WO2022233796A1 - Installation de detection d'au moins un parametre caracteristique d'un milieu et procede de detection d'au moins un tel parametre caracteristique - Google Patents

Installation de detection d'au moins un parametre caracteristique d'un milieu et procede de detection d'au moins un tel parametre caracteristique Download PDF

Info

Publication number
WO2022233796A1
WO2022233796A1 PCT/EP2022/061727 EP2022061727W WO2022233796A1 WO 2022233796 A1 WO2022233796 A1 WO 2022233796A1 EP 2022061727 W EP2022061727 W EP 2022061727W WO 2022233796 A1 WO2022233796 A1 WO 2022233796A1
Authority
WO
WIPO (PCT)
Prior art keywords
medium
different
visible
collection
collecting
Prior art date
Application number
PCT/EP2022/061727
Other languages
English (en)
Inventor
Patrick Perre
Ninel KOKANYAN
Cédric GUERIN
Mahamadou MOUNKAILA
Emilie MICHIELS
Victor POZZOBON
Original Assignee
Centralesupelec
Universite De Lorraine
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centralesupelec, Universite De Lorraine filed Critical Centralesupelec
Priority to BR112023022966A priority Critical patent/BR112023022966A2/pt
Priority to EP22727771.2A priority patent/EP4334709A1/fr
Priority to CA3215706A priority patent/CA3215706A1/fr
Publication of WO2022233796A1 publication Critical patent/WO2022233796A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/85Investigating moving fluids or granular solids
    • G01N21/8507Probe photometers, i.e. with optical measuring part dipped into fluid sample
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/314Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry with comparison of measurements at specific and non-specific wavelengths
    • G01N2021/3155Measuring in two spectral ranges, e.g. UV and visible
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/85Investigating moving fluids or granular solids
    • G01N21/8507Probe photometers, i.e. with optical measuring part dipped into fluid sample
    • G01N2021/8528Immerged light conductor

