WO2022230988A1 - Ammonia-mixed fuel, production device for ammonia-mixed fuel, production method for ammonia-mixed fuel, supply device for ammonia-mixed fuel, combustion device for ammonia-mixed fuel, power generation equipment using ammonia-mixed fuel, and transport device using ammonia-mixed fuel - Google Patents

Ammonia-mixed fuel, production device for ammonia-mixed fuel, production method for ammonia-mixed fuel, supply device for ammonia-mixed fuel, combustion device for ammonia-mixed fuel, power generation equipment using ammonia-mixed fuel, and transport device using ammonia-mixed fuel Download PDF

Info

Publication number
WO2022230988A1
WO2022230988A1 PCT/JP2022/019333 JP2022019333W WO2022230988A1 WO 2022230988 A1 WO2022230988 A1 WO 2022230988A1 JP 2022019333 W JP2022019333 W JP 2022019333W WO 2022230988 A1 WO2022230988 A1 WO 2022230988A1
Authority
WO
WIPO (PCT)
Prior art keywords
ammonia
mixed fuel
combustion
mixing
closed container
Prior art date
Application number
PCT/JP2022/019333
Other languages
French (fr)
Japanese (ja)
Inventor
直樹 八田
大樹 谷本
聡一郎 櫻井
哲郎 村山
Original Assignee
株式会社三井E&Sマシナリー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社三井E&Sマシナリー filed Critical 株式会社三井E&Sマシナリー
Priority to KR1020237036849A priority Critical patent/KR20230159607A/en
Publication of WO2022230988A1 publication Critical patent/WO2022230988A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C31/00Saturated compounds having hydroxy or O-metal groups bound to acyclic carbon atoms
    • C07C31/02Monohydroxylic acyclic alcohols
    • C07C31/04Methanol
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C9/00Aliphatic saturated hydrocarbons
    • C07C9/02Aliphatic saturated hydrocarbons with one to four carbon atoms
    • C07C9/08Propane
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C9/00Aliphatic saturated hydrocarbons
    • C07C9/02Aliphatic saturated hydrocarbons with one to four carbon atoms
    • C07C9/10Aliphatic saturated hydrocarbons with one to four carbon atoms with four carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/12Inorganic compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/16Hydrocarbons
    • C10L1/1616Hydrocarbons fractions, e.g. lubricants, solvents, naphta, bitumen, tars, terpentine
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/182Organic compounds containing oxygen containing hydroxy groups; Salts thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/32Liquid carbonaceous fuels consisting of coal-oil suspensions or aqueous emulsions or oil emulsions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L8/00Fuels not provided for in other groups of this subclass
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Definitions

  • the present invention provides an ammonia mixed fuel, an ammonia mixed fuel manufacturing apparatus, an ammonia mixed fuel manufacturing method, an ammonia mixed fuel supply apparatus, an ammonia mixed fuel combustion apparatus, a power generation facility using an ammonia mixed fuel, and an ammonia mixed fuel. related to transport equipment using
  • GHG emissions Due to recent greenhouse gas (hereinafter referred to as GHG) emission regulations, GHG emissions have been reduced from conventionally widely used fossil fuels (e.g., gasoline, kerosene, light oil, heavy oil, coal, etc.) that generate carbon dioxide when burned. There is a need to switch to other fuels that can be controlled. In contrast, ammonia does not contain carbon, so no carbon dioxide is produced during combustion. For this reason, in recent years, ammonia has been viewed as a promising alternative fuel for complying with GHG regulations. However, since ammonia has a very high ignition temperature and a very slow burning rate compared to conventional fossil fuels, it is difficult to stably burn ammonia alone. For this reason, there is known a technique of adding light oil or other liquid hydrocarbon fuel, or gas fuel such as methane or hydrogen to ammonia as a combustion improver for assisting the combustion of ammonia.
  • conventional fossil fuels e.g., gasoline, kerosene, light oil, heavy oil, coal, etc
  • Non-Patent Document 1 in direct injection combustion of liquefied ammonia, liquefied ammonia is injected into a diesel engine and vaporized in the same way as conventional hydrocarbon-based volatile fuels, and light oil of pilot fuel is used. It is said that ammonia is heated by self-igniting combustion after volatilization, ignites ammonia, and undergoes diffusion combustion.
  • Non-Patent Document 2 hydrogen as a combustion improver corresponding to 30% on a calorific value basis for pre-vaporized ammonia corresponding to 70% of the total on a calorific value basis, and a hydrogen volume ratio of 1/3 It is reported that by pre-mixing nitrogen and a predetermined amount of air and injecting it into the combustion device of a four-stroke engine for spark ignition, the engine can be operated by burning with an unburned rate of 2%. .
  • the reason why nitrogen is added to the fuel gas here is that it is produced on the spot by catalytically decomposing a part of ammonia (reaction formula: NH 3 ⁇ 3/2H 2 +1/2N 2 ) at the time of practical use. This is because it is assumed that hydrogen is used as a combustion improver, and nitrogen, which is produced as a by-product at that time, is also added to the fuel gas.
  • Non-Patent Document 3 in order to increase the combustion speed and stabilize the combustion, for pre-vaporized ammonia, hydrogen or methane, and a premixed gas mixed with a predetermined amount of air Evaluation of laminar combustion speed etc. , and evaluations of turbulent combustion behavior, etc., assuming application to gas turbines, etc. have been reported.
  • the laminar burning velocity of ammonia which is as low as about 7 cm/s at 25°C, is reduced by mixing with methane (laminar burning velocity about 37 cm/s) and hydrogen (about 220 cm/s). It has been confirmed that
  • a heterogeneous azeotropic vapor-liquid-liquid equilibrium relationship (VLLE) is observed between the phase and the gas phase, and the composition range in which the liquid phase is compatible expands with increasing temperature. Approximate calculation of the liquid equilibrium relationship, etc. are shown. Furthermore, propylene and 1-butene become completely miscible with liquefied ammonia at any liquid phase composition (mixing ratio) when the temperature rises above a certain temperature, and between the homogeneous liquid phase and the gas phase, It has also been shown that a homogeneous azeotropic vapor-liquid equilibrium relationship (VLE) holds.
  • Non-Patent Document 1 states that liquefied ammonia can be ignited using light oil as a pilot fuel, but at the same time, poor ignitability and low flame propagation speed are also recognized. It is suggested that it is not easy to uniformly and stably completely burn the entire amount of ammonia supplied as fuel with a small amount of pilot fuel diesel oil. In addition, since ammonia contains nitrogen elements, nitrogen oxides ( NOx ) may be generated in large amounts. In addition, it is conceivable to improve the combustibility of liquefied ammonia by mixing liquefied ammonia with a liquid hydrocarbon fuel such as light oil used as a pilot fuel in Non-Patent Document 1. , gas oil and other liquid non-polar hydrocarbons are hardly compatible in the liquid phase, so it is difficult to uniformly and stably mix and burn them.
  • Non-Patent Documents 2 and 3 use hydrogen or methane gas as a combustion improver for pre-vaporized ammonia. Combustion is improved by premixing. However, these combustion improvers have significant drawbacks in terms of storage and transportation. Ammonia itself is easily liquefied by cooling to about ⁇ 33° C. under atmospheric pressure and pressurizing to about 0.8 MPa at normal temperature (25° C.), and can be easily stored and transported as liquefied ammonia. However, the hydrogen and methane described above cannot be liquefied under atmospheric pressure unless they are cooled to extremely low temperatures of about -253°C and -162°C, respectively.
  • the energy required for cooling is also very large.
  • hydrogen has a volumetric energy density of only about 29% that of gasoline or light oil, which is 26% lower than that of liquefied ammonia.
  • near room temperature none of them are liquefied (become supercritical) by pressurization, and their volumetric energy densities in the compressed state are even lower than in the liquefied state.
  • solubility of non-polar methane and hydrogen gas in liquefied ammonia is low, and it is practically impossible to dissolve the amount required for supporting combustion in liquefied ammonia.
  • Non-Patent Document 2 it is assumed that hydrogen as a combustion improver is obtained by catalytic decomposition of ammonia, and in this case, it is not necessary to store and transport hydrogen itself.
  • Non-Patent Documents 4 and 5 show that liquefied ammonia and liquefied petroleum gas components such as liquefied propane are at least partially dissolved based on their gas-liquid equilibrium relationship. It is noted that these substances and their mixtures can be used as "refrigerants” that do not accelerate ozone depletion and global warming even if they themselves are released into the atmosphere. However, these documents do not assume that they can be used as a "fuel” that does not easily generate GHG such as CO2 even when burned.
  • the present invention stably mixes and disperses a combustion improver with high combustibility, storability, and transportability with respect to liquefied ammonia, thereby suppressing emissions of GHG, NOx, etc., and liquefied ammonia efficiently.
  • a method for producing an ammonia mixed fuel, and a supply apparatus for an ammonia mixed fuel to provide a combustion using this ammonia mixed fuel.
  • An object of the present invention is to provide an apparatus, power generation equipment using this ammonia mixed fuel, and transportation equipment using this ammonia mixed fuel.
  • One aspect of the present invention is An ammonia mixed fuel, Ammonia in a liquefied state; and a combustion improver that assists combustion of the ammonia
  • the combustion improver is (a) liquefied petroleum gas, naphtha, gasoline, kerosene, and diesel; (b) a feedstock hydrocarbon which is at least one hydrocarbon species contained as a component in any one of the liquefied petroleum gas, the naphtha, the gasoline, the kerosene, and the light oil; and (c) carbon Raw material alcohol that is alcohol of number 3 or less, is at least one of The ammonia mixed fuel is in a gas-liquid equilibrium state, and at least a part of the liquid phase portion of the ammonia mixed fuel is in a solution state in which the ammonia and the combustion improver are mutually dissolved, or the ammonia and the combustion improver are dissolved. characterized by being in an emulsion state of
  • Another aspect of the present invention is a production apparatus for producing an ammonia mixed fuel, an ammonia storage closed container for storing ammonia in a liquefied state; (a) liquefied petroleum gas, naphtha, gasoline, kerosene, and light oil; and (c) a raw material alcohol, which is an alcohol having 3 or less carbon atoms.
  • a closed mixing container configured to an ammonia introduction line provided with an ammonia fixed quantity introduction mechanism configured to connect the ammonia storage closed container and the mixing closed container and introduce a predetermined amount of the ammonia into the mixing closed container;
  • Combustion improver metered introduction configured to connect the combustion improver storage closed container and the mixing closed container, and to introduce a predetermined amount of the combustion improver from the combustion improver storage closed container into the mixing closed container.
  • a combustion improver introduction line provided with a mechanism; and at least one liquid phase discharge line configured to discharge the mixture obtained by stirring and mixing the agitator in the closed mixing vessel as an ammonia mixed fuel from the closed mixing vessel.
  • an ammonia mixed fuel supply device a device for producing the ammonia mixed fuel; an ammonia-mixed fuel supply line for supplying the ammonia-mixed fuel discharged from the mixing closed container to a combustor configured to burn the ammonia-mixed fuel.
  • the supply device may include a plurality of combustors.
  • the supply device preferably includes a plurality of ammonia mixed fuel supply lines so that the ammonia mixed fuel is supplied to each of the combustors.
  • Another aspect of the present invention is an ammonia mixed fuel combustion apparatus, a combustor configured to burn the ammonia mixed fuel; an ammonia mixed fuel supply device configured to supply the ammonia mixed fuel to the combustor; a combustion gas discharge line configured to discharge combustion gas generated by combustion of the ammonia-mixed fuel in the combustor into the atmosphere.
  • Another aspect of the present invention is a power generation facility that generates power in any one of land, water, and air space
  • the power generation equipment is equipped with at least one of the ammonia-mixed fuel combustion device provided with an internal combustion engine and the ammonia-mixed fuel combustion device provided with an external combustion engine, a generator configured to generate power using mechanical power extracted using the energy of the combustion gas of the ammonia mixed fuel; a power output end configured to output power generated by the generator; a control mechanism configured to control the amount of power at the power output.
  • Another aspect of the present invention is a transportation device configured to move or transport goods in any one of land area, water area, and air area, At least one of the ammonia-mixed fuel combustion device provided with an internal combustion engine and the ammonia-mixed fuel combustion device provided with an external combustion engine is installed, The mechanical power extracted by at least one of the internal combustion engine and the external combustion engine from the energy of the combustion gas of the ammonia-mixed fuel is used as at least part of the power for propulsion of the transportation equipment. and a power conversion transmission mechanism.
  • Another aspect of the present invention is a transportation device configured to move or transport goods in any one of land, water, and air space,
  • the power generation equipment is mounted,
  • the electric power output from the power generation facility is used for at least one of the following: propulsion of the transportation equipment, operation control of the transportation equipment, and maintenance and management of the transportation equipment.
  • propulsion of the transportation equipment Using the energy of the combustion gas of the ammonia-mixed fuel, the electric power output from the power generation facility is used for at least one of the following: propulsion of the transportation equipment, operation control of the transportation equipment, and maintenance and management of the transportation equipment.
  • at least one of an electric propulsion mechanism and a power supply mechanism configured to use at least a portion of the power requirements in the
  • Another aspect of the present invention is a method for producing an ammonia mixed fuel, comprising: (1) ammonia in a liquid state; (a) liquefied petroleum gas, naphtha, gasoline, kerosene, and diesel oil; (b) a feedstock hydrocarbon which is at least one hydrocarbon species contained as a component in any one of the liquefied petroleum gas, the naphtha, the gasoline, the kerosene, and the light oil; and (c) a raw material alcohol that is an alcohol having 3 or less carbon atoms; and a liquid-state combustion improver that assists combustion of the ammonia, which is at least one of (2)
  • the ammonia and the combustion improver are stirred and mixed while maintaining a gas-liquid equilibrium state with the liquid phase remaining in the closed container for mixing, thereby obtaining the liquid phase portion of the ammonia and the combustion improver.
  • At least a part of is in a solution state in which the ammonia and the combustion improver are mutually dissolved, or a mixture in which the ammonia and the combustion improver are in an emulsion state, (3)
  • the mixture is discharged as an ammonia-mixed fuel from the closed container for mixing.
  • the ammonia mixed fuel the ammonia mixed fuel manufacturing apparatus, the ammonia mixed fuel manufacturing method, the ammonia mixed fuel supply apparatus, and the combustion apparatus using the ammonia mixed fuel described above, the combustibility and storage of liquefied ammonia It is possible to uniformly and stably mix and disperse the combustion improver with high ductility and transportability, thereby making it possible to efficiently burn liquefied ammonia while suppressing emissions of GHG, NOx, and the like. Therefore, the above-described ammonia mixed fuel and the like can be suitably used for power generation equipment, transportation equipment, and the like.
  • FIG. 4 is a diagram showing an example of the configuration of an ammonia-mixed fuel manufacturing apparatus according to another embodiment
  • FIG. 4 is a diagram showing an example of the configuration of an ammonia-mixed fuel manufacturing apparatus according to another embodiment
  • FIG. 4 is a diagram showing an example of the configuration of an ammonia-mixed fuel manufacturing apparatus according to another embodiment
  • FIG. 4 is a diagram showing an example of the configuration of an ammonia-mixed fuel manufacturing apparatus according to another embodiment
  • FIG. 4 is a diagram showing an example of the configuration of an ammonia-mixed fuel manufacturing apparatus according to another embodiment
  • FIG. 4 is a diagram showing an example of the configuration of an ammonia-mixed fuel manufacturing apparatus according to another embodiment
  • FIG. 4 is a diagram showing an example of the configuration of an ammonia-mixed fuel manufacturing apparatus according to another embodiment
  • FIG. 4 is a diagram showing an example of the configuration of an ammonia-mixed fuel manufacturing apparatus according to another embodiment
  • FIG. 4 is a diagram showing an example of the configuration of an ammonia-mixed fuel manufacturing apparatus according to another embodiment
  • FIG. 4 is a diagram showing an example of the configuration of an ammonia-mixed fuel manufacturing apparatus according to another embodiment
  • FIG. 4 is a diagram showing an example of the configuration of an ammonia-mixed fuel manufacturing apparatus according to another embodiment
  • 1 is a block diagram of an example of a main part of an ammonia-mixed fuel manufacturing apparatus according to an embodiment
  • FIG. 1(a) and 1(b) are block diagrams illustrating an example of the configuration of an ammonia-mixed fuel supply device according to an embodiment
  • FIG. FIG. 4 is a block diagram showing an example of the configuration of an ammonia-mixed fuel supply device according to another embodiment
  • 1 is a block diagram illustrating an example of a configuration of an ammonia-mixed fuel combustion apparatus according to an embodiment
  • ammonia mixed fuel of the embodiment the ammonia mixed fuel manufacturing apparatus, the ammonia mixed fuel manufacturing method, the ammonia mixed fuel supply apparatus, the ammonia mixed fuel combustion apparatus, the power generation equipment using the ammonia mixed fuel, and the ammonia mixture Transportation equipment using fuel will be described in detail.
  • ammonia mixed fuel is a fuel containing ammonia in a liquefied state (liquefied ammonia) and a combustion improver. Liquefied ammonia is difficult to ignite and has a low burning rate. Therefore, a combustion improver is used to facilitate ignition of ammonia and improve the burning rate.
  • a combustion improver As a combustion improver, (a) liquefied petroleum gas, naphtha, gasoline, kerosene, and diesel; (b) a feedstock that is at least one hydrocarbon (hereinafter also referred to as component hydrocarbon) species contained as a component in any one of the liquefied petroleum gas, the naphtha, the gasoline, the kerosene, and the diesel oil; and (c) a raw material alcohol that is an alcohol having 3 or less carbon atoms, At least one of is used.
