレーション結果と第二シミュレーション結果とに基づき、蓄熱モードを決定することによって、環境条件に適した蓄熱モードを、シミュレーションに基づいて高い精度で決定することができる。その結果、地中熱利用システム1は、環境条件に合った蓄熱モードで運転することが可能となる。
(9)第9の態様に係るプログラムは、温水井戸21、冷水井戸22、前記温水井戸21と前記冷水井戸22とを接続する井戸側配管3、および前記井戸側配管3に設けられたポンプ31、を備える熱源井戸設備10と、冷却塔130、冷凍機150、および、前記冷却塔130および前記冷凍機150の少なくとも一方に接続されて前記井戸側配管3と熱交換可能な冷媒回路101、を有した蓄熱補助設備100とを備える地中熱利用システム1で蓄熱を行う際の蓄熱モードを決定する方法であって、シミュレーション条件を取得し、前記シミュレーション条件に基づき、前記冷却塔130による蓄熱を含む第一蓄熱モードのシミュレーションの結果である第一シミュレーション結果を算出し、前記シミュレーション条件に基づき、前記冷凍機150による蓄熱を含む第二蓄熱モードのシミュレーションの結果である第二シミュレーション結果を算出し、前記第一シミュレーション結果と前記第二シミュレーション結果とに基づき、前記第一蓄熱モードと前記第二蓄熱モードとのうち、いずれかの蓄熱モードを決定する方法をコンピュータに実行させる。
 これにより、第一シミュレーション結果と第二シミュレーション結果とに基づき、蓄熱モードを決定することによって、環境条件に適した蓄熱モードを、シミュレーションに基づいて高い精度で決定することができる。その結果、地中熱利用システム1は、環境条件に合った蓄熱モードで運転することが可能となる。
(10)第10の態様に係る制御装置300は、(1)から(7)の何れか一つの計算装置200で決定された前記蓄熱モードに関する蓄熱モード情報が記憶されたモード情報記憶部310と、前記モード情報記憶部310に記憶された前記蓄熱モードに基づき、前記地中熱利用システム1を運転させる運転制御部330とを備える。
 これにより、地中熱利用システム1は、計算装置200によるシミュレーションに基づいて高い精度で決定された、環境条件に適した蓄熱モードで運転を行うことが可能となる。
(11)第11の態様に係る制御装置300は、(10)の制御装置300であって、実外気条件を取得する外気条件取得部320を備え、前記運転制御部330は、前記外気条件取得部320で取得された前記実外気条件に関連付けられた前記蓄熱モードに基づき、前記地中熱利用システム1を運転してもよい。
 これにより、計算装置200によるシミュレーションに基づいて高い精度で決定された、環境条件に適した蓄熱モードで、地中熱利用システム1の運転を行うことが可能となる。その結果、地中熱利用システム1は、環境条件に合った蓄熱モードで運転することが可能となる。
(12)第12の態様に係る制御方法は、(1)から(7)の何れか一つの計算装置200で決定された前記蓄熱モードに関する蓄熱モード情報を記憶させておき、記憶された前記蓄熱モードに基づき、前記地中熱利用システム1を運転させる。
 これにより、計算装置200によるシミュレーションに基づいて高い精度で決定された、環境条件に適した蓄熱モードで、地中熱利用システム1の運転を行うことが可能となる。その結果、地中熱利用システム1は、環境条件に合った蓄熱モードで運転することが可能となる。
(13)第13の態様に係る制御プログラムは、(1)から(7)の何れか一つの計算装置200で決定された前記蓄熱モードに関する蓄熱モード情報を記憶させておき、記憶された前記蓄熱モードに基づき、前記地中熱利用システム1を運転させる方法をコンピュータに実行させる。
 これにより、計算装置200によるシミュレーションに基づいて高い精度で決定された、環境条件に適した蓄熱モードで、地中熱利用システム1の運転を行うことが可能となる。その結果、地中熱利用システム1は、環境条件に合った蓄熱モードで運転することが可能となる。
1…地中熱利用システム
2…井戸
3…井戸側配管
4…熱交換器
10…熱源井戸設備
21…温水井戸
22…冷水井戸
31…ポンプ
100…蓄熱補助設備
101…冷媒回路
110…熱源機
120…空調機
130…冷却塔
140…第二熱交換器
150…冷凍機
190…コンピュータ
195…プロセッサ
196…メモリ
197…記録/再生装置
198…IO I/F
199…通信I/F
200…計算装置
210…取得部
220…第一算出部
230…第二算出部
240…温度算出部
250…決定部
300…制御装置
310…モード情報記憶部
320…外気条件取得部
330…運転制御部
ST01…シミュレーション条件を取得するステップ
ST02…第一蓄熱モードでのシミュレーション計算を実施するステップ
ST03…第二蓄熱モードでのシミュレーション計算を実施するステップ
ST04…第一蓄熱モードと第二蓄熱モードとの動力を比較するステップ
ST05…第一蓄熱モードでの限界外気温度を算出するステップ
ST06…蓄熱モードを決定するステップ
ST07…蓄熱モード情報を生成するステップ
ST11…実外気条件を取得するステップ
ST12…実外気条件に対応した蓄熱モードを取得するステップ
ST13…取得した蓄熱モードで地中熱利用システムを運転させるステップ