Definitions

  • the invention relates to an installation for detecting at least one characteristic parameter of a medium.
  • the invention also relates to a method for detecting at least one such characteristic parameter of such a medium, this method being implemented by said installation.
  • the present invention relates to the field of the manufacture of devices making it possible to detect, or even to quantify, a characteristic parameter of a medium, such as a substance or a state of such a substance, this inside such a medium, in particular inside a reaction medium inside which a biological, chemical or biochemical process occurs.
  • a characteristic parameter of a medium such as a substance or a state of such a substance
  • Chemometric installations are already known, such as Raman spectrometers, which make it possible to detect at least one molecule, or even to measure a content of such a molecule, this inside a medium, more particularly inside a reaction medium.
  • Such a Raman spectrometer has a first drawback related to the overall fluorescence of the Raman signal. This overall fluorescence depends on the nature of the compounds present in the medium and is superimposed on the Raman spectrum of the compounds of interest that one wishes to detect or quantify. As a result, the Raman spectrum of these compounds of interest is masked, which deteriorates the precision of the measurement and prevents identification and appropriate quantification of the compounds of interest.
  • Another drawback of such a Raman spectrometer consists in the fact that the presence of microorganisms generates Mie scattering which disturbs the signal and alters the measurement, in particular of the concentration. This drawback is amplified by the fact that, in a reaction medium, the concentration, the diameter and the geometry of the microorganisms change, which leads to a change in Mie scattering and, consequently, a change in the disturbance of the signal.
  • the present invention is intended to remedy the drawbacks of the installations of the state of the art.
  • the invention relates to an installation for detecting at least one characteristic parameter of a medium.
  • This installation includes:
  • - lighting means which are configured to illuminate the medium with polychromatic visible light
  • excitation means which are configured to excite the medium with monochromatic radiation in visible or infrared light
  • excitation means which are configured to excite the medium with monochromatic radiation in visible or infrared light
  • first collection and routing means which are configured to collect and route at least one first electromagnetic radiation emitted by the medium as well as second collection and routing means which are configured to collect and route to the at least one second electromagnetic radiation emitted by the medium;
  • At least one visible spectrometer which is connected to said first collecting and conveying means, and which is configured to obtain at least one visible spectrum of the medium from said at least one first electromagnetic radiation;
  • At least one Raman spectrometer which is connected to said second collection and routing means, and which is configured to obtain at least one Raman spectrum of the medium from said at least one second electromagnetic radiation;
  • the lighting means respectively the excitation means, comprise, on the one hand, at least one polychromatic visible light source configured to emit at least one polychromatic visible light, respectively at least one source of monochromatic radiation in visible or infrared light configured to emit at least one monochromatic radiation in visible or infrared light, and, on the other hand, means for illuminating, respectively means for exciting, the medium according to at least two paths different optics.
  • said first collecting and conveying means comprise means for collecting said at least one first electromagnetic radiation, respectively means for collecting said at least one second electromagnetic radiation tick, this according to at least two different optical paths.
  • these means for illuminating, exciting or collecting according to at least two different optical paths comprise means for illuminating, exciting or collecting, either according to at least two different incidences of lighting, excitation or collection , or with at least two different illumination, excitation or collection focuses.
  • the means of detection comprise, on the one hand, a database which contains a plurality of reference visible spectra and a plurality of reference Raman spectra and, on the other hand, means which are configured to simultaneously process said at least one visible spectrum of the medium and said at least one Raman spectrum of the medium as a function of the plurality of reference visible spectra and of the plurality of reference Raman spectra from the database, with a view to obtaining said at least one characteristic parameter of the medium.
  • the invention also relates to a method for detecting at least one characteristic parameter of a medium. This process is implemented by an installation which has the characteristics described above and comprises the steps:
  • the step of illuminating, respectively exciting, the medium with polychromatic visible light, respectively with monochromatic radiation in visible or infrared light comprises a step of illuminating, respectively excitation, of the medium according to at least two different optical paths.
  • the step of collecting and routing at least one first electromagnetic radiation, respectively at least one second electromagnetic radiation, emitted by the medium comprises a step collecting at least one first electromagnetic radiation, respectively at least one second electromagnetic radiation, along at least two different optical paths.
  • the invention relates to an installation for detecting at least one characteristic parameter of a medium.
  • This installation comprises, on the one hand, means for illuminating the medium with polychromatic visible light, on the other hand, means for exciting the medium with monochromatic radiation in visible or infrared light, on the other hand again , at least one visible spectrometer to obtain at least one visible spectrum from at least one first electromagnetic radiation emitted by the medium and collected, on the other hand also, at least one Raman spectrometer to obtain at least one Raman spectrum at from at least a second electromagnetic radiation emitted by the medium and collected and, on the other hand, also, means for detecting said at least one characteristic parameter of the medium, this from said at least one visible spectrum of the medium and from said at least one Raman spectrum of the medium.
  • This installation then advantageously makes it possible to obtain multispectral information which makes it possible to remedy the drawbacks encountered when only Raman spectroscopy is used.
  • this multispectral information makes it possible to access the attenuation of the signal due to Mie scattering linked to the presence of microorganisms and, thus, to correct the Raman signal of the Mie scattering, which makes it possible to make reliable measurements despite changes in the optical behavior of the population of microorganisms.
  • this multispectral information makes it possible to access a global indicator of the state of the microorganisms in a medium, which advantageously makes it possible to monitor a culture of these microorganisms in this medium.
  • the installation also comprises means for illuminating, exciting and/or collecting according to at least two different optical paths. These means advantageously make it possible to multiply the spectra collected and to obtain additional information on the characteristic parameter of the environment that is being sought.
  • FIG. 1 is a schematic view of an installation, which is in accordance with the invention, and which comprises a lighting and/or excitation probe comprising means for illuminating and/or exciting the medium according to at least two different lighting and/or excitation incidences in accordance with a first embodiment.
  • FIG 2 is a diagrammatic view, in section and in part, of a lighting and/or excitation probe, which the installation according to the invention comprises, and which comprises means for illuminating and /or excite the medium according to at least two different lighting and/or excitation incidences in accordance with a second embodiment.
  • FIG 3 is a view similar to Figure 2 and corresponds to a lighting and / or excitation probe, which includes the installation according to the invention, and which includes means for illuminating and / or excite the medium according to at least two different lighting and/or excitation incidences in accordance with a third embodiment.
  • FIG 4 is a diagrammatic view, in section and in part, of a lighting, excitation and collection probe, which includes an installation in accordance with the invention, and which is in accordance with a first embodiment.
  • FIG 5 is a schematic view, in section and in part, of a lighting, excitation and collection probe, which includes an installation according to the invention, and which is in accordance with a second embodiment.
  • the present invention relates to the field of the manufacture of devices making it possible to detect, or even to quantify, a characteristic parameter of a medium, such as a substance or a state of such a substance, this inside such a medium, in particular inside a reaction medium inside which a biological, chemical or biochemical process occurs.
  • a characteristic parameter of a medium such as a substance or a state of such a substance
  • the invention therefore relates to a detection installation 1 of at least one characteristic parameter of a medium M.
  • this detection installation 1 is, more particularly, configured to detect at least one parameter ca characteristic of a reaction medium M inside which a biological, chemical or biochemical process occurs.
  • This detection installation 1 then comprises a container 2 intended to contain said medium M.
  • This detection installation 1 also comprises lighting means 3 which are configured to illuminate the medium M with polychromatic visible light.
  • polychromatic visible light corresponds to the part of the electromagnetic spectrum which is visible to the human eye.
  • These lighting means 3 then comprise at least one polychromatic visible light source 30 which is configured to emit at least one polychromatic visible light.
  • a polychromatic visible light source may comprise at least one light-emitting diode, preferably with broad spectrum.
  • said installation of detection 1 comprises excitation means 4 which are configured to excite the medium M with monochromatic radiation in visible or infrared light.
  • These excitation means 4 comprise at least one source of monochromatic radiation in visible light or infrared 40 which is configured to emit at least one monochromatic radiation in visible light or infrared.
  • such a source of monochromatic radiation in visible or infrared light 40 is configured to emit at least one monochromatic radiation in infrared, the wavelength of which is preferably located in the near infrared. .
  • Such a wavelength advantageously makes it possible to limit the fluorescence of a Raman signal.
  • Such a source of monochromatic radiation in visible light or infrared 40 may comprise at least one laser, in particular at least one diode the ser.
  • the detection installation 1 also comprises first collection and routing means 5 which are configured to collect and route at least one first electromagnetic radiation emitted by the medium M.
  • These first collection and routing means routing 5 are, more particularly, configured to collect and route at least a first electromagnetic radiation corresponding to a polychromatic visible light emitted by the medium M, this under the effect of the illumination of this medium M by the means of lighting 3.
  • this detection installation 1 comprises second collection and routing means 6 which are configured to collect and route at least one second electromagnetic radiation emitted by the medium M.
  • These second collection and routing means 6 are, more particularly, configured to collect and route at least one second electromagnetic radiation corresponding to radiation (more particularly monochromatic radiation in visible or infrared light, in particular in the near infra red) emitted by the medium M, this under the effect of the excitation of this medium M by the excitation means 4.
  • Said detection installation 1 also comprises at least one visible spectrometer 7, which is connected to said first collecting and conveying means 5, and which is configured to obtain at least one visible spectrum from the medium M to from said at least one first electromagnetic radiation, more particularly collected and routed by said first collection and routing means 5.
  • said detection installation 1 comprises at least one Raman spectrometer 8, which is connected to said second collection and routing means 6, and which is configured to obtain at least one at least one Raman spectrum from said at least one second electromagnetic radiation, more particularly collected and routed by said second collection and routing means 6.
  • said detection installation 1 comprises means 9 for detecting said at least one characteristic parameter, this from said at least one visible spectrum of the medium M and from said at least one Raman spectrum of the medium M.
  • said detection installation 1 comprises lighting means 3 which are configured to illuminate the medium M with a polychromatic visible light.
  • These lighting means 3 can then also comprise means for illuminating 31 the medium M according to at least two different optical paths.
  • the means for illuminating 31 the medium M according to at least two different optical paths comprise means for illuminating 31 the medium M according to at least two different incidences d 'lighting.
  • such means for illuminating 31 the medium M according to at least two different lighting incidences comprise at least two conveying elements (310, 310'), on the one hand, which are configured to route said at least one polychromatic visible light (emitted by said at least one polychromatic visible light source 30) and, on the other hand, which are arranged to illuminate the medium M with said at least one polychromatic visible light this according to at least two different lighting incidences.
  • said at least two routing elements (310, 310') can adopt at least two different positions and/or at least two different orientations.
  • the means for illuminating 31 the medium M according to at least two different incidences of lighting comprise, on the one hand, at least one means of reflection 311 which is configured to reflect said at least one polychromatic visible light (emitted by said at least one polychromatic visible light source 30) in the direction of the medium M and, on the other hand, positioning means 312 which are configured to position said at least one reflection means 311 in at least two different positions.
  • at least one means of reflection 311 which is configured to reflect said at least one polychromatic visible light (emitted by said at least one polychromatic visible light source 30) in the direction of the medium M
  • positioning means 312 which are configured to position said at least one reflection means 311 in at least two different positions.
  • the means for illuminating 31 the medium M according to at least two different lighting incidences comprise positioning means 313 which are configured to position said at least one polychromatic visible light source 30, this in at least two positions different.
  • positioning means 313 which are configured to position said at least one polychromatic visible light source 30, this in at least two positions different.
  • Such positioning means (312; 313) advantageously make it possible to substantially increase the number of optical lighting paths.
  • the positioning means (312, 313) comprise, on the one hand, means for mounting in rotation around an axis of said at least one reflection means 311, respectively of said at least one source of polychromatic visible light 30, and, on the other hand, means for driving in rotation about said axis of said at least one reflection means 311, respectively of said at least one polychromatic visible light source 30.
  • Such rotational drive means can then be designed to ensure a rotation in a discrete manner (and, thus, provide lighting under a plurality of discrete incidences) or in a continuous manner (and, thus, ensure lighting under a plurality of continuous incidences).
  • the means for illuminating 31 the medium M according to at least two different optical paths comprise means for illuminating 31 the medium M with at least two different lighting focuses.
  • the means for illuminating 31 the medium M with at least two different lighting focuses can comprise at least two routing elements (310, 310'), on the one hand, which are configured to route said at least one polychromatic visible light (emitted by said at least one polychromatic visible light source 30), and, on the other hand, which are designed to illuminate the medium M with said at least one polychromatic visible light this with at least two different lighting focuses.
  • said detection installation 1 comprises excitation means 4 which are configured to excite the medium M with monochromatic radiation in visible or infrared light.
  • excitation means 4 can then also comprise means for exciting 41 the medium M according to at least two different optical paths.
  • the means for exciting 41 the medium M according to at least two different optical paths comprise means for exciting 41 the medium M according to at least two different incidences d 'excitement.
  • the means for exciting 41 the medium M according to at least two different incidences d 'excitement According to a first embodiment of this first type of embodiment illustrated in FIG.
  • such means for exciting 41 the medium M according to at least two different inci dences of excitation comprise at least two routing elements (410, 410'), on the one hand, which are configured to convey said at least one monochromatic radiation in visible or infrared light (emitted by said at least one source of monochromatic radiation in visible or infrared light 40), and, on the other hand, which are arranged to excite the medium M with said at least one monochromatic radiation in visible or infrared light, this according to at least two different incidences of excitation.
  • said at least two routing elements (410, 410') can adopt at least two different positions and/or at least two different orientations.
  • the means for exciting 41 according to at least two different incidences of excitation comprise, on the one hand, at least one reflection means 411 which is configured to reflect said at least one monochromatic radiation in visible or infrared light (emitted by said at least one source of monochromatic radiation in visible light or infrared 40) in the direction of the medium M and, on the other hand, means positioning 412 which are configured to position said at least one reflection means 411 in at least two different positions.
  • Such a positioning in at least two different positions then allows lighting of the medium M according to at least two different incidences of lighting.
  • the means for exciting 41 the medium M according to at least two different incidences of excitation comprise positioning means 413 which are configured to position said au at least one source of monochromatic radiation in visible or infrared light 40, this in at least two different positions.
  • positioning means 413 which are configured to position said au at least one source of monochromatic radiation in visible or infrared light 40, this in at least two different positions.
  • Such positioning means (412; 413) advantageously make it possible to substantially increase the number of optical excitation paths.
  • the positioning means (412, 413) comprise, on the one hand, means for mounting in rotation about an axis of said at least one reflection means 411, respectively of said at least one source of monochromatic radiation in visible or infrared light 40, and, on the other hand, means for driving in rotation around said axis of said at least one reflection means 411, respectively of said at least one source of monochromatic radiation in visible or infrared light 40.
  • Such rotation drive means can, here again, be designed to ensure rotation in a discrete manner (and, thus, provide lighting under a plurality of discrete incidences) or in a continuous manner (and, thus, ensure lighting under a plurality of continuous incidences).
  • the means for exciting 41 the medium M along at least two different optical paths comprise means for exciting 41 the medium M with at least two different excitation focalizations.
  • the means for exciting 41 the medium M with at least two different excitation focalizations can comprise at least two routing elements (410, 410') , on the one hand, which are configured to convey said at least one monochromatic radiation in visible or infrared light (emitted by said at least one monochromatic radiation source in visible or infrared light 40), and, on the other hand, which are designed to excite the medium M with said at least one monochromatic radiation in visible or infrared light, this with at least two different excitation focalizations.
  • routing elements 410, 410'
  • the aforementioned routing elements can each comprise or consist of an optical fiber.
  • said detection installation 1 comprises first means 5 for collecting and conveying at least one first electromagnetic radiation emitted by the medium M.
  • these first collection and routing means 5 can then comprise means for collecting 50 said at least one first electromagnetic radiation, this according to at least two different optical paths.
  • the means for collecting 50 said at least one first electromagnetic radiation are lon at least two different optical paths comprise means for collecting 50 said at least one first radiation electromagnetic according to at least two different incidences of collection.
  • the means for collecting 50 said at least one first electromagnetic radiation according to at least two different collection incidences comprise at least two collection and routing elements 51 which are arranged to collect said at least one at least a first electromagnetic radiation according to at least two different incidences of collection.
  • said at least two collecting and conveying elements 51 preferably adopt at least two different positions and/or at least two different orientations.
  • the means for collecting 50 said at least one first electromagnetic radiation according to at least two different collection incidences comprise, on the one hand, at least one reflection means which is configured to reflect said at least one first electromagnetic radiation emitted by the medium M and, on the other hand, positioning means which are configured to position said at least one reflection means in at least two different positions. Such positioning in at least two different positions then allows collection according to at least two different collection incidences.