  • component hydrocarbon hydrocarbon
  • liquefied petroleum gas is generally obtained as a fraction that is easily liquefied at around normal temperature (25 ° C.) from by-product gas such as oil fields, natural gas fields, or oil refineries, by compression equipment or cooling vessels. It is a thing.
  • Liquefied petroleum gas contains chain hydrocarbons with 3 and 4 carbon atoms as components. Liquefied petroleum gas can be easily stored and transported after being liquefied, and the gas after vaporization is used as a portable fuel, a propulsion fuel for vehicles equipped with a gas engine, and the like. Naphtha corresponds to a fraction with a boiling point range of about 30 to 200° C.
  • Naphtha is mainly used as a raw material for gasoline, which will be described later, as well as a raw material for the petrochemical industry. Naphtha and its component hydrocarbon species can also be used as fuels.
  • Gasoline is a hydrocarbon fuel obtained mainly by refining and reforming the light fraction of naphtha.
  • gasoline is a mixture of hydrocarbons having about 5 to 11 carbon atoms, and has a boiling point of about 30°C to 220°C.
  • Kerosene is a petroleum product mainly composed of chain hydrocarbon components with about 8 to 15 carbon atoms, corresponding to fractions with boiling points in the range of about 150 to 280°C. Products based on kerosene that have undergone predetermined refinement or addition of anti-freezing components are used as heating fuel (kerosene), aircraft jet engine fuel, rocket fuel, etc. In this specification, kerosene shall also include these products.
  • Gas oil is a petroleum product with a boiling point in the range of about 180° C. to 350° C., and mainly consists of chain hydrocarbons with about 10 to 22 carbon atoms.
  • Light oil is widely used as a fuel that burns particularly well in diesel engines, for thermal power generation, and for the propulsion of large land vehicles, railroads, and ships.
  • the feedstock hydrocarbons contained in the liquefied petroleum gas, naphtha, gasoline, kerosene, and light oil are generally linear, branched, or alicyclic saturated hydrocarbons having 3 to 20 carbon atoms, and/or alkenes, Mainly unsaturated hydrocarbons such as aromatics.
  • Specific components of liquefied petroleum gas include propane, propylene, n-butane, isobutane, 1-butene, cis-2-butene, trans-2-butene, and isobutene.
  • Naphtha is composed of linear and branched saturated hydrocarbons such as n-pentane, isopentane, neopentane, n-hexane, n-octane, n-decane, linear and branched hydrocarbons such as 1-pentene, 1-hexene, isopentene, etc. It includes unsaturated hydrocarbons, alicyclic hydrocarbons such as cyclohexane and cycloheptane, and isomers thereof.
  • Gasoline contains mainly branched saturated or unsaturated hydrocarbons and aromatic hydrocarbons such as toluene produced by reforming naphtha, with straight-chain saturated hydrocarbon components removed to improve the octane number.
  • the main components of kerosene and light oil are straight-chain saturated hydrocarbons with a larger molecular weight than the component hydrocarbon species in gasoline. It mainly contains a series of linear saturated hydrocarbon species centered around 15-16 n-pentadecanes and n-hexadecanes.
  • the above-mentioned liquefied petroleum gas, naphtha, gasoline, kerosene, light oil, and the above-mentioned raw material hydrocarbons are generally obtained from fossil fuels mined in nature or from fossil fuels through separation, refining, reforming, etc. However, as long as the chemical structure is generally common, it may be a bio-derived harvested product or its modified product, or a synthetic product having roughly the same components, as will be described later.
  • All of liquefied petroleum gas, naphtha, gasoline, kerosene, light oil, and the above raw material hydrocarbons, which are components thereof, can compensate for the difficulty of igniting ammonia as combustion improvers.
  • the ignition point of ammonia is about 650° C., which is much higher than that of methane (about 540° C.), which is known as a hydrocarbon with a particularly high ignition point, and is difficult to ignite.
  • liquefied petroleum gas ignition point about 400 ° C
  • naphtha about 230 to 290 ° C
  • gasoline about 300 ° C
  • kerosene about 220 ° C
  • light oil approximately 250°C
  • propane approximately 430°C
  • n-butane approximately 365°C
  • a component of liquefied petroleum gas cyclohexane (approximately 245°C)
  • n-Hexane approximately 220°C
  • toluene approximately 480°C
  • n-decane approximately 210°C
  • a component of kerosene n-hexadecane (approximately 200°C)
  • component of light oil Both have low ignition points, compensating for
  • liquefied petroleum gas, naphtha, gasoline, kerosene, diesel, and their constituent hydrocarbon species generally have higher burning rates than ammonia (e.g., these
  • the laminar burning velocity of is equal to or higher than that of methane, and both are about 5 to 7 times the laminar burning velocity of ammonia, which is about 7 cm/s).
  • the low combustibility of ammonia can be compensated for by adding these liquefied petroleum gas, naphtha, gasoline, kerosene, light oil, and the above-mentioned feedstock hydrocarbons as combustion improvers.
  • the raw material alcohol includes methanol, ethanol, n-propanol, and isopropanol. These raw material alcohols also have lower ignition points than ammonia (the ignition points of methanol, ethanol, n-propanol, and isopropanol are about 385° C., about 384° C., about 370° C., and about 450° C., respectively), In addition, since both of them have a high burning rate (approximately 6 to 7 times that of ammonia in terms of laminar flow burning rate), they can also be used as a combustion improver.
  • these raw material alcohols do not produce so-called soot when burned, so the inside of the combustor (including sliding parts such as reciprocating engines) and the inside of the flue during combustion are clean. It also has the advantage of being easy to maintain.
  • the ammonia-mixed fuel which is a mixture of liquefied ammonia and such a combustion improver, is in a solution state in which at least part of the liquid phase portion is a solution in which ammonia and the combustion improver are mutually dissolved, according to the following embodiments of the present invention.
  • it can be in an emulsion state of ammonia and a combustion improver.
  • thermodynamic gas-liquid equilibrium relationship phase equilibrium between gas-liquid two phases or gas-liquid three phases of gas phase and liquid phase (two-phase separation or mutual solution) relationship
  • the proportion of these combustion improvers that are compatible with ammonia can be increased and even completely miscible. Further, by further adding a suitable surfactant (an example of which will be shown later), at least a part of the remaining part of these combustion improvers that could not be dissolved by simple mixing at a given temperature can be dissolved at that temperature. In, it is possible to homogenize as an emulsion state.
  • thermodynamic vapor-liquid equilibrium relationship phase equilibrium relationship between gas-liquid two phases or gas-liquid three phases of gas phase and liquid phase (two-phase separation or mutual solution)
  • ammonia is dissolved under gas-liquid equilibrium conditions in a closed space be able to.
  • naphthas which are rich in branched chain hydrocarbon species, alicyclic hydrocarbon species and aromatic hydrocarbons such as benzene, which are more dispersible than straight chain hydrocarbon species, have relatively high compatibility with ammonia. .
  • gasoline containing a large amount of non-polar or low-polar aromatic hydrocarbon species with a large induced dipole has high compatibility with liquefied ammonia (Examples described later 14).
  • benzene, and toluene, o, m, p-xylene, etc. which are aromatic hydrocarbon species contained in large amounts in commercial gasoline, are mixed at around room temperature (25 ° C.) in the same manner as the above-mentioned methanol. completely miscible with liquefied ammonia.
  • At least a portion of the liquefied petroleum gas and its component hydrocarbon species can be further solubilized as an emulsion by adding a suitable surfactant as described below.
  • the combustibility of the mixed fuel as a whole is more uniformly improved.
  • ammonia and these combustion improvers are in a solution or emulsion state, a situation is created in which the vaporized ammonia is mixed in the very vicinity of these combustion improvers that have been vaporized during combustion and ignited, and the vaporized ammonia is induced.
  • Good, simultaneous and uniform combustion can be achieved as a whole, as a result of the targeted ignition and improved burning velocity.
  • the raw material alcohol having 3 or less carbon atoms is a liquid having a polarity similar to that of liquefied ammonia at around room temperature (25° C.) under atmospheric pressure, and is compatible with each other due to the effect of hydrogen bonding between molecules.
  • the ammonia and the raw material alcohol are in a solution state, and as in the case of mixing with the hydrocarbon species, an extremely homogeneous mixed gas of these is generated after vaporization, and the ammonia Since the raw material alcohol dissolved in NH3 acts as a combustion improver, the ignition point is lowered and the ignitability is improved compared to when ammonia is used alone.
  • ethanol is known to gradually react with ammonia in a solution and decompose, increasing the risk of fire and the like. Therefore, it is preferable that the ammonia-mixed fuel containing ethanol is not stored for a long period of time after production and is quickly burned and consumed as a fuel, unless an additive or the like is added to suppress such reactions.
  • the mass ratio of ammonia to the combustion improver is appropriately determined according to the application and purpose of the mixed fuel.
  • hydrocarbon fuels such as liquefied petroleum gas, naphtha, gasoline, kerosene, diesel oil, and some of these component hydrocarbon species are replaced with liquefied ammonia (for example, the ammonia content is about 1% by mass or more, 20% by mass %)
  • the mass of these combustion improvers is relatively greater than the mass of ammonia if the aim is to suppress the production of CO 2 that occurs during combustion.
  • most of the liquefied ammonia and the combustion improver can be compatible with each other in a closed space with a temperature range of up to about 50°C, which is close to normal temperature (25°C), or a suitable Emulsification can be achieved by adding a surfactant.
  • a mixed fuel with such a mass ratio can achieve a certain level of GHG emission control while continuing to use combustors, burners, internal or external combustion engines, and other existing combustion equipment that are compatible with hydrocarbon fuels.
  • a mixed fuel containing liquefied ammonia as a main component and containing relatively small amounts of the above-mentioned hydrocarbon fuel, these component hydrocarbon species, and the raw material alcohol as a combustion improver (for example, ammonia when the content is about 80% by mass or more and 99% by mass or less).
  • a combustion improver for example, ammonia when the content is about 80% by mass or more and 99% by mass or less.
  • the combustion improver is liquefied petroleum gas, naphtha, gasoline and its component hydrocarbon species, or a raw material alcohol having 3 or less carbon atoms
  • the mixed dispersibility with liquefied ammonia is high, so the ammonia content is Even with a mixed fuel of about 20 to 80% by mass, which is between the two cases where the mass ratio is shown, by stirring in a temperature range from about normal temperature (25 ° C.) to about 50 ° C.,
  • the majority of the total volume can be made compatible, or it can be emulsified by adding a suitable surfactant as described below.
  • the combustion improver is kerosene, light oil, or a component hydrocarbon species thereof
  • the mixed dispersibility with liquefied ammonia is low in the temperature range from about normal temperature (25°C) to about 50°C.
  • the content is about 20 to 80% by mass and the mass ratio with the combustion improver is competitive, even if a suitable surfactant described later is used, it is difficult to uniformly disperse the whole as an emulsion. , the required amount of addition is significantly increased (for example, an equivalent amount of about 10% by mass or more is required). It also becomes difficult to sufficiently disperse a large amount of surfactant.
  • the added amount of either liquefied ammonia or the combustion improver is the upper limit amount that can be solubilized or emulsified.
  • the combustion improver kerosene, light oil, and their component hydrocarbon species
  • the combustion improver can be emulsified and dispersed up to about 10% by mass, so the combustibility of such an ammonia-side phase in which the combustion improver is dispersed is greater than that of liquefied ammonia. Better than alone.
  • the other phase of the separated liquid phase is mainly composed of the combustion improver, its combustibility is high.
  • kerosene and its component hydrocarbon species are heated to about 50 to 100° C., and if light oil and its component hydrocarbon species are heated to about 80 to 130° C., surface activity Even if the agent is not added, it can be compatible with liquefied ammonia in a wide range of mixing ratios (at about 130° C. or higher, the mixture becomes subcritical or supercritical and compatible).
  • the mass ratio of each is appropriately determined according to the application and purpose of the mixed fuel.
  • the proportion of the portion in the mixed solution state or emulsion state to the total amount is preferably as large as possible.
  • the overall combustibility of the ammonia-mixed fuel can be improved more uniformly.
  • each phase will be divided into layers in the vertical direction in the piping system due to the difference in the specific gravity of each phase. Either of the phases tends to stay in the stagnation point in the system, and as a result, a situation may occur in which the composition of the ammonia-mixed fuel deviates at the liquid feed outlet.
  • the liquefied petroleum gas, naphtha, gasoline, and their component hydrocarbon species, and the raw material alcohol, in which the combustion improver added to ammonia can be compatible to a considerable extent due to an equilibrium relationship without the addition of a surfactant.
  • the part that has once dissolved will remain in a thermodynamically stable solution state and will continue to be compatible permanently as it is (however, , as described above, when the combustion improver contains ethanol, the reaction with ammonia proceeds gradually).
  • the stable maintenance time is about 5 minutes, preferably several days, and more preferably about 1 month or more as a guide in terms of storage and use as a fuel.
  • a mixed fuel in an emulsion state is prepared by adding a sufficient amount of a suitable surfactant, which will be described later, and stirring at an appropriate temperature, the emulsion once formed maintains the temperature at the time of dissolution.
  • the dispersed state can be maintained for a long period of time, from one day to several days to about one month or more, because it maintains a thermodynamically metastable state.
  • the ammonia mixed fuel should be stirred and mixed again to form an emulsion before it is supplied to the combustor. It is good to restore the state. At that time, if necessary, the temperature is appropriately adjusted as described later. This can restore the combustion advantages of the ammonia-blended fuel. Furthermore, the ammonia mixed fuel is such that the entire liquid phase portion of the ammonia mixed fuel is in a solution state in which the ammonia and the combustion improver are mutually dissolved, or in an emulsion state of the ammonia and the combustion improver. It is preferable to keep at a predetermined temperature according to the liquid phase composition.
  • the ammonia mixed fuel is maintained at a proper composition and a proper temperature range according to the composition and temperature of its constituent components, or a sufficient amount of a suitable surfactant described later is added. by at least one of mixing and dispersing the ammonia and the combustion improver so that the entire liquid phase portion of the ammonia mixed fuel is in a solution state in which the ammonia and the combustion improver are mutually dissolved, or the ammonia and the combustion improver are dissolved. It is also possible to make it into an emulsion state.
  • the entire liquid phase portion of the ammonia mixed fuel maintains a solution state in which ammonia and the combustion improver are mutually dissolved, or an emulsion state of ammonia and the combustion improver, thereby improving the combustibility of the entire ammonia mixed fuel. , can be improved uniformly and to the highest degree.
  • the aforementioned liquefied petroleum gas, naphtha, gasoline, kerosene, light oil, hydrocarbon species having structures equivalent to those of raw material hydrocarbons of these components, and raw material alcohols with 3 or less carbon atoms excluding ethanol are CO2 separated and collected from industrial exhaust gases and the atmosphere by using renewable energy such as light, wind power, hydraulic power, and geothermal power, electric power obtained from nuclear power, and hydrogen obtained by electrolysis of water using such electric power. In some cases, it is produced by chemical synthesis via CO, methane, etc. synthesized by reducing .
  • these raw material hydrocarbons and the above-mentioned raw material alcohols which are produced based on renewable energy, are burned and the exhaust gas is released into the atmosphere, CO 2 emissions are assumed to be substantially reduced.
  • raw materials such as metabolites of plants and microorganisms that perform photosynthesis.
  • the carbon contained is derived from atmospheric CO2 , so combustion must not substantially increase atmospheric CO2 . be regarded. Therefore, the use of the above-mentioned renewable energy-based combustion improver and the ammonia mixed fuel mixed with the photosynthesis-based bio-based combustion improver can greatly suppress global warming.
  • the ammonia mixed fuel contains at least one of the liquefied petroleum gas, the raw material hydrocarbon, and the raw material alcohol as a combustion improver, and the raw material hydrocarbon is the liquefied petroleum gas.
  • At least one hydrocarbon species contained as a component, and the starting alcohol is preferably methanol. That is, the ammonia mixed fuel preferably contains at least one of liquefied petroleum gas, at least one hydrocarbon contained as a component in liquefied petroleum gas, and methanol as a combustion improver. Liquefied petroleum gas and the hydrocarbon species contained as its constituents produce less CO2 per calorific value during combustion than gasoline, kerosene, light oil, or heavy oil, which have traditionally been widely used as liquid fuels.
  • the liquefied petroleum gas and the hydrocarbon species contained as its constituents have a saturated vapor pressure relatively close to that of ammonia in the liquid state at the same temperature, and a lower molecular weight hydrocarbon such as methane. It is easy to ignite due to its low ignition temperature compared to , and has a burning rate equal to or higher than that of methane, which is about 5 to 6 times that of ammonia, and is advantageous as a combustion improver for ammonia. Therefore, when liquefied petroleum gas or its component hydrocarbon species and ammonia are in a solution state or an emulsion state, they are mixed very uniformly and vaporize substantially simultaneously and uniformly during combustion.
  • non-polar linear saturated hydrocarbons having about 8 or more carbon atoms.
  • Mainly hydrogen In general, a mixture of non-polar straight-chain saturated hydrocarbon species having about 8 or more carbon atoms and liquefied ammonia has a temperature range from about normal temperature (25 ° C.) to about 50 ° C. under the vapor-liquid equilibrium conditions. However, it is difficult to mix with each other and separates into two phases.
  • a higher temperature than liquefied petroleum gas and its component hydrocarbon species e.g., about 50 to 100 ° C. for kerosene and its component hydrocarbon species) degree, about 80 to 130 ° C for gas oil and its component hydrocarbon species. about 3 to 4 MPa or more
  • a high pressure resistance is required for production equipment during production and storage of the mixed fuel.
  • Emulsification by mixing is generally required.