Claims (13)

  1.  温水井戸、冷水井戸、前記温水井戸と前記冷水井戸とを接続する井戸側配管、および前記井戸側配管に設けられたポンプ、を備える熱源井戸設備と、
     冷却塔、冷凍機、および、前記冷却塔および前記冷凍機の少なくとも一方に接続されて前記井戸側配管と熱交換可能な冷媒回路、を有した蓄熱補助設備とを備える地中熱利用システムで蓄熱を行う際の蓄熱モードを決定する計算装置であって、
     シミュレーション条件を取得する取得部と、
     前記シミュレーション条件に基づき、前記冷却塔による蓄熱を含む第一蓄熱モードのシミュレーションの結果である第一シミュレーション結果を算出する第一算出部と、
     前記シミュレーション条件に基づき、前記冷凍機による蓄熱を含む第二蓄熱モードのシミュレーションの結果である第二シミュレーション結果を算出する第二算出部と、
     前記第一シミュレーション結果と前記第二シミュレーション結果とに基づき、前記第一蓄熱モードと前記第二蓄熱モードとのうち、いずれかの蓄熱モードを決定する決定部と
    を備える計算装置。
  2.  前記第一シミュレーション結果、および前記第二シミュレーション結果は、それぞれ、
      前記冷媒回路と熱交換した前記井戸側配管から前記冷水井戸に対する注水温度、前記熱源井戸設備側での蓄熱量、および蓄熱を行うのに必要な動力、の少なくとも一つを含む、請求項1に記載の計算装置。
  3.  前記決定部は、
      前記第一蓄熱モードで蓄熱するのに必要な動力と、
      前記第二蓄熱モードで蓄熱するのに必要な動力と、
    の比較結果に基づき、前記蓄熱モードを決定する、請求項1または2に記載の計算装置。
  4.  前記第二算出部は、前記第二蓄熱モードにおける蓄熱量が前記第一蓄熱モードにおける蓄熱量と同じになるように、前記第二シミュレーション結果を算出する、請求項1から3のいずれか一項に記載の計算装置。
  5.  前記決定部は、複数の仮想外気条件の各仮想外気条件に関連付けて、前記第一蓄熱モードと前記第二蓄熱モードとのうち、いずれかの蓄熱モードを決定する、請求項1から4のいずれか一項に記載の計算装置。
  6.  前記仮想外気条件は、仮想外気温度、および仮想外気湿度の少なくとも一方を含む、請求項5に記載の計算装置。
  7.  前記第一蓄熱モードにおいて、前記冷媒回路と熱交換した前記井戸側配管から前記冷水井戸に対する注水温度が上限注水温度となる限界外気温度を算出する温度算出部をさらに備え、
     前記決定部は、前記限界外気温度以上となる前記仮想外気温度では、前記第二蓄熱モードを前記蓄熱モードとして選択する、請求項6に記載の計算装置。
  8.  温水井戸、冷水井戸、前記温水井戸と前記冷水井戸とを接続する井戸側配管、および前記井戸側配管に設けられたポンプ、を備える熱源井戸設備と、
     冷却塔、冷凍機、および、前記冷却塔および前記冷凍機の少なくとも一方に接続されて前記井戸側配管と熱交換可能な冷媒回路、を有した蓄熱補助設備とを備える地中熱利用システムで蓄熱を行う際の蓄熱モードを決定する計算方法であって、
     シミュレーション条件を取得し、
     前記シミュレーション条件に基づき、前記冷却塔による蓄熱を含む第一蓄熱モードのシミュレーションの結果である第一シミュレーション結果を算出し、
     前記シミュレーション条件に基づき、前記冷凍機による蓄熱を含む第二蓄熱モードのシミュレーションの結果である第二シミュレーション結果を算出し、
     前記第一シミュレーション結果と前記第二シミュレーション結果とに基づき、前記第一蓄熱モードと前記第二蓄熱モードとのうち、いずれかの蓄熱モードを決定する
    計算方法。
  9.  温水井戸、冷水井戸、前記温水井戸と前記冷水井戸とを接続する井戸側配管、および前記井戸側配管に設けられたポンプ、を備える熱源井戸設備と、
     冷却塔、冷凍機、および、前記冷却塔および前記冷凍機の少なくとも一方に接続されて前記井戸側配管と熱交換可能な冷媒回路、を有した蓄熱補助設備とを備える地中熱利用システムで蓄熱を行う際の蓄熱モードを決定する方法であって、
     シミュレーション条件を取得し、
     前記シミュレーション条件に基づき、前記冷却塔による蓄熱を含む第一蓄熱モードのシミュレーションの結果である第一シミュレーション結果を算出し、
     前記シミュレーション条件に基づき、前記冷凍機による蓄熱を含む第二蓄熱モードのシミュレーションの結果である第二シミュレーション結果を算出し、
     前記第一シミュレーション結果と前記第二シミュレーション結果とに基づき、前記第一蓄熱モードと前記第二蓄熱モードとのうち、いずれかの蓄熱モードを決定する
    方法をコンピュータに実行させるためのプログラム。
  10.  請求項1から7のいずれか一項に記載の計算装置で決定された前記蓄熱モードに関する蓄熱モード情報が記憶されたモード情報記憶部と、
     前記モード情報記憶部に記憶された前記蓄熱モードに基づき、前記地中熱利用システムを運転させる運転制御部と
    を備える制御装置。
  11.  実外気条件を取得する外気条件取得部を備え、
     前記運転制御部は、前記外気条件取得部で取得された前記実外気条件に関連付けられた前記蓄熱モードに基づき、前記地中熱利用システムを運転させる、請求項10に記載の制御装置。
  12.  請求項1から7のいずれか一項に記載の計算装置で決定された前記蓄熱モードに関する蓄熱モード情報を記憶させておき、
     記憶された前記蓄熱モードに基づき、前記地中熱利用システムを運転させる制御方法。
  13.  請求項1から7のいずれか一項に記載の計算装置で決定された前記蓄熱モードに関する蓄熱モード情報を記憶させておき、
     記憶された前記蓄熱モードに基づき、前記地中熱利用システムを運転させる
    方法をコンピュータに実行させるための制御プログラム。
PCT/JP2022/005452 2021-05-06 2022-02-10 計算装置、計算方法、プログラム、制御装置、制御方法、制御プログラム WO2022234706A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020237037412A KR20230164712A (ko) 2021-05-06 2022-02-10 계산 장치, 계산 방법, 프로그램, 제어 장치, 제어 방법, 제어 프로그램
CN202280030217.XA CN117321349A (zh) 2021-05-06 2022-02-10 计算装置、计算方法、程序、控制装置、控制方法、控制程序