  • the means for collecting said at least one first electromagnetic radiation according to at least two different collection incidences comprise positioning means which are configured to position at least one collection element and to routing, this in at least two different positions.
  • positioning means which are configured to position at least one collection element and to routing, this in at least two different positions.
  • positioning in at least two different positions then authorizes collection according to at least two different collection incidences.
  • Such positioning means advantageously make it possible to substantially increase the number of optical collection paths of said at least one first electromagnetic radiation.
  • the positioning means comprise, on the one hand, means for mounting in rotation about an axis of said at least one reflection means, respectively of said at least one collecting and conveying element, and, on the other hand, means for driving in rotation around said axis said at least one reflection means, respectively said at least one collecting and conveying element.
  • Such rotation drive means can, here again, be designed to ensure a rotation in a discrete manner (and, thus, to ensure collection under a plurality of discrete incidences) or in a continuous manner (and, thus, ensuring collection under a plurality of continuous incidences).
  • the means for collecting 50 said at least one first electromagnetic radiation along at least two different optical paths comprise means for collecting 50 said at least one first electromagnetic radiation with at least two different focalizations collection.
  • the means for collecting 50 said at least one first electromagnetic radiation with at least two different collection focalizations comprise at least two collection and routing elements 51 which are configured to collect said at least one at least a first electromagnetic radiation with at least two different collection focuses.
  • said detection installation 1 also comprises second means 6 for collecting and conveying at least a second electromagnetic radiation emitted by the medium M.
  • these second collection and routing means 6 can then comprise means for collecting 60 said at least one second electromagnetic radiation, this according to at least two different optical paths.
  • the means for collecting 60 said at least one second electromagnetic radiation along at least two different optical paths comprise means for collecting 60 said at least one second electromagnetic radiation according to at least two different incidences of collection.
  • the means for collecting 60 said at least one second electromagnetic radiation according to at least two different collection incidences comprise at least two collection and routing elements 61 which are arranged to collect said at least one at least a second electromagnetic radiation according to at least two different incidences of collection.
  • said at least two collecting and conveying elements 61 preferably adopt at least two different positions and/or at least two different orientations.
  • the means for collecting 60 said at least one second electromagnetic radiation according to at least two different collection incidences comprise, on the one hand, at least one reflection means which is configured to reflect said at least one second electromagnetic radiation emitted by the medium M and, on the other hand, positioning means which are configured to position said at least one reflection means in at least two different positions. Such positioning in at least two different positions then allows collection according to at least two different collection incidences.
  • the means for collecting 60 said at least one second electromagnetic radiation according to at least two different collection incidences comprise positioning means which are configured to position at least one collection element and to routing, this in at least two different positions.
  • positioning means which are configured to position at least one collection element and to routing, this in at least two different positions.
  • Such positioning means advantageously make it possible to substantially increase the number of optical paths for collecting said at least one second electromagnetic radiation.
  • the positioning means comprise, on the one hand, means for mounting in rotation about an axis of said at least one means of reflection, respectively of said at least one collecting and conveying element, and, on the other hand, means for driving in rotation about said axis of said at least one reflection means, respectively of said at least one collecting element and convey.
  • rotational drive means can be designed to ensure rotation in a discrete manner (and, thus, ensure collection under a plurality of discrete incidences) or continuously (and, thus, ensure a collection under a plurality of continuous incidences).
  • the means for collecting 60 said at least one second electromagnetic radiation along at least two different optical paths comprise means for collecting 60 said at least one second electromagnetic radiation with at least two different foca lisations collection.
  • the means for collecting 60 said at least one second electromagnetic radiation with at least two different collection focuses comprise at least two collection and routing elements 61 which are configured to collect said at least one at least a second electromagnetic radiation with at least two different collection focuses.
  • the collection and routing means 5 of said at least one first electromagnetic ray and/or the collection and routing means 6 of said at least one second electromagnetic radiation may each comprise or consist of at least an optical fiber.
  • said at least one collection and routing element (51; 61) can each comprise or consist of at least one optical fibre.
  • the detection installation 1 can comprise at least one lighting probe which comprises at least part of the lighting means 3, more particularly at least the means for illuminating 31 the medium M along at least two different optical paths, in particular at least the means for illuminating 31 the medium M according to at least two different lighting incidences, or even said at least one polychromatic visible light source 30 as described above .
  • Such an illumination probe can then comprise said at least two routing elements (310, 310′) which are configured to route said at least one polychromatic visible light, this as described above.
  • this lighting probe may comprise said positioning means (312; 313) as well as, depending on the case, said at least one reflection means 311 or said at least one polychromatic visible light source 30 as described above.
  • the detection installation 1 can comprise at least one excitation probe which comprises at least part of the excitation means 4, more particularly at least the means for exciting 41 the medium M according to at least at least two different optical paths, in particular at least the means for exciting 41 the medium M according to at least two different incidences of excitation, or even said at least one source of monochromatic radiation in visible or infrared light 40 as described above .
  • Such an excitation probe can then comprise said at least two routing elements (410, 410') which are configured to route said at least one monochromatic radiation in visible or infrared light, as described above. -above.
  • this excitation probe may comprise said positioning means (412; 413) as well as, depending on the case, said at least one reflection means 411 or said at least one source of monochromatic light radiation. visible or infrared 40 as described above.
  • said detection installation 1 may comprise at least one lighting and excitation probe 10 which comprises, on the one hand, at least part of the lighting means 3 , in particular at least the means for illuminating 31 the medium M along at least two different optical paths as described above (more particularly said at least two routing elements 310; 310′ configured to route said at least one visible light polychromatic), or even said at least one polychromatic visible light source 30.
  • this illumination and excitation probe 10 comprises at least a part of the excitation means 4, in particular at least the means for exciting 41 the medium M according to at least two different optical paths such as described above (more particularly said at least two routing elements 410; 410' configured to route said at least one monochromatic radiation in visible or infrared light), or even said at least one source of monochromatic radiation in visible light or infrared 40.
  • said at least one illumination and excitation probe 10 com carries said means for illuminating 31 the medium M along at least two different optical paths as described above, more particularly said means for illuminating 31 the medium M according to at least two different incidences of lighting, in particular said at least two routing elements 310; 310' configured to route said at least one polychromatic visible light or said positioning means (312; 313) as well as, depending on the case, said at least one reflection means 311 and/or said at least one polychromatic visible light source 30 as described above.
  • said at least one illumination and excitation probe 10 com carries said means for illuminating 31 the medium M along at least two different optical paths as described above, more particularly said means for illuminating 31 the medium M according to at least two different incidences of lighting, in particular said at least two routing elements 310; 310' configured to route said at least one polychromatic visible light or said positioning means (312; 313) as well as, depending on the case, said at least one reflection means 311 and/or said at least one polychromatic
  • said at least one illumination and excitation probe 10 comprises said means for exciting 41 the medium M along at least two paths different optics as described above, more particularly said means for exciting 41 the medium M according to at least two different incidences of excitation, in particular said at least two routing elements 410; 410' configured to convey said at least one monochromatic radiation in visible or infrared light or said positioning means (412; 413) as well as, depending on the case, said at least one reflection means 411 and/or said at least one source of monochromatic radiation in visible light or infrared 40 as described above.
  • the detection installation 1 may also comprise at least one collection probe 11 which comprises the means for collecting said at least one first electromagnetic radiation along at least two different optical paths such as than described above.
  • said at least one collection probe 11 comprises means for collecting 60 said at least one second electromagnetic radiation along at least two different optical paths such as described above.
  • Such a collection probe 11 can then comprise said at least two collection and routing elements 51 arranged to collect said at least one first electromagnetic radiation according to at least two different collection incidences and/or said at least one at least two collection and routing elements 61 arranged to collect said at least one second electromagnetic radiation according to at least two different collection incidences as described above.
  • Such a collection probe 11 may also comprise the positioning means as well as, depending on the case, said at least one reflection means and/or said at least one collection and routing element as described above.
  • such a collection probe 11 may include said at least two collection and routing elements 51 configured to collect said at least one first electromagnetic radiation with at least two different collection focuses and/or or said at least two collection and routing elements 61 arranged to collect said at least one second electromagnetic radiation configured to collect said at least one first electromagnetic radiation with at least two different collection focuses.
  • the detection installation 1 comprises at least one lighting, excitation and collection probe 12 which comprises at least part of the lighting means 3, at least minus one by- tie of the excitation means 4, at least part of the first collection and conveying means 5 as well as at least part of the second collection and conveying means 6 as described above.
  • Such an illumination, excitation, and collection probe 12 can then comprise the means for illuminating 31 the medium M according to at least two different optical paths (more particularly as described above, in particular said at least two routing elements 310, 310').
  • such an illumination, excitation, and collection probe 12 may comprise the means for exciting 41 the medium M along at least two paths different optics (more particularly as described above, in particular said at least two routing elements 410, 410').
  • such an illumination, excitation and collection probe 12 may include the means for collecting 50 said at least one first electromagnetic radiation along at least two different optical paths (more particularly as described above, in particular said at least two collection and routing elements 51).
  • such an illumination, excitation, and collection probe 12 may include means for collecting 60 said at least one second electromagnetic radiation along at least two different optical paths (more particularly as described above, in particular said at least two collection and routing elements 61).
  • the lighting probe and/or the excitation probe and/or the lighting and excitation probe 10 and/or the collection probe 11 and/or the lighting probe , excitation and collection 12 is positioned at least partly inside the container.
  • the illumination probe and/or the excitation probe and/or the illumination and excitation probe 10 and/or the collection probe 11 and/or the illumination probe, excitation and collection 12 is positioned at least partly outside the container, more particularly opposite a transparent portion 20 of a wall 21 of the container 2, or even applied against such a transparent portion 20 wall 21, in particular flat.
  • the transparent portion 20 of the wall 21 of the container 2 can then have a flat surface and, on the other hand, the probe has a flat surface and is applied against the flat surface of this transparent portion 20 of the wall 21 of the container 2.
  • the detection installation 1 comprises means 9 for detecting said at least one characteristic parameter of the medium M, this from said at least one visible spectrum of the medium M and from said at least a Raman spectrum of the medium M.
  • Such detection means 9 comprise, on the one hand, a database.
  • This database contains a plurality of reference visible spectra.
  • Such a visible reference spectrum corresponds to a visible spectrum of a reference medium (which has a known characteristic reference parameter) which is obtained by a visible spectrometer, this from at least one electromagnetic radiation, which is emitted by the reference medium which has a known characteristic reference parameter, and which is collected.
  • This database also contains a plurality of reference Raman spectra.
  • Such a reference Raman spectrum corresponds to a Raman spectrum of a reference medium (which has a known characteristic reference parameter) which is obtained by a Raman spectrometer, this from at least one electromagnetic radiation , which is emitted by the reference medium which has a known reference characteristic parameter, and which is collected.
  • these detection means 9 comprise processing means which are configured to process, simultaneously, said at least one visible spectrum of the medium M and said at least one Raman spectrum of the medium M as a function of the plurality of reference visible spectra and the plurality of reference Raman spectra contained in the database, with a view to obtaining said at least one characteristic parameter of the medium M.
  • Such processing means include software.
  • This software implements an algorithm which is preferably a partial least squares regression algorithm usually known by the Anglo-Saxon name of “partial least square regression” PLS.
  • the present invention also relates to an illumination probe and/or an excitation probe and/or an illumination and excitation probe 10 and/or a collection probe 11 and/or a lighting, excitation and collection 12.
  • a probe has at least some of the characteristics described above.
  • the present invention also relates to a method for detecting at least one characteristic parameter of a medium M.
  • This method can, in particular, be implemented by a detection installation 1 which has at least one tie of the characteristics described above.
  • This detection method comprises the steps:
  • a step of the detection method concerns a step of illuminating the medium M with polychromatic visible light.
  • a lighting step can be implemented via the lighting means 3 mentioned above.
  • this step of illuminating the medium M with polychromatic visible light preferably includes a step of illuminating the medium M along at least two different optical paths.
  • such a step of illuminating the medium M along at least two different optical paths can comprise a step of illuminating the medium M, either according to at least two different incidences of lighting, or with at least two different lighting focuses.
  • Such a step of illuminating the middle M can then, more particularly, be implemented by means of the means for illuminating 31 described above.
  • another step of the detection method concerns a step of exciting the medium M with monochromatic radiation in visible or infrared light.
  • Such an excitation step can be implemented via the excitation means 4 mentioned above.
  • this step of exciting the medium M with monochromatic radiation in visible or infrared light preferably includes a step of exciting the medium M along at least two different optical paths.
  • such a stage of excitation of the medium M along at least two different optical paths can comprise a stage of excitation of the medium M, either according to at least two different incidences of excitation, or with at least two different focuses of excitation.
  • Such a step of exciting the medium M can then, more particularly, be implemented via the means for exciting 41 described above.
  • yet another step of the detection method relates to a step of collecting and routing at least one first electromagnetic radiation emitted by the medium M.
  • a step of collecting and routing at least one first electromagnetic radiation emitted by the medium M can be implemented by via the first collection and conveying means 5 mentioned above.
  • this step of collecting and routing at least one first electromagnetic radiation emitted by the medium M preferably comprises a step of collecting at least one first electromagnetic radiation along at least two optical paths different.
  • such a step of collecting at least one first electromagnetic radiation according to at least two different optical paths can comprise a step of collecting at least one first electromagnetic radiation, either according to at least two different incidences of collection, or with at least two different collection focuses.
  • Such a collection step can then, more particularly, be implemented via the means for collecting 50 said at least one first electromagnetic radiation described above.
  • another step of the detection method relates to a step of collecting and routing at least one second electromagnetic radiation emitted by the medium M.
  • a step can be implemented by intermediary of the second collection and conveying means 6 mentioned above.
  • this step of collecting and routing at least one second electromagnetic radiation emitted by the medium M preferably comprises a step of collecting at least one second electromagnetic radiation along at least two optical paths different.
  • such a step of collecting at least one second electromagnetic radiation according to at least two different optical paths can comprise a step of collecting at least one second electromagnetic radiation, either according to at least two different incidences of collection, or with at least two different collection focuses.
  • Such a collection step can then, more particularly, be implemented via the means for collecting 60 said at least one second electromagnetic radiation described above.
  • another step of the detection method relates to a step of detecting said at least one characteristic parameter of the medium M.
  • Such a step can be implemented by means of the detection means 9 mentioned above.
  • this detection step comprises a step of processing, simultaneously, said at least one visible spectrum of the medium M and said at least one visible Raman spectrum of the medium M, this according to a plurality of spectra visible reference and a plurality of reference Raman spectra previously recorded in a database (more particularly recorded before the implementation of the detection method and / or during a learning step), this in to obtain said at least one characteristic parameter of the medium M.
  • such a reference visible (respectively Raman) spectrum corresponds to a visible (respectively Raman) spectrum of a reference medium (which has a known reference characteristic parameter) which is obtained by a visible spectrometer (respectively Raman), this from at least one electromagnetic radiation, which is emitted by the reference medium which has a known characteristic reference parameter, and which is collected.
  • Said processing step is, more particularly, implemented by the processing means mentioned above.
  • this processing step can be implemented by software, in particular software which implements an algorithm which is, preferably, a partial least squares regression algorithm usually known by the Anglo-Saxon name of “partial least square regression” PLS.
  • the invention relates to an installation for detecting at least one characteristic parameter of a medium M.
  • the invention also relates to a method for detecting at least one such characteristic parameter of a medium M.
  • such a medium M can be a culture medium in a bioreactor inside which a biological or biochemical culture process takes place.
  • the characteristic parameter of this medium M can then be the presence or the quantity of at least one nutrient, the presence or the quantity of at least one metabolite, the presence, the quantity or the state of at least one microorganism.
  • the medium M can still be a fermentation medium inside which a biological fermentation process takes place.
  • the characteristic parameter of this medium M can then be a product of metabolism, more particularly the sugar level (in particular the glucose level) or the alcohol level (in particular the ethanol level).
  • the method and the installation in accordance with the invention then advantageously make it possible to obtain such a characteristic parameter with an accuracy of the order of one gram per liter.
  • the medium M can also be a production medium inside which a chemical or biochemical process for the production of a product, in particular pharmaceutical or food, takes place.
  • the characteristic parameter can then be the quantity of product, in particular pharmaceutical or food, manufactured.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Spectrometry And Color Measurement (AREA)

