WO2022233347A2 - 板载天线、无线电器件及电子设备 - Google Patents

板载天线、无线电器件及电子设备 Download PDF

Info

Publication number
WO2022233347A2
WO2022233347A2 PCT/CN2022/116548 CN2022116548W WO2022233347A2 WO 2022233347 A2 WO2022233347 A2 WO 2022233347A2 CN 2022116548 W CN2022116548 W CN 2022116548W WO 2022233347 A2 WO2022233347 A2 WO 2022233347A2
Authority
WO
WIPO (PCT)
Prior art keywords
metal
metal block
antenna
edge
substrate
Prior art date
Application number
PCT/CN2022/116548
Other languages
English (en)
French (fr)
Other versions
WO2022233347A3 (zh
Inventor
黄雪娟
王典
李珊
陈哲凡
庄凯杰
Original Assignee
加特兰微电子科技(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 加特兰微电子科技(上海)有限公司 filed Critical 加特兰微电子科技(上海)有限公司
Priority to EP22798687.4A priority Critical patent/EP4178033A4/en
Publication of WO2022233347A2 publication Critical patent/WO2022233347A2/zh
Publication of WO2022233347A3 publication Critical patent/WO2022233347A3/zh
Priority to US18/114,355 priority patent/US20230238706A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0485Dielectric resonator antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0006Particular feeding systems
    • H01Q21/0075Stripline fed arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/32Adaptation for use in or on road or rail vehicles
    • H01Q1/3208Adaptation for use in or on road or rail vehicles characterised by the application wherein the antenna is used
    • H01Q1/3233Adaptation for use in or on road or rail vehicles characterised by the application wherein the antenna is used particular used as part of a sensor or in a security system, e.g. for automotive radar, navigation systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/42Housings not intimately mechanically associated with radiating elements, e.g. radome
    • H01Q1/422Housings not intimately mechanically associated with radiating elements, e.g. radome comprising two or more layers of dielectric material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/20Non-resonant leaky-waveguide or transmission-line antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/206Microstrip transmission line antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/08Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along or adjacent to a rectilinear path
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/045Substantially flat resonant element parallel to ground plane, e.g. patch antenna with particular feeding means

