WO2022234637A1 - 異常検出装置、異常検出方法及び記憶媒体 - Google Patents

異常検出装置、異常検出方法及び記憶媒体 Download PDF

Info

Publication number
WO2022234637A1
WO2022234637A1 PCT/JP2021/017460 JP2021017460W WO2022234637A1 WO 2022234637 A1 WO2022234637 A1 WO 2022234637A1 JP 2021017460 W JP2021017460 W JP 2021017460W WO 2022234637 A1 WO2022234637 A1 WO 2022234637A1
Authority
WO
WIPO (PCT)
Prior art keywords
abnormality
data
information
target
analysis range
Prior art date
Application number
PCT/JP2021/017460
Other languages
English (en)
French (fr)
Inventor
裕子 太田
玲史 近藤
咲子 美島
友督 荒井
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to US18/288,070 priority Critical patent/US20240199095A1/en
Priority to JP2023518570A priority patent/JPWO2022234637A5/ja
Priority to PCT/JP2021/017460 priority patent/WO2022234637A1/ja
Publication of WO2022234637A1 publication Critical patent/WO2022234637A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/44Processing the detected response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/4445Classification of defects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61KAUXILIARY EQUIPMENT SPECIALLY ADAPTED FOR RAILWAYS, NOT OTHERWISE PROVIDED FOR
    • B61K9/00Railway vehicle profile gauges; Detecting or indicating overheating of components; Apparatus on locomotives or cars to indicate bad track sections; General design of track recording vehicles
    • B61K9/08Measuring installations for surveying permanent way
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L23/00Control, warning or like safety means along the route or between vehicles or trains
    • B61L23/04Control, warning or like safety means along the route or between vehicles or trains for monitoring the mechanical state of the route
    • B61L23/042Track changes detection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L27/00Central railway traffic control systems; Trackside control; Communication systems specially adapted therefor
    • B61L27/50Trackside diagnosis or maintenance, e.g. software upgrades
    • B61L27/53Trackside diagnosis or maintenance, e.g. software upgrades for trackside elements or systems, e.g. trackside supervision of trackside control system conditions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H17/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves, not provided for in the preceding groups
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/14Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object using acoustic emission techniques