Abstract

Installation de détection d'au moins un paramètre caractéristique d'un milieu (M), cette installation de détection (1) comporte des moyens d'éclairage (3) du milieu (M) avec une lumière visible polychromatique, des moyens d'excitation (4) du milieu (M) avec un rayonnement monochromatique en lumière visible ou infrarouge, des premiers moyens de collecte et d'acheminement (5) d'au moins un premier rayonnement électromagnétique émis par le milieu (M), des deuxièmes moyens de collecte et d'acheminement (6) d'au moins un deuxième rayonnement électromagnétique émis par le milieu (M), au moins un spectromètre visible (7) pour obtenir au moins un spectre visible du milieu (M) à partir dudit au moins un premier rayonnement électromagnétique, au moins un spectromètre Raman (8) pour obtenir au moins un spectre Raman du milieu (M) à partir dudit au moins un deuxième rayonnement électromagnétique et des moyens de détection (9) dudit au moins un paramètre caractéristique à partir dudit au moins un spectre visible et à partir dudit au moins un spectre Raman du milieu (M).

Description

Description
Installation de détection d’au moins un paramètre caractéristique d’un milieu et procédé de détection d’au moins un tel paramètre caractéristique.
[0001] L’invention concerne une installation de détection d’au moins un paramètre ca ractéristique d’un milieu. L’invention concerne, également, un procédé de dé tection d’au moins un tel paramètre caractéristique d’un tel milieu, ce procédé étant mis en œuvre par ladite installation.
[0002] La présente invention concerne le domaine de la fabrication des dispositifs per mettant de détecter, voire de quantifier, un paramètre caractéristique d’un mi lieu, comme une substance ou un état d’une telle substance, ceci à l’intérieur d’un tel milieu, notamment à l’intérieur d’un milieu réactionnel à l’intérieur duquel se produit un processus biologique, chimique ou biochimique.
[0003] L’on connaît, d’ores et déjà, des installations de chimiométrie comme des spec- tromètres Raman qui permettent de détecter au moins une molécule, voire de mesurer une teneur d’une telle molécule, ceci à l’intérieur d’un milieu, plus particulièrement à l’intérieur d’un milieu réactionnel.
[0004] Un tel spectromètre Raman présente un premier inconvénient lié à la fluores cence globale du signal Raman. Cette fluorescence globale dépend de la nature des composés présents dans le milieu et se superpose au spectre Raman des composés d’intérêt que l’on souhaite détecter ou quantifier. Il en découle que le spectre Raman de ces composés d’intérêt est masqué ce qui détériore la préci sion de la mesure et empêche une identification ainsi qu’une quantification ap propriée des composés d’intérêt.
[0005] Un autre inconvénient d’un tel spectromètre Raman consiste en ce que la pré sence de microorganismes engendre une diffusion de Mie qui perturbe le signal et altère la mesure, notamment de la concentration. Cet inconvénient est ampli fié par le fait que, dans un milieu réactionnel, la concentration, le diamètre et la géométrie des microorganismes évoluent ce qui entraîne une évolution de la diffusion de Mie et, par conséquent, une évolution de la perturbation du signal.
[0006] La présente invention se veut de remédier aux inconvénients des installations de l’état de la technique.
[0007] A cet effet, l’invention concerne une installation de détection d’au moins un paramètre caractéristique d’un milieu. Cette installation comporte :
[0008] - au moins un contenant destiné à contenir le milieu ;
[0009] - des moyens d’éclairage qui sont configurés pour éclairer le milieu avec une lumière visible polychromatique ;
[0010] - des moyens d’excitation qui sont configurés pour exciter le milieu avec un rayonnement monochromatique en lumière visible ou infrarouge ; [0011] - des premiers moyens de collecte et d’acheminement qui sont configurés pour collecter et acheminer au moins un premier rayonnement électromagnétique émis par le milieu ainsi que des deuxièmes moyens de collecte et d’achemine ment qui sont configurés pour collecter et acheminer au moins un deuxième rayonnement électromagnétique émis par le milieu ;
[0012] - au moins un spectromètre visible, qui est raccordé auxdits premiers moyens de collecte et d’acheminement, et qui est configuré pour obtenir au moins un spectre visible du milieu à partir dudit au moins un premier rayonnement élec tromagnétique ;
[0013] - au moins un spectromètre Raman, qui est raccordé auxdits deuxièmes moyens de collecte et d’acheminement, et qui est configuré pour obtenir au moins un spectre Raman du milieu à partir dudit au moins un deuxième rayon nement électromagnétique ;
[0014] - des moyens de détection dudit au moins un paramètre caractéristique du mi lieu, ceci à partir dudit au moins un spectre visible du milieu et à partir dudit au moins un spectre Raman du milieu.
[0015] Selon une autre caractéristique, les moyens d’éclairage, respectivement les moyens d’excitation, comportent, d’une part, au moins une source de lumière visible polychromatique configurée pour émettre au moins une lumière visible polychromatique, respectivement au moins une source de rayonnement mono chromatique en lumière visible ou infrarouge configurée pour émettre au moins un rayonnement monochromatique en lumière visible ou infrarouge, et, d’autre part, des moyens pour éclairer, respectivement des moyens pour exciter, le mi lieu selon au moins deux chemins optiques différents.
[0016] De manière alternative ou (et de préférence) additionnelle, lesdits premiers moyens de collecte et d’acheminement, respectivement lesdits deuxièmes moyens de collecte et d’acheminement, comportent des moyens pour collecter ledit au moins un premier rayonnement électromagnétique, respectivement des moyens pour collecter ledit au moins un deuxième rayonnement électromagné tique, ceci selon au moins deux chemins optiques différents.
[0017] En fait, ces moyens pour éclairer, exciter ou collecter selon au moins deux che mins optiques différents comportent des moyens pour éclairer, exciter ou col lecter, soit selon au moins deux incidences différentes d’éclairage, d’excitation ou de collecte, soit avec au moins deux focalisations différentes d’éclairage, d’excitation ou de collecte.
[0018] Selon une autre caractéristique, les moyens de détection comportent, d’une part, une base de données qui contient une pluralité de spectres visibles de réfé rence et une pluralité de spectres Raman de référence et, d’autre part, des moyens de traitement qui sont configurés pour traiter, de manière simultanée, ledit au moins un spectre visible du milieu et ledit au moins un spectre Raman du milieu en fonction de la pluralité de spectres visibles de référence et de la pluralité de spectres Raman de référence de la base de données, ceci en vue d’obtenir ledit au moins un paramètre caractéristique du milieu.
[0019] L’invention concerne, également, un procédé de détection d’au moins un para mètre caractéristique d’un milieu. Ce procédé est mis en œuvre par une instal lation qui présente les caractéristiques décrites ci-dessus et comporte les étapes :
[0020] - d’éclairage du milieu avec une lumière visible poly chromatique ;
[0021] - d’excitation du milieu avec un rayonnement monochromatique en lumière vi sible ou infrarouge ;
[0022] - de collecte et d’acheminement d’au moins un premier rayonnement électro magnétique émis par le milieu ;
[0023] - de collecte et d’acheminement d’au moins un deuxième rayonnement électro magnétique émis par le milieu ;
[0024] - d’obtention d’au moins un spectre visible du milieu à partir dudit au moins un premier rayonnement électromagnétique ;
[0025] - d’obtention d’au moins un spectre Raman du milieu à partir dudit au moins un deuxième rayonnement électromagnétique ;
[0026] - de détection dudit au moins un paramètre caractéristique du milieu, ceci à partir dudit au moins un spectre visible du milieu ainsi qu’à partir dudit au moins un spectre Raman du milieu.
[0027] Selon une autre caractéristique, l’étape d’éclairage, respectivement d’excita tion, du milieu avec une lumière visible polychromatique, respectivement avec un rayonnement monochromatique en lumière visible ou infrarouge, comporte une étape d’éclairage, respectivement d’excitation, du milieu selon au moins deux chemins optiques différents.
[0028] De manière alternative ou (et de préférence) additionnelle, l’étape de collecte et d’acheminement d’au moins un premier rayonnement électromagnétique, res pectivement d’au moins un deuxième rayonnement électromagnétique, émis par le milieu comporte une étape de collecte d’au moins un premier rayonne ment électromagnétique, respectivement d’au moins un deuxième rayonnement électromagnétique, selon au moins deux chemins optiques différents.
[0029] Ainsi, l’invention concerne une installation de détection d’au moins un para mètre caractéristique d’un milieu. Cette installation comporte, d’une part, des moyens d’éclairage du milieu avec une lumière visible polychromatique, d’autre part, des moyens d’excitation du milieu avec un rayonnement mono chromatique en lumière visible ou infrarouge, d’autre part encore, au moins un spectromètre visible pour obtenir au moins un spectre visible à partir d’au moins un premier rayonnement électromagnétique émis par le milieu et col lecté, d’autre part aussi, au moins un spectromètre Raman pour obtenir au moins un spectre Raman à partir d’au moins un deuxième rayonnement électro magnétique émis par le milieu et collecté et, d’autre part, également, des moyens de détection dudit au moins un paramètre caractéristique du milieu, ceci à partir dudit au moins un spectre visible du milieu et à partir dudit au moins un spectre Raman du milieu.
[0030] Cette installation permet, alors, avantageusement, d’obtenir une information multispectrale qui permet de remédier aux inconvénients rencontrés lorsqu’on utilise uniquement la spectroscopie Raman.
[0031] En particulier, cette information multispectrale permet d’accéder à l’atténuation du signal due à la diffusion de Mie liée à la présence de microorganismes et, ainsi, de corriger le signal Raman de la diffusion de Mie, ce qui permet de pro céder à des mesures fiables en dépit de l’évolution du comportement optique de la population de microorganismes.
[0032] De plus, cette information multispectrale permet d’accéder à un indicateur glo bal de l’état des microorganismes dans un milieu ce qui permet, avantageuse ment, d’assurer le suivi d’une culture de ces microorganismes dans ce milieu.
[0033] L’installation comporte, également, des moyens pour éclairer, exciter et/ou col lecter selon au moins deux chemins optiques différents. Ces moyens permet tent, avantageusement, de multiplier les spectres collectés et d’obtenir des in formations complémentaires sur le paramètre caractéristique du milieu qu’on recherche.
[0034] Plus particulièrement, lorsque l’éclairage, l’excitation et/ou la collecte selon au moins deux chemins optiques s’opère selon au moins deux incidences diffé rentes d’éclairage, d’excitation ou de collecte, il est, avantageusement, possible d’accéder à un paramètre caractéristique constitué par la numération (densité de population) des microorganismes dans le milieu (et, ainsi, de suivre une cul ture de ces microorganismes dans ce milieu) ainsi qu’au comportement de ces microorganismes notamment vis-à-vis de la diffusion de Mie.
[0035] Lorsque l’éclairage, l’excitation et/ou la collecte selon au moins deux chemins optiques s’opère avec au moins deux focalisations différentes d’éclairage, d’ex citation ou de collecte, il est, avantageusement, possible d’obtenir des informa tions sur plusieurs volumes de mesure du milieu.
[0036] D’autres buts et avantages de la présente invention apparaîtront au cours de la description qui va suivre se rapportant à des modes de réalisation qui ne sont donnés qu’à titre d’exemples indicatifs et non limitatifs.
[0037] La compréhension de cette description sera facilitée en se référant aux dessins joints en annexe et dans lesquels :
[0038] [Lig 1] est une vue schématisée d’une installation, qui est conforme à l’inven tion, et qui comporte une sonde d’éclairage et/ou d’excitation comportant des moyens pour éclairer et/ou exciter le milieu selon au moins deux incidences différentes d’éclairage et/ou d’excitation conformes à un premier mode de réa lisation. [0039] [Fig 2] est une vue schématisée, en coupe et partielle, d’une sonde d’éclairage et/ou d’excitation, que comporte l’installation conforme à l’invention, et qui comporte des moyens pour éclairer et/ou exciter le milieu selon au moins deux incidences différentes d’éclairage et/ou d’excitation conformes à un deuxième mode de réalisation.
[0040] [Fig 3] est une vue similaire à la figure 2 et correspond à une sonde d’éclairage et/ou d’excitation, que comporte l’installation conforme à l’invention, et qui comporte des moyens pour éclairer et/ou exciter le milieu selon au moins deux incidences différentes d’éclairage et/ou d’excitation conformes à un troisième mode de réalisation.
[0041] [Fig 4] est une vue schématisée, en coupe et partielle, d’une sonde d’éclairage, d’excitation et de collecte, que comporte une installation conforme à l’inven tion, et qui est conforme à un premier mode de réalisation.
[0042] [Fig 5] est une vue schématisée, en coupe et partielle, d’une sonde d’éclairage, d’excitation et de collecte, que comporte une installation conforme à l’inven tion, et qui est conforme à un deuxième mode de réalisation.
[0043] La présente invention concerne le domaine de la fabrication des dispositifs per mettant de détecter, voire de quantifier, un paramètre caractéristique d’un mi lieu, comme une substance ou un état d’une telle substance, ceci à l’intérieur d’un tel milieu, notamment à l’intérieur d’un milieu réactionnel à l’intérieur duquel se produit un processus biologique, chimique ou biochimique.
[0044] L’invention concerne, alors, une installation de détection 1 d’au moins un para mètre caractéristique d’un milieu M. En fait, cette installation de détection 1 est, plus particulièrement, configurée pour détecter au moins un paramètre ca ractéristique d’un milieu réactionnel M à l’intérieur duquel se produit un pro cessus biologique, chimique ou biochimique.
[0045] Cette installation de détection 1 comporte, alors, un contenant 2 destiné à con tenir ledit milieu M.
[0046] Cette installation de détection 1 comporte, également, des moyens d’éclairage 3 qui sont configurés pour éclairer le milieu M avec une lumière visible poly- chromatique.
