WO2022233277A1 - 一种对一待检测物进行的检测方法与检测装置 - Google Patents

一种对一待检测物进行的检测方法与检测装置 Download PDF

Info

Publication number
WO2022233277A1
WO2022233277A1 PCT/CN2022/090341 CN2022090341W WO2022233277A1 WO 2022233277 A1 WO2022233277 A1 WO 2022233277A1 CN 2022090341 W CN2022090341 W CN 2022090341W WO 2022233277 A1 WO2022233277 A1 WO 2022233277A1
Authority
WO
WIPO (PCT)
Prior art keywords
detection
sampling
images
detected
server
Prior art date
Application number
PCT/CN2022/090341
Other languages
English (en)
French (fr)
Inventor
张焜杰
Original Assignee
艺信股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 艺信股份有限公司 filed Critical 艺信股份有限公司
Priority to CN202280032539.8A priority Critical patent/CN117461051A/zh
Publication of WO2022233277A1 publication Critical patent/WO2022233277A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis

Definitions

  • the present invention relates to the field of detection articles, in particular, to a method and detection device for detecting an object to be detected.
  • the present invention is made in view of the above problems, and provides a method and a detection device for detecting an object to be detected.
  • the present invention provides a method for detecting an object to be detected by a detection device.
  • the method includes: transmitting a request for detecting the object to be detected; receiving the positioning point of the object to be detected; Obtaining a plurality of detection images along a plurality of detection directions on the positioning point of the object to be detected; and obtaining a detection result according to the plurality of detection images, wherein the detection result is based on the plurality of detection images and the corresponding object to be detected produced by an alignment of a corresponding locating point of a fiducial object.
  • the present invention further provides a detection device for detecting an object to be detected.
  • the detection device includes: an image capture unit, the image capture unit is used to obtain a plurality of detection images; a mobile control unit , the movement control unit is used to make the image capture unit move when the object to be detected is detected; a processor, the processor is coupled with the image capture unit and the moving unit; a transmission unit, the transmission a unit coupled to the processor; a receiving unit coupled to the processor; and a storage device coupled to the processor and storing a plurality of instructions for execution by the processor
  • the processor transmits a request for detecting the object to be detected through the transmitting unit; receives the positioning point of the object to be detected through the receiving unit; causes the image capture unit to detect the object to be detected through the movement control unit On the positioning point, the plurality of detection images are obtained along a plurality of detection directions; and a detection result is obtained according to the plurality of detection images, wherein the detection result is based on the plurality of detection images
  • the present invention also provides a method for detecting an object to be detected by a server, the method includes: receiving a request for detecting the object to be detected; sending the positioning point of the object to be detected; A plurality of detection images obtained along a plurality of detection directions on the positioning point of the object to be detected; and a detection result is obtained according to the plurality of detection images, wherein the detection result is based on the plurality of detection images and the corresponding detection images. Generated by an alignment of a reference to the test substance.
  • the detection system saves the information of the reference object, and thereby limits the sampling point (ie: the corresponding positioning point) of the reference object.
  • the detection device must first upload the information of the object to be detected, so that the detection system can confirm the corresponding reference object, and then can obtain the positioning point of the object to be detected that needs to capture the image.
  • this method also increases the difficulty of passing the detection of counterfeit products because it is difficult to directly obtain the sampling point of the reference object.
  • the information of the reference object is stored in the blockchain storage device, the security and immutability of the information can be further improved.
  • FIG. 1A is a block diagram of a sampling system of the present invention for establishing identification data for fiducials and sampling.
  • FIG. 1B is a block diagram of another sampling system of the present invention for establishing identification data for fiducials.
  • FIG. 2 is a block diagram of a sampling device for establishing identification data for a reference object and sampling in accordance with the present invention.
  • FIG. 3 is a flow chart of a sampling method for establishing identification data for a reference object according to the present invention.
  • FIG. 4A is a block diagram of a detection system for detecting objects to be detected according to the present invention.
  • FIG. 4B is a block diagram of another detection system for detecting objects to be detected according to the present invention.
  • FIG. 5 is a block diagram of a detection device for detecting an object to be detected according to the present invention.
  • FIG. 6 is a flow chart of a detection method for detecting an object to be detected according to the present invention.
  • FIG. 7A shows a schematic diagram of an image capturing unit capturing a sampling image in a sampling direction on a positioning point of a reference object according to an exemplary embodiment of the present invention.
  • FIG. 7B shows a schematic diagram of an image capturing unit capturing a sampling image in another sampling direction on the positioning point of the fiducial object according to an exemplary embodiment of the present invention.
  • FIGS. 8A-8E are photographs of different sampled images captured on a fiducial object according to an exemplary embodiment of the present invention.
  • 8F-8J are photographs of different inspection images captured on an object to be inspected according to an exemplary embodiment of the present invention.
  • 9A and 9B are sampling images of different gemstones sampled in the same processing method in the same sampling direction according to an exemplary embodiment of the present invention.
  • Figure 10A is a photograph of antique utensils with the same texture but not the same.
  • FIG. 10B and 10C are sampled images of different antique utensils shown in FIG. 10A sampled in the same sampling direction according to an exemplary embodiment of the present invention.
  • Coupled is defined as connected, whether directly or indirectly through intervening elements, and is not necessarily limited to physical connections.
  • comprising means “including but not limited to,” which explicitly indicates the open inclusion or relationship of the stated combinations, groups, series, and equivalents. .
  • any one or more of the disclosed encoding functions or algorithms described in this disclosure may be implemented by hardware, software, or a combination of software and hardware.
  • the functions described may correspond to modules, which may be software, hardware, firmware, or any combination thereof.
  • Software implementations may include computer-executable instructions stored on a computer-readable medium, such as a memory or other type of storage device.
  • a microprocessor or general purpose computers with communications processing capabilities can be programmed with executable instructions and perform one or more of the disclosed functions or algorithms.
  • a microprocessor or general-purpose computer may be formed from application specific integrated circuits (ASICs), programmable logic arrays, and/or using one or more digital signal processors (DSPs).
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • Computer readable media include but are not limited to random access memory (RAM), read only memory (ROM), erasable programmable read-only memory (EPROM), Electrically erasable programmable read-only memory (EEPROM), flash memory, compact disc read-only memory (CD ROM), magnetic cartridges, magnetic tapes, magnetic disk storage devices or capable of Any other equivalent medium storing computer readable instructions.
  • RAM random access memory
  • ROM read only memory
  • EPROM erasable programmable read-only memory
  • EEPROM Electrically erasable programmable read-only memory
  • CD ROM compact disc read-only memory
  • magnetic cartridges magnetic tapes
  • magnetic disk storage devices capable of Any other equivalent medium storing computer readable instructions.
  • the coupling between the devices of the present invention can adopt customized protocols or follow existing standards or de facto standards, including but not limited to Ethernet, IEEE 802.11 or IEEE 802.15 series, wireless USB or telecommunication standards (including but not limited to GSM (Global System for Mobile Communications, Global System for Mobile Communications), CDMA2000 (Code Division Multiple Access, Code Division Multiple Access technology), TD-SCDMA (Time Division-Synchronization Code Division Multiple Access, Time Division Synchronization Code Division Multiple Access technology), WiMAX ( World Interoperability for Microwave Access), 3GPP-LTE (Long Term Evolution, long term evolution technology) or TD-LTE (Time Division Long Term Evolution, time division long term evolution technology)).
  • GSM Global System for Mobile Communications
  • CDMA2000 Code Division Multiple Access, Code Division Multiple Access technology
  • TD-SCDMA Time Division-Synchronization Code Division Multiple Access, Time Division Synchronization Code Division Multiple Access technology
  • WiMAX World Interoperability for Microwave Access
  • 3GPP-LTE Long Term Evolution,
  • each apparatus of the present invention may each include any device configured to transmit and/or store data to and receive data from a computer-readable medium.
  • each apparatus of the present invention may include a computer system interface that may enable data to be stored on or received from a storage device.
  • each device of the present invention may include a chipset, a dedicated bus protocol, a universal serial bus (Universal Serial Bus) that support the peripheral component interconnect (Peripheral Component Interconnect, PCI) and high-speed peripheral component interconnect (Peripheral Component Interconnect Express, PCIe) bus protocols Serial Bus, USB) protocol, I2C, or any other logical and physical structure that can be used to interconnect peer devices.
  • PCI peripheral component interconnect
  • PCIe peripheral component interconnect Express
  • FIG. 1A is a block diagram of a sampling system 101 provided by the present invention for establishing identification data for a reference object and sampling.
  • the sampling system 101 includes a server 10 and a sampling device 20 .
  • the server 10 may include an internal storage device 11 to store the sampled results.
  • the sampling device 20 when the sampling device 20 receives a sampling request, the sampling device 20 can be coupled to the server 10 to complete the sampling method of the present invention. After the sampling system 101 completes the sampling method, the sampling device 20 can be decoupled from the server 10 .
  • FIG. 1B is a block diagram of another sampling system 102 provided by the present invention for establishing identification data for fiducial objects and sampling.
  • the sampling system 102 includes a server 10 , a sampling device 20 and an online storage device 30 .
  • the sampling device 20 when the sampling device 20 receives a sampling request, the sampling device 20 can be coupled to the server 10, and the server 10 can be further coupled to the online storage device 30 to complete the sampling method of the present invention.
  • the sampling device 20 can be decoupled from the server 10 , and the server 10 can also be decoupled from the online storage device 30 .
  • the sampling device 20 when the sampling device 20 receives a sampling request, the sampling device 20 can be coupled with the server 10 and the online storage device 30 to complete the sampling method of the present invention. After the sampling system 102 completes the sampling method, the sampling device 20 can be decoupled from the server 10 and the online storage device 30 .
  • the online storage device 30 may be a network data storage device or a blockchain storage device.
  • the online storage device 30 is the blockchain storage device, the possibility of tampering or replacement of the sampling results can be reduced through the characteristics of the blockchain.
  • the online storage device 30 can store the records of all transactions of the reference object, the time and result of the inspection, and the updated pictures.
  • FIG. 2 is a block diagram of a sampling device 20 provided by the present invention for establishing identification data for a reference object and sampling.
  • the sampling device 20 may be a mobile phone, a tablet computer, a desktop computer, a notebook computer, a camera, a video recorder, or other electronic devices, etc., which are not limited herein.
  • the sampling device 20 includes a movement control unit 21 , an image capture unit 22 , a processor 23 , a storage 24 and a transmission unit 25 .
  • the movement control unit 21 is used to enable the sampling device 20 to achieve the movement required for the sampling process. In one embodiment, the movement control unit 21 is used to make the image capture unit 22 complete the movement when sampling the reference object. In one embodiment, the movement control unit 21 can be a display screen on the sampling device 20 or an automatic movement device coupled with the image capture unit 22 .
  • the display screen can be used to provide a movement instruction to the user to instruct the user to move the image capture unit 22 to the sampling position.
  • the sampling position can be determined by a sampling distance and a sampling direction. For example, when a camera distance between the image capture unit 22 and a positioning point on the reference object is equal to the sampling distance, and a camera direction of the positioning point on the reference object by the image capture unit 22 is equal to In the sampling direction, the display screen shows that the image capturing unit 22 has moved to the sampling position, and can start to obtain the desired sampling image. When the camera distance is not equal to the sampling distance, the display screen may instruct the user to further move the image capturing unit 22 to zoom out or zoom in on the camera distance.
  • the display screen may instruct the user to further move the image capturing unit 22 to left, right, pull up or down the camera direction.
  • the sampling position may be determined by the sampling direction.
  • the sampling distance can be adjusted by adjusting the focal length of the image capturing unit 22 to ensure that the surface information of the details of the reference object is obtained.
  • the automatic moving device can be a robotic arm or other device that can move the image capture unit 22 , and the automatic moving device can receive the sampling position indicated by the processor 23 to The image capturing unit 22 is moved to the sampling position.
  • the sampling distance can be ensured by adjusting the focal length of the image capturing unit 22 to obtain the surface information of the details of the reference object. Therefore, the automatic moving device can only adjust the sampling direction of the moving image capturing unit 22 to obtain the desired sampling image.
  • the image capturing unit 22 is used for acquiring a plurality of sampled images.
  • the image capture unit 22 can move to a plurality of different sampling positions, so that the image capture unit 22 can capture the reference object at different sampling positions. to obtain the plurality of sampled images.
  • the image capturing unit 22 can be a charge-coupled device CCD (Charge-Coupled Device) image sensor, a complementary metal-oxide-semiconductor CMOS (Complementary Metal-Oxide-Semiconductor) image sensor or a camera.
  • the image capturing unit 22 may include a high-magnification image capturing lens to obtain the surface information of the details of the fiducial object.
  • the image capturing unit 22 may include a microscope image capturing lens.
  • the plurality of sampled images captured by the image capturing unit 22 are all surface microscopic images of the reference object.
  • the surface microscopic image is a surface texture image.
  • the processor 23 and the storage 24 are coupled to each other.
  • the storage 24 stores a plurality of instructions for the processor 23 to execute the sampling method of the sampling device 20 according to the plurality of instructions stored in the storage 24 .
  • the storage 24 stores a sampling procedure 240 .
  • the sampling program 240 further includes a positioning module 241 and a sampling module 242 .
  • the positioning module 241 is used for enabling the processor 23 to assist the moving control unit 21 to move the image capturing unit 22 to the sampling position.
  • the sampling module 242 is used for enabling the processor 23 to assist the image capturing unit 22 to obtain the required sampling image at the sampling position.
  • Transmission unit 25 may utilize custom protocols or follow existing or de facto standards, including but not limited to Ethernet, IEEE 802.11 or IEEE 802.15 series, wireless USB or telecommunications standards (including but not limited to GSM, CDMA2000, TD-SCDMA, WiMAX , 3GPP-LTE or TD-LTE), so as to transmit the sampling feature to other devices than the sampling device 20 .
  • Ethernet IEEE 802.11 or IEEE 802.15 series
  • wireless USB or telecommunications standards including but not limited to GSM, CDMA2000, TD-SCDMA, WiMAX , 3GPP-LTE or TD-LTE
  • FIG. 3 is a flow chart of a sampling method 300 provided by the present invention for establishing identification data for a reference object and sampling.
  • the sampling method 300 shown in FIG. 3 is merely an example, as there are many ways to perform the described sampling method 300 .
  • the sampling method 300 may be performed using the configurations shown in FIGS. 1A , 1B and 2 , and while the sampling method 300 is described, please incorporate reference to the various elements in FIGS. 1A , 1B and 2 .
  • Each step shown in FIG. 3 can represent one or more processes, methods or subroutines to be executed, and the sequence of each step can be adjusted arbitrarily, and the essence of the sampling method 300 is not deviated from the technical solution of the sampling method 300 range.
  • step S310 the sampling device 20 obtains the positioning point on the reference object.
  • the sampling device 20 can set the positioning point of the reference object by itself. In one embodiment, when the sampling device 20 receives a request to establish the identification data for the reference object, the sampling device 20 can select the positioning point on the reference object by itself. In one embodiment, the image capturing unit 22 of the sampling device 20 can obtain an overall image of the reference object, and the user can select a position of the reference object from the overall image as the positioning point. In another embodiment, the image capture unit 22 of the sampling device 20 can obtain an overall image of the reference object, and randomly or through a predetermined selection method, select a position on the reference object as the positioning point.
  • the sampling device 20 may receive the positioning point for the fiducial from a device other than the sampling device 20 .
  • the sampling device 20 may further include a receiving unit (not shown).
  • the receiving unit can receive data supplied to the sampling device 20 from devices other than the sampling device 20 .
  • the receiving unit and the transmitting unit 25 can be integrated into a communication unit.
  • the image capturing unit 22 of the sampling device 20 can obtain an overall image for the reference object, and transmit the image through the transmission unit 25 The whole image is transmitted to the server 10 .
  • the server 10 receives the requirement for establishing the identification data for the reference object and the overall image, the server 10 can select the positioning point from the overall image based on a preset selection method, and send the positioning point back to the The receiving unit of the sampling device 20 .
  • the server 10 may store the location point in the internal storage device 11 in the server 10 .
  • the server 10 may transmit the location point to the online storage device 30 for storage.
  • step S320 the sampling device 20 acquires a plurality of sampled images along a plurality of sampling directions at the positioning point.
  • the sampling device 20 can set the sampling directions of the positioning point by itself. In the embodiment, when the sampling device 20 starts to capture the sampled image for the positioning point, the sampling device 20 can select the plurality of sampling directions for the positioning point by itself. In one embodiment, the sampling device 20 further includes a positioning unit (not shown in the figure), and the positioning unit may include a positioning device such as a gyroscope. In one embodiment, when the image capturing unit 22 captures the sampling image of the positioning point, the sampling device 20 can also record the sampling direction corresponding to the sampling image through the positioning unit. In another embodiment, the sampling device 20 may select the plurality of sampling directions in advance based on a preset orientation, and move the control unit 21 to make the image capturing unit 22 perform the plurality of samplings in the plurality of sampling directions Capture of images.
  • sampling device 20 may receive the plurality of sampling directions from devices other than sampling device 20 .
  • the server 10 can set the sampling directions based on the preset orientation, and return them at the positioning point When sent to the receiving unit of the sampling device 20, the set sampling directions are sent back to the receiving unit together.
  • the server 10 may store the plurality of sampling directions in the internal storage device 11 of the server 10 .
  • the server 10 may transmit the plurality of sampling directions to the online storage device 30 for storage.
  • the server 10 may not store the plurality of sampling directions in the internal storage device 11 and also not transmit them to the online storage device 30 . In other words, the sampling system does not store the plurality of sampling directions.
  • the image capturing unit 22 obtains the plurality of sampled images based on the plurality of sampling directions.
  • the image capturing unit 22 can obtain a plurality of first sampling images based on a first sampling direction among the plurality of sampling directions, and can obtain a plurality of first sampling images based on a second sampling direction among the plurality of sampling directions , to obtain a plurality of second sampling images.
  • step S330 the sampling device 20 transmits the sampling features created by the plurality of sampled images for storage by an online device.
  • the network device may be the internal storage device 11 or the online storage device 30 in the server 10 .
  • the sampling device 20 can transmit the sampling features established by the plurality of sampled images to the server 10 through the transmitting unit 25 .
  • the server 10 may store the sampled features in the internal storage device 11 in the server 10 , or the server 10 may transmit the sampled features to the online storage device 30 for storage.
  • the sampling device 20 also transmits the sampling features established by the plurality of sampled images to the server 10 through the transmitting unit 25, the server 10 obtains a verification feature through a preset image processing method, and sends the sampling feature to the server 10.
  • the verification feature is stored in the internal storage device 11 in the server 10, or the server 10 may transmit the verification feature to the online storage device 30 for storage.
  • the sampling device 20 can directly transmit the sampling features established by the plurality of sampled images to the online storage device 30 through the transmitting unit 25 .
  • the sampled feature may be a sampled set of the plurality of sampled images.
  • all of the plurality of sampling images, the plurality of sampling directions, and the sampling correspondence between them are the sampling features.
  • the server 10 when the server 10 receives the plurality of sampled images, the plurality of sampling directions, and the sampling correspondence, the server 10 can obtain the verification feature according to a preset image processing method, and perform the verification feature. Stored in the internal storage device 11 or the online storage device 30 .
  • the server 10 after the server 10 receives the plurality of sampling images, the plurality of sampling directions, and the sampling correspondence, the server 10 directly receives the plurality of sampling images, the plurality of sampling directions, and the sampling correspondence It is stored in the internal storage device 11 or the online storage device 30, and the plurality of sampling images, the plurality of sampling directions and the sampling correspondence are directly used as subsequent verification features.
  • the sampling feature may be the verification feature generated based on the plurality of sampled images, the plurality of sampling directions, and the sampling correspondence.
  • the processor 23 of the sampling device 20 can automatically obtain the verification feature based on the predetermined image processing method.
  • the sampling device 20 may transmit the verification feature to the server 10 via the transmitting unit 25 .
  • the server 10 may store the verification feature in the internal storage device 11 in the server 10 , or the server 10 may transmit the verification feature to the online storage device 30 for storage.
  • the sampling device 20 can directly transmit the verification feature to the online storage device 30 through the transmitting unit 25 for storage.
  • the sampling device 20 can also transmit the positioning point to the server 10 or the online storage device 30.
  • Server 10 or online storage device 30 to store.
  • the sampling device 20 also transmits the object information of the reference object, and the online storage device 30 or the internal storage device 11 stores the object information, so that when a to-be-detected object is to be detected later, the server 10 can The object information is compared with the information of the object to be detected to determine whether the server 10 should retrieve the positioning point and the verification feature of the reference object as identification information for detecting the object to be detected.
  • the fiducial since the fiducial changes slightly over time, if a long period of time (for example, 10 years or 20 years) passes, the fiducial will perform the same two steps again. During the second sampling, the second sampling result will be different from the sampling feature or the verification feature stored in the server 10 or the online storage device 30, resulting in the reference object being identified as a fake. Therefore, the sampling device 20 can transmit a change message to the server 10 at the same time when transmitting the sampling feature to the server 10 .
  • a long period of time for example, 10 years or 20 years
  • the change information may be the material information or the object information of the reference object, and the server 10 can search for a deterioration information of the reference object according to the material information and the object information, so as to be used for the subsequent sampling feature When detecting an object to be detected, the possible deterioration status of the reference object can be considered together.
  • the server 10 may store the degradation information in the internal storage device 11 or the online storage device 30 .
  • the server 10 may directly store the change information in the internal storage device 11 or the online storage device 30 for subsequent detection of the to-be-detected object, and then search for the deterioration information according to the material information and the object information .
  • the change information may be the deterioration information of the reference object.
  • the sampling device 20 can search for the degradation information of the reference object according to the material information or the object information of the reference object, and transmit the degradation information to the server 10 or directly to the online storage device 30 .
  • the server 10 when the server 10 receives the degradation information, the server 10 can store the degradation information in the internal storage device 11 or the online storage device 30 .
  • sampling method 300 of the present invention may include at least but not limited to all the following embodiments:
  • the set of the plurality of sampled images is directly stored in the internal storage device 11 or the online storage device 30 as the verification feature, and the positioning point and the plurality of sampling directions All are determined by the sampling device 20 .
  • the sampling device 20 first sets the positioning point and the sampling directions by itself, obtains the sampling images based on the positioning point and the sampling directions, and calculates the sampling images of the sampling images.
  • the set is used as a sampling feature, and is then sent to the server 10 or directly to the online storage device 30 for storage together with the positioning point, the sampling directions, and the sampling correspondence between the sampling images and the sampling directions.
  • the server 10 when the server 10 receives the plurality of sampled images, the positioning point, the plurality of sampling directions, and the sampling correspondence, the server 10 can obtain the plurality of sampled images, the positioning point, the plurality of sampling directions, and the Each sampling direction and the sampling corresponding relationship are stored in the internal storage device 11 or the online storage device 30 .
  • the data transmitted by the sampling device 20 further includes the change information
  • the data stored in the internal storage device 11 or the online storage device 30 may further include the material information, the object information or the deterioration information.
  • the set of the plurality of sampled images is directly stored in the internal storage device 11 or the online storage device 30 as the verification feature, and the location point or the plurality of sampling directions It is determined by the sampling device 20 , and the other is determined by the server 10 .
  • the sampling directions are determined by the sampling device 20
  • the positioning point is determined by the server 10 . Therefore, when the sampling device 20 receives a request to establish the identification data for the reference object, the sampling device 20 can obtain the overall image for the reference object to the server 10, and the server 10 can select the reference object from the The anchor point is selected from the overall image and provided to the sampling device 20 .
  • the sampling device 20 can also select the plurality of sampling directions based on the preset orientation.
  • the positioning point is determined by the sampling device 20
  • the plurality of sampling directions are determined by the server 10 . Therefore, when the sampling device 20 receives a request to establish the identification data for the reference object, the sampling device 20 can obtain the overall image for the reference object, and can select the overall image based on a preset selection method. location point. At the same time, the sampling device 20 transmits the sampling request to the server 10 , so that the server 10 selects the plurality of sampling directions based on the preset orientation to provide the sampling device 20 .
  • the sampling device 20 after obtaining the positioning point and the sampling directions, the sampling device 20 further obtains the sampling images, and uses the set of the sampling images as the sampling feature, together with the positioning point and the sampling direction.
  • One of the plurality of sampling directions and the corresponding relationship of the sampling are transmitted to the server 10 or directly transmitted to the online storage device 30 for storage.
  • the server 10 may store the plurality of sampled images, the positioning point, the plurality of sampling directions and the sampling correspondence in the internal storage device 11 or Online storage device 30 .
  • the online storage device 30 when the online storage device 30 directly receives the plurality of sampled images from the sampling device 20 , the online storage device 30 can obtain the positioning points that the online storage device 30 has not received from the sampling device 20 from the server 10 . with one of the plurality of sampling directions. In the embodiment, if the positioning point is determined by the server 10, the sampling device 20 does not need to additionally transmit the positioning point. If the plurality of sampling directions are determined by the server 10, the sampling device 20 does not need to additionally transmit the plurality of sampling directions, but only needs to transmit the sampling correspondence.
  • the data transmitted by the sampling device 20 further includes the change information, and the data stored in the internal storage device 11 or the online storage device 30 may further include the material information, the object information or the deterioration information.
  • the set of the plurality of sampled images is directly stored in the internal storage device 11 or the online storage device 30 as the verification feature, and the positioning point and the plurality of sampling directions All are determined by the server 10 .
  • the sampling device 20 when the sampling device 20 receives a request to establish the identification data for the reference object, the sampling device 20 can obtain the overall image for the reference object to the server 10, and the server 10 can obtain the overall image based on the preset For the selection method and the orientation method, the positioning point is selected from the overall image, and the plurality of sampling directions are additionally determined to be provided to the sampling device 20 .
  • the sampling device 20 obtains the plurality of sampled images based on the received positioning point and the plurality of sampling directions, uses the set of the plurality of sampled images as a sampling feature, and then transmits the sampling corresponding relationship to the server 10 or directly. It is sent to the online storage device 30 for storage.
  • the server 10 may store the sampling images, the positioning point, the sampling directions and the sampling correspondence in the Internal storage device 11 or online storage device 30 .
  • the online storage device 30 directly receives the sampling images and the sampling correspondence from the sampling device 20 , the online storage device 30 can obtain the positioning point and the sampling directions from the server 10 .
  • the data transmitted by the sampling device 20 further includes the change information
  • the data stored in the internal storage device 11 or the online storage device 30 may further include the material information, the object information or the deterioration information.
  • the plurality of sampled images are stored in the internal storage device 11 or the online storage device 30 after the verification feature is generated by a predetermined image processing method, and the positioning point and the A plurality of sampling directions are determined by the sampling device 20 .
  • the sampling device 20 first sets the positioning point and the sampling directions by itself, and obtains the sampling images based on the positioning point and the sampling directions.
  • the sampling device 20 generates the verification feature for the positioning point through a preset image processing method according to the plurality of sampling images, the plurality of sampling directions and the sampling correspondence, and the sampling device 20 stores the verification feature for the location point.