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021078637A JP7136965B1 (ja) 2021-05-06 2021-05-06 計算装置、計算方法、プログラム、制御装置、制御方法、制御プログラム
JP2021-078637 2021-05-06

Publications (1)

Publication Number Publication Date
WO2022234706A1 true WO2022234706A1 (ja) 2022-11-10

Family

ID=83271747

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/005452 WO2022234706A1 (ja) 2021-05-06 2022-02-10 計算装置、計算方法、プログラム、制御装置、制御方法、制御プログラム

Country Status (4)

Country Link
JP (1) JP7136965B1 (ja)
KR (1) KR20230164712A (ja)
CN (1) CN117321349A (ja)
WO (1) WO2022234706A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI799111B (zh) 2022-01-26 2023-04-11 東佑達自動化科技股份有限公司 自動化生產線送料裝置

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006292310A (ja) * 2005-04-13 2006-10-26 Nippon Steel Engineering Co Ltd 地中熱利用ヒートポンプ装置、これを備えた地中熱利用装置、および地中熱利用ヒートポンプ装置の制御方法
JP2007085675A (ja) * 2005-09-22 2007-04-05 Nippon Steel Engineering Co Ltd 土壌熱源ヒートポンプシステムの設計方法、設計支援システム、及びコンピュータプログラム
JP2011247564A (ja) * 2010-05-31 2011-12-08 Hitachi Plant Technologies Ltd 空調システムおよびその制御方法
JP2012225629A (ja) * 2011-04-22 2012-11-15 Hitachi Plant Technologies Ltd 冷熱源装置の運転制御システム
CN103256670A (zh) * 2013-01-16 2013-08-21 上海申通地铁集团有限公司 地源热泵复合空调系统
JP2014228238A (ja) * 2013-05-24 2014-12-08 株式会社日立製作所 熱源システム
JP2015028418A (ja) * 2013-07-03 2015-02-12 東日本旅客鉄道株式会社 地中熱利用ヒートポンプシステム
WO2015093360A1 (ja) * 2013-12-20 2015-06-25 株式会社日立製作所 蓄熱システム及びその制御方法
JP2017138025A (ja) * 2016-02-02 2017-08-10 株式会社日立製作所 熱源システムの運転計画システム、熱源システムの運転計画判定方法
CN108488972A (zh) * 2018-04-03 2018-09-04 安徽郁金香新能源科技有限公司 一种按四状态优化的冷却塔辅助地源热泵系统的控制方法
JP2018173257A (ja) * 2017-03-31 2018-11-08 三菱重工サーマルシステムズ株式会社 地中熱利用システム及び地中熱利用方法
JP2021004700A (ja) * 2019-06-26 2021-01-14 三菱重工サーマルシステムズ株式会社 地中熱利用システム、制御装置、制御方法、及びプログラム