[0047] A ce propos, il convient d’observer qu’une telle lumière visible polychroma- tique correspond à la partie du spectre électromagnétique qui est visible pour l'œil humain.
[0048] Ces moyens d’éclairage 3 comportent, alors, au moins une source de lumière visible polychromatique 30 qui est configurée pour émettre au moins une lu mière visible polychromatique. Une telle source de lumière visible polychro matique peut comporter au moins une diode électroluminescente, de préférence à large spectre.
[0049] De manière alternative ou (et de préférence) additionnelle, ladite installation de détection 1 comporte des moyens d’excitation 4 qui sont configurés pour exci ter le milieu M avec un rayonnement monochromatique en lumière visible ou infrarouge.
[0050] Ces moyens d’excitation 4 comportent au moins une source de rayonnement monochromatique en lumière visible ou infrarouge 40 qui est configurée pour émettre au moins un rayonnement monochromatique en lumière visible ou in frarouge.
[0051] Selon un mode de réalisation particulier, une telle source de rayonnement mo nochromatique en lumière visible ou infrarouge 40 est configurée pour émettre au moins un rayonnement monochromatique en infrarouge dont la longueur d’onde est, de préférence, située dans le proche infrarouge. Une telle longueur d’onde permet, avantageusement, de limiter la fluorescence d’un signal Raman.
[0052] De bons résultats sont obtenus pour des longueurs d’onde de 933nm et de 785nm sans que la présente invention y soit limitée.
[0053] Une telle source de rayonnement monochromatique en lumière visible ou infra rouge 40 peut comporter au moins un laser, notamment au moins une diode la ser.
[0054] L’installation de détection 1 comporte, également, des premiers moyens de col lecte et d’acheminement 5 qui sont configurés pour collecter et acheminer au moins un premier rayonnement électromagnétique émis par le milieu M. Ces premiers moyens de collecte et d’acheminement 5 sont, plus particulièrement, configurés pour collecter et acheminer au moins un premier rayonnement élec tromagnétique correspondant à une lumière visible polychromatique émise par le milieu M, ceci sous l’effet de l’éclairage de ce milieu M par les moyens d’éclairage 3.
[0055] De manière alternative ou (et de préférence) additionnelle, cette installation de détection 1 comporte des deuxièmes moyens de collecte et d’acheminement 6 qui sont configurés pour collecter et acheminer au moins un deuxième rayon nement électromagnétique émis par le milieu M. Ces deuxièmes moyens de collecte et d’acheminement 6 sont, plus particulièrement, configurés pour col lecter et acheminer au moins un deuxième rayonnement électromagnétique cor respondant à un rayonnement (plus particulièrement un rayonnement mono chromatique en lumière visible ou infrarouge, notamment dans le proche infra rouge) émis par le milieu M, ceci sous l’effet de l’excitation de ce milieu M par les moyens d’excitation 4.
[0056] Ladite installation de détection 1 comporte, aussi, au moins un spectromètre vi sible 7, qui est raccordé auxdits premiers moyens de collecte et d’achemine ment 5, et qui est configuré pour obtenir au moins un spectre visible du milieu M à partir dudit au moins un premier rayonnement électromagnétique, plus particulièrement collecté et acheminé par lesdits premiers moyens de collecte et d’acheminement 5. [0057] De manière alternative ou (et de préférence) additionnelle, ladite installation de détection 1 comporte au moins un spectromètre Raman 8, qui est raccordé aux- dits deuxièmes moyens de collecte et d’acheminement 6, et qui est configuré pour obtenir au moins un spectre Raman à partir dudit au moins un deuxième rayonnement électromagnétique, plus particulièrement collecté et acheminé par lesdits deuxièmes moyens de collecte et d’acheminement 6.
[0058] En outre, ladite installation de détection 1 comporte des moyens de détection 9 dudit au moins un paramètre caractéristique, ceci à partir dudit au moins un spectre visible du milieu M et à partir dudit au moins un spectre Raman du mi lieu M.
[0059] Tel que mentionné ci-dessus, ladite installation de détection 1 comporte des moyens d’éclairage 3 qui sont configurés pour éclairer le milieu M avec une lu mière visible poly chromatique.
[0060] Ces moyens d’éclairage 3 peuvent, alors, également, comporter des moyens pour éclairer 31 le milieu M selon au moins deux chemins optiques différents.
[0061] A ce propos, on observera que, selon un premier type de réalisation, les moyens pour éclairer 31 le milieu M selon au moins deux chemins optiques différents comportent des moyens pour éclairer 31 le milieu M selon au moins deux inci dences différentes d’éclairage.
[0062] Selon un premier mode de réalisation de ce premier type de réalisation illustré figure 1, de tels moyens pour éclairer 31 le milieu M selon au moins deux inci dences différentes d’éclairage comportent au moins deux éléments d’achemine ment (310, 310’), d’une part, qui sont configurés pour acheminer ladite au moins une lumière visible polychromatique (émise par ladite au moins une source de lumière visible polychromatique 30) et, d’autre part, qui sont agencés pour éclairer le milieu M avec ladite au moins une lumière visible polychroma tique ceci selon au moins deux incidences différentes d’éclairage.
[0063] En fait, lesdits au moins deux éléments d’acheminement (310, 310’) peuvent adopter au moins deux positions différentes et/ou au moins deux orientations différentes.
[0064] Selon un deuxième mode de réalisation de ce premier type de réalisation illus tré figure 2, les moyens pour éclairer 31 le milieu M selon au moins deux inci dences différentes d’éclairage comportent, d’une part, au moins un moyen de réflexion 311 qui est configuré pour réfléchir ladite au moins une lumière vi sible polychromatique (émise par ladite au moins une source de lumière visible polychromatique 30) en direction du milieu M et, d’autre part encore, des moyens de positionnement 312 qui sont configurés pour positionner ledit au moins un moyen de réflexion 311 dans au moins deux positions différentes. Un tel positionnement dans au moins deux positions différentes autorise, alors, un éclairage du milieu M selon au moins deux incidences différentes d’éclairage.
[0065] Selon un troisième mode de réalisation de ce premier type de réalisation illustré figure 3, les moyens pour éclairer 31 le milieu M selon au moins deux inci dences différentes d’éclairage comportent des moyens de positionnement 313 qui sont configurés pour positionner ladite au moins une source de lumière vi sible polychromatique 30, ceci dans au moins deux positions différentes. Là encore, un tel positionnement dans au moins deux positions différentes auto rise, alors, un éclairage du milieu M selon au moins deux incidences différentes d’éclairage.
[0066] De tels moyens de positionnement (312 ; 313) permettent, avantageusement, d’augmenter de manière substantielle le nombre de chemins optiques d’éclai rage.
[0067] On observera que les moyens de positionnement (312, 313) comportent, d’une part, des moyens de montage en rotation autour d’un axe dudit au moins un moyen de réflexion 311, respectivement de ladite au moins une source de lu mière visible polychromatique 30, et, d’autre part, des moyens d’entraînement en rotation autour dudit axe dudit au moins un moyen de réflexion 311, respec tivement de ladite au moins une source de lumière visible polychromatique 30.
[0068] De tels moyens d’entraînement en rotation peuvent, alors, être conçus pour as surer une rotation de manière discrète (et, ainsi, assurer un éclairage sous une pluralité d’incidences discrètes) ou de manière continue (et, ainsi, assurer un éclairage sous une pluralité d’incidences continues).
[0069] Selon un deuxième type de réalisation, les moyens pour éclairer 31 le milieu M selon au moins deux chemins optiques différents comportent des moyens pour éclairer 31 le milieu M avec au moins deux focalisations différentes d’éclai rage.
[0070] Selon un mode de réalisation particulier de ce deuxième type de réalisation, les moyens pour éclairer 31 le milieu M avec au moins deux focalisations diffé rentes d’éclairage peuvent comporter au moins deux éléments d’acheminement (310, 310’), d’une part, qui sont configurés pour acheminer ladite au moins une lumière visible polychromatique (émise par ladite au moins une source de lu mière visible polychromatique 30), et, d’autre part, qui sont conçus pour éclai rer le milieu M avec ladite au moins une lumière visible polychromatique ceci avec au moins deux focalisations différentes d’éclairage.
[0071] Tel que mentionné ci-dessus, ladite installation de détection 1 comporte des moyens d’excitation 4 qui sont configurés pour exciter le milieu M avec un rayonnement monochromatique en lumière visible ou infrarouge.
[0072] Ces moyens d’excitation 4 peuvent, alors, également, comporter des moyens pour exciter 41 le milieu M selon au moins deux chemins optiques différents.
[0073] A ce propos, on observera que, selon un premier type de réalisation, les moyens pour exciter 41 le milieu M selon au moins deux chemins optiques différents comportent des moyens pour exciter 41 le milieu M selon au moins deux inci dences différentes d’excitation. [0074] Selon un premier mode de réalisation de ce premier type de réalisation illustré figure 1, de tels moyens pour exciter 41 le milieu M selon au moins deux inci dences différentes d’excitation comportent au moins deux éléments d’achemi nement (410, 410’), d’une part, qui sont configurés pour acheminer ledit au moins un rayonnement monochromatique en lumière visible ou infrarouge (émis par ladite au moins une source de rayonnement monochromatique en lu mière visible ou infrarouge 40), et, d’autre part, qui sont agencés pour exciter le milieu M avec ledit au moins un rayonnement monochromatique en lumière visible ou infrarouge ceci selon au moins deux incidences différentes d’excita tion.
[0075] En fait, lesdits au moins deux éléments d’acheminement (410, 410’) peuvent adopter au moins deux positions différentes et/ou au moins deux orientations différentes.
[0076] Selon un deuxième mode de réalisation de ce premier type de réalisation illus tré figure 2, les moyens pour exciter 41 selon au moins deux incidences diffé rentes d’excitation comportent, d’une part, au moins un moyen de réflexion 411 qui est configuré pour réfléchir ledit au moins un rayonnement monochro matique en lumière visible ou infrarouge (émis par ladite au moins une source de rayonnement monochromatique en lumière visible ou infrarouge 40) en di rection du milieu M et, d’autre part encore, des moyens de positionnement 412 qui sont configurés pour positionner ledit au moins un moyen de réflexion 411 dans au moins deux positions différentes. Un tel positionnement dans au moins deux positions différentes autorise, alors, un éclairage du milieu M selon au moins deux incidences différentes d’éclairage.
[0077] Selon un troisième mode de réalisation de ce premier type de réalisation illustré figure 3, les moyens pour exciter 41 le milieu M selon au moins deux inci dences différentes d’excitation comportent des moyens de positionnement 413 qui sont configurés pour positionner ladite au moins une source de rayonne ment monochromatique en lumière visible ou infrarouge 40, ceci dans au moins deux positions différentes. Là encore, un tel positionnement dans au moins deux positions différentes autorise, alors, une excitation du milieu M se lon au moins deux incidences différentes d’excitation.
[0078] De tels moyens de positionnement (412 ; 413) permettent, avantageusement, d’augmenter de manière substantielle le nombre de chemins optiques d’excita tion.
[0079] On observera que les moyens de positionnement (412, 413) comportent, d’une part, des moyens de montage en rotation autour d’un axe dudit au moins un moyen de réflexion 411, respectivement de ladite au moins une source de rayonnement monochromatique en lumière visible ou infrarouge 40, et, d’autre part, des moyens d’entraînement en rotation autour dudit axe dudit au moins un moyen de réflexion 411, respectivement de ladite au moins une source de rayonnement monochromatique en lumière visible ou infrarouge 40.
[0080] De tels moyens d’entraînement en rotation peuvent, là encore, être conçus pour assurer une rotation de manière discrète (et, ainsi, assurer un éclairage sous une pluralité d’incidences discrètes) ou de manière continue (et, ainsi, assurer un éclairage sous une pluralité d’incidences continues).
[0081] Selon un deuxième type de réalisation, les moyens pour exciter 41 le milieu M selon au moins deux chemins optiques différents comportent des moyens pour exciter 41 le milieu M avec au moins deux focalisations différentes d’excita tion.
[0082] Selon un mode de réalisation particulier de ce deuxième type de réalisation, les moyens pour exciter 41 le milieu M avec au moins deux focalisations diffé rentes d’excitation peuvent comporter au moins deux éléments d’achemine ment (410, 410’), d’une part, qui sont configurés pour acheminer ledit au moins un rayonnement monochromatique en lumière visible ou infrarouge (émis par ladite au moins une source de rayonnement monochromatique en lu mière visible ou infrarouge 40), et, d’autre part, qui sont conçus pour exciter le milieu M avec ledit au moins un rayonnement monochromatique en lumière vi sible ou infrarouge ceci avec au moins deux focalisations différentes d’excita tion.
[0083] Les éléments d’acheminement susmentionnés (310, 310’, 410, 410’) peuvent, chacun, comporter ou être constitués par une fibre optique.
[0084] Tel que mentionné ci-dessus, ladite installation de détection 1 comporte des premiers moyens de collecte et d’acheminement 5 d’au moins un premier rayonnement électromagnétique émis par le milieu M.
[0085] Selon une caractéristique additionnelle, ces premiers moyens de collecte et d’acheminement 5 peuvent, alors, comporter des moyens pour collecter 50 ledit au moins un premier rayonnement électromagnétique, ceci selon au moins deux chemins optiques différents.
[0086] A ce propos, on observera que, selon un premier type de réalisation, les moyens pour collecter 50 ledit au moins un premier rayonnement électromagnétique se lon au moins deux chemins optiques différents comportent des moyens pour collecter 50 ledit au moins un premier rayonnement électromagnétique selon au moins deux incidences différentes de collecte.