Definitions

  • the present disclosure relates to technology for detecting anomalies.
  • Patent Document 1 and Cited Document 4 based on the relationship between the axle box acceleration applied to the axle box of the vehicle, the vertical deviation of the rail at the traveling point of the vehicle, and the stress applied to the joint plate of the adhesive insulation rail, measured A method is disclosed for estimating the stress applied to the fish plate from the self axle box acceleration and the elevation deviation.
  • Patent Document 2 discloses a device that uses a gauge to measure the size of the gap formed at the joint of rails.
  • Patent Document 3 discloses a method of Fourier transforming an acoustic signal acquired by a vehicle running on a track and detecting the activation state based on the peak value at predetermined time intervals.
  • Patent Document 5 discloses a device for determining abnormality of an axle bearing of an object using vibration data of the object when the distance between the reference point of the object traveling along the track and the track is within a predetermined range. disclosed.
  • Patent Document 6 discloses an anomaly detection device that calculates signal pattern features related to an acoustic signal to be anomaly detected and calculates an anomaly score for performing anomaly detection based on the signal pattern features.
  • a signal pattern feature of an acoustic signal to be detected as an anomaly is based on an acoustic signal having a first duration and a long-term feature quantity calculated from an acoustic signal having a second duration longer than the first duration. It is calculated based on the learned signal pattern model.
  • Anomalies such as loose bolts on rail joints may appear as sounds when trains pass. This is an experience known to drivers and the like. In order to train a model that accurately detects anomalies using sound, it is necessary to collect the sounds of trains passing through rail joints where anomalies such as loose bolts have occurred.
  • Patent Documents 1 to 6 describe techniques for detecting anomalies. The techniques of Patent Literatures 1 to 6 cannot efficiently collect acoustic data obtained from an abnormal target.
  • One of the purposes of the present disclosure is to provide a data collection device or the like that can efficiently collect acoustic data obtained from a subject with an abnormality.
  • a data collection device includes target detection means for detecting a target data point, which is a data point at which the target is observed, in acoustic data obtained by observing the target, and based on the target data point, determining means for determining an analysis range in the acoustic data; abnormality detection means for detecting an abnormality in the analysis range; and output means for outputting information on the analysis range in which the abnormality is detected.
  • a data collection method detects a target data point, which is a data point at which the target is observed, in acoustic data obtained by observing the target, and based on the target data point, detects the acoustic An analysis range in the data is determined, an abnormality is detected in the analysis range, and information of the analysis range in which the abnormality is detected is output.
  • a program includes a target detection process for detecting a target data point, which is a data point at which the target is observed, in acoustic data obtained by observing the target, and based on the target data point, causes a computer to execute determination processing for determining an analysis range in the acoustic data, abnormality detection processing for detecting an abnormality in the analysis range, and output processing for outputting information on the analysis range in which the abnormality is detected .
  • One aspect of the present disclosure is also implemented by a storage medium that stores the above program.
  • the present disclosure has the effect of streamlining the collection of acoustic data obtained from a subject with an abnormality.
  • FIG. 1 is a block diagram showing an example configuration of a data collection device according to the first embodiment of the present disclosure.
  • FIG. 2 is a flowchart representing an example of the operation of the data collection device 100 according to the first embodiment of the present disclosure.
  • FIG. 3 is a block diagram showing an example configuration of the data collection device 101 according to the second embodiment of the present disclosure.
  • FIG. 4 is a flowchart representing an example of the operation of the data collection device 101 according to the second embodiment of the present disclosure.
  • FIG. 5 is a block diagram showing an example configuration of a data collection device 101A according to the first modification of the second embodiment.
  • FIG. 6 is a block diagram showing an example configuration of a data collection device 101B according to a second modification of the second embodiment.
  • FIG. 1 is a block diagram showing an example configuration of a data collection device according to the first embodiment of the present disclosure.
  • FIG. 2 is a flowchart representing an example of the operation of the data collection device 100 according to the first embodiment of the present disclosure.
  • FIG. 7 is a block diagram showing an example configuration of a data collection device 101C according to the third modification of the second embodiment.
  • FIG. 8 is a block diagram showing an example configuration of a data collection device 101D according to the fifth modification of the second embodiment of the present disclosure.
  • FIG. 9 is a flow chart showing an example of the operation of the data collection device 101D according to the fifth modified example of the second embodiment of the present disclosure for assigning target reliability.
  • FIG. 10 is a block diagram showing an example configuration of a data collection device 101E according to the seventh modification of the second embodiment of the present disclosure.
  • FIG. 11 is a flow chart showing an example of the operation of the data collection device 101E according to the seventh embodiment of the present disclosure.
  • FIG. 12 is a block diagram showing an example configuration of a data collection device 101F according to the eighth modification of the second embodiment of the present disclosure.
  • FIG. 13 is a diagram showing an example of a hardware configuration of computer 1000 that can implement each of the data collection devices according to the embodiments of the present disclosure.
  • FIG. 1 is a block diagram showing an example configuration of a data collection device according to the first embodiment of the present disclosure.
  • the data collection device 100 includes a target detection section 120 , a determination section 130 , an abnormality detection section 140 and an output section 170 .
  • the target detection unit 120 detects target data points, which are data points at which the target is observed, in acoustic data obtained by observing the target.
  • a determination unit 130 determines an analysis range in the acoustic data based on the target data points.
  • the determination unit 130 detects an abnormality in the analysis range.
  • the output unit 170 outputs information on the analysis range in which the abnormality is detected.
  • the data obtained by observation is vibration data, but the data obtained by observation may be vibration data instead of acoustic data.
  • Acoustic data is, for example, time-series data representing changes in acoustics obtained by converting data observed by sensors attached to vehicles traveling on railroad tracks into data in the frequency domain.
  • the sensors are, for example, acoustic sensors, such as microphones, or sensors, such as vibration sensors, capable of observing the sounds or vibrations emitted by the vehicle as it passes over rail joints.
  • the sensor will be described as being an acoustic sensor.
  • the location where the sensor is mounted may be, for example, a lower portion of the vehicle, such as near the truck or rails of the vehicle.
  • the location where the sensor is mounted may be the portion of the vehicle that rests on a truck.
  • the location where the sensor is mounted may be on the surface of the bogie or vehicle.
  • the location where the sensor is mounted may be inside the bogie or vehicle.
  • Data at individual time points included in the acoustic data are hereinafter referred to as element data.
  • the method of conversion may be any of a variety of existing methods.
  • the object is, for example, a rail joint.
  • Data points of interest are, for example, data observed when the wheel closest to the sensor passes a rail joint.
  • the target detection unit 120 detects, for example, a point in the acoustic data at which the sound pressure has a maximum value equal to or greater than a threshold as a target data point.
  • Acoustic data may be associated with the time of observation. For example, the time interval of each element data of acoustic data and the start time of observation of acoustic data are given. Each element data of the acoustic data may be associated with an observation time. Furthermore, the running speed of the vehicle at the time of observation and the length of the rail may be obtained.
  • the target detection unit 120 may detect, as target data points, points in the acoustic data at which the sound pressure has a maximum value greater than or equal to a threshold. In this case, the target detection unit 120 further calculates the time at which the next target data point is obtained based on the time at which the detected target data point was observed, the running speed of the vehicle, and the length of the rail.
  • the target detection unit 120 may detect the data observed at the calculated time as the target data point.
  • the target detection unit 120 may detect, as the target data point, a point at which the sound pressure has a maximum value equal to or greater than the threshold from data observed during a predetermined time period including the calculated time.
  • the location of observation obtained using, for example, GPS (Global Positioning System) may be associated with the time of observation.
  • the object detection unit 120 may use the relationship between the observation location and the observation time to estimate the time when the rail joint was passed during the period when the observation data was obtained.
  • the target detection unit 120 may detect the data observed at the estimated time as the target data point.
  • the target detection unit 120 may detect, as target data points, points at which the sound pressure has a maximum value equal to or greater than a threshold from data observed during a predetermined time span including the estimated time.
  • the determining unit 130 selects a predetermined time (second predetermined time) after the time when the target data point is observed from a time before the time when the target data point is observed (referred to as a first predetermined time).
  • the data obtained during the time period may be determined as the analysis range.
  • the first predetermined time and the second predetermined time may be the same.
  • the first predetermined time and the second predetermined time may be fixed.
  • the first predetermined time period and the second predetermined time period may be determined based on the traveling speed of the vehicle at the time when the target data point was observed. Specifically, the first predetermined time period and the second predetermined time period may be set so as to become shorter as the traveling speed of the vehicle increases.
  • the range of observation data from the time a first predetermined time before the time the target data point was observed to the time a second predetermined time after the time the target data point was observed is defined as the influence Described as a range.
  • the start time of the influence range is referred to as the influence start time.
  • the end time of the influence range is referred to as the influence end time.
  • the influence range is the part of the acoustic data observed between the influence start time and the influence end time.
  • the determining unit 130 may determine the range of influence to be the range of analysis.
  • the determination unit 130 may determine, as the analysis range, a range of the influence range that includes the target data point and excludes a range with a length shorter than the length of the influence range (denoted as an exclusion range).
  • the start time of the exclusion range is referred to as exclusion start time.
  • the end time of the exclusion range is referred to as exclusion end time.
  • the exclusion start time is determined to be later than the influence start time.
  • the exclusion end time is determined to be earlier than the influence end time.
  • the time from the exclusion start time to the time when the target data point is observed is referred to as a third predetermined time.
  • the time from the time when the target data point is observed to the exclusion end time is referred to as a fourth predetermined time.
  • the third predetermined time and the fourth predetermined time may be fixed.
  • the third predetermined time period and the fourth predetermined time period may be determined based on the traveling speed of the vehicle at the time when the target data point was observed. Specifically, the third predetermined time and the fourth predetermined time may be set so as to become shorter as the traveling speed of the vehicle increases.
  • the determination unit 130 determines the range obtained by removing the exclusion range from the influence range as the analysis range. In other words, the determination unit 130 determines the range of acoustic data observed between the influence start time and the exclusion start time, and the range of acoustic data observed between the exclusion end time and the influence end time as follows: Determine the scope of analysis.
  • the anomaly detection unit 140 detects an anomaly in the analysis range. Specifically, the anomaly detection unit 140 detects an anomaly pattern that occurs when an anomaly exists in a rail joint, for example, in the analysis range.
  • An anomalous pattern may be, for example, an intensity peak present between 10 and 20 Hz.
  • the abnormal pattern may be an intensity peak present between 10 and 20 Hz and attributed to the hair for more than a predetermined period of time.
  • the abnormal pattern may be, for example, a pattern obtained by learning in advance.
  • the abnormality detection unit 140 determines that an abnormality has been detected in the rail joint.
  • the abnormality detection unit 140 may extract features of the detected abnormal pattern.
  • a feature of the abnormal pattern may be, for example, the duration of intensity peaks present between 10 and 20 Hz in the analysis range.
  • Anomaly patterns are characterized, for example, by the duration of an intensity peak between 10 and 20 Hz in the analysis range prior to the time the data point of interest was observed, and the time the data point of interest was observed. It may be the duration of the intensity peak later than 10-20 Hz.
  • the features of the abnormal pattern are not limited to these examples.
  • the anomaly detection unit 140 may detect an anomaly in a rail joint by, for example, a detector that detects an anomaly in a rail joint obtained by learning in advance.
  • the output unit 170 outputs information on the analysis range in which the abnormality was detected.
  • the information on the analysis range in which the abnormality was detected is, for example, acoustic data in the analysis range.
  • the information of the analysis range in which the abnormality was detected is, for example, the acoustic data in the analysis range and the characteristics of the detected abnormality.
  • the output unit 170 may output information on the analysis range in which an abnormality was detected to the display of the data collection device 100.
  • the output unit 170 may store information on the analysis range in which an abnormality was detected in the storage device.
  • This storage device may be an external storage device, server, or the like connected to the data collection device 100 .
  • This storage device may be a storage device installed inside the data collection device 100 .
  • This storage device may be a storage medium that can be read and written by the data collection device 100 .
  • FIG. 2 is a flowchart representing an example of the operation of the data collection device 100 according to the first embodiment of the present disclosure.
  • the target detection unit 120 first detects target data points in the acoustic data (step S101).
  • the object detector 120 may detect one or more object data points present in the acoustic data.
  • the object detector 120 may detect all object data points present in the acoustic data.
  • the determining unit 130 determines the analysis range based on the target data points in the acoustic data (step S102).
  • the determination unit 130 may determine the analysis range for each target data point detected in step S101.
  • the anomaly detection unit 140 detects an anomaly in the determined analysis range (step S103).
  • the anomaly detection unit 140 may detect an anomaly in each of the analysis ranges determined in step S102.
  • the data collection device 100 terminates the operation shown in FIG.
  • the output unit 170 of the data collection device 100 may output information indicating that no abnormality was detected in the acoustic data before ending the operation shown in FIG.
  • the output unit 170 outputs information on the analysis range in which the abnormality was detected.
  • the output unit 170 may output information on the analysis range in which an abnormality was detected for each analysis range in which an abnormality was detected.
  • the present disclosure has the effect of streamlining the collection of acoustic data obtained from a subject with an abnormality. This is because the target detection unit 120 detects target data points, the determination unit 130 determines an analysis range based on the target data points, and the abnormality detection unit 140 detects an abnormality in the determined analysis range.
  • FIG. 3 is a block diagram showing an example configuration of the data collection device 101 according to the second embodiment of the present disclosure.
  • the data collection device 101 includes a data reception unit 110, a target detection unit 120, a determination unit 130, an anomaly detection unit 140, a classification unit 150, and an output unit 170.
  • the data collection device 101 may further include a data storage unit 160 .
  • the data collection device 101 may further include an environment information reception unit 210 .
  • the data collection device 101 may further include an attribute reception unit 220.
  • the data reception unit 110 receives acoustic data representing sounds observed by a sensor (for example, a microphone) attached to, for example, a truck of a vehicle.
  • the data reception unit 110 may receive acoustic data directly from the sensor.
  • the data reception unit 110 may receive acoustic data accumulated in a server or the like from the server or the like.
  • the acoustic data received by the data receiving unit 110 may be data in the frequency domain.
  • the acoustic data received by the data receiving unit 110 may be data in the time domain. In that case, the data reception unit 110 converts the received acoustic data into data in the time domain.
  • the data reception unit 110 sends the acoustic data to the object detection unit 120.
  • the object detection unit 120 receives acoustic data from the data reception unit 110 . Similar to the object detection unit 120 of the first embodiment, the object detection unit 120 detects object data points, which are data points at which objects are observed, in the acoustic data. The object detection unit 120 sends information representing the detected object data points to the determination unit 130 .
  • the information representing the target data point is information specifying the target data point in the acoustic data.
  • the information representing the data point of interest may be the time at which the data of the data point of interest was observed.
  • the information representing the target data point may be a number indicating the order of the data of the target data point in the acoustic data, which is time-series information.
  • the information representing the target data point may be identification information such as a number assigned to the data of the target data point in the acoustic data, which is time-series information.
  • specifying data observed at a certain time in acoustic data is referred to as specifying information.
  • the determiner 130 receives information representing target data points from the target detector 120 .
  • the determining unit 130 determines the analysis range in the acoustic data based on the target data points, like the determining unit 130 of the first embodiment.
  • the determination unit 130 sends information representing the determined analysis range to the abnormality detection unit 140 .
  • the information representing the analysis range may be the influence start time and the influence end time.
  • the information representing the scope of analysis includes information such as numbers or identifiers that identify the data observed at the time the impact started (i.e. identification information), and numbers or identifiers that identify the data observed at the time the impact ends. information (that is, specific information);
  • the information representing the analysis range may be the influence start time, the exclusion start time, the exclusion end time, and the influence end time.
  • the information that indicates the scope of analysis consists of the specific information of the data observed at the start time of the influence, the specific information of the data observed at the start time of exclusion, the specific information of the data observed at the end time of exclusion, and the specific information of the data observed at the end time of the impact. and specific information of the observed data.
  • the anomaly detection unit 140 receives information representing the determined analysis range from the determination unit 130 .
  • the anomaly detection unit 140 detects an anomaly in the analysis range in the same manner as the anomaly detection unit 140 of the first embodiment.
  • the anomaly detection unit 140 sends information about the detected anomaly and information about the analysis range in which the anomaly was detected to the classification unit 150 .
  • the anomaly detection unit 140 may detect multiple types of anomalies in the analysis range.
  • the anomaly detection unit 140 may detect an anomaly pattern in the analysis range, and determine that an anomaly has been detected when the anomaly pattern is detected.
  • An anomaly pattern may be represented by a combination of one or more frequency bands, including, for example, peaks.
  • An abnormal pattern may be represented, for example, by a combination of one or more frequency bands containing peaks and the peak intensity ratio in each frequency band. Abnormal patterns may differ from the above examples.