  • the verification feature is used as the sampling feature, and is transmitted to the server 10 or directly to the online storage device 30 together with the positioning point for storage.
  • the server 10 can store the verification feature and the positioning point in the internal storage device 11 or the online storage device 30 .
  • the sampling device 20 directly transmits the positioning point, the sampling directions, the sampling images and the sampling correspondence to the server 10, and the server 10 determines the sampling images, the sampling The direction and the corresponding relationship of the sampling, the verification feature for the positioning point is generated by a preset image processing method, and stored in the internal storage device 11 or the online storage device 30 together with the positioning point.
  • the data transmitted by the sampling device 20 further includes the change information
  • the data stored in the internal storage device 11 or the online storage device 30 may further include the material information, the object information or the deterioration information.
  • the verification feature is stored in the internal storage device 11 or the online storage device 30, and the positioning point or The plurality of sampling directions are determined by the sampling device 20 , and the other are determined by the server 10 .
  • the sampling device 20 and the server 10 generate the positioning point and the positioning point according to a preset selection method and the overall image of the reference object or according to a preset orientation method. A plurality of sampling directions are obtained, and the plurality of sampling images are obtained accordingly.
  • the sampling device 20 generates the verification feature for the positioning point through a preset image processing method according to the plurality of sampling images, the plurality of sampling directions and the sampling correspondence, and the sampling device 20 stores the verification feature for the location point.
  • the verification feature is transmitted to the server 10 or directly to the online storage device 30 for storage as the sampled feature.
  • the sampling device 20 may additionally transmit the positioning point to the server 10 or directly transmit the positioning point to the online storage device 30 for storage.
  • the server 10 when the server 10 receives the verification feature, the server 10 may store the verification feature and the location point in the internal storage device 11 or the online storage device 30 .
  • the sampling device 20 directly transmits the plurality of sampled images and the corresponding sampling relationship to the server 10 , and the server 10 pre- The designed image processing method generates the verification feature for the positioning point, and stores the verification feature together with the positioning point in the internal storage device 11 or the online storage device 30 .
  • the sampling directions are determined by the sampling device 20
  • the sampling device 20 may additionally transmit the sampling directions to the server 10 .
  • the sampling device 20 may additionally transmit the positioning point to the server 10 or directly transmit the positioning point to the online storage device 30 for storage.
  • the data transmitted by the sampling device 20 further includes the change information
  • the data stored in the internal storage device 11 or the online storage device 30 may further include the material information, the object information or the deterioration information.
  • the verification feature is stored in the internal storage device 11 or the online storage device 30, and the positioning point and The multiple sampling directions are all determined by the server 10 .
  • the server 10 generates the positioning point according to a preset selection method and the overall image of the reference object received from the sampling device 20, and according to a preset orientation The plurality of sampling directions are generated by the method, and then the positioning point and the plurality of sampling directions are provided to the sampling device 20 .
  • the sampling device 20 generates the verification feature for the positioning point through a preset image processing method according to the plurality of sampling images, the plurality of sampling directions and the sampling correspondence, and the sampling device 20 stores the verification feature for the location point.
  • the verification feature is transmitted to the server 10 or directly to the online storage device 30 for storage as the sampled feature.
  • the sampling device 20 since the positioning point is determined by the server 10, the sampling device 20 does not need to additionally transmit the positioning point.
  • the server 10 may store the verification feature and the location point in the internal storage device 11 or the online storage device 30 .
  • the sampling device 20 directly transmits the plurality of sampled images and the corresponding sampling relationship to the server 10 , and the server 10 pre- The designed image processing method generates the verification feature for the positioning point, and stores the verification feature together with the positioning point in the internal storage device 11 or the online storage device 30 .
  • the data transmitted by the sampling device 20 further includes the change information
  • the data stored in the internal storage device 11 or the online storage device 30 may further include the material information, the object information or the deterioration information.
  • the preset selection method may be a random selection method for the sampling device 20 or the server 10 to arbitrarily select the positioning point from the overall image of the reference object.
  • the predetermined selection method may be through a surface analysis technique for the sampling device 20 or the server 10 to select the positioning point from the overall image of the reference object.
  • the surface analysis technology may be an image analysis technology such as image complexity analysis to obtain a high-complexity region in the overall image as a positioning point.
  • the preset selection method includes but is not limited to the above-mentioned selection method. Any method that can be used to select a specific location of the fiducial can be used for the sampling method 300 described herein.
  • the preset orientation mode may be a random orientation mode for the sampling device 20 or the server 10 to arbitrarily select the plurality of sampling directions.
  • the plurality of sampling directions can be selected by a surface analysis technique according to the positioning point.
  • the surface analysis technology can set more sampling directions for the part with higher degree of color change around the positioning point according to the gradient of the pixel value change, so as to obtain more complete sampling features around the positioning point.
  • the preset orientation mode includes but is not limited to the above-mentioned orientation mode. Any method that can be used to select a plurality of different sampling directions can be used for the sampling method 300 described herein.
  • the preset image processing method may be three-dimensional modeling processing.
  • the sampling device 20 or the server 10 may use machine learning according to the sampling images, the sampling directions, and the sampling correspondence between the sampling images and the sampling directions.
  • the sampling model may be a three-dimensional sampling model.
  • the sampling device 20 can select a plurality of positioning points for the reference object, and obtain a plurality of sampling images with a plurality of sampling directions for each positioning point, thereby obtaining different positioning points for the reference object different sampling characteristics.
  • the plurality of sampling directions for each anchor point may be completely different.
  • each positioning point can use the same set of sampling combinations, and the sampling combination has multiple sampling directions, so the multiple sampling directions among the positioning points are completely the same.
  • the plurality of sampling directions of each positioning point may be partially the same and partially different.
  • FIG. 4A is a block diagram of a detection system 401 for detecting an object to be detected provided by the present invention.
  • the detection system 401 includes the server 10 and the detection device 40 .
  • the server 10 may include an internal storage device 11 to store in advance the sampling characteristics obtained by the sampling device 20 of FIG. 2 .
  • the detection device 40 when the detection device 40 receives a detection request, the detection device 40 can be coupled with the server 10 to complete the detection method of the present invention. After the detection system 401 completes the detection method, the detection device 40 may stop coupling with the server 10 .
  • FIG. 4B is a block diagram of another detection system 402 for detecting an object to be detected provided by the present invention.
  • the detection system 402 includes the server 10 , the detection device 40 and the online storage device 30 .
  • the detection device 40 when the detection device 40 receives a detection request, the detection device 40 can be coupled with the server 10, and the server 10 can be further coupled with the online storage device 30 to complete the detection method described in the present invention.
  • the detection device 40 can be decoupled from the server 10 , and the server 10 can also be decoupled from the online storage device 30 .
  • the detection device 40 when the detection device 40 receives a detection request, the detection device 40 can be coupled with the server 10 and the online storage device 30 to complete the detection method of the present invention. After the detection system 402 completes the detection method, the detection device 40 can be decoupled from the server 10 and the online storage device 30 .
  • the online storage device 30 may be a network data storage device or a blockchain storage device.
  • the online storage device 30 is the blockchain storage device, the possibility of tampering or replacement of the pre-stored sampling features can be reduced through the characteristics of the blockchain.
  • the online storage device 30 can store the records of all transactions of the reference object, the time and result of the inspection, and the updated pictures.
  • FIG. 5 is a block diagram of a detection device 40 for detecting an object to be detected provided by the present invention.
  • the detection device 40 may be a mobile phone, a tablet computer, a desktop computer, a notebook computer, a camera, a video recorder, or other electronic devices, etc., which are not limited herein.
  • the detection device 40 includes a movement control unit 41 , an image capture unit 42 , a processor 43 , a storage 44 , a transmission unit 45 and a reception unit 46 .
  • the movement control unit 41 is used to enable the detection device 40 to achieve the movement required for the detection process. In one embodiment, the movement control unit 41 is used for enabling the image capture unit 42 to complete the movement when the object to be detected is detected. In one embodiment, the movement control unit 41 can be a display screen on the detection device 40 or an automatic movement device coupled with the image capture unit 42 .
  • the display screen can be used to provide a movement instruction to the user to instruct the user to move the image capture unit 42 to the detection position.
  • the detection position can be determined by a detection distance and a detection direction. For example, when a camera distance between the image capturing unit 42 and a positioning point on the object to be detected is equal to the detection distance, and the image capturing unit 42 takes a camera of the positioning point on the object to be detected When the direction is equal to the detection direction, the display screen displays that the image capturing unit 42 has moved to the detection position, and can start to acquire the desired detection image.
  • the display screen may instruct the user to further move the image capturing unit 42 to zoom out or zoom in on the camera distance.
  • the display screen may instruct the user to further move the image capturing unit 42 to left, right, pull up or down the camera direction.
  • the detection position may be determined by the detection direction. In the described embodiment, the detection distance can be ensured by adjusting the focal length of the image capturing unit 42 to obtain the surface information of the details of the object to be detected.
  • the automatic moving device can be a robotic arm or other device that can move the image capturing unit 42 , and the automatic moving device can receive the detection position indicated by the processor 43 to The image capturing unit 42 is moved to the detection position.
  • the detection distance can be ensured by adjusting the focal length of the image capturing unit 42 to obtain the surface information of the details of the object to be detected. Therefore, the automatic moving device can only adjust the detection direction of the mobile image capturing unit 42 to obtain the required detection image.
  • the image capturing unit 42 is used to obtain a plurality of detection images.
  • the image capture unit 42 can be moved to a plurality of different detection positions, so that the image capture unit 42 can capture images of the object to be detected at different detection positions to obtain the plurality of detection images.
  • the image capturing unit 42 may be a charge-coupled device CCD (Charge-Coupled Device) image sensor, a complementary metal-oxide-semiconductor (CMOS) image sensor or a camera.
  • the image capturing unit 42 may include a high-magnification image capturing lens to obtain the surface information of the details of the object to be inspected.
  • the image capture unit 42 may include a microscope image capture lens.
  • the plurality of detection images captured by the image capturing unit 42 are all surface microscopic images of the object to be detected. In such embodiments, the surface microscopic image is a surface texture image.
  • the processor 43 and the storage 44 are coupled to each other.
  • the storage 44 stores a plurality of instructions for the processor 43 to execute the detection method of the detection device 40 according to the plurality of instructions stored in the storage 44 .
  • the storage 44 stores the detection program 440 .
  • the detection program 440 further includes a positioning module 441 and a detection module 442 .
  • the positioning module 441 is used for enabling the processor 43 to assist the moving control unit 41 to move the image capturing unit 42 to the detection position.
  • the detection module 442 is used to enable the processor 43 to assist the image capture unit 42 to obtain the required detection image at the detection position.
  • Transmitting unit 45 and receiving unit 46 may utilize custom protocols or follow existing or de facto standards, including but not limited to Ethernet, IEEE 802.11 or IEEE 802.15 series, wireless USB or telecommunication standards (including but not limited to GSM, CDMA2000, TD -SCDMA, WiMAX, 3GPP-LTE or TD-LTE), so as to transmit the detection features to other devices than the detection device 40, and thereby receive the sampled features transmitted from other devices than the detection device 40.
  • Ethernet including but not limited to Ethernet, IEEE 802.11 or IEEE 802.15 series, wireless USB or telecommunication standards (including but not limited to GSM, CDMA2000, TD -SCDMA, WiMAX, 3GPP-LTE or TD-LTE)
  • FIG. 6 is a flowchart of a detection method 600 for detecting an object to be detected provided by the present invention.
  • the detection method 600 shown in FIG. 3 is merely an example because there are many ways to perform the detection method.
  • Detection method 600 may be performed using the configurations shown in FIGS. 4A , 4B, and 5, and while describing detection method 600, please incorporate reference to various elements in FIGS. 4A, 4B, and 5.
  • FIG. Each step shown in FIG. 6 can represent one or more processes, methods or subroutines to be executed, and the sequence of each step can be adjusted arbitrarily, and does not make the essence of the detection method 600 deviate from the technical solution of the detection method 600 range.
  • step S610 the detection device 40 transmits a request to detect the object to be detected.
  • the detection device 40 before the detection device 40 captures the detection image, it needs to know which block of the object to be detected should perform the image detection before it can be stored with the online storage device 30 or the internal storage device 11 . Therefore, the detection device 40 can first transmit a request for the positioning point of the object to be detected, so as to obtain the positioning point of the object to be detected. In the embodiment, the detection device 40 may transmit the request to the server 10, and the request may include the object information of the object to be detected. Therefore, the server 10 can use the object information of the object to be detected to determine which reference object's corresponding positioning point and verification feature to retrieve as identification data for the object to be detected. In the embodiment, the corresponding positioning point of the reference object is the positioning point of the object to be detected.
  • the server 10 transmits the corresponding positioning point of the reference object to the detection device 40 .
  • the server 10 will first transmit a request for the positioning point of the object to be detected. Request to the online storage device 30 for the online storage device 30 to confirm which reference object's positioning point and verification feature to be retrieved as identification data for the detection of the object to be detected, and then the online storage device 30 returns the positioning point and The verification feature is sent to the server 10 , and the server 10 transmits the positioning point to the detection device 40 .
  • the online storage device 30 will also transmit the change information of the reference object to the server 10 .
  • step S620 the detection device 40 receives the information with the positioning point of the object to be detected.
  • the server 10 transmits the positioning point of the object to be detected to the detection device 40 for use by the detection device 40 for subsequent image capture.
  • the verification feature obtained by the server 10 is a plurality of sampled images of the corresponding positioning point of the fiducial object
  • the information transmitted by the server 10 will also provide the respective sampling directions of the plurality of sampled images, So that the detection device 40 can obtain the detection image according to the same detection direction.
  • the server 10 can also transmit the verification feature of the reference object to the detection device 40 .
  • the server 10 will also transmit the change information of the reference object to the detection device 40 .
  • the server 10 may not transmit the verification feature of the reference object to the detection device 40, but directly retain it in the server 10 for subsequent comparison.
  • step S630 the detection device 40 acquires a plurality of detection images along a plurality of detection directions on the positioning point.
  • the detection device 40 can set the detection directions of the positioning point by itself. In the embodiment, when the detection device 40 starts to capture the detection image for the positioning point, the detection device 40 can select the plurality of detection directions for the positioning point by itself. In one embodiment, the detection device 40 further includes a positioning unit (not shown in the figure), and the positioning unit may include a positioning device such as a gyroscope. In one embodiment, when the image capturing unit 42 captures the detection image of the positioning point, the detection device 40 can also record the detection direction corresponding to the detection image by the positioning unit. In another embodiment, the detection device 40 may select the detection directions in advance based on a preset orientation, and move the control unit 41 to make the image capture unit 42 perform the detection in the detection directions. Capture of images.
  • the detection device 40 may receive the plurality of detection directions from devices other than the detection device 40 . In the embodiment, the detection device 40 can obtain the plurality of detection directions through the receiving unit 46 . In one embodiment, if the internal storage device 11 and the online storage device 30 do not store the plurality of sampling directions of the corresponding positioning point of the reference object, the server 10 may select the plurality of sampling directions in advance based on a preset orientation method. A detection direction is sent to the receiving unit 46 . In another embodiment, if the internal storage device 11 or the online storage device 30 stores the plurality of sampling directions of the corresponding positioning point of the reference object, the plurality of sampling directions can be sent back to the detection device 40 as the the multiple detection directions of the positioning point of the object to be detected.
  • the server 10 may transmit the plurality of sampling directions to the receiving unit 46 as the plurality of detection directions.
  • the online storage device 30 can directly transmit the plurality of sampling directions to the receiving unit 46 as the plurality of detection directions, or use the server 10 to store the plurality of sampling directions.
  • the plurality of sampling directions are indirectly transmitted to the receiving unit 46 as the plurality of detection directions.
  • the image capturing unit 42 obtains the plurality of detection images based on the plurality of detection directions.
  • the image capturing unit 42 can obtain a plurality of first detection images based on a first detection direction among the plurality of detection directions, and can obtain a plurality of first detection images based on a second detection direction among the plurality of detection directions , and obtain a plurality of second detection images.
  • step S640 the detection device 40 obtains detection results according to the plurality of detection images.
  • the detection result is generated based on the comparison of the plurality of detection images and a reference object corresponding to the object to be detected.
  • the detection device 40 can compare the plurality of detection images with the verification features of the reference object by itself to obtain the detection result.
  • the detection device 40 may generate detection features according to the plurality of detection images, and transmit the detection features to the server 10 for the server 10 to compare the detection features with the verification features, and finally The server 10 transmits the detection result to the detection device 40 .
  • the detection device 40 compares the plurality of detection images with the received verification feature.
  • the verification feature may be a sampling model of the corresponding anchor point of the fiducial.
  • the sampling model may be a three-dimensional sampling model.
  • the detection device 40 may generate the detection feature based on the plurality of detection images, the plurality of detection directions, and a detection correspondence between the plurality of detection images and the plurality of detection directions.
  • the processor 43 of the detection device 40 can obtain the detection feature by itself based on a preset image processing method.
  • the detection feature is a detection model of the positioning point of the object to be detected.
  • the detection model may be a three-dimensional detection model.
  • the detection device 40 can directly compare the similarity between the three-dimensional sampling model and the three-dimensional detection model to generate the detection result.
  • the detection device 40 may compare with the three-dimensional sampling model based on the plurality of detection images, the plurality of detection directions, and the detection correspondence.
  • the detection device 40 can infer a plurality of verification images through the three-dimensional sampling model through the plurality of detection directions, and then compare the plurality of verification images with the plurality of verification images one by one according to the detection correspondence Detect the similarity of images to generate detection results.
  • the verification feature may be the plurality of sampling images, the plurality of sampling directions and the sampling correspondence of the corresponding positioning point of the fiducial object.
  • the plurality of sampling directions may be exactly the same as the plurality of detection directions, so the detection device 40 may compare the plurality of sampled images with the plurality of sampling images one by one according to the corresponding relationship between the sampling and the detection. The similarity of influences is detected to produce detection results.
  • the detection device 40 when the detection result is generated by the server 10 , the detection device 40 will transmit the detection feature to the server 10 .
  • the transmitted detection feature may be the three-dimensional sampling model or a combination of the plurality of detection images, the plurality of detection directions, and the detection correspondence.
  • the detection device 40 may generate the three-dimensional detection model based on the plurality of detection images, the plurality of detection directions, and the detection correspondence.
  • the processor 43 of the detection device 40 can obtain the three-dimensional detection model by itself based on a preset image processing method. Therefore, the detection device 40 can directly transmit the 3D detection model to the server 10 , and the server 10 compares the similarity between the 3D sampling model and the 3D detection model to provide the detection result to the detection device 40 .
  • the detection device 40 may transmit the combination of the plurality of detection images, the plurality of detection directions, and the detection correspondence to the server 10 .
  • the server 10 may generate the three-dimensional detection model based on the plurality of detection images, the plurality of detection directions, and the detection correspondence.
  • the server 10 can obtain the three-dimensional detection model based on a preset image processing method.
  • the server 10 can directly compare the similarity between the three-dimensional sampling model and the three-dimensional detection model, so as to provide the detection result to the detection device 40 .
  • the server 10 may compare with the three-dimensional sampling model based on the plurality of detection images, the plurality of detection directions, and the detection correspondence.
  • the server 10 can infer a plurality of verification images through the three-dimensional sampling model through the plurality of detection directions, and then compare the plurality of verification images with the plurality of detections one by one according to the detection correspondence The similarity of the images is used to provide the detection result to the detection device 40 .
  • the verification feature may be the plurality of sampling images, the plurality of sampling directions, and the sampling correspondence of the corresponding positioning point of the fiducial object.
  • the plurality of sampling directions may be exactly the same as the plurality of detection directions, so the server 10 may compare the plurality of sampled images and the plurality of detections one by one according to the corresponding relationship between the sampling and the detection.
  • the similarity of the influence is used to provide the detection result to the detection device 40 .
  • the plurality of detection directions are the plurality of sampling directions obtained from the online storage device 30 or the internal storage device 11 .
  • the detection result obtained by the detection device 40 can determine that the object to be detected is the reference object. If the detection result shows that the similarity between the reference object and the object to be detected is low, the detection result obtained by the detection device 40 can determine that the object to be detected is different from the reference object. In another embodiment, if the detection result shows that the similarity between the reference object and the object to be detected is low, and the detection result determines that the object to be detected is not the same as the reference object, the detection device 40 or the server 10 can pass The change information of the reference object is used to update the detection result. In the embodiment, the detection device 40 or the server 10 can adjust the verification feature according to the change information of the reference object, and update the detection result according to the adjustment feature and the comparison of the plurality of detection images.
  • the change information may be the material information, the object information or the deterioration information of the reference object. If the change information is the material information or the object information, the detection device 40 or the server 10 may search for the deterioration information of the reference object through the network or an internal database according to the material information or the object information. The detection device 40 or the server 10 can estimate the possible degree of deterioration of the reference object based on the deterioration information and the time difference between the detection time point and the sampling time point. Therefore, the detection device 40 or the server 10 can obtain the adjustment feature according to the verification feature and the deterioration degree.
  • the degradation information may be material degradation information, and the material degradation information may be related to color changes (eg, fading). If the deterioration information is material aging information, the actual material aging degree can be estimated by using the material aging information and the time difference. For example, the likely degree of fading can be estimated.
  • the degradation information may be material condition information, which may be related to material decomposition or breakage. If the deterioration information is the material condition information, the actual degree of material damage can be estimated by the difference between the material condition information and the time. For example: the possible crack size or number of cracks can be estimated.
  • the detection result obtained by the detection device 40 can determine that the object to be detected is the reference object.
  • the detection device 40 or the server 10 may store the detection features generated by the plurality of detection images in the internal storage device 11 or the online storage device 30 .
  • the detection feature can directly replace the verification feature to serve as a basis for subsequent detection. If the transition of the reference object is predicted by relying on the change information for a long time, as long as the difference between the actual change state of the reference object and the predicted change state is too large, it will be difficult to correctly identify the object to be detected in the future.
  • the updated detection result shows that the similarity between the reference object and the object to be detected is high, it represents the detection feature to display the actual change of the reference object as the object to be detected at the moment of detection.
  • the detection device 40 or the server 10 can transmit and store the detection feature, and in this way, the actual change state of the reference object can be appropriately tracked, so as to avoid the actual change state exceeding the expectation of the predicted change state, and to keep the verification feature or the test feature at any time. Check the correctness of features on subsequent tests.
  • the detection device 40 or the server 10 may match the detection feature generated by the plurality of detection images with the detection feature. Authentication features are stored together.
  • the online storage device 30 or the internal storage device 11 will have the characteristic information of the reference object at two different times. Therefore, if a new object to be detected will be compared with the detection feature and the verification feature after a period of time (for example: 1 year), in addition to checking whether the new object to be detected is similar to the detection feature and the verification feature In addition, it is also possible to further detect whether the deterioration degree of the new object to be detected relative to the verification feature is greater than the deterioration degree of the detection feature.
  • the detection system can still issue a warning to the new object to be detected. In this way, the detection accuracy can be further improved by the irreversibility of the degree of deterioration.
  • the detection method 600 of the present invention may include at least but not limited to all the following embodiments:
  • the comparison between the plurality of detection images and the verification feature is performed by the detection device 40, and the verification feature includes the corresponding positioning of the reference object corresponding to the object to be detected
  • the detection device 40 transmits a request to detect the object to be detected.
  • the server 10 obtains the corresponding positioning point and the verification feature of the reference object corresponding to the object to be detected from the internal storage device 11 or the online storage device 30, and stores the corresponding positioning point and the verification feature in the
  • the plurality of sampling directions are sent to the detection device 40 .
  • the server 10 may simultaneously transmit the plurality of sampled images and the corresponding relationship of the samples to the detection device 40 at this time.
  • the detection device 40 after receiving the corresponding positioning point and the plurality of sampling directions, the detection device 40 directly sets the corresponding positioning point and the plurality of sampling directions as the positioning point and the plurality of sampling directions of the object to be detected, respectively. The direction is detected, and the plurality of detected images are obtained therefrom. In one embodiment, if the detection device 40 has acquired the plurality of sampled images before acquiring the plurality of detection images, the comparison can be directly started.
  • the detection device 40 may send a request for comparing the reference object to the server 10 again, and the server 10 receives After the request, the corresponding relationship between the plurality of sampled images and the samples is provided to the detection device 40 .
  • the server 10 can prevent the user from arbitrarily sending out the first request just to defraud all the verification information by sending the request twice.
  • the request sent again by the detection device 40 may include the plurality of detection images for the server 10 to perform a preliminary verification. refuse to provide the plurality of sampled images. If the server 10 considers that there is a slight correlation between the plurality of detection images and the plurality of sampled images, the server 10 may transmit the plurality of sampled images for the detection device 40 to compare.
  • the detection device 40 compares the plurality of sampled images and the plurality of detection images through the sampling correspondence and the detection correspondence, if the similarity between the plurality of sampled images and the plurality of detection images is similar When it is high, the detection device 40 can determine that the object to be detected is the reference object, and transmit the detection result to the server 10 . If the similarity between the plurality of sampled images and the plurality of detection images is low, the detection device 40 may determine that the object to be detected is not the reference object, and transmit the detection result to the server 10 . In another embodiment, if the similarity between the plurality of sampled images and the plurality of detected images is low, the detection device 40 may send a request for the change information of the reference object to the server 10 .