Definitions

  • the embodiments of the present disclosure relate to, but are not limited to, the field of antenna technologies, and in particular, relate to an on-board antenna, a radio device, and an electronic device.
  • the structure of the traditional radar antenna is to place the antenna radiating element directly on the substrate.
  • the high radio frequency such as millimeter wave radar
  • the pattern is easily affected by the surface wave and produces a large jitter, resulting in the deterioration or even distortion of the pattern.
  • the jitter of the radar antenna pattern reduces the detection performance of certain angles, and causes the imbalance of different transceiver channels, which affects the angle resolution accuracy of the radar system.
  • An embodiment of the present disclosure provides an on-board antenna, including: a dielectric substrate, an antenna, and a metal block;
  • the antenna is located on the dielectric substrate, the projections of the metal block and the antenna on the plane where the dielectric substrate is located do not overlap, and the metal block is located on the dielectric substrate in the polarization direction of the antenna, The distance between the metal edge of the metal block close to the antenna side and the antenna is greater than the coupling threshold.
  • the dielectric substrate includes a first substrate edge, a second substrate edge, a third substrate edge, and a fourth substrate edge; wherein the first substrate edge is the edge of the dielectric substrate in the polarization direction.
  • One edge, the second substrate edge is the other edge on the dielectric substrate in the polarization direction;
  • the third substrate edge is the edge intersecting with the first substrate edge;
  • the fourth substrate edge and the first substrate edge The three substrate sides are opposite sides.
  • the thickness of the metal block is the same as the thickness of the antenna.
  • the metal block includes a first metal block and/or a second metal block, the first metal block is located between the first substrate edge of the dielectric substrate and the antenna, and the second metal block It is located between the second substrate side of the dielectric substrate and the antenna.
  • the first metal side of the first metal block facing away from the antenna is separated from the first substrate side by a first set value
  • the antenna is separated from the second metal side of the first metal block by the first set value.
  • Two set values, the first metal side of the first metal block and the second metal side of the first metal block are opposite sides, and the second set value is greater than the coupling threshold.
  • the third metal edge of the first metal block is separated from the third substrate edge of the dielectric substrate by a third set value
  • the fourth metal edge of the first metal block is separated from the third substrate edge of the dielectric substrate.
  • the four sides of the substrate are separated by a fourth set value
  • the third metal side of the first metal block and the fourth metal side of the first metal block are opposite sides.
  • the first metal edge of the second metal block facing away from the antenna and the second substrate edge are separated by a fifth set value, and the antenna is separated from the second metal edge of the second metal block by a fifth set value.
  • Six set values, the first metal side of the second metal block and the second metal side of the second metal block are opposite sides, and the sixth set value is greater than the coupling threshold.
  • the third metal edge of the second metal block is separated from the third substrate edge by a seventh preset value
  • the fourth metal edge of the second metal block is separated from the fourth substrate edge by an eighth preset value.
  • the third metal side of the second metal block and the fourth metal side of the second metal block are opposite sides.
  • the metal block includes: a third metal block and/or a fourth metal block, the third metal block is located between the third substrate edge of the dielectric substrate and the antenna, and the fourth metal block A block is located between the fourth substrate edge of the dielectric substrate and the antenna.
  • the distance between the first metal edge of the third metal block and the edge of the third substrate is a ninth preset value
  • the distance between the antenna and the second metal edge of the third metal block is a tenth preset value
  • the first metal side of the third metal block and the second metal side of the third metal block are opposite sides, and the tenth set value is greater than the coupling threshold.
  • the distance between the first metal edge of the fourth metal block and the edge of the fourth substrate is an eleventh set value
  • the distance between the antenna and the second metal edge of the fourth metal block is a twelfth set value.
  • a fixed value, the first metal side of the fourth metal block and the second metal side of the fourth metal block are opposite sides, and the twelfth set value is greater than the coupling threshold.
  • the third metal edge of the third metal block and/or the third metal edge of the fourth metal block is located on an extension line of the second metal edge of the first metal block, and the third metal edge The first metal side of the metal block is connected to the third metal side of the third metal block.
  • the fourth metal edge of the third metal block and/or the fourth metal edge of the fourth metal block is located on an extension line of the second metal edge of the second metal block, and the third metal edge
  • the third metal side of the metal block and the fourth metal side of the third metal block are opposite sides
  • the third metal side of the fourth metal block and the fourth metal side of the fourth metal block are opposite sides side.
  • the antenna is an array antenna.
  • An embodiment of the present disclosure further provides a radio device, including the on-board antenna according to any embodiment of the present disclosure and an integrated circuit, wherein the integrated circuit transmits and/or receives radio signals through the on-board antenna to achieve Object detection and/or communication.
  • the radio device includes a radar sensor, such as a millimeter wave radar sensor.
  • a radar sensor such as a millimeter wave radar sensor.
  • Embodiments of the present disclosure also provide an electronic device, including:
  • the radio device according to any embodiment of the present disclosure, which is provided on the device body;
  • the radio is configured for object detection and/or communication to provide reference information for the operation of the electronic device body.
  • Embodiments of the present disclosure provide an on-board antenna, a radio device, and an electronic device.
  • the on-board antenna includes: a dielectric substrate, an antenna and a metal block; the antenna is located on the dielectric substrate, the projection of the metal block and the antenna on the plane where the dielectric substrate is located does not overlap, and the The metal block is located on the dielectric substrate in the polarization direction of the antenna, and the distance between the metal edge of the metal block close to the antenna side and the antenna is greater than a coupling threshold.
  • the on-board antenna can suppress the influence of the surface wave on the pattern to a certain extent by setting the metal block, and reduce the jitter of the antenna pattern.
  • FIG. 1 is a schematic structural diagram of an on-board antenna provided by an exemplary embodiment of the present disclosure
  • FIG. 2 is a schematic structural diagram of an antenna in a millimeter-wave radar
  • FIG. 3 is a schematic structural diagram of another on-board antenna provided by an exemplary embodiment of the present disclosure.
  • FIG. 4 is an E-plane pattern when there is no metal block around the antenna according to an exemplary embodiment of the present disclosure
  • FIG. 5 is an H-plane pattern when there is no metal block around the antenna according to an exemplary embodiment of the present disclosure
  • FIG. 6 is a comparison diagram of the return loss coefficient when there is no metal block around the antenna according to an exemplary embodiment of the present disclosure
  • FIG. 7 is a schematic structural diagram of still another on-board antenna provided by an exemplary embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram of still another on-board antenna provided by an exemplary embodiment of the present disclosure.
  • FIG. 9 is a schematic structural diagram of still another on-board antenna provided by an exemplary embodiment of the present disclosure.
  • FIG. 10 is a schematic diagram of a surface wave propagation direction of an on-board antenna according to an exemplary embodiment of the present disclosure
  • FIG. 11 is a schematic structural diagram of still another on-board antenna provided by an exemplary embodiment of the present disclosure.
  • FIG. 12 is a schematic structural diagram of still another on-board antenna provided by an exemplary embodiment of the present disclosure.
  • FIG. 13 is a schematic structural diagram of a radio device according to an exemplary embodiment of the present disclosure.
  • FIG. 14 is a schematic structural diagram of an electronic device according to an exemplary embodiment of the present disclosure.
  • the terms “center”, “upper”, “lower”, “left”, “right”, “front”, “rear”, etc. indicate orientations or positional relationships based on the orientations shown in the drawings or location relationship. For example, “Top” and “Bottom” are set along the header and footer directions of the paper; “Left” and “Right” are set facing the paper, and “Front” is perpendicular to the paper face and back to paper; “back” is perpendicular to and from paper to back.
  • This setting is only for the convenience of describing the present disclosure, rather than indicating that the referred device or element must have a specific orientation, and therefore should not be construed as a limitation of the present disclosure.
  • the technical features or technical solutions involved in the different embodiments of the present disclosure described below can be combined with each other as long as they do not conflict with each other.
  • FIG. 1 is a schematic structural diagram of an on-board antenna provided by an exemplary embodiment of the present disclosure, and this embodiment is applicable to the detection based on a millimeter-wave radar.
  • the on-board antenna may be contained within a radio, which is typically integrated into an electronic device.
  • the millimeter wave radar in the embodiment of the present disclosure works in the millimeter waveband, and generally, the millimeter wave refers to the frequency band of 30 GHz to 300 GHz (wavelength is 1 mm to 10 mm).
  • millimeter-wave radar has the advantages of high precision, high resolution, long distance, all-weather, all-time, and small size.
  • the millimeter wave has a high frequency and is easy to excite surface waves, which can cause deterioration or even distortion of the pattern.
  • the antennas on large-sized substrates are affected by surface waves, which easily cause pattern jitter.
  • the solutions of the embodiments of the present disclosure are also applicable to communication or radar equipment in high frequency bands such as 6 GHz and 24 GHz frequency bands, as long as the above-mentioned problems occur in the antenna pattern thereof.
  • FIG. 2 is a schematic diagram of the structure of an antenna in a millimeter-wave radar.
  • the structure of the millimeter-wave radar antenna is that the antenna radiating element is directly placed on the substrate, and no other structures are added around the radiating element.
  • the pattern is easily affected by surface waves, resulting in large jitter.
  • the present disclosure proposes a design for optimizing the jitter of the millimeter wave radar antenna pattern, which can suppress the influence of surface waves on the pattern to a certain extent, reduce the jitter of the antenna pattern, and improve the performance of the millimeter wave radar system.
  • an on-board antenna provided by an exemplary embodiment of the present disclosure includes: a dielectric substrate 1 , an antenna 2 , and a metal block 3 ; the antenna 2 is located on the dielectric substrate 1 , and the metal block 3 and the antenna 2 are located on the dielectric substrate 1 .
  • the projections on the plane do not overlap, the metal block 3 is located on the dielectric substrate 1 in the polarization direction of the antenna 2, and the distance between the metal edge of the metal block 3 close to the antenna side and the antenna is greater than the coupling threshold, which is used to suppress Surface waves generated by the antenna 2 on the dielectric substrate 1 .
  • the dielectric substrate 1 includes a first substrate edge, a second substrate edge, a third substrate edge, and a fourth substrate edge; wherein the first substrate edge is the polarization direction on the dielectric substrate 1 in the polarization direction.
  • One side, the second substrate side is the other side of the dielectric substrate 1 in the polarization direction;
  • the third substrate side is the side intersecting with the first substrate side;
  • the fourth substrate side and the third substrate side The substrate side is the opposite side.
  • the polarization direction can be understood as the direction of the electric field intensity formed when the antenna 2 radiates electromagnetic waves.
  • the side in the polarization direction can be regarded as the side perpendicular to the polarization direction. Edges can be straight.
  • the first substrate side, the second substrate side, the third substrate side, and the fourth substrate side may form a rectangle.
  • the first substrate side, the second substrate side, the third substrate side and the fourth substrate side are the boundaries of the dielectric substrate 1 .
  • the dielectric substrate 1 is exemplarily described as a rectangle. However, in other exemplary embodiments, the dielectric substrate 1 may also be in any shape such as a circle, an ellipse, and a rounded rectangle.
  • the metal blocks 3 are uniformly distributed in the polarization direction of the antenna 2 on the dielectric substrate 1 .
  • the length of the metal block 3 along the extending direction is greater than the length of the antenna 2 along the extending direction.
  • the extension direction is the direction perpendicular to the polarization direction. From the perspective of FIG. 1 , the extension direction may be the left-right direction, and the polarization direction may be the up-down direction.