  • Non-Patent Documents 4 and 5 The compatibility of such ammonia and low-molecular-weight hydrocarbons and the related equilibrium relationship between gas-liquid phases are partly shown in Non-Patent Documents 4 and 5 concerning mixed properties of ammonia and low-molecular-weight hydrocarbons as refrigerants. ing.
  • propane and n-butane which are the main components of liquefied petroleum gas, are used as the combustion improver will be taken as an example.
  • propane and n-butane which are the main components of liquefied petroleum gas
  • FIGS. 1(a) and 1(b) illustrate the relationship between the vapor-liquid-liquid equilibrium (VLLE) of the ammonia-propane system and the ammonia-n-butane system, respectively, described in Non-Patent Documents 4 and 5
  • the ammonia concentrations (x, y) in the liquid phase and gas phase are converted from the mole fraction representation used in Non-Patent Documents 4 and 5 to mass % representation. are).
  • FIG. 1(a) the relationship between the gas-liquid composition and the saturated vapor pressure in the gas-liquid-liquid equilibrium (VLLE) of the heterogeneous azeotropic ammonia-propane system at 20 ° C. (upper) and 0 ° C.
  • the solid line in the figure indicates the relationship (liquidus line) between the liquid phase composition (x) and the saturated vapor pressure (p).
  • the lower dashed line is the relationship between the gas phase composition (y) and the saturated vapor pressure (p) in equilibrium with the liquid phase (gas phase line ).
  • the propane-based liquid phase with the ammonia concentration x A and the ammonia-based liquid phase with the ammonia concentration x B undergo phase separation.
  • the gas phase is maintained in an azeotropic state ( point O ) of ammonia concentration y 0 and saturated vapor pressure p 0 , which are in equilibrium with this.
  • the single phase remains at the point Q in the figure, which indicates the vapor-liquid equilibrium of pure ammonia, via the trajectory of BQ on the liquidus line.
  • the liquid phase mainly composed of propane contains ammonia through the trajectory of PA in FIG. ) can be thermodynamically stably dissolved without phase separation.
  • the liquid phase mainly composed of propane among the above two liquid phases has an amount of liquefied propane as a combustion improver that is equal to that of liquefied ammonia.
  • the liquid phase mainly composed of ammonia corresponds to the case where the amount of liquefied propane as the combustion improver is smaller than that of liquefied ammonia.
  • Part of the liquefied ammonia (here, 13.5% by mass or less) is replaced with propane, and if this is taken out as a mixed fuel and subjected to combustion, it becomes a single-phase compatible mixed fuel that burns uniformly as a whole. Moreover, due to the replacement, the combustibility can be improved as compared with the combustion of liquefied ammonia alone.
  • FIG. 1(b) shows the relationship between the gas-liquid composition and the saturated vapor pressure in the vapor-liquid-liquid equilibrium (VLLE) of the ammonia-n-butane system at 0.degree.
  • VLLE vapor-liquid-liquid equilibrium
  • the symbols (P', A', B', Q', O', etc.) in FIG. 1(a) correspond to the ammonia-propane system at 0 ° C. It is common with the symbol to In the gas-liquid equilibrium relationship of the ammonia-n-butane system at 0 ° C. in FIG.
  • a phase line (trajectory of P'O'Q') is recognized, and qualitatively, it is common to the vapor-liquid equilibrium of the ammonia-propane system in FIG.
  • FIG. 2 shows the liquid-liquid equilibrium (VLLE) relationship.
  • VLLE liquid-liquid equilibrium
  • each component hydrocarbon species of liquefied petroleum gas becomes completely miscible with liquefied ammonia in the liquid phase at any composition ratio above the critical solution temperature. ing.
  • the component hydrocarbon species of liquefied petroleum gas when compared at the same temperature, those with 3 carbon atoms (propane, propylene) and those with double bonds (propylene, various butenes) are relatively Compatibility with liquid ammonia is higher than that of component hydrocarbons outside the category of
  • the above critical solution temperature is about 33° C. for propane, which is a saturated straight-chain hydrocarbon having 3 carbon atoms, and about 38° C. for n-butane, which is a straight-chain saturated hydrocarbon having 4 carbon atoms.
  • liquid phase composition ammonia concentration x C
  • ammonia concentration x C a predetermined temperature that is higher than 20 ° C. and lower than the critical solution temperature (about 33 ° C.) at which ammonia and propane are completely compatible is always exist.
  • the critical solution temperature about 33 ° C.
  • the temperature of the mixed fuel is maintained above the above-mentioned temperature according to the liquid phase composition of the mixed fuel.
  • the entire liquid phase portion of the mixed fuel can be in a solution state in which ammonia and the combustion improver are mutually dissolved (see Example 2 described later (when the combustion improver is n-butane)).
  • the effect of the combustion improver can be maximized and the mixed fuel can be burned extremely uniformly.
  • the vapor-liquid equilibrium and the saturated vapor pressure in vapor-liquid equilibrium are respectively Generally higher than the saturated vapor pressure alone.
  • the component hydrocarbon species of liquefied petroleum gas other than propane, and the single-phase compatible mixed fuel of liquefied petroleum gas, which is a mixture thereof, and liquefied ammonia can also be liquefied in the same manner as in the case of propane described above.
  • the component hydrocarbon species of liquefied petroleum gas dissolved in ammonia forms a uniform mixed gas with ammonia after vaporization, and in that state acts as a combustion improver, so compared to liquefied ammonia alone, the ignition point is lower and ignitability. is improved and the burning velocity is also increased, resulting in improved combustibility.
  • the liquefied petroleum gas component as a combustion improver is saturated and dissolved in the liquid phase mainly composed of ammonia generated by phase separation.
  • the liquid phase mainly composed of the component hydrocarbon species of the other liquefied petroleum gas also has good combustibility as a whole because the component hydrocarbon species themselves have good combustibility. can. Furthermore, if the phase-separated phases are taken out separately as a mixed fuel and burned separately, each becomes a uniform single phase, exhibiting good combustibility.
  • Methanol like liquefied petroleum gas or its components, can also be used as a GHG-reducing fuel. Since methanol has a low ignition point of about 385° C., it is easily ignited, and its laminar combustion velocity is about 45 cm/s, which is 6 to 7 times higher than that of ammonia. In addition, compared with heavy oil, light oil, kerosene, and gasoline, which have conventionally been widely used as liquid fuels, less CO 2 is generated per calorific value during combustion.
  • methanol is uniformly mixed (completely dissolved) in a liquid state with liquefied ammonia without the addition of a surfactant at least in the temperature range of about 0 to 40 ° C., so liquefied petroleum
  • a surfactant at least in the temperature range of about 0 to 40 ° C.
  • Methanol like ammonia, does not generate soot during combustion, and has the advantage of easily maintaining the cleanliness of the inside of the combustor and the inside of the flue.
  • the mixture of liquefied ammonia and methanol is a non-azeotropic gas-liquid system in which the liquid phase is completely miscible regardless of the liquid phase composition. indicates equilibrium. Therefore, if the mixed fuel is taken out as a mixed fuel and subjected to combustion at any composition ratio, uniform and good combustion becomes possible. Furthermore, in a solution of liquefied ammonia and methanol, since hydrogen bonding occurs between the molecules of the two and vaporization of ammonia is suppressed, the saturated vapor pressure of these mixed solutions is the saturated vapor pressure of ammonia alone at the same temperature (See Example 13 below).
  • the pressure resistance of the storage container when storing at room temperature (25°C), and the energy required for cooling when storing in a liquefied state near atmospheric pressure. can be greatly reduced compared to ammonia alone, which is a great advantage in terms of storage and transportation.
  • ammonia, liquefied petroleum gas or its constituent hydrocarbon species, and methanol, which are raw materials for ammonia mixed fuel, are also excellent in terms of raw material procurement. That is, ammonia has been produced from methane, which is the main component of natural gas, as a raw material, and has been synthesized worldwide in large quantities by the Haber-Bosch process. For this reason, large-scale ammonia synthesis plants are often built near natural gas fields around the world. Extraction of natural gas with a high methane content, which is used as a raw material for ammonia, involves separating hydrocarbons with higher boiling points from raw gas extracted from gas fields by pressurizing or cooling to liquefy them.
  • methanol is also mass-produced using methane, which is the main component in natural gas, as a raw material.
  • the initial steps in the synthesis of methanol from methane are the desulfurization step and the steam reforming step (CH4+ 2H2O ⁇ 4H2 + CO2 and CH4 + H2O ⁇ 3H2 + CO), which is the natural It is the same as the initial process of ammonia production by Haber-Bosch process from gas raw material. For this reason, the co-production of ammonia and methanol in the same production plant will reduce CO2 emissions to the environment by effectively using carbon in natural gas (carbon, which is a component element in natural gas that is eliminated in ammonia production, can be replaced by methanol).
  • methanol can also be advantageously co-produced. Therefore, when an ammonia mixed fuel is additionally produced in an ammonia production plant, methanol is also advantageous as a combustion improver contained in the ammonia mixed fuel in raw material procurement in terms of production.
  • ammonia will be mass-transported from the mass-manufacturing base to a remote mass-consumption demand area by transport equipment, it will be easy to use the fuel for the transport equipment at the mass-manufacturing base of ammonia. And it is preferable from the viewpoint of efficiency and cost that it can be procured at a low cost.
  • liquefied petroleum gas and its constituent hydrocarbon species, as well as methanol can be advantageously procured at sites for mass production of ammonia, and thus ammonia mixed fuels containing these can be used to drive transportation equipment that transports ammonia in bulk. It can be advantageously used as a fuel.
  • a surfactant is added to make the liquid ammonia and the combustion improver into an emulsion state. is preferably included.
  • Emulsification with a surfactant can be suitably applied regardless of whether the raw material hydrocarbon contained in the ammonia-mixed fuel is liquefied petroleum gas, naphtha, gasoline, light oil, or component hydrocarbon species thereof.
  • the raw material hydrocarbon is kerosene, light oil, or any of these component hydrocarbon species
  • it is compatible with ammonia in the temperature range from about normal temperature (25 ° C.) to about 50 ° C. Therefore, it is necessary to emulsify by adding a surfactant. Due to the emulsification caused by the addition of a surfactant, at least a part of the phase-separated portion that could not be dissolved due to the vapor-liquid equilibrium at that temperature in the liquid phase of the ammonia mixed fuel is maintained at that temperature. , and can also be dispersed in the liquid phase.
  • This uniform emulsion state is maintained even when cooled down to about 17°C (upper layer appears separated below 17°C).
  • the above-described emulsification can be similarly realized for other component hydrocarbon species of liquefied petroleum gas in addition to n-butane.
  • the above-described emulsification increases the solubility of the combustion improver (liquefied petroleum gas and its component hydrocarbon species) in ammonia at a predetermined temperature, so that the above-mentioned combustion support effect during combustion of the mixed fuel is further enhanced.
  • the temperature required for solubilization can be reduced, the rise in the saturated vapor pressure of the ammonia mixed fuel can also be suppressed. Therefore, by emulsification by adding a surfactant, the required pressure resistance of the storage container during storage at around room temperature (25° C.) can be reduced.
  • the amount of surfactant to be added is adjusted according to the molecular weight, compounding composition, characteristics and performance of the surfactant, which will be described later. It can be appropriately determined based on the volume fraction (approximately mass fraction is also possible) of the droplets dispersed and suspended in the medium.
  • liquefied ammonia becomes fine droplets (when the combustion improver is liquefied petroleum gas or its component hydrocarbon species, part of the combustion improver is dissolved in the liquid phase mainly composed of the liquefied ammonia),
  • a/o ammonia in oil
  • a/o ammonia in oil
  • the combustion improver becomes fine droplets (when the combustion improver is liquefied petroleum gas or its component hydrocarbon species, part of the liquefied ammonia is dissolved in the liquid phase mainly containing the combustion improver),
  • o/a (oil in ammonia) emulsion When dispersed or suspended in a liquid phase mainly composed of ammonia (this state is hereinafter referred to as "o/a (oil in ammonia) emulsion"), the volume fraction of the combustion improver in the mixed fuel (approximately The amount of surfactant to be added is determined according to the mass fraction of The emulsion formed by the mixed surfactant used in Example 3 described above corresponds to this o/a emulsion.
  • the required amount of surfactant varies depending on the type of surfactant, but suitable surfactants described later (high-performance mixed surfactants in which nonionic and ionic surfactants are mixed)
  • the mass fraction of about 1/10 of the numerical value of the volume fraction (approximately mass fraction) in the mixed fuel of the liquefied ammonia or the combustion improver to be dispersed or suspended Surfactants are preferred for stable emulsion formation.
  • the ammonia mixed fuel Normally, about 0.1 to 10% by mass is added to the ammonia mixed fuel.
  • the polar ammonia and the non-polar raw material hydrocarbon are added to the a / o emulsion and the o / a emulsion. Either state is possible.
  • the volume of the separated liquid phase mainly composed of liquefied ammonia is smaller than the volume of the separated liquid phase mainly composed of raw hydrocarbons, it is better to form an a/o emulsion.
  • a surfactant that facilitates the formation of an a/o emulsion is selected or formulated.
  • surfactants that are more likely to form o/a emulsions are selected or formulated.
  • a preferred surfactant in the ammonia mixed fuel of one embodiment above is a mixed system comprising at least one nonionic surfactant (A) and at least one ionic surfactant (B) is a surfactant.
  • ionic and nonionic here are distinguished by whether or not they have the property of being ionized in the environment of the liquid ammonia mixed fuel.
  • the general terms “ionic” and “nonionic” are differentiated mainly in terms of whether or not they ionize as hydrated ions in the presence of water.
  • the ammonia mixed fuel in the present invention contains substantially no water, can "ionic” and “nonionic” ionize in the ammonia mixed fuel mainly as ions solvated by ammonia?
  • H + and anionic/cationic species, etc. are transferred and received between ionic and nonionic surfactant molecules and between these surfactant molecules and ammonia molecules.
  • ionic and nonionic are distinguished by the presence or absence of ionization including such a series of processes.
  • a surfactant has two parts that exhibit affinity for each of the two phases that undergo liquid-phase separation. It has the property of being arranged two-dimensionally at the interface.
  • an ammonia mixed fuel containing liquefied ammonia and the raw material hydrocarbons liquefied petroleum gas, naphtha, gasoline, kerosene, light oil, and component hydrocarbon species thereof
  • the nonionic surfactant mainly contributes to the stable formation of an extremely thin film (micelle interface film) covering the microdroplets while being two-dimensionally arranged on the surface layer interface of the microdroplets.
  • the ionic surfactant mainly participates in the formation of the film by the nonionic surfactant, and is constantly ionized by itself to form the surface layer interface of the microdroplet (micelle).
  • the molecular structure for example, a structure in which the partial structure of the preferred nonionic surfactant described above and the partial structure of the preferred ionic surfactant described above are provided in series in the main chain, or the preferred and the partial structure of the preferred ionic surfactant described above are provided in parallel as side chains.
  • the quantitative ratio of the partial structure portion of the nonionic surfactant and the partial structure portion of the ionic surfactant is a mere physical It is determined according to the respective quantitative ratios which are suitable for mixing.
  • (A) is a nonionic surfactant as a main component constituting a particularly suitable surfactant in an ammonia mixed fuel containing the non-polar raw material hydrocarbon as a combustion improver
  • ( B) is an ionic surfactant as a secondary component which constitutes a particularly preferred surfactant.
  • the nonionic surfactant (A) mainly contributes to the formation of a thin film in which its molecules are arranged two-dimensionally at the interface between the two separated liquid phases, and the micelle covered with the film.
  • the ionic surfactant (B) is mainly ionized in the membrane and contributes to electrostatic repulsion between the micelles.
  • nonionic surfactants (A) including the case where the polar part is an amino group, hardly participate in ionization themselves in ammonia mixed fuels containing no water (this classified as “nonionic”).
  • the nonionic surfactant (A) contains a nonpolar long-chain alkyl group [C k H 2k+1 -] or a long-chain alkenyl group [C l H 2l-1 -] (k and l are 7 to 18). integer), it has a high affinity for the raw material hydrocarbon or the liquid phase mainly composed of the raw material hydrocarbon.
  • nonionic surfactant (A) when an emulsion is formed between liquefied ammonia or a liquid phase mainly composed of liquefied ammonia and a raw material hydrocarbon or a liquid phase mainly composed of raw material hydrocarbon is a long-chain alkylamine [property formula: C k H 2k+1 NH 2 ] ( k is an integer from 7 to 18) showed the highest effect.
  • Such long-chain alkylamines migrate to the interface of both phases to form films well, and as a result, tend to form micelles.
  • Such a long-chain alkylamine nonionic surfactant (A) can be used satisfactorily in forming both the a/o emulsion and the o/a emulsion.
  • nonionic surfactant (A) an emulsion is formed between liquefied ammonia or a liquid phase mainly composed of liquefied ammonia and a raw material hydrocarbon or a liquid phase mainly composed of raw material hydrocarbon.
  • long-chain alkyl (and long-chain alkenyl) polyoxyalkyleneamines long-chain alkyl (and long-chain alkenyl) polyoxyalkyleneamides having a polyoxyalkylene group (polyether) partial structure
  • Polyalkoxyethylene long-chain alkyl (or long-chain alkenyl) ethers may be particularly effective in forming emulsions where, in addition to liquefied ammonia and feedstock hydrocarbons, a feedstock alcohol is also included.
  • the ionic surfactant (B) when an emulsion is formed between liquefied ammonia or a liquid phase mainly composed of liquefied ammonia and a raw material hydrocarbon or a liquid phase mainly composed of raw material hydrocarbon
  • a quaternary long-chain alkyltrimethylammonium [ratic formula: C k H 2k+1 N + (CH 3 ) 3 ⁇ X ⁇ ] (k is an integer from 7 to 18) showed the highest effect.