[0087] Selon un mode particulier de réalisation, les moyens pour collecter 50 ledit au moins un premier rayonnement électromagnétique selon au moins deux inci dences différentes de collecte comportent au moins deux éléments de collecte et d’acheminement 51 qui sont agencés pour collecter ledit au moins un pre mier rayonnement électromagnétique selon au moins deux incidences diffé rentes de collecte. En fait, lesdits au moins deux éléments de collecte et d’ache minement 51 adoptent, de préférence, au moins deux positions différentes et/ou au moins deux orientations différentes. [0088] Selon un autre mode de réalisation, les moyens pour collecter 50 ledit au moins un premier rayonnement électromagnétique selon au moins deux incidences différentes de collecte comportent, d’une part, au moins un moyen de réflexion qui est configuré pour réfléchir ledit au moins un premier rayonnement électro magnétique émis par le milieu M et, d’autre part encore, des moyens de posi tionnement qui sont configurés pour positionner ledit au moins un moyen de réflexion dans au moins deux positions différentes. Un tel positionnement dans au moins deux positions différentes autorise, alors, une collecte selon au moins deux incidences différentes de collecte.
[0089] Selon encore un autre mode de réalisation, les moyens pour collecter 50 ledit au moins un premier rayonnement électromagnétique selon au moins deux inci dences différentes de collecte comportent des moyens de positionnement qui sont configurés pour positionner au moins un élément de collecte et d’achemi nement, ceci dans au moins deux positions différentes. Là encore, un tel posi tionnement dans au moins deux positions différentes autorise, alors, une col lecte selon au moins deux incidences différentes de collecte.
[0090] De tels moyens de positionnement permettent, avantageusement, d’augmenter de manière substantielle le nombre de chemins optiques de collecte dudit au moins un premier rayonnement électromagnétique.
[0091] On observera que les moyens de positionnement comportent, d’une part, des moyens de montage en rotation autour d’un axe dudit au moins un moyen de réflexion, respectivement dudit au moins un élément de collecte et d’ achemi nent, et, d’autre part, des moyens d’entraînement en rotation autour dudit axe dudit au moins un moyen de réflexion, respectivement dudit au moins un élé ment de collecte et d’ acheminent.
[0092] De tels moyens d’entraînement en rotation peuvent, là encore, être conçus pour assurer une rotation de manière discrète (et, ainsi, assurer une collecte sous une pluralité d’incidences discrètes) ou de manière continue (et, ainsi, assurer une collecte sous une pluralité d’incidences continues).
[0093] Selon un deuxième type de réalisation, les moyens pour collecter 50 ledit au moins un premier rayonnement électromagnétique selon au moins deux che mins optiques différents comportent des moyens pour collecter 50 ledit au moins un premier rayonnement électromagnétique avec au moins deux focali sations différentes de collecte.
[0094] Selon un mode particulier de réalisation, les moyens pour collecter 50 ledit au moins un premier rayonnement électromagnétique avec au moins deux focali sations différentes de collecte comportent au moins deux éléments de collecte et d’acheminement 51 qui sont configurés pour collecter ledit au moins un pre mier rayonnement électromagnétique avec au moins deux focalisations diffé rentes de collecte. [0095] Tel que mentionné ci-dessus, ladite installation de détection 1 comporte, aussi, des deuxièmes moyens de collecte et d’acheminement 6 d’au moins un deu xième rayonnement électromagnétique émis par le milieu M.
[0096] Selon une caractéristique additionnelle, ces deuxièmes moyens de collecte et d’acheminement 6 peuvent, alors, comporter des moyens pour collecter 60 ledit au moins un deuxième rayonnement électromagnétique, ceci selon au moins deux chemins optiques différents.
[0097] A ce propos, on observera que, selon un premier type de réalisation, les moyens pour collecter 60 ledit au moins un deuxième rayonnement électromagnétique selon au moins deux chemins optiques différents comportent des moyens pour collecter 60 ledit au moins un deuxième rayonnement électromagnétique selon au moins deux incidences différentes de collecte.
[0098] Selon un mode particulier de réalisation, les moyens pour collecter 60 ledit au moins un deuxième rayonnement électromagnétique selon au moins deux inci dences différentes de collecte comportent au moins deux éléments de collecte et d’acheminement 61 qui sont agencés pour collecter ledit au moins un deu xième rayonnement électromagnétique selon au moins deux incidences diffé rentes de collecte. En fait, lesdits au moins deux éléments de collecte et d’ache minement 61 adoptent, de préférence, au moins deux positions différentes et/ou au moins deux orientations différentes.
[0099] Selon un autre mode de réalisation, les moyens pour collecter 60 ledit au moins un deuxième rayonnement électromagnétique selon au moins deux incidences différentes de collecte comportent, d’une part, au moins un moyen de réflexion qui est configuré pour réfléchir ledit au moins un deuxième rayonnement élec tromagnétique émis par le milieu M et, d’autre part encore, des moyens de po sitionnement qui sont configurés pour positionner ledit au moins un moyen de réflexion dans au moins deux positions différentes. Un tel positionnement dans au moins deux positions différentes autorise, alors, une collecte selon au moins deux incidences différentes de collecte.
[0100] Selon encore un autre mode de réalisation, les moyens pour collecter 60 ledit au moins un deuxième rayonnement électromagnétique selon au moins deux incidences différentes de collecte comportent des moyens de positionnement qui sont configurés pour positionner au moins un élément de collecte et d’ache minement, ceci dans au moins deux positions différentes. Là encore, un tel po sitionnement dans au moins deux positions différentes autorise, alors, une col lecte selon au moins deux incidences différentes de collecte.
[0101] De tels moyens de positionnement permettent, avantageusement, d’augmenter de manière substantielle le nombre de chemins optiques de collecte dudit au moins un deuxième rayonnement électromagnétique.
[0102] On observera que les moyens de positionnement comportent, d’une part, des moyens de montage en rotation autour d’un axe dudit au moins un moyen de réflexion, respectivement dudit au moins un élément de collecte et d’ achemi nent, et, d’autre part, des moyens d’entraînement en rotation autour dudit axe dudit au moins un moyen de réflexion, respectivement dudit au moins un élé ment de collecte et d’ acheminent.
[0103] Là encore, de tels moyens d’entraînement en rotation peuvent être conçus pour assurer une rotation de manière discrète (et, ainsi, assurer une collecte sous une pluralité d’incidences discrètes) ou de manière continue (et, ainsi, assurer une collecte sous une pluralité d’incidences continues).
[0104] Selon un deuxième type de réalisation, les moyens pour collecter 60 ledit au moins un deuxième rayonnement électromagnétique selon au moins deux che mins optiques différents comportent des moyens pour collecter 60 ledit au moins un deuxième rayonnement électromagnétique avec au moins deux foca lisations différentes de collecte.
[0105] Selon un mode particulier de réalisation, les moyens pour collecter 60 ledit au moins un deuxième rayonnement électromagnétique avec au moins deux foca lisations différentes de collecte comportent au moins deux éléments de collecte et d’acheminement 61 qui sont configurés pour collecter ledit au moins un deu xième rayonnement électromagnétique avec au moins deux focalisations diffé rentes de collecte.
[0106] Les moyens de collecte et d’acheminement 5 dudit au moins un premier rayon nement électromagnétique et/ou les moyens de collecte et d’acheminement 6 dudit au moins un deuxième rayonnement électromagnétique peuvent, chacun, comporter ou être constitués par au moins une fibre optique.
[0107] En particulier, ledit au moins un élément de collecte et d’acheminent (51 ; 61) peut, chacun, comporter ou être constitué par au moins une fibre optique.
[0108] Selon une autre caractéristique de l’invention, l’installation de détection 1 peut comporter au moins une sonde d’éclairage qui comporte au moins une partie des moyens d’éclairage 3, plus particulièrement au moins les moyens pour éclairer 31 le milieu M selon au moins deux chemins optiques différents, no tamment au moins les moyens pour éclairer 31 le milieu M selon au moins deux incidences différentes d’éclairage, voire encore ladite au moins une source de lumière visible polychromatique 30 tel que décrit ci-dessus.
[0109] Une telle sonde d’éclairage peut, alors, comporter lesdits au moins deux élé ments d’acheminement (310, 310’) qui sont configurés pour acheminer ladite au moins une lumière visible polychromatique, ceci tel que décrit ci-dessus.
[0110] De manière alternative, cette sonde d’éclairage peut comporter lesdits moyens de positionnement (312 ; 313) ainsi que, selon le cas, ledit au moins un moyen de réflexion 311 ou ladite au moins une source de lumière visible polychroma tique 30 tels que décrits ci-dessus. [0111] De manière additionnelle, l’installation de détection 1 peut comporter au moins une sonde d’excitation qui comporte au moins une partie des moyens d’excita tion 4, plus particulièrement au moins les moyens pour exciter 41 le milieu M selon au moins deux chemins optiques différents, notamment au moins les moyens pour exciter 41 le milieu M selon au moins deux incidences différentes d’excitation, voire encore ladite au moins une source de rayonnement mono chromatique en lumière visible ou infrarouge 40 tel que décrit ci-dessus.
[0112] Une telle sonde d’excitation peut, alors, comporter lesdits au moins deux élé ments d’acheminement (410, 410’) qui sont configurés pour acheminer ledit au moins un rayonnement monochromatique en lumière visible ou infrarouge ceci tel que décrit ci-dessus.
[0113] De manière alternative, cette sonde d’excitation peut comporter lesdits moyens de positionnement (412 ; 413) ainsi que, selon le cas, ledit au moins un moyen de réflexion 411 ou ladite au moins une source de rayonnement monochroma tique en lumière visible ou infrarouge 40 tels que décrits ci-dessus.
[0114] Cependant et selon un mode particulier de réalisation, ladite installation de dé tection 1 peut comporter au moins une sonde d’éclairage et d’excitation 10 qui comporte, d’une part, au moins une partie des moyens d’éclairage 3, notam ment au moins les moyens pour éclairer 31 le milieu M selon au moins deux chemins optiques différents tels que décrits ci-dessus (plus particulièrement lesdits au moins deux éléments d’acheminement 310 ; 310’ configurés pour acheminer ladite au moins une lumière visible poly chromatique), voire encore ladite au moins une source de lumière visible polychromatique 30.
[0115] D’autre part, cette sonde d’éclairage et d’excitation 10 comporte au moins une partie des moyens d’excitation 4, notamment au moins les moyens pour exciter 41 le milieu M selon au moins deux chemins optiques différents tels que dé crits ci-dessus (plus particulièrement lesdits au moins deux éléments d’achemi nement 410 ; 410’ configurés pour acheminer ledit au moins un rayonnement monochromatique en lumière visible ou infrarouge), voire encore ladite au moins une source de rayonnement monochromatique en lumière visible ou in frarouge 40.
[0116] En particulier, ladite au moins une sonde d’éclairage et d’excitation 10 com porte lesdits moyens pour éclairer 31 le milieu M selon au moins deux chemins optiques différents tels que décrits ci-dessus, plus particulièrement lesdits moyens pour éclairer 31 le milieu M selon au moins deux incidences diffé rentes d’éclairage, notamment lesdits au moins deux éléments d’acheminement 310 ; 310’ configurés pour acheminer ladite au moins une lumière visible poly chromatique ou lesdits moyens de positionnement (312 ; 313) ainsi que, selon le cas, ledit au moins un moyen de réflexion 311 et/ou ladite au moins une source de lumière visible polychromatique 30 tels que décrits ci-dessus. [0117] De manière alternative ou (et de préférence) additionnelle (comme visible fi gure 1), ladite au moins une sonde d’éclairage et d’excitation 10 comporte les- dits moyens pour exciter 41 le milieu M selon au moins deux chemins optiques différents tels que décrits ci-dessus, plus particulièrement lesdits moyens pour exciter 41 le milieu M selon au moins deux incidences différentes d’excitation, notamment lesdits au moins deux éléments d’acheminement 410 ; 410’ confi gurés pour acheminer ledit au moins un rayonnement monochromatique en lu mière visible ou infrarouge ou lesdits moyens de positionnement (412 ; 413) ainsi que, selon le cas, ledit au moins un moyen de réflexion 411 et/ou ladite au moins une source de rayonnement monochromatique en lumière visible ou in frarouge 40 tels que décrits ci-dessus.
[0118] Selon une autre caractéristique, l’installation de détection 1 peut, encore, com porter au moins une sonde de collecte 11 qui comporte les moyens pour collec ter 50 ledit au moins un premier rayonnement électromagnétique selon au moins deux chemins optiques différents tels que décrits ci-dessus.
[0119] De manière alternative ou (et de préférence) additionnelle (comme visible fi gure 1) ladite au moins une sonde de collecte 11 comporte les moyens pour collecter 60 ledit au moins un deuxième rayonnement électromagnétique selon au moins deux chemins optiques différents tels que décrits ci-dessus.
[0120] Une telle sonde de collecte 11 peut, alors, comporter lesdits au moins deux élé ments de collecte et d’acheminement 51 agencés pour collecter ledit au moins un premier rayonnement électromagnétique selon au moins deux incidences de collecte différentes et/ou lesdits au moins deux éléments de collecte et d’ache minement 61 agencés pour collecter ledit au moins un deuxième rayonnement électromagnétique selon au moins deux incidences de collecte différentes tels que décrits ci-dessus.
[0121] Une telle sonde de collecte 11 peut, aussi, comporter les moyens de positionne ment ainsi que, selon le cas, ledit au moins un moyen de réflexion et/ou ledit au moins un élément de collecte et d’acheminement tels que décrits ci-dessus.
[0122] De manière alternative ou additionnelle, une telle sonde de collecte 11 peut comporter lesdits au moins deux éléments de collecte et d’acheminement 51 configurés pour collecter ledit au moins un premier rayonnement électroma gnétique avec au moins deux focalisations de collecte différentes et/ou lesdits au moins deux éléments de collecte et d’acheminement 61 agencés pour collec ter ledit au moins un deuxième rayonnement électromagnétique configurés pour collecter ledit au moins un premier rayonnement électromagnétique avec au moins deux focalisations de collecte différentes.