  • the isolation portion is determined based on the coupling threshold between the metal block 3 and the antenna 2 .
  • the white area on the periphery of the antenna 2 in FIG. 1 can be regarded as an isolation portion.
  • the metal block 3 is a ring-shaped structure or a semi-enclosed structure formed around the isolation portion and the limit based on the edge of the dielectric substrate 1 .
  • the metal block 3 When the metal block 3 is in a ring structure, it can be considered that the metal block 3 completely surrounds the periphery of the antenna 2 . As shown in FIG. 1 , the metal block 3 is arranged on the periphery of the antenna 2 in a ring structure.
  • the contour of the side of the metal block 3 close to the antenna 2 may be a contour structure formed along the contour of the antenna 2 .
  • part of the metal edge of the metal block 3 close to the metal edge on the side of the antenna 2 may be a straight line
  • the outline of the part of the metal edge may be a contour structure formed along the outline of the antenna 2 , as shown in FIG. 1 near the antenna
  • the metal edge located on the upper side of the antenna 2 is set to be straight
  • the part of the metal edge located on the top of the antenna 2 is set to be straight.
  • the metal block 3 When the metal block 3 is a semi-enclosed structure, it can be considered that the metal block 3 does not completely surround the antenna 2 .
  • the outline near the side of the antenna 2 may be a straight line or an outline structure formed along the outline of the antenna 2 .
  • the metal block 3 may be arranged on the dielectric substrate 1, one metal block 3 may have a corresponding isolation portion, the metal block 3 and the corresponding isolation portion may be located on the same side of the antenna 2, and the metal block 3 may be located on all Between the corresponding isolation portion and the corresponding edge of the dielectric substrate 1 .
  • the corresponding edge of the dielectric substrate 1 and the metal block 3 may be located on the same side of the antenna 2 .
  • the isolation portion is a trench structure or a barrier structure formed by the metal block 3 , the antenna 2 and the dielectric substrate 1 .
  • the outline of the metal block 3 includes any one of the following outline parts: an outline part formed along the outline shape of the antenna 2, or a decoupling distance between the radiation edge based on the outline of the antenna 2 and the metal block 3 ( Also known as the coupling threshold) to determine the contour part.
  • the metal block 3 is arranged outside the range of the coupling threshold from the antenna contour, and the contour of the metal block 3 is formed along the contour of the antenna 2 .
  • the metal block 3 comprises at least two independent block structures, wherein each block structure is arranged around the antenna 2 with the isolation portion therebetween.
  • Block structures include, but are not limited to, a first metal block, a second metal block, a third metal block, and a fourth metal block.
  • the second spacers are arranged between the plurality of the block structures based on the decoupling distance between the block structures.
  • the second isolation portion is a trench structure or a barrier structure formed by adjacent block structures and a dielectric substrate.
  • the length or width of each of the block structures is not less than the length or width of the antenna 2 .
  • the left and right lengths of the block structure are not less than the left and right lengths of the antenna 2 .
  • the antenna 2 is horizontally polarized, and the surface wave 2-1 excited on the substrate propagates like a ripple.
  • the influence of the surface wave on the pattern can be suppressed to a certain extent. Within the range of the left and right length W of the antenna, the surface wave is the strongest. Therefore, by making the length of the added block structure longer than the left and right length of the antenna, the influence of the surface wave on the pattern is minimized, and the antenna pattern is optimized to the greatest extent.
  • the antenna 2 is an array antenna, and there is an isolation portion between the metal block 3 and the overall outline of the array antenna. As shown in FIG. 11 , the upper and lower lengths of the block structures 19 and 20 are not less than the upper and lower lengths of the antenna 2 . Wherein, if the antenna 2 is an array antenna, the upper and lower lengths of the block structures 19 and 20 are not less than the total length of the upper and lower parts of the array antenna.
  • the antenna 2 is configured to radiate or receive electromagnetic waves, and the electromagnetic waves are composed of electric and magnetic fields.
  • the type of the antenna 2 is not limited, for example, it can be a comb antenna, a planar antenna, etc.; The direction of the electric field strength.
  • the thickness of the metal block 3 is the same or nearly the same as the thickness of the antenna 2.
  • the thickness of the metal block 3 described in the present disclosure is nearly the same as the thickness of the antenna 2, which means that the difference between the thickness of the metal block 3 and the thickness of the antenna 2 is within the preset error range.
  • the metal block 3 and the antenna 2 are usually etched on a complete rectangular metal, that is, the metal block 3 and the antenna 2 are integrally processed.
  • the thickness of the metal block 3 and the thickness of the antenna 2 Usually the same.
  • the material of the metal block 3 is not limited.
  • the metal block 3 may be a metal layer disposed on the dielectric substrate 1 higher than the surface of the dielectric substrate 1 , that is, the surface where the metal block 3 is located protrudes from the surface of the dielectric substrate 1 ; it may also be a metal layer disposed on the surface of the dielectric substrate 1 The metal layer lower than the surface of the dielectric substrate 1 , that is, the surface where the metal block 3 is located is concave on the surface of the dielectric substrate 1 .
  • the antenna 2 may be a comb-shaped antenna, the surface wave is generated at the interface between the dielectric substrate 1 and the comb-shaped antenna, and the surface current propagates along the surface of the dielectric substrate 1.
  • the surface where the metal block 3 is located and the antenna 2 can be located on the same surface, which can cut off the surface current, thereby weakening the surface wave radiation at the edge of the dielectric substrate 1, thereby reducing the influence of the surface wave on the antenna pattern.
  • the metal block 3 there is a certain interval between the metal block 3 and the antenna 2 , that is, there is an isolation portion, so that the metal block 3 is not as close to the antenna 2 as possible. If the metal block 3 is too close to the antenna 2, it may couple with the antenna 2 and affect the radiation of the antenna 2 itself. Therefore, it is necessary to make a certain distance between the metal block 3 and the antenna 2, that is, the metal block 3 and the antenna 2 are in the medium.
  • the projections on the plane where the substrate 1 is located do not overlap, and the distance between the metal edge of the metal block 3 close to the antenna side and the antenna 2 is greater than the coupling threshold.
  • the coupling distance can be determined according to the actual situation, for example, according to the performance of the antenna 2 . If the metal block 3 is set within the coupling distance, the metal block 3 will be coupled with the antenna 2 .
  • a metal layer may be laid on the dielectric substrate 1 , and then the antenna 2 may be etched, and the remaining metal layer after etching may be regarded as the metal block 3 .
  • the distance between the metal block 3 and the antenna 2 can be equidistant or unequal.
  • the shape of the metal block 3 on the side close to the antenna 2 may be determined based on the shape of the antenna 2, or may be a straight line.
  • the size, number and position of the metal blocks 3 are set around the antenna 2 and can effectively suppress the influence of the surface wave on the pattern.
  • a metal block 3 can be arranged in the polarization direction of the antenna 2, and the length of the metal block 3 (left and right direction) is greater than or equal to the length of the antenna 2;
  • a metal block 3 is provided, and the upper and lower sides of the metal block 3 can extend to the upper and lower sides of the dielectric substrate 1, and/or the left and right sides of the metal block 3 can extend to the left and right of the dielectric substrate 1;
  • a metal block 3 is arranged on the four sides (upper side, lower side, left side and right side) of 2 respectively.
  • the left, right, top, and bottom described in the embodiments of the present disclosure may be considered to be for the viewing angle shown in FIG. 1 .
  • Antenna 2 can be used as a reference for left, right, up and down.
  • the left side can be understood as the left side of the antenna 2 on the dielectric substrate 1
  • the right side can be understood as the right side of the antenna 2 on the dielectric substrate 1
  • the upper side can be understood as the upper side of the antenna 2 on the dielectric substrate 1.
  • the lower side and the lower side can be understood as the lower side of the antenna 2 on the dielectric substrate 1 .
  • FIG. 3 is a schematic structural diagram of another on-board antenna provided by an exemplary embodiment of the present disclosure.
  • a metal block 4 is provided in the polarization direction of the antenna 2, and the antenna 2 is located in the medium.
  • the projections of the metal block 4 and the antenna 2 on the plane of the dielectric substrate 1 do not overlap, and the metal block 4 is located on the dielectric substrate 1 in the polarization direction of the antenna 2 .
  • the metal block 4 shown in FIG. 3 can be considered as a semi-enclosed structure.
  • the space between the antenna 2 and the metal block 4 can be regarded as an isolation part.
  • FIG. 4 is an E-plane pattern when there is no metal block around the antenna according to an exemplary embodiment of the present disclosure.
  • the pattern jitter of the E-plane changes significantly. small, the curve is smoother, and the depression of the pattern is significantly improved around the large angle of ⁇ 58 degrees.
  • FIG. 5 is an H-plane pattern with or without metal blocks around an antenna according to an exemplary embodiment of the present disclosure
  • FIG. 6 is a comparison diagram of return loss coefficients with or without metal blocks around an antenna according to an exemplary embodiment of the present disclosure
  • adding metal blocks around the antenna can significantly reduce the jitter of the pattern without causing deterioration of other performances of the antenna, thus improving the overall performance of the antenna.
  • adding a metal block around the antenna may be a metal layer covering the periphery of the antenna, and the periphery and the surrounding area may be considered to have a set distance from the antenna.
  • FIG. 7 is a schematic structural diagram of another on-board antenna provided by an exemplary embodiment of the present disclosure.
  • the metal block includes a first metal block 5 and/or a second metal block 6 ,
  • the first metal block 5 is located between the first substrate side 7 of the dielectric substrate 1 and the antenna 2
  • the second metal block 6 is located between the second substrate side 8 of the dielectric substrate 1 and the antenna 2 .
  • the first substrate edge 7 can be understood as one edge on the dielectric substrate 1 in the polarization direction
  • the second substrate edge 8 can be understood as another edge on the dielectric substrate 1 in the polarization direction.
  • the sizes of the first metal block 5 and the second metal block 6 in this embodiment may be determined according to the size of the antenna 2 .
  • the first metal side 9 of the first metal block 5 facing away from the antenna 2 is separated from the first substrate side 7 by a first set value, and the antenna 2 is separated from the second metal side 10 of the first metal block 5 by a second distance.
  • the set value is such that the first metal side 9 of the first metal block 5 and the second metal side 10 of the first metal block 5 are opposite sides, and the second set value is greater than the coupling threshold.
  • first metal side 9 of the first metal block 5 may be perpendicular to the polarization direction.
  • the third metal edge 11 of the first metal block 5 is separated from the third substrate edge 13 of the dielectric substrate 1 by a third set value
  • the fourth metal edge 12 of the first metal block 5 is separated from the dielectric substrate 1 by a third set value
  • the fourth substrate edge 14 is separated by a fourth predetermined value
  • the third metal edge 11 of the first metal block 5 and the fourth metal edge 12 of the first metal block 5 are opposite edges.
  • the first set value, the third set value and the fourth set value can be 0 or any value, and any value can be determined according to the size of the dielectric substrate 1 and the antenna 2 .
  • the top view of the first metal block 5 and the second metal block 6 is composed of four metal sides, the metal sides can be considered as the sides forming the metal block, and the four metal sides can be the first metal side, the second metal side Metal edge, third metal edge and fourth metal edge, the first metal edge is perpendicular to the polarization direction, the first metal edge and the second metal edge are opposite edges, the third metal edge and the fourth metal edge are opposite edges , the first metal side is perpendicular to the third metal side.
  • the metal sides can be considered as the sides forming the metal block
  • the four metal sides can be the first metal side, the second metal side Metal edge, third metal edge and fourth metal edge, the first metal edge is perpendicular to the polarization direction, the first metal edge and the second metal edge are opposite edges, the third metal edge and the fourth metal edge are opposite edges , the first metal side is perpendicular to the third metal side.
  • the first metal edge 9 of the first metal block 5 can be the metal edge on the upper side of the first metal block 5
  • the second metal edge 10 can be the metal edge on the lower side of the first metal block 5
  • the third metal edge 11 may be the metal edge on the left side of the first metal block 5
  • the fourth metal edge 12 may be the metal edge on the right side of the first metal block 5 .
  • the first set value, the second set value, the third set value and the fourth set value are only used to distinguish different objects, and can be set by relevant personnel.