  • the quaternary long-chain alkyltrimethylammonium participates in the film formation at the interface by the nonionic surfactant (A), and is ionized at the boundary with the liquid phase mainly composed of liquefied ammonia. Good fusion prevention.
  • Such a quaternary long-chain alkyltrimethylammonium ionic surfactant (B) can be used satisfactorily in forming both the a/o emulsion and the o/a emulsion.
  • nonionic surfactants Similar to the long-chain alkylamines described above in nonionic surfactants (A), there appears to be a particular tendency to form o/a emulsions, resulting in large amounts of liquefied ammonia and relatively small amounts of raw It is particularly effective in emulsification of mixed fuels containing hydrocarbons for commercial use.
  • one to three of the methyl groups [—CH 3 ] of the trimethylammonium group are substituted with an alkanol group [C m H 2m OH] (m is 2 or 3) to have a quaternary ammonium group as a polar site.
  • the ionic surfactant (B) is a liquid phase mainly composed of liquefied ammonia or liquefied ammonia, and When an emulsion is formed with a liquid phase mainly composed of hydrogen or raw material hydrocarbons, it exhibits film formation and ionization effects at the interface similar to those having the trimethylammonium group.
  • these ionic surfactants (B) having a quaternary methylalkanolammonium group are particularly useful during the formation of an emulsion containing a raw material alcohol in addition to liquefied ammonia and a liquid state raw material hydrocarbon. can be effective.
  • an ionic surfactant (B) of a long-chain alkylcarboxylic acid [rheometric formula: C k H 2k+1 C( O)OH] (k is an integer of 7 to 18) having a carboxyl group as a polar moiety
  • the ionic surfactant (B) having such a long-chain alkyl or alkenyl group and a carboxyl group can form both the a/o emulsion and o/a emulsion, but the former is particularly preferred. It tends to form easily, and is therefore particularly effective when emulsifying a mixed fuel containing a large amount of feedstock hydrocarbon and a relatively small amount of liquefied ammonia.
  • the mixing ratio of the nonionic surfactant (A) and the ionic surfactant (B) in the above mixed surfactant ((A) + (B)) is approximately 0.7 in terms of molar ratio. :0.3 to 0.9:0.1 is preferred, and in particular, about 0.80:0.20 provides the best emulsion formation (Examples 3 and 11 described later) and Reference Examples 1 and 2). Further, in the above, the carbon numbers k, l, t and u of the long-chain alkyl or alkenyl groups of the nonionic surfactant (A) and the ionic surfactant (B) are determined according to the preparation and storage of the ammonia mixed fuel. It is appropriately selected depending on the temperature to be applied.
  • the preparation and mixing temperature is in the vicinity of the liquefaction temperature (-33°C) of ammonia under atmospheric pressure (for example, about several tens of degrees below zero), solidification and precipitation of the surfactant at low temperatures can be suppressed. Therefore, it is suitable that k, l, t and u are about 7 to 8.
  • room temperature 25° C.
  • the number of carbon atoms is suitable to be about 10 to 14 in order to achieve both stability of arrangement and fluidity at the separated liquid phase interface. often. At higher temperatures, generally higher carbon numbers are suitable.
  • each surfactant has a suitable temperature range to exhibit its function.
  • the temperature at which the ammonia mixed fuel is prepared and stored is often selected according to the type of combustion improver.
  • the combustion improver is liquefied petroleum gas and its component hydrocarbon species
  • the saturated vapor pressure is as low as possible from the viewpoint of the pressure resistance of the mixing vessel and ease of operation.
  • the temperature for preparation and mixing is from the vicinity of the liquefying temperature of ammonia under atmospheric pressure to the vicinity of normal temperature (25°C), that is, about -several 10°C to 50°C.
  • the temperature for preparation and mixing is normal temperature (25 ° C.) from the viewpoint of viscosity and stirring and mixing properties. , for example, a temperature range of about 0 to 50° C. or higher is often selected.
  • a mixed surfactant having a plurality of chain lengths (carbon numbers) in which the chain lengths (carbon numbers k, l, t and u) are distributed in a certain range a more stable emulsion can be formed.
  • a surfactant having a long-chain alkyl group or alkenyl group suitable for the temperature range corresponding to the liquid phase composition to be emulsified is selected as described above, and by maintaining that temperature range, ammonia mixed fuel At least a part of the liquid phase portion of the ammonia-mixed fuel, or even the whole, is in an emulsion state of the ammonia and the combustion improver, so that good combustion can be achieved.
  • nonionic and ionic surfactants having each of the above molecular structures are effective against polar ammonia molecules (and against raw material alcohol molecules with 3 or less carbon atoms that can be additionally added).
  • the nonionic and ionic surfactants used in the above ammonia mixed fuel do not have a molecular structure portion that has a durability problem against the alkalinity exhibited by ammonia, and are chemically stable.
  • the combustor that burns the ammonia mixed fuel is a reciprocating engine or the like that has a movable part that requires slidability
  • the slidability may be deteriorated when the mixed fuel is burned.
  • surfactants that produce ash by-products.
  • a surfactant having a polar part such as a sulfonate (polar part is -SO 3 - ⁇ Na + etc.).
  • a surfactant used in the ammonia mixed fuel of the present invention since ash containing sodium sulfate and the like that is produced later is produced as a by-product that is disadvantageous in sliding, it is not preferable as a surfactant used in the ammonia mixed fuel of the present invention.
  • n-butane which is one component of liquefied petroleum gas
  • a predetermined amount of various mixed surfactants are added and mixed
  • an emulsion in this case, o /a emulsion
  • the lower limit temperature at which the upper and lower two phases are uniformly solubilized and the saturated vapor pressure at that time are listed (the standard for comparison is Example 2 in which no surfactant is added) ).
  • emulsification by adding a mixed surfactant can reduce the temperature required for solubilization, thereby suppressing an increase in the saturated vapor pressure of the ammonia-mixed fuel. For this reason, emulsification by adding these mixed system surfactants increases the solubility of the combustion improver n-butane in ammonia at a predetermined temperature, and also increases the required pressure resistance of the storage container during storage. can be reduced.
  • FIG. 2 is a diagram showing an example of the configuration of an ammonia-mixed fuel manufacturing apparatus according to one embodiment.
  • the production apparatus 10 shown in FIG. 2 is an apparatus for producing an ammonia mixed fuel when the combustion improver is liquefied petroleum gas and component hydrocarbon species of the liquefied petroleum gas.
  • Liquefied petroleum gas and hydrocarbon species contained as its constituent components have a higher calorific value during combustion than conventional liquid fossil fuels such as gasoline, kerosene, light oil, and heavy oil. It is preferable in terms of less CO 2 generation.
  • liquefied petroleum gas and its component hydrocarbon species have a saturated vapor pressure close to that of ammonia in a liquid state at the same temperature, and are easier to ignite because they have a lower ignition temperature than ammonia, and are more easily ignited than ammonia. It has a high burning velocity (about 5 to 6 times that of ammonia in terms of laminar burning velocity) and is easy to burn. For this reason, liquefied petroleum gas and the hydrocarbon species contained as its components are preferred as combustion improvers for ammonia. An ammonia-mixed fuel containing such a combustion improver can be produced by the production apparatus 10 shown in FIG.
  • the manufacturing apparatus 10 includes an ammonia storage closed container 12, a combustion improver storage closed container 14, a mixing closed container 16, an ammonia introduction line 18, a combustion improver introduction line 20, a gas phase discharge line 21, a liquid phase discharge line 22, and agitation.
  • a thermometer 24 , a thermometer 33 and a pressure gauge 31 are mainly provided.
  • the manufacturing apparatus 10 shown in FIG. , 20c, 28c and a controller 32 the manufacturing apparatus 10 shown in FIG. , 20c, 28c and a controller 32.
  • the regulating valves 18c, 20c, 28c are inlet valves for introducing the raw materials into the closed vessel 16 for mixing.
  • the closed mixing container 16 has a temperature adjusting jacket 17 for adjusting the temperature inside the closed mixing container 16, a temperature adjusting medium inlet nozzle 17a at its lower part, and a temperature adjusting medium outlet nozzle at its upper part. 17b is provided.
  • the ammonia storage closed container 12 is a cylinder or tank for storing ammonia in a liquid state (liquefied ammonia).
  • the combustion improver storage sealed container 14 is a cylinder or tank that stores a liquid state combustion improver that assists the combustion of ammonia.
  • the combustion improver here is, as described above, at least one of (a) liquefied petroleum gas and (b) raw material hydrocarbon which is at least one hydrocarbon species contained as a component in liquefied petroleum gas. is one.
  • a stirrer 24 is provided in the closed container 16 for mixing.
  • the closed container 16 for mixing obtains a dissolved solution state or an emulsified mixture by stirring and mixing liquid state ammonia and a combustion improver with a stirrer 24, and a mixture obtained by stirring and mixing with a stirrer. is configured to maintain a vapor-liquid equilibrium state.
  • the closed mixing container 16 has a pressure-resistant structure and airtightness so that the inside of the closed mixing container 16 can maintain the saturated vapor pressure of ammonia, the combustion improver, and their mixture.
  • the ammonia introduction line 18 is provided with a flow meter 18a and control valves 18b and 18c configured to introduce a predetermined amount of ammonia into the closed container 12 for storing ammonia and the closed container 16 for mixing as an ammonia fixed quantity introduction mechanism.
  • the control device 32 receives the measurement results of the ammonia flow rate by the flow meter 18a, generates control signals for controlling the opening degrees of the regulating valves 18b and 18c, and sends the generated control signals to the regulating valves 18b and 18c.
  • the control device 32 determines that the time integral value of the flow rate of ammonia from the start of introduction of ammonia reaches the set amount to be introduced into the mixing closed container 16, the control device The control signal generated by 32 causes the regulating valves 18b, 18c to be fully closed, stopping the introduction.
  • the flow meter 18a may be, for example, a flow meter that determines the flow rate from the floating height of a float that rises due to the upward flow of fluid in the ammonia introduction line 18, a critical nozzle type or thermal flow sensor type mass flow meter, or a mass flow meter.
  • a controller, an ultrasonic flow meter, a Coriolis flow meter, or the like is used.
  • the introduction amount of ammonia can be obtained by time integration of the flow rate measurement value from the start to the end of introduction of ammonia.
  • the flow meter 18a in FIG. It is also possible to control the amount of ammonia introduced from the weighed value of the vessel.
  • this control method cannot be applied to continuous production of an ammonia-mixed fuel having a constant composition by continuously introducing raw material ammonia and a combustion improver, as shown in FIG. 5, which will be described later.
  • the ammonia quantitative introduction mechanism is composed of the weighing device and the control valves 18b and 18c.
  • the control device 32 Upon quantitative introduction, the control device 32 receives the result of weighing by the scaler, generates control signals for controlling the opening degrees of the regulating valves 18b and 18c, and sends the generated control signals to the regulating valves 18b and 18c.
  • the weighing result of the amount of introduced ammonia (the value obtained by subtracting the mass of the closed mixing vessel 16 before starting the introduction of ammonia) reached the set amount to be introduced into the closed mixing vessel 16.
  • the control device 32 determines that, the control valves 18b and 18c are fully closed by the control signal generated by the control device 32, and the introduction is stopped.
  • the combustion improver introduction line 20 connects the combustion improver storage closed container 14 and the mixing closed container 16 .
  • a flow meter 20a and control valves 20b and 20c configured to introduce a predetermined amount of the combustion improver from the combustion improver storage closed container 14 to the mixing closed container 16 are provided.
  • the flowmeter 20a has the same mechanism as the liquefied ammonia flowmeter 18a.
  • the control device 32 receives the measurement results from the flow meter 20a, generates control signals for controlling the opening degrees of the regulating valves 20b and 20c, and sends the generated control signals to the regulating valves 20b and 20c.
  • control device 32 determines that the time integral value of the flow rate of the combustion improver from the start of the introduction of the combustion improver reaches the set amount to be introduced into the closed mixing container 16, A control signal generated by the control device 32 fully closes the regulating valves 20b and 20c to stop the introduction. Also, in the same manner as when introducing the liquefied ammonia, the amount of the combustion improver to be introduced is grasped from the weighed value obtained by the weighing device (not shown) that weighs the weight of the mixing sealed container 16 instead of the flowmeter 20a. can also be controlled.
  • the combustion improver fixed quantity introduction mechanism is composed of the weighing device and the control valves 20b and 20c.
  • the control device 32 receives the result of weighing the combustion improver by the scaler, generates a control signal for controlling the opening degree of the regulating valves 20b, 20c, and transmits the generated control signal to the regulating valves 20b, 20c.
  • the weighing result of the amount of the combustion improver introduced (the value obtained by subtracting the mass of the closed mixing container 16 before the start of the introduction of the combustion improver) becomes the set amount to be introduced into the closed mixing container 16.
  • the control valves 20b and 20c are fully closed by a control signal generated by the control device 32, and the introduction is stopped.
  • the saturated vapor pressure of ammonia in a liquid state and the saturated vapor pressure of the liquefied petroleum gas or the combustion improver, which is a component hydrocarbon of the liquefied petroleum gas, are both considerably higher than the atmospheric pressure at around normal temperature (25° C.).
  • each of the closed ammonia storage container 12 and the closed combustion improver storage container 14 can be introduced into the closed mixing container 16 by discharging the liquid phase due to the saturated vapor pressure inside the closed container 14 .
  • Nitrogen gas introduction mechanism 30 exists in each introduction line and mixing closed container 16 as necessary from the viewpoint of explosion protection at the time of starting up the manufacturing apparatus 10 and after the completion of manufacturing the ammonia mixed fuel. It is provided to replace the gas to be used with nitrogen gas.
  • the nitrogen gas introduction mechanism 30 is provided with a nitrogen gas introduction valve 30 a for introducing a predetermined amount of nitrogen gas into the ammonia introduction line 18 and the combustion improver introduction line 20 .
  • the degree of opening of the nitrogen gas introduction valve 30a is controlled by control signals generated by the controller 32 based on control signals for controlling the degrees of opening of the adjustment valves 18b, 18c, 20b, and 20c.
  • the introduction of the liquefied ammonia and the liquefied petroleum gas or the combustion improver, which is a component hydrocarbon species of the liquefied petroleum gas, into the closed mixing container 16 described above is preferably carried out by the following procedure.
  • these liquefied gases, ammonia and the combustion improver are introduced into the closed container for mixing (12, 14), they are discharged by their respective saturated vapor pressures into the closed container for mixing (16). can be introduced.
  • the saturated vapor pressure of both mixtures in the closed mixing vessel 16 must always be lower than in the case of For this reason, before a series of introduction steps, the temperature of the liquid phase of the mixture in the closed mixing container 16 is adjusted to a sufficiently low saturated vapor pressure (for example, about 0.05 to 0.05) by temperature control described later. .1 MPa or less) (in many cases, it is substantially cooled to a lower temperature than the external environment).
  • the gas phase discharge valve 21a is opened (becomes open to the atmosphere), and the nitrogen gas introduction mechanism 30 allows a predetermined amount of nitrogen gas to pass through each introduction line into the mixing sealed container 16, and from an explosion-proof viewpoint, If necessary, the air in each introduction line and the closed container 16 for mixing is once replaced with nitrogen gas.
  • predetermined amounts of the liquefied ammonia, the combustion improver, and the surfactant are sequentially introduced into the closed mixing container 16 through the respective introduction lines by the quantitative introduction mechanism described above. In order to avoid a situation in which the internal pressure of the closed container 16 for mixing rises during the introduction of these, the liquefied ammonia, the combustion improver, etc. cannot be introduced any more.
  • the components having the lowest saturated vapor pressure at the temperature during stirring and mixing in the closed container 16 for mixing are introduced in order.
  • raw materials of liquefied ammonia as liquefied gas liquefied petroleum gas as combustion improver, and its constituent hydrocarbon species, those having the lowest saturated vapor pressure at the set temperature are introduced into closed mixing vessel 16 in that order.
  • the saturated vapor pressure of propane is higher than that of ammonia at temperatures below about 15°C, and the reverse occurs at temperatures above that. , the order of introduction needs to be chosen.
  • the nitrogen gas filling the closed container 16 for mixing is sufficiently eliminated by the vaporized gas of the liquefied gas component having the lowest saturated vapor pressure, which is introduced first among the raw materials of the liquefied gas. , is preferably replaced.
  • the gas phase discharge valve 21a is closed, and the adjustment valves 18b, 18c or the adjustment valves 20b, 20c are opened. is started, and after the introduction of the predetermined amount is completed, the regulating valves 18b, 18c or the regulating valves 20b, 20c are closed.
  • the gas replacement described above is not performed, and a predetermined amount of the remaining liquefied gas raw materials are similarly introduced in descending order of saturated vapor pressure.
  • the liquefied ammonia and the liquefied petroleum gas or liquefied gas in the respective closed storage containers 12 and 14 By discharging the combustion improver, which is a component hydrocarbon species of petroleum gas, at saturated vapor pressure, ammonia and the combustion improver can be introduced into the closed mixing vessel 16 whose internal pressure is suppressed to a lower level.
  • the combustion improver which is a component hydrocarbon species of petroleum gas
  • the saturated vapor pressure of the mixture of ammonia and the combustion improver in many cases, the saturated vapor pressure of the mixture is equal to the saturated vapor pressure of the ammonia and the combustion improver) in the closed mixing vessel 16 into which the ammonia and the combustion improver have already been introduced.
  • Each of the fuel introduction lines 20 needs to be provided with a liquid feed pump.