  • the anomaly detection unit 140 may identify an anomaly pattern that best matches the acoustic data in the analysis range among the plurality of anomaly patterns.
  • the anomaly detection unit 140 may calculate a score representing the degree of matching between the acoustic data in the analysis range and each of the plurality of anomaly patterns. A score may be appropriately defined to represent the degree of match.
  • the type of abnormality may be, for example, bolt breakage at a rail joint, bolt loosening at a rail joint, or the like.
  • the plurality of abnormality patterns include an abnormality pattern when bolt loosening occurs at the rail joint and an abnormality pattern when bolt breakage occurs at the rail joint.
  • the anomaly detection unit 140 may detect an anomaly using a plurality of anomaly patterns that differ depending on weather, temperature, vehicle type, vehicle weight, and the like. In this case, when at least one of the plurality of abnormal patterns is detected in the analysis range, the abnormality detection unit 140 may determine that a type of abnormality corresponding to the detected abnormality pattern has been detected.
  • These multiple abnormal patterns are, for example, abnormal patterns obtained in advance by learning.
  • the anomaly detection unit 140 may detect an anomaly using the detector described above.
  • the abnormality detection unit 140 may detect an abnormality using a plurality of detectors that differ depending on the weather, temperature, type of vehicle, weight of the vehicle, and the like. In this case, if any detector detects an abnormality, the abnormality detection unit 140 may determine that a type of abnormality corresponding to the detector that detected the abnormality has been detected in the analysis range.
  • These multiple detectors are, for example, detectors obtained in advance by learning.
  • the anomaly detection unit 140 collects anomaly information (for example, information including information specifying the type of the detected anomaly and characteristics of the detected anomaly) and information specifying acoustic data in the analysis range in which the anomaly was detected. , may be sent to the classification unit 150 .
  • anomaly information for example, information including information specifying the type of the detected anomaly and characteristics of the detected anomaly
  • the classification unit 150 may be sent to the classification unit 150 .
  • the analysis range in which an abnormality is detected is also referred to as the analysis range in which an abnormality is detected.
  • the classification unit 150 receives, from the anomaly detection unit 140, information on the detected anomaly and information on the analysis range in which the anomaly was detected.
  • the anomaly information includes, for example, information representing the detected anomaly (for example, data included in the analysis range of the observation data) and characteristics of the detected anomaly (for example, information specifying the type of the detected anomaly). may contain.
  • the classification unit 150 classifies the analysis range in which an abnormality is detected into at least one of a plurality of classifications, for example. Each classification may be associated with at least one or more of a plurality of anomaly types. The classification may be the type of anomaly. The types of abnormalities are not limited to the above examples. The classification unit 150 may classify data in the analysis range in which anomalies are detected into categories associated with the types of detected anomalies. The classification unit 150 may classify the analysis range in which the abnormal pattern is detected into a classification associated with the abnormal pattern that best matches the analysis range. Classification may be determined based on other information. Classification based on other information will be described later as a modification.
  • the classification unit 150 stores, in the data storage unit 160, information on the analysis range in which the abnormality was detected and information on the classification into which the analysis range was classified.
  • the classification unit 150 may assign the degree of urgency corresponding to the classification to the information of the analysis range in which an abnormality was detected. For example, the classification unit 150 assigns the information on the analysis range in which an abnormality is detected, classified as bolt breakage, to the information in the analysis range in which an abnormality is detected, which is classified as bolt looseness, rather than the urgency given to the information in the analysis range where an abnormality is detected. Assign an urgency level to indicate that the urgency is high.
  • FIG. 4 is a flowchart representing an example of the operation of the data collection device 101 according to the second embodiment of the present disclosure.
  • the data reception unit 110 receives observation data (step S101).
  • the target detection unit 120 detects target data points in the observation data (step S102).
  • the determination unit 130 determines the analysis range based on the target data points (step S103).
  • the anomaly detection unit 140 detects an anomaly in the analysis range (step S104). If no abnormality is detected (NO in step S105), data collection device 101 terminates the operation shown in FIG.
  • the classification unit 150 classifies the data in the analysis range in which the abnormality is detected (step S206).
  • the classification unit 150 may store in the data accumulation unit 160 the abnormal data, which is information about the analysis range in which the abnormality was detected, and the classification of the abnormal data.
  • the classification unit 150 may send to the output unit 170 the abnormal data, which is information on the analysis range in which the abnormality was detected, and the classification of the abnormal data. Then, the output unit 170 outputs the abnormal data, which is the information of the analysis range in which the abnormality is detected, and the classification of the abnormal data (step S207).
  • FIG. 5 is a block diagram showing an example configuration of a data collection device 101A according to the first modification of the second embodiment. Differences of the data collection device 101A of this modified example from the data collection device 101 of the second embodiment will be described below. Except for differences described below, the data collection device 101A of this modified example has the same functions as the data collection device 101 of the second embodiment, and operates in the same manner.
  • a data collection device 101A of this modified example includes an environment information reception unit 210 in addition to all the components of the data collection device 101 of the second embodiment.
  • the environment information reception unit 210 receives environment information from another device such as a server that stores information at the time of observation.
  • the environmental information includes, for example, the date and time of observation, the temperature at the observation location, and the weather.
  • Environmental information is not limited to these examples. Environmental information may not include some or all of them.
  • the environment information reception unit 210 sends the received environment information to the classification unit 150 .
  • the classification unit 150 of this embodiment receives environment information from the environment information reception unit 210 .
  • the classification unit 150 classifies the analysis range in which an abnormality is detected into one of the classifications based on the environment information.
  • Classification based on environmental information is, for example, classification determined based on at least one of month, season, temperature, and weather at the time of observation.
  • FIG. 6 is a block diagram showing an example configuration of a data collection device 101B according to a second modification of the second embodiment. Differences of the data collection device 101B of this modified example from the data collection device 101 of the second embodiment will be described below. Except for differences described below, the data collection device 101B of this modified example has the same functions as the data collection device 101 of the second embodiment, and operates in the same manner. In the example shown in FIG. 6, the data collection device 101B of this modified example includes an attribute reception unit 220 in addition to all the components of the data collection device 101 of the second embodiment.
  • the attribute reception unit 220 receives attribute information from another device such as a server that stores information at the time of observation.
  • the attribute information includes vehicle type, vehicle weight, track information (for example, the degree of deterioration of the rail, the time elapsed since the rail was laid, etc.).
  • the degree of deterioration of the rail may be classified according to the frequency with which the vehicle passes the rail.
  • the degree of deterioration of the rail may be the degree of deterioration determined visually.
  • Attribute information is not limited to these examples. Attribute information does not have to include some or all of them.
  • the attribute reception unit 220 sends the received environment information to the classification unit 150.
  • the classification unit 150 of this embodiment receives attribute information from the attribute reception unit 220 .
  • the classification unit 150 classifies an analysis range in which an abnormality is detected into one of classifications based on attribute information.
  • Classification based on attribute information is, for example, classification determined based on at least one of vehicle type, weight category including vehicle weight, and track state category including track information at the time of observation.
  • the weight category is a predetermined vehicle weight range.
  • the division of the track state is, for example, a predetermined range of time that has elapsed since the rail was laid.
  • the classification of the track state may be the degree of deterioration of the rail.
  • FIG. 7 is a block diagram showing an example configuration of a data collection device 101C according to the third modification of the second embodiment. Differences of the data collection device 101C of this modified example from the data collection device 101 of the second embodiment will be described below. Except for differences described below, the data collection device 101C of this modified example has the same functions as the data collection device 101 of the second embodiment, and operates in the same manner.
  • the data collection device 101B of this modified example includes an environment information reception unit 210 and an attribute reception unit 220 in addition to all the components of the data collection device 101 of the second embodiment. .
  • the environment information reception unit 210 of this modification is the same as the environment information reception unit 210 of the first modification of the second embodiment.
  • the attribute reception unit 220 of this modification is the same as the attribute reception unit 220 of the second modification of the second embodiment.
  • the classification unit 150 of this embodiment receives environment information from the environment information reception unit 210 .
  • the classification unit 150 of this embodiment also receives attribute information from the attribute reception unit 220 .
  • the classification unit 150 classifies an analysis range in which an abnormality is detected into one of classifications based on at least one of environment information and attribute information.
  • a fourth variant of the second embodiment is the same as the second embodiment except for the differences described below.
  • the data collection device 101 does not have to include the classification unit 150.
  • the classification unit 150 sends information on the analysis range in which the abnormality was detected and information on the classification into which the analysis range is classified to the output unit 170 .
  • the output unit 170 receives from the classification unit 150 the information of the analysis range in which the abnormality was detected and the information of the classification into which the analysis range was classified.
  • the data collection device 101 of this modification is the same as the data collection device 101 of the second embodiment in other respects.
  • FIG. 8 is a block diagram showing an example configuration of a data collection device 101D according to the fifth modification of the second embodiment of the present disclosure.
  • a data collection device 101D of this modified example includes a target reliability calculation unit 230 in addition to all the components of the data collection device 101 of the second embodiment.
  • the data collection device 101D of this modification has the same functions as the data collection device 101 of the second embodiment except for the differences described below, and the data collection device 101 of the second embodiment operates. works the same as Note that the data collection device 101D of this modified example does not have to include the classification unit 150 . Also, this modification can be applied to the first to third modifications.
  • an identifier (hereinafter referred to as a joint identifier) is assigned to each joint of the rail.
  • a joint identifier is assigned to each joint of the rail.
  • the data reception unit 110 receives, in addition to the acoustic data, data that associates the target data point with the joint of the rail.
  • the data that associates the target data point with the rail joint is, for example, data specifying the time at which the vehicle passed the joint during observation.
  • the data specifying the time when the vehicle passed the joint during observation may be, for example, a combination of the joint identifier and the time when the vehicle passed the joint indicated by the joint identifier.
  • the data specifying the time at which the vehicle passed through the seam during observation may be data containing a plurality of combinations of the position of the vehicle and the time at which the vehicle was at that position during observation.
  • the data receiving unit 110 assumes that the vehicle traveled at a constant speed between two adjacent positions on the track based on a plurality of combinations of vehicle positions and times when the vehicle was at that position. You may calculate the time when it passed the position of the joint of a rail under.
  • the abnormality detection unit 140 further generates, for each rail joint (that is, for each detected target data point), a combination of information identifying the rail joint and information representing whether or not an abnormality has been detected. . Specifically, the anomaly detection unit 140 detects an anomaly for each analysis range detected in the acoustic data, and also identifies the rail joint where the data of the target data point based on the analysis range was obtained. . The anomaly detection unit 140 detects, for example, a rail joint where the vehicle passed at the time closest to the time when the data of the target data point based on the analysis range was observed, and the data of the target data point based on the analysis range was obtained. Identify as a rail seam. The anomaly detector 140 may use other methods to identify the rail joint where the data for the target data point on which the analysis range is based is obtained.
  • the abnormality detection unit 140 detects, for each target data point, information specifying the joint of the rail and information indicating whether or not an abnormality has been detected. is stored in the data storage unit 160 .
  • the information on the analysis range in which anomalies are detected is also referred to as anomaly data.
  • the data accumulation unit 160 stores information on the analysis range in which an abnormality was detected (that is, abnormality data), information specifying rail joints for each target data point, and information indicating whether or not an abnormality was detected in the analysis range. (hereinafter also referred to as the result of detection of anomalies in the analysis range). In this description, the result of detection of anomalies in the analysis range is also simply referred to as the result of detection of anomalies. As described above, in this modification, multiple sets of acoustic data obtained by multiple observations of the same track are input to the data collection device 101D.
  • the data storage unit 160 stores information on the analysis range in which an abnormality was detected, obtained from multiple sets of acoustic data, and information indicating whether or not an abnormality was detected for each rail joint. .
  • the data storage unit 160 stores information indicating whether or not an abnormality is detected in the analysis range of the joint of the same rail for each of the plurality of sets of acoustic data.
  • the data accumulation unit 160 stores information on the analysis range in which the abnormality was detected.
  • the target reliability calculation unit 230 reads information for identifying rail joints and information indicating whether an abnormality has been detected in the analysis range for each target data point, stored in the data storage unit 160 .
  • the target reliability calculation unit 230 analyzes each joint where an abnormality has been detected at least once in the analysis range based on a combination of information specifying the rail joint and information indicating whether or not an abnormality has been detected in the analysis range. Calculate the rate at which anomalies are detected in the range. Then, the target reliability calculation unit 230 calculates the target reliability based on the rate at which an abnormality is detected for each joint.
  • the target reliability is, for example, a value representing how reliable the data in the analysis range where the abnormality was detected is as the data observed at the joint where the abnormality occurred. In this example, it is assumed that the higher the possibility that an abnormality has occurred at a joint, the higher the probability that an abnormality will be detected in the analysis range data at that joint.
  • the target reliability calculation unit 230 may use the rate of detection of anomalies as the target reliability.
  • the target reliability calculation unit 230 may calculate the target reliability according to a formula representing the relationship between the rate of abnormality detection and the target reliability.
  • the target reliability calculation unit 230 adds to the abnormal data stored in the data storage unit 160 the target reliability calculated for the seam where the abnormal data is observed.
  • the target reliability calculation unit 230 stores the target reliability for each joint in the data storage unit 160, and adds the abnormal data stored in the data storage unit 160 to the joint where the abnormal data is observed. Associate the calculated target confidence.
  • the target reliability calculation unit 230 may send the target reliability for each joint to the output unit 170 .
  • the output unit 170 may receive the target reliability for each joint from the target reliability calculation unit 230 .
  • the output unit 170 may output the target reliability for each joint received from the target reliability calculation unit 230 .
  • the output unit 170 may read the abnormal data to which the target reliability is assigned from the data storage unit 160 and output the read abnormal data.
  • FIG. 9 is a flow chart showing an example of the operation of the data collection device 101D according to the fifth modified example of the second embodiment of the present disclosure for assigning target reliability.
  • the results of detection of anomalies in the analysis range based on target data points detected from multiple sets of acoustic data are stored in the data storage unit 160 .
  • the target reliability calculation unit 230 reads the results of detection of anomalies in the analysis range (step S301).
  • the result of detection of anomalies in the analysis range is a combination of information identifying rail joints and information indicating whether anomalies have been detected in the analysis range for each target data point.
  • the target reliability calculation unit 230 extracts the detection result of abnormality in the analysis range for each seam from the read result of detection of abnormality in the analysis range (step S302).
  • the object reliability calculation unit 230 calculates, for example, the number of times the object data point is detected and the number of times the object data point is detected and the abnormality in the analysis range based on the object data point as a result of detecting an abnormality in the analysis range for each seam. is detected.
  • the target reliability calculation unit 230 then calculates the ratio of anomalies detected in the analysis range (that is, the ratio of anomalies detected) for each joint (step S303).
  • the target reliability calculation unit 230 calculates the target reliability based on the calculated ratio for each rail joint (step S304).
  • the target reliability calculation unit 230 gives the target reliability to the abnormal data stored in the data storage unit 160 (step S305). Specifically, the target reliability calculation unit 230 adds to the abnormality data stored in the data storage unit 160 the target reliability of the seam from which the data of the analysis range in which the abnormality was detected, which is the abnormality data, is obtained. to give
  • the data collection device 101D ends the operation shown in FIG.
  • the configuration of the data collection device 101D according to the sixth modification of the second embodiment of the present disclosure is the same as the configuration of the data collection device 101D according to the fifth modification of the second embodiment of the present disclosure.
  • the data collection device 101D of this modification has the same functions as those of the data collection device 101D according to the fifth modification of the second embodiment, except for the differences described below. operates in the same manner as the data collection device 101D according to the fifth modification of . Also, this modification can be applied to the first to third modifications.
  • an identifier (hereinafter referred to as a joint identifier) is assigned to each joint of the rails, as in the fifth modified example.
  • a joint identifier is assigned to each joint of the rails, as in the fifth modified example.
  • multiple sets of acoustic data obtained by multiple observations of the same track are input to the data collection device 101D.
  • the data receiving unit 110 further receives information (hereinafter referred to as actual measurement information of abnormality) indicating whether or not there is an abnormality visually confirmed, for example, for each joint of the rail.
  • the data reception unit 110 sends out the measured abnormality information to the classification unit 150 via the object detection unit 120, the determination unit 130, and the abnormality detection unit 140, for example.