  • the second setting value, the third setting value and the fourth setting value may be the same or different from each other.
  • the first setting value, the second setting value, the third setting value and the fourth setting value are Values can be determined based on actual scenarios.
  • the third substrate edge 13 can be considered as an edge on the dielectric substrate 1 in the extending direction of the antenna 2, and the fourth substrate edge 14 can be considered as another edge on the dielectric substrate 1 in the extending direction of the antenna 2.
  • the extending direction is the same as that of the antenna 2.
  • the polarization direction is vertical.
  • the side in the extending direction of the antenna may be considered as the side perpendicular to the extending direction of the antenna.
  • the extending direction of the antenna is the left-right direction in the figure, and the third substrate side 13 and the fourth substrate side 14 are two sides of the dielectric substrate 1 that are opposite to each other in the vertical direction.
  • the first metal edge 9 of the first metal block 5 is perpendicular to the third metal edge 11 of the first metal block 5
  • the third substrate edge 13 is an edge of the dielectric substrate 1 in the extending direction of the antenna 2
  • the fourth substrate edge 14 is the other side of the dielectric substrate 1 in the extending direction of the antenna 2, and the extending direction is perpendicular to the polarization direction.
  • the distance between the first metal edge 15 of the second metal block 6 facing away from the antenna 2 and the second substrate edge 8 is a fifth set value, and the distance between the antenna 2 and the second metal edge 16 of the second metal block 6
  • the sixth setting value the first metal side 15 of the second metal block 6 and the second metal side 16 of the second metal block 6 are opposite sides, and the sixth setting value is greater than the coupling threshold.
  • the third metal edge 17 of the antenna 2 of the second metal block 6 is separated from the third substrate edge 13 by a seventh predetermined value
  • the fourth metal edge 18 of the second metal block 6 is separated from the fourth substrate edge 14
  • the third metal side 17 of the second metal block 6 and the fourth metal side 18 of the second metal block 6 are opposite sides.
  • the fifth set value, the seventh set value and the eighth set value can be 0 or any value, and any value can be determined according to the size of the dielectric substrate 1 and the antenna 2 .
  • the fifth set value, the sixth set value, the seventh set value and the eighth set value are also only used to distinguish different objects, and can be set by relevant personnel.
  • the fifth setting value, the sixth setting value, the seventh setting value and the eighth setting value may be determined according to actual scenarios.
  • the second metal side 16 of the second metal block 6 may be perpendicular to the polarization direction, and the first metal side 15 of the second metal block 6 may be perpendicular to the third metal side 17 of the second metal block 6 .
  • FIG. 8 is a schematic structural diagram of another on-board antenna provided by an exemplary embodiment of the present disclosure.
  • the first metal edge 9 of the first metal block 5 may extend to the first substrate edge 7
  • the second metal The first metal edge 15 of the block 6 may extend to the second substrate edge 8 .
  • the length of the first metal block 5 and the second metal block 6 in the extension direction may be equal to the length of the antenna in the extension direction, or may be greater than the length of the antenna in the extension direction.
  • FIG. 9 is a schematic structural diagram of another on-board antenna provided by an exemplary embodiment of the present disclosure.
  • the first metal edge 9 of the first metal block 5 may extend to the edge of the first substrate, and the second metal block
  • the first metal edge 15 of 6 can extend to the second substrate edge, in addition, the first metal block 5 and the third metal edges 11 and 17 of the second metal block 6 can extend to the third substrate edge 13, the first metal block 5 And the fourth metal sides 12 and 18 of the second metal block 6 may extend to the fourth substrate side 14 .
  • the first metal block 5 and the second metal block 6 shown in FIG. 9 can be considered as semi-enclosed structures.
  • FIG. 11 is a schematic structural diagram of another on-board antenna provided by an exemplary embodiment of the present disclosure.
  • the metal block further includes: a third metal block 19 and/or a fourth The metal block 20 and the third metal block 19 are located between the third substrate side 13 of the dielectric substrate 1 and the antenna 2 , and the fourth metal block 20 is located between the fourth substrate side 14 of the dielectric substrate 1 and the antenna 2 .
  • the size, position and material of the third metal block 19 and the fourth metal block 20 are not limited.
  • the size of the third metal block 19 and the fourth metal block 20 can be the same as the size of the first metal block 5 and the second metal block 6 Similarly, the size of the first metal block 5 and the second metal block 6 may be different, and the size between the third metal block 19 and the fourth metal block 20 may be the same or different.
  • first metal side 21 of the third metal block 19 may extend to the third substrate side 13
  • fourth metal side 28 of the fourth metal block 20 may also extend to the second substrate side 8
  • third metal block 19 may extend to the second substrate side 8
  • the three metal sides 23 , the second metal side 10 of the first metal block 5 and the third metal side 27 of the fourth metal block 20 may also be on a straight line, etc.
  • the distance between the first metal edge 21 of the third metal block 19 and the third substrate edge 13 is a ninth preset value
  • the distance between the antenna 2 and the second metal edge 22 of the third metal block 19 is a tenth preset value
  • the first metal side 21 of the third metal block 19 and the second metal side 22 of the third metal block 19 are opposite sides, and the tenth set value is greater than the coupling threshold.
  • the first metal side 21 of the third metal block 19 may be parallel to the polarization direction.
  • the distance between the first metal side 25 of the fourth metal block 20 and the fourth substrate side 14 is an eleventh setting
  • the distance between the antenna 2 and the second metal side 26 of the fourth metal block 20 is a twelfth setting.
  • a fixed value, the first metal side 25 of the fourth metal block 20 and the second metal side 26 of the fourth metal block 20 are opposite sides, and the twelfth set value is greater than the coupling threshold.
  • the first metal side 25 of the fourth metal block 20 is parallel to the polarization direction.
  • the third metal side 23 of the third metal block 19 and/or the third metal side 27 of the fourth metal block 20 are located on the extension line of the second metal side 10 of the first metal block 5 , and the third The first metal side 21 of the metal block 19 is connected to the third metal side 23 of the third metal block 19 .
  • the fourth metal side 24 of the third metal block 19 and/or the fourth metal side 28 of the fourth metal block 20 are located on the extension line of the second metal side 16 of the second metal block 6, and the third The third metal side 23 of the metal block 19 and the fourth metal side 24 of the third metal block 19 are opposite sides, and the third metal side 27 of the fourth metal block 20 and the fourth metal side 28 of the fourth metal block 20 are opposite side.
  • the ninth set value, tenth set value, eleventh set value and twelfth set value are also only used to distinguish different objects, and can be set by relevant personnel.
  • the ninth set value, the tenth set value, the eleventh set value, and the twelfth set value can be determined according to actual scenarios.
  • the ninth set value and the eleventh set value can be 0 or any value, and the value of any value can be determined according to the size of the dielectric substrate 1 and the antenna 2 .
  • the set values in the embodiments of the present disclosure may be determined according to the performance and application scenario of the onboard antenna.
  • the first metal side 25 of the fourth metal block 20 is connected to the third metal side 27 of the fourth metal block 20 .
  • FIG. 12 is a schematic structural diagram of still another on-board antenna provided by an exemplary embodiment of the present disclosure, and the antenna 2 shown in FIG. 12 is an array antenna.
  • a metal block is arranged on the periphery of the antenna 2 .
  • the metal blocks in FIGS. 3 , 7 , 8 , 9 , 11 , and 12 of the present disclosure are all rectangular structures. In other exemplary embodiments, the metal blocks may also be oval, rounded rectangle, etc. Any shape, at this time, the length of the metal block in the extension direction is equal to the distance from the leftmost point on the metal block to the rightmost point on the metal block.
  • FIG. 13 is a schematic structural diagram of a radio device provided by an exemplary embodiment of the present disclosure.
  • the radio device 29 includes the board according to any embodiment of the present disclosure.
  • the integrated circuit 31 may include analog signal processing circuits and digital signal processing modules.
  • the analog signal processing circuit is connected with the on-board antenna, which includes a signal transmitter and a signal receiver.
  • the signal transmitter generates a detection electrical signal such as a continuous frequency change, and feeds it to the on-board antenna to transmit the detection signal wave;
  • the signal receiver converts the echo signal wave corresponding to the detection signal wave into the baseband echo signal Signal.
  • the echo signal wave is received by the onboard antenna after the detection signal wave is reflected by the object.
  • the analog signal processing circuit further includes an AD converter to convert the echo electrical signals into corresponding echo digital signals.
  • the digital signal processing module is coupled to the analog signal processing circuit. Wherein, the digital signal processing module is configured to perform signal processing on the echo digital signal, so as to output a digital signal that can be processed by a subsequent circuit. Wherein, the digital signal is obtained through a processing module to provide matrix data of at least one of the relative distance, relative speed, relative angle, and contour of the object between the radio device and the object.
  • the above-mentioned integrated circuit 31 may be a millimeter wave radar chip.
  • the types of digital signal processing modules in the integrated circuit 31 can be determined according to actual requirements.
  • the digital signal processing module includes circuit devices such as FPGA (or DSP).
  • the signal processing module performs at least one signal processing including 1-FFT, 2-FFT, wave arrival calculation, etc. on the echo digital signal, and processes the calculated echo signals corresponding to at least one detection signal wave.
  • the wave digital signal is processed into a frame of matrix data and output.
  • the radio device includes a radar sensor, such as a millimeter wave radar sensor.
  • a radar sensor such as a millimeter wave radar sensor.
  • FIG. 14 is a schematic structural diagram of an electronic device provided by an exemplary embodiment of the present disclosure.
  • the electronic device 32 includes: a device body 33 ;
  • the radio 29 as described in any of the embodiments of the present disclosure on 33 ; the radio 29 is configured for object detection and/or communication to provide reference information to the operation of the device body 33 in the electronic device 32 .
  • the reference information can be considered as the information required for the operation of the device body 33 in the electronic device 32, such as the detection target information during target detection, that is, the information required to detect the target, and the communication information, that is, the electronic device 32 communicates internally or externally. Information required for communication.
  • the radio device 29 may be disposed outside the device body 33, and in another embodiment of the present disclosure, the radio device 29 may also be disposed inside the device body 33, and in other embodiments of the present disclosure For example, a part of the radio device 29 may also be disposed inside the device body 33 and a part outside the device body 33 , and the location of the radio device 29 may be determined according to the situation.
  • the above-mentioned device body 33 may be components and products applied in fields such as smart home, transportation, smart home, consumer electronics, monitoring, industrial automation, in-cabin detection, and health care.
  • the device body 33 can also be an intelligent transportation device (such as a car, a bicycle, a motorcycle, a ship, a subway, a train, etc.), a security device (such as a camera), a liquid level/flow rate detection device, a smart wearable device (such as a hand rings, glasses, etc.), smart home equipment (such as sweeping robots, door locks, TVs, air conditioners, smart lights, etc.), various devices for communication (such as mobile phones, tablet computers, etc.) Indicator lights, smart signs, traffic cameras, and various industrialized robotic arms (or robots), etc., can also be various instruments used to detect vital signs parameters and various equipment equipped with such instruments, such as vehicle cabin detection, indoor Personnel monitoring, intelligent medical equipment, etc.
  • the radio device 29 may be the radio device 29 described in any embodiment of the present disclosure.
  • the structure and working principle of the radio device 29 have been described in detail in the above embodiments, and will not be repeated here.
  • the radio device 29 can realize functions such as target detection and/or communication by transmitting and receiving radio signals, so as to provide detection target information and/or communication information to the device body 33 , thereby assisting and even controlling the operation of the device body 33 .
  • the radio device 29 (such as a millimeter-wave radar) as an on-board sensor can provide ADAS systems such as automatic braking assistance (Automatic Emergency Braking, AEB), Blind Spot Detection (BSD), Assisted Lane Change Warning (LCA), Reversing Assist Warning (RCTA) and other functions provide safety guarantee.
  • ADAS Advanced Driving Assistance System
  • AEB Automatic Emergency Braking
  • BSD Blind Spot Detection
  • LCA Assisted Lane Change Warning
  • RCTA Reversing Assist Warning