  • the liquid feed pump has a head sufficiently higher than the saturated vapor pressure of the mixture of ammonia and the combustion improver in the mixing sealed container 16, and a sufficient pump that matches the production rate and discharge rate of the ammonia mixed fuel.
  • positive displacement types such as gear types, screw types, plunger types, and uniaxial eccentric screw types are suitable. To be elected.
  • liquid-sending pump when such a high-lift liquid-sending pump is provided in the ammonia introduction line 18 and the combustion improver introduction line 20, the ammonia and the combustion improver can be fed into the mixing sealed container 16 without relying on the order of introduction described above. It is also possible to forcibly introduce
  • liquid-sending pumps are provided in the ammonia introduction line and/or the combustion improver introduction line, the respective liquid-sending pumps are also driven or stopped in conjunction with the regulating valves 18b, 18c and/or the regulating valves 20b, 20c. At this time, if the liquid-sending pump is a non-displacement-type centrifugal pump or the like, the liquid-sending amount is controlled by adjusting the opening degree of each of the adjustment valves.
  • the regulating valves 18b, 18c, 20b, and 20c are all closed and the closed mixing container 16 is sealed, the liquid phase temperature of the mixture in the closed mixing container 16 is , by a temperature control mechanism described later, the predetermined temperature at the time of introduction for lowering the saturated vapor pressure is switched to a preferable temperature range in the production of the ammonia mixed fuel described later, and the temperature range is changed during the subsequent production of the ammonia mixed fuel. It is preferred that the temperature is maintained.
  • the series of controls described above is performed based on the control signal generated by the control device 32 .
  • the liquid phase discharge line 22 is usually provided at the bottom, preferably the bottom, of the closed mixing vessel 16, and substantially the entire amount of the mixture obtained by stirring and mixing with the stirrer 24 is discharged from the closed mixing vessel 16 as ammonia mixed fuel. configured for ejection.
  • the combustion improver is liquefied petroleum gas, naphtha, gasoline, kerosene, light oil, or component hydrocarbon species thereof
  • the liquid phase of the mixture with ammonia in the closed mixing container 16 is separated into upper and lower layers. situations may arise.
  • the liquid phase portion of the lower layer separated by the difference in specific gravity is discharged from the liquid phase discharge line 22 provided at the bottom of the closed container 16 for mixing, as shown in FIG.
  • the liquid phase discharge line of the manufacturing apparatus 10 includes both forms of 22 in FIG. 2 and 222 in FIG . Also included are those that have both.
  • These liquid phase discharge lines 22, 22 1 , 22 2 are provided with regulating valves 22a, 22a 1 , 22a 2 , and control signals from the control device 32 control the opening of the regulating valves 22a, 22a 1 , 22a 2 . controlled. 3(a) and 3(b) show only the parts related to the above configuration in the manufacturing apparatus 10, and the other parts are omitted.
  • stirrer 24 As the stirrer 24 provided in the closed container 16 for mixing, a general single stirrer blade type is sufficient for simple mixing without adding a surfactant, and when the liquid state ammonia and the combustion improver are mutually soluble. be.
  • the above single stirring impeller type may be applied, but a single or multiple planetary (planetary rotation) stirring impeller with a higher dispersion effect A method of forcibly pressurizing and circulating the liquid mixture to be stirred in a narrow space, etc., can be used more effectively.
  • a temperature control mechanism configured to control the temperature of the mixture of ammonia and the combustion improver in the closed mixing container 16 to a predetermined temperature.
  • This temperature control mechanism can realize the following three functions. As a first function of the temperature control mechanism, ammonia in a liquid state, liquefied petroleum gas, and a combustion improver that is a component hydrocarbon species thereof are introduced into the closed mixing container 16 and stirred and mixed by the stirrer 24.
  • the internal pressure of the closed container 16 for mixing (if the nitrogen in the gas phase is sufficiently replaced in advance by the vaporized gas component of the raw material ammonia or the combustion improver, the internal pressure becomes equal to the saturated vapor pressure of the mixture) ) is within a temperature range that does not exceed the set pressure resistance of the closed vessel 16 for mixing. That is, the liquid phase temperature of the mixture is controlled so that the saturated vapor pressure of the mixture in the closed mixing container 16 does not exceed the set pressure resistance of the closed mixing container 16 .
  • the saturated vapor pressure of the mixture at the highest possible mixing temperature can be set to the design pressure resistance of the closed mixing container 16 (generally, a pressure value with a safety margin added is adopted).
  • the closed mixing container 16 and the manufacturing apparatus 10 can be reduced in weight and cost.
  • the liquid phase composition of the mixture in the closed container 16 for mixing is determined, there is a uniform relationship between the saturated vapor pressure and the temperature of the mixture based on vapor-liquid equilibrium (saturated vapor pressure and The relationship with temperature is generally represented with high accuracy by an approximation formula such as Antoine's formula, for example).
  • Antoine's formula an approximation formula
  • the temperature control mechanism includes a thermometer 33, a pressure gauge 31, a temperature control jacket 17, a heating and cooling mechanism for the temperature control medium m, and a circulation pump for the temperature control medium m.
  • the constant temperature bath is installed outside the manufacturing apparatus 10 and is not shown in FIG.
  • an inert liquid that does not easily solidify or volatilize in the control temperature range such as water, ethylene glycol, diethylene glycol, etc., is selected.
  • an inert liquid that does not easily solidify or volatilize in the control temperature range such as water, ethylene glycol, diethylene glycol, etc.
  • the temperature control jacket 17 is a heat exchanger that covers the outer periphery of the mixing container 16, and a liquid temperature control medium m adjusted to a predetermined temperature flows through the jacket 17 and mixes.
  • a liquid temperature control medium m adjusted to a predetermined temperature flows through the jacket 17 and mixes.
  • the temperature control medium m is adjusted to a predetermined temperature in the constant temperature bath, and flows through a pipe (not shown) into the temperature control medium inlet nozzle 17a provided at the bottom of the jacket 17, After the heat exchange is performed, it is discharged from the temperature control medium outlet nozzle 17b provided on the upper part of the jacket 17 and returned to the constant temperature bath via a pipe (not shown).
  • the stirrer 24 When adjusting the temperature of the mixture inside the closed mixing vessel 16, the stirrer 24 is first driven with a predetermined output based on a control signal for the stirrer 24 generated by the control device 32, and the inside of the closed mixing vessel 16 is is stirred. At the same time, the temperature control of the constant temperature bath is actuated based on the control signal generated by the control device 32, and the temperature control medium m whose temperature has been adjusted in the constant temperature bath flows into the jacket 17 and is circulated in the constant temperature bath. . During the temperature adjustment of the mixture, the stirring and circulation of the temperature adjustment medium m are continued, and the liquid phase temperature near the gas-liquid interface in the closed mixing container 16 is measured by the thermometer 33 and the temperature adjustment jacket 17. The internal gas phase pressure is measured by the pressure gauge 31 over time, and the control device 32 receives the measurement results by the thermometer 33 and the pressure gauge 31 over time.
  • the mixture in the closed mixing container 16 is The gas phase internal pressure and liquid phase temperature are controlled as follows. For example, in the process of introducing a series of liquefied gas raw materials into the closed mixing vessel 16, as described above, the gas phase internal pressure (saturated vapor pressure) of the mixture of liquefied gas raw materials already introduced into the closed mixing vessel 16 is always lower than the lowest saturated vapor pressure in the closed storage vessel for each of the raw material liquefied ammonia, liquefied petroleum gas and its component hydrocarbon species to be introduced from now on. and the liquidus temperature is adjusted below the required temperature.
  • the liquid phase of the mixture of raw materials in the closed mixing vessel 16 is in the preferred temperature range described later. is preferably held at .
  • the difference between the control target value of the gas phase internal pressure in the closed mixing container 16 and the actual internal pressure measurement value by the pressure gauge 31, or the control target temperature value of the mixture and the thermometer 33 The temperature flowing into the temperature control jacket 17 is such that the difference from the actual temperature value is within a predetermined allowable range (for example, within ⁇ 0.01 MPa for the former and within ⁇ 1° C. for the latter).
  • the temperature of the regulating medium m is regulated by controlling the power output for heating/cooling of the thermostat based on the control signal generated by the controller 32 .
  • the temperature of the temperature control medium m in the constant temperature bath must The relationship is recognized in advance by the control device 32, and the control signal generated by the control device 32 based on those relationships uses PID control or the like for the temperature of the temperature adjustment medium m in the thermostatic bath to control the above
  • the power output for heating and cooling the thermostat is controlled.
  • the gas phase internal pressure of the closed mixing vessel 16 measured by the pressure gauge 31 may reach the design pressure resistance of the closed mixing vessel 16 due to some unforeseen circumstances.
  • control device 32 determines that the is stopped (of which the latter is effective when the temperature of the temperature control medium m is higher than the temperature of the surrounding environment), a further increase in the internal pressure is avoided.
  • a Peltier element instead of adjusting the temperature in the closed mixing container 16 by heat exchange with the temperature adjusting medium m in the temperature adjusting jacket 17, for example, a Peltier element Alternatively, a combination of a Peltier element and an electric heater or the like may be provided around the outer periphery of the closed mixing container 16 (not shown in FIG. 2) to control the temperature.
  • the temperature control in the closed mixing vessel 16 is based on the control signal generated by the control device 32 that receives the internal temperature value measured by the thermometer 33, and the heating or cooling output by the Peltier element or the like is controlled. It is done by being controlled.
  • the entire liquid phase portion of the mixture of ammonia and the combustion improver in the closed mixing vessel 16 maintaining the gas-liquid equilibrium state is such that the ammonia and the combustion improver dissolve in each other according to the liquid phase composition of the mixture.
  • the temperature of the mixture is adjusted by the above-described temperature control mechanism so that the mixture is in a temperature range such that it is in a solution state or an emulsion state of ammonia and the combustion improver.
  • the mixture as a whole becomes an ammonia mixed fuel in which the combustion improver is stably and uniformly dispersed. Subsequent uniform and rapid combustion is possible.
  • the stabilization and homogenization of the ammonia-mixed fuel by the solutionization of the entire liquid phase portion or the emulsification by the temperature control described above can be achieved by using the above-mentioned liquefied petroleum gas and its component hydrocarbon species as combustion improvers, as described later. Naphtha, gasoline, kerosene, light oil, and their component hydrocarbon species, when using raw material alcohol, furthermore, when using a combination of these as a combustion improver, can also be applied, and the combustibility can be improved.
  • the "temperature range in which the ammonia and the combustion improver are in a solution state or an emulsion state of the ammonia and the combustion improver” includes the type of the combustion improver and the liquid phase composition of the mixture. An appropriate temperature range is selected accordingly, and the temperature control mechanism adjusts the temperature within that range.
  • the combustion improver is liquefied petroleum gas or its constituent hydrocarbon species, FIG. The above temperature range will be described below.
  • the ammonia mixed fuel in the closed mixing container 16 has two liquid phases in a relatively low temperature range below the critical solution temperature (about 33 ° C. in the case of an ammonia-propane mixed system). It becomes a vapor-liquid equilibrium system with a composition range that separates into As described above, each of the phase-separated two phases is in a single “solution state in which ammonia and a combustion improver are dissolved in each other”, and if at least one of the two phases can be taken out, The result is an ammonia mixed fuel with a stably and uniformly dispersed combustion improver.
  • the temperature range corresponds to the liquid phase composition in which such a two-phase separation state is obtained, it is the above-mentioned "a solution in which ammonia and a combustion improver are mutually dissolved. state, or a temperature range in which an emulsion state of ammonia and a combustion improver is achieved.
  • a temperature above which the entire liquid phase becomes a single-phase solution for example, as shown in FIG.
  • the temperature range above the critical solution temperature is "a temperature range in which the ammonia and the combustion improver are in a solution state or an emulsion state of the ammonia and the combustion improver".
  • a temperature range in which the ammonia and the combustion improver are in a solution state or an emulsion state of the ammonia and the combustion improver is "a temperature range in which the ammonia and the combustion improver are in a solution state or an emulsion state of the ammonia and the combustion improver”.
  • the above temperature range also matches the temperature range in which the emulsifying performance of the surfactant can be sufficiently brought out.
  • the uniform ammonia mixed fuel produced in "a temperature range in which the ammonia and the combustion improver are in a solution state or an emulsion state of the ammonia and the combustion improver" according to the composition If it is taken out in that state and subjected to combustion, it exhibits high combustibility.
  • the composition of the above single-phase ammonia mixed fuel changes as follows as the emission progresses.
  • the liquid phase is sufficiently stirred and mixed even during discharge, the composition and temperature of the entire liquid phase are always uniform, and the liquid phase temperature does not change.
  • the endothermic heat associated with evaporation which will be described later, causes the liquid phase temperature to drop somewhat as the liquid phase is expelled, but this is compensated for by the temperature regulation mechanism described above.
  • the composition of the evaporative gas in equilibrium with the liquid phase composition x A at the start of discharge is the azeotropic composition y O with a higher ammonia concentration than x A , relatively more ammonia evaporates from the liquid phase.
  • the ammonia concentration of the phase drops somewhat from xA .
  • the state of the liquid phase in the closed mixing container 16 changes from point A (ammonia concentration x A ) in FIG. (ammonia concentration 0% by mass), the state of the gas changes so as to move along the liquidus line AP and evaporates to the gas phase side along with that is the point O (ammonia concentration y 0 ) to point P of pure propane, moving along the vapor line OP.
  • the internal pressure in the closed mixing vessel 16 decreases from the azeotropic vapor pressure at point O to the saturated vapor pressure of pure propane at point P as the liquid phase is discharged.
  • the above operation is performed from a midpoint on each of the liquidus line AP and the gaseous line OP. is equivalent to starting
  • discharging an ammonia mixed fuel containing mainly ammonia such that the liquid phase propane concentration at the start of discharge is 1-x B of the saturated concentration, which corresponds to point B in FIG.
  • the vicinity of the liquid phase discharge line 22 in the closed mixing container 16 that is discharged can reduce the liquid phase composition change of Furthermore, when the opening degree of the liquid phase discharge valve 22a is widened to speed up the discharge speed of the ammonia-mixed fuel, a larger portion of the ammonia-mixed fuel in the mixing sealed container 16 is discharged while suppressing the composition change. can be made If the change in composition during discharge could cause some trouble when used as fuel, the liquid phase discharge valve 22a is closed at that point to terminate the discharge.
  • the ammonia concentration is x B
  • a two-phase separated state is formed with a liquid phase mainly composed of ammonia.
  • the specific gravity of liquefied propane is smaller than that of liquefied ammonia
  • the propane - based phase with ammonia concentration xA is the upper layer
  • the ammonia - based phase with ammonia concentration xB is the lower layer.
  • the other constituent hydrocarbon species of the liquefied petroleum gas and the liquefied petroleum gas mixtures thereof also all have lower specific gravities than the liquefied ammonia, so that the phase dominated by these will always be in the upper layer.
  • the lower layer which is mainly composed of ammonia having a certain ammonia concentration x B , is used as the ammonia mixed fuel, and is discharged based on the saturated vapor pressure in the closed mixing vessel 16 to the liquid phase. It can be discharged from the discharge line 22 .
  • the position of the above point C (the average state of the entire two liquid phases) must be aligned with the line segment AB
  • the liquefied ammonia and the liquefied propane are introduced into the closed mixing vessel 16 at a charge composition ratio such that the position is closer to the point B from the vicinity of the center of . This is because when point C is close to point A, the absolute amount of the lower layer of ammonia concentration x B that can be discharged decreases due to the principle of leverage described above, and when the discharge of the lower layer ends, the upper layer of ammonia concentration x A can be discharged.
  • the closed mixing container 16 of FIG. is slightly higher than the bottom of the upper layer at the start of discharge (22 2 in FIG. 3A), leaving the lower layer with ammonia concentration x B described above, propane with ammonia concentration x A It is also possible to discharge only the upper layer of the main body as an ammonia mixed fuel. In this case, in order to discharge the upper layer as much as possible, the position of the above point C (average state of the entire two liquid phases) is the position of the point A from near the center of the line segment AB.
  • liquefied ammonia and liquefied propane are introduced into the closed mixing vessel 16 in proportion.
  • the discharge ports in the closed mixing container 16 are the liquid phase discharge line 22 at the bottom of the closed mixing container 16 as shown in FIG. If the position of the outlet is a little higher than the bottom of the upper layer at the start of discharge, and the liquid phase discharge line 221 is combined (Fig. 3(b)), the lower layer of ammonia concentration x B and the upper layer of the ammonia concentration x A can be simultaneously discharged as an ammonia mixed fuel.
  • liquefied ammonia and liquefied propane are introduced into the closed mixing vessel 16 at a charge composition ratio such that the position of point C (the average state of the entire two liquid phases) is near the center of line segment AB. preferably.
  • the ammonia concentration x in the upper layer A (x A corresponds to the saturated concentration of ammonia in the upper layer) and the ammonia concentration x B (1 ⁇ x B corresponds to the saturated concentration of propane in the lower layer) in the lower layer are the temperature control mechanism
  • the ammonia concentrations x A ' and x B ' at both ends of the two-phase separation region at 0° C.
  • the liquid phase composition range of the two-phase separation region is narrower than at 0° C., with x A being about 16.2 mass % and x B being about 86.5 mass %.
  • the liquidus temperature in the closed container 16 for mixing is maintained at 0° C. to 20° C. by the temperature control mechanism, so that the upper layer and/or having the above compositions (x A , x B ) Or the lower layer can be drained.
  • x A and x B approach 0 wt % and 100 wt %, respectively.