  • the classification unit 150 receives the measured abnormality information and stores the received measured abnormality information in the data storage unit 160 .
  • the data reception unit 110 may directly store the received abnormal measurement information in the data accumulation unit 160 .
  • the data reception unit 110 may send the received abnormal measurement information to the object reliability calculation unit 230 .
  • a line connecting the data reception unit 110 and the data storage unit 160 and a line connecting the data reception unit 110 and the object reliability calculation unit 230 are omitted for the sake of simplification of the drawing. .
  • the target reliability calculation unit 230 reads the abnormality actual measurement information from the data storage unit 160 .
  • the target reliability calculation unit 230 may receive the actual measurement data of the abnormality from the data reception unit 110 .
  • the target reliability calculation unit 230 calculates the target reliability of a seam in which an abnormality exists in the abnormality actual measurement information in the same way as the target reliability calculation unit 230 of the fifth modification of the second embodiment calculates the target reliability. Calculate in the same way.
  • the target reliability calculation unit 230 sets the target reliability of seams where there is no abnormality to zero in the abnormality actual measurement information.
  • FIG. 10 is a block diagram showing an example configuration of a data collection device 101E according to the seventh modification of the second embodiment of the present disclosure.
  • the data collection device 101E includes, in addition to all the components of the data collection device 101 according to the second embodiment, an environment information reception unit 210, an attribute reception unit 220, a classification reliability calculation 240. Note that the data collection device 101E does not have to include one of the environment information reception unit 210 and the attribute reception unit 220 . Also, this modification can be applied to the fifth and sixth modifications.
  • the data reception unit 110 of this modification has the same functions as the data reception unit 110 of the fifth modification, and performs the same operations as the data reception unit 110 of the fifth modification.
  • the data receiving unit 110 receives, in addition to the acoustic data, data that associates the target data points with the joints of the rails.
  • the data that associates the target data point with the rail joint is, for example, data specifying the time at which the vehicle passed the joint during observation.
  • the data specifying the time when the vehicle passed the joint during observation may be, for example, a combination of the joint identifier and the time when the vehicle passed the joint indicated by the joint identifier.
  • the data specifying the time at which the vehicle passed through the seam during observation may be data containing a plurality of combinations of the position of the vehicle and the time at which the vehicle was at that position during observation.
  • the data receiving unit 110 assumes that the vehicle traveled at a constant speed between two adjacent positions on the track based on a plurality of combinations of vehicle positions and times when the vehicle was at that position. You may calculate the time when it passed the position of the joint of a rail under.
  • the data receiving unit 110 further includes information indicating whether or not an abnormality exists, for example, visually confirmed for each rail joint (i.e., actual measurement of abnormality). information).
  • the data reception unit 110 sends out the measured abnormality information to the classification unit 150 via the object detection unit 120, the determination unit 130, and the abnormality detection unit 140, for example.
  • the classification unit 150 receives the measured abnormality information and stores the received measured abnormality information in the data storage unit 160 .
  • the data reception unit 110 may directly store the received abnormal measurement information in the data accumulation unit 160 .
  • the data reception unit 110 may send the received abnormal measurement information to the classification reliability calculation unit 240 .
  • a line connecting the data reception unit 110 and the data storage unit 160 and a line connecting the data reception unit 110 and the classification reliability calculation unit 240 are omitted for the sake of simplification. .
  • the abnormality detection section 140 of this modification has the same function as the abnormality detection section 140 of the fifth modification, and performs the same operation as the abnormality detection section 140 of the fifth modification.
  • the data storage unit 160 of this modification is the same as the data storage unit 160 of the fifth modification.
  • the data accumulation unit 160 stores information on the analysis range in which an abnormality was detected (that is, abnormality data), information specifying rail joints for each target data point, and information indicating whether or not an abnormality was detected in the analysis range.
  • a combination of and . As described above, a combination of information indicating whether or not an abnormality has been detected in the analysis range is also expressed as an abnormality detection result in the analysis range and an abnormality detection result.
  • multiple sets of acoustic data obtained by multiple observations of the same track are input to the data collection device 101D.
  • the data storage unit 160 stores information on the analysis range in which an abnormality was detected, obtained from multiple sets of acoustic data, and information indicating whether or not an abnormality was detected for each rail joint. .
  • the data storage unit 160 stores information indicating whether or not an abnormality is detected in the analysis range of the joint of the same rail for each of the plurality of sets of acoustic data.
  • the data accumulation unit 160 stores information on the analysis range in which the abnormality was detected.
  • the environment information reception unit 210 of this modification is the same as the environment information reception unit 210 of the first modification.
  • the environment information reception unit 210 of this modification has the same function as the environment information reception unit 210 of the first modification, and performs the same operation as the environment information reception unit 210 of the first modification. conduct.
  • the attribute reception unit 220 of this modification is the same as the attribute reception unit 220 of the second modification.
  • the attribute reception unit 220 of this modification has the same function as the attribute reception unit 220 of the second modification, and performs the same operation as the attribute reception unit 220 of the first modification.
  • the classification unit 150 has the same function as the classification unit 150 of the first modification, and the same operation as the classification unit 150 of the first modification. Configured to perform an action.
  • the classification unit 150 has the same functions as the classification unit 150 of the second modification, and operates in the same manner as the classification unit 150 of the second modification. configured to do
  • the classification of this modified example is based on at least one of environmental information and attribute information. Note that if the data collection device 101F does not include the environment information receiving unit 210, the classification in this modification may be based on attribute information. If the data collection device 101F does not include the attribute reception unit 220, the classification of this modification may be based on environmental information.
  • the classification unit 150 classifies each detected target data point into one of the classifications.
  • the classification unit 150 stores, for each target data point, information representing the classification into which the target data point is classified (hereinafter referred to as a classification result) in the data accumulation unit 160 .
  • the data storage unit 160 of this modification functions similarly to the data storage unit 160 of the fifth modification.
  • the data accumulation unit 160 of this modification further stores the classification results.
  • the classification reliability calculation unit 240 reads the abnormality actual measurement information stored in the data accumulation unit 160 .
  • the classification reliability calculation unit 240 may receive the abnormality actual measurement information from the data reception unit 110 .
  • the classification reliability calculation unit 240 reads out information specifying rail joints and information indicating whether an abnormality has been detected in the analysis range for each target data point, stored in the data storage unit 160 .
  • the classification reliability calculation unit 240 further reads the classification results from the data storage unit 160 .
  • the classification reliability calculation unit 240 identifies an abnormality in the analysis range for each joint where an abnormality exists in the abnormality measurement information, based on a combination of information specifying the joint of the rail and information indicating whether an abnormality has been detected in the analysis range. is detected. Then, the classification reliability calculation unit 240 calculates the classification reliability based on the rate at which an abnormality is detected for each classification in which joints in which an abnormality exists in the abnormality measurement information is classified.
  • the classification reliability is, for example, a value that indicates the degree of probability that an abnormality will be detected in a situation corresponding to the classification when an abnormality occurs in a seam.
  • the classification reliability calculation unit 240 may set a higher classification reliability as the probability of an abnormality being detected from an analysis range observed at a joint where an abnormality has occurred is higher.
  • the classification reliability calculation unit 240 may use the rate of detection of an abnormality for each classification as the classification reliability.
  • the classification reliability calculation unit 240 may calculate the classification reliability according to a formula representing the relationship between the rate of abnormality detection and the classification reliability.
  • the classification reliability calculation unit 240 calculates the classification reliability calculated for the abnormal data stored in the data storage unit 160 for classification based on at least one of the environmental information and attributes when the abnormal data was observed. to give In other words, the classification reliability calculation unit 240 stores the classification reliability for each classification in the data storage unit 160 . Then, the classification reliability calculation unit 240 stores the abnormal data stored in the data storage unit 160 in the object calculated for the classification based on at least one of the environmental information and the attributes when the abnormal data was observed. Associate confidence.
  • the classification reliability calculation unit 240 may send the classification reliability for each classification to the output unit 170 .
  • the output unit 170 may receive the target reliability for each classification from the classification reliability calculation unit 240 .
  • the output unit 170 may output the target reliability for each classification received from the classification reliability calculation unit 240 .
  • the output unit 170 may read the abnormal data to which the classification reliability is assigned from the data storage unit 160 and output the read abnormal data.
  • FIG. 11 is a flowchart representing an example of the operation of the data collection device 101E according to the seventh embodiment of the present disclosure.
  • Classification information is stored in the data storage unit 160 at the start of the operation shown in FIG.
  • the results of detection of anomalies in the analysis range based on target data points detected from multiple sets of acoustic data are stored in the data storage unit 160 .
  • actual measurement information of abnormality is stored in the data storage unit 160 .
  • the classification reliability calculation unit 240 reads the abnormality detection result, the classification information, and the abnormality actual measurement information from the data storage unit 160 (step S401). At the time when the operation of step S401 is finished, no classification has been selected.
  • the classification reliability calculation unit 240 selects one classification from the unselected classifications (step S403).
  • the classification reliability calculation unit 240 extracts the detection result of abnormality in the analysis range of the object (that is, the joint of the rail) in which abnormal data classified into the selected classification is detected (step S404).
  • the classification reliability calculation unit 240 calculates the rate of detection of anomalies in the analysis range of objects (that is, joints of rails) in which anomalous data classified into the selected classification is detected (step S405).
  • the classification reliability calculation unit 240 calculates classification reliability based on the calculated ratio for each classification (step S406).
  • the operation of the data collection device 101E returns to step S402 after step S406.
  • the output unit 170 outputs the classification reliability of each classification (step S407).
  • the output unit 170 may output the abnormal data to which the classification reliability is assigned.
  • FIG. 12 is a block diagram showing an example configuration of a data collection device 101F according to the eighth modification of the second embodiment of the present disclosure.
  • the data collection device 101F of this modified example includes all of the components of the data collection device 101F according to the seventh modified example, as well as a target reliability calculation unit 230 .
  • the data collection device 101F of this modification has the same functions as the data collection device 101D of the fifth or sixth modification in addition to the functions of the data collection device 101E of the seventh modification.
  • the data collection device 101F of this modification performs the same operation as the data collection device 101D of the fifth or sixth modification in addition to the operation of the data collection device 101E of the seventh modification.
  • Each of the data collection devices according to embodiments of the present disclosure can be implemented by a computer including a processor executing a program loaded in memory.
  • Each of the data collection devices according to embodiments of the present disclosure can also be implemented by dedicated hardware.
  • Each of the data collection devices according to the embodiments of the present disclosure can also be implemented by a combination of the computer described above and dedicated hardware.
  • FIG. 13 is a diagram showing an example of the hardware configuration of computer 1000 that can implement each of the data collection devices according to the embodiments of the present disclosure.
  • computer 1000 includes processor 1001 , memory 1002 , storage device 1003 , and I/O (Input/Output) interface 1004 .
  • Computer 1000 can also access storage medium 1005 .
  • the memory 1002 and the storage device 1003 are storage devices such as RAM (Random Access Memory) and hard disks, for example.
  • the storage medium 1005 is, for example, a storage device such as a RAM or hard disk, a ROM (Read Only Memory), or a portable storage medium.
  • Storage device 1003 may be storage medium 1005 .
  • the processor 1001 can read and write data and programs from the memory 1002 and the storage device 1003 .
  • Processor 1001 may access other devices, such as servers, for example, via I/O interface 1004 .
  • Processor 1001 can access storage medium 1005 .
  • the storage medium 1005 stores a program that causes the computer 1000 to operate as a data collection device according to the embodiment of the present disclosure.
  • the processor 1001 loads into the memory 1002 a program stored in the storage medium 1005 that causes the computer 1000 to operate as a data collection device according to the embodiment of the present disclosure.
  • the computer 1000 operates as a data collection device according to the embodiment of the present disclosure by the processor 1001 executing the program loaded in the memory 1002 .
  • the data reception unit 110, the object detection unit 120, the determination unit 130, the anomaly detection unit 140, the classification unit 150, and the output unit 170 can be implemented by, for example, the processor 1001 that executes a program loaded in the memory 1002.
  • the environment information reception unit 210, the attribute reception unit 220, the object reliability calculation unit 230, and the classification reliability calculation unit 240 can be implemented by, for example, the processor 1001 executing a program loaded in the memory 1002.
  • the data storage unit 160 can be realized by a memory 1002 included in the computer 1000 and a storage device 1003 such as a hard disk device.
  • a part or all of the data reception unit 110, the object detection unit 120, the determination unit 130, the abnormality detection unit 140, the classification unit 150, the data accumulation unit 160, and the output unit 170 are realized by a dedicated circuit that realizes the function of each unit.
  • can also Part or all of the environment information reception unit 210, the attribute reception unit 220, the object reliability calculation unit 230, and the classification reliability calculation unit 240 can be realized by a dedicated circuit that realizes the function of each unit.
  • An object detection means for detecting an object data point, which is a data point at which the object is observed, in acoustic data obtained by observing the object; determining means for determining a range of analysis in the acoustic data based on the data points of interest; Abnormality detection means for detecting an abnormality in the analysis range; output means for outputting information on the analysis range in which the abnormality is detected;
  • a data collection device comprising:
  • Appendix 2 The data collection device according to appendix 1, wherein the determining means excludes an exclusion range that is shorter than the analysis range and includes the target data point from the analysis range.
  • appendix 4 The data collection device according to appendix 3, further comprising: classifying means for classifying the information of the analysis range based on the type of the detected abnormality.
  • Appendix 5 further comprising environmental information receiving means for receiving environmental information of the observation of the target;
  • the data collection device according to appendix 4, wherein the classification means classifies the information of the analysis range based on the environment information.
  • Appendix 6 further comprising an attribute receiving means for receiving an attribute of the target; 6.
  • the data collection device according to appendix 4 or 5, wherein the classification unit classifies the information of the analysis range based on the attribute.
  • Supplementary notes 4 to 6 further comprising a classification reliability calculation means for calculating a classification reliability for each classification into which the information in the analysis range is classified based on the rate at which an abnormality is detected in the object in which the abnormality is detected.
  • a data collection device according to any one of claims 1 to 3.
  • Supplementary notes 1 to 1 further comprising: target reliability calculation means for calculating a target reliability of the information of the abnormality of the target based on the rate at which the abnormality is detected in a plurality of measurements of the target in which the abnormality is detected.
  • target reliability calculation means for calculating a target reliability of the information of the abnormality of the target based on the rate at which the abnormality is detected in a plurality of measurements of the target in which the abnormality is detected.
  • Appendix 10 10. The data collection device according to any one of Appendices 1 to 9, wherein the target is a joint of rails.
  • Appendix 14 14. The data collection method according to appendix 13, wherein the information in the analysis range is classified based on the type of the detected anomaly.
  • Appendix 15 Receiving environmental information of observations of the target; 15. The data collection method according to appendix 14, wherein the information in the analysis range is classified based on the environment information.
  • Appendix 16 receiving attributes of said object; 16.
  • Appendix 17 The data according to any one of appendices 14 to 16, wherein a classification reliability is calculated for each classification into which the information in the analysis range is classified, based on the rate at which an abnormality is detected in the object in which the abnormality is detected. Collection method.
  • Appendix 18 18. The method according to any one of appendices 11 to 17, wherein a target reliability of the information of the abnormality of the target is calculated based on the ratio of detection of the abnormality in a plurality of measurements of the target in which the abnormality is detected. data collection methods.
  • a storage medium that stores a program that causes a computer to execute
  • Appendix 25 Said program causing the computer to further execute environmental information reception processing for receiving environmental information of the observation of the target; 25.
  • Appendix 26 Said program causing the computer to further execute an attribute acceptance process for accepting the attributes of the target; 26.
  • Appendix 28 Said program causing the computer to further execute a target reliability calculation process for calculating the target reliability of the information of the abnormality of the target based on the ratio of the detection of the abnormality in a plurality of measurements of the target in which the abnormality is detected.
  • Appendix 29 29.
  • Appendix 30 30.
  • data collection device 101 data collection device 101A data collection device 101B data collection device 101C data collection device 101D data collection device 101E data collection device 101F data collection device 110 data reception unit 120 target detection unit 130 determination unit 140 abnormality detection unit 150 classification unit 160 data accumulation unit 170 output unit 210 environmental information reception unit 220 attribute reception unit 230 target reliability calculation unit 240 classification reliability calculation unit 1000 computer 1001 processor 1002 memory 1003 storage device 1004 I/O interface 1005 storage medium