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Support Of Aerials (AREA)
  • Waveguide Aerials (AREA)

Abstract

一种板载天线、无线电器件及电子设备。板载天线包括:介质基板、天线和金属块;天线位于介质基板上,金属块与天线在介质基板所在平面上的投影不交叠,金属块位于天线的极化方向上的介质基板上,金属块靠近天线侧的金属边与天线的距离大于耦合阈值。利用该板载天线,通过设置金属块在一定程度上能够抑制表面波对方向图的影响,降低天线方向图的抖动。

Description

板载天线、无线电器件及电子设备
本申请要求于2021年12月1日提交中国专利局、申请号为202122989598.X、发明名称为“板载天线、无线电器件及电子设备”的中国专利申请的优先权,其内容应理解为通过引用的方式并入本申请中。
技术领域
本公开实施例涉及但不限于天线技术领域,尤其涉及一种板载天线、无线电器件及电子设备。
背景技术
随着自动驾驶等领域的发展,汽车雷达受到广泛的关注。作为雷达系统中的举足轻重的一部分,天线的性能影响整个雷达系统最终的功能。
传统雷达天线的结构是直接将天线辐射单元放置到基板上。但是由于射频频率高(如毫米波雷达),容易在基板上激发表面波,在天线极化方向,方向图容易受到表面波的影响产生较大的抖动,从而造成方向图的恶化甚至畸变。
然而,雷达天线方向图的抖动使得某些角度的探测性能下降,且会造成不同收发通道的不均衡,影响雷达系统的解角精度。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本公开实施例提供了一种板载天线,包括:介质基板、天线和金属块;
所述天线位于所述介质基板上,所述金属块与所述天线在所述介质基板所在平面上的投影不交叠,所述金属块位于所述天线的极化方向上的介质基板上,所述金属块靠近所述天线侧的金属边与所述天线的距离大于耦合阈值。
可选的,所述介质基板包含第一基板边、第二基板边、第三基板边和第四基板边;其中,所述第一基板边为所述介质基板上在所述极化方向的一条边,所述第二基板边为所述介质基板上在所述极化方向的另一条边;所述第三基板边为与第一基板边相交的边;所述第四基板边与第三基板边是相对边。
可选的,所述金属块的厚度与所述天线的厚度相同。
可选的,所述金属块包括第一金属块和/或第二金属块,所述第一金属块位于所述介质基板的第一基板边与所述天线之间,所述第二金属块位于所述介质基板的第二基板边与所述天线之间。
可选的,所述第一金属块背离所述天线的第一金属边与所述第一基板边相距第一设定数值,所述天线与所述第一金属块的第二金属边相距第二设定数值,所述第一金属块的第一金属边和第一金属块的第二金属边为相对的边,所述第二设定数值大于所述耦合阈值。
可选的,所述第一金属块的第三金属边与所述介质基板的第三基板边相距第三设定数值,所述第一金属块的第四金属边与所述介质基板的第四基板边相距第四设定数值,所述第一金属块的第三金属边与所述第一金属块的第四金属边为相对的边。
可选的,所述第二金属块背离所述天线的第一金属边与所述第二基板边相距第五设定数值,所述天线与所述第二金属块的第二金属边相距第六设定数值,所述第二金属块的第一金属边和所述第二金属块的第二金属边为相对的边,所述第六设定数值大于所述耦合阈值。
可选的,所述第二金属块的第三金属边与第三基板边相距第七设定数值,所述第二金属块的第四金属边与第四基板边相距第八设定数值,所述第二金属块的第三金属边和所述第二金属块的第四金属边为相对的边。
可选的,所述金属块包括:第三金属块和/或第四金属块,所述第三金属块位于所述介质基板的第三基板边与所述天线之间,所述第四金属块位于所述介质基板的第四基板边与所述天线之间。
可选的,所述第三金属块的第一金属边与所述第三基板边相距第九设定数值,所述天线与所述第三金属块的第二金属边相距第十设定数值,所述第 三金属块的第一金属边和所述第三金属块的第二金属边为相对的边所述第十设定数值大于所述耦合阈值。
可选的,所述第四金属块的第一金属边与所述第四基板边相距第十一设定数值,所述天线与所述第四金属块的第二金属边相距第十二设定数值,所述第四金属块的第一金属边与所述第四金属块的第二金属边为相对的边,所述第十二设定数值大于所述耦合阈值。
可选的,所述第三金属块的第三金属边和/或所述第四金属块的第三金属边位于所述第一金属块的第二金属边的延长线上,所述第三金属块的第一金属边与所述第三金属块的第三金属边相连。
可选的,所述第三金属块的第四金属边和/或所述第四金属块的第四金属边位于所述第二金属块的第二金属边的延长线上,所述第三金属块的第三金属边和所述第三金属块的第四金属边为相对的边,所述第四金属块的第三金属边和所述第四金属块的第四金属边为相对的边。
可选的,所述天线为阵列天线。
本公开实施例还提供了一种无线电器件,包括如本公开任一实施例所述的板载天线和集成电路,所述集成电路通过所述板载天线发射和/或接收无线电信号,以实现目标检测和/或通信。
可选的,所述无线电器件包括雷达传感器,如毫米波雷达传感器。
本公开实施例还提供了一种电子设备,包括:
设备本体;以及,
设置于所述设备本体上的如本公开任一实施例所述的无线电器件;
所述无线电器件被配置为进行目标检测和/或通信,以向所述电子设备本体的运行提供参考信息。
本公开实施例提供了一种板载天线、无线电器件及电子设备。所述板载天线,包括:介质基板、天线和金属块;所述天线位于所述介质基板上,所述金属块与所述天线在所述介质基板所在平面上的投影不交叠,所述金属块位于所述天线的极化方向上的介质基板上,所述金属块靠近所述天线侧的金属边与所述天线的距离大于耦合阈值。该板载天线通过设置金属块能够在一 定程度上抑制表面波对方向图的影响,降低天线方向图的抖动。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图说明
图1为本公开示例性实施例提供的一种板载天线的结构示意图;
图2为一种毫米波雷达中天线的结构示意图;
图3为本公开示例性实施例提供的另一种板载天线的结构示意图;
图4为本公开示例性实施例提供的天线周围有无金属块时的E面方向图;
图5为本公开示例性实施例提供的天线周围有无金属块时的H面方向图;
图6为本公开示例性实施例提供的天线周围有无金属块时回波损耗系数的对比图;
图7为本公开示例性实施例提供的又一种板载天线的结构示意图;
图8为本公开示例性实施例提供的又一种板载天线的结构示意图;
图9为本公开示例性实施例提供的又一种板载天线的结构示意图;
图10为本公开示例性实施例提供的一种板载天线的表面波传播方向示意图;
图11为本公开示例性实施例提供的又一种板载天线的结构示意图;
图12为本公开示例性实施例提供的又一种板载天线的结构示意图;
图13为本公开示例性实施例提供的一种无线电器件的结构示意图;
图14为本公开示例性实施例提供的一种电子设备的结构示意图。
具体实施方式
下面结合附图和示例性实施例对本公开作详细说明。可以理解的是,此处所描述的示例性实施例仅仅用于解释本公开,而非对本公开的限定。另外,为了便于描述,附图中仅示出了与本公开相关的部分而非全部结构。
此外,在不冲突的情况下,本公开中的示例性实施例及示例性实施例中 的特征可以相互组合。下述每个示例性实施例中提供了可选特征和示例,示例性实施例中记载的多个特征可进行组合,形成多个可选方案。
在本公开的描述中,术语“中心”、“上”、“下”、“左”、“右”、“前”、“后”等指示的方位或位置关系为基于附图所示的方位或位置关系。例如,“上”和“下”是沿纸面的页眉和页脚方向而设定的;“左”和“右”是面向纸面的方向而设定的,“前”是垂直于纸面且从纸背向纸面方向;“后”是垂直于纸面且从纸面向纸背方向。这种设定仅是为了便于描述本公开,而不是指示所指的装置或元件必须具有特定的方位,因此不能理解为对本公开的限制。此外,下面所描述的本公开不同实施方式中所涉及的技术特征或技术方案只要彼此之间未构成冲突就可以相互结合。
图1为本公开示例性实施例提供的一种板载天线的结构示意图,本实施例可适用于基于毫米波雷达进行检测的情况。板载天线可以包含在无线电器件内,其中无线电器件一般集成在电子设备。
本公开实施例的毫米波雷达工作在毫米波段,通常毫米波是指30GHz到300GHz频段(波长为1mm到10mm)。相比于其它雷达形式,毫米波雷达具有高精度、高分辨率、距离远、全天候全时段、尺寸小等优势。但是相比于低频段,毫米波频率高,容易激发表面波,而表面波会造成方向图的恶化甚至畸变。在毫米波雷达天线设计中,大尺寸基板上的天线受到表面波的影响,容易造成方向图抖动。从而造成某些角度的探测性能下降,并会造成不同收发通道的不均衡,影响雷达系统的解角精度。此外,本公开实施例的方案也可适用于诸如6GHz、24GHz频段等高频段的通信或雷达设备,只要其天线方向图出现上述问题即可适用。
下面就以毫米波雷达为例,对本公开实施例技术方案进行详细说明:
图2为一种毫米波雷达中天线的结构示意图,如图2所示,该毫米波雷达天线的结构是直接将天线辐射单元放置到基板上,而辐射单元四周未添加其它结构。在天线E面方向上,方向图容易受到表面波的影响,从而产生较大的抖动。
基于此,本公开提出了一种优化毫米波雷达天线方向图抖动的设计,在一定程度上能够抑制表面波对方向图的影响,降低天线方向图的抖动,从而提高毫米波雷达系统的性能。
如图1所示,本公开示例性实施例提供的一种板载天线包括:介质基板1、天线2和金属块3;天线2位于介质基板1上,金属块3与天线2在介质基板1所在平面上的投影不交叠,金属块3位于天线2的极化方向上的介质基板1上,金属块3靠近所述天线侧的金属边与所述天线的距离大于耦合阈值,用于抑制介质基板1上天线2产生的表面波。
在一个实施例中,介质基板1包含第一基板边、第二基板边、第三基板边和第四基板边;其中,所述第一基板边为介质基板1上在所述极化方向的一条边,所述第二基板边为介质基板1上在所述极化方向的另一条边;所述第三基板边为与第一基板边相交的边;所述第四基板边与第三基板边是相对边。