  • liquefied ammonia and liquefied propane are introduced into the closed mixing vessel 16 at a charge composition ratio corresponding to an arbitrary liquid phase composition (ammonia concentration x C ) in the two-phase separation region,
  • ammonia concentration x C an arbitrary liquid phase composition
  • the liquid phase temperature is maintained at the critical azeotropic temperature (about 33 ° C.) or higher by the temperature control mechanism, the liquid phase of the mixture in the closed container 16 for mixing becomes a single-phase solution with the above azeotropic composition.
  • the liquid phase composition is maintained at the azeotropic composition regardless of the progress of evaporation accompanying the discharge of the liquid phase. Meanwhile, the entire amount of the liquid phase in the mixing sealed container 16 can be discharged from the liquid phase discharge line 22 (22 1 ) as a single-phase solution ammonia-mixed fuel.
  • the production apparatus 10 of the present embodiment not only the ammonia-propane system described above, but also other liquefied petroleum gases in which a mixture with ammonia similarly exhibits an azeotropic gas-liquid equilibrium of liquid phase two-phase separation
  • a component hydrocarbon species or a mixture of liquefied petroleum gas as a combustion improver
  • the ammonia-propane system described above it is possible to discharge the liquid phase of the mixture in the closed mixing container 16 as an ammonia mixed fuel while controlling the discharge composition.
  • the gas-liquid interface of the mixture in the mixing sealed container 16 and the interface between the upper and lower layers at the time of liquid phase separation descend, and the liquid phase discharge line 22, 22 1 , 22 2 reaching the outlet position in the closed container for mixing, the heterophase can be mixed in the ammonia mixed fuel, and the evaporation of the mixture progresses, thereby the composition of the discharged ammonia mixed fuel Note that can vary.
  • a nitrogen gas introduction line 30b is provided so that the nitrogen gas can be introduced into the gas phase portion in the closed mixing vessel 16 at a discharge pressure equal to or higher than the vapor pressure.
  • FIG. 4 when the components have the same configurations and actions as those of the components shown in FIG. As a result, it is possible to quickly discharge the ammonia mixed fuel while suppressing the change in the liquid phase composition due to the progress of evaporation of the mixture in the mixing sealed container 16 accompanying the discharge of the ammonia mixed fuel as described above. Become.
  • FIG. 4 shows the former form.
  • the nitrogen gas introduction line 30b is led from a storage container such as a general pressurized nitrogen gas cylinder filled with an internal pressure of about 14.7 MPa. Alternatively, if the pressure is the same, it may be branched from the piping of the nitrogen gas introduction mechanism 30 as shown in FIG.
  • the nitrogen gas introduction line 30b is provided with a nitrogen gas pressure reducing valve 30c, a nitrogen gas pressure gauge 30d, and a nitrogen gas regulating valve 30e between its upstream side and the closed container 16 for mixing.
  • the nitrogen gas introduced through the nitrogen gas introduction line 30b is controlled by the pressure reducing valve 30c so that the indicated value of the nitrogen gas pressure gauge 30d is equal to or higher than the saturated vapor pressure of the mixture in the closed mixing container 16 (for example, the saturated vapor pressure +0 The pressure is reduced to about 0.05 to 0.1 Mpa).
  • the nitrogen gas control valve 30e is opened in conjunction with the opening of the liquid phase discharge valves 22a, 22a 1 and 22a 2 to The mixture is discharged from the liquid phase discharge line as an ammonia-mixed fuel in a form forced out by the introduced nitrogen gas.
  • the composition of the liquid phase may change because the gas-liquid equilibrium is shifted at the gas-liquid interface, and the vaporization of the gas from the liquid phase continues even during the discharge of the liquid phase. However, substantially the composition change of the liquid phase is reduced.
  • the concentration of ammonia in the mixture is relatively low and the concentration of the combustion improver (liquefied petroleum gas or its component hydrocarbon species) is high, the specific gravity of the evaporative gas in these mixtures is greater than that of nitrogen gas, Since it is easier to stay in the vicinity of the gas-liquid interface below the gas phase portion, the deviation of the gas-liquid equilibrium is suppressed, and the change in the composition of the ammonia mixed fuel described above is suppressed.
  • the concentration of ammonia in the mixture is relatively low and the concentration of the combustion improver (liquefied petroleum gas or its component hydrocarbon species) is high, the specific gravity of the evaporative gas in these mixtures is greater than that of nitrogen gas, Since it is easier to stay in the vicinity of the gas-liquid interface below the gas phase portion, the deviation of the gas-liquid equilibrium is suppressed, and the change in the composition of the ammonia mixed fuel described above is suppressed.
  • the discharge of the internal fluid approaches the so-called “plug flow”, and the above-mentioned nitrogen gas and evaporative gas convection and diffusive dilution are less likely to occur, thus suppressing the aforementioned composition change.
  • a metered introduction mechanism is configured.
  • An example of this embodiment is shown in FIG. In FIG. 5 as well, when the components have the same configurations and actions as those of the components shown in FIG. With these configurations, the height position of the gas-liquid interface of the mixture in the closed container 16 for mixing, and the height position of the interface between the upper and lower layers when the liquid phase of the mixture separates into two phases are maintained constant, and , the liquid phase whose composition is kept constant can be continuously discharged as an ammonia-mixed fuel.
  • FIG. 5 shows the form of discharging both the phase-separated upper and lower two layers of the latter.
  • Liquid feed pumps 18d and 20d are provided in the ammonia introduction line 18 and the combustion improver introduction line 20, respectively, so that the raw material liquefied ammonia and the combustion improver can be introduced.
  • the high-lift pumps described above are selected.
  • discharge flowmeters 22b, 22b 1 and 22b 2 for measuring the flow rate of the liquid phase portion discharged as the ammonia-mixed fuel from the mixing sealed container 16 through the liquid phase discharge lines 22, 22 1 and 22 2 , and , and composition evaluation means 22c, 22c 1 , 22c 2 for evaluating the composition (ammonia concentration, etc.) of the liquid phase portion are provided in the liquid phase discharge lines 22, 22 1 , 22 2 . These may be on either upstream or downstream side of the liquid phase discharge valves 22a, 22a 1 , 22a 2 . When the ammonia mixed fuel is discharged, the liquid phase discharge valves 22a, 22a 1 and 22a 2 are opened and the liquid phase discharge is started.
  • the flow rates of ammonia and combustion improver in the exhaust liquid phase through exhaust lines 22, 22 1 , 22 2 are calculated respectively. Further, the calculated discharge flow rate of ammonia and the combustion improver is equal to the introduction flow rate of the raw material liquefied ammonia and the combustion improver introduced into the closed mixing vessel 16, which are measured by the flowmeters 18a and 20a.
  • the control signal transmitted by the control device 32 controls the outputs of the liquid feed pumps 18d and 20d and/or the opening degrees of the regulating valves 18c and 20c. During this process, the mixing stirring and temperature control of the liquid phase of the mixture in the closed mixing container 16 are continued.
  • the height position of the gas-liquid interface and the interface between the upper and lower layers of the mixture in the closed container 16 for mixing is kept constant, and the composition of the gas-liquid phase and the saturated vapor pressure are also kept constant. Therefore, even if the discharge of the liquid phase progresses, the original gas-liquid equilibrium state is maintained as it is, and evaporation to the gas phase does not occur, so the liquid phase composition is also kept constant. Therefore, the ammonia mixed fuel can be produced with a constant composition and discharged continuously.
  • the composition evaluation means 22c, 22c 1 , 22c 2 are capable of rapid in-line measurement and evaluation in the liquid phase discharge line. For example, based on a predetermined calibration method (calibration curve), N-H stretching vibration (in the case of ammonia quantification) and C-H stretching vibration (quantification of hydrocarbons) by a Fourier transform infrared spectrophotometer In the case of ), the evaluation of the absorption intensity in the infrared absorption band of each component, the refractive index of the discharged liquid phase measured by a refractometer, and the sound velocity measurement by ultrasonic irradiation using an ultrasonic concentration meter.
  • Ammonia or combustion improver concentration evaluation means based on, but not limited to, these.
  • the data measured by the composition evaluation means is either converted into the concentration of ammonia or a combustion improver by a calibration method incorporated in the composition evaluation means itself, or is transmitted to the control device 32 as it is, and the latter controls the control.
  • After being converted into the concentration of ammonia or combustion improver in the device 32 by multiplying the flow rate values of the liquid phase discharge lines 22, 22 1 and 22 2 transmitted from the discharge flowmeters 22b, 22b 1 and 22b 2 , The respective discharge flow rates of ammonia and combustion improver are calculated.
  • the initial amounts of each introduced , the composition evaluation means 22c, 22c 1 and 22c 2 can be omitted.
  • the manufacturing apparatus 10 of one embodiment includes a surfactant storage container 26 for storing a surfactant, a An activator introduction line 28 and a liquid feed pump 28d are provided.
  • a surfactant introduction line 28 connects the surfactant storage container 26 and the closed mixing container 16 . Since the surfactant introduction line 28 has a low saturated vapor pressure, it is not voluntarily introduced into the closed mixing container 16. Therefore, the liquid feed pump 28d is used to transfer the surfactant from the storage container 26 to the closed mixing container 16. supplied to The surfactant introduction line 28 is provided with a flow meter 28a and regulating valves 28b and 28c configured to introduce a predetermined amount of surfactant into the mixing sealed container 16 as a quantitative introduction mechanism for the surfactant. .
  • the control device 32 receives the measurement results from the flow meter 28a, generates control signals for controlling the opening degrees of the regulating valves 28b and 28c, and sends the generated control signals to the regulating valves 28b and 28c.
  • the flowmeter 28a and the control valves 28b and 28c are adapted to specifications that are less likely to clog. There is a need.
  • the discharge amount of the liquid transfer pump 28d itself is controlled by a control signal generated by the control device 32, so that a fixed amount of liquid is supplied.
  • the liquid feed pump 28d is also included in the quantitative introduction mechanism for the surfactant.
  • the nitrogen gas introduction mechanism 30 is present in the surfactant introduction line 28 as necessary from the viewpoint of explosion protection, such as when the production apparatus 10 is started up and after the production of the ammonia mixed fuel is completed. Replace gas.
  • a nitrogen gas introduction valve 30a for introducing a predetermined amount of nitrogen gas into the surfactant introduction line 28 is provided.
  • the control device 32 controls the degree of opening of the nitrogen gas introduction valve 30a.
  • the surfactant is agitated and mixed together with the liquid ammonia and the combustion improver by the agitator 24 so that the mixture containing the surfactant is discharged from the liquid phase discharge line 22.
  • a surfactant it is possible to easily produce an ammonia-mixed fuel in which polar ammonia and a non-polar combustion improver are in an emulsion state.
  • the combustion improver is the above-mentioned liquefied petroleum gas or its component hydrocarbon species
  • at least part of it is compatible with ammonia in the liquid phase in the gas-liquid equilibrium state at around normal temperature (25 ° C.)
  • the part that phase separates without the phase separation can also be emulsified by adding a surfactant.
  • a surfactant used for emulsifying the ammonia mixed fuel as described above, at least 1 a species of nonionic surfactant (A) and at least one ionic surfactant (B) that is highly capable of ionizing at the interface and causing electrostatic repulsion between the micelles to prevent contact and fusion. It is preferably a mixed surfactant containing and.
  • nonionic surfactant (A) and ionic surfactant (B) those having the above-described molecular structures can be preferably used.
  • these mixed surfactants they are preferably thoroughly mixed and dispersed before being stored in a surfactant storage container.
  • the surfactants described above are generally in a liquid or solid state near room temperature (25° C.). Ionic surfactants and nonionic surfactants having a long-chain alkyl group with a large number of carbon atoms (long chain length) often become solid near room temperature (25° C.).
  • the above mixed surfactant when the above mixed surfactant is in a state of lacking fluidity such as solid or nearly so, and it is difficult to introduce it as it is, liquefied ammonia, liquefied petroleum gas, and its components, which are raw materials of mixed fuel
  • a fluid state e.g., slurry or mud
  • the liquid feed pump 28d can also quantitatively discharge such an object. and a type capable of feeding liquid is adopted.
  • the surfactant itself has a low saturated vapor pressure, which is almost zero, at room temperature (25° C.) and atmospheric pressure.
  • the surfactant itself which is in a liquid state or a stable slurry state in which the solid content does not easily settle, is introduced into the closed mixing container 16 by feeding the surfactant as it is, the above-mentioned ammonia or the like is used when introducing the surfactant. It is necessary to avoid a situation in which the internal pressure of the closed mixing container 16 rises due to the previous introduction of the liquefied gas, and the surfactant cannot be introduced any more.
  • the surfactant is preferably introduced into the closed mixing vessel 16 before the liquefied gas ammonia, liquefied petroleum gas, and the combustion improver, which is a component hydrocarbon species thereof.
  • the surfactant is controlled by the control signal generated by the control device 32 based on the time integral value of the flow rate measured by the flow meter 28a, opening and closing the adjustment valves 28b and 28c, and the liquid feed pump 28d. Dosage is introduced by driving and stopping.
  • the surfactant when in a solid or near solid state and is slurried or sludged by the addition of liquefied ammonia, liquefied petroleum gas, or any of its component hydrocarbon species, When introduced into the closed container for mixing 16, they should be introduced quantitatively in conjunction with the introduction of any of the same raw material liquefied ammonia, raw liquefied petroleum gas, and component hydrocarbon species thereof. is preferred.
  • the production apparatus 10 shown in a), (b), FIG. 4, and FIG. 5 can be suitably used according to conditions such as composition and mixing temperature.
  • conditions such as composition and mixing temperature.
  • the composition range and temperature range separating into upper and lower layers change compared to when no surfactant is added. do.
  • the manufacturing apparatus 10 having the configuration shown in FIG. If the composition and temperature conditions are to It can be discharged as mixed fuel. Further, for example, the manufacturing apparatus 10 having the configuration shown in FIG .
  • the upper and/or lower layers of the liquid phase separated into upper and lower layers can be discharged as an emulsified ammonia-mixed fuel. Further, by using the manufacturing apparatus 10 of FIG. 4 having the nitrogen gas introduction line 30b, it is possible to quickly discharge the mixed fuel as an emulsified ammonia mixed fuel while suppressing the change in composition accompanying the progress of the liquid phase discharge.
  • the quantitative introduction mechanism for ammonia and the combustion improver (liquid feed pumps 18d, 20d, discharge flowmeters 22a, 22a 1 , 22a 2 , Mechanism including liquid phase composition evaluation means 22b, 22b 1 , 22b 2 , and control device 32)
  • a surfactant metering introduction mechanism (including a liquid feed pump 28d).
  • the liquid feed pump 28d needs to be introduced against the saturated vapor pressure of the mixture in the closed container 16 for mixing, so the same is required for the above-mentioned liquefied ammonia and the booster for the combustion improver.
  • a pump of the same type as the liquid transfer pump is selected.
  • the controller 32 determines the concentration of the surfactant in the ammonia-mixed fuel from the respective amounts of the ammonia, the combustion improver, and the surfactant previously introduced as raw materials into the closed mixing vessel 16. Calculate Further, the control device 32 receives the measured values of the discharge flow rate of the ammonia mixed fuel measured by the discharge flow meters 22a, 22a 1 and 22a 2 from the time when the discharge of the ammonia mixed fuel is started. to determine the discharge flow rate of the surfactant discharged through the liquid phase discharge lines 22, 22 1 , 22 2 .
  • the control device 32 controls the output of the liquid feed pump 28d and the adjustment valve 28b so as to continuously and quantitatively introduce the surfactant from the surfactant storage container 26 into the mixing sealed container 16 at a flow rate equal to this discharge flow rate. , and a control signal for adjusting the opening of 28c.
  • the components contained in the liquefied petroleum gas as (a) and the liquefied petroleum gas as (b) described above can be obtained as components.
  • Ammonia blended fuels can also be produced using at least one of the component hydrocarbon species of.
  • the combustion improver storage sealed container 14 is a container for storing at least one of naphtha, gasoline, kerosene, light oil, or at least one hydrocarbon species contained as a component thereof.
  • the combustion improver in the combustion improver storage sealed container 14 Since the saturated vapor pressure of is almost zero near normal temperature (25° C.), the liquid phase is not expelled by the saturated vapor pressure and does not spontaneously flow into the closed container 16 for mixing.
  • the combustion improver introduction line 20 must be further provided with a liquid feed pump 20d for supplying the combustion improver from the combustion improver storage closed container 14 to the mixing closed container 16. As shown in FIG.
  • the combustion improver fixed quantity introduction mechanism also includes the liquid feed pump 20d described above, and its drive and output are controlled by the control signal generated by the controller 32 .
  • these liquid-sending pumps are interlocked with the degree of opening or opening/closing of the control valves 20b and 20c in response to a control signal generated by the control device 32 when supplying a constant amount of the combustion improver. , is output controlled or driven or deactivated.
  • the saturated vapor pressure of the mixture in the closed mixing container 16 must always be lower than the internal pressure of the closed ammonia storage container 12 (saturated vapor pressure of ammonia). Therefore, the temperature of the liquid phase of the mixture in the closed mixing container 16 must be maintained at a predetermined temperature at which the saturated vapor pressure is sufficiently low. Also, as described above, when the surfactant is in a solid or near solid state, it can be slurried or muddled by the addition of liquefied ammonia, naphtha, gasoline, kerosene, light oil, and any of these component hydrocarbon species. It is preferable to introduce into the closed mixing vessel 16 in a liquefied state. , and any of its constituent hydrocarbon species.
  • the combustion improver is naphtha, gasoline, kerosene, diesel, or at least one of their component hydrocarbon species
  • surfactant When no additive is added, in the equilibrium state, both a phase separated into two layers, a phase mainly composed of polar liquefied ammonia and a phase mainly composed of the combustion improver, and a case that the whole solution becomes uniform occur. obtain.