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Signal Processing (AREA)
  • Acoustics & Sound (AREA)
  • Biomedical Technology (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

異常が生じている対象から得られた音響データの収集を効率化できるデータ収集装置などを提供する。本開示の一態様に係るデータ収集装置100は、対象の観測によって得られた音響データにおいて、前記対象が観測されたデータ点である対象データ点を検出する対象検出部120と、前記対象データ点に基づいて、前記音響データにおける分析範囲を決定する決定部130と、前記分析範囲において、異常を検出する異常検出部140と、前記異常が検出された前記分析範囲の情報を出力する出力部170と、を備える。

Description

異常検出装置、異常検出方法及び記憶媒体
 本開示は、異常を検出する技術に関する。
 鉄道設備の定期検査は、国土交通省によって義務付けられており、鉄道会社は保有する鉄道の種類や設備の種類に応じて、巡視を行っている。また、先進技術を利用して運行中の異常を監視する技術の開発を進めている。中でもレールの継目のボルト緩みや橋梁のフックボルトの緩みは、緩んだボルトが切れるまで発見されないことがあり、巡視や定期検査の補助になる異常識別システムが求められている。
 レールの継ぎ目の状態を推定する技術の例が以下の文献によって開示されている。
 特許文献1及び引用文献4には、車両の軸箱にかかる軸箱加速度及び車両の走行地点におけるレールの高低狂いと、接着絶縁レールの継目板にかかる応力との関係に基づいて、測定された自軸箱加速度及び高低狂いから継目板にかかる応力を推定する方法が開示されている。
 特許文献2には、ゲージを使用してレールの継ぎ目部に形成された遊間の大きさを測定する装置が開示されている。
 特許文献3には、軌道上を走行する車両において取得された音響信号をフーリエ変換し、その所定時間ごとのピーク値に基づいて、起動の状態を検出する方法が開示されている。
 特許文献5には、軌道に沿って走行する対象物の基準点と軌道との距離が所定の範囲にある場合、対象物の振動データを用いて対象物の車軸軸受の異常を判定する装置が開示されている。
 特許文献6には、異常検出対象の音響信号に関する信号パターン特徴を算出し、信号パターン特徴に基づいて、異常検出を行うための異常スコアを算出する異常検出装置が開示されている。異常検出対象の音響信号に関する信号パターン特徴は、第1の時間幅の音響信号と、第1の時間幅よりも長い第2の時間幅の音響信号から算出された長時間特徴量とに基づいて学習された信号パターンモデルに基づいて算出される。
特許第5128870号公報 実開平6-074912号公報 特開2007-145270号公報 特開2009-042054号公報 特開2018-081003号公報 国際公開第2019/220620号
 レール継目のボルト緩みなどの異常は、列車が通過時に音として現れることがある。これは、運転手などの経験上知られている事象である。音を使用して精度よく異常を検出するモデルを学習するためには、ボルト緩みなどの異常が生じているレール継目を列車が通過する際の音を収集する必要がある。
 特許文献1乃至6には、異常を検出するための技術が記載されている。特許文献1乃至6の技術では、異常が生じている対象から得られた音響データの収集を効率化することはできない。
 本開示の目的の1つは、異常が生じている対象から得られた音響データの収集を効率化できるデータ収集装置などを提供することである。
 本開示の一態様に係るデータ収集装置は、対象の観測によって得られた音響データにおいて、前記対象が観測されたデータ点である対象データ点を検出する対象検出手段と、前記対象データ点に基づいて、前記音響データにおける分析範囲を決定する決定手段と、前記分析範囲において、異常を検出する異常検出手段と、前記異常が検出された前記分析範囲の情報を出力する出力手段と、を備える。
 本開示の一態様に係るデータ収集方法は、対象の観測によって得られた音響データにおいて、前記対象が観測されたデータ点である対象データ点を検出し、前記対象データ点に基づいて、前記音響データにおける分析範囲を決定し、前記分析範囲において、異常を検出し、前記異常が検出された前記分析範囲の情報を出力する。
 本開示の一態様に係るプログラムは、対象の観測によって得られた音響データにおいて、前記対象が観測されたデータ点である対象データ点を検出する対象検出処理と、前記対象データ点に基づいて、前記音響データにおける分析範囲を決定する決定処理と、前記分析範囲において、異常を検出する異常検出処理と、前記異常が検出された前記分析範囲の情報を出力する出力処理と、をコンピュータに実行させる。本開示の一態様は、上述のプログラムを記憶する記憶媒体によっても実現される。
 本開示には、異常が生じている対象から得られた音響データの収集を効率化できるという効果がある。
図1は、本開示の第1の実施形態に係るデータ収集装置の構成の例を表すブロック図である。 図2は、本開示の第1の実施形態に係るデータ収集装置100の動作の例を表すフローチャートである。 図3は、本開示の第2の実施形態に係るデータ収集装置101の構成の例を表すブロック図である。 図4は、本開示の第2の実施形態のデータ収集装置101の動作の例を表すフローチャートである。 図5は、第2の実施形態の第1の変形例に係るデータ収集装置101Aの構成の例を表すブロック図である。 図6は、第2の実施形態の第2の変形例に係るデータ収集装置101Bの構成の例を表すブロック図である。 図7は、第2の実施形態の第3の変形例に係るデータ収集装置101Cの構成の例を表すブロック図である。 図8は、本開示の第2の実施形態の第5の変形例に係るデータ収集装置101Dの構成の例を表すブロック図である。 図9は、本開示の第2の実施形態の第5の変形例に係るデータ収集装置101Dの、対象信頼度を付与する動作の例を表すフローチャートである。 図10は、本開示の第2の実施形態の第7の変形例に係るデータ収集装置101Eの構成の例を表すブロック図である。 図11は、本開示の第7の実施形態に係るデータ収集装置101Eの動作の例を表すフローチャートである。 図12は、本開示の第2の実施形態の第8の変形例に係るデータ収集装置101Fの構成の例を表すブロック図である。 図13は、本開示の実施形態に係るデータ収集装置の各々を実現することができる、コンピュータ1000のハードウェア構成の一例を表す図である。
 以下では、本開示の実施形態について図面を使用して詳細に説明する。
 <第1の実施形態>
 まず、本開示の第1の実施形態について説明する。
 <構成>
 図1は、本開示の第1の実施形態に係るデータ収集装置の構成の例を表すブロック図である。
 <データ収集装置100>
 図1に示す例では、データ収集装置100は、対象検出部120と、決定部130と、異常検出部140と、出力部170と、を備える。対象検出部120は、対象の観測によって得られた音響データにおいて、前記対象が観測されたデータ点である対象データ点を検出する。決定部130は、前記対象データ点に基づいて、前記音響データにおける分析範囲を決定する。決定部130は、前記分析範囲において、異常を検出する。出力部170は、前記異常が検出された前記分析範囲の情報を出力する。以下では、観測によって得られるデータは振動データであるとして説明するが、観測によって得られるデータは、音響データではなく、振動のデータであってもよい。
 <対象検出部120>
 音響データは、例えば、線路を走行する車両等に取り付けられたセンサによって観測されたデータを、周波数領域のデータに変換することによって得られる、音響の推移を表す時系列データである。センサは、例えば、マイクロフォン等の音響センサ、又は、振動センサなどの、車両がレールの継ぎ目を通過する時に発する音響又は振動を観測できるセンサである。以下では、センサは音響センサであるとして説明する。センサが取り付けられる位置は、例えば、車両の台車又はレール付近等の車両の下方の部分であってもよい。センサが取り付けられる位置は、台車に載せられている車両の部分であってもよい。センサが取り付けられる位置は、台車又は車両の表面であってもよい。センサが取り付けられる位置は、台車又は車両の内部であってもよい。音響データが含む個々の時点のデータを、以下では、要素データと表記する。変換の方法は、既存の様々な方法のいずれかであってよい。対象は、例えば、レールの継ぎ目である。対象データ点は、例えば、センサからの距離が最も短い車輪がレールの継ぎ目を通過した時点で観測されたデータである。対象検出部120は、例えば、音響データにおける、音圧が閾値以上の大きさの極大値を取る点を、対象データ点として検出する。
 音響データは、観測の時刻と関連付けられていてもよい。例えば、音響データの個々の要素データの時間間隔と、音響データの観測の開始時刻とが与えられる。音響データの要素データの各々に、観測の時刻が関連付けられていてもよい。さらに、観測時の車両の走行の速度と、レールの長さとが得られていてもよい。対象検出部120は、例えば、音響データにおける、音圧が閾値以上の大きさの極大値を取る点を、対象データ点として検出してもよい。この場合、対象検出部120は、さらに、検出された対象データ点が観測された時刻と、車両の走行の速度と、レールの長さとに基づいて、次の対象データ点が得られる時刻を算出してもよい。そして、対象検出部120は、算出した時刻に観測されたデータを対象データ点として検出してもよい。対象検出部120は、算出した時刻を含む所定時間幅の間に観測されたデータから、音圧が閾値以上の大きさの極大値を取る点を、対象データ点として検出してもよい。
 さらに、例えばGPS(Global Positioning System)等を利用して得られた観測の場所が、観測の時刻と関連付けられていてよい。対象検出部120は、観測の場所と観測の時刻との関係を使用して、観測データが得られた期間における、レールの継ぎ目を通過した時刻を推定してよい。対象検出部120は、推定された時刻に観測されたデータを、対象データ点として検出してもよい。対象検出部120は、推定した時刻を含む所定時間幅の間に観測されたデータから、音圧が閾値以上の大きさの極大値を取る点を、対象データ点として検出してもよい。
 <決定部130>
 決定部130は、例えば、対象データ点が観測された時刻から所定時間(第1所定時間と表記)前の時刻から、対象データ点が観測された時刻から所定時間(第2所定時間)後の時刻までの期間に得られたデータを、分析範囲に決定してもよい。第1所定時間と第2所定時間は、同じであってもよい。第1所定時間及び第2所定時間は、固定されていてもよい。第1所定時間及び第2所定時間は、対象データ点が観測された時刻における車両の走行の速度に基づいて定められていてもよい。具体的には、第1所定時間及び第2所定時間は、車両の走行の速度が大きいほど短くなるように定められていてもよい。以下の説明では、対象データ点が観測された時刻から第1所定時間前の時刻から、対象データ点が観測された時刻から第2所定時間後の時刻までの間の観測データの範囲を、影響範囲と表記する。影響範囲の開始時刻を、影響開始時刻と表記する。影響範囲の終了時刻を、影響終了時刻と表記する。言い換えると、影響範囲は、影響開始時刻から影響終了時刻までの間に観測された音響データの一部分である。決定部130は、影響範囲を、分析範囲に決定してもよい。
 決定部130は、影響範囲のうち、対象データ点を含み、影響範囲の長さよりも短い長さの範囲(除外範囲と表記)を除く範囲を、分析範囲に決定してもよい。以下の説明では、除外範囲の開始時刻を、除外開始時刻と表記する。除外範囲の終了時刻を、除外終了時刻と表記する。除外開始時刻は、影響開始時刻よりも遅い時刻になるように決定される。除外終了時刻は、影響終了時刻よりも早い時刻になるように決定される。除外開始時刻から、対象データ点が観測された時刻までの時間を、第3所定時間と表記する。対象データ点が観測された時刻から除外終了時刻までの時間を、第4所定時間と表記する。第3所定時間及び第4所定時間は、固定されていてもよい。第3所定時間及び第4所定時間は、対象データ点が観測された時刻における車両の走行の速度に基づいて定められていてよい。具体的には、第3所定時間及び第4所定時間は、車両の走行の速度が大きいほど短くなるように定められていてもよい。言い換えると、決定部130は、影響範囲から除外範囲を除いた範囲を、分析範囲に決定する。さらに言い換えると、決定部130は、影響開始時刻から除外開始時刻までの間に観測された音響データの範囲、及び、除外終了時刻から影響終了時刻までの間に観測された音響データの範囲を、分析範囲に決定する。
 <異常検出部140>
 異常検出部140は、分析範囲において、異常を検出する。具体的には、異常検出部140は、例えば、分析範囲において、レールの継ぎ目に異常が存在する場合に生じる異常パターンを検出する。異常パターンは、例えば、10~20Hzの間に存在する、強さのピークであってもよい。異常パターンは、10~20Hzの間に存在し、所定時間以上の間毛帰属する、強さのピークであってもよい。異常パターンは、例えば、あらかじめ学習によって得られているパターンであってもよい。
 異常検出部140は、分析範囲において異常パターンが検出された場合、レールの継ぎ目に異常が検出されたと判定する。分析範囲において異常パターンが検出された場合、異常検出部140は、検出された異常パターンの特徴を抽出してもよい。異常パターンの特徴は、例えば、分析範囲における、10~20Hzの間に存在する、強さのピークの継続時間であってもよい。異常パターンの特徴は、例えば、分析範囲における、対象データ点が観測された時刻よりも前の、10~20Hzの間の、強さのピークの継続時間、及び、対象データ点が観測された時刻よりも後の、10~20Hzの間の、強さのピークの継続時間であってもよい。異常パターンの特徴は、これらの例に限られない。
 異常検出部140は、例えば、あらかじめ学習によって得られた、レールの継ぎ目の異常を検出する検出器によって、レールの継ぎ目の異常を検出してもよい。
 <出力部170>
 出力部170は、異常が検出された分析範囲の情報を出力する。異常が検出された分析範囲の情報は、例えば、分析範囲における音響データである。異常が検出された分析範囲の情報は、例えば、分析範囲における音響データと、検出された異常の特徴とである。
 出力部170は、異常が検出された分析範囲の情報を、データ収集装置100のディスプレイに出力してもよい。出力部170は、異常が検出された分析範囲の情報を、記憶装置に格納してもよい。この記憶装置は、データ収集装置100に接続されている、外部の記憶装置やサーバ等であってもよい。この記憶装置は、データ収集装置100の内部に取り付けられている記憶装置であってもよい。この記憶装置は、データ収集装置100が読み書きできる記憶媒体であってもよい。
 <動作>
 次に、本開示の第1の実施形態のデータ収集装置100の動作について、図面を使用して詳細に説明する。
 図2は、本開示の第1の実施形態に係るデータ収集装置100の動作の例を表すフローチャートである。
 図2に示す例では、まず、対象検出部120が、音響データにおいて、対象データ点を検出する(ステップS101)。対象検出部120は、音響データに存在する1つ以上の対象データ点を検出してよい。対象検出部120は、音響データに存在する全ての対象データ点を検出してよい。
 次に、決定部130が、音響データにおいて、対象データ点に基づいて分析範囲を決定する(ステップS102)。決定部130は、ステップS101において検出された対象データ点の各々について、分析範囲を決定してよい。
 次に、異常検出部140が、決定された分析範囲において、異常を検出する(ステップS103)。異常検出部140は、ステップS102において決定された分析範囲の各々において、異常を検出してよい。
 異常が検出されなかった場合(ステップS104においてNO)、データ収集装置100は、図2に示す動作を終了する。この場合、データ収集装置100は、図2に示す動作を終了する前に、出力部170は、音響データにおいて異常が検出されなかったことを示す情報を出力してもよい。
 異常が検出された場合(ステップS104においてYES)、出力部170は、異常が検出された分析範囲の情報を出力する。出力部170は、異常が検出された分析範囲の各々について、異常が検出された分析範囲の情報を出力してよい。
 <効果>
 本開示には、異常が生じている対象から得られた音響データの収集を効率化できるという効果がある。その理由は、対象検出部120が対象データ点を検出し、決定部130が対象データ点に基づく分析範囲を決定し、異常検出部140が決定された分析範囲において異常を検出するからである。
 <第2の実施形態>
 次に、本開示の第2の実施形態について、図面を使用して詳細に説明する。
 <構成>
 図3は、本開示の第2の実施形態に係るデータ収集装置101の構成の例を表すブロック図である。
 図3に示す例では、データ収集装置101は、データ受付部110と、対象検出部120と、決定部130と、異常検出部140と、分類部150と、出力部170とを含む。データ収集装置101は、さらに、データ蓄積部160を含んでいてもよい。データ収集装置101は、さらに、環境情報受付部210を含んでいてもよい。データ収集装置101は、さらに、属性受付部220を含んでいてもよい。
 <データ受付部110>
 データ受付部110は、例えば車両の台車に取り付けられたセンサ(例えばマイクロフォン)によって観測された音響を表す音響データを受け付ける。データ受付部110は、センサから直接音響データを受け付けてもよい。データ受付部110は、サーバ等に蓄積された音響データを、そのサーバなどから受け付けてもよい。
 データ受付部110が受け付ける音響データは、周波数領域のデータであってもよい。データ受付部110が受け付ける音響データは、時間領域のデータであってもよい。その場合、データ受付部110は、受け付けた音響データを、時間領域のデータに変換する。
 データ受付部110は、音響データを対象検出部120に送出する。
 <対象検出部120>
 対象検出部120は、データ受付部110から音響データを受け取る。対象検出部120は、第1の実施形態の対象検出部120と同様に、音響データにおいて、対象が観測されたデータ点である対象データ点を検出する。対象検出部120は、検出した対象データ点を表す情報を、決定部130に送出する。
 対象データ点を表す情報は、音響データにおいて対象データ点を特定する情報である。対象データ点を表す情報は、対象データ点のデータが観測された時刻であってもよい。対象データ点を表す情報は、時系列の情報である音響データにおける、対象データ点のデータの順番を示す番号であってもよい。対象データ点を表す情報は、時系列の情報である音響データにおいて、対象データ点のデータに付与される番号等の識別情報であってもよい。音響データにおいて、ある時刻に観測されたデータを特定する情報を、以下の説明では、特定情報と表記する。
 <決定部130>
 決定部130は、対象検出部120から、対象データ点を表す情報を受け取る。決定部130は、第1の実施形態の決定部130と同様に、対象データ点に基づいて、音響データにおける分析範囲を決定する。決定部130は、決定した分析範囲を表す情報を、異常検出部140に送出する。
 分析範囲が、上述の影響範囲である場合、分析範囲を表す情報は、影響開始時刻と影響終了時刻とであってもよい。この場合、分析範囲を表す情報は、影響開始時刻に観測されたデータを特定する番号又は識別子等の情報(すなわち特定情報)と、影響終了時刻に観測されたデータを特定する番号又は識別子等の情報(すなわち特定情報)と、であってもよい。
 分析範囲が、影響範囲から除外範囲を除いた範囲である場合、分析範囲を表す情報は、影響開始時刻と除外開始時刻と除外終了時刻と影響終了時刻とであってもよい。分析範囲を表す情報は、影響開始時刻に観測されたデータの特定情報と、除外開始時刻に観測されたデータの特定情報と、除外終了時刻に観測されたデータの特定情報と、影響終了時刻に観測されたデータの特定情報とであってもよい。
 <異常検出部140>
 異常検出部140は、決定部130から、決定した分析範囲を表す情報を受け取る。異常検出部140は、第1の実施形態の異常検出部140と同様に、分析範囲において、異常を検出する。異常検出部140は、検出した異常の情報と、異常が検出された分析範囲の情報とを、分類部150に送出する。