本公开实施例中,极化方向可以理解为天线2辐射电磁波时形成的电场强度的方向。在极化方向上的边,可以认为是与极化方向垂直的边。边可以为直线型。第一基板边、第二基板边、第三基板边和第四基板边可以形成矩形。第一基板边、第二基板边、第三基板边和第四基板边为介质基板1的边界。本公开实施例以介质基板1为矩形进行示例性说明,但是,在另一些示例性实施方式中,介质基板1也可以为圆形、椭圆形、圆角矩形等任意的形状。
本公开在设计金属块3的尺寸时,只要在介质基板1上天线2的极化方向上均布设有金属块3即可。如以图1视角而言,金属块3沿延伸方向的长度大于天线2沿延伸方向的长度。延伸方向是与极化方向垂直的方向。图1视角而言,延伸方向可以是左右方向,极化方向可以是上下方向。
本公开实施例中金属块3与天线2间可以认为具有隔离部,隔离部是基于金属块3和天线2之间的耦合阈值确定的。图1中天线2外围的白色区域可以认为是隔离部。
在一个实施例中,金属块3是围绕隔离部以及基于介质基板1的边缘的限制,而形成的环形结构、或半包围结构。
当金属块3是环形结构时,可以认为金属块3在天线2外围进行全包围,如图1所示,金属块3以环形结构布设在天线2外围。
在一个实施例中,金属块3靠近天线2侧的轮廓可以为沿天线2的轮廓形成的轮廓结构。
在一个实施例中,金属块3中靠近天线2侧的金属边的部分金属边可以为直线型,部分金属边的轮廓可以为沿天线2的轮廓形成的轮廓结构,如将图1中靠近天线2侧的金属边中,位于天线2上边的金属边设置为直线型,或者位于天线2上边的金属边中的部分设置为直线型。
当金属块3是半包围结构时,可以认为金属块3未全包围天线2。当金属块3是半包围结构时,靠近天线2侧的轮廓可以为直线型,也可以是沿天线2的轮廓而形成的轮廓结构。
在一个实施例中,金属块3可以布设在介质基板1上,一个金属块3可以对应有一个隔离部,金属块3与所对应的隔离部可以位于天线2同一侧,金属块3可以位于所对应隔离部与所对应介质基板1边缘间。所对应介质基板1边缘可以与所述金属块3位于天线2的同一侧。
在一个实施例中,所述隔离部是金属块3、天线2和介质基板1所形成的沟槽结构或壁垒结构。
在一个实施例中,金属块3的轮廓包括以下任一种轮廓部分:沿天线2的轮廓形状而形成的轮廓部分、或者基于天线2轮廓的辐射边缘与金属块3之间的去耦合间距(又称耦合阈值)而确定的轮廓部分。如,在距离天线轮廓耦合阈值的范围外布设金属块3,金属块3的轮廓沿天线2的轮廓形成。
在一个实施例中,金属块3包含至少两个独立的块结构,其中,每个块结构布置在天线2周围,且与天线2之间具有所述隔离部。块结构包括但不限于第一金属块、第二金属块、第三金属块和第四金属块。多个所述块结构之间基于块结构与块结构之间的去耦合间距而布置第二隔离部。所述第二隔离部是相邻块结构和介质基板所形成的沟槽结构或壁垒结构。
在一个实施例中,每个所述块结构的长或宽不小于天线2的长或宽。
如图1、图3、图7、图8或图9所示,块结构的左右的长度不小于天线 2的左右的长度。如图10所示,天线2为水平极化,在基板上激发的表面波2-1如波纹一样传播,通过设置块结构能够在一定程度上抑制表面波对方向图的影响。天线左右长度W范围内,表面波最强,因此通过使添加的块结构的长度大于天线左右的长度,最大程度地抑制表面波对方向图的影响,进而最大限度地优化天线方向图。
在一个实施例中,天线2为阵列天线,金属块3与所述阵列天线整体的轮廓之间具有隔离部。如图11所示,块结构19、20的上下的长度不小于天线2的上下的长度。其中,若所述天线2为阵列天线,则所述块结构19、20的上下的长度不小于阵列天线的上下的总长度。
其中,天线2被配置为辐射或接收电磁波,电磁波由电场和磁场构成,天线2的类型不限,例如可以为梳状天线、平面天线等;极化方向可以理解为天线2辐射电磁波时形成的电场强度的方向。金属块3的厚度与天线2的厚度相同或接近相同,本公开所述的金属块3的厚度与天线2的厚度接近相同,指的是金属块3的厚度与天线2的厚度的差值在预设的误差范围之内。在工艺中,金属块3跟天线2通常都是在一个完整的矩形金属上刻蚀出来的,即金属块3与天线2是一体化加工的,因此,金属块3的厚度与天线2的厚度通常是相同的。本公开中,金属块3的材质不限。本公开中,金属块3可以为在介质基板1上布设的高于介质基板1表面的金属层,即金属块3所在面凸于介质基板1表面;也可以为在介质基板1表面上设置的低于介质基板1表面的金属层,即金属块3所在面凹于介质基板1表面。
本公开中天线2可以为梳状天线,表面波在介质基板1的与梳状天线的交界面产生,表面电流沿介质基板1的表面传播,通过添加金属块3,金属块3所在面和天线2所在面可以为同一面,可以截断表面电流,从而减弱在介质基板1边缘处的表面波辐射,进而降低表面波对天线方向图的影响。
可以理解的是,金属块3与天线2之间存在一定间隔,即存在隔离部,使得金属块3不会尽量靠近天线2。如若金属块3太靠近天线2,可能会与天线2进行耦合作用,影响天线2本身的辐射,因此需要使得金属块3与天线2之间存在的一定距离,即金属块3与天线2在介质基板1所在平面上的投影不交叠,且金属块3靠近天线侧的金属边与天线2的距离大于耦合阈值。 在本实施例中耦合距离可以根据实际情况确定,如根据天线2性能确定。若在耦合距离内设置金属块3,则金属块3将与天线2耦合。
在一个实施例中,可以在介质基板1上铺设金属层,然后刻蚀出天线2,刻蚀剩余的金属层可以认为是金属块3。金属块3与天线2的距离可以等间距或不等间距。如金属块3靠近天线2侧的形状可以基于天线2的形状确定,也可以为直线型。
在本实施例中,金属块3的大小、个数及位置以设置在天线2周围,且能够有效抑制表面波对方向图的影响为准。
例如,可以在天线2的极化方向上设置一个金属块3,金属块3的长度(左右方向)大于或等于天线2的长度;也可以在天线2极化方向的两边(上边和下边)分别设置一个金属块3,金属块3的上边和下边可以延伸至介质基板1的上边和下边,和/或,金属块3的左边和右边可以延伸至介质基板1的左边和右边;还可以在天线2的四周(上边、下边、左边和右边)分别设置一个金属块3。
本公开实施例所述的左右上下可以认为是针对图1所示视角而言。左右上下可以以天线2为参照物,左边可以理解为介质基板1上天线2的左侧,右边可以理解为介质基板1上天线2的右侧,上边可以理解为介质基板1上天线2的上侧,下边可以理解为介质基板1上天线2的下侧。
示例性的,图3为本公开示例性实施例提供的另一种板载天线的结构示意图,如图3所示,在天线2的极化方向上设置有一个金属块4,天线2位于介质基板1上,金属块4与天线2在介质基板1所在平面上的投影不交叠,金属块4位于天线2的极化方向上的介质基板1上。图3示出的金属块4可以认为是半包围结构。图3中天线2与金属块4之间可以认为是隔离部。
可以理解的是,由于毫米波频率高,在天线与介质基板的交界面上容易产生表面波,表面波自带的表面电流会沿着介质基板的表面传播至介质基板边缘处,导致天线方向图的抖动,本示例性实施例通过在天线的极化方向上设置金属块,可以截断正在传播的表面电流,从而减弱在介质基板边缘处表面波的辐射,由此减小表面波对天线方向图的影响,使得天线方向图的抖动得以改善。
图4为本公开示例性实施例提供的天线周围有无金属块时的E面方向图,如图4所示,在天线周围添加金属块,即金属板后,E面的方向图抖动明显变小,曲线更为平滑,且在大角度±58度附近方向图的凹陷得到明显的改善。
图5为本公开示例性实施例提供的天线周围有无金属块时的H面方向图,图6为本公开示例性实施例提供的天线周围有无金属块时回波损耗系数的对比图,从图5与图6可看出,在天线周围添加金属块后,天线H面的方向图与回波损耗没有被恶化,而是略微有所提升,因此可认为基本无影响。结合图4E面方向图的结果,可以看出在天线周围添加了金属块后,其E面方向图抖动得到了明显的改善,而天线其它性能未受影响。
总体来看,通过数次的仿真和测试,在天线周围添加金属块后,降低方向图抖动的效果明显,且不会造成天线其它性能的恶化,进而天线的整体性能得到了提升。图4至图6中的效果示意图中天线周围添加金属块可以是将金属层铺满天线外围,外围和周围可以认为距离天线存在设定距离。
在上述实施例的基础上,提出了上述实施例的变型实施例,为了使描述简要,在该变型实施例中仅描述与上述实施例的不同之处。
在一个实施例中,图7为本公开示例性实施例提供的又一种板载天线的结构示意图,如图7所示,金属块包括第一金属块5和/或第二金属块6,第一金属块5位于介质基板1的第一基板边7与天线2之间,第二金属块6位于介质基板1的第二基板边8与天线2之间。
其中,第一基板边7可以理解为介质基板1上在极化方向的一条边,第二基板边8可以理解为介质基板1上在极化方向的另一条边。本实施例第一金属块5和第二金属块6的尺寸可以根据天线2的尺寸确定。
在一个实施例中,第一金属块5背离天线2的第一金属边9与第一基板边7相距第一设定数值,天线2与第一金属块5的第二金属边10相距第二设定数值,第一金属块5的第一金属边9和第一金属块5的第二金属边10为相对的边,所述第二设定数值大于所述耦合阈值。
其中,第一金属块5的第一金属边9可以与极化方向垂直。
在一个实施例中,第一金属块5的第三金属边11与介质基板1的第三基 板边13相距第三设定数值,第一金属块5的第四金属边12与介质基板1的第四基板边14相距第四设定数值,第一金属块5的第三金属边11与第一金属块5的第四金属边12为相对的边。第一设定数值、第三设定数值和第四设定数值可以为0或任一数值,任一数值可以根据介质基板1和天线2的尺寸确定。
其中,可以理解的是,第一金属块5和第二金属块6的俯视图由四条金属边组成,金属边可以认为是形成金属块的边,四条金属边可以分别为第一金属边、第二金属边、第三金属边以及第四金属边,第一金属边与极化方向垂直,第一金属边和第二金属边为相对的边,第三金属边与第四金属边为相对的边,第一金属边与第三金属边垂直。例如,如图7所示,第一金属块5的第一金属边9可以为第一金属块5上侧的金属边,第二金属边10可以为第一金属块5下侧的金属边,第三金属边11可以为第一金属块5左侧的金属边,第四金属边12可以为第一金属块5右侧的金属边。
第一设定数值、第二设定数值、第三设定数值以及第四设定数值仅是用于区分对象的不同而作的区分,可以由相关人员进行设置,第一设定数值、第二设定数值、第三设定数值以及第四设定数值可以相同,也可以各自不同,本实施例中第一设定数值、第二设定数值、第三设定数值以及第四设定数值可以基于实际场景确定。