  • the server 10 also performs another preliminary verification (eg, requesting the complete plurality of detection images) through the request for obtaining the change information, so as to confirm whether the change information is required by the detection device 40 .
  • the detection device 40 adjusts the plurality of sampled images according to the change information to generate a plurality of adjusted images as part of the adjustment feature, and then compares the plurality of samples through the sampling correspondence and the detection correspondence. The adjustment image and the plurality of inspection images. If the similarity between the plurality of adjustment images and the plurality of detection images is low, the detection device 40 may determine that the object to be detected is not the reference object, and transmit the detection result to the server 10 .
  • the detection device 40 can update the detection results that were not the same, re-identify the object to be detected as the reference object, and transmit the detection The result is given to server 10.
  • the detection device 40 can upload the plurality of detection images to the server 10 for the server 10 to store the plurality of detection images in the internal storage device 11 or the online storage device 30 .
  • the plurality of detection images and the plurality of sampled images can be simultaneously stored in the internal storage device 11 or the online storage device 30 corresponding to the reference object, so as to jointly serve as the verification feature of the reference object.
  • the plurality of detection images can directly replace the plurality of sampled images as the verification features of the reference object.
  • the server 10 may further confirm the plurality of detection images again to confirm the similarity between the plurality of detection images and the plurality of adjustment images, so as to avoid Wrong authentication characteristics stored.
  • the comparison of the plurality of detection images and the verification feature is performed by the detection device 40, and the verification feature includes the correspondence of the reference object corresponding to the object to be detected Sampling model for anchor points.
  • the detection device 40 transmits a request to detect the object to be detected.
  • the server 10 obtains the corresponding positioning point and the verification feature of the reference object corresponding to the object to be detected from the internal storage device 11 or the online storage device 30 , and transmits the corresponding positioning point to the detection device 40 .
  • the server 10 may also transmit the sampling model to the detection device 40 at this time.
  • the detection device 40 after receiving the corresponding positioning point, the detection device 40 directly sets the corresponding positioning point as the positioning point of the object to be detected, and selects the plurality of detection directions by itself, thereby obtaining the plurality of detection directions. Detect images. In one embodiment, if the detection device 40 has acquired the sampling model before acquiring the plurality of detection images, the comparison can be directly started. In another embodiment, if the detection device 40 has not acquired the sampling model before acquiring the plurality of detection images, the detection device 40 can send a request for comparing the reference object to the server 10 again, and after the server 10 receives the request The sampling model is then provided to the detection device 40 .
  • the server 10 can prevent the user from arbitrarily sending out the first request just to defraud all the verification information by sending the request twice.
  • the request sent again by the detection device 40 may include the plurality of detection images for the server 10 to perform a preliminary verification. Refuse to provide this sampling model. If the server 10 considers that there is a slight correlation between the plurality of detection images and the sampling model, the server 10 can transmit the sampling model for the detection device 40 to compare.
  • the detection device 40 may generate a detection model based on the plurality of detection images, the plurality of detection directions, and the detection correspondence, and generate detection by comparing the similarity between the detection model and the sampling model. result.
  • the detection device 40 may infer a plurality of verification images based on the detection directions and the sampling model, and then compare the detection images one by one according to the detection correspondence between the detection images and the detection directions The similarity between the plurality of verification images and the plurality of detection images is used to generate a detection result.
  • the detection device 40 may determine that the object to be detected is the reference object, and transmit the detection result to the server 10 . If the similarity between the plurality of verification images and the plurality of detection images is low or the similarity between the sampling model and the detection model is low, the detection device 40 may determine that the object to be detected is not the reference object, and transmit the The detection result is sent to the server 10 .
  • the detection device 40 may transmit a request for the reference object A request for change information is made to the server 10 .
  • the server 10 also performs another preliminary verification through the request for obtaining the change information (eg, obtaining the complete plurality of inspection images or inspection models) to confirm whether the inspection device 40 needs the change information.
  • the detection device 40 adjusts the sampling model according to the change information to generate an adjustment model as the adjustment feature, and then compares the adjustment model with the plurality of detection images through the detection correspondence, or directly compares The adjustment model and the detection model.
  • the detection device 40 may determine that the object to be detected is not the reference object, and transmit the The detection result is sent to the server 10 . If the similarity between the adjustment model and the plurality of detection images is high, or the similarity between the adjustment model and the detection model is high, the detection device 40 can update the detection results that were originally different, and re-identify the pending detection results. The detection object is the reference object, and the detection result is sent to the server 10 . In the embodiment, the detection device 40 can upload the plurality of detection images or the detection model to the server 10.
  • the detection device 40 uploads the plurality of detection images to the server 10 , the detection device 40 must upload the plurality of detection directions and the detection corresponding relationship together for the server 10 to generate the detection model.
  • the server 10 stores the detection model in the internal storage device 11 or the online storage device 30 .
  • the detection model and the plurality of sampling models can be simultaneously stored in the internal storage device 11 or the online storage device 30 corresponding to the reference object, so as to jointly serve as the verification feature of the reference object.
  • the detection model can directly replace the plurality of sampling models as the verification feature of the reference object.
  • the server 10 when the server 10 obtains the detection model, it can further confirm the detection model again to confirm the similarity between the detection model and the sampling model, so as to avoid storing wrong verification features.
  • the comparison between the plurality of detection images and the verification feature is performed by the server 10, and the verification feature includes a corresponding positioning point of the reference object corresponding to the object to be detected
  • the detection device 40 transmits a request to detect the object to be detected.
  • the server 10 obtains the corresponding positioning point and the verification feature of the reference object corresponding to the object to be detected from the internal storage device 11 or the online storage device 30, and stores the corresponding positioning point and the verification feature in the
  • the plurality of sampling directions are sent to the detection device 40 .
  • the server 10 does not need to transmit the plurality of sampled images and the corresponding relationship of the samples to the detection device 40, so there is no need to worry that the plurality of sampled images and the corresponding relationship of the samples are obtained in an improper manner.
  • the detection device 40 after receiving the corresponding positioning point and the plurality of sampling directions, the detection device 40 directly sets the corresponding positioning point and the plurality of sampling directions as the positioning point and the plurality of sampling directions of the object to be detected, respectively. The direction is detected, and the plurality of detected images are obtained therefrom. In one embodiment, the detection device 40 transmits the plurality of detection images and the detection correspondence between the plurality of detection images and the plurality of detection directions to the server 10, so that the server 10 can perform the verification between the verification features. Comparison.
  • the server 10 compares the plurality of sampled images and the plurality of detection images through the sampling correspondence and the detection correspondence, if the similarity between the plurality of sampled images and the plurality of detection images is high , the server 10 can determine that the object to be detected is the reference object, and return the detection result to the detection device 40 . If the similarity between the plurality of sampled images and the plurality of detection images is low, the server 10 may determine that the object to be detected is not the reference object, and transmit the detection result to the detection device 40 . In another embodiment, if the similarity between the plurality of sampled images and the plurality of detected images is low, the server 10 may obtain the change information of the reference object from the online storage device 30 or the internal storage device 11 . In the embodiment, the server 10 does not need to transmit the change information to the detection device 40, so there is no need to worry that the change information is obtained in an improper manner.
  • the server 10 adjusts the plurality of sampled images according to the change information to generate a plurality of adjusted images as part of the adjustment feature, and then compares the plurality of adjustments through the sampling correspondence and the detection correspondence an image and the plurality of detection images. If the similarity between the plurality of adjustment images and the plurality of detection images is low, the server 10 may determine that the object to be detected is not the reference object, and transmit the detection result to the detection device 40 . If the similarity between the plurality of adjustment images and the plurality of detection images is high, the server 10 may update the detection results that were not identical before, re-identify the object to be detected as the reference object, and transmit the detection results to the detection device 40 .
  • the server 10 may store the plurality of detection images in the internal storage device 11 or the online storage device 30 .
  • the plurality of detection images and the plurality of sampled images can be simultaneously stored in the internal storage device 11 or the online storage device 30 corresponding to the reference object, so as to jointly serve as the verification feature of the reference object.
  • the plurality of detection images can directly replace the plurality of sampled images as the verification features of the reference object.
  • since the server 10 itself has done a complete comparison there is no need to worry about storing wrong authentication features.
  • the comparison between the plurality of detection images and the verification feature is performed by the server 10, and the verification feature includes the corresponding location of the reference object corresponding to the object to be detected point sampling model.
  • the detection device 40 transmits a request to detect the object to be detected.
  • the server 10 obtains the corresponding positioning point and the verification feature of the reference object corresponding to the object to be detected from the internal storage device 11 or the online storage device 30 , and transmits the corresponding positioning point to the detection device 40 .
  • the server 10 does not need to transmit the sampling model to the detection device 40, so there is no need to worry that the sampling model is obtained in an improper manner.
  • the detection device 40 after receiving the corresponding positioning point, directly sets the corresponding positioning point as the positioning point of the object to be detected, and selects the plurality of detection directions by itself, thereby obtaining the plurality of detection directions. Detect images. In one embodiment, the detection device 40 transmits the plurality of detection images, the plurality of detection directions, and the detection correspondence between the plurality of detection images and the plurality of detection directions to the server 10 for the server 10 to perform and The alignment between the verification features. In another embodiment, the detection device 40 can automatically generate the detection model according to the plurality of detection images, the plurality of detection directions and the detection correspondence, and transmit the detection model to the server 10 for the server 10 to perform and The alignment between the verification features.
  • the server 10 may generate the detection model based on the plurality of detection images, the plurality of detection directions, and the detection correspondence, and generate the detection model by comparing the similarity between the detection model and the sampling model. result. In another embodiment, the server 10 may generate a detection result by comparing the similarity between the sampling model and the received detection model. In yet another embodiment, the server 10 may infer a plurality of verification images based on the plurality of detection directions and the sampling model, and then compare them one by one according to the detection correspondence between the plurality of detection images and the plurality of detection directions The similarity between the plurality of verification images and the plurality of detection images is used to generate a detection result.
  • the server 10 may determine that the object to be detected is the the reference object, and transmit the detection result to the detection device 40 . If the similarity between the plurality of verification images and the plurality of detection images is low or the similarity between the sampling model and the detection model is low, the server 10 may determine that the object to be detected is not the reference object, and transmit the detection The result is given to the detection device 40 . In another embodiment, if the similarity between the plurality of verification images and the plurality of detection images is low or the similarity between the sampling model and the detection model is low, the server 10 may obtain the data from the online storage device 30 . Or the internal storage device 11 obtains the change information of the reference object. In the embodiment, the server 10 does not need to transmit the change information to the detection device 40, so there is no need to worry that the change information is obtained in an improper manner.
  • the server 10 adjusts the sampling model according to the change information to generate an adjustment model as the adjustment feature, and then compares the adjustment model with the plurality of detection images through the detection correspondence, or directly compares the adjustment model Adjust the model with the detection model. If the similarity between the adjustment model and the plurality of detection images is low or the similarity between the adjustment model and the detection model is low, the server 10 may determine that the object to be detected is not the reference object, and transmit the detection The result is given to the detection device 40 .
  • the server 10 may update the original detection results that are not identical, and re-identify the to-be-detected The object is the reference object, and the detection result is sent to the detection device 40 .
  • the server 10 may store the detection model in the internal storage device 11 or the online storage device 30 . If the server 10 only has the plurality of detection images and the detection corresponding relationship, the server 10 may store the detection model generated based on the plurality of detection images, the plurality of detection directions and the detection correspondence in the internal storage device 11 or in online storage 30.
  • the detection model and the sampling model can be simultaneously stored in the internal storage device 11 or the online storage device 30 corresponding to the reference object, so as to jointly serve as the verification feature of the reference object.
  • the detection model can directly replace the sampling model as the verification feature of the reference object.
  • FIG. 7A and FIG. 7B are schematic diagrams showing that the image capturing unit 22 captures sampled images in different sampling directions on the positioning point of the fiducial object according to an exemplary embodiment of the present invention.
  • the image capturing unit 22 in FIG. 7A is located just above the positioning point of the fiducial object, and the image capturing unit 22 in FIG. 7B has a deflection angle compared with the image capturing unit 22 in FIG. 7A .
  • the image capturing unit 22 faces the positioning point of the fiducial object, and shoots in a first capturing range 710 to obtain the first sampled image 760 .
  • the sampling device 20 or the server 10 A first sampling area 761 is extracted from the sampled image 760, and the first sampling area 761 is further divided into a plurality of first sampling blocks 7611-7616.
  • the sampling device 20 or the server 10 can calculate a plurality of first sampling blocks 7611-7616 value of .
  • the first sampling area 761 corresponds to an imaging area 711 in the first imaging range 710
  • the plurality of first sampling blocks 7611-7616 correspond to the plurality of imaging blocks 7111-7116.
  • the image capturing unit 22 faces the positioning point of the reference object at the deflection angle, and captures the image in a second capturing range 720 to obtain a second sampling image 770 , the sampling device 20 or the server 10 .
  • a second sampling area 771 may be extracted from the second sampling image 770, and the second sampling area 771 may be further divided into a plurality of second sampling blocks 7711-7716, and the sampling device 20 or the server 10 may calculate a plurality of second samples Values for blocks 7711-7716.
  • the sampling device 20 or the server 10 makes the first sampling region 761 and the second sampling region 771 the same as the sampling regions corresponding to the first sampling region 761 and the second sampling region 771.
  • the sampling device 20 or the server 10 can find the second sampling region 771 by projecting the first sampling region 761 onto the second sampling image 770 through the deflection angle. Therefore, if the first sampling area 761 and the second sampling area 771 are projected onto the first imaging area 710 and the second imaging area 720, the same imaging area 711 can be obtained, and a plurality of second sampling blocks 7711 -7716 may also correspond to multiple acquisition blocks 7111-7116.
  • the sampling device 20 or the server 10 can respectively calculate a value for each of the plurality of first sampling blocks 7611-7616 and the plurality of second sampling blocks 7711-7716, and the plurality of values are used to represent a plurality of A first sampling block 7611-7616 and a plurality of second sampling blocks 7711-7716.
  • the plurality of values may be the average, mode, or median of a plurality of pixels in each block.
  • the values of the plurality of first sampling blocks 7611-7616 may be a11, a12, a13, a14, a15 and a16, respectively, and the values of the plurality of second sampling blocks 7711-7716 may be a21, a22, a23, respectively , a24, a25, and a26.
  • the sampling device 20 or the server 10 can obtain more values at other sampling angles, respectively. For example: a31, a32, a33, a34, a35, a36, ..., an1, an2, an3, an4, an5, and an6.
  • the sampling device 20 or the server 10 can obtain a plurality of training sets of image data as follows:
  • A1 [a11,a21,a31,...,an1]
  • the sampling device 20 or the server 10 can generate a sampling model by 3D modeling based on the plurality of image data training sets and through machine learning technology.
  • the detection device 40 or the server 10 can also capture a large number of detection sample points through the plurality of detection images in the same manner, and establish a plurality of image data training sets.
  • the detection model is generated by 3D modeling with these large amount of detection sample point data.
  • FIG. 8A-8E are photographs of different sampled images captured on a painting as a fiducial object according to an exemplary embodiment of the present invention.
  • a plurality of sampled images are captured on the reference object by the image capture unit 22 , and the sampling device 20 or the server 10 can generate verification features by using the plurality of sampled images.
  • the verification feature can be directly the plurality of sampled images.
  • the verification feature can also be a machine learning technique, and the plurality of sampling samples are analyzed and trained to generate the verification feature required for verification.
  • the verification feature may be a three-dimensionally modeled sample model.
  • FIG. 8F-8J are photographs of different inspection images captured on a painting as an object to be inspected according to an exemplary embodiment of the present invention. Please refer to FIG. 4 and FIG. 5 together.
  • a plurality of detection images are captured by the image capturing unit 42 on the object to be detected.
  • the detection device 40 or the server 10 can use the plurality of detection images to perform verification on the verification feature. Comparison.
  • the detection device 40 or the server 10 can directly compare FIG. 8A-FIG. 8E with FIG. 8F-FIG .
  • the benchmarks are different.
  • the verification feature is the sampling model, according to FIGS. 8A-8E , the sampling model should have no obvious unevenness and a relatively steep slope. Therefore, the detection device 40 or the server 10 will map the When the inspection images of 8F-8J are compared with the sampling model, it can be found that there is a significant difference in slope between the two, and it can be recognized that the object to be inspected is different from the reference object.
  • FIGS. 9A and 9B are sampling images of different gemstones with the same processing method in the same sampling direction according to an exemplary embodiment of the present invention. From FIG. 9A and FIG. 9B , even with the exact same sampling direction and the exact same processing process, different sampling images may still be generated between different gemstones due to factors such as the color or clarity of the gemstone itself. Therefore, as long as a gemstone is used as a reference object, a sampling image is captured in advance to generate verification features, and then the detection device and the detection method can be used to confirm whether the to-be-detected object is a previously sampled gemstone.
  • Figure 10A is a photograph of antique utensils with the same texture but not the same.
  • 10B and 10C are sampled images of different antique utensils shown in FIG. 10A sampled in the same sampling direction according to an exemplary embodiment of the present invention. From FIG. 10B and FIG. 10C , even for antique utensils with the same texture, there may still be different texture changes between different antique utensils due to slight differences in glaze distribution during the firing process of the antique utensils.
  • the sampling image is captured in advance to generate verification features, and then the detection device and the detection method can be used to confirm whether the object to be detected is an antique utensil that has been sampled before.
  • the method described in the present invention is not limited to use in works of art (including but not limited to paintings, carvings, etc.), precious stones (including but not limited to diamonds, sapphires, emeralds, etc.) or antique items (including but not limited to pottery, porcelain, etc.) , as long as the verification features of the reference object (including but not limited to color distribution, texture details, notch defects, etc.) are obtained in advance, it can be used as the basis for subsequent verification of the object to be detected.
  • works of art including but not limited to paintings, carvings, etc.
  • precious stones including but not limited to diamonds, sapphires, emeralds, etc.
  • antique items including but not limited to pottery, porcelain, etc.
  • an aspect of the present disclosure provides a method for detecting an object to be detected by a detection device, the method comprising: transmitting a request for detecting the object to be detected; receiving the positioning point of the object to be detected; Acquiring a plurality of detection images along a plurality of detection directions on the positioning point of the object to be detected; and obtaining a detection result according to the plurality of detection images, wherein the detection result is based on the plurality of detection images and the corresponding detection images produced by an alignment of a corresponding locating point of a fiducial object of the object.
  • the detection device includes: an image capture unit, the image capture unit is used to obtain a plurality of detection images; a movement control unit, The movement control unit is used to make the image capture unit move when the object to be detected is detected; a processor, the processor is coupled to the image capture unit and the moving unit; a transmission unit, the transmission unit coupled to the processor; a receiving unit coupled to the processor; and a storage device coupled to the processor and storing a plurality of instructions that when executed by the processor causing the processor to: transmit a request for detecting the object to be detected through the transmitting unit; receive the positioning point of the object to be detected through the receiving unit; enable the image capture unit to detect the object to be detected through the movement control unit On the positioning point, the plurality of detection images are obtained along a plurality of detection directions; and a detection result is obtained according to the plurality of detection images, wherein the detection result is based on the plurality of detection images and a corresponding to the object
  • a change data of the reference object and a verification feature of the reference object are generated to generate a an adjustment feature, wherein: the comparison is to compare the plurality of detected images with the verification feature, the change data of the reference object is from an online storage device; and according to the plurality of detected images and the adjustment feature, updating the test result.
  • a detection feature is transmitted to the online storage device, so as to store the detection feature in a The online storage device, wherein: the detection feature is generated based on the plurality of detection images, and the detection feature stored in the online storage device corresponds to the reference object.
  • the detection feature replaces the verification feature of the reference object stored in the online storage device.
  • the plurality of detection images are compared with a verification feature of the reference object to generate the detection result;
  • the verification feature is a reconstruction based on a plurality of sampled images.
  • a sampling model the plurality of sampling images are obtained along a plurality of sampling directions on the corresponding positioning point of the reference object, and the detection result is based on the plurality of detection directions to compare the detection image and the sampling model. a similarity.
  • the plurality of detection images are compared with a verification feature of the reference object to generate the detection result;
  • the verification feature is a reconstruction based on a plurality of sampled images.
  • a sampling model the plurality of sampling images are obtained along a plurality of sampling directions on the corresponding positioning point of the reference object, the plurality of detection images reconstruct a detection model according to the plurality of detection directions, and the detection result is a comparison The similarity between the detection model and one of the sampling models.
  • the plurality of detection images are compared with a verification feature of the reference object to generate the detection result; the verification feature is at the corresponding positioning point of the reference object A plurality of sampled images obtained along a plurality of sampling directions on the the plurality of sampling directions obtained.
  • An aspect of the present disclosure provides a method for detecting an object to be detected by a server.
  • the method includes: receiving a request for detecting the object to be detected; sending the positioning point of the object to be detected; A plurality of detection images obtained along a plurality of detection directions on the positioning point of the detection object; and a detection result is obtained according to the plurality of detection images, wherein the detection result is based on the plurality of detection images and the corresponding object to be detected generated by an alignment of a fiducial of .
  • An aspect of the present disclosure provides a server for detecting an object to be detected, the server includes: a processor; a transmitting unit, the transmitting unit is coupled to the processor; a receiving unit, the receiving unit is coupled to the processor and a storage device, the storage device is coupled to the processor and stores a plurality of instructions which, when executed by the processor, cause the processor to: receive a request to detect the object to be detected through the receiving unit ; send the positioning point of the object to be detected through the transmission unit; receive a plurality of detection images obtained along a plurality of detection directions on the positioning point of the object to be detected through the receiving unit; and according to the plurality of detection images A detection result is obtained, wherein the detection result is generated based on a comparison of the plurality of detection images and a reference object corresponding to the object to be detected.
  • an adjustment is generated according to a change data of the reference object and a verification feature of the reference object feature, wherein: the comparison is to compare the plurality of detected images with the verification feature, the change data of the reference object is from an online storage device; and according to the plurality of detected images and the adjustment feature, update the Test results.
  • a detection feature is sent to the online storage device to store the detection feature in the An online storage device, wherein: the detection feature is generated based on the plurality of detection images, and the detection feature stored in the online storage device corresponds to the reference object.
  • the detection feature replaces the verification feature of the reference object stored in the online storage device.
  • the plurality of detection images are compared with a verification feature of the reference object to generate the detection result;
  • the verification feature is a sample reconstructed according to the plurality of sampled images A model, the plurality of sampling images are obtained along a plurality of sampling directions on the corresponding positioning points of the fiducial object, and the detection result is based on the plurality of detection directions to compare the detection image and one of the sampling models similarity.
  • the plurality of detection images are compared with a verification feature of the reference object to generate the detection result;
  • the verification feature is a sample reconstructed according to the plurality of sampled images a model, the plurality of sampling images are obtained along a plurality of sampling directions on the corresponding positioning points of the reference object, the plurality of detection images reconstruct a detection model according to the plurality of detection directions, and the detection results are compared
  • the detection model is similar to one of the sampling models.
  • the plurality of detection images are compared with a verification feature of the reference object to generate the detection result;
  • the verification feature is on the corresponding positioning point of the reference object
  • a plurality of sampled images obtained along a plurality of sampling directions, the detection result is a similarity between the plurality of detection images and the plurality of sampled images, and the plurality of detection directions are obtained from an online storage device of the multiple sampling directions.
  • An aspect of the present disclosure provides a sampling method for establishing identification data for a reference object by a sampling device, the method comprising: obtaining a positioning point on the reference object; along a plurality of sampling points on the positioning point of the reference object obtaining a plurality of sampled images in a direction; generating a sampled feature of the positioning point of the reference object according to the plurality of sampled images and the plurality of sampling directions; and transmitting the sampled feature for a network device to store.
  • An aspect of the present disclosure provides a sampling device for sampling a fiducial object to establish identification data
  • the sampling device includes: an image capturing unit configured to obtain a plurality of sampled images; a movement control unit , the movement control unit is used to make the image capture unit move when sampling the reference object; a processor, which is coupled to the image capture unit and the moving unit; a transmission unit, the transmission unit coupled to the processor; and a storage device coupled to the processor and storing a plurality of instructions that, when executed by the processor, cause the processor to: obtain a position on the fiducial point; make the image capture unit acquire a plurality of sampling images along a plurality of sampling directions on the positioning point of the reference object through the movement control unit; generate the plurality of sampling images according to the plurality of sampling images and the plurality of sampling directions sampling characteristics of the positioning point of the reference object; and transmitting the sampling characteristics through the transmission unit for storage by a network device.
  • the positioning point set for the reference object is received from a server, wherein: when the server is the network device, the server stores the positioning point, and When the server is an online storage device, the server transmits the positioning point to the online storage device.
  • the positioning point when the positioning point is set by the sampling device, the positioning point is transmitted to the network device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Image Analysis (AREA)
  • Image Processing (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Burglar Alarm Systems (AREA)