 異常検出部140は、分析範囲において、複数の種類の異常を検出してもよい。異常検出部140は、分析範囲において異常パターンを検出し、異常パターンが検出された場合、異常が検出されたと判定してもよい。異常パターンは、例えば、ピークが含まれる、1つ以上の周波数帯の組み合わせによって表されていてもよい。異常パターンは、例えば、ピークが含まれる1つ以上の周波数帯と、それぞれの周波数帯におけるピークの強さの比との組み合わせによって表されていてもよい。異常パターンは、以上の例と異なっていてもよい。異常検出部140は、複数の異常パターンのうち、分析範囲における音響データに最もよくマッチする異常パターンを特定してもよい。異常検出部140は、分析範囲における音響データと、複数の異常パターンの各々との間のマッチの程度を表すスコアを算出してもよい。スコアは、マッチの程度を表すように適宜定義されていてよい。
 異常の種類は、例えば、レールの継ぎ目のボルト破断、レールの継ぎ目のボルト緩み等であってもよい。この場合、複数の異常パターンは、レールの継ぎ目においてボルト緩みが発生した場合の異常パターンと、レールの継ぎ目においてボルト破断が発生した場合の異常パターンとを含む。異常検出部140は、天候、気温、車両の種類、車両の重量等によって異なる複数の異常パターンを使用して、異常を検出してもよい。この場合、異常検出部140は、複数の異常パターンのうち少なくともいずれかが分析範囲において検出された場合、検出された異常パターンに応じた種類の異常が検出されたと判定してよい。これらの複数の異常パターンは、例えば、学習によってあらかじめ得ておいた異常パターンである。
 異常検出部140は、上述の検出器を使用して異常を検出してもよい。異常検出部140は、天候、気温、車両の種類、車両の重量等によって異なる複数の検出器を使用して、異常を検出してもよい。この場合、異常検出部140は、いずれかの検出器によって異常が検出された場合、分析範囲において、異常を検出した検出器に応じた種類の異常が検出されたと判定してよい。これらの複数の検出器は、例えば、学習によってあらかじめ得ておいた検出器である。
 異常検出部140は、異常の情報(例えば、検出した異常の種類を特定する情報と、検出した異常の特徴とを含む情報)と、異常が検出された分析範囲の音響データを特定する情報と、を、分類部150に送出してよい。なお、本開示の説明では、異常が検出された分析範囲を、異常が検出された分析範囲とも表記する。
 <分類部150>
 分類部150は、異常検出部140から、検出した異常の情報と、異常が検出された分析範囲の情報とを受け取る。異常の情報は、例えば、検出した異常を表す情報(例えば、観測データのうち分析範囲に含まれるデータ)と、検出した異常の特徴(例えば、検出された異常の種類を特定する情報)とを含んでいてよい。
 分類部150は、異常が検出された分析範囲を、例えば複数の分類の少なくともいずれかに分類する。分類は、それぞれ、複数の異常の種類の少なくともいずれか1つ以上に関連付けられていてよい。分類は、異常の種類であってもよい。異常の種類は、以上の例に限られない。分類部150は、異常が検出された分析範囲のデータを、検出された異常の種類に関連付けられている分類に分類してもよい。分類部150は、異常パターンが検出された分析範囲を、分析範囲に最もマッチする異常パターンに関連付けられる分類に分類してよい。分類は、他の情報に基づいて定められていてもよい。他の情報に基づく分類については、後で変形例として説明する。
 分類部150は、異常が検出された分析範囲の情報と、その分析範囲が分類された分類の情報とを、データ蓄積部160に格納する。
 分類部150は、分類に応じた緊急度を、異常が検出された分析範囲の情報に付与してもよい。分類部150は、例えば、ボルト破断に分類された、異常が検出された分析範囲の情報に、ボルト緩みに分類された、異常が検出された分析範囲の情報に付与される緊急度よりも、緊急性が高いことを示す緊急度を付与する。
 <動作>
 次に、本開示の第2の実施形態のデータ収集装置101の動作について、図面を使用して詳細に説明する。
 図4は、本開示の第2の実施形態のデータ収集装置101の動作の例を表すフローチャートである。
 図4に示す例では、データ受付部110が、観測データを受け付ける(ステップS101)。次に、対象検出部120が、観測データにおいて、対象データ点を検出する(ステップS102)。次に、決定部130が、対象データ点に基づいて、分析範囲を決定する(ステップS103)。異常検出部140は、分析範囲において、異常を検出する(ステップS104)。異常が検出されなかった場合(ステップS105においてNO)、データ収集装置101は、図4に示す動作を終了する。
 異常が検出された場合(ステップS105においてYES)、分類部150が、異常が検出された分析範囲のデータを分類する(ステップS206)。ステップS206の後、分類部150は、異常が検出された分析範囲の情報である異常データと、その異常データの分類とを、データ蓄積部160に格納してもよい。ステップS206の後、分類部150は、異常が検出された分析範囲の情報である異常データと、その異常データの分類とを、出力部170に送出してもよい。そして、出力部170は、異常が検出された分析範囲の情報である異常データと、その異常データの分類とを出力する(ステップS207)。
 <効果>
 本実施形態には、第1の実施形態の効果と同じ効果がある。その理由は、第1の実施形態の効果が生じる理由と同じである。
 <第2の実施形態の第1の変形例>
 図5は、第2の実施形態の第1の変形例に係るデータ収集装置101Aの構成の例を表すブロック図である。以下では、本変形例のデータ収集装置101Aの、第2の実施形態のデータ収集装置101に対する相違点について説明する。以下で説明する相違点を除いて、本変形例のデータ収集装置101Aは、第2の実施形態のデータ収集装置101と同じ機能を備え、同様に動作する。図5に示す例では、本変形例のデータ収集装置101Aは、第2の実施形態のデータ収集装置101のすべての構成要素に加えて、環境情報受付部210を含む。
 <環境情報受付部210>
 環境情報受付部210は、観測時の情報を記憶する例えばサーバなどの他の装置から、環境情報を受け付ける。環境情報は、例えば、観測時の、日時、観測の場所における気温、天候などである。環境情報は、これらの例に限られない。環境情報は、これらの一部または全部を含んでいなくてもよい。
 環境情報受付部210は、受け付けた環境情報を分類部150に送出する。
 <分類部150>
 本実施形態の分類部150は、環境情報受付部210から環境情報を受け取る。分類部150は、異常が検出された分析範囲を、環境情報に基づく分類のいずれかに分類する。環境情報に基づく分類は、例えば、観測時の、月、季節、気温、天候の少なくともいずれかに基づいて定められる分類である。
 <第2の実施形態の第2の変形例>
 図6は、第2の実施形態の第2の変形例に係るデータ収集装置101Bの構成の例を表すブロック図である。以下では、本変形例のデータ収集装置101Bの、第2の実施形態のデータ収集装置101に対する相違点について説明する。以下で説明する相違点を除いて、本変形例のデータ収集装置101Bは、第2の実施形態のデータ収集装置101と同じ機能を備え、同様に動作する。図6に示す例では、本変形例のデータ収集装置101Bは、第2の実施形態のデータ収集装置101のすべての構成要素に加えて、属性受付部220を含む。
 <属性受付部220>
 属性受付部220は、観測時の情報を記憶する例えばサーバなどの他の装置から、属性情報を受け付ける。属性情報は、車両の種別、車両の重量、軌道情報(例えば、レールの劣化の程度、レールが敷設されてから経過した時間等)などである。レールの劣化の程度は、車両がレールを通過する頻度に応じた、区分であってもよい。レールの劣化の程度は、目視によって判定された劣化の程度であってもよい。属性情報は、これらの例に限られない。属性情報は、これらの一部または全部を含んでいなくてもよい。
 属性受付部220は、受け付けた環境情報を分類部150に送出する。
 <分類部150>
 本実施形態の分類部150は、属性受付部220から属性情報を受け取る。分類部150は、異常が検出された分析範囲を、属性情報に基づく分類のいずれかに分類する。属性情報に基づく分類は、例えば、観測時の、車両の種別、車両の重量が含まれる重量の区分、軌道情報が含まれる軌道状態の区分の少なくともいずれかに基づいて定められる分類である。重量の区分は、あらかじめ定められた、車両の重量の範囲である。軌道状態の区分は、例えば、あらかじめ定められた、レールが敷設されてから経過した時間の範囲である。軌道状態の区分は、レールの劣化の程度であってもよい。
 <第2の実施形態の第3の変形例>
 図7は、第2の実施形態の第3の変形例に係るデータ収集装置101Cの構成の例を表すブロック図である。以下では、本変形例のデータ収集装置101Cの、第2の実施形態のデータ収集装置101に対する相違点について説明する。以下で説明する相違点を除いて、本変形例のデータ収集装置101Cは、第2の実施形態のデータ収集装置101と同じ機能を備え、同様に動作する。図7に示す例では、本変形例のデータ収集装置101Bは、第2の実施形態のデータ収集装置101のすべての構成要素に加えて、環境情報受付部210と、属性受付部220とを含む。本変形例の環境情報受付部210は、第2の実施形態の第1の変形例の環境情報受付部210と同じである。本変形例の属性受付部220は、第2の実施形態の第2の変形例の属性受付部220と同じである。
 <分類部150>
 本実施形態の分類部150は、環境情報受付部210から環境情報を受け取る。本実施形態の分類部150は、さらに、属性受付部220から属性情報を受け取る。分類部150は、異常が検出された分析範囲を、環境情報及び属性情報の少なくともいずれかに基づく分類のいずれかに分類する。
 <第2の実施形態の第4の変形例>
 第2の実施形態の第4の変形例は、以下で説明する相違点を除いて、第2の実施形態と同じである。
 データ収集装置101は、分類部150を含んでいなくてもよい。その場合、分類部150は、異常が検出された分析範囲の情報と、その分析範囲が分類された分類の情報とを、出力部170に送出する。出力部170は、異常が検出された分析範囲の情報と、その分析範囲が分類された分類の情報とを、分類部150から受け取る。本変形例のデータ収集装置101は、他の点において、第2の実施形態のデータ収集装置101と同じである。
 本変形例を、第2の実施形態の第1の変形例から第3の変形例の各々に適用することも可能である。
 <第2の実施形態の第5の変形例>
 <構成>
 図8は、本開示の第2の実施形態の第5の変形例に係るデータ収集装置101Dの構成の例を表すブロック図である。図8に示す例では、本変形例のデータ収集装置101Dは、第2の実施形態のデータ収集装置101の構成要素の全てに加えて、対象信頼度算出部230を含む。本変形例のデータ収集装置101Dは、以下で説明する相違点を除いて、第2の実施形態のデータ収集装置101の機能と同じ機能を備え、第2の実施形態のデータ収集装置101が動作するのと同様に動作する。なお、本変形例のデータ収集装置101Dは、分類部150を含んでいなくてもよい。また、本変形例を、第1から第3の変形例に適用することもできる。
 本変形例では、レールの継ぎ目の各々に識別子(以下、継ぎ目識別子)が付与されている。また、本変形例では、同一の線路に対する複数回の観測によって得られた、複数セットの音響データが、データ収集装置101Dに入力される。
 <データ受付部110>
 データ受付部110は、音響データに加えて、対象データ点とレールの継ぎ目とを関連付けるデータを受け付ける。対象データ点とレールの継ぎ目とを関連付けるデータは、例えば、観測の際に車両が継ぎ目を通過した時刻を特定するデータである。観測の際に車両が継ぎ目を通過した時刻を特定するデータは、例えば、継ぎ目識別子とその継ぎ目識別子が示す継ぎ目を車両が通過した時刻との組み合わせであってもよい。観測の際に車両が継ぎ目を通過した時刻を特定するデータは、観測の際の、車両の位置と、車両がその位置に存在した時刻と、の組み合わせを複数含むデータであってもよい。この場合、例えばデータ受付部110が、車両の位置と車両がその位置に存在した時刻と、の複数の組み合わせから、車両が線路において隣接する2つの位置の間を一定の速度で走行したという仮定の下で、レールの継ぎ目の位置を通過した時刻を算出してもよい。
 <異常検出部140>
 異常検出部140は、さらに、レールの継ぎ目ごとに(すなわち、検出された対象データ点ごとに)、レールの継ぎ目を特定する情報と異常が検出されたか否かを表す情報との組み合わせを生成する。具体的には、異常検出部140は、音響データにおいて検出された分析範囲ごとに、異常を検出するのに加えて、分析範囲が基づく対象データ点のデータが得られたレールの継ぎ目を特定する。異常検出部140は、例えば、分析範囲が基づく対象データ点のデータが観測された時刻に最も近い時刻に車両が通過した、レールの継ぎ目を、分析範囲が基づく対象データ点のデータが得られたレールの継ぎ目として特定する。異常検出部140は、他の方法によって、分析範囲が基づく対象データ点のデータが得られたレールの継ぎ目として特定してもよい。
 異常検出部140は、異常が検出された分析範囲の情報に加えて、異常検出部140は、対象データ点ごとに、レールの継ぎ目を特定する情報と異常が検出されたか否かを表す情報とを、データ蓄積部160に格納する。上述のように、異常が検出された分析範囲の情報は、異常データとも表記される。
 <データ蓄積部160>
 データ蓄積部160は、異常が検出された分析範囲の情報(すなわち、異常データ)と、対象データ点ごとの、レールの継ぎ目を特定する情報及び分析範囲において異常が検出されたか否かを表す情報の組み合わせ(以下、分析範囲における異常の検出の結果とも表記)と、を記憶する。本説明では、分析範囲における異常の検出の結果は、単に、異常の検出の結果とも表記される。上述のように、本変形例では、同一の線路に対する複数回の観測によって得られた、複数セットの音響データが、データ収集装置101Dに入力される。その結果、データ蓄積部160は、複数セットの音響データから得られた、異常が検出された分析範囲の情報と、レールの継ぎ目ごとの、異常が検出されたか否かを表す情報とを記憶する。そして、データ蓄積部160には、複数セットの音響データの各々について、同一のレールの継ぎ目の分析範囲において異常が検出されたか否かを表す情報が格納されている。そして、データ蓄積部160には、分析範囲において異常が検出された場合、異常が検出された分析範囲の情報が格納されている。
 <対象信頼度算出部230>
 対象信頼度算出部230は、データ蓄積部160に格納されている、対象データ点ごとの、レールの継ぎ目を特定する情報と分析範囲において異常が検出されたか否かを表す情報とを読み出す。
 対象信頼度算出部230は、レールの継ぎ目を特定する情報と分析範囲において異常が検出されたか否かを表す情報との組み合わせから、分析範囲において少なくとも1回異常が検出された継ぎ目ごとに、分析範囲において異常が検出された割合を算出する。そして、対象信頼度算出部230は、継ぎ目ごとに、異常が検出された割合に基づく対象信頼度を算出する。対象信頼度は、例えば、異常が検出された分析範囲のデータが、異常が発生した継ぎ目において観測されたデータとしてどの程度信頼できるかを表す値である。この例では、継ぎ目において異常が発生している可能性が高いほど、その継ぎ目における分析範囲のデータにおいて異常が検出される確率が高いとみなしている。対象信頼度算出部230は、異常が検出された割合を対象信頼度としてもよい。対象信頼度算出部230は、異常が検出された割合と対象信頼度との関係を表す式に従って、対象信頼度を算出してもよい。
 対象信頼度算出部230は、データ蓄積部160に格納されている異常データに、その異常データが観測された継ぎ目に対して算出された対象信頼度を付与する。言い換えると、対象信頼度算出部230は、継ぎ目ごとの対象信頼度をデータ蓄積部160に格納し、データ蓄積部160に格納されている異常データに、その異常データが観測された継ぎ目に対して算出された対象信頼度を関連付ける。
 対象信頼度算出部230は、継ぎ目ごとの対象信頼度を、出力部170に送出してもよい。
 <出力部170>
 出力部170は、対象信頼度算出部230から、継ぎ目ごとの対象信頼度を受け取ってもよい。出力部170は、対象信頼度算出部230からから受け取った、継ぎ目ごとの対象信頼度を出力してもよい。
 出力部170は、データ蓄積部160から、対象信頼度が付与された異常データを読み出し、読み出した異常データを出力してもよい。
 <動作>
 図9は、本開示の第2の実施形態の第5の変形例に係るデータ収集装置101Dの、対象信頼度を付与する動作の例を表すフローチャートである。図9に示す動作の開始時において、複数セットの音響データから検出された対象データ点に基づく分析範囲における、異常の検出の結果が、データ蓄積部160に格納されている。
 図9に示す例では、まず、対象信頼度算出部230は、分析範囲における異常の検出の結果を読み出す(ステップS301)。上述のように、分析範囲における異常の検出の結果は、対象データ点ごとの、レールの継ぎ目を特定する情報及び分析範囲において異常が検出されたか否かを表す情報の組み合わせである。対象信頼度算出部230は、読み出された、分析範囲における異常の検出の結果から、継ぎ目ごとの、分析範囲の異常の検出の結果を抽出する(ステップS302)。ステップS302において、対象信頼度算出部230は、継ぎ目ごとの分析範囲の異常の検出の結果として、例えば、継ぎ目ごとに、対象データ点が検出された回数と、対象データ点に基づく分析範囲において異常が検出された回数を抽出する。
 対象信頼度算出部230は、次に、継ぎ目ごとに、分析範囲において異常が検出された割合(すなわち、異常が検出された割合)を算出する(ステップS303)。対象信頼度算出部230は、レールの継ぎ目ごとに、算出した割合に基づいて、対象信頼度を算出する(ステップS304)。対象信頼度算出部230は、対象信頼度を、データ蓄積部160に格納されている異常データに付与する(ステップS305)。具体的には、対象信頼度算出部230は、データ蓄積部160に格納されている異常データに、その異常データである、異常が検出された分析範囲のデータが得られた継ぎ目の対象信頼度を付与する。
 そして、データ収集装置101Dは、図9に示す動作を終了する。
 <第2の実施形態の第6の変形例>
 本開示の第2の実施形態の第6の変形例に係るデータ収集装置101Dの構成は、本開示の第2の実施形態の第5の変形例に係るデータ収集装置101Dの構成と同じである。本変形例のデータ収集装置101Dは、以下で説明する相違点を除いて、第2の実施形態の第5の変形例に係るデータ収集装置101Dの機能と同じ機能を備え、第2の実施形態の第5の変形例に係るデータ収集装置101Dが動作するのと同様に動作する。また、本変形例を、第1から第3の変形例に適用することもできる。
 本変形例では、第5の変形例と同様に、レールの継ぎ目の各々に識別子(以下、継ぎ目識別子)が付与されている。また、本変形例では、同一の線路に対する複数回の観測によって得られた、複数セットの音響データが、データ収集装置101Dに入力される。
 <データ受付部110>
 データ受付部110は、さらに、レールの継ぎ目ごとに、例えば目視によって確認された、異常が存在するか否かを表す情報(以下、異常実測情報と表記)を受け取る。データ受付部110は、例えば、対象検出部120、決定部130、異常検出部140を介して、異常実測情報を分類部150に送出する。分類部150は、異常実測情報を受け取り、受け取った異常実測情報をデータ蓄積部160に格納する。データ受付部110は、受け付けた異常実測情報を、直接、データ蓄積部160に格納してもよい。データ受付部110は、受け付けた異常実測情報を、対象信頼度算出部230に送出してもよい。なお、図8では、図の簡単化のために、データ受付部110とデータ蓄積部160とをつなぐ線、及び、データ受付部110と対象信頼度算出部230とをつなぐ線は省略されている。
 <対象信頼度算出部230>
 対象信頼度算出部230は、異常実測情報をデータ蓄積部160から読み出す。対象信頼度算出部230は、異常実測データを、データ受付部110から受け取ってもよい。
 対象信頼度算出部230は、異常実測情報において異常が存在する継ぎ目の対象信頼度を、第2の実施形態の第5の変形例の対象信頼度算出部230が対象信頼度を算出するのと同様に算出する。対象信頼度算出部230は、異常実測情報において、異常が存在しない継ぎ目の対象信頼度を、ゼロに設定する。
 <第2の実施形態の第7の変形例>
 図10は、本開示の第2の実施形態の第7の変形例に係るデータ収集装置101Eの構成の例を表すブロック図である。図10に示す例では、データ収集装置101Eは、第2の実施形態に係るデータ収集装置101の全ての構成要素に加えて、環境情報受付部210と、属性受付部220と、分類信頼度算出部240とを含む。なお、データ収集装置101Eは、環境情報受付部210、及び、属性受付部220の一方を含んでいなくてもよい。また、本変形例を、第5、及び、第6の変形例に適用することもできる。