第三基板边13可以认为是介质基板1上在天线2的延伸方向上的一条边,第四基板边14可以认为是介质基板1上在天线2的延伸方向上的另一条边,延伸方向与极化方向垂直。
本公开实施例中,在天线的延伸方向上的边,可以认为是与天线的延伸方向垂直的边。如图7所示,天线的延伸方向为图中的左右方向,第三基板边13和第四基板边14为介质基板1在竖直方向上相对设置的两条边。
第一金属块5的第一金属边9与第一金属块5的第三金属边11垂直,第三基板边13为介质基板1上在天线2的延伸方向上的一条边,第四基板边14为介质基板1上在天线2的延伸方向上的另一条边,延伸方向与极化方向垂直。
在一个实施例中,所述第二金属块6背离天线2的第一金属边15与第二 基板边8相距第五设定数值,天线2与第二金属块6的第二金属边16相距第六设定数值,第二金属块6的第一金属边15和第二金属块6的第二金属边16为相对的边,所述第六设定数值大于所述耦合阈值。
在一个实施例中,第二金属块6天线2的第三金属边17与第三基板边13相距第七设定数值,第二金属块6的第四金属边18与第四基板边14相距第八设定数值,第二金属块6的第三金属边17和第二金属块6的第四金属边18为相对的边。第五设定数值、第七设定数值以及第八设定数值可以为0或任一数值,任一数值可以根据介质基板1和天线2的尺寸确定。
第五设定数值、第六设定数值、第七设定数值以及第八设定数值同样地仅是用于区分对象的不同而作的区分,可以由相关人员进行设置,本实施例中第五设定数值、第六设定数值、第七设定数值以及第八设定数值可以根据实际场景确定。
第二金属块6的第二金属边16可以与极化方向垂直,第二金属块6的第一金属边15可以与第二金属块6的第三金属边17垂直。
图8为本公开示例性实施例提供的又一种板载天线的结构示意图,如图8所示,第一金属块5的第一金属边9可以延伸至第一基板边7,第二金属块6的第一金属边15可以延伸至第二基板边8。本实施例中延伸方向上第一金属块5与第二金属块6的长度可以等于天线在延伸方向上的长度,也可以大于天线在延伸方向的长度。
图9为本公开示例性实施例提供的又一种板载天线的结构示意图,如图9所示,第一金属块5的第一金属边9可以延伸至第一基板边,第二金属块6的第一金属边15可以延伸至第二基板边,另外,第一金属块5以及第二金属块6的第三金属边11和17可以延伸至第三基板边13,第一金属块5以及第二金属块6的第四金属边12和18可以延伸至第四基板边14。图9示出的第一金属块5和第二金属块6可以认为是半包围结构。
在一个实施例中,图11为本公开示例性实施例提供的又一种板载天线的结构示意图,如图11所示,所述金属块还包括:第三金属块19和/或第四金属块20,第三金属块19位于介质基板1的第三基板边13与天线2之间,第四金属块20位于介质基板1的第四基板边14与天线2之间。
其中,第三金属块19与第四金属块20的大小、位置及材质不限,第三金属块19与第四金属块20的大小可以与第一金属块5、第二金属块6的大小相同,也可以与第一金属块5、第二金属块6的大小不同,第三金属块19与第四金属块20之间的大小可以相同也可以不同。
例如,第三金属块19的第一金属边21可以延伸至第三基板边13,第四金属块20的第四金属边28也可以延伸至第二基板边8,第三金属块19的第三金属边23、第一金属块5的第二金属边10以及第四金属块20的第三金属边27还可以在一条直线上等。
在一个实施例中,第三金属块19的第一金属边21与第三基板边13相距第九设定数值,天线2与第三金属块19的第二金属边22相距第十设定数值,第三金属块19的第一金属边21和第三金属块19的第二金属边22为相对的边,所述第十设定数值大于所述耦合阈值。
其中,第三金属块19的第一金属边21可以与极化方向平行。
在一个实施例中,第四金属块20的第一金属边25与第四基板边14相距第十一设定数值,天线2与第四金属块20的第二金属边26相距第十二设定数值,第四金属块20的第一金属边25与第四金属块20的第二金属边26为相对的边,所述第十二设定数值大于所述耦合阈值。
其中,第四金属块20的第一金属边25与极化方向平行。
在一个实施例中,第三金属块19的第三金属边23和/或第四金属块20的第三金属边27位于第一金属块5的第二金属边10的延长线上,第三金属块19的第一金属边21与第三金属块19的第三金属边23相连。
在一个实施例中,第三金属块19的第四金属边24和/或第四金属块20的第四金属边28位于第二金属块6的第二金属边16的延长线上,第三金属块19的第三金属边23和第三金属块19的第四金属边24为相对的边,第四金属块20的第三金属边27和第四金属块20的第四金属边28为相对的边。
其中,第九设定数值、第十设定数值、第十一设定数值以及第十二设定数值同样地仅是用于区分对象的不同而作的区分,可以由相关人员进行设置,本实施例中第九设定数值、第十设定数值、第十一设定数值以及第十二设定 数值可以根据实际场景确定。第九设定数值和第十一设定数值可以为0或任一数值,任一数值的取值可以根据介质基板1和天线2的尺寸确定。
本公开实施例中设定数值,如第一设定数值至第十二设定数值的数值大小可以根据板载天线的性能和应用场景确定。
第四金属块20的第一金属边25与第四金属块20的第三金属边27相连。
图12为本公开示例性实施例提供的又一种板载天线的结构示意图,图12示出的天线2为阵列天线。天线2外围设置有金属块。
本公开的图3、图7、图8、图9、图11和图12中的金属块均为矩形结构,在另一些示例性实施方式中,金属块也可以为椭圆、圆角矩形等其他任意的形状,此时,金属块在延伸方向上的长度等于该金属块上最左侧的点到该金属块上最右侧的点的距离。
本公开实施例还提供了一种无线电器件,图13为本公开示例性实施例提供的一种无线电器件的结构示意图,参见图13,无线电器件29包括如本公开任一实施例所述的板载天线30和集成电路31,集成电路31可通过所述板载天线发射和/或接收无线电信号,以实现目标检测和/或通信。
集成电路31可包括模拟信号处理电路和数字信号处理模块。
其中,所述模拟信号处理电路与所述板载天线连接,其包括信号发射器和信号接收器。其中信号发射器产生如连续频率变化的探测电信号,并馈电至板载天线,以发射探测信号波;所述信号接收器将对应探测信号波的回波信号波转换成基带的回波电信号。其中,该回波信号波为探测信号波经物体反射而被板载天线接收的。所述模拟信号处理电路还包括AD转换器,以将回波电信号转换成相应的回波数字信号。
所述数字信号处理模块与所述模拟信号处理电路耦接。其中,所述数字信号处理模块被配置为将所述回波数字信号进行信号处理,以输出可供后续电路处理的数字信号。其中,所述数字信号经处理模块得到用于提供所述无线电器件与物体之间的相对距离、相对速度、相对角度、物体轮廓中的至少一种的矩阵数据等。
在一个实施例中,可选的,上述集成电路31可以为毫米波雷达芯片。集成电路31中的数字信号处理模块的种类可以根据实际需求确定。例如,在毫米波雷达芯片,数字信号处理模块包含FPGA(或DSP)等电路器件。例如,所述信号处理模块对回波数字信号进行包括1-FFT、2-FFT、波达计算等在内的至少一种信号处理,并将所计算的对应至少一探测信号波的多个回波数字信号处理成一帧矩阵数据,予以输出。
可选的,无线电器件包括雷达传感器,如毫米波雷达传感器。
本公开实施例还提供了一种电子设备,图14为本公开示例性实施例提供的一种电子设备的结构示意图,参见图14,电子设备32包括:设备本体33;以及,设置于设备本体33上的如本公开任一实施例所述的无线电器件29;无线电器件29被配置为进行目标检测和/或通信,以向电子设备32中设备本体33的运行提供参考信息。参考信息可以认为是电子设备32中设备本体33运行所需的信息,如在进行目标检测时的检测目标信息,即检测目标所需的信息,和通讯信息,即电子设备32内部通信或与外部通信所需的信息。
在本公开的一个实施例中,无线电器件29可以设置在设备本体33的外部,在本公开的另一个实施例中,无线电器件29还可以设置在设备本体33的内部,在本公开的其他实施例中,无线电器件29还可以一部分设置在设备本体33的内部,一部分设置在设备本体33的外部,其设置位置可以视情况而定。
在一个可选的实施例中,上述设备本体33可为应用于诸如智能住宅、交通、智能家居、消费电子、监控、工业自动化、舱内检测及卫生保健等领域的部件及产品。例如,该设备本体33也可为智能交通运输设备(如汽车、自行车、摩托车、船舶、地铁、火车等)、安防设备(如摄像头)、液位/流速检测设备、智能穿戴设备(如手环、眼镜等)、智能家居设备(如扫地机器人、门锁、电视、空调、智能灯等)、各种用于通信的设备(如手机、平板电脑等)等,以及诸如道闸、智能交通指示灯、智能指示牌、交通摄像头及各种工业化机械臂(或机器人)等,也可为用于检测生命特征参数的各种仪器以及搭载该仪器的各种设备,例如汽车舱内检测、室内人员监控、智能医 疗设备等。
无线电器件29可为本公开任一实施例中所阐述的无线电器件29,无线电器件29的结构和工作原理在上述实施例中已经进行了详细说明,此处不在一一赘述。
无线电器件29可通过发射及接收无线电信号实现诸如目标检测和/或通信等功能,以向设备本体33提供检测目标信息和/或通讯信息,进而辅助甚至控制设备本体33的运行。
例如,当上述的设备本体33应用于先进驾驶辅助系统(Advanced Driving Assistance System,ADAS)时,作为车载传感器的无线电器件29(如毫米波雷达)则可为ADAS系统提供诸如自动刹车辅助(Automatic Emergency Braking,AEB)、盲点检测预警(Blind Spot Detection,BSD)、辅助变道预警(即LCA)、倒车辅助预警(即RCTA)等各种功能安全提供保障。
注意,上述仅为本公开的示例性实施例及所运用技术原理。本领域技术人员会理解,本公开不限于这里所述的示例性实施例,对本领域技术人员来说能够进行各种明显的变化、重新调整和替代而不会脱离本公开的保护范围。因此,虽然通过以上实施例对本公开进行了较为详细的说明,但是本公开不仅仅限于以上实施例,在不脱离本公开构思的情况下,还可以包括更多其他等效实施例,而本公开的范围由所附的权利要求范围决定。