  • the elevated temperature causes a change from a two-phase separation state to a homogeneous solution state.
  • the aforementioned critical solution temperature also exists, above which any composition becomes completely miscible.
  • the combustion improver is naphtha, gasoline, kerosene, diesel, and their component hydrocarbon species
  • the blended fuel with liquefied ammonia generally does not exhibit azeotropic behavior, and its saturated vapor pressure is equal to that of pure is approximately equal to or lower than the saturated vapor pressure of ammonia.
  • naphtha, gasoline, kerosene, light oil, and their component hydrocarbon species have a higher specific gravity than liquefied ammonia, so liquefied petroleum gas and its component hydrocarbon species
  • the phase mainly composed of these combustion improvers becomes the lower layer of the phase mainly composed of liquefied ammonia.
  • combustion improver is naphtha, gasoline, kerosene, diesel oil, and their component hydrocarbon species
  • the combustion improver and/or ammonia are dissolved in the other liquid phase beyond the solubility determined by the vapor-liquid equilibrium described above.
  • emulsification by addition of a suitable surfactant is required.
  • the combustion improver is kerosene, light oil, and their component hydrocarbons
  • in a low temperature range from about normal temperature (25 ° C.) to about 50 ° C. where the vapor pressure can be kept low, the combustion improver and / or Since the solubility of ammonia remains at a low concentration of about 5% by mass or less, addition of a surfactant is important.
  • the solubility of the liquefied ammonia and the combustion improver that can be mixed and dispersed is substantially controlled by the performance of the surfactant and its addition amount. For this reason, it is preferred that a sufficient amount of a suitable surfactant is added so that the entire mixture forms a uniformly emulsified layer.
  • the amount of the surfactant added is small, it is preferable that the transiently emulsified portion is rapidly burned and used up before it separates into upper and lower layers.
  • liquid phase discharge line 22 2 Using the liquid phase discharge line 22 2 and the equipment attached thereto (liquid phase discharge valve 22a 2 , discharge flow meter 22b 2 , and composition evaluation means 22c 2 ), the upper layer and / or lower layer of the two-phase separation liquid phase can be discharged as an ammonia mixed fuel.
  • the above-described combustion improver is basically Mixed system surfactants with molecular structures common to those of liquefied petroleum gas and its component hydrocarbon species can be successfully used.
  • the chain length of the long chain alkyl or alkenyl groups in the surfactant is often preferred to be longer than in liquefied petroleum gas and its component hydrocarbon species.
  • phase separated part (ammonia or combustion improver) is dispersed in the other phase by emulsification, and the entire mixed fuel is homogenized.
  • the combustion improver is liquefied petroleum gas and its component hydrocarbon species, as described above, it is preferable to maintain the temperature within a range in which the emulsification performance of the surfactant is sufficiently exhibited. . If the ammonia-mixed fuel produced as described above is taken out and burned in that state, it exhibits high combustibility.
  • compositional changes in the exiting liquid phase proceed in the same manner as if the combustion improver were liquefied petroleum gas or its constituent hydrocarbon species. That is, as the liquid phase is discharged, the gas-liquid interface of the mixture in the closed mixing container 16 descends, causing evaporation (boiling) of the mixture from the liquid phase to the gas phase. At that time, regardless of the liquid phase composition, the ammonia concentration in the evaporative gas becomes higher than the ammonia concentration in the liquid phase, so the ammonia concentration in the liquid phase decreases as the liquid phase discharge progresses.
  • the manufacturing apparatus 10 of FIG. 4 equipment equipped with a fuel improver liquid feeding pump 20d not shown
  • the manufacturing apparatus 10 of FIG. 4 it is possible to mix and By pressurizing nitrogen into the gas phase in the closed vessel 16 for gas, it is possible to rapidly discharge the mixed fuel as an ammonia mixed fuel while suppressing the composition change in the discharged liquid phase.
  • the ammonia, the combustion improver, and the surfactant in the discharged liquid phase can be By continuously metering in the raw material liquefied ammonia, the combustion improver, and the surfactant at a flow rate equal to the respective discharge flow rates (the pumps for these liquids are selected to have a high head as described above). ), it can be continuously discharged as an ammonia-mixed fuel without causing the above compositional change in the discharged liquid phase.
  • the fuel improver liquid feed pump 20d (not shown) is used as shown in FIG.
  • FIG. 6 is a diagram showing an example of a configuration of a manufacturing apparatus 10 according to another embodiment, which is different from the configuration of the manufacturing apparatus 10 shown in FIG.
  • the example shown in FIG. 6 shows the configuration of the apparatus in the case of using the raw material alcohol (c) having 3 or less carbon atoms in the molecule, such as methanol, as the combustion improver.
  • the raw material alcohol has a lower ignition temperature than ammonia, so it is easily ignited, and has a higher burning rate than ammonia (about 6 to 7 times that of ammonia in terms of laminar combustion rate), so it burns easily.
  • raw material alcohol is preferable as a combustion improver for ammonia.
  • the raw material alcohol is polar and forms a hydrogen bond between molecules with ammonia, the liquid phase portion of the mixed fuel with ammonia in a gas-liquid equilibrium state is It becomes a compatible solution state. In that case, the mixed fuel does not exhibit azeotropic behavior and its saturated vapor pressure is lower than that of pure ammonia at the same temperature.
  • a surfactant is not necessary in many cases, and in the manufacturing apparatus 10, a surfactant introduction system (surfactant storage container 26, surfactant introduction line 28, flow meter 28a, adjustment valves 28b, 28c, and the liquid feed pump 28d) can be omitted.
  • the external environment temperature is normal temperature (25° C.) or its vicinity, for example, about 0° C. to 40° C., in many cases, there is no particular need to adjust the temperature during stirring and mixing. Therefore, when the combustion improver is raw material alcohol, the configuration of the manufacturing apparatus 10 can be simplified. 6 have the same configuration and action as those of the components shown in FIG. 2, the same reference numerals are given and the description thereof is omitted.
  • Raw material alcohol is stored in the combustion improver storage sealed container 14 shown in FIG.
  • the raw material alcohol has a low saturated vapor pressure, and is not discharged under the saturated vapor pressure in the combustion improver storage closed container 14, and is not spontaneously introduced into the mixing closed container 16. Therefore, the liquid feed pump 20d is provided. there is The raw material alcohol is supplied from the combustion improver storage sealed container 14 to the mixing closed container 16 by the liquid feed pump 20d. Further, when introducing the raw material alcohol, which is liquid near normal temperature (25° C.) and near atmospheric pressure, it is not necessary to particularly adjust the temperature. Especially when the lift is not high, the gas phase internal pressure in the closed mixing container 16 is always lower than the saturated vapor pressure in the closed container for storage of the raw material liquefied ammonia to be introduced from now on. The temperature within 16 must be maintained.
  • the mixture for mixing can be used in the same manner as in the case where the fuel improver is liquefied petroleum gas or its component hydrocarbon species, as described above.
  • the fuel improver is liquefied petroleum gas or its component hydrocarbon species, as described above.
  • the discharge flow rate of ammonia and the combustion improver in the discharged liquid phase is equal to that of each,
  • the composition change in the discharged liquid phase is caused. can be discharged continuously as an ammonia-mixed fuel.
  • the combustion improver is raw material alcohol, FIG. 2 or FIG. ( The liquid phase discharge line 222 and the equipment attached thereto, and the system for introducing the surfactant are omitted.)
  • the manufacturing apparatus 10 the ammonia mixed fuel can be manufactured with each effect.
  • the combustion improver in the ammonia mixed fuel of one embodiment may be any one of the above (a) to (c), but may be a combination of a plurality of the above (a) to (c). good.
  • at least one of the liquefied petroleum gas as the above (a) and the hydrocarbon species that is a component of the liquefied petroleum gas as the above (b), and the raw material alcohol of (c) are used in combination as a combustion improver.
  • FIG. 7 is a diagram showing an example of the configuration of the production apparatus of this another embodiment, and the example shown in FIG. are both used as a combustion improver. 7 have the same configuration and action as those of the components shown in FIG. 2, the same reference numerals are given and the description thereof is omitted.
  • the manufacturing apparatus 10 includes combustion improver storage sealed containers 14 1 and 14 2 .
  • the combustion improver storage closed container 14-1 stores the liquefied petroleum gas or the component hydrocarbon species of the liquefied petroleum gas
  • the combustion improver storage closed container 14-2 stores raw material alcohol.
  • Combustion improver introduction lines 20 1 and 20 2 extending from the combustion improver storage closed containers 14 1 and 14 2 to the mixing closed container 16 are provided.
  • 20a 2 and regulating valves 20b 1 , 20c 1 , 20b 2 , 20c 2 are provided.
  • the control device 32 receives measurement results from the flowmeters 20a 1 and 20a 2 , generates control signals for controlling the opening degrees of the adjustment valves 20b 1 , 20c 1 , 20b 2 and 20c 2 , and adjusts the generated control signals. It is sent to valves 20b 1 , 20c 1 , 20b 2 and 20c 2 .
  • Nitrogen gas introduction mechanism 30 exists in each introduction line and mixing closed container 16 as necessary from the viewpoint of explosion protection at the time of starting up the manufacturing apparatus 10 and after the completion of manufacturing the ammonia mixed fuel.
  • a nitrogen gas introduction valve 30a is provided for introducing a predetermined amount of nitrogen gas into the combustion improver introduction lines 20.sub.1 and 20.sub.2 .
  • the opening degree of the nitrogen gas introduction valve 30a is controlled by the controller 32. As shown in FIG.
  • the saturated vapor pressure of raw material alcohol is low, and is close to zero at room temperature (25° C.). Therefore, the combustion improver is not discharged at the saturated vapor pressure in the closed combustion improver storage container 142 and is not voluntarily introduced into the mixed combustion improver closed container 16.
  • a liquid feed pump 20d2 is provided for supplying from the container 142 to the closed container 16 for mixing.
  • the internal pressure of the gas phase in the closed vessel 16 for mixing is set to
  • the temperature in the mixing enclosure 16 should be kept always below the lowest saturated vapor pressure in the storage enclosure. In many cases, this results in substantial cooling to a lower temperature than the external environment.
  • Ammonia, liquefied petroleum gas, component hydrocarbon species of the liquefied petroleum gas, and raw material alcohol are quantitatively introduced into the closed container for mixing 16, and the temperature adjustment at the time of quantitative introduction is based on the control signal generated by the controller 32. , is performed by the aforementioned metering introduction mechanism and temperature control mechanism.
  • the configuration shown in FIG. In place of the component hydrocarbon species, at least one of naphtha, gasoline, kerosene and light oil as (a), and any of these component hydrocarbon species as (b), together with the raw material alcohol, as a combustion improver. It can also be used to produce an ammonia mixed fuel.
  • naphtha, gasoline, kerosene, light oil, and component hydrocarbon species thereof are stored in the combustion improver storage closed container 14-1 and introduced into the mixing closed container 16 through the combustion improver introduction line 20-1. .
  • the saturated vapor pressure of naphtha, gasoline, kerosene, light oil, and their component hydrocarbon species is low, and is almost zero at around room temperature (25° C.) like the raw material alcohol.
  • the combustion improver introduction line 20-1 is also provided with a liquid feed pump 20d -1 .
  • raw hydrocarbons non-polar liquefied petroleum gas, naphtha, gasoline, kerosene, light oil, and their component hydrocarbon species (hereinafter collectively referred to as "raw hydrocarbons") that are almost incompatible with liquefied ammonia.
  • liquefied ammonia, and raw material alcohol are used in combination as a combustion improver, the effect of the raw material alcohol, which has an affinity for both the polar liquefied ammonia and the non-polar raw material hydrocarbon, causes surface activity. Even without the addition of the agent, the compatible portion is greatly increased.
  • a surfactant may be required for homogenization by emulsification.
  • the amount of methanol added is about 10% by mass or less of the total, and the amount of liquefied ammonia is about 10 to 70% by mass (the rest is the raw material hydrocarbon).
  • the raw material hydrocarbon is not completely dissolved, and a phase consisting mainly of it is separated in the liquid phase.
  • a surfactant is required to emulsify and uniformly disperse the phase-separated portion.
  • the above-described mixed surfactant can be suitably used.
  • the ammonia-mixed fuel is at least partially in an emulsion state.
  • the composition of the mixture of ammonia and combustion improver it is possible to make the whole into an emulsion state by adding a sufficient amount of surfactant and stirring and mixing. At that time, heating generally improves the solubility and dispersibility of the raw material hydrocarbons.
  • the mixed surfactant it is preferable to select one having an alkyl group or alkenyl group with a chain length suitable for sufficiently exhibiting emulsifying power (emulsification ability) in the temperature range. .
  • any of the raw materials of the ammonia mixed fuel, liquefied ammonia, raw hydrocarbon, or raw alcohol is used. It is preferable to add a small amount in advance to the surfactant, mix and disperse the surfactant to obtain a state (for example, slurry or mud) that can be introduced by the surfactant introduction system.
  • a state for example, slurry or mud
  • the surfactant introduction system surfactant storage container 26, surfactant introduction line 28, and liquid feed pump 28d
  • At least one of liquefied petroleum gas and component hydrocarbon species of liquefied petroleum gas, and naphtha , gasoline, kerosene, light oil, and at least one of these component hydrocarbon species can be used together as a combustion improver to produce an ammonia mixed fuel by a production apparatus similar to that of FIG.
  • the liquefied petroleum gas and its component hydrocarbon species which do not require a liquid feed pump when introduced into the mixing closed vessel 16 , are stored in the combustion improver storage closed vessel 141, and the liquid feed pump is used. (20d 2 in FIG.
  • naphtha, gasoline, kerosene, light oil, and their constituent hydrocarbon species are stored in a combustion improver storage closed container 14 2 and mixed through introduction lines 20 1 and 20 2 . Each is introduced into the sealed container 16 .
  • combustion improvers ie, liquefied petroleum gas, naphtha, gasoline, kerosene, light oil, and component hydrocarbon species thereof
  • component hydrocarbon species of liquefied petroleum gas are In the liquid phase, it is partially compatible with liquefied ammonia, but is almost incompatible with component hydrocarbon species of naphtha, gasoline, kerosene, and light oil that are liquid near normal temperature (25°C) and atmospheric pressure.
  • the above-described mixed surfactant can be suitably used.
  • the ammonia mixed fuel becomes at least partially in an emulsion state.
  • the composition of the mixture of ammonia and combustion improver it is possible to make the whole mixture into an emulsion state by adding a sufficient amount of surfactant.
  • the control device 32 is operated so that the temperature of the mixture in the closed mixing container 16 is equal to or higher than a predetermined temperature suitable for mixing and dispersing. It is preferable to stir while being controlled by the temperature control mechanism described above based on the control signal. Furthermore, as the mixed surfactant, it is preferable to select one having an alkyl group or alkenyl group with a chain length suitable for sufficiently exhibiting emulsifying power in the temperature range.
  • a small amount of liquefied ammonia or a raw material hydrocarbon, which is the raw material of the ammonia mixed fuel is added to the surfactant in advance. Then, by mixing and dispersing, it is preferable to make a state (for example, slurry or mud) that can be introduced by a surfactant introduction system.
  • each raw material component is placed in the closed container 16 for mixing.
  • a guideline for the preferred order of introduction to the closed container for mixing 16 is summarized. Then, it is advantageous to introduce all of the introduction targets into the closed mixing vessel, including the ammonia and the combustion improver, in order from the introduction target with the lower saturated vapor pressure at the temperature in the closed mixing vessel. Specifically, it is as follows.
  • raw material alcohol, naphtha, gasoline, kerosene, light oil and component hydrocarbon species thereof which are liquids having a low saturated vapor pressure at around room temperature (25 ° C.), and surfactants are heated at room temperature (25 ° C.).
  • Ammonia, liquefied petroleum gas, and their component hydrocarbon species, which have high saturated vapor pressures in the vicinity, are introduced into the closed mixing container 16 using a liquid feed pump prior to them.
  • the regulating valves 20b 2 , 20c 2 , 28b, and 28c are opened and closed, and during the introduction, each introduction amount is controlled to be the predetermined amount.
  • the saturated vapor pressure at the set temperature is low. It is introduced into the closed container for mixing 16 in order from the first by discharging due to its own saturated vapor pressure. At this time, the gas phase in the closed container 16 for mixing is preliminarily replaced with the vaporized gas of the liquefied gas having the lowest saturated vapor pressure, which is introduced first. Before and after the introduction of these predetermined amounts, the regulating valves 18b, 18c, 20b 1 and 20c 1 are opened and closed, and during the introduction, each introduction amount is controlled to be the predetermined amount.
  • liquefied gases such as liquefied ammonia, liquefied petroleum gas and their component hydrocarbon species
  • liquefied ammonia liquefied petroleum gas, naphtha, gasoline, kerosene, light oil, and component hydrocarbon species thereof may be used.
  • the combustion improver is a combination of a plurality of the above (a) to (c)
  • the quantitative introduction mechanism and the temperature control mechanism are configured in the same manner as described in the explanation of FIG. , based on the control signal of the control device 32, metered introduction and temperature adjustment are performed. After that, the temperature is controlled based on the control signal generated by the control device 32 so that the temperature is maintained in an appropriate temperature range according to the liquid phase composition of the mixture.
  • An ammonia-mixed fuel in which the combustion improver is stably and uniformly dispersed can be produced.
  • the manufacturing apparatus of FIG. 7 when the combustion improver is a combination of a plurality of the above (a) to (c), when manufacturing the ammonia mixed fuel in each case, the manufacturing apparatus of FIG. 7 is used.