[0123] Finalement et selon un mode particulier de réalisation, l’installation de détec tion 1 comporte au moins une sonde d’éclairage, d’excitation, et de collecte 12 qui comporte au moins une partie des moyens d’éclairage 3, au moins une par- tie des moyens d’excitation 4, au moins une partie des premiers moyens de col lecte et d’acheminement 5 ainsi qu’au moins une partie des deuxièmes moyens de collecte et d’acheminement 6 tels que décrits ci-dessus.
[0124] Une telle sonde d’éclairage, d’excitation, et de collecte 12 peut, alors, compor ter les moyens pour éclairer 31 le milieu M selon au moins deux chemins op tiques différents (plus particulièrement tels que décrits ci-dessus, notamment lesdits au moins deux éléments d’acheminement 310, 310’).
[0125] De manière alternative ou (et de préférence) additionnelle (figures 4 et 5), une telle sonde d’éclairage, d’excitation, et de collecte 12 peut comporter les moyens pour exciter 41 le milieu M selon au moins deux chemins optiques dif férents (plus particulièrement tels que décrits ci-dessus, notamment lesdits au moins deux éléments d’acheminement 410, 410’).
[0126] De manière alternative ou (et de préférence) additionnelle (figures 4 et 5), une telle sonde d’éclairage, d’excitation, et de collecte 12 peut comporter les moyens pour collecter 50 ledit au moins un premier rayonnement électroma gnétique selon au moins deux chemins optiques différents (plus particulière ment tels que décrits ci-dessus, notamment lesdits au moins deux éléments de collecte et d’acheminement 51).
[0127] De manière alternative ou (et de préférence) additionnelle (figures 4 et 5), une telle sonde d’éclairage, d’excitation, et de collecte 12 peut comporter les moyens pour collecter 60 ledit au moins un deuxième rayonnement électroma gnétique selon au moins deux chemins optiques différents (plus particulière ment tels que décrits ci-dessus, notamment lesdits au moins deux éléments de collecte et d’acheminement 61).
[0128] Selon une autre caractéristique, la sonde d’éclairage et/ou la sonde d’excitation et/ou la sonde d’éclairage et d’excitation 10 et/ou la sonde de collecte 11 et/ou la sonde d’éclairage, d’excitation et de collecte 12 est positionnée au moins en partie à l’intérieur du contenant.
[0129] De manière alternative, la sonde d’éclairage et/ou la sonde d’excitation et/ou la sonde d’éclairage et d’excitation 10 et/ou la sonde de collecte 11 et/ou la sonde d’éclairage, d’excitation et de collecte 12 est positionnée au moins en partie à l’extérieur du contenant, plus particulièrement en regard d’une portion transpa rente 20 d’une paroi 21 du contenant 2, voire en applique contre une telle por tion transparente 20 de paroi 21, notamment plane.
[0130] A ce propos, on observera que, d’une part, la portion transparente 20 de la pa roi 21 du contenant 2 peut, alors, présenter une surface plane et, d’autre part, la sonde présente une surface plane et est en applique contre la surface plane de cette portion transparente 20 de la paroi 21 du contenant 2.
[0131] Tel que mentionné ci-dessus, l’installation de détection 1 comporte des moyens de détection 9 dudit au moins un paramètre caractéristique du milieu M, ceci à partir dudit au moins un spectre visible du milieu M et à partir dudit au moins un spectre Raman du milieu M.
[0132] De tels moyens de détection 9 comportent, d’une part, une base de données.
[0133] Cette base de données contient une pluralité de spectres visibles de référence.
[0134] Un tel spectre visible de référence correspond à un spectre visible d’un milieu de référence (qui présente un paramètre caractéristique connu de référence) qui est obtenu par un spectro mètre visible, ceci à partir d’au moins un rayonnement électromagnétique, qui est émis par le milieu de référence qui présente un para mètre caractéristique connu de référence, et qui est collecté.
[0135] Cette base de données contient, également, une pluralité de spectres Raman de référence.
[0136] Un tel spectre Raman de référence correspond à un spectre Raman d’un milieu de référence (qui présente un paramètre caractéristique connu de référence) qui est obtenu par un spectro mètre Raman, ceci à partir d’au moins un rayonne ment électromagnétique, qui est émis par le milieu de référence qui présente un paramètre caractéristique connu de référence, et qui est collecté.
[0137] D’autre part, ces moyens de détection 9 comportent des moyens de traitement qui sont configurés pour traiter, de manière simultanée, ledit au moins un spectre visible du milieu M et ledit au moins un spectre Raman du milieu M en fonction de la pluralité de spectres visibles de référence et de la pluralité de spectres Raman de référence que contient la base de données, ceci en vue d’ob tenir ledit au moins un paramètre caractéristique du milieu M.
[0138] De tels moyens de traitement comportent un logiciel. Ce logiciel met en œuvre un algorithme qui est, de préférence, un algorithme de régression par les moindres carrés partiels usuellement connu sous la dénomination anglosaxonne de « partial least square régression » PLS.
[0139] La présente invention concerne, également, une sonde d’éclairage et/ou une sonde d’excitation et/ou une sonde d’éclairage et d’excitation 10 et/ou une sonde de collecte 11 et/ou une sonde d’éclairage, d’excitation et de collecte 12. Une telle sonde présente au moins une partie des caractéristiques décrites ci- dessus.
[0140] La présente invention concerne, encore, un procédé de détection d’au moins un paramètre caractéristique d’un milieu M. Ce procédé peut, en particulier, être mis en œuvre par une installation de détection 1 qui présente au moins une par tie des caractéristiques décrites ci-dessus.
[0141] Ce procédé de détection comporte les étapes :
[0142] - d’éclairage du milieu M avec une lumière visible polychromatique ;
[0143] - d’excitation du milieu M avec un rayonnement monochromatique en lumière visible ou infrarouge ;
[0144] - de collecte et d’acheminement d’au moins un premier rayonnement électro magnétique émis par le milieu M ; [0145] - de collecte et d’acheminement d’au moins un deuxième rayonnement électro magnétique émis par le milieu M ;
[0146] - d’obtention d’au moins un spectre visible du milieu M à partir dudit au moins un premier rayonnement électromagnétique ;
[0147] - d’obtention d’au moins un spectre Raman du milieu M à partir dudit au moins un deuxième rayonnement électromagnétique ;
[0148] - de détection dudit au moins un paramètre caractéristique du milieu M, ceci à partir dudit au moins un spectre visible du milieu M ainsi qu’à partir dudit au moins un spectre Raman du milieu M.
[0149] Tel que mentionné ci-dessus, une étape du procédé de détection concerne une étape d’éclairage du milieu M avec une lumière visible poly chromatique. Une telle étape d’éclairage peut être mise en œuvre par l’intermédiaire des moyens d’éclairage 3 mentionnés ci-dessus.
[0150] De plus, cette étape d’éclairage du milieu M avec une lumière visible polychro- matique comporte, de préférence, une étape d’éclairage du milieu M selon au moins deux chemins optiques différents.
[0151] En fait, une telle étape d’éclairage du milieu M selon au moins deux chemins optiques différents peut comporter une étape d’éclairage du milieu M, soit se lon au moins deux incidences différentes d’éclairage, soit avec au moins deux focalisations différentes d’éclairage.
[0152] Une telle étape d’éclairage du milieu M peut, alors, plus particulièrement, être mise en œuvre par l’intermédiaire des moyens pour éclairer 31 décrits ci-des- sus.
[0153] Tel que mentionné ci-dessus, une autre étape du procédé de détection concerne une étape d’excitation du milieu M avec un rayonnement monochromatique en lumière visible ou infrarouge. Une telle étape d’excitation peut être mise en œuvre par l’intermédiaire des moyens d’excitation 4 mentionnés ci-dessus.
[0154] De plus, cette étape d’excitation du milieu M avec un rayonnement monochro matique en lumière visible ou infrarouge comporte, de préférence, une étape d’excitation du milieu M selon au moins deux chemins optiques différents.
[0155] En fait, une telle étape d’excitation du milieu M selon au moins deux chemins optiques différents peut comporter une étape d’excitation du milieu M, soit se lon au moins deux incidences différentes d’excitation, soit avec au moins deux focalisations différentes d’excitation.
[0156] Une telle étape d’excitation du milieu M peut, alors, plus particulièrement, être mise en œuvre par l’intermédiaire des moyens pour exciter 41 décrits ci-dessus.
[0157] Tel que mentionné ci-dessus, encore une autre étape du procédé de détection concerne une étape de collecte et d’acheminement d’au moins un premier rayonnement électromagnétique émis par le milieu M. Une telle étape peut être mise en œuvre par l’intermédiaire des premiers moyens de collecte et d’ache minement 5 mentionnés ci-dessus. [0158] De plus, cette étape de collecte et d’acheminement d’au moins un premier rayonnement électromagnétique émis par le milieu M comporte, de préférence, une étape de collecte d’au moins un premier rayonnement électromagnétique selon au moins deux chemins optiques différents.
[0159] En fait, une telle étape de collecte d’au moins un premier rayonnement électro magnétique selon au moins deux chemins optiques différents peut comporter une étape de collecte d’au moins un premier rayonnement électromagnétique, soit selon au moins deux incidences différentes de collecte, soit avec au moins deux focalisations différentes de collecte.
[0160] Une telle étape de collecte peut, alors, plus particulièrement, être mise en œuvre par l’intermédiaire des moyens pour collecter 50 ledit au moins un pre mier rayonnement électromagnétique décrits ci-dessus.
[0161] Tel que mentionné ci-dessus, une autre étape du procédé de détection concerne une étape de collecte et d’acheminement d’au moins un deuxième rayonnement électromagnétique émis par le milieu M. Une telle étape peut être mise en œuvre par l’intermédiaire des deuxièmes moyens de collecte et d’achemine ment 6 mentionnés ci-dessus.
[0162] De plus, cette étape de collecte et d’acheminement d’au moins un deuxième rayonnement électromagnétique émis par le milieu M comporte, de préférence, une étape de collecte d’au moins un deuxième rayonnement électromagnétique selon au moins deux chemins optiques différents.
[0163] En fait, une telle étape de collecte d’au moins un deuxième rayonnement élec tromagnétique selon au moins deux chemins optiques différents peut comporter une étape de collecte d’au moins un deuxième rayonnement électromagnétique, soit selon au moins deux incidences différentes de collecte, soit avec au moins deux focalisations différentes de collecte.
[0164] Une telle étape de collecte peut, alors, plus particulièrement, être mise en œuvre par l’intermédiaire des moyens pour collecter 60 ledit au moins un deu xième rayonnement électromagnétique décrits ci-dessus.
[0165] Tel que mentionné ci-dessus, une autre étape du procédé de détection concerne une étape de détection dudit au moins un paramètre caractéristique du milieu M. Une telle étape peut être mise en œuvre par l’intermédiaire des moyens de détection 9 mentionnés ci-dessus.
[0166] De plus, cette étape de détection comporte une étape de traitement, de manière simultanée, dudit au moins un spectre visible du milieu M et dudit au moins un spectre Raman visible du milieu M, ceci en fonction d’une pluralité de spectres visibles de référence et d’une pluralité de spectres Raman de référence préala blement enregistrés dans une base de données (plus particulièrement enregis trés avant la mise en œuvre du procédé de détection et/ou lors d’une étape d’apprentissage), ceci en vue d’obtenir ledit au moins un paramètre caractéris tique du milieu M. [0167] Tel que décrit ci-dessus, un tel spectre visible (respectivement Raman) de réfé rence correspond à un spectre visible (respectivement Raman) d’un milieu de référence (qui présente un paramètre caractéristique connu de référence) qui est obtenu par un spectromètre visible (respectivement Raman), ceci à partir d’au moins un rayonnement électromagnétique, qui est émis par le milieu de réfé rence qui présente un paramètre caractéristique connu de référence, et qui est collecté.
[0168] Ladite étape de traitement est, plus particulièrement, mise en œuvre par les moyens de traitement mentionnés ci-dessus. En particulier, cette étape de trai tement peut être mise en œuvre par un logiciel, notamment un logiciel qui met en œuvre un algorithme qui est, de préférence, un algorithme de régression par les moindres carrés partiels usuellement connu sous la dénomination anglo- saxonne de « partial least square régression » PLS.
[0169] Tel que mentionné ci-dessus, l’invention concerne une installation de détection d’au moins un paramètre caractéristique d’un milieu M.
[0170] L’invention concerne, également, un procédé de détection d’au moins un tel pa ramètre caractéristique d’un milieu M.
[0171] A ce propos, on observera qu’un tel milieu M peut être un milieu de culture en bioréacteur à l’intérieur duquel se déroule un processus biologique ou biochi mique de culture. Le paramètre caractéristique de ce milieu M peut, alors, être la présence ou la quantité d’au moins un nutriment, la présence ou la quantité d’au moins un métabolite, la présence, la quantité ou l’état d’au moins un mi croorganisme.
[0172] De manière alternative, le milieu M peut, encore, être un milieu de fermenta tion à l’intérieur duquel se déroule un processus biologique de fermentation. Le paramètre caractéristique de ce milieu M peut, alors, être un produit du méta bolisme, plus particulièrement le taux de sucre (notamment le taux de glucose) ou le taux d’alcool (notamment le taux d’éthanol). Le procédé et l’installation conformes à l’invention permettent, alors, avantageusement, d’obtenir un tel paramètre caractéristique avec une précision de Tordre du gramme par litre.
[0173] Encore de manière alternative, le milieu M peut, encore, être un milieu de pro duction à l’intérieur duquel se déroule un processus chimique ou biochimique de production d’un produit, notamment pharmaceutique ou alimentaire. Le pa ramètre caractéristique peut, alors, être la quantité de produit, notamment phar maceutique ou alimentaire, fabriqué.