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006292310A (ja) * 2005-04-13 2006-10-26 Nippon Steel Engineering Co Ltd 地中熱利用ヒートポンプ装置、これを備えた地中熱利用装置、および地中熱利用ヒートポンプ装置の制御方法
JP2007085675A (ja) * 2005-09-22 2007-04-05 Nippon Steel Engineering Co Ltd 土壌熱源ヒートポンプシステムの設計方法、設計支援システム、及びコンピュータプログラム
JP2011247564A (ja) * 2010-05-31 2011-12-08 Hitachi Plant Technologies Ltd 空調システムおよびその制御方法
JP2012225629A (ja) * 2011-04-22 2012-11-15 Hitachi Plant Technologies Ltd 冷熱源装置の運転制御システム
CN103256670A (zh) * 2013-01-16 2013-08-21 上海申通地铁集团有限公司 地源热泵复合空调系统
JP2014228238A (ja) * 2013-05-24 2014-12-08 株式会社日立製作所 熱源システム
JP2015028418A (ja) * 2013-07-03 2015-02-12 東日本旅客鉄道株式会社 地中熱利用ヒートポンプシステム
WO2015093360A1 (ja) * 2013-12-20 2015-06-25 株式会社日立製作所 蓄熱システム及びその制御方法
JP2017138025A (ja) * 2016-02-02 2017-08-10 株式会社日立製作所 熱源システムの運転計画システム、熱源システムの運転計画判定方法
JP2018173257A (ja) * 2017-03-31 2018-11-08 三菱重工サーマルシステムズ株式会社 地中熱利用システム及び地中熱利用方法
CN108488972A (zh) * 2018-04-03 2018-09-04 安徽郁金香新能源科技有限公司 一种按四状态优化的冷却塔辅助地源热泵系统的控制方法
JP2021004700A (ja) * 2019-06-26 2021-01-14 三菱重工サーマルシステムズ株式会社 地中熱利用システム、制御装置、制御方法、及びプログラム

Also Published As

Publication number Publication date
JP7136965B1 (ja) 2022-09-13
JP2022172642A (ja) 2022-11-17
KR20230164712A (ko) 2023-12-04
CN117321349A (zh) 2023-12-29

Similar Documents

Publication Publication Date Title
JP6857883B2 (ja) 地中熱利用システム及び地中熱利用方法
JP6505589B2 (ja) 熱源制御システムおよび制御方法
CN102483247B (zh) 供暖系统及供暖系统控制方法
JP5234435B2 (ja) フリークーリング用の冷熱源装置並びに冷却システム及び冷却方法
JP5299680B2 (ja) 冷却システムおよび冷却方法
JP5121747B2 (ja) 地中熱ヒートポンプ装置
CN102777981B (zh) 用于通讯基站的面向对象送风节能型空调系统及其运行方法
JP2012127573A (ja) 熱源システム
JP5677188B2 (ja) 空調設備
WO2022234706A1 (ja) 計算装置、計算方法、プログラム、制御装置、制御方法、制御プログラム
Shaibani et al. Thermo-economic analysis of a cold storage system in full and partial modes with two different scenarios: a case study
JP7259950B2 (ja) 冷却システム、そのための制御装置、冷却方法、およびプログラム
JP2010270970A (ja) 熱源システム及びその制御方法並びにプログラム
CN101598472A (zh) 冷冻装置的排热利用系统
CN104390311A (zh) 针对高温服务器的空调制冷方法、系统和装置
KR101001293B1 (ko) 축·방냉 펌프를 분리한 에너지 절약형 빙축열 시스템
JP2012193903A (ja) 外気利用空調システム、その外気熱交換システム
JP2020183816A (ja) 熱源システム、目標運転容量推定方法、目標運転容量推定プログラム
US20130330679A1 (en) Heat-source selecting device for heat source system, method thereof, and heat source system
JP2020183856A (ja) 機械学習装置、空調システム及び機械学習方法
JP7069660B2 (ja) 空調システムおよびシステム制御方法
KR20160102672A (ko) 하이브리드 차량용 난방시스템 및 하이브리드 차량용 난방시스템의 제어방법
CA2628094A1 (en) Energy accumulator system
JP2015001348A (ja) 地中熱ヒートポンプ装置
KR20130127017A (ko) 지하저수조를 이용한 냉각 시스템 및 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22798813

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20237037412

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2301007134

Country of ref document: TH

NENP Non-entry into the national phase

Ref country code: DE