Abstract

揭露一种由一检测装置(40)对一待检测物进行检测的方法(600),方法(600)包括:传送检测待检测物的一请求(S610);接收待检测物的定位点(S620);在待检测物的定位点上沿着多个检测方向取得多个检测影像(S630);以及依据多个检测影像取得一检测结果(S640),其中,检测结果是基于多个检测影像与对应待检测物的一基准物的一对应定位点的一比对所产生。

Description

一种对一待检测物进行的检测方法与检测装置
相关申请的交叉引用
本公开要求2021年5月4日提交的名称为“Surface Micro Feature Recognition Using Blockchain”的美国临时专利申请序列号63/183643(下文中称为“‘643临时案”)的权益和优先权。‘643临时案的公开内容特此以引用方式完全并入本公开中。
技术领域
本发明涉及检测物品的领域,特别地,涉及一种对一待检测物进行检测的方法与检测装置。
背景技术
虽然现在的防伪技术日新月异,但对于艺术品、珠宝、古董等物品的防伪技术仍存在很多问题。部分鉴定技术需要靠对待鉴定物品进行取样,而导致破坏待鉴定物品的完整性。而单靠肉眼观察,却又难以全盘掌握待鉴定物品实际的状况。此外,若通过电子仪器来进行鉴定,由难以确保电子仪器中储存的信息是否有被窜改或替换的状态。因此,如果要使用电子仪器来鉴定,则需要能确保数据的安全性与不可窜改性。
发明内容
本发明是鉴于上述问题而完成的,提供一种对一待检测物进行检测的方法与检测装置。
为了解决上述问题,本发明提供一种由一检测装置对一待检测物进行检测的方法,该方法包括:传送检测该待检测物的一请求;接收该待检测物的该定位点;在该待检测物的该定位点上沿着多个检测方向取得多个 检测影像;以及依据该多个检测影像取得一检测结果,其中,该检测结果是基于该多个检测影像与对应该待检测物的一基准物的一对应定位点的一比对所产生。
为解决上述问题,本发明另提供一种用于对一待检测物进行检测的检测装置,该检测装置包括:影像撷取单元,该影像撷取单元用以取得多个检测影像;移动控制单元,该移动控制单元用以使该影像撷取单元达到在对该待检测物进行检测时的移动;处理器,该处理器与该影像撷取单元以及该移动单元耦接;传送单元,该传送单元与该处理器耦接;接收单元,该接收单元与该处理器耦接;以及储存装置,该储存装置耦接到该处理器并且储存多个指令,该多个指令在由该处理器执行时使该处理器:通过该传送单元传送检测该待检测物的一请求;通过该接收单元接收该待检测物的该定位点;通过该移动控制单元使该影像撷取单元在该待检测物的该定位点上,沿着多个检测方向取得该多个检测影像;以及依据该多个检测影像取得一检测结果,其中,该检测结果是基于该多个检测影像与对应该待检测物的一基准物的一对应定位点的一比对所产生。
为解决上述问题,本发明还提供一种由一服务器对一待检测物进行检测的方法,该方法包括:接收检测该待检测物的一请求;发送该待检测物的该定位点;接收在该待检测物的该定位点上沿着多个检测方向取得的多个检测影像;以及依据该多个检测影像取得一检测结果,其中,该检测结果是基于该多个检测影像与对应该待检测物的一基准物的一比对所产生。
通过上述方式,检测系统保存了基准物的信息,并藉此限制住基准物的取样点(即:对应定位点)。通过这样的方式,检测装置须先将待检测物的信息上传,供检测系统确认对应的基准物,才能取得待检测物须撷取影像的定位点。此种方式除了可安全的保存基准物的鉴别信息,也因为不易直接取得基准物的取样点,也提高了赝品通过检测的难度。另外,若基 准物的信息是储存的区块链储存装置,也可进一步提高信息的安全性与不可窜改性。
附图说明
当结合附图阅读以下详细描述时,可最佳地理解本公开的各方面。各种特征未按比例绘制,并且为了讨论清楚起见,可任意地增大或减小各种特征的尺寸。
图1A是本发明一种对基准物建立鉴别数据而进行取样的取样系统的框图。
图1B是本发明另一种对基准物建立鉴别数据而进行取样的取样系统的框图。
图2是本发明一种对基准物建立鉴别数据而进行取样的取样装置的框图。
图3是本发明一种对基准物建立鉴别数据而进行取样的取样方法的流程图。
图4A是本发明一种对待检测物进行检测的检测系统的框图。
图4B是本发明另一种对待检测物进行检测的检测系统的框图。
图5是本发明一种对待检测物进行检测的检测装置的框图。
图6是本发明一种对待检测物进行检测的检测方法的流程图。
图7A显示根据本发明的示例性实施方式,影像撷取单元在基准物的定位点上以一取样方向撷取取样影像的示意图。
图7B显示根据本发明的示例性实施方式,影像撷取单元在基准物的定位点上以另一取样方向撷取取样影像的示意图。
图8A-图8E为根据本发明的示例性实施方式,在基准物上所撷取的不同取样影像的照片。
图8F-图8J为根据本发明的示例性实施方式,在待检测物上所撷取的不同检测影像的照片。
图9A与图9B为根据本发明的示例性实施方式,以相同取样方向对相同加工方式的不同宝石进行取样的取样影像。
图10A为具有相同纹路但不相同的古董器具的照片。
图10B与图10C为根据本发明的示例性实施方式,以相同取样方向对图10A所示的不同古董器具进行取样的取样影像。
具体实施方式
以下描述包含与本公开中的示例性实施方式相关的具体信息。本公开中的附图及其所附详细描述仅针对示例性实施方式。然而,本公开不仅限于这些示例性实施方式。本领域技术人员将想到本公开的其他变型和实施方式。除非另外指出,否则附图中的相似或对应的元件可由相似或对应的附图标号指示。本公开中的附图和图示通常未按比例绘制,并且并不意图对应于实际的相对尺寸。
出于一致性和易于理解的目的,在示例性附图中,由数字标识相似的特征(尽管在一些示例中未展示)。然而,不同实施方式中的特征可在其他方面有所不同,因此不应狭隘地局限于附图中所展示的内容。
针对「至少一个实施方式」、「一实施方式」、「多个实施方式」、「不同的实施方式」、「一些实施方式」、「本实施方式」等用语,可指示如此描述的本发明实施方式可包括特定的特征、结构或特性,但并不是本发明的每个可能的实施方式都必须包括特定的特征、结构或特性。此外,重复地使用短语「在一实施方式中」、「在本实施方式」并不一定是指相同的实施方式,尽管它们可能相同。此外,诸如「实施方式」之类的短语与「本发明」关联使用,并不意味本发明的所有实施方式必须包括特定特征、结构或特性,并且应该理解为「本发明的至少一些实施方式」包括所述的特定特征、结构或特性。术语「耦接」被定义为连接,无论是直接还是间接地通过中间元件作连接,且不一定限于实体连接。当使用术语「包 括」时,意思是「包括但不限于」,其明确地指出所述的组合、群组、系列和均等物的开放式包含或关系。。
出于解释而非限制的目的,阐述具体细节(诸如功能实体、技术、协议和标准)以用于提供对所公开技术的理解。在其他示例中,省略了对众所周知的方法、技术、系统和架构的详细描述,以免不必要的细节混淆描述。
本发明的说明书及上述附图中的术语「第一」、「第二」和「第三」等是用于区别不同对象,而非用于描述特定顺序。此外,术语「包括」以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或模块的过程、方法、系统、产品或设备没有限定于已列出的步骤或模块,而是可选地还包括没有列出的步骤或模块,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤或模块。
本领域技术人员将直接认识到,本公开中描述的任何一个或多个所公开的编码功能或算法可由硬件、软件或者软件和硬件的组合来实现。所描述的功能可对应于模块,所述模块可为软件、硬件、固件或它们的任何组合。软件实施方式可包括存储在计算机可读介质(诸如存储器或其他类型的存储设备)上的计算机可执行指令。例如,具有通信处理能力的一个或多个微处理器或通用计算机可编程有可执行指令,并且执行一个或多个所公开的功能或算法。微处理器或通用计算机可由专用集成电路(applications specific integrated circuitry,ASIC)、可编程逻辑阵列和/或使用一个或多个数字信号处理器(digital signal processor,DSP)形成。尽管所公开的实施方式中的一些面向在计算机硬件上安装和执行的软件,但是实现为固件或硬件或硬件和软件的组合的替代实施方式也完全在本公开的范围内。
计算机可读介质包括但不限于随机存取存储器(random access memory,RAM)、只读存储器(read only memory,ROM)、可擦除可编程只读存储器(erasable programmable read-only memory,EPROM)、电可擦除可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、闪存存储器、光盘只读存储器(compact disc read-only memory, CD ROM)、磁盒、磁带、磁盘存储设备或能够存储计算机可读指令的任何其他等效介质。
本发明各装置之间的耦接可采用定制的协议或遵循现有标准或事实标准,包括但不限于以太网、IEEE 802.11或IEEE 802.15系列、无线USB或电信标准(包括但不限于GSM(Global System for Mobile Communications,全球移动通信系统)、CDMA2000(Code Division Multiple Access,码分多址技术)、TD-SCDMA(Time Division-Synchronization Code Division Multiple Access,时分同步的码分多址技术)、WiMAX(World Interoperability for Microwave Access,全球微波接入互操作性)、3GPP-LTE(Long Term Evolution,长期演进技术)或TD-LTE(Time Division Long Term Evolution,时分长期演进技术))。此外,本发明各装置亦可各自包括被配置为将数据传输和/或储存到计算机可读介质并且从计算机可读介质接收数据的任何设备。再者,本发明各装置可包括计算机系统接口,该计算机系统接口可以使数据能够储存在存储设备上或从存储设备接收数据。例如:本发明各装置可包括支持外围元件互连(Peripheral Component Interconnec,PCI)和高速外围元件互连(Peripheral Component Interconnect Express,PCIe)总线协议的芯片集、专用总线协议、通用串行总线(Universal Serial Bus,USB)协议、I2C、或任何其他可用于互连对等设备的逻辑和物理结构。
以下结合附图实施例对本发明作进一步详细描述。
请参阅图1A,图1A是本发明提供一种对基准物建立鉴别数据而进行取样的取样系统101的框图。在一实施方式中,取样系统101包括服务器10以及取样装置20。服务器10可包括内部储存装置11,以储存取样后的结果。在一实施方式中,当取样装置20收到一取样需求时,取样装置20可与服务器10耦接,以完成本发明所述之取样方法。当取样系统101完成取样方法后,取样装置20可与服务器10停止耦接。
请参阅图1B,图1B是本发明提供另一种对基准物建立鉴别数据而进行取样的取样系统102的框图。在一实施方式中,取样系统102包括服务器10、取样装置20以及在线储存装置30。在一实施方式中,当取样装置20收到一取样需求时,取样装置20可与服务器10耦接,而服务器10可进一步与在线储存装置30耦接,以完成本发明所述之取样方法。当取样系统102完成取样方法后,取样装置20可与服务器10停止耦接,且服务器10亦可与在线储存装置30停止耦接。在另一实施方式中,当取样装置20收到一取样需求时,取样装置20可与服务器10以及在线储存装置30耦接,以完成本发明所述之取样方法。当取样系统102完成取样方法后,取样装置20可与服务器10以及在线储存装置30停止耦接。
在所述实施方式中,在线储存装置30可为一网络数据储存器或一区块链储存装置。当在线储存装置30为该区块链储存装置时,则可通过区块链的特性,降低取样结果被窜改或替换的可能性。在所述实施方式中,在线储存装置30可储存该基准物的所有交易的纪录、检验的时间与结果、更新的图片。
请参阅图2,图2是本发明提供一种对基准物建立鉴别数据而进行取样的取样装置20的框图。取样装置20可以是移动电话、平板计算机、台式计算机、笔记本电脑、相机、录像机或其他电子设备等,在此不作限定。取样装置20包括移动控制单元21、影像撷取单元22、处理器23、储存器24以及传送单元25。
移动控制单元21用于使取样装置20可达到取样过程所需要的移动。在一实施方式中,移动控制单元21用以使影像撷取单元22完成在对该基准物进行取样时的移动。在一实施方式中,移动控制单元21可为取样装置20上的一显示屏幕或是与影像撷取单元22耦接的一自动移动装置。
当显示屏幕作为移动控制单元21时,显示屏幕可用于提供一移动指示给使用者,以指示该用户将影像撷取单元22移动到取样位置。在所 述实施方式中,该取样位置可通过一取样距离以及一取样方向来决定。举例来说,当影像撷取单元22与该基准物上的一定位点之间的一摄像距离等于该取样距离,且影像撷取单元22对该基准物上的该定位点的一摄像方向等于该取样方向时,该显示屏幕则显示影像撷取单元22已移动到该取样位置,而可开始取得所需的取样影像。当该摄像距离不等于该取样距离时,该显示屏幕可指示该用户进一步移动影像撷取单元22,以拉远或拉近该摄像距离。当该摄像方向不等于该取样方向时,该显示屏幕可指示该用户进一步移动影像撷取单元22,以向左、向右、拉高或压低该摄像方向。在另一实施方式中,该取样位置可通过该取样方向来决定。在所述实施方式中,该取样距离可通过调整影像撷取单元22的焦距,来确保取得该基准物细节的表面信息。
当自动移动装置作为移动控制单元21时,该自动移动装置可为一机械手臂或其他可移动影像撷取单元22的装置,该自动移动装置可接收处理器23所指示的该取样位置,以将影像撷取单元22位移到该取样位置。在另一实施方式中,该取样距离可通过调整影像撷取单元22的焦距,来确保取得该基准物细节的表面信息。因此,该自动移动装置可仅调整移动影像撷取单元22的取样方向,以取得所需的取样影像。
影像撷取单元22用以取得多个取样影像。当取样装置20要对该基准物进行取样时,影像撷取单元22可移动到多个不同的取样位置,以使影像撷取单元22可在不同的取样位置对该基准物进行影像撷取,来取得该多个取样影像。影像撷取单元22可以是电荷耦合器件CCD(Charge-Coupled Device)图像传感器、互补金属氧化物半导体CMOS(Complementary Metal–Oxide–Semiconductor)图像传感器或照相机。在一实施方式中,影像撷取单元22可包括高倍率影像撷取镜头,以取得该基准物细节的表面信息。在所述实施方式中,影像撷取单元22可包括显微镜影像撷取镜头。在一实施方式中,影像撷取单元22所撷取的该多个 取样影像皆为该基准物的表面微观影像。在所述实施方式中,该表面微观影像为表面纹理影像。
处理器23与储存器24相互耦接。储存器24储存多个指令,以供处理器23依据储存器24所储存的该多个指令,执行取样装置20的取样方法。为完成本发明之取样方法,储存器24储存了取样程序240。在所述实施方式中,取样程序240进一步包括定位模块241以及取样模块242。定位模块241用于使处理器23能够协助移动控制单元21,将影像撷取单元22位移到该取样位置。取样模块242用于使处理器23能够协助影像撷取单元22,在该取样位置取得所需的取样影像。
传送单元25可利用自定义协议或遵循现有标准或实际标准,包括但不限于以太网、IEEE 802.11或IEEE 802.15系列、无线USB或电信标准(包括但不限于GSM、CDMA2000、TD-SCDMA、WiMAX、3GPP-LTE或TD-LTE),以藉此将取样特征向取样装置20以外的其他装置进行传送。
图3是本发明提供一种对基准物建立鉴别数据而进行取样的取样方法300的流程图。因为存在多种用于执行所述取样方法300的方式,因此图3所示的取样方法300仅是示例。取样方法300可使用图1A、图1B以及图2所展示的配置来执行,并且在说明取样方法300的同时,请合并参考图1A、图1B以及图2中的各种元件。图3中显示的每个步骤可表示所执行的一个或多个过程、方法或子程序,且每个步骤的顺序可任意的调整,并不使取样方法300的本质脱离取样方法300的技术方案的范围。
在步骤S310中,取样装置20取得基准物上的定位点。
在一实施方式中,取样装置20可自行设定该基准物的该定位点。在一实施方式中,取样装置20在接收到要针对该基准物建立该鉴别数据的需求时,取样装置20可自行在该基准物上选定该定位点。在一实施方式中,取样装置20的影像撷取单元22可针对该基准物取得一整体影像,用户可自行从该整体影像中,选取该基准物中的一个位置作为该定位点。在另一实施方式中,取样装置20的影像撷取单元22可针对该基准物取得 一整体影像,并随机或通过一预设的选取方式,在该基准物上选取一个位置作为该定位点。
在一实施方式中,取样装置20可从取样装置20以外的装置,接收到针对该基准物的该定位点。在所述实施方式中,取样装置20可进一步包括一接收单元(图未示出)。该接收单元可接收从取样装置20以外的装置所提供给取样装置20的数据。在一实施方式中,该接收单元可与传送单元25整合为一通讯单元。
在所述实施方式中,取样装置20在接收到要针对该基准物建立该鉴别数据的需求时,取样装置20的影像撷取单元22可针对该基准物取得一整体影像,并通过传送单元25将该整体影像传送到服务器10中。在服务器10接收到针对该基准物建立该鉴别数据的需求以及该整体影像时,服务器10可基于预设的选取方式,从该整体影像中选出该定位点,并将该定位点回传给取样装置20的该接收单元。在一实施方式中,服务器10可将该定位点储存于服务器10中的内部储存装置11。在另一实施方式中,服务器10可将该定位点传送到在线储存装置30来储存。
在步骤S320中,取样装置20在该定位点上沿着多个取样方向取得多个取样影像。
在一实施方式中,取样装置20可自行设定该定位点的该多个取样方向。在所述实施方式中,当取样装置20开始针对该定位点进行取样影像的撷取时,取样装置20可自行针对该定位点选定该多个取样方向。在一实施方式中,取样装置20进一步包括一定位单元(图未示出),该定位单元可包括陀螺仪等定位装置。在一实施方式中,取样装置20可在影像撷取单元22撷取该定位点的取样影像时,通过该定位单元一并纪录该取样影像所对应的该取样方向。在另一实施方式中,取样装置20可基于预设的取向方式,事先选定该多个取样方向,并通过移动控制单元21使影像撷取单元22在该多个取样方向进行该多个取样影像的撷取。
在一实施方式中,取样装置20可从取样装置20以外的装置,接收到该多个取样方向。在所述实施方式中,取样装置20在通过传送单元25将该整体影像传送到服务器10后,服务器10可基于预设的取向方式,设定该多个取样方向,并在该定位点回传给取样装置20的该接收单元时,一并把设定的该多个取样方向回传给该接收单元。在一实施方式中,服务器10可将该多个取样方向储存于服务器10中的内部储存装置11。在另一实施方式中,服务器10可将该多个取样方向传送到在线储存装置30来储存。在又一实施方式中,服务器10可不将该多个取样方向储存在内部储存装置11,同时亦不传送给在线储存装置30。换句话说,取样系统不储存该多个取样方向。
在一实施方式中,影像撷取单元22基于该多个取样方向,取得该多个取样影像。在所述实施方式中,影像撷取单元22可基于该多个取样方向中的一第一取样方向,取得多个第一取样影像,并可基于该多个取样方向中的一第二取样方向,取得多个第二取样影像。
在步骤S330中,取样装置20传送该多个取样影像所建立的取样特征,供一在线装置储存。