Claims (17)

  1. 一种板载天线,其特征在于,包括:介质基板、天线和金属块;
    所述天线位于所述介质基板上,所述金属块与所述天线在所述介质基板所在平面上的投影不交叠,所述金属块位于所述天线的极化方向上的介质基板上,所述金属块靠近所述天线侧的金属边与所述天线的距离大于耦合阈值。
  2. 根据权利要求1所述的板载天线,其特征在于,所述金属块的厚度与所述天线的厚度相同。
  3. 根据权利要求1所述的板载天线,其特征在于,所述介质基板包含第一基板边、第二基板边、第三基板边和第四基板边;其中,所述第一基板边为所述介质基板上在所述极化方向的一条边,所述第二基板边为所述介质基板上在所述极化方向的另一条边;所述第三基板边为与第一基板边相交的边;所述第四基板边与第三基板边是相对边。
  4. 根据权利要求3所述的板载天线,其特征在于,所述金属块包括第一金属块和/或第二金属块,所述第一金属块位于所述介质基板的第一基板边与所述天线之间,所述第二金属块位于所述介质基板的第二基板边与所述天线之间。
  5. 根据权利要求4所述的板载天线,其特征在于,
    所述第一金属块背离所述天线的第一金属边与所述第一基板边相距第一设定数值,所述天线与所述第一金属块的第二金属边相距第二设定数值,所述第一金属块的第一金属边和第一金属块的第二金属边为相对的边,所述第二设定数值大于所述耦合阈值。
  6. 根据权利要求4所述的板载天线,其特征在于,
    所述第一金属块的第三金属边与所述介质基板的第三基板边相距第三设定数值,所述第一金属块的第四金属边与所述介质基板的第四基板边相距第四设定数值,所述第一金属块的第三金属边与所述第一金属块的第四金属边为相对的边。
  7. 根据权利要求4所述的板载天线,其特征在于,所述第二金属块背离所述天线的第一金属边与所述第二基板边相距第五设定数值,所述天线与所述第二金属块的第二金属边相距第六设定数值,所述第二金属块的第一金属边和所述第二金属块的第二金属边为相对的边,所述第六设定数值大于所述耦合阈值。
  8. 根据权利要求4所述的板载天线,其特征在于,
    所述第二金属块的第三金属边与第三基板边相距第七设定数值,所述第二金属块的第四金属边与第四基板边相距第八设定数值,所述第二金属块的第三金属边和所述第二金属块的第四金属边为相对的边。
  9. 根据权利要求4所述的板载天线,其特征在于,所述金属块还包括:第三金属块和/或第四金属块,所述第三金属块位于所述介质基板的第三基板边与所述天线之间,所述第四金属块位于所述介质基板的第四基板边与所述天线之间。
  10. 根据权利要求9所述的板载天线,其特征在于,所述第三金属块的第一金属边与所述第三基板边相距第九设定数值,所述天线与所述第三金属块的第二金属边相距第十设定数值,所述第三金属块的第一金属边和所述第三金属块的第二金属边为相对的边,所述第十设定数值大于所述耦合阈值。
  11. 根据权利要求9所述的板载天线,其特征在于,所述第四金属块的第一金属边与所述第四基板边相距第十一设定数值,所述天线与所述第四金属块的第二金属边相距第十二设定数值,所述第四金属块的第一金属边与所述第四金属块的第二金属边为相对的边,所述第十二设定数值大于所述耦合阈值。
  12. 根据权利要求9所述的板载天线,其特征在于,所述第三金属块的第三金属边和/或所述第四金属块的第三金属边位于所述第一金属块的第二金属边的延长线上,所述第三金属块的第一金属边与所述第三金属块的第三金属边相连。
  13. 根据权利要求9所述的板载天线,其特征在于,所述第三金属块的第四金属边和/或所述第四金属块的第四金属边位于所述第二金属块的第二金属边的延长线上,所述第三金属块的第三金属边和所述第三金属块的第四金属边为相对的边,所述第四金属块的第三金属边和所述第四金属块的第四金属边为相对的边。
  14. 根据权利要求1至13任一所述的板载天线,其特征在于,所述天线为阵列天线。
  15. 一种无线电器件,其特征在于,包括如权利要求1至14任一所述的板载天线和集成电路,所述集成电路通过所述板载天线发射和/或接收无线电信号,以实现目标检测和/或通信。
  16. 根据权利要求15所述的无线电器件,其特征在于,所述无线电器件包括雷达传感器。
  17. 一种电子设备,其特征在于,包括:
    设备本体;以及,
    设置于所述设备本体上的如权利要求15所述的无线电器件;
    所述无线电器件被配置为进行目标检测和/或通信,以向所述电子设备本体的运行提供参考信息。
PCT/CN2022/116548 2021-12-01 2022-09-01 板载天线、无线电器件及电子设备 WO2022233347A2 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22798687.4A EP4178033A4 (en) 2021-12-01 2022-09-01 ON-BOARD ANTENNA, RADIO DEVICE AND ELECTRONIC DEVICE
US18/114,355 US20230238706A1 (en) 2021-12-01 2023-02-27 On-board antenna, radio device, and electronic apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202122989598.X 2021-12-01
CN202122989598.XU CN218415019U (zh) 2021-12-01 2021-12-01 板载天线、无线电器件及电子设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/114,355 Continuation US20230238706A1 (en) 2021-12-01 2023-02-27 On-board antenna, radio device, and electronic apparatus

Publications (2)

Publication Number Publication Date
WO2022233347A2 true WO2022233347A2 (zh) 2022-11-10
WO2022233347A3 WO2022233347A3 (zh) 2022-12-29

Family

ID=83933012

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/116548 WO2022233347A2 (zh) 2021-12-01 2022-09-01 板载天线、无线电器件及电子设备

Country Status (4)

Country Link
US (1) US20230238706A1 (zh)
EP (1) EP4178033A4 (zh)
CN (1) CN218415019U (zh)
WO (1) WO2022233347A2 (zh)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5103227B2 (ja) * 2008-03-03 2012-12-19 アンリツ株式会社 レーダ用アンテナ
JP6822926B2 (ja) * 2017-04-24 2021-01-27 株式会社Soken アンテナ装置
JP7244243B2 (ja) * 2018-09-28 2023-03-22 株式会社デンソーテン アンテナ装置
CN212323215U (zh) * 2020-05-06 2021-01-08 南京慧尔视智能科技有限公司 一种能够抑制雷达天线表面波的高阻抗天线系统
CN212162081U (zh) * 2020-06-23 2020-12-15 南京慧尔视智能科技有限公司 一种低散射的梳状线微带天线
CN213878429U (zh) * 2020-12-29 2021-08-03 中山联合汽车技术有限公司 一种平面天线结构及雷达
CN113594679A (zh) * 2021-07-30 2021-11-02 中汽创智科技有限公司 一种雷达天线

Also Published As

Publication number Publication date
EP4178033A2 (en) 2023-05-10
CN218415019U (zh) 2023-01-31
WO2022233347A3 (zh) 2022-12-29
US20230238706A1 (en) 2023-07-27
EP4178033A4 (en) 2024-03-06

Similar Documents

Publication Publication Date Title
US9673532B2 (en) Antenna
US10566701B2 (en) Folded radiation slots for short wall waveguide radiation
CN109951205B (zh) 无线信号收发装置
WO2022083699A1 (zh) 一种雷达探测装置和雷达探测系统
KR20160044873A (ko) 도파관 대 유전체 도파관의 천이 구조
US11742559B2 (en) Multilayer transmission line including first and second transmission lines on opposite surfaces of a multilayer substrate and which are electrically connected by a cylindrical conductor hole
US11515624B2 (en) Integrated cavity backed slot array antenna system
US11757193B2 (en) Wideband antenna disposed in vehicle
US20170274832A1 (en) Windshield including vehicle-mounted radar
US20100117923A1 (en) Antenna Assembly
EP3525282B1 (en) Signal handling device including multiple substrate layers
JP6456716B2 (ja) アンテナユニット
WO2022233347A2 (zh) 板载天线、无线电器件及电子设备
US20230238712A1 (en) Antenna Apparatus, Method for Producing Antenna Apparatus, Radar, and Terminal
CN112701475B (zh) 天线阵列、封装天线、集成电路及无线电器件
CN113938139B (zh) 信号接收、信号发射链路、无线电器件和馈线设置方法
CN220455515U (zh) 一种共用多层金属天线的多毫米波雷达系统
CN218334344U (zh) 阵列天线、无线电器件和电子设备
US11967765B1 (en) Low side lobe level integrated cavity backed slot array antenna system
CN220603680U (zh) 一种封装结构、雷达传感器和电子设备
CN217306728U (zh) 功分器、天线装置、无线电器件以及设备
JP7176872B2 (ja) 平面アンテナ装置
WO2023108340A1 (zh) 天线装置、雷达,探测装置及终端
JP2007288398A (ja) アンテナ装置
CN109887904A (zh) 一种毫米波芯片的封装结构及印刷电路板

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022798687

Country of ref document: EP

Effective date: 20230202

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22798687

Country of ref document: EP

Kind code of ref document: A2