 <データ受付部110>
 本変形例のデータ受付部110は、第5の変形例のデータ受付部110と同じ機能を備え、第5の変形例のデータ受付部110の動作と同じ動作を行う。すなわち、データ受付部110は、音響データに加えて、対象データ点とレールの継ぎ目とを関連付けるデータを受け付ける。対象データ点とレールの継ぎ目とを関連付けるデータは、例えば、観測の際に車両が継ぎ目を通過した時刻を特定するデータである。観測の際に車両が継ぎ目を通過した時刻を特定するデータは、例えば、継ぎ目識別子とその継ぎ目識別子が示す継ぎ目を車両が通過した時刻との組み合わせであってもよい。観測の際に車両が継ぎ目を通過した時刻を特定するデータは、観測の際の、車両の位置と、車両がその位置に存在した時刻と、の組み合わせを複数含むデータであってもよい。この場合、例えばデータ受付部110が、車両の位置と車両がその位置に存在した時刻と、の複数の組み合わせから、車両が線路において隣接する2つの位置の間を一定の速度で走行したという仮定の下で、レールの継ぎ目の位置を通過した時刻を算出してもよい。
 データ受付部110は、第6の変形例のデータ受付部110と同様に、さらに、レールの継ぎ目ごとに、例えば目視によって確認された、異常が存在するか否かを表す情報(すなわち、異常実測情報)を受け取る。データ受付部110は、例えば、対象検出部120、決定部130、異常検出部140を介して、異常実測情報を分類部150に送出する。分類部150は、異常実測情報を受け取り、受け取った異常実測情報をデータ蓄積部160に格納する。データ受付部110は、受け付けた異常実測情報を、直接、データ蓄積部160に格納してもよい。データ受付部110は、受け付けた異常実測情報を、分類信頼度算出部240に送出してもよい。なお、図10では、図の簡単化のために、データ受付部110とデータ蓄積部160とをつなぐ線、及び、データ受付部110と分類信頼度算出部240とをつなぐ線は省略されている。
 <異常検出部140>
 本変形例の異常検出部140は、第5の変形例の異常検出部140と同じ機能を備え、第5の変形例の異常検出部140の動作と同じ動作を行う。
 <データ蓄積部160>
 本変形例のデータ蓄積部160は、第5の変形例のデータ蓄積部160と同じである。データ蓄積部160は、異常が検出された分析範囲の情報(すなわち、異常データ)と、対象データ点ごとの、レールの継ぎ目を特定する情報及び分析範囲において異常が検出されたか否かを表す情報の組み合わせと、を記憶する。上述のように、分析範囲において異常が検出されたか否かを表す情報の組み合わせは、分析範囲における異常の検出の結果、及び、異常の検出の結果とも表記される。また、本変形例では、同一の線路に対する複数回の観測によって得られた、複数セットの音響データが、データ収集装置101Dに入力される。その結果、データ蓄積部160は、複数セットの音響データから得られた、異常が検出された分析範囲の情報と、レールの継ぎ目ごとの、異常が検出されたか否かを表す情報とを記憶する。そして、データ蓄積部160には、複数セットの音響データの各々について、同一のレールの継ぎ目の分析範囲において異常が検出されたか否かを表す情報が格納されている。そして、データ蓄積部160には、分析範囲において異常が検出された場合、異常が検出された分析範囲の情報が格納されている。
 <環境情報受付部210>
 本変形例の環境情報受付部210は、第1の変形例の環境情報受付部210と同じである。言い換えると、本変形例の環境情報受付部210は、第1の変形例の環境情報受付部210の機能と同じ機能を備え、第1の変形例の環境情報受付部210の動作と同じ動作を行う。
 <属性受付部220>
 本変形例の属性受付部220は、第2の変形例の属性受付部220と同じである。言い換えると、本変形例の属性受付部220は、第2の変形例の属性受付部220の機能と同じ機能を備え、第1の変形例の属性受付部220の動作と同じ動作を行う。
 <分類部150>
 データ収集装置101Fが、環境情報受付部210を含む場合、分類部150は、第1の変形例の分類部150の機能と同じ機能を備え、第1の変形例の分類部150の動作と同じ動作を行うように構成される。データ収集装置101Fが、属性受付部220を含む場合、分類部150は、第2の変形例の分類部150の機能と同じ機能を備え、第2の変形例の分類部150の動作と同じ動作を行うように構成される。
 本変形例の分類は、環境情報及び属性情報の少なくともいずれかに基づく分類である。なお、データ収集装置101Fが、環境情報受付部210を含まない場合、本変形例の分類は、属性情報に基づく分類であってよい。データ収集装置101Fが、属性受付部220を含まない場合、本変形例の分類は、環境情報に基づく分類であってよい。
 本変形例では、分類部150は、検出された対象データ点の各々を、いずれかの分類に分類する。分類部150は、対象データ点ごとの、対象データ点が分類された分類を表す情報(以下、分類結果と表記)を、データ蓄積部160に格納する。
 <データ蓄積部160>
 本変形例のデータ蓄積部160は、第5の変形例のデータ蓄積部160と同様に機能する。本変形例のデータ蓄積部160は、さらに、分類結果を記憶する。
 <分類信頼度算出部240>
 分類信頼度算出部240は、データ蓄積部160に格納されている、異常実測情報を読み出す。分類信頼度算出部240は、データ受付部110から異常実測情報を受け取ってもよい。
 分類信頼度算出部240は、データ蓄積部160に格納されている、対象データ点ごとの、レールの継ぎ目を特定する情報と分析範囲において異常が検出されたか否かを表す情報とを読み出す。分類信頼度算出部240は、さらに、データ蓄積部160から、分類結果を読み出す。
 分類信頼度算出部240は、レールの継ぎ目を特定する情報と分析範囲において異常が検出されたか否かを表す情報との組み合わせから、異常実測情報において異常の存在する継ぎ目ごとに、分析範囲において異常が検出された割合を算出する。そして、分類信頼度算出部240は、異常実測情報において異常の存在する継ぎ目が分類された分類ごとに、異常が検出された割合に基づく分類信頼度を算出する。分類信頼度は、例えば、継ぎ目に異常が発生している場合に、分類に応じた状況において、異常が検出される可能性の高さの程度を表す値である。分類信頼度算出部240は、例えば、異常が発生している継ぎ目において観測された分析範囲から異常が検出される可能性が高いほど、高い分類信頼度を設定してもよい。分類信頼度算出部240は、分類ごとの異常が検出された割合を分類信頼度としてもよい。分類信頼度算出部240は、異常が検出された割合と分類信頼度との関係を表す式に従って、分類信頼度を算出してもよい。
 分類信頼度算出部240は、データ蓄積部160に格納されている異常データに、その異常データが観測された際の環境情報及び属性の少なくともいずれかに基づく分類に対して算出された分類信頼度を付与する。言い換えると、分類信頼度算出部240は、分類ごとの分類信頼度をデータ蓄積部160に格納する。そして、分類信頼度算出部240は、データ蓄積部160に格納されている異常データに、その異常データが観測された際の環境情報及び属性の少なくともいずれかに基づく分類に対して算出された対象信頼度を関連付ける。
 分類信頼度算出部240は、分類ごとの分類信頼度を、出力部170に送出してもよい。
 <出力部170>
 出力部170は、分類信頼度算出部240から、分類ごとの対象信頼度を受け取ってもよい。出力部170は、分類信頼度算出部240からから受け取った、分類ごとの対象信頼度を出力してもよい。
 出力部170は、データ蓄積部160から、分類信頼度が付与された異常データを読み出し、読み出した異常データを出力してもよい。
 <動作>
 次に、本開示の第7の実施形態に係るデータ収集装置101Eの動作について、図面を使用して詳細に説明する。
 図11は、本開示の第7の実施形態に係るデータ収集装置101Eの動作の例を表すフローチャートである。図11に示す動作の開始の時点において、データ蓄積部160に分類情報が格納されている。また、複数セットの音響データから検出された対象データ点に基づく分析範囲における、異常の検出の結果が、データ蓄積部160に格納されている。さらに、異常実測情報が、データ蓄積部160に格納されている。
 図11に示す例では、分類信頼度算出部240は、データ蓄積部160から、異常の検出の結果と、分類情報と、異常実測情報とを読み出す(ステップS401)。ステップS401の動作が終わった時点において、分類は選択されていない。
 未選択の分類が存在する場合(ステップS402においてYES)、分類信頼度算出部240は、未選択の分類から、1つの分類を選択する(ステップS403)。分類信頼度算出部240は、選択された分類に分類された異常データが検出された対象(すなわち、レールの継ぎ目)の分析範囲における異常の検出の結果を抽出する(ステップS404)。分類信頼度算出部240は、選択された分類に分類された異常データが検出された対象(すなわち、レールの継ぎ目)の分析範囲において異常が検出された割合を算出する(ステップS405)。分類信頼度算出部240は、分類ごとに、算出した割合に基づいて、分類信頼度を算出する(ステップS406)。データ収集装置101Eの動作は、ステップS406の後、ステップS402に戻る。
 未選択の分類が存在しない場合(ステップS402においてNO)、出力部170は、各分類の分類信頼度を出力する(ステップS407)。ステップS407において、出力部170は、分類信頼度が付与された、異常データを出力してもよい。
 <第2の実施形態の第8の変形例>
 図12は、本開示の第2の実施形態の第8の変形例に係るデータ収集装置101Fの構成の例を表すブロック図である。図12に示す例では、本変形例のデータ収集装置101Fは、第7の変形例に係るデータ収集装置101Fの構成要素の全てに加えて、対象信頼度算出部230を含む。本変形例のデータ収集装置101Fは、第7の変形例のデータ収集装置101Eの機能に加えて、第5又は第6の変形例のデータ収集装置101Dの機能と同じ機能を備える。本変形例のデータ収集装置101Fは、第7の変形例のデータ収集装置101Eの動作に加えて、第5又は第6の変形例のデータ収集装置101Dの動作と同じ動作を行う。
 <他の実施形態>
 本開示の実施形態に係るデータ収集装置の各々は、メモリにロードされたプログラムを実行するプロセッサを含むコンピュータによって実現できる。本開示の実施形態に係るデータ収集装置の各々は、専用のハードウェアによって実現することもできる。本開示の実施形態に係るデータ収集装置の各々は、上述のコンピュータと専用のハードウェアとの組み合わせによっても実現できる。
 図13は、本開示の実施形態に係るデータ収集装置の各々を実現することができる、コンピュータ1000のハードウェア構成の一例を表す図である。図13に示す例では、コンピュータ1000は、プロセッサ1001と、メモリ1002と、記憶装置1003と、I/O(Input/Output)インタフェース1004とを含む。また、コンピュータ1000は、記憶媒体1005にアクセスすることができる。メモリ1002と記憶装置1003は、例えば、RAM(Random Access Memory)、ハードディスクなどの記憶装置である。記憶媒体1005は、例えば、RAM、ハードディスクなどの記憶装置、ROM(Read Only Memory)、可搬記憶媒体である。記憶装置1003が記憶媒体1005であってもよい。プロセッサ1001は、メモリ1002と、記憶装置1003に対して、データやプログラムの読み出しと書き込みを行うことができる。プロセッサ1001は、I/Oインタフェース1004を介して、例えば、サーバなどの他の装置にアクセスすることができる。プロセッサ1001は、記憶媒体1005にアクセスすることができる。記憶媒体1005には、コンピュータ1000を、本開示の実施形態に係るデータ収集装置として動作させるプログラムが格納されている。
 プロセッサ1001は、記憶媒体1005に格納されている、コンピュータ1000を、本開示の実施形態に係るデータ収集装置として動作させるプログラムを、メモリ1002にロードする。そして、プロセッサ1001が、メモリ1002にロードされたプログラムを実行することにより、コンピュータ1000は、本開示の実施形態に係るデータ収集装置として動作する。
 データ受付部110、対象検出部120、決定部130、異常検出部140、分類部150、出力部170は、例えば、メモリ1002にロードされたプログラムを実行するプロセッサ1001により実現することができる。環境情報受付部210、属性受付部220、対象信頼度算出部230、分類信頼度算出部240は、例えば、メモリ1002にロードされたプログラムを実行するプロセッサ1001により実現することができる。データ蓄積部160は、コンピュータ1000が含むメモリ1002やハードディスク装置等の記憶装置1003により実現することができる。データ受付部110、対象検出部120、決定部130、異常検出部140、分類部150、データ蓄積部160、出力部170の一部又は全部を、各部の機能を実現する専用の回路によって実現することもできる。環境情報受付部210、属性受付部220、対象信頼度算出部230、分類信頼度算出部240の一部又は全部を、各部の機能を実現する専用の回路によって実現することもできる。
 また、上記の実施形態の一部又は全部は、以下の付記のようにも記載されうるが、以下には限られない。
 (付記1)
 対象の観測によって得られた音響データにおいて、前記対象が観測されたデータ点である対象データ点を検出する対象検出手段と、
 前記対象データ点に基づいて、前記音響データにおける分析範囲を決定する決定手段と、
 前記分析範囲において、異常を検出する異常検出手段と、
 前記異常が検出された前記分析範囲の情報を出力する出力手段と、
 を備えるデータ収集装置。
 (付記2)
 前記決定手段は、前記分析範囲よりも短く、前記対象データ点を含む除外範囲を、前記分析範囲から除外する
 付記1に記載のデータ収集装置。
 (付記3)
 前記出力手段は、前記異常が検出された場合、前記分析範囲の情報を、異常データベースに格納する
 付記1又は2に記載のデータ収集装置。
 (付記4)
 検出された前記異常の種類に基づいて前記分析範囲の情報を分類する分類手段
 をさらに備える付記3に記載のデータ収集装置。
 (付記5)
 前記対象の観測の環境情報を受け付ける環境情報受付手段
 をさらに備え、
 前記分類手段は、前記環境情報に基づいて前記分析範囲の情報を分類する
 付記4に記載のデータ収集装置。
 (付記6)
 前記対象の属性を受け付ける属性受付手段
 をさらに備え、
 前記分類手段は、前記属性に基づいて前記分析範囲の情報を分類する
 付記4又は5に記載のデータ収集装置。
 (付記7)
 前記異常が検出された前記対象において異常が検出された割合に基づいて、前記分析範囲の情報が分類される分類ごとに分類信頼度を算出する分類信頼度算出手段
 をさらに備える付記4乃至6のいずれか1項に記載のデータ収集装置。
 (付記8)
 前記異常が検出された前記対象における複数の測定において、前記異常が検出された割合に基づいて、前記対象の前記異常の情報の対象信頼度を算出する対象信頼度算出手段
 をさらに備える付記1乃至7のいずれか1項に記載のデータ収集装置。
 (付記9)
 前記異常検出手段は、検出された前記異常の種類に基づいて、前記対象に生じた異常の緊急度を判定する
 付記1乃至8のいずれか1項に記載のデータ収集装置。
 (付記10)
 前記対象は、レールの継ぎ目である
 付記1乃至9のいずれか1項に記載のデータ収集装置。
 (付記11)
 対象の観測によって得られた音響データにおいて、前記対象が観測されたデータ点である対象データ点を検出し、
 前記対象データ点に基づいて、前記音響データにおける分析範囲を決定し、
 前記分析範囲において、異常を検出し、
 前記異常が検出された前記分析範囲の情報を出力する、
 データ収集方法。
 (付記12)
 前記分析範囲よりも短く、前記対象データ点を含む除外範囲を、前記分析範囲から除外する
 付記11に記載のデータ収集方法。
 (付記13)
 前記異常が検出された場合、前記分析範囲の情報を、異常データベースに格納する
 付記11又は12に記載のデータ収集方法。
 (付記14)
 検出された前記異常の種類に基づいて前記分析範囲の情報を分類する
 付記13に記載のデータ収集方法。
 (付記15)
 前記対象の観測の環境情報を受け付け、
 前記環境情報に基づいて前記分析範囲の情報を分類する
 付記14に記載のデータ収集方法。
 (付記16)
 前記対象の属性を受け付け、
 前記属性に基づいて前記分析範囲の情報を分類する
 付記14又は15に記載のデータ収集方法。
 (付記17)
 前記異常が検出された前記対象において異常が検出された割合に基づいて、前記分析範囲の情報が分類される分類ごとに分類信頼度を算出する
 付記14乃至16のいずれか1項に記載のデータ収集方法。
 (付記18)
 前記異常が検出された前記対象における複数の測定において、前記異常が検出された割合に基づいて、前記対象の前記異常の情報の対象信頼度を算出する
 付記11乃至17のいずれか1項に記載のデータ収集方法。
 (付記19)
 検出された前記異常の種類に基づいて、前記対象に生じた異常の緊急度を判定する
 付記11乃至18のいずれか1項に記載のデータ収集方法。
 (付記20)
 前記対象は、レールの継ぎ目である
 付記11乃至19のいずれか1項に記載のデータ収集方法。
 (付記21)
 対象の観測によって得られた音響データにおいて、前記対象が観測されたデータ点である対象データ点を検出する対象検出処理と、
 前記対象データ点に基づいて、前記音響データにおける分析範囲を決定する決定処理と、
 前記分析範囲において、異常を検出する異常検出処理と、
 前記異常が検出された前記分析範囲の情報を出力する出力処理と、
 をコンピュータに実行させるプログラムを記憶する記憶媒体。
 (付記22)
 前記決定処理は、前記分析範囲よりも短く、前記対象データ点を含む除外範囲を、前記分析範囲から除外する
 付記21に記載の記憶媒体。
 (付記23)
 前記出力処理は、前記異常が検出された場合、前記分析範囲の情報を、異常データベースに格納する
 付記21又は22に記載の記憶媒体。
 (付記24)
 前記プログラムは、
 検出された前記異常の種類に基づいて前記分析範囲の情報を分類する分類処理
 をさらにコンピュータに実行させる付記23に記載の記憶媒体。
 (付記25)
 前記プログラムは、
 前記対象の観測の環境情報を受け付ける環境情報受付処理
 をさらにコンピュータに実行させ、
 前記分類処理は、前記環境情報に基づいて前記分析範囲の情報を分類する
 付記24に記載の記憶媒体。
 (付記26)
 前記プログラムは、
 前記対象の属性を受け付ける属性受付処理
 をさらにコンピュータに実行させ、
 前記分類処理は、前記属性に基づいて前記分析範囲の情報を分類する
 付記24又は25に記載の記憶媒体。
 (付記27)
 前記プログラムは、
 前記異常が検出された前記対象において異常が検出された割合に基づいて、前記分析範囲の情報が分類される分類ごとに分類信頼度を算出する分類信頼度算出処理
 をさらにコンピュータに実行させる付記24乃至26のいずれか1項に記載の記憶媒体。
 (付記28)
 前記プログラムは、
 前記異常が検出された前記対象における複数の測定において、前記異常が検出された割合に基づいて、前記対象の前記異常の情報の対象信頼度を算出する対象信頼度算出処理
 をさらにコンピュータに実行させる付記21乃至27のいずれか1項に記載の記憶媒体。
 (付記29)
 前記異常検出処理は、検出された前記異常の種類に基づいて、前記対象に生じた異常の緊急度を判定する
 付記21乃至28のいずれか1項に記載の記憶媒体。
 (付記30)
 前記対象は、レールの継ぎ目である
 付記21乃至29のいずれか1項に記載の記憶媒体。
 以上、実施形態を参照して本発明を説明したが、本発明は上記実施形態に限定されるものではない。本発明の構成や詳細には、本発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
 100  データ収集装置
 101  データ収集装置
 101A  データ収集装置
 101B  データ収集装置
 101C  データ収集装置
 101D  データ収集装置
 101E  データ収集装置
 101F  データ収集装置
 110  データ受付部
 120  対象検出部
 130  決定部
 140  異常検出部
 150  分類部
 160  データ蓄積部
 170  出力部
 210  環境情報受付部
 220  属性受付部
 230  対象信頼度算出部
 240  分類信頼度算出部
 1000  コンピュータ
 1001  プロセッサ
 1002  メモリ
 1003  記憶装置
 1004  I/Oインタフェース
 1005  記憶媒体