在一实施方式中,该网络装置可为服务器10中的内部储存装置11或在线储存装置30。在一实施方式中,取样装置20可通过传送单元25将该多个取样影像所建立的取样特征传送给服务器10。在一实施方式中,服务器10可将该取样特征储存于服务器10中的内部储存装置11,或者服务器10可将该取样特征传送到在线储存装置30来储存。在另一实施方式中,虽然取样装置20同样通过传送单元25将该多个取样影像所建立的取样特征传送给服务器10,但服务器10通过预设的图像处理方式取得一验证特征,并将该验证特征储存于服务器10中的内部储存装置11,或者服务器10可将该验证特征传送到在线储存装置30来储存。在又一实施方式中,取样装置20可通过传送单元25将该多个取样影像所建立的取样特征直接传送给在线储存装置30。
在一实施方式中,该取样特征可为该多个取样影像的一取样集合。换句话说,全部的该多个取样影像、该多个取样方向以及两者间的取样对应关系即为该取样特征。在一实施方式中,当服务器10收到该多个取样影像、该多个取样方向以及该取样对应关系时,服务器10可依据预设的图像处理方式取得该验证特征,并进行将该验证特征储存在内部储存装置11或在线储存装置30。在另一实施方式中,当服务器10收到该多个取样影像、该多个取样方向以及该取样对应关系后,服务器10直接将该多个取样影像、该多个取样方向以及该取样对应关系储存在内部储存装置11或在线储存装置30,并且将该多个取样影像、该多个取样方向以及该取样对应关系直接作为后续的验证特征。
在一实施方式中,该取样特征可为基于该多个取样影像、该多个取样方向以及该取样对应关系所产生的该验证特征。换句话说,取样装置20的处理器23可自行基于该预设图像处理方式取得该验证特征。在一实施方式中,取样装置20可通过传送单元25将该验证特征传送给服务器10。在一实施方式中,服务器10可将该验证特征储存于服务器10中的内部储存装置11,或者服务器10可将该验证特征传送到在线储存装置30来储存。在另一实施方式中,取样装置20可通过传送单元25将该验证特征直接传送给在线储存装置30来储存。
在一实施方式中,若该定位点是由取样装置20自行设定时,则取样装置20传送该取样特征给服务器10或在线储存装置30时,取样装置20可一并将该定位点传送给服务器10或在线储存装置30来储存。
在一实施方式中,取样装置20一并传送该基准物的对象信息,并由在线储存装置30或内部储存装置11来储存该对象信息,以便后续要检测一待检测物时,服务器10可通过该对象信息与该待检测物的信息进行比对,以确定服务器10是否应调取该基准物的该定位点以及该验证特征,作为检测该待检测物的鉴别信息。
在一实施方式中,由于该基准物会随着时间的变化而产生细微的变化,因此若经过很长的时间(例如:10年或20年)后,该基准物再次以同样的方式进行二次取样时,该二次取样结果会与服务器10或在线储存装置30中所储存的该取样特征或该验证特征有所不同,导致该基准物被认定为赝品。因此,取样装置20可于传送该取样特征给服务器10时,同时传送一变化信息给服务器10。在所述实施方式中,该变化信息可为该基准物的材质信息或对象信息,则服务器10可自行依据该材质信息以及对象信息搜寻该基准物的一劣化信息,以供后续该取样特征用来检测一待检测物时,可一并参酌该基准物可能的劣化状况。在所述实施方式中,服务器10可将该劣化信息储存于内部储存装置11或在线储存装置30。在另一实施方式中,服务器10可将该变化信息直接储存于内部储存装置11或在线储存装置30,以供后续检测该待检测物时,再行依据该材质信息以及对象信息搜寻该劣化信息。在又一实施方式中,该变化信息可为该基准物的该劣化信息。在所述实施方式中,取样装置20可自行依据该基准物的该材质信息或该对象信息搜寻该基准物的该劣化信息,并将该劣化信息传送给服务器10或直接传送给在线储存装置30。在所述实施方式中,当服务器10收到该劣化信息时,服务器10可将该劣化信息储存于内部储存装置11或在线储存装置30。
本发明的取样方法300至少可包括但不限于如下之所有实施例:
在本发明取样方法300的一第一实施例中,该多个取样影像的该集合直接作为该验证特征被储存在内部储存装置11或在线储存装置30,且该定位点以及该多个取样方向皆由取样装置20来决定。在所述实施方式中,取样装置20先自行设定该定位点以及该多个取样方向,并基于该定位点以及该多个取样方向取得该多个取样影像,并将该多个取样影像的该集合作为取样特征,再连同该定位点、该多个取样方向以及该多个取样影像与该多个取样方向的该取样对应关系传送给服务器10或直接传送给在线储存装置30来储存。在所述实施方式中,当服务器10收到该多个取样 影像、该定位点、该多个取样方向以及该取样对应关系时,服务器10可将该多个取样影像、该定位点、该多个取样方向以及该取样对应关系储存于内部储存装置11或在线储存装置30。在所述实施方式中,取样装置20所传送的数据进一步包括该变化信息,而被储存在内部储存装置11或在线储存装置30的数据可进一步包括该材质信息、该对象信息或该劣化信息。
在本发明取样方法300的一第二实施例中,该多个取样影像的该集合直接作为该验证特征被储存在内部储存装置11或在线储存装置30,且该定位点或该多个取样方向由取样装置20来决定,另一个则由服务器10来决定。在一实施方式中,该多个取样方向由取样装置20来决定,该定位点则由服务器10来决定。因此,取样装置20在接收到要针对该基准物建立该鉴别数据的需求时,取样装置20可针对该基准物取得该整体影像给服务器10,而服务器10可基于预设的选取方式,从该整体影像中选出该定位点并提供给取样装置20。同时,取样装置20亦可自行基于预设的取向方式选定该多个取样方向。在另一实施方式中,该定位点由取样装置20来决定,该多个取样方向则由服务器10来决定。因此,取样装置20在接收到要针对该基准物建立该鉴别数据的需求时,取样装置20可针对该基准物取得该整体影像,并可基于预设的选取方式从该整体影像中选出该定位点。同时,取样装置20传送取样需求给服务器10,以使服务器10基于预设的取向方式选定该多个取样方向来提供给取样装置20。在一实施方式中,取样装置20在取得该定位点以及该多个取样方向后,进一步取得该多个取样影像,并将该多个取样影像的该集合作为取样特征,连同该定位点与该多个取样方向中的一个以及该取样对应关系传送给服务器10或直接传送给在线储存装置30来储存。在所述实施方式中,当服务器10收到该多个取样影像时,服务器10可将该多个取样影像、该定位点、该多个取样方向以及该取样对应关系储存于内部储存装置11或在线储存装置30。在所述实施方式中,当在线储存装置30直接从取样装置20收到 该多个取样影像时,在线储存装置30可从服务器10取得在线储存装置30未从取样装置20收到的该定位点与该多个取样方向中的一个。在所述实施方式中,若该定位点是由服务器10所决定,则取样装置20可不需额外传送该定位点。若该多个取样方向是由服务器10所决定,则取样装置20可不需额外传送该多个取样方向,仅需传送该取样对应关系。在所述实施方式中,取样装置20所传送的数据进一步包括该变化信息,而被储存在内部储存装置11或在线储存装置30的数据可进一步包括该材质信息、该对象信息或该劣化信息。
在本发明取样方法300的一第三实施例中,该多个取样影像的该集合直接作为该验证特征被储存在内部储存装置11或在线储存装置30,且该定位点以及该多个取样方向皆由服务器10来决定。在所述实施方式中,取样装置20在接收到要针对该基准物建立该鉴别数据的需求时,取样装置20可针对该基准物取得该整体影像给服务器10,而服务器10可基于预设的选取方式以及取向方式,从该整体影像中选出该定位点并额外决定该多个取样方向,以提供给取样装置20。取样装置20基于所收到的该定位点以及该多个取样方向取得该多个取样影像,并将该多个取样影像的该集合作为取样特征,再连同该取样对应关系传送给服务器10或直接传送给在线储存装置30来储存。在所述实施方式中,当服务器10收到该多个取样影像以及该取样对应关系时,服务器10可将该多个取样影像、该定位点、该多个取样方向以及该取样对应关系储存于内部储存装置11或在线储存装置30。在所述实施方式中,当在线储存装置30直接从取样装置20收到该多个取样影像以及该取样对应关系时,在线储存装置30可从服务器10取得该定位点与该多个取样方向。在所述实施方式中,取样装置20所传送的数据进一步包括该变化信息,而被储存在内部储存装置11或在线储存装置30的数据可进一步包括该材质信息、该对象信息或该劣化信息。
在本发明取样方法300的一第四实施例中,该多个取样影像通过预设的图像处理方式产生该验证特征后被储存在内部储存装置11或在线储存装置30,且该定位点以及该多个取样方向皆由取样装置20来决定。在所述实施方式中,取样装置20先自行设定该定位点以及该多个取样方向,并基于该定位点以及该多个取样方向取得该多个取样影像。在一实施方式中,取样装置20依据该多个取样影像、该多个取样方向以及该取样对应关系,通过预设的图像处理方式产生针对该定位点的该验证特征,取样装置20并将该验证特征作为该取样特征,并连同该定位点传送给服务器10或直接传送给在线储存装置30来储存。在所述实施方式中,当服务器10收到该验证特征与该定位点时,服务器10可将该验证特征与该定位点储存在内部储存装置11或在线储存装置30中。在另一实施方式中,取样装置20直接将该定位点、该多个取样方向、该多个取样影像以及该取样对应关系传送给服务器10,服务器10依据该多个取样影像、该多个取样方向以及该取样对应关系,通过预设的图像处理方式产生针对该定位点的该验证特征,并连同该定位点储存在内部储存装置11或在线储存装置30中。在所述实施方式中,取样装置20所传送的数据进一步包括该变化信息,而被储存在内部储存装置11或在线储存装置30的数据可进一步包括该材质信息、该对象信息或该劣化信息。
在本发明取样方法300的一第五实施例中,该多个取样影像通过预设的图像处理方式产生该验证特征后,被储存在内部储存装置11或在线储存装置30,且该定位点或该多个取样方向由取样装置20来决定,另一个则由服务器10来决定。第五实施例依据前述第二实施例的相同方式,取样装置20与服务器10各自依据预设的选取方式以及该基准物的该整体影像或依据预设的取向方式,来产生该定位点以及该多个取样方向,并据此取得该多个取样影像。在一实施方式中,取样装置20依据该多个取样影像、该多个取样方向以及该取样对应关系,通过预设的图像处理方式产生针对该定位点的该验证特征,取样装置20并将该验证特征作为该取 样特征,传送给服务器10或直接传送给在线储存装置30来储存。在所述实施方式中,若该定位点是由服务器10所决定,则取样装置20可不需额外传送该定位点。若该定位点是由取样装置20所决定,则取样装置20可额外传送该定位点给服务器10或直接传送给在线储存装置30来储存。在所述实施方式中,当服务器10收到该验证特征时,服务器10可将该验证特征与该定位点储存在内部储存装置11或在线储存装置30中。在另一实施方式中,取样装置20直接将该多个取样影像以及该取样对应关系传送给该服务器10,服务器10依据该多个取样影像、该多个取样方向以及该取样对应关系,通过预设的图像处理方式产生针对该定位点的该验证特征,并连同该定位点储存在内部储存装置11或在线储存装置30中。在所述实施方式中,若该多个取样方向由取样装置20所决定,则取样装置20可额外传送该多个取样方向给服务器10。若该定位点是由取样装置20所决定,则取样装置20可额外传送该定位点给服务器10或直接传送给在线储存装置30来储存。在所述实施方式中,取样装置20所传送的数据进一步包括该变化信息,而被储存在内部储存装置11或在线储存装置30的数据可进一步包括该材质信息、该对象信息或该劣化信息。
在本发明取样方法300的一第六实施例中,该多个取样影像通过预设的图像处理方式产生该验证特征后,被储存在内部储存装置11或在线储存装置30,且该定位点以及该多个取样方向皆由服务器10来决定。第六实施例依据前述第三实施例的相同方式,服务器10依据预设的选取方式以及从取样装置20所收到的该基准物的该整体影像来产生该定位点,并依据预设的取向方式来产生该多个取样方向,而后将该定位点与该多个取样方向提供给取样装置20。在一实施方式中,取样装置20依据该多个取样影像、该多个取样方向以及该取样对应关系,通过预设的图像处理方式产生针对该定位点的该验证特征,取样装置20并将该验证特征作为该取样特征,传送给服务器10或直接传送给在线储存装置30来储存。在所述实施方式中,由于该定位点是由服务器10所决定,所以取样装置20可 不需额外传送该定位点。在所述实施方式中,当服务器10收到该验证特征时,服务器10可将该验证特征与该定位点储存在内部储存装置11或在线储存装置30中。在另一实施方式中,取样装置20直接将该多个取样影像以及该取样对应关系传送给该服务器10,服务器10依据该多个取样影像、该多个取样方向以及该取样对应关系,通过预设的图像处理方式产生针对该定位点的该验证特征,并连同该定位点储存在内部储存装置11或在线储存装置30中。在所述实施方式中,取样装置20所传送的数据进一步包括该变化信息,而被储存在内部储存装置11或在线储存装置30的数据可进一步包括该材质信息、该对象信息或该劣化信息。
在所述实施方式中,该预设的选取方式可为一随机选取方式,供取样装置20或服务器10从该基准物的该整体影像中任意选取该定位点。在所述实施方式中,该预设的选取方式可通过一表面分析技术,供取样装置20或服务器10从该基准物的该整体影像中选取该定位点。该表面分析技术可为图像复杂度分析等影像分析技术,来取得该整体影像中的一高复杂度区域作为一定位点。在所述实施方式中,该预设的选取方式包含但不限于上述的选取方式。任何可用于选取该基准物的一特定位置的方式皆可用于本案所述的取样方法300。
在所述实施方式中,该预设的取向方式可为一随机取向方式,供取样装置20或服务器10任意选取该多个取样方向。在所述实施方式中,若取样装置20或服务器10事先取得该整体影像中的该定位点,则可依据该定位点通过一表面分析技术来选定该多个取样方向。该表面分析技术可依据该像素数值变化的梯度,针对该定位点周围颜色变化度较高部分,设定较多的该取样方向,以便取得该定位点周围更完整的取样特征。在所述实施方式中,该预设的取向方式包含但不限于上述的取向方式。任何可用于选取多个不同取样方向的方式皆可用于本案所述的取样方法300。
在所述实施方式中,该预设的图像处理方式可为三维建模处理。在所述实施方式中,取样装置20或服务器10可依据该多个取样影像、该多 个取样方向以及该多个取样影像与该多个取样方向之间的该取样对应关系,藉由机器学习的技术产生针对该定位点的该取样模型。该取样模型可为三维取样模型。
在所述实施方式中,取样装置20可针对该基准物选取多个定位点,并针对各个定位点以多个取样方向来取得多个取样影像,藉此可取得针对该基准物的不同定位点的不同的取样特征。在一实施方式中,各个定位点的多个取样方向可完全不同。在另一实施方式中,各个定位点可使用同一组取样组合,该取样组合具有多个取样方向,故各个定位点间的多个取样方向完全相同。在又一实施方式中,各个定位点的多个取样方向可部分相同且部分不同。
请参阅图4A,图4A是本发明提供一种对待检测物进行检测的检测系统401的框图。在一实施方式中,检测系统401包括服务器10以及检测装置40。服务器10可包括内部储存装置11,以事先储存通过图2的取样装置20所取得的取样特征。在一实施方式中,当检测装置40收到一检测需求时,检测装置40可与服务器10耦接,以完成本发明所述之检测方法。当检测系统401完成检测方法后,检测装置40可与服务器10停止耦接。
请参阅图4B,图4B是本发明提供另一种对待检测物进行检测的检测系统402的框图。在一实施方式中,检测系统402包括服务器10、检测装置40以及在线储存装置30。在一实施方式中,当检测装置40收到一检测需求时,检测装置40可与服务器10耦接,而服务器10可进一步与在线储存装置30耦接,以完成本发明所述之检测方法。当检测系统402完成检测方法后,检测装置40可与服务器10停止耦接,且服务器10亦可与在线储存装置30停止耦接。在另一实施方式中,当检测装置40收到一检测需求时,检测装置40可与服务器10以及在线储存装置30耦接,以完成本发明所述之检测方法。当检测系统402完成检测方法后,检测装置40可与服务器10以及在线储存装置30停止耦接。
在所述实施方式中,在线储存装置30可为一网络数据储存器或一区块链储存装置。当在线储存装置30为该区块链储存装置时,则可通过区块链的特性,降低事先储存的取样特征被窜改或替换的可能性。在所述实施方式中,在线储存装置30可储存该基准物的所有交易的纪录、检验的时间与结果、更新的图片。
请参阅图5,图5是本发明提供一种对待检测物进行检测的检测装置40的框图。检测装置40可以是移动电话、平板计算机、台式计算机、笔记本电脑、相机、录像机或其他电子设备等,在此不作限定。检测装置40包括移动控制单元41、影像撷取单元42、处理器43、储存器44、传送单元45以及接收单元46。
移动控制单元41用于使检测装置40可达到检测过程所需要的移动。在一实施方式中,移动控制单元41用以使影像撷取单元42完成在对该待检测物进行检测时的移动。在一实施方式中,移动控制单元41可为检测装置40上的一显示屏幕或是与影像撷取单元42耦接的一自动移动装置。
当显示屏幕作为移动控制单元41时,显示屏幕可用于提供一移动指示给使用者,以指示该用户将影像撷取单元42移动到检测位置。在所述实施方式中,该检测位置可通过一检测距离以及一检测方向来决定。举例来说,当影像撷取单元42与该待检测物上的一定位点之间的一摄像距离等于该检测距离,且影像撷取单元42对该待检测物上的该定位点的一摄像方向等于该检测方向时,该显示屏幕则显示影像撷取单元42已移动到该检测位置,而可开始取得所需的检测影像。当该摄像距离不等于该检测距离时,该显示屏幕可指示该用户进一步移动影像撷取单元42,以拉远或拉近该摄像距离。当该摄像方向不等于该检测方向时,该显示屏幕可指示该用户进一步移动影像撷取单元42,以向左、向右、拉高或压低该摄像方向。在另一实施方式中,该检测位置可通过该检测方向来决定。在所述 实施方式中,该检测距离可通过调整影像撷取单元42的焦距,来确保取得该待检测物细节的表面信息。
当自动移动装置作为移动控制单元41时,该自动移动装置可为一机械手臂或其他可移动影像撷取单元42的装置,该自动移动装置可接收处理器43所指示的该检测位置,以将影像撷取单元42位移到该检测位置。在另一实施方式中,该检测距离可通过调整影像撷取单元42的焦距,来确保取得该待检测物细节的表面信息。因此,该自动移动装置可仅调整移动影像撷取单元42的检测方向,以取得所需的检测影像。
影像撷取单元42用以取得多个检测影像。当检测装置40要对该待检测物进行检测时,影像撷取单元42可移动到多个不同的检测位置,以使影像撷取单元42可在不同的检测位置对该待检测物进行影像撷取,来取得该多个检测影像。影像撷取单元42可以是电荷耦合器件CCD(Charge-Coupled Device)图像传感器、互补金属氧化物半导体CMOS(Complementary Metal–Oxide–Semiconductor)图像传感器或照相机。在一实施方式中,影像撷取单元42可包括高倍率影像撷取镜头,以取得该待检测物细节的表面信息。在所述实施方式中,影像撷取单元42可包括显微镜影像撷取镜头。在一实施方式中,影像撷取单元42所撷取的该多个检测影像皆为该待检测物的表面微观影像。在所述实施方式中,该表面微观影像为表面纹理影像。
处理器43与储存器44相互耦接。储存器44储存多个指令,以供处理器43依据储存器44所储存的该多个指令,执行检测装置40的检测方法。为完成本发明之检测方法,储存器44储存了检测程序440。在所述实施方式中,检测程序440进一步包括定位模块441以及检测模块442。定位模块441用于使处理器43能够协助移动控制单元41,将影像撷取单元42位移到该检测位置。检测模块442用于使处理器43能够协助影像撷取单元42,在该检测位置取得所需的检测影像。
传送单元45以及接收单元46可利用自定义协议或遵循现有标准或实际标准,包括但不限于以太网、IEEE 802.11或IEEE 802.15系列、无线USB或电信标准(包括但不限于GSM、CDMA2000、TD-SCDMA、WiMAX、3GPP-LTE或TD-LTE),以藉此将检测特征对检测装置40以外的其他装置进行传送,并藉此接收从检测装置40以外的其他装置传送来的取样特征。