Claims

Revendications
[Revendication 1] Installation de détection (1) d’au moins un paramètre caractéristique d’un milieu (M), cette installation de détection (1) comporte :
- au moins un contenant (2) destiné à contenir le milieu (M) ;
- des moyens d’éclairage (3) qui sont configurés pour éclairer le milieu (M) avec une lumière visible polychromatique ;
- des moyens d’excitation (4) qui sont configurés pour exciter le milieu (M) avec un rayonnement monochromatique en lumière visible ou infrarouge ;
- des premiers moyens de collecte et d’acheminement (5) qui sont configurés pour collecter et acheminer au moins un premier rayonnement électromagnétique émis par le milieu (M) ainsi que des deuxièmes moyens de collecte et d’acheminement (6) qui sont configurés pour collecter et acheminer au moins un deuxième rayonnement électromagnétique émis par le milieu (M) ;
- au moins un spectromètre visible (7), qui est raccordé auxdits premiers moyens de collecte et d’acheminement (5), et qui est configuré pour obtenir au moins un spectre visible du milieu (M) à partir dudit au moins un premier rayonnement électromagnétique ;
- au moins un spectromètre Raman (8), qui est raccordé auxdits deuxièmes moyens de collecte et d’acheminement (6), et qui est configuré pour obtenir au moins un spectre Raman du milieu (M) à partir dudit au moins un deuxième rayonnement électromagnétique ;
- des moyens de détection (9) dudit au moins un paramètre caractéristique du milieu (M), ceci à partir dudit au moins un spectre visible du milieu (M) et à partir dudit au moins un spectre Raman du milieu (M), lesdits moyens de détection (9) comportent, d’une part, une base de données qui contient une pluralité de spectres visibles de référence et une pluralité de spectres Raman de référence et, d’autre part, des moyens de traitement qui sont configurés pour traiter, de manière simultanée, ledit au moins un spectre visible du milieu (M) et ledit au moins un spectre Raman du milieu (M) en fonction de la pluralité de spectres visibles de référence et de la pluralité de spectres Raman de référence de la base de données, ceci en vue d’obtenir ledit au moins un paramètre caractéristique du milieu (M).
[Revendication 2] Installation de détection (1) selon la revendication 1, caractérisée par le fait que les moyens d’éclairage (3), respectivement les moyens d’excitation (4), comportent, d’une part, au moins une source de lumière visible polychromatique (30) configurée pour émettre au moins une lumière visible polychromatique, respectivement au moins une source de rayonnement monochromatique en lumière visible ou infrarouge (40) configurée pour émettre au moins un rayonnement monochromatique en lumière visible ou infrarouge, et, d’autre part, des moyens pour éclairer (31) le milieu (M), respectivement des moyens pour exciter (41) le milieu (M), selon au moins deux chemins optiques différents.
[Revendication 3] Installation de détection (1) selon la revendication 1, caractérisée par le fait que lesdits premiers moyens de collecte et d’acheminement (5), respectivement lesdits deuxièmes moyens de collecte et d’acheminement (6), comportent des moyens pour collecter (50) ledit au moins un premier rayonnement électromagnétique, respectivement des moyens pour collecter (60) ledit au moins un deuxième rayonnement électromagnétique, ceci selon au moins deux chemins optiques différents.
[Revendication 4] Installation de détection (1) selon la revendication 2 ou 3, caractérisée par le fait que les moyens pour éclairer (31) le milieu (M), les moyens pour exciter (41) le milieu (M) ou les moyens pour collecter (50 ; 60), selon au moins deux chemins optiques différents comportent des moyens pour éclairer (31) le milieu (M), exciter (41) le milieu (M) ou collecter (50 ; 60), soit selon au moins deux incidences différentes d’éclairage, d’excitation ou de collecte, soit avec au moins deux focalisations différentes d’éclairage, d’excitation ou de collecte.
[Revendication 5] Installation de détection (1) selon la revendication 4, caractérisée par le fait que les moyens pour éclairer (31) le milieu (M) selon au moins deux incidences différentes d’éclairage, respectivement les moyens pour exciter (41) le milieu (M) selon au moins deux incidences différentes d’excitation, comportent au moins deux éléments d’acheminement (310, 310’ ; 410, 410’), d’une part, qui sont configurés pour acheminer ladite au moins une lumière visible polychromatique, respectivement ledit au moins un rayonnement monochromatique en lumière visible ou infrarouge et, d’autre part, qui sont agencés pour éclairer le milieu (M) avec ladite au moins une lumière visible polychromatique ceci selon au moins deux incidences différentes d’éclairage, respectivement pour exciter le milieu (M) avec ledit au moins un rayonnement monochromatique en lumière visible ou infrarouge ceci selon au moins deux incidences différentes d’excitation.
[Revendication 6] Installation de détection (1) selon la revendication 5, caractérisée par le fait que lesdits au moins deux éléments d’acheminement (310,
310’ ; 410, 410’) adoptent au moins deux positions différentes et/ou au moins deux orientations différentes.
[Revendication 7] Installation de détection (1) selon la revendication 4, caractérisée par le fait que les moyens pour éclairer (31) selon au moins deux incidences différentes d’éclairage, respectivement les moyens pour exciter (41) selon au moins deux incidences différentes d’excitation, comportent, d’une part, au moins un moyen de réflexion (311 ; 411) qui est configuré pour réfléchir ladite au moins une lumière visible polychromatique, respectivement ledit au moins un rayonnement monochromatique en lumière visible ou infrarouge, en direction du milieu (M) et, d’autre part encore, des moyens de positionnement (312 ; 412) qui sont configurés pour positionner ledit au moins un moyen de réflexion (311 ; 411) dans au moins deux positions différentes.
[Revendication 8] Installation de détection (1) selon la revendication 4, caractérisée par le fait que les moyens pour éclairer (31) selon au moins deux incidences différentes d’éclairage, respectivement les moyens pour exciter (41) selon au moins deux incidences différentes d’excitation, comportent des moyens de positionnement (313 ; 413) qui sont configurés pour positionner ladite au moins une source de lumière visible polychromatique (30), respectivement ladite au moins une source de rayonnement monochromatique en lumière visible ou infrarouge (40), ceci dans au moins deux positions différentes.
[Revendication 9] Installation de détection (1) selon les revendications 7 ou 8, caractérisée par le fait que les moyens de positionnement (312, 412 ; 313 ; 413) comportent, d’une part, des moyens de montage en rotation autour d’un axe, respectivement dudit au moins un moyen de réflexion (311, 411), de ladite au moins une source de lumière visible polychromatique (30) ou de ladite au moins une source de rayonnement monochromatique en lumière visible ou infrarouge (40) et, d’autre part, des moyens d’entraînement en rotation autour dudit axe, respectivement dudit au moins un moyen de réflexion (311,
411), de ladite au moins une source de lumière visible polychromatique (30) ou de ladite au moins une source de rayonnement monochromatique en lumière visible ou infrarouge (40).
[Revendication 10] Installation de détection (1) selon la revendication 4, caractérisée par le fait que les moyens pour éclairer (31) le milieu (M) avec au moins deux focalisations différentes d’éclairage, respectivement les moyens pour exciter (41) avec au moins deux focalisations différentes d’excitation, comportent au moins deux éléments d’acheminement (310, 310’ ; 410, 410’), d’une part, qui sont configurés pour acheminer ladite au moins une lumière visible polychromatique, respectivement ledit au moins un rayonnement monochromatique en lumière visible ou infrarouge, et, d’autre part, qui sont conçus pour éclairer le milieu (M) avec ladite au moins une lumière visible polychromatique ceci avec au moins deux focalisations différentes d’éclairage, respectivement pour exciter le milieu (M) avec le rayonnement monochromatique en lumière visible ou infrarouge ceci avec au moins deux focalisations différentes d’excitation.
[Revendication 11] Installation de détection (1) selon la revendication 4, caractérisée par le fait que les moyens pour collecter (50 ; 60) ledit au moins un rayonnement électromagnétique selon au moins deux incidences différentes de collecte, respectivement les moyens pour collecter (50 ; 60) ledit au moins un rayonnement électromagnétique avec au moins deux focalisations différentes de collecte, comportent au moins deux éléments de collecte et d’acheminement (51 ; 61) qui sont agencés pour collecter ledit au moins un rayonnement électromagnétique selon au moins deux incidences différentes de collecte, respectivement qui sont configurés pour collecter ledit au moins un rayonnement électromagnétique avec au moins deux focalisations différentes de collecte.
[Revendication 12] Installation de détection (1) selon la revendication 11, caractérisée par le fait que lesdits au moins deux éléments de collecte et d’acheminement (51 ; 61) adoptent au moins deux positions différentes et/ou au moins deux orientations différentes.
[Revendication 13] Installation de détection (1) selon l’une quelconque des revendications précédentes, caractérisée par le fait qu’elle comporte au moins une sonde d’éclairage et d’excitation (10) qui comporte, d’une part, au moins une partie des moyens d’éclairage (3) et, d’autre part, au moins une partie des moyens d’excitation (4).
[Revendication 14] Installation de détection (1) selon les revendications 2 et 13, caractérisée par le fait que ladite au moins une sonde d’éclairage et d’excitation (10) comporte lesdits moyens pour éclairer (31) le milieu (M) selon au moins deux chemins optiques différents et/ou lesdits moyens pour exciter (41) le milieu (M) selon au moins deux chemins optiques différents.
[Revendication 15] Installation de détection (1) selon la revendication 3, caractérisée par le fait qu’elle comporte au moins une sonde de collecte (11) qui comporte les moyens pour collecter (50) ledit au moins un premier rayonnement électromagnétique selon au moins deux chemins optiques différents et/ou les moyens pour collecter (60) ledit au moins un deuxième rayonnement électromagnétique selon au moins deux chemins optiques différents.
[Revendication 16] Installation de détection (1) selon l’une quelconque des revendications 1 à 12, caractérisée par le fait qu’elle comporte au moins une sonde d’éclairage, d’excitation, et de collecte (12) qui comporte au moins une partie des moyens d’éclairage (3), au moins une partie des moyens d’excitation (4), au moins une partie des premiers moyens de collecte et d’acheminement (5) ainsi qu’au moins une partie des deuxièmes moyens de collecte et d’acheminement (6).
[Revendication 17] Procédé de détection d’au moins un paramètre caractéristique d’un milieu (M), ce procédé est mis en œuvre par l’installation de détection (1) conforme à l’une quelconque des revendications 1 à 17 et comporte les étapes :
- d’éclairage du milieu (M) avec une lumière visible polychromatique ;
- d’excitation du milieu (M) avec un rayonnement monochromatique en lumière visible ou infrarouge;
- de collecte et d’acheminement d’au moins un premier rayonnement électromagnétique émis par le milieu (M) ;
- de collecte et d’acheminement d’au moins un deuxième rayonnement électromagnétique émis par le milieu (M) ;
- d’obtention d’au moins un spectre visible du milieu (M) à partir dudit au moins un premier rayonnement électromagnétique ;
- d’obtention d’au moins un spectre Raman du milieu (M) à partir dudit au moins un deuxième rayonnement électromagnétique ;
- de détection dudit au moins un paramètre caractéristique du milieu (M), ceci à partir dudit au moins un spectre visible du milieu (M) ainsi qu’à partir dudit au moins un spectre Raman du milieu (M), cette étape de détection dudit au moins un paramètre caractéristique du milieu (M) comporte une étape de traitement, de manière simultanée, dudit au moins un spectre visible du milieu (M) et dudit au moins un spectre Raman visible du milieu (M), ceci en fonction d’une pluralité de spectres visibles de référence et d’une pluralité de spectres Raman de référence préalablement enregistrés dans une base de données, ceci en vue d’obtenir ledit au moins un paramètre caractéristique du milieu (M).
[Revendication 18] Procédé de détection selon la revendication 17, caractérisé par le fait que l’étape d’éclairage du milieu (M) avec une lumière visible poly chromatique, respectivement l’étape d’excitation du milieu (M) avec un rayonnement monochromatique en lumière visible ou infrarouge, comporte une étape d’éclairage, respectivement d’excitation, du milieu (M) selon au moins deux chemins optiques différents.
[Revendication 19] Procédé de détection selon la revendication 18, caractérisé par le fait que l’étape d’éclairage du milieu (M), respectivement l’étape d’excitation du milieu (M), selon au moins deux chemins optiques différents comporte une étape d’éclairage du milieu (M), respectivement une étape d’excitation du milieu (M), soit selon au moins deux incidences différentes d’éclairage, respectivement d’excitation, soit avec au moins deux focalisations différentes d’éclairage, respectivement d’excitation.
[Revendication 20] Procédé de détection selon la revendication 17, caractérisé par le fait que l’étape de collecte et d’acheminement d’au moins un premier rayonnement électromagnétique émis par le milieu (M), respectivement l’étape de collecte et d’acheminement d’au moins un deuxième rayonnement électromagnétique émis par le milieu (M), comporte une étape de collecte d’au moins un premier rayonnement électromagnétique, respectivement une étape de collecte d’au moins un deuxième rayonnement électromagnétique, selon au moins deux chemins optiques différents.
[Revendication 21] Procédé de détection selon la revendication 20, caractérisé par le fait que l’étape de collecte selon au moins deux chemins optiques différents comporte une étape de collecte, soit selon au moins deux incidences différentes de collecte, soit avec au moins deux focalisations différentes de collecte.
[Revendication 22] Procédé de détection selon l’une quelconque des revendications 17 à 21, caractérisé par le fait que, d’une part, le milieu (M) est un milieu de culture en bioréacteur à l’intérieur duquel se déroule un processus biologique ou biochimique de culture et, d’autre part, le paramètre caractéristique est la présence ou la quantité d’au moins un nutriment, la présence ou la quantité d’au moins un métabolite, la présence, la quantité ou l’état d’au moins un microorganisme.
[Revendication 23] Procédé de détection selon l’une quelconque des revendications 17 à 21, caractérisé par le fait que, d’une part, le milieu (M) est un milieu de fermentation à l’intérieur duquel se déroule un processus biologique de fermentation et, d’autre part, le paramètre caractéristique est un produit du métabolisme, plus particulièrement le taux de sucre ou le taux d’alcool.
[Revendication 24] Procédé de détection selon l’une quelconque des revendications 17 à 21, caractérisé par le fait que, d’une part, le milieu (M) est un milieu de production à l’intérieur duquel se déroule un processus chimique ou biochimique de production d’un produit, notamment pharmaceutique ou alimentaire et, d’autre part encore, le paramètre caractéristique est la quantité de produit, notamment pharmaceutique ou alimentaire, fabriqué.
PCT/EP2022/061727 2021-05-04 2022-05-02 Installation de detection d'au moins un parametre caracteristique d'un milieu et procede de detection d'au moins un tel parametre caracteristique WO2022233796A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
BR112023022966A BR112023022966A2 (pt) 2021-05-04 2022-05-02 Instalação para detecção de pelo menos um parâmetro característico de um meio e método para detecção de pelo menos um desses parâmetros característicos
EP22727771.2A EP4334709A1 (fr) 2021-05-04 2022-05-02 Installation de detection d'au moins un parametre caracteristique d'un milieu et procede de detection d'au moins un tel parametre caracteristique
CA3215706A CA3215706A1 (fr) 2021-05-04 2022-05-02 Installation de detection d'au moins un parametre caracteristique d'un milieu et procede de detection d'au moins un tel parametre caracteristique

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2104703A FR3122735B1 (fr) 2021-05-04 2021-05-04 Installation de détection d’au moins un paramètre caractéristique d’un milieu et procédé de détection d’au moins un tel paramètre caractéristique.
FRFR2104703 2021-05-04

Publications (1)

Publication Number Publication Date
WO2022233796A1 true WO2022233796A1 (fr) 2022-11-10

Family

ID=76375272

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2022/061727 WO2022233796A1 (fr) 2021-05-04 2022-05-02 Installation de detection d'au moins un parametre caracteristique d'un milieu et procede de detection d'au moins un tel parametre caracteristique

Country Status (5)

Country Link
EP (1) EP4334709A1 (fr)
BR (1) BR112023022966A2 (fr)
CA (1) CA3215706A1 (fr)
FR (1) FR3122735B1 (fr)
WO (1) WO2022233796A1 (fr)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090021724A1 (en) * 2007-07-20 2009-01-22 Vanderbilt University Combined raman spectroscopy-optical coherence tomography (rs-oct) system and applications of the same
US20120099102A1 (en) * 2010-10-26 2012-04-26 Bello Job M Dual and multi-wavelength sampling probe for raman spectroscopy
WO2014082957A1 (fr) * 2012-11-30 2014-06-05 Indatech Sonde pour mesures optiques en milieu turbide, et systeme de mesure optique mettant en oeuvre cette sonde
GB2516297A (en) * 2013-07-18 2015-01-21 De Beers Centenary AG Measuring parameters of a cut gemstone
WO2020075548A1 (fr) * 2018-10-11 2020-04-16 株式会社島津製作所 Dispositif et procédé de microspectroscopie

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090021724A1 (en) * 2007-07-20 2009-01-22 Vanderbilt University Combined raman spectroscopy-optical coherence tomography (rs-oct) system and applications of the same
US20120099102A1 (en) * 2010-10-26 2012-04-26 Bello Job M Dual and multi-wavelength sampling probe for raman spectroscopy
WO2014082957A1 (fr) * 2012-11-30 2014-06-05 Indatech Sonde pour mesures optiques en milieu turbide, et systeme de mesure optique mettant en oeuvre cette sonde
GB2516297A (en) * 2013-07-18 2015-01-21 De Beers Centenary AG Measuring parameters of a cut gemstone
WO2020075548A1 (fr) * 2018-10-11 2020-04-16 株式会社島津製作所 Dispositif et procédé de microspectroscopie

Also Published As

Publication number Publication date
EP4334709A1 (fr) 2024-03-13
BR112023022966A2 (pt) 2024-01-23
FR3122735A1 (fr) 2022-11-11
FR3122735B1 (fr) 2024-02-23
CA3215706A1 (fr) 2022-11-10

Similar Documents

Publication Publication Date Title
Lourenço et al. Bioreactor monitoring with spectroscopy and chemometrics: a review
CN1185478C (zh) 无损伤性红外分光术中多光谱分析用的方法和装置
EP3167285B1 (fr) Dispositif non invasif de détermination de la fertilité et/ou du sexe d'un oeuf, et procédé correspondant
Shaw et al. Noninvasive, on-line monitoring of the biotransformation by yeast of glucose to ethanol using dispersive Raman spectroscopy and chemometrics
EP2465416B1 (fr) Procédé de localisation d'un marqueur optique dans un milieu diffusant
EP2149041B1 (fr) Procede et systeme pour caracteriser un tissu biologique
EP3257947B1 (fr) Procede et systeme d'identification du type de gram d'une bacterie
JP2009516181A (ja) 試料または試料の成分の化学的または物理学的特性の決定
Altkorn et al. Raman performance characteristics of Teflon®-AF 2400 liquid-core optical-fiber sample cells
CN103649726A (zh) 用于荧光和吸收率分析的系统和方法
EP1430287B1 (fr) Dispositif de mesure des caracteristiques d'absorption lumineuse d'un echantillon de tissu biologique
WO2022233796A1 (fr) Installation de detection d'au moins un parametre caracteristique d'un milieu et procede de detection d'au moins un tel parametre caracteristique
Desiderio et al. Multiple excitation fluorometer for in situ oceanographic applications
WO2019122732A1 (fr) Procede et systeme d'identification du type de gram d'une bacterie
FR3050824A1 (fr) Procede et appareil de mesure de la concentration en eau dans un materiau diffusant la lumiere.
EP3311138B1 (fr) Determination de coefficient d'absorption et de diffusion a l'aide d'un signal optique de relfexion calibre
WO2008152292A9 (fr) Procede et systeme pour caracteriser un tissu biologique pigmente
WO2011045530A1 (fr) Procede et systeme d ' imagerie par fonctionnalisation du substrat
Fitzgerald et al. Performance assessment of probe-based Raman spectroscopy systems for biomedical analysis
WO2018069664A1 (fr) Procédé et appareil de détection d'analyte
Pulgarín et al. Kinetic–spectrometric three-dimensional chemiluminescence as an effective analytical tool. Application to the determination of benzo (a) pyrene
Zhang et al. Measurement of chlorophyll in water based on laser-induced fluorescence spectroscopy: Using spiral-wound unclad optical fiber system and partial least squares regression
Pulgarín et al. Innovative design of a methodology for the simultaneous determination of compounds by kinetic-spectroscopy three-dimensional chemiluminescence
EP3465146A1 (fr) Dispositif d'analyse, de preference pour chimiometrie d'un echantillon sanguin
Novikov et al. Multimodal fiber probe for simultaneous mid-infrared and Raman spectroscopy

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22727771

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 3215706

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 18559164

Country of ref document: US

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112023022966

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 2022727771

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022727771

Country of ref document: EP

Effective date: 20231204

ENP Entry into the national phase

Ref document number: 112023022966

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20231101