Claims (30)

  1.  対象の観測によって得られた音響データにおいて、前記対象が観測されたデータ点である対象データ点を検出する対象検出手段と、
     前記対象データ点に基づいて、前記音響データにおける分析範囲を決定する決定手段と、
     前記分析範囲において、異常を検出する異常検出手段と、
     前記異常が検出された前記分析範囲の情報を出力する出力手段と、
     を備えるデータ収集装置。
  2.  前記決定手段は、前記分析範囲よりも短く、前記対象データ点を含む除外範囲を、前記分析範囲から除外する
     請求項1に記載のデータ収集装置。
  3.  前記出力手段は、前記異常が検出された場合、前記分析範囲の情報を、異常データベースに格納する
     請求項1又は2に記載のデータ収集装置。
  4.  検出された前記異常の種類に基づいて前記分析範囲の情報を分類する分類手段
     をさらに備える請求項3に記載のデータ収集装置。
  5.  前記対象の観測の環境情報を受け付ける環境情報受付手段
     をさらに備え、
     前記分類手段は、前記環境情報に基づいて前記分析範囲の情報を分類する
     請求項4に記載のデータ収集装置。
  6.  前記対象の属性を受け付ける属性受付手段
     をさらに備え、
     前記分類手段は、前記属性に基づいて前記分析範囲の情報を分類する
     請求項4又は5に記載のデータ収集装置。
  7.  前記異常が検出された前記対象において異常が検出された割合に基づいて、前記分析範囲の情報が分類される分類ごとに分類信頼度を算出する分類信頼度算出手段
     をさらに備える請求項4乃至6のいずれか1項に記載のデータ収集装置。
  8.  前記異常が検出された前記対象における複数の測定において、前記異常が検出された割合に基づいて、前記対象の前記異常の情報の対象信頼度を算出する対象信頼度算出手段
     をさらに備える請求項1乃至7のいずれか1項に記載のデータ収集装置。
  9.  前記異常検出手段は、検出された前記異常の種類に基づいて、前記対象に生じた異常の緊急度を判定する
     請求項1乃至8のいずれか1項に記載のデータ収集装置。
  10.  前記対象は、レールの継ぎ目である
     請求項1乃至9のいずれか1項に記載のデータ収集装置。
  11.  対象の観測によって得られた音響データにおいて、前記対象が観測されたデータ点である対象データ点を検出し、
     前記対象データ点に基づいて、前記音響データにおける分析範囲を決定し、
     前記分析範囲において、異常を検出し、
     前記異常が検出された前記分析範囲の情報を出力する、
     データ収集方法。
  12.  前記分析範囲よりも短く、前記対象データ点を含む除外範囲を、前記分析範囲から除外する
     請求項11に記載のデータ収集方法。
  13.  前記異常が検出された場合、前記分析範囲の情報を、異常データベースに格納する
     請求項11又は12に記載のデータ収集方法。
  14.  検出された前記異常の種類に基づいて前記分析範囲の情報を分類する
     請求項13に記載のデータ収集方法。
  15.  前記対象の観測の環境情報を受け付け、
     前記環境情報に基づいて前記分析範囲の情報を分類する
     請求項14に記載のデータ収集方法。
  16.  前記対象の属性を受け付け、
     前記属性に基づいて前記分析範囲の情報を分類する
     請求項14又は15に記載のデータ収集方法。
  17.  前記異常が検出された前記対象において異常が検出された割合に基づいて、前記分析範囲の情報が分類される分類ごとに分類信頼度を算出する
     請求項14乃至16のいずれか1項に記載のデータ収集方法。
  18.  前記異常が検出された前記対象における複数の測定において、前記異常が検出された割合に基づいて、前記対象の前記異常の情報の対象信頼度を算出する
     請求項11乃至17のいずれか1項に記載のデータ収集方法。
  19.  検出された前記異常の種類に基づいて、前記対象に生じた異常の緊急度を判定する
     請求項11乃至18のいずれか1項に記載のデータ収集方法。
  20.  前記対象は、レールの継ぎ目である
     請求項11乃至19のいずれか1項に記載のデータ収集方法。
  21.  対象の観測によって得られた音響データにおいて、前記対象が観測されたデータ点である対象データ点を検出する対象検出処理と、
     前記対象データ点に基づいて、前記音響データにおける分析範囲を決定する決定処理と、
     前記分析範囲において、異常を検出する異常検出処理と、
     前記異常が検出された前記分析範囲の情報を出力する出力処理と、
     をコンピュータに実行させるプログラムを記憶する記憶媒体。
  22.  前記決定処理は、前記分析範囲よりも短く、前記対象データ点を含む除外範囲を、前記分析範囲から除外する
     請求項21に記載の記憶媒体。
  23.  前記出力処理は、前記異常が検出された場合、前記分析範囲の情報を、異常データベースに格納する
     請求項21又は22に記載の記憶媒体。
  24.  前記プログラムは、
     検出された前記異常の種類に基づいて前記分析範囲の情報を分類する分類処理
     をさらにコンピュータに実行させる請求項23に記載の記憶媒体。
  25.  前記プログラムは、
     前記対象の観測の環境情報を受け付ける環境情報受付処理
     をさらにコンピュータに実行させ、
     前記分類処理は、前記環境情報に基づいて前記分析範囲の情報を分類する
     請求項24に記載の記憶媒体。
  26.  前記プログラムは、
     前記対象の属性を受け付ける属性受付処理
     をさらにコンピュータに実行させ、
     前記分類処理は、前記属性に基づいて前記分析範囲の情報を分類する
     請求項24又は25に記載の記憶媒体。
  27.  前記プログラムは、
     前記異常が検出された前記対象において異常が検出された割合に基づいて、前記分析範囲の情報が分類される分類ごとに分類信頼度を算出する分類信頼度算出処理
     をさらにコンピュータに実行させる請求項24乃至26のいずれか1項に記載の記憶媒体。
  28.  前記プログラムは、
     前記異常が検出された前記対象における複数の測定において、前記異常が検出された割合に基づいて、前記対象の前記異常の情報の対象信頼度を算出する対象信頼度算出処理
     をさらにコンピュータに実行させる請求項21乃至27のいずれか1項に記載の記憶媒体。
  29.  前記異常検出処理は、検出された前記異常の種類に基づいて、前記対象に生じた異常の緊急度を判定する
     請求項21乃至28のいずれか1項に記載の記憶媒体。
  30.  前記対象は、レールの継ぎ目である
     請求項21乃至29のいずれか1項に記載の記憶媒体。
PCT/JP2021/017460 2021-05-07 2021-05-07 異常検出装置、異常検出方法及び記憶媒体 WO2022234637A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US18/288,070 US20240199095A1 (en) 2021-05-07 2021-05-07 Abnormality detection device, abnormality detection method, and storage medium
JP2023518570A JPWO2022234637A5 (ja) 2021-05-07 データ収集装置、データ収集方法及びプログラム
PCT/JP2021/017460 WO2022234637A1 (ja) 2021-05-07 2021-05-07 異常検出装置、異常検出方法及び記憶媒体

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/017460 WO2022234637A1 (ja) 2021-05-07 2021-05-07 異常検出装置、異常検出方法及び記憶媒体

Publications (1)

Publication Number Publication Date
WO2022234637A1 true WO2022234637A1 (ja) 2022-11-10

Family

ID=83932678

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/017460 WO2022234637A1 (ja) 2021-05-07 2021-05-07 異常検出装置、異常検出方法及び記憶媒体

Country Status (2)

Country Link
US (1) US20240199095A1 (ja)
WO (1) WO2022234637A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002340869A (ja) * 2001-05-11 2002-11-27 Nippon Steel Corp 打音検査物の非破壊検査方法、非破壊検査装置及び品質管理方法
JP2007145270A (ja) * 2005-11-30 2007-06-14 Univ Nihon 軌道状態解析方法及び軌道状態解析装置並びに軌道状態解析プログラム
JP2009025015A (ja) * 2007-07-17 2009-02-05 Omron Corp 知識作成支援装置及びプログラム
WO2018101430A1 (ja) * 2016-11-30 2018-06-07 パイオニア株式会社 サーバ装置、解析方法、及びプログラム
JP2020172861A (ja) * 2019-04-08 2020-10-22 富士通株式会社 異常判別方法、異常判別装置および異常判別プログラム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002340869A (ja) * 2001-05-11 2002-11-27 Nippon Steel Corp 打音検査物の非破壊検査方法、非破壊検査装置及び品質管理方法
JP2007145270A (ja) * 2005-11-30 2007-06-14 Univ Nihon 軌道状態解析方法及び軌道状態解析装置並びに軌道状態解析プログラム
JP2009025015A (ja) * 2007-07-17 2009-02-05 Omron Corp 知識作成支援装置及びプログラム
WO2018101430A1 (ja) * 2016-11-30 2018-06-07 パイオニア株式会社 サーバ装置、解析方法、及びプログラム
JP2020172861A (ja) * 2019-04-08 2020-10-22 富士通株式会社 異常判別方法、異常判別装置および異常判別プログラム

Also Published As

Publication number Publication date
JPWO2022234637A1 (ja) 2022-11-10
US20240199095A1 (en) 2024-06-20

Similar Documents

Publication Publication Date Title
US10203306B2 (en) Resonant signal analysis-based inspection
US10040465B2 (en) Abnormal vehicle dynamics detection
Alemi et al. Condition monitoring approaches for the detection of railway wheel defects
US8326582B2 (en) Acoustic-based rotating component analysis
US9255913B2 (en) System and method for acoustically identifying damaged sections of a route
US9310340B2 (en) Resonant signal analysis-based inspection of rail components
EP3219574B1 (en) Method and system for determining a vertical profile of a rail surface
JP7287873B2 (ja) 異常検知システム、異常検知装置、異常検知方法及びプログラム
Ramos-Romero et al. Identification and mapping of asphalt surface deterioration by tyre-pavement interaction noise measurement
WO2022234637A1 (ja) 異常検出装置、異常検出方法及び記憶媒体
WO2019081772A1 (en) CONTROL OF RAILWAY TRACK
Alten et al. Detecting and classifying rail corrugation based on axle bearing vibration
Yang et al. Missing rail fastener detection based on laser Doppler vibrometer measurements
Jensen et al. Monitoring rail condition based on sound and vibration sensors installed on an operational train
JP7425430B2 (ja) レールの普通継目の時間位置を特定するための方法及びプログラム、並びに情報処理システム
KR102264039B1 (ko) 차량 탑재형 열차 지진 경보 시스템 및 방법
Sun et al. Looseness detection of rail fasteners using MEMS sensor and power spectrum entropy
Davis et al. Addressing future rail network performance challenges through effective structural health monitoring
El Guerouani et al. Instrumentation and automatic evaluation of event indicators alongside railway lines: a first attempt to comply with article 90 of the French mobility legislation on transport
KR20240146984A (ko) 음향 데이터를 이용한 철도 차량 안전 진단 방법 및 시스템
JP2023517593A (ja) イベント検出装置、方法及びプログラム
Talebi Rostami et al. Investigation of Early Detection of Wheel Flat Defect Based on Machine Learning Techniques
Bolshakova et al. Rail Defects Detection Algorithm Based on Continuous Wavelet Transform and Frequency Domain Analysis

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21939830

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18288070

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2023518570

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21939830

Country of ref document: EP

Kind code of ref document: A1