图6是本发明提供一种对待检测物进行检测的检测方法600的流程图。因为存在多种用于执行所述检测方法的方式,因此图3所示的检测方法600仅是示例。检测方法600可使用图4A、图4B以及图5所展示的配置来执行,并且在说明检测方法600的同时,请合并参考图4A、图4B以及图5中的各种元件。图6中显示的每个步骤可表示所执行的一个或多个过程、方法或子程序,且每个步骤的顺序可任意的调整,并不使检测方法600的本质脱离检测方法600的技术方案的范围。
在步骤S610中,检测装置40传送检测该待检测物的请求。
在一实施方式中,由于检测装置40在撷取检测影像前,需要先知道应针对该待检测物的哪一个区块进行影像的检测,才能够与在线储存装置30或内部储存装置11所储存的验证特征进行比对,因此检测装置40可先传送索取检测该待检测物的定位点的请求,以期能取得该店检测物的定位点。在所述实施方式中,检测装置40可传送该请求给服务器10,且该请求可包括该待检测物的对象信息。因此,服务器10可通过该待检测物的该对象信息,来确认要调取哪一个基准物的对应定位点以及验证特征,作为该待检测物所需检测的鉴别资料。在所述实施方式中,该基准物的该对应定位点即为该待检测物的该定位点。
在一实施方式中,当对应于该待检测物的该基准物的该对应定位点以及该验证特征储存于内部储存装置11时,服务器10传送该基准物的该对应定位点给检测装置40。在另一实施方式中,当对应于该待检测物的该基准物的该对应定位点以及该验证特征储存于在线储存装置30时,服务 器10会先传送索取该待检测物的该定位点的请求给在线储存装置30,供在线储存装置30确认要调取哪一个基准物的定位点以及验证特征,作为该待检测物所需检测的鉴别数据,而后在线储存装置30回传该定位点以及该验证特征给服务器10,再由服务器10传送该定位点给检测装置40。在所述实施方式中,在线储存装置30会一并传送该基准物的变化信息给服务器10。
在步骤S620中,检测装置40接收具有该待检测物的定位点的信息。
在一实施方式中,服务器10传送该待检测物的该定位点给检测装置40,供检测装置40做后续影像撷取使用。在一实施方式中,若服务器10所取得的验证特征是该基准物的该对应定位点的多个取样影像时,服务器10所传送的信息会一并提供该多个取样影像各自的取样方向,以供检测装置40可依相同的检测方向来取得检测影像。
在一实施方式中,若检测装置40会自行完成后述的多个检测影像与该验证特征之比对时,则服务器10可一并传送该基准物的该验证特征给检测装置40。在所述实施方式中,服务器10会一并传送该基准物的该变化信息给检测装置40。在另一实施方式中,若该比对由服务器10完成时,则服务器10可不传送该基准物的该验证特征给检测装置40,而直接保留在服务器10中,供后续比对使用。
在步骤S630中,检测装置40在该定位点上沿着多个检测方向取得多个检测影像。
在一实施方式中,检测装置40可自行设定该定位点的该多个检测方向。在所述实施方式中,当检测装置40开始针对该定位点进行检测影像的撷取时,检测装置40可自行针对该定位点选定该多个检测方向。在一实施方式中,检测装置40进一步包括一定位单元(图未示出),该定位单元可包括陀螺仪等定位装置。在一实施方式中,检测装置40可在影像撷取单元42撷取该定位点的检测影像时,通过该定位单元一并纪录该检测 影像所对应的该检测方向。在另一实施方式中,检测装置40可基于预设的取向方式,事先选定该多个检测方向,并通过移动控制单元41使影像撷取单元42在该多个检测方向进行该多个检测影像的撷取。
在一实施方式中,检测装置40可从检测装置40以外的装置,接收到该多个检测方向。在所述实施方式中,检测装置40可通过接收单元46取得该多个检测方向。在一实施方式中,若内部储存装置11以及在线储存装置30并未储存该基准物的该对应定位点的该多个取样方向时,服务器10可基于预设的取向方式,事先选定该多个检测方向,并传送给接收单元46。在另一实施方式中,若内部储存装置11或在线储存装置30储存了该基准物的该对应定位点的该多个取样方向时,该多个取样方向可重送给检测装置40以作为该待检测物的该定位点的该多个检测方向。在一实施方式中,若该多个取样方向储存于内部储存装置11时,服务器10可将该多个取样方向传送给接收单元46作为该多个检测方向。在另一实施方式中,若该多个取样方向储存于在线储存装置30时,在线储存装置30可将该多个取样方向直接传送给接收单元46作为该多个检测方向,或通过服务器10将该多个取样方向间接传送给接收单元46作为该多个检测方向。
在一实施方式中,影像撷取单元42基于该多个检测方向,取得该多个检测影像。在所述实施方式中,影像撷取单元42可基于该多个检测方向中的一第一检测方向,取得多个第一检测影像,并可基于该多个检测方向中的一第二检测方向,取得多个第二检测影像。
在步骤S640中,检测装置40依据该多个检测影像取得检测结果。
在一实施方式中,该检测结果是基于该多个检测影像以及对应该待检测物的基准物的比对所产生。在一实施方式中,检测装置40可自行针对该多个检测影像与该基准物的验证特征进行比对,以取得该检测结果。在另一实施方式中,检测装置40可依据该多个检测影像产生检测特征, 并将该检测特征传送给服务器10,以供服务器10进行该检测特征与该验证特征之比对,最后再由服务器10传送该检测结果给检测装置40。
在一实施方式中,当该检测结果由检测装置40自行产生时,检测装置40会将该多个检测影像与所收到的该验证特征进行比对。在一实施方式中,该验证特征可为该基准物的该对应定位点的取样模型。该取样模型可为三维取样模型。在一实施方式中,检测装置40可基于该多个检测影像、该多个检测方向以及该多个检测影像与该多个检测方向之间一检测对应关系来产生的该检测特征。换句话说,检测装置40的处理器43可自行基于预设的图像处理方式取得检测特征。在所述实施方式中,该检测特征为该待检测物的该定位点的检测模型。该检测模型可为三维检测模型。因此检测装置40可直接比对该三维取样模型以及该三维检测模型的相似度,以产生该检测结果。在另一实施方式中,检测装置40可基于该多个检测影像、该多个检测方向以及该检测对应关系来与该三维取样模型比对。在所述实施方式中,检测装置40可通过该多个检测方向,通过该三维取样模型推测出多个验证影像,然后再依据该检测对应关系来逐一比对该多个验证影像与该多个检测影像的相似度,以产生检测结果。在一实施方式中,该验证特征可为该基准物的该对应定位点的该多个取样影像、该多个取样方向以及取样对应关系。在所述实施方式中,该多个取样方向可与该多个检测方向完全相同,因此检测装置40可依据该取样对应关系与该检测对应关系,逐一比对该多个取样影像与该多个检测影响的相似度,以产生检测结果。
在一实施方式中,当该检测结果由服务器10产生时,检测装置40会传送该检测特征给服务器10。在一实施方式中,被传送的该检测特征可为该三维取样模型或是该多个检测影像、该多个检测方向以及该检测对应关系之组合。在一实施方式中,检测装置40可基于该多个检测影像、该多个检测方向以及该检测对应关系来产生的该三维检测模型。换句话说,检测装置40的处理器43可自行基于预设的图像处理方式取得该三维检 测模型。因此检测装置40可直接传送该三维检测模型给服务器10,并由服务器10比对该三维取样模型以及该三维检测模型的相似度,以提供该检测结果给检测装置40。
在另一实施方式中,检测装置40可传送该多个检测影像、该多个检测方向以及该检测对应关系之组合给服务器10。在一实施方式中,服务器10可基于该多个检测影像、该多个检测方向以及该检测对应关系来产生的该三维检测模型。换句话说,服务器10可基于预设的图像处理方式取得该三维检测模型。在所述实施方式中,服务器10可直接比对该三维取样模型以及该三维检测模型的相似度,以提供该检测结果给检测装置40。在另一实施方式中,服务器10可基于该多个检测影像、该多个检测方向以及该检测对应关系来与该三维取样模型比对。在所述实施方式中,服务器10可通过该多个检测方向,通过该三维取样模型推测出多个验证影像,然后再依据该检测对应关系来逐一比对该多个验证影像与该多个检测影像的相似度,以提供该检测结果给检测装置40。在又一实施方式中,该验证特征可为该基准物的该对应定位点的该多个取样影像、该多个取样方向以及取样对应关系。在所述实施方式中,该多个取样方向可与该多个检测方向完全相同,因此服务器10可依据该取样对应关系与该检测对应关系,逐一比对该多个取样影像与该多个检测影响的相似度,以提供该检测结果给检测装置40。在所述实施方式中,该多个检测方向是从在线储存装置30或内部储存装置11所取得的该多个取样方向。
在一实施方式中,若检测结果显示该基准物与该待检测物的相似度高时,检测装置40所取得的检测结果可判定该待检测物即为该基准物。若检测结果显示该基准物与该待检测物的相似度低时,检测装置40所取得的检测结果可判定该待检测物与该基准物不相同。在另一实施方式中,若检测结果显示该基准物与该待检测物的相似度低,而使该检测结果判定该待检测物与该基准物不相同时,检测装置40或服务器10可通过该基准物的该变化信息来更新该检测结果。在所述实施方式中,检测装置40或 服务器10可依据该基准物的该变化信息调整该验证特征,并依据该调整特征以及该多个检测影像的比对,来更新该检测结果。
在一实施方式中,该变化信息可为该基准物的该材质信息、该对象信息或该劣化信息。若该变化信息为该材质信息或该对象信息,检测装置40或服务器10可依据该材质信息或该对象信息,通过网络或内部数据库搜寻该基准物的该劣化信息。检测装置40或服务器10可通过该劣化信息以及检测时间点与取样时间点的时间差,推估该基准物可能的劣化程度。因此,检测装置40或服务器10可依据该验证特征与该劣化程度来取得该调整特征。
在一实施方式中,该劣化信息可为材质老化信息,该材质老化信息可能与颜色改变(例如:褪色)有关。若该劣化信息为材质老化信息时,则可通过该材质老化信息与该时间差来评估实际的材质老化程度。举例来说,可推估出可能的褪色程度。在另一实施方式中,该劣化信息可为材料条件信息,该材料条件信息可能与材料分解或破损有关。若该劣化信息为该材料条件信息时,则可通过该材料条件信息与该时间差来评估实际的材料损坏程度。举例来说:可推估出可能的裂纹大小或裂纹多寡。
在一实施方式中,若该更新后的检测结果显示该基准物与该待检测物的相似度高时,检测装置40所取得的检测结果可判定该待检测物即为该基准物。在所述实施方式中,检测装置40或服务器10可将该多个检测影像所产生的该检测特征储存到内部储存装置11或在线储存装置30。在一实施方式中,该检测特征可直接取代该验证特征,以作为后续检测的依据。若长时间依赖变化信息来预测该基准物的转变,只要发生该基准物的实际变化状况与预测变化状况差异过大时,将导致未来的该待检测物难以被正确辨识。因此,若该更新后的检测结果显示该基准物与该待检测物的相似度高时,代表该检测特征即可显示该基准物作为该待检测物在检测当下的实际变化状况。检测装置40或服务器10可传送以储存该检测特征,通过此方式可适度的追踪该基准物的实际变化状况,以避免实际变化状况 超出预测变化状况的预期,而能随时保持该验证特征或该检测特征在后续检验上的正确性。
在另一实施方式中,若该更新后的检测结果显示该基准物与该待检测物的相似度高时,检测装置40或服务器10可将该多个检测影像所产生的该检测特征与该验证特征储存在一起。换言之,在线储存装置30或内部储存装置11将具有该基准物于两个不同时间的特征信息。因此,若一段时间后(例如:1年后)有一个新待检测物将与该检测特征以及该验证特征进行比对时,除了可该新待检测物是否与该检测特征以及该验证特征相似外,亦可进一步检测该新待检测物相对于该验证特征的劣化程度,是否比该检测特征的劣化程度大。若该新待检测物的劣化程度较该检测特征的劣化程度小,就算该新待检测物与该检测特征以及该验证特征相似,该检测系统仍可对该新待检测物提出警示。若通过此方式,可藉于劣化程度的不可回复性进一步的提供检测的精准度。
本发明的检测方法600至少可包括但不限于如下之所有实施例:
在本发明检测方法600的一第一实施例中,该多个检测影像与该验证特征之比对由检测装置40执行,且该验证特征包括与该待检测物对应的该基准物的对应定位点的该多个取样影像、该多个取样方向以及该多个取样影像与该多个取样方向之间的该取样对应关系。在一实施方式中,检测装置40传送检测该待检测物的请求。服务器10收到该请求后,从内部储存装置11或在线储存装置30取得与该待检测物对应的该基准物的该对应定位点以及该验证特征,并将该对应定位点以及该验证特征中的该多个取样方向传送给检测装置40。在一实施方式中,服务器10可于此时一并传送该多个取样影像以及该取样对应关系给检测装置40。
在一实施方式中,检测装置40收到该对应定位点以及该多个取样方向后,直接设定该对应定位点以及该多个取样方向分别为该待检测物的该定位点以及该多个检测方向,并藉此取得该多个检测影像。在一实施方式中,若检测装置40于取得该多个检测影像前已取得该多个取样影像, 则可直接开始进行比对。在另一实施方式中,若检测装置40于取得该多个检测影像前尚未取得该多个取样影像时,检测装置40可再次发送比对该基准物之请求给服务器10,而服务器10收到请求后再行提供该多个取样影像与该取样对应关系给检测装置40。服务器10可藉由此二次传送请求的方式,避免使用者仅为骗取所有的验证信息而随意传出第一次的请求。在所述实施方式中,检测装置40再次发送的请求可包括该多个检测影像以供服务器10做一初步验证,若服务器10认为该多个检测影像明显与该取样影像完全无关,服务器10可拒绝提供该多个取样影像。若服务器10认为该多个检测影像与该多个取样影像之间存在些微的关联性,服务器10即可传送该多个取样影像供检测装置40比对。
在一实施方式中,检测装置40通过该取样对应关系以及该检测对应关系比对该多个取样影像与该多个检测影像,若该多个取样影像与该多个检测影像之间的相似度高时,则检测装置40可判断该待检测物即为该基准物,并传送该检测结果给服务器10。若该多个取样影像与该多个检测影像之间的相似度低时,则检测装置40可判断该待检测物并非该基准物,并传送该检测结果给服务器10。在另一实施方式中,若该多个取样影像与该多个检测影像之间的相似度低时,则检测装置40可传送索取该基准物的变化信息的请求给服务器10。在所述实施方式中,服务器10亦通过索取变化信息的该请求做另一初步验证(例如:索取完整的该多个检测影像),以确认检测装置40是否需要该变化信息。在一实施方式中,检测装置40依据该变化信息调整该多个取样影像,以产生作为该调整特征的一部分的多个调整影像,而后通过该取样对应关系以及该检测对应关系比对该多个调整影像与该多个检测影像。若该多个调整影像与该多个检测影像之间的相似度低时,则检测装置40可判断该待检测物并非该基准物,并传送该检测结果给服务器10。若该多个调整影像与该多个检测影像之间的相似度高时,则检测装置40可更新原为不相同之检测结果,改认定该待检测物即为该基准物,并传送该检测结果给服务器10。在所述实施方式中,检 测装置40可上传该多个检测影像给服务器10,供服务器10将该多个检测影像储存在内部储存装置11或在线储存装置30。在一实施方式中,该多个检测影像与该多个取样影像可同时对应于该基准物被储存在内部储存装置11或在线储存装置30,以共同作为该基准物的该验证特征。在另一实施方式中,该多个检测影像可直接取代该多个取样影像,来作为该基准物的该验证特征。在一实施方式中,服务器10在接收到该多个检测影像时,亦可再次对该多个检测影像做进一步的确认,确认该多个检测影像与该多个调整影像的相似度,以避免储存了错误的验证特征。
在本发明检测方法600的一第二实施例中,该多个检测影像与该验证特征之比对由检测装置40执行,且该验证特征包括与该待检测物对应的该基准物的该对应定位点的取样模型。在一实施方式中,检测装置40传送检测该待检测物的请求。服务器10收到该请求后,从内部储存装置11或在线储存装置30取得与该待检测物对应的该基准物的该对应定位点以及该验证特征,并将该对应定位点传送给检测装置40。在一实施方式中,服务器10可于此时一并传送该取样模型给检测装置40。
在一实施方式中,检测装置40收到该对应定位点后,直接设定该对应定位点为该待检测物的该定位点,并自行选择该多个检测方向,并藉此取得该多个检测影像。在一实施方式中,若检测装置40于取得该多个检测影像前已取得该取样模型时,则可直接开始进行比对。在另一实施方式中,若检测装置40于取得该多个检测影像前尚未取得该取样模型时,检测装置40可再次发送比对该基准物之请求给服务器10,而服务器10收到请求后再行提供该取样模型给检测装置40。服务器10可藉由此二次传送请求的方式,避免使用者仅为骗取所有的验证信息而随意传出第一次的请求。在所述实施方式中,检测装置40再次发送的请求可包括该多个检测影像以供服务器10做一初步验证,若服务器10认为该多个检测影像明显与该取样模型完全无关,服务器10可拒绝提供该取样模型。若服务器 10认为该多个检测影像与该取样模型之间存在些微的关联性,服务器10即可传送该取样模型供检测装置40比对。
在一实施方式中,检测装置40可基于该多个检测影像、该多个检测方向以及该检测对应关系来产生的检测模型,并通过比对该检测模型与该取样模型的相似度来产生检测结果。在另一实施方式中,检测装置40可基于该多个检测方向以及该取样模型推测出多个验证影像,然后再依据该多个检测影像与该多个检测方向的该检测对应关系来逐一比对该多个验证影像与该多个检测影像的相似度,以产生检测结果。
在一实施方式中,若该多个验证影像与该多个检测影像之间的相似度高或该取样模型与该检测模型的相似度高时,则检测装置40可判断该待检测物即为该基准物,并传送该检测结果给服务器10。若该多个验证影像与该多个检测影像之间的相似度低或该取样模型与该检测模型的相似度低时,则检测装置40可判断该待检测物并非该基准物,并传送该检测结果给服务器10。在另一实施方式中,若该多个验证影像与该多个检测影像之间的相似度低或该取样模型与该检测模型的相似度低时,则检测装置40可传送索取该基准物的变化信息的请求给服务器10。在所述实施方式中,服务器10亦通过索取变化信息的该请求做另一初步验证(例如:索取完整的该多个检测影像或是检测模型),以确认检测装置40是否需要该变化信息。在一实施方式中,检测装置40依据该变化信息调整该取样模型,以产生作为该调整特征的调整模型,而后通过该检测对应关系比对该调整模型与该多个检测影像,或直接比对该调整模型与该检测模型。若该调整模型与该多个检测影像之间的相似度低或该调整模型与该检测模型之间的相似度低时,则检测装置40可判断该待检测物并非该基准物,并传送该检测结果给服务器10。若该调整模型与该多个检测影像之间的相似度高或该调整模型与该检测模型之间的相似度高时,则检测装置40可更新原为不相同之检测结果,改认定该待检测物即为该基准物,并传送该检测结果给服务器10。在所述实施方式中,检测装置40可上传该多个检测影 像或该检测模型给服务器10。若检测装置40上传该多个检测影像给服务器10时,检测装置40须一并上传该多个检测方向以及该检测对应关系,供服务器10产生该检测模型。在所述实施方式中,服务器10将该检测模型储存在内部储存装置11或在线储存装置30。在一实施方式中,该检测模型与该多个取样模型可同时对应于该基准物被储存在内部储存装置11或在线储存装置30,以共同作为该基准物的该验证特征。在另一实施方式中,该检测模型可直接取代该多个取样模型,来作为该基准物的该验证特征。在一实施方式中,服务器10在取得该检测模型时,亦可再次对该检测模型做进一步的确认,确认该检测模型与该取样模型的相似度,以避免储存了错误的验证特征。
在本发明检测方法600的一第三实施例中,该多个检测影像与该验证特征之比对由服务器10执行,且该验证特征包括与该待检测物对应的该基准物的对应定位点的该多个取样影像、该多个取样方向以及该多个取样影像与该多个取样方向之间的该取样对应关系。在一实施方式中,检测装置40传送检测该待检测物的请求。服务器10收到该请求后,从内部储存装置11或在线储存装置30取得与该待检测物对应的该基准物的该对应定位点以及该验证特征,并将该对应定位点以及该验证特征中的该多个取样方向传送给检测装置40。在所述实施方式中,服务器10无须将该多个取样影像以及该取样对应关系传送给检测装置40,因此无须担心该多个取样影像以及该取样对应关系被以不当的方式取得。
在一实施方式中,检测装置40收到该对应定位点以及该多个取样方向后,直接设定该对应定位点以及该多个取样方向分别为该待检测物的该定位点以及该多个检测方向,并藉此取得该多个检测影像。在一实施方式中,检测装置40将该多个检测影像以及该多个检测影像与该多个检测方向之间的检测对应关系传送给服务器10,以供服务器10进行与该验证特征之间的比对。
在一实施方式中,服务器10通过该取样对应关系以及该检测对应关系比对该多个取样影像与该多个检测影像,若该多个取样影像与该多个检测影像之间的相似度高时,则服务器10可判断该待检测物即为该基准物,并回传该检测结果给检测装置40。若该多个取样影像与该多个检测影像之间的相似度低时,则服务器10可判断该待检测物并非该基准物,并传送该检测结果给检测装置40。在另一实施方式中,若该多个取样影像与该多个检测影像之间的相似度低时,则服务器10可取得从该在线储存装置30或内部储存装置11取得该基准物的变化信息。在所述实施方式中,服务器10无须将该变化信息传送给检测装置40,因此无须担心该变化信息被以不当的方式取得。
在一实施方式中,服务器10依据该变化信息调整该多个取样影像,以产生作为该调整特征的一部分的多个调整影像,而后通过该取样对应关系以及该检测对应关系比对该多个调整影像与该多个检测影像。若该多个调整影像与该多个检测影像之间的相似度低时,则服务器10可判断该待检测物并非该基准物,并传送该检测结果给检测装置40。若该多个调整影像与该多个检测影像之间的相似度高时,则服务器10可更新原为不相同之检测结果,改认定该待检测物即为该基准物,并传送该检测结果给检测装置40。在所述实施方式中,服务器10可将该多个检测影像储存在内部储存装置11或在线储存装置30。在一实施方式中,该多个检测影像与该多个取样影像可同时对应于该基准物被储存在内部储存装置11或在线储存装置30,以共同作为该基准物的该验证特征。在另一实施方式中,该多个检测影像可直接取代该多个取样影像,来作为该基准物的该验证特征。在一实施方式中,由于服务器10本身已做了完整的比对,因此无须担心储存了错误的验证特征。
在本发明检测方法600的一第四实施例中,该多个检测影像与该验证特征之比对由服务器10执行,且该验证特征包括与该待检测物对应的该基准物的该对应定位点的取样模型。在一实施方式中,检测装置40传 送检测该待检测物的请求。服务器10收到该请求后,从内部储存装置11或在线储存装置30取得与该待检测物对应的该基准物的该对应定位点以及该验证特征,并将该对应定位点传送给检测装置40。在所述实施方式中,服务器10无须将该取样模型传送给检测装置40,因此无须担心该取样模型被以不当的方式取得。
在一实施方式中,检测装置40收到该对应定位点后,直接设定该对应定位点为该待检测物的该定位点,并自行选择该多个检测方向,并藉此取得该多个检测影像。在一实施方式中,检测装置40将该多个检测影像、该多个检测方向以及该多个检测影像与该多个检测方向之间的检测对应关系传送给服务器10,以供服务器10进行与该验证特征之间的比对。在另一实施方式中,检测装置40可依据该多个检测影像、该多个检测方向以及该检测对应关系自行产生该检测模型,并将该检测模型传送给服务器10,以供服务器10进行与该验证特征之间的比对。
在一实施方式中,服务器10可基于该多个检测影像、该多个检测方向以及该检测对应关系来产生的该检测模型,并通过比对该检测模型与该取样模型的相似度来产生检测结果。在另一实施方式中,服务器10可通过比对该取样模型与所接收到的该检测模型的相似度来产生检测结果。在又一实施方式中,服务器10可基于该多个检测方向以及该取样模型推测出多个验证影像,然后再依据该多个检测影像与该多个检测方向的该检测对应关系来逐一比对该多个验证影像与该多个检测影像的相似度,以产生检测结果。
在一实施方式中,若该多个验证影像与该多个检测影像之间的相似度高或该取样模型与该检测模型的相似度高时,则服务器10可判断该待检测物即为该基准物,并传送该检测结果给检测装置40。若该多个验证影像与该多个检测影像之间的相似度低或该取样模型与该检测模型的相似度低时,则服务器10可判断该待检测物并非该基准物,并传送该检测结果给检测装置40。在另一实施方式中,若该多个验证影像与该多个检测影 像之间的相似度低或该取样模型与该检测模型的相似度低时,则服务器10可取得从该在线储存装置30或内部储存装置11取得该基准物的变化信息。在所述实施方式中,服务器10无须将该变化信息传送给检测装置40,因此无须担心该变化信息被以不当的方式取得。
在一实施方式中,服务器10依据该变化信息调整该取样模型,以产生作为该调整特征的调整模型,而后通过该检测对应关系比对该调整模型与该多个检测影像,或直接比对该调整模型与该检测模型。若该调整模型与该多个检测影像之间的相似度低或该调整模型与该检测模型之间的相似度低时,则服务器10可判断该待检测物并非该基准物,并传送该检测结果给检测装置40。若该调整模型与该多个检测影像之间的相似度高或该调整模型与该检测模型之间的相似度高时,则服务器10可更新原为不相同之检测结果,改认定该待检测物即为该基准物,并传送该检测结果给检测装置40。在所述实施方式中,服务器10可将该检测模型储存在内部储存装置11或在线储存装置30。若服务器10仅有该多个检测影像与该检测对应关系时,则服务器10可基于该多个检测影像、该多个检测方向以及该检测对应关系来产生的检测模型,以储存到内部储存装置11或在线储存装置30中。在一实施方式中,该检测模型与该取样模型可同时对应于该基准物被储存在内部储存装置11或在线储存装置30,以共同作为该基准物的该验证特征。在另一实施方式中,该检测模型可直接取代该取样模型,来作为该基准物的该验证特征。在一实施方式中,由于服务器10本身已做了完整的比对,因此无须担心储存了错误的验证特征。
图7A与图7B显示根据本发明的示例性实施方式,影像撷取单元22在基准物的定位点上以不同的取样方向撷取取样影像的示意图。在图7A中的影像撷取单元22位于该基准物的该定位点的正上方,而图7B中的影像撷取单元22相较于图7A中的影像撷取单元22有一偏向角。
在一实施方式中,影像撷取单元22对着该基准物的该定位点,并在一第一取像范围710中拍摄而取得第一取样影像760,取样装置20或 服务器10可在第一取样影像760中取出一第一取样区域761,并将第一取样区域761进一步划分为多个第一取样方块7611-7616,取样装置20或服务器10可计算出多个第一取样方块7611-7616的数值。在所述实施方式中,第一取样区域761对应于第一取像范围710中的一取像区域711,而多个第一取样方块7611-7616对应于多个取像方块7111-7116。
在一实施方式中,影像撷取单元22以该偏向角对着该基准物的该定位点,并在一第二取像范围720中拍摄而取得第二取样影像770,取样装置20或服务器10可在第二取样影像770中取出一第二取样区域771,并将第二取样区域771进一步划分为多个第二取样方块7711-7716,取样装置20或服务器10可计算出多个第二取样方块7711-7716的数值。在所述实施方式中,取样装置20或服务器10为了使第一取样区域761与第二取样区域771所对应的取像区域相同,以使第一取样区域761与第二取样区域771之间可为在相同区域但不同方向的取样结果。因此,取样装置20或服务器10可通过该偏向角将第一取样区域761投影到第二取样影像770,来找出第二取样区域771。因此,若将第一取样区域761以及第二取样区域771投影到第一取像范围710以及第二取像范围720上时,可得到相同的取像区域711,且多个第二取样方块7711-7716可同样对应到多个取像方块7111-7116。
在所述实施方式中,取样装置20或服务器10可分别针对多个第一取样方块7611-7616以及多个第二取样方块7711-7716各计算出一个数值,该多个数值用以代表多个第一取样方块7611-7616以及多个第二取样方块7711-7716。在一实施方式中,该多个数值可为各个方块内的多个像素的平均值、众数或中位数等。举例来说,多个第一取样方块7611-7616的数值可分别为a11、a12、a13、a14、a15以及a16,而多个第二取样方块7711-7716的数值可分别为a21、a22、a23、a24、a25以及a26。在一实施方式中,取样装置20或服务器10可分别以其他取样角度来取得更多数值。例 如:a31、a32、a33、a34、a35、a36、…、an1、an2、an3、an4、an5以及an6。藉此,取样装置20或服务器10可取得如下的多个影像数据训练集:
A1=[a11,a21,a31,…,an1]
A2=[a12,a22,a32,…,an2]
A3=[a13,a23,a33,…,an3]
A4=[a14,a24,a34,…,an4]
A5=[a15,a25,a35,…,an5]
A6=[a16,a26,a36,…,an6]
在所述实施方式中,取样装置20或服务器10可基于该多个影像数据训练集,并通过机器学习的技术,将这些大量的取样样本点数据以三维建模的方式来产生取样模型。在一实施方式中,检测装置40或服务器10亦可以相同的方式,通过该多个检测影像来撷取大量的检测样本点,并建立起多个影像数据训练集,并通过机器学习的技术,将这些大量的检测样本点数据以三维建模的方式来产生检测模型。
图8A-图8E为根据本发明的示例性实施方式,在作为基准物的画作上所撷取的不同取样影像的照片。请合并参阅图1与图2,通过影像撷取单元22在该基准物上所撷取得多个取样影像,取样装置20或服务器10可藉由该多个取样影像,来产生验证特征。在一实施方式中,该验证特征可直接为该多个取样影像。在另一实施方式中,该验证特征亦可为通过机器学习的技术,将该多个取样样本进行分析训练,已产生验证所需的验证特征。所述实施方式中,该验证特征可为经三维建模的取样模型。
图8F-图8J为根据本发明的示例性实施方式,在作为待检测物的画作上上所撷取的不同检测影像的照片。请合并参阅图4与图5,通过影像撷取单元42在该待检测物上所撷取得多个检测影像,检测装置40或服务器10可藉由该多个检测影像,来与该验证特征进行比对。
在一实施方式中,若该验证特征为该多个取样影像,则检测装置40或服务器10可直接以图8A-图8E与图8F-图8J进行比较,即可辨识出待检测物明显与基准物不同。在另一实施方式中,若该验证特征为该取样模型,依据图8A-图8E来看,该取样模行应无明显凹凸不平,且坡度较为陡峭状态,因此检测装置40或服务器10将图8F-图8J的该检测图像与该取样模型比对时,则可发现两者之间坡度上明显不同,而可辨识出待检测物与基准物不同。
请参阅图9A与图9B,图9A与图9B为根据本发明的示例性实施方式,以相同取样方向对相同加工方式的不同宝石进行取样的取样影像。由图9A与图9B来看,就算是完全相同的取样方向与完全相同的加工过程,仍可能因为宝石本身的成色或净度等因素,导致不同宝石之间仍会产生不同的取样影像。因此,只要将一颗宝石作为基准物,事先进行取样影像的撷取来产生验证特征,后续就能通该检测装置以及检测方法来确认待检测物是否为先前做过取样的宝石。
请参阅图10A-10C,图10A为具有相同纹路但不相同的古董器具的照片。图10B与图10C为根据本发明的示例性实施方式,以相同取样方向对图10A所示的不同古董器具进行取样的取样影像。由图10B与图10C来看,就算是相同纹路的古董器具,仍可能因为古董器具在烧制过程中釉料分布的些微差异,导致不同古董器具之间仍会产生不同的纹路变化。因此,只要将一颗古董器具作为基准物,事先进行取样影像的撷取来产生验证特征,后续就能通该检测装置以及检测方法来确认待检测物是否为先前做过取样的古董器具。
本发明所述之方法,不限于使用于艺术品(包含但不限于画作、雕刻等)、宝石(包含但不限于钻石、蓝宝石、翡翠等)或古董物品(包含但不限于陶器、瓷器等),只要事先取得基准物的验证特征(包含但不限于颜色分布、纹路细节、刻痕瑕疵等),就能作为后续验证待检测物的依据。
因此,本公开的一方面提供了一种由一检测装置对一待检测物进行检测的方法,该方法包括:传送检测该待检测物的一请求;接收该待检测物的该定位点;在该待检测物的该定位点上沿着多个检测方向取得多个检测影像;以及依据该多个检测影像取得一检测结果,其中,该检测结果是基于该多个检测影像与对应该待检测物的一基准物的一对应定位点的一比对所产生。
本公开的另一方面提供了一种用于对一待检测物进行检测的检测装置,该检测装置包括:影像撷取单元,该影像撷取单元用以取得多个检测影像;移动控制单元,该移动控制单元用以使该影像撷取单元达到在对该待检测物进行检测时的移动;处理器,该处理器与该影像撷取单元以及该移动单元耦接;传送单元,该传送单元与该处理器耦接;接收单元,该接收单元与该处理器耦接;以及储存装置,该储存装置耦接到该处理器并且储存多个指令,该多个指令在由该处理器执行时使该处理器:通过该传送单元传送检测该待检测物的一请求;通过该接收单元接收该待检测物的该定位点;通过该移动控制单元使该影像撷取单元在该待检测物的该定位点上,沿着多个检测方向取得该多个检测影像;以及依据该多个检测影像取得一检测结果,其中,该检测结果是基于该多个检测影像与对应该待检测物的一基准物的一对应定位点的一比对所产生。
在本发明检测装置或其检测方法的一些实施例中,当该检测结果表示该基准物与该待检测物不相同时,依据该基准物的一变化数据以及该基准物的一验证特征产生一调整特征,其中:该比对是将该多个检测影像与该验证特征进行比较,该基准物的该变化数据是来自于一在线储存装置;以及依据该多个检测影像以及该调整特征,更新该检测结果。
在本发明检测装置或其检测方法的一些实施例中,当该更新的检测结果表示该基准物与该待检测物相同时,传送一检测特征给该在线储存装置,以将该检测特征储存于该在线储存装置,其中:该检测特征是基于该 多个检测影像产生,以及储存于该在线储存装置的该检测特征是对应于该基准物。
在本发明检测装置或其检测方法的一些实施例中,其中该检测特征取代在该在线储存装置所储存的该基准物的该验证特征。
在本发明检测装置或其检测方法的一些实施例中,该多个检测影像与该基准物的一验证特征进行比对来产生该检测结果;该验证特征是依据多个取样影像所重建的一取样模型,该多个取样影像是在该基准物的该对应定位点上沿着多个取样方向所取得,以及该检测结果是依据该多个检测方向去比对该检测影像与该取样模型之一相似度。
在本发明检测装置或其检测方法的一些实施例中,该多个检测影像与该基准物的一验证特征进行比对来产生该检测结果;该验证特征是依据多个取样影像所重建的一取样模型,该多个取样影像是在该基准物的该对应定位点上沿着多个取样方向所取得,该多个检测影像依据该多个检测方向重建一检测模型,以及该检测结果是比对该检测模型与该取样模型之一相似度。
在本发明检测装置或其检测方法的一些实施例中,该多个检测影像与该基准物的一验证特征进行比对来产生该检测结果;该验证特征是在该基准物的该对应定位点上沿着多个取样方向所取得的多个取样影像,该检测结果是比对该多个检测影像与该多个取样影像之一相似度,以及该多个检测方向是从一在线储存装置所取得的该多个取样方向。
本公开的一方面提供了一种由一服务器对一待检测物进行检测的方法,该方法包括:接收检测该待检测物的一请求;发送该待检测物的该定位点;接收在该待检测物的该定位点上沿着多个检测方向取得的多个检测影像;以及依据该多个检测影像取得一检测结果,其中,该检测结果是基于该多个检测影像与对应该待检测物的一基准物的一比对所产生。
本公开的一方面提供了一种用于对待检测物进行检测的服务器,该服务器包括:处理器;传送单元,该传送单元与该处理器耦接;接收单元, 该接收单元与该处理器耦接;以及储存装置,该储存装置耦接到该处理器并且存储多个指令,该多个指令在由该处理器执行时使该处理器:通过该接收单元接收检测该待检测物的一请求;通过该传送单元发送该待检测物的该定位点;通过该接收单元接收该待检测物的该定位点上,沿着多个检测方向取得的多个检测影像;以及依据该多个检测影像取得一检测结果,其中,该检测结果是基于该多个检测影像与对应该待检测物的一基准物的一比对所产生。
在本发明服务器或其检测方法的一些实施例中,当该检测结果表示该基准物与该待检测物不相同时,依据该基准物的一变化数据以及该基准物的一验证特征产生一调整特征,其中:该比对是将该多个检测影像与该验证特征进行比较,该基准物的该变化数据是来自于一在线储存装置;以及依据该多个检测影像以及该调整特征,更新该检测结果。
在本发明服务器或其检测方法的一些实施例中,当该更新的检测结果表示该基准物与该待检测物相同时,传送一检测特征给该在线储存装置,以将该检测特征储存于该在线储存装置,其中:该检测特征是基于该多个检测影像产生,以及储存于该在线储存装置的该检测特征是对应于该基准物。
在本发明服务器或其检测方法的一些实施例中,其中该检测特征取代在该在线储存装置所储存的该基准物的该验证特征。
在本发明服务器或其检测方法的一些实施例中,该多个检测影像与该基准物的一验证特征进行比对来产生该检测结果;该验证特征是依据多个取样影像所重建的一取样模型,该多个取样影像是在该基准物的该对应定位点上沿着多个取样方向所取得,以及该检测结果是依据该多个检测方向去比对该检测影像与该取样模型之一相似度。
在本发明服务器或其检测方法的一些实施例中,该多个检测影像与该基准物的一验证特征进行比对来产生该检测结果;该验证特征是依据多个取样影像所重建的一取样模型,该多个取样影像是在该基准物的该对应 定位点上沿着多个取样方向所取得,该多个检测影像依据该多个检测方向重建一检测模型,以及该检测结果是比对该检测模型与该取样模型之一相似度。
在本发明服务器或其检测方法的一些实施例中,该多个检测影像与该基准物的一验证特征进行比对来产生该检测结果;该验证特征是在该基准物的该对应定位点上沿着多个取样方向所取得的多个取样影像,该检测结果是比对该多个检测影像与该多个取样影像之一相似度,以及该多个检测方向是从一在线储存装置所取得的该多个取样方向。
本公开的一方面提供了一种由取样装置对基准物建立鉴别数据的取样方法,该方法包括:取得该基准物上的一定位点;在该基准物的该定位点上沿着多个取样方向取得多个取样影像;依据该多个取样影像以及该多个取样方向,产生该基准物的该定位点的取样特征;以及传送该取样特征供一网络装置储存。
本公开的一方面提供了一种用于对基准物进行取样以建立鉴别数据的取样装置,该取样装置包括:影像撷取单元,该影像撷取单元用以取得多个取样影像;移动控制单元,该移动控制单元用以使该影像撷取单元达到在对该基准物进行取样时的移动;处理器,该处理器与该影像撷取单元以及该移动单元耦接;传送单元,该传送单元与该处理器耦接;以及储存装置,该储存装置耦接到该处理器并且储存多个指令,该多个指令在由该处理器执行时使该处理器:取得该基准物上的一定位点;通过该移动控制单元使该影像撷取单元在该基准物的该定位点上,沿着多个取样方向取得多个取样影像;依据该多个取样影像以及该多个取样方向,产生该基准物的该定位点的取样特征;以及通过该传送单元传送该取样特征供一网络装置储存。
在本发明取样装置或其取样方法的一些实施例中,接收来自一服务器针对该基准物所设定的该定位点,其中:当该服务器为该网络装置时, 该服务器储存该定位点,以及当该服务器为一在线储存装置时,该服务器传送该定位点给垓在线储存装置。
在本发明取样装置或其取样方法的一些实施例中,当该定位点由该取样装置设定时,传送该定位点给该网络装置。
以上所述,以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围
综上所述,本发明符合发明专利要件,爰依法提出专利申请。惟,以上所述者仅为本发明之较佳实施方式,举凡熟悉本案技艺之人士,在爰依本案创作精神所作之等效修饰或变化,皆应包含于以下之申请专利范围内。

Claims (10)

  1. 一种由一检测装置对一待检测物进行的检测方法,该方法包括:
    传送检测该待检测物的一请求;
    接收该待检测物的一定位点;
    在该待检测物的该定位点上沿着多个检测方向取得多个检测影像;以及
    依据该多个检测影像取得一检测结果,其中,该检测结果是基于该多个检测影像与对应该待检测物的一基准物的一对应定位点的一比对所产生。
  2. 根据权利要求1所述的方法,其还包括:
    当该检测结果表示该基准物与该待检测物不相同时,依据该基准物的一变化数据以及该基准物的一验证特征产生一调整特征,其中:
    该比对是将该多个检测影像与该验证特征进行比较,
    该基准物的该变化数据是来自于一在线储存装置;以及
    依据该多个检测影像以及该调整特征,更新该检测结果。
  3. 根据权利要求2所述的方法,其还包括:
    当该更新的检测结果表示该基准物与该待检测物相同时,传送一检测特征给该在线储存装置,以将该检测特征储存于该在线储存装置,其中:
    该检测特征是基于该多个检测影像产生,以及
    储存于该在线储存装置的该检测特征是对应于该基准物。
  4. 根据权利要求3所述的方法,其中该检测特征取代在该在线储存装置所储存的该基准物的该验证特征。
  5. 根据权利要求1所述的方法,其中,
    该多个检测影像与该基准物的一验证特征进行比对来产生该检测结果,
    该验证特征是依据多个取样影像所重建的一取样模型,
    该多个取样影像是在该基准物的该对应定位点上沿着多个取样方向 所取得,以及
    该检测结果是依据该多个检测方向去比对该检测影像与该取样模型之一相似度。
  6. 根据权利要求1所述的方法,其中,
    该多个检测影像与该基准物的一验证特征进行比对来产生该检测结果,
    该验证特征是依据多个取样影像所重建的一取样模型,
    该多个取样影像是在该基准物的该对应定位点上沿着多个取样方向所取得,
    该多个检测影像依据该多个检测方向重建一检测模型,以及
    该检测结果是比对该检测模型与该取样模型之一相似度。
  7. 根据权利要求1所述的方法,其中,
    该多个检测影像与该基准物的一验证特征进行比对来产生该检测结果;
    该验证特征是在该基准物的该对应定位点上沿着多个取样方向所取得的多个取样影像,
    该检测结果是比对该多个检测影像与该多个取样影像之一相似度,以及
    该多个检测方向是从一在线储存装置所取得的该多个取样方向。
  8. 一种用于对一待检测物进行检测的检测装置,该检测装置包括:
    影像撷取单元,该影像撷取单元用以取得多个检测影像;
    移动控制单元,该移动控制单元用以使该影像撷取单元达到在对该待检测物进行检测时的移动;
    处理器,该处理器与该影像撷取单元以及该移动单元耦接;
    传送单元,该传送单元与该处理器耦接;
    接收单元,该接收单元与该处理器耦接;以及
    储存装置,该储存装置耦接到该处理器并且储存多个指令,该多个指 令在由该处理器执行时使该处理器:
    通过该传送单元传送检测该待检测物的一请求;
    通过该接收单元接收该待检测物的定位点;
    通过该移动控制单元使该影像撷取单元在该待检测物的该定位点上,沿着多个检测方向取得该多个检测影像;以及
    依据该多个检测影像取得一检测结果,其中,该检测结果是基于该多个检测影像与对应该待检测物的一基准物的一对应定位点的一比对所产生。
  9. 根据权利要求8所述的检测装置,其中,该多个指令在由该处理器执行时进一步使该处理器:
    当该检测结果表示该基准物与该待检测物不相同时,依据该基准物的一变化数据以及该基准物的一验证特征产生一调整特征,其中:
    该比对是将该多个检测影像与该验证特征进行比较,
    该基准物的该变化数据是来自于一在线储存装置;
    依据该多个检测影像以及该调整特征,调整该检测结果;以及
    当该更新的检测结果表示该基准物与该待检测物相同时,传送一检测特征给该在线储存装置,以将该检测特征储存于该在线储存装置,其中:
    该检测特征是基于该多个检测影像产生,以及
    储存于该在线储存装置的该检测特征是对应于该基准物。
  10. 一种由一服务器对一待检测物进行的检测方法,该方法包括:
    接收检测该待检测物的一请求;
    发送该待检测物的定位点;
    接收在该待检测物的该定位点上沿着多个检测方向取得的多个检测影像;以及
    依据该多个检测影像取得一检测结果,其中,该检测结果是基于该多个检测影像与对应该待检测物的一基准物的一比对所产生。
PCT/CN2022/090341 2021-05-04 2022-04-29 一种对一待检测物进行的检测方法与检测装置 WO2022233277A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280032539.8A CN117461051A (zh) 2021-05-04 2022-04-29 一种对一待检测物进行的检测方法与检测装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202163183643P 2021-05-04 2021-05-04
US63/183,643 2021-05-04

Publications (1)

Publication Number Publication Date
WO2022233277A1 true WO2022233277A1 (zh) 2022-11-10

Family

ID=83931983

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/090341 WO2022233277A1 (zh) 2021-05-04 2022-04-29 一种对一待检测物进行的检测方法与检测装置

Country Status (3)

Country Link
CN (1) CN117461051A (zh)
TW (1) TWI827030B (zh)
WO (1) WO2022233277A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101582162A (zh) * 2008-05-14 2009-11-18 上海锦渡信息科技有限公司 基于纹理分析的艺术品鉴别方法
JP2014006840A (ja) * 2012-06-27 2014-01-16 Dainippon Printing Co Ltd 個体識別方法、個体識別装置、プログラム
CN104636733A (zh) * 2015-02-12 2015-05-20 湖北华中文化产权交易所有限公司 一种基于图像特征的书画作品鉴定方法
CN106447361A (zh) * 2016-10-28 2017-02-22 王友炎 一种纸张介质艺术品防伪鉴定和备案追溯系统及方法
CN107507090A (zh) * 2017-08-23 2017-12-22 重庆艺邦动力科技有限公司 艺术品在线担保交易方法及实现该方法的存储设备和移动终端

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103164699B (zh) * 2013-04-09 2016-06-15 北京盛世融宝国际艺术品投资有限公司 书画作品保真鉴定系统
US10019626B2 (en) * 2013-12-02 2018-07-10 Leonhard Kurz Stiftung & Co. Kg Method for authenticating a security element, and optically variable security element
CN108292456B (zh) * 2015-11-30 2020-11-27 凸版印刷株式会社 识别方法以及识别介质
CN112446312A (zh) * 2020-11-19 2021-03-05 深圳市中视典数字科技有限公司 三维模型识别方法、装置、电子设备及存储介质

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101582162A (zh) * 2008-05-14 2009-11-18 上海锦渡信息科技有限公司 基于纹理分析的艺术品鉴别方法
JP2014006840A (ja) * 2012-06-27 2014-01-16 Dainippon Printing Co Ltd 個体識別方法、個体識別装置、プログラム
CN104636733A (zh) * 2015-02-12 2015-05-20 湖北华中文化产权交易所有限公司 一种基于图像特征的书画作品鉴定方法
CN106447361A (zh) * 2016-10-28 2017-02-22 王友炎 一种纸张介质艺术品防伪鉴定和备案追溯系统及方法
CN107507090A (zh) * 2017-08-23 2017-12-22 重庆艺邦动力科技有限公司 艺术品在线担保交易方法及实现该方法的存储设备和移动终端

Also Published As

Publication number Publication date
CN117461051A (zh) 2024-01-26
TW202314228A (zh) 2023-04-01
TW202413928A (zh) 2024-04-01
TWI827030B (zh) 2023-12-21

Similar Documents

Publication Publication Date Title
US10495756B2 (en) Multi-camera laser scanner
CN109977770B (zh) 一种自动跟踪拍摄方法、装置、系统及存储介质
EP3248374B1 (en) Method and apparatus for multiple technology depth map acquisition and fusion
CN108830906B (zh) 一种基于虚拟双目视觉原理的摄像机参数自动标定方法
US8666145B2 (en) System and method for identifying a region of interest in a digital image
US9906783B2 (en) Automated measurement of mobile device application performance
CN105100620B (zh) 拍摄方法及装置
WO2018121269A1 (zh) 膜片的检测系统、检测方法和装置
JP2018528388A (ja) レンズの1つ以上の光学パラメータを決定するための機器、システム、および方法
TW201118791A (en) System and method for obtaining camera parameters from a plurality of images, and computer program products thereof
CN106570899B (zh) 一种目标物体检测方法及装置
JP2014102766A5 (zh)
WO2016165379A1 (zh) 一种投影方法、装置、设备及计算机存储介质
CN101859371A (zh) 摄像装置及其物体识别方法
WO2019105315A1 (zh) 视场角测试方法和系统
CN113129383A (zh) 手眼标定方法、装置、通信设备及存储介质
CN112257713A (zh) 图像处理方法、装置、电子设备和计算机可读存储介质
TW201544995A (zh) 物件辨識方法與裝置
CN112104851A (zh) 画面校正的检测方法、装置和检测系统
WO2022233277A1 (zh) 一种对一待检测物进行的检测方法与检测装置
JP2000123186A5 (ja) 被写体認識装置及び被写体認識方法
TWI852856B (zh) 一種對一待檢測物進行檢測的方法與檢測裝置
CN111344554A (zh) 外观缺陷检测方法及装置
CN109489560A (zh) 一种线性尺寸测量方法及装置、智能终端
US20150116486A1 (en) Terminal device, image measuring system and method of inspection of workpiece

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22798618

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280032539.8

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 11202308368X

Country of ref document: SG

122 Ep: pct application non-entry in european phase

Ref document number: 22798618

Country of ref document: EP

Kind code of ref document: A1