  • the liquid phase portion of the emulsified mixture is discharged from the liquid phase discharge line 22
  • the above-described change in the composition of the discharged liquid phase progresses. That is, as the liquid phase is discharged, the gas-liquid interface of the mixture in the closed mixing container 16 descends, causing evaporation (boiling) of the mixture from the liquid phase to the gas phase.
  • the composition of the evaporative gas is complicated because various combustion improvers coexist (the main components of the evaporative gas are ammonia, liquefied petroleum gas or its component hydrocarbon species, and / or a mixture of alcohol for raw materials. gas), and the composition of the evaporative gas differs from that of the liquid phase, as in the case of using various combustion improvers described above. changes.
  • the nitrogen gas introduction line 30b of the manufacturing apparatus 10 of FIG. 4 is provided in accordance with the configuration of the manufacturing apparatus 10 of FIG. By pressurized introduction, it is possible to rapidly discharge as an ammonia-mixed fuel while suppressing the composition change in the discharged liquid phase.
  • a manufacturing apparatus in which the continuous quantitative introduction mechanism of the raw material of the manufacturing apparatus 10 of FIG. 5 is provided in accordance with the configuration of the manufacturing apparatus 10 of FIG.
  • the continuous quantitative introduction mechanism of the raw material of the manufacturing apparatus 10 of FIG. 5 By continuously and quantitatively introducing raw material liquefied ammonia, various combustion improvers, and surfactants at a flow rate equal to the discharge flow rate of each of the surfactants is selected), it can be continuously discharged as an ammonia mixed fuel without causing the above compositional change in the discharged liquid phase.
  • the production apparatus 10 of FIG. By adding the functions of the manufacturing apparatus 10 of FIGS.
  • the ammonia mixed fuel can be manufactured with the respective effects.
  • a series of controls including those described above are performed based on the control signal of the control device 32, in addition to the quantitative introduction of the liquefied ammonia, the combustion improver and the surfactant, the temperature control during stirring and mixing.
  • the ammonia introduction line 18, the liquid phase discharge line 22, and the closed container 16 for mixing of the manufacturing apparatus 10 are configured, and the parts that are in contact with the fluid containing ammonia (pipes, containers, regulating valves, stirrers, coolers, etc. Equipment, fixed quantity introduction mechanism) are made of materials that are durable against ammonia.
  • materials that are durable against ammonia.
  • copper and copper-containing alloys such as cupronickel and brass, aluminum and aluminum-containing alloys such as duralumin, and zinc and zinc-containing alloys such as tin are not preferable in terms of corrosion resistance to ammonia.
  • iron or steel, especially if it has a high carbon content, is prone to stress corrosion cracking.
  • Materials that can be used include, for example, iron or steel materials that are recognized to be durable against ammonia, as well as austenitic stainless steel (however, stainless steel with a relatively high nickel content is susceptible to stress corrosion cracking due to ammonia). and caution is required), ceramics such as glass and quartz, and plastics and rubbers such as polyethylene, polypropylene, polytetrafluoroethylene, chloroprene rubber, and perfluoroelastomer. These materials are excellent in corrosion resistance at about 60° C. or less and can be suitably used.
  • the mixing sealed container 16 includes a mixed state evaluation device configured to evaluate the mixed state of the mixture (in FIG. 2, as an example thereof, a sight glass 29 described later is provided. (not shown otherwise) is preferably provided.
  • the controller 32 adjusts the strength of stirring and mixing by the stirrer 24 and the stirring and mixing time according to the evaluation result of the mixing state evaluation device.
  • the controller 32 is an agitation regulator that regulates the agitation mixing intensity and the agitation mixing time.
  • a mixed state evaluation device for example, a pressure-resistant sight glass 29 (viewing window) provided at least in the upper and lower layers so that it is possible to observe whether the internal mixture is separated into two phases or whether it is in an emulsion state
  • a device having a fiber scope and a monitor that displays the state of the liquid through the pressure-resistant sight glass or the fiber scope may be used.
  • a measuring instrument for evaluating differences in physical properties such as turbidity, dielectric constant, and refractive index between at least the upper and lower layers of the liquid inside the closed container 16 for mixing can also be used.
  • the mixed state evaluation device may also include a microscope capable of observing the micro-dispersed state of the mixture, and an automatic recognition evaluation device based on artificial intelligence (AI) technology.
  • AI artificial intelligence
  • the gas-liquid equilibrium data is known and a raw material system with a compatible composition and temperature condition is used, for example, ammonia and a raw material alcohol having 3 or less carbon atoms are mixed without adding a raw material hydrocarbon. If it is known in advance that the materials will be compatible or emulsified almost uniformly, for example, the mixed state evaluation device may not be necessary.
  • a temperature control device 18 e configured to regulate is preferably provided in the ammonia introduction line 18 .
  • the combustion improver introduction line 20-1 is provided with a temperature control device 20e1 configured to adjust the temperature of the combustion improver passing through to the same temperature as the internal temperature of the closed mixing vessel 16.
  • These temperature control devices are constituted by, for example, heat exchangers or Peltier elements.
  • the internal pressure of the closed container 16 for mixing is controlled by the above-described temperature control mechanism to increase the internal pressure of the closed containers 12 and 141 for storage of liquefied ammonia and liquefied petroleum gas or their component hydrocarbon species.
  • the internal temperature does not rise, so unnecessary vaporization of the mixture occurs in the closed mixing vessel 16.
  • the saturated vapor pressure of each can be increased.
  • the heating devices 13 and 15 for example, an electric heater, a constant temperature bath containing a heating medium whose temperature is appropriately controlled, or the like is used.
  • Heating by the heating devices 13 and 15 is controlled by a control device 32 based on the results of thermometers 33, 18f and 20f1 provided in the closed mixing container 16 and introduction lines 18 and 201, respectively .
  • FIG. 8 is a block diagram of an example of essential parts of the manufacturing apparatus 10 of one embodiment.
  • the manufacturing apparatus 10 includes an ammonia-mixed fuel storage closed container 50 configured to store the ammonia-mixed fuel in a vapor-liquid equilibrium state.
  • the closed container for storage 50 is provided with an inlet 52 into which the ammonia mixed fuel is injected, and a lower portion, preferably a bottom surface, of the closed container for storage 50 configured to discharge the ammonia mixed fuel in a liquid state to the outside. and an outlet 54 .
  • the injection port 52 is provided with a connection mechanism 56 configured to inject the ammonia-mixed fuel from the liquid phase discharge line 22 into the storage closed container 50 while maintaining airtightness and internal pressure.
  • the injection port 52 is provided with a sealing mechanism (not shown) such as a gasket or an O-ring. Since the inner wall of the storage closed container 50 contacts ammonia similarly to the mixing closed container 16, the storage closed container 50 and the connecting mechanism 56 are made of a material having corrosion resistance to ammonia.
  • An ammonia-mixed fuel supply line 60 for discharging the ammonia-mixed fuel in a liquefied state to the outside is connected to the discharge port 54 .
  • the ammonia-mixed fuel supply line 60 is provided with a discharge valve 58 that controls the supply amount of the ammonia-mixed fuel by the control device 32 .
  • a vacuum pump (not shown) is connected to the ammonia mixed fuel supply line 60, the liquid phase discharge valve 22a is kept closed, the discharge valve 58 is opened, and the internal pressure of the storage closed container 50 is reduced by the vacuum pump to approximately After being evacuated to about 0.01 MPa or less, the discharge valve 58 is closed. After that, the liquid-phase discharge valve 22a is opened, and the ammonia-mixed fuel is filled in the preservation sealed container 50.
  • the gas in the gas phase portion in the closed storage container 50 is added to the upper portion, preferably the uppermost surface, of the closed storage container 50 as shown in FIG. 10 described later.
  • a vapor phase discharge line 59 (the vapor phase discharge line 59 is provided with a vapor phase discharge valve 59a) for discharging to the top.
  • the liquid phase discharge valve 22a is slightly opened to introduce a small amount of ammonia mixed fuel into the preservation closed container 50, and the volatilized vapor.
  • the storage closed container 50 is replaced with gas.
  • the liquid-phase discharge valve 22a is opened, and the ammonia-mixed fuel is filled in the preservation sealed container 50. As shown in FIG.
  • a temperature control device (not shown), which will be described later, is provided to increase the filling amount in the storage sealed container 50 (to reduce the volume of the gas phase portion after filling ), it is preferable that the inside of the sealed storage container 50 can be sufficiently cooled so that the saturated vapor pressure inside is about 0.05 to 0.1 MPa or less.
  • the storage closed container 50 can be efficiently filled with the ammonia mixed fuel through the liquid phase discharge line 22 by the discharge based on the saturated vapor pressure of the ammonia mixed fuel in the closed mixing container 16 .
  • the closed storage container 50 of the manufacturing apparatus 10 of one embodiment is preferably provided with a stirrer 63 configured to stir and mix the ammonia-mixed fuel.
  • the storage sealed container 50 of the manufacturing apparatus 10 of one embodiment is provided with a temperature control device (not shown) configured to appropriately adjust the temperature of the ammonia-mixed fuel inside the storage sealed container 50.
  • a temperature control device include a heat exchanger for controlling the temperature of the closed mixing container 16 by flowing a temperature control medium, or a Peltier element.
  • the temperature control by the temperature control device is controlled by a control signal generated by the control device 32 based on the temperature measurement value of the thermometer 61 that measures the liquid phase temperature inside the storage sealed container 50 .
  • This temperature control device has the following three functions in the same manner as the temperature control mechanism in the above-described closed container 16 for mixing.
  • the first is cooling control of the internal temperature so that the internal pressure of the preservation sealed container 50 is within a temperature range that does not exceed the set pressure resistance.
  • the control device 32 generates Based on the control signal, the storage sealed container 50 is rapidly cooled by the temperature control device.
  • the second is the cooling control for reducing the internal pressure of the preservation sealed container 50 so that the ammonia-mixed fuel can be efficiently and smoothly charged as described above.
  • the third is that the entire liquid phase portion of the mixture of ammonia and the combustion improver in the storage closed container 50 maintaining the gas-liquid equilibrium state is mixed with the ammonia and the combustion improver depending on the liquid phase composition of the mixture.
  • the storage closed container 50 is equipped with the temperature control device and the stirrer 63, and when the ammonia-mixed fuel in the storage closed container 50 is stirred and mixed by the stirrer 63, The entire liquid phase portion of the ammonia mixed fuel is in a temperature range in which the ammonia and the combustion improver are in a solution state or an emulsion state of the ammonia and the combustion improver depending on the liquid phase composition of the ammonia mixed fuel.
  • the temperature control device is preferably configured to control the temperature of said ammonia blended fuel.
  • the "temperature range in which the ammonia and the combustion improver are in a solution state in which the ammonia and the combustion improver are dissolved with each other, or the temperature range in which the ammonia and the combustion improver are in an emulsion state” is the temperature range in which the ammonia mixed fuel of each mixed raw material system is compatible with each other.
  • a temperature range suitable for homogenization by emulsification is selected. This temperature control is also performed by the temperature control device based on the control signal generated by the control device 32 according to the temperature measured by the thermometer 61 .
  • the entire charged ammonia-mixed fuel is uniform and uniform regardless of the type of combustion improver contained. It is in a solution state or a uniform emulsion state (not divided into upper and lower layers).
  • a solution state or a uniform emulsion state (not divided into upper and lower layers).
  • the composition of the mixed fuel changes as described in the case of discharging from the closed mixing container.
  • a nitrogen gas injection line 64 having the same configuration as the nitrogen gas introduction line 30b shown in FIG. and a gas phase discharge line 59 for discharging (the gas phase discharge line 59 is provided with a gas phase discharge valve 59a).
  • the nitrogen gas injection line 64 is led from a storage container (not shown) such as a general pressurized nitrogen gas cylinder filled to an internal pressure of about 10-15 MPa.
  • the nitrogen gas injection line 64 is provided with a pressure reducing valve 64a, a pressure gauge 64b, and a regulating valve 64c between its upstream side and the closed container 16 for mixing.
  • the nitrogen gas introduced through the nitrogen gas injection line 64 is controlled by the pressure reducing valve 64a so that the indicated value of the pressure gauge 64b is equal to or higher than the saturated vapor pressure of the mixture in the sealed storage container 50 (the indicated value of the pressure gauge 62).
  • the pressure is reduced to (for example, the saturated vapor pressure plus about 0.05 to 0.1 MPa).
  • the control valve 64c When the liquid phase of the mixture is discharged from the closed storage container 50, the control valve 64c is opened in conjunction with the opening of the discharge valve 58, and the nitrogen gas injected from the gas phase side forces the liquid phase out.
  • the ammonia-mixed fuel is discharged to the ammonia-mixed fuel supply line 60.
  • the series of operations of these valves are controlled by control signals transmitted by the controller 32 .
  • the storage closed container 50 Nitrogen gas is pressurized and injected into the gas phase portion of the inside, thereby substantially reducing the change in composition and expediting the discharge.
  • the gas phase discharge valve 59a When the ammonia-mixed fuel is injected again into the storage sealed container 50 from the mixed closed container 16 through the liquid phase discharge line 22, the gas phase discharge valve 59a is opened in advance, and the liquid phase discharge valve 22a is slightly closed. After opening to introduce a small amount of ammonia-mixed fuel into the storage closed container 50 and purging the gas (air, nitrogen, etc.) in the storage closed container 50 with the volatilized vapor, the gas phase discharge valve 59a is closed. , the inside of the sealed storage container 50 is replaced with gas.
  • the discharge port 54 is provided on the bottom surface of the storage closed container 50, and the discharge port 54 is provided with a discharge volume flow rate of the ammonia mixed fuel discharged in the liquid phase from the discharge port 54.
  • a volumetric flow meter 65 configured to continuously measure is provided. Furthermore, when the ammonia mixed fuel is injected into the storage sealed container 50 through the injection port 52, the ammonia mixed fuel is injected until reaching a predetermined full filling amount or a predetermined amount less than the full filling amount, In addition, when the ammonia mixed fuel is discharged from the storage closed container 50 through the discharge port 54, while maintaining the airtightness and internal pressure of the storage closed container 50, the discharge volume flow rate measured by the volume flow meter 65 is increased.
  • a filling and discharging control mechanism configured to continuously decrease the internal volume of the closed storage container 50 at a volume change rate substantially equal to .
  • the reason why the composition change occurs when the ammonia mixed fuel is discharged is that, as described above regarding the similar situation in the closed container 16 for mixing, the volume of the liquid phase discharged accompanying the discharge of the ammonia mixed fuel is stored.
  • the ammonia mixed fuel evaporates (boiling) from the liquid phase to the gas phase in the storage closed container 50. This is because the vapor composition of is different from the liquid phase composition.
  • the volume and internal pressure of the gas phase portion are maintained such that the gas-liquid equilibrium state in the storage closed container 50 is maintained even during the discharge of the liquid phase, the evaporation does not occur and the discharged ammonia mixture does not occur.
  • the composition of the fuel is also kept constant. Therefore, as described above, when the ammonia-mixed fuel is discharged from the storage sealed container 50, while maintaining the airtightness and internal pressure of the storage sealed container 50, the discharge volume flow rate measured by the volume flow meter 65 If the injection/discharge control mechanism is provided so as to continuously decrease the internal volume of the closed storage container 50 at the same volume change rate, the ammonia-mixed fuel can be discharged while maintaining the discharge composition constant.
  • FIG. 10 shows a manufacturing apparatus 10 of one embodiment provided with an example of the injection/ejection control mechanism that falls within the scope of the above embodiments.
  • the sealed container for storage 50 has an upright outer cylindrical shape, and seals the body (for example, cylindrical) having a constant internal cross-sectional area orthogonal to the axial direction of the outer cylinder, and the lower end opening of the body.
  • a bottom plate provided with an inlet 52 and a discharge port 54; a reciprocating drive 68 configured to move.
  • the injection/discharge control mechanism is configured to perform the following controls.
  • the reciprocating drive device 68 moves the lower surface of the piston 67 in the cylinder 66 to the full-filled position (hereinafter referred to as H position), or after being pushed up to a predetermined position below the full-filling position, it stops.
  • H position the full-filled position
  • the closed mixing container 16 and the cylinder 66 are arranged relative to each other so that the H position is about the height of the gas-liquid interface of the ammonia-mixed fuel in the closed mixing container 16 . In this state, the ammonia mixed fuel is stored in cylinder 66 .
  • the amount of ammonia mixed fuel in the storage closed container 50 measured by the pressure gauge 62 A linear velocity approximately equal to the value calculated by dividing the discharge volumetric flow rate measured by the volumetric flowmeter 65 by the internal cross-sectional area of the body of the cylinder 66 while resisting the saturated vapor pressure (equal to the internal pressure).
  • the internal volume of the storage sealed container 50 is continuously changed at a volume change rate substantially equal to the discharge volume flow rate.
  • the ammonia mixed fuel can be discharged while suppressing the composition change.
  • the body and the bottom plate of the sealed storage container 50 are the cylinder 66, and the upper surface is the piston 67 that reciprocates. It is preferable that there are no obstacles that impede the back-and-forth movement. For this reason, as shown in FIG. 11, the conduit (sheath, etc.) of the thermometer 61 and the conduit of the pressure gauge 62 are arranged so that the tip of each conduit faces the inner surface of the lowermost part of the cylinder 66 or the inner surface of the bottom surface. installed so as to be the same. At this time, the inner wall of the surrounding cylinder 66 is countersunk so that the temperature measuring portion at the tip of the conduit (such as a sheath) of the thermometer 61 is in contact with the liquid.
  • the manometer 62 conduit is preferably extended so that the side of the manometer is above the gas-liquid interface of the ammonia-blended fuel to eliminate the effects of liquid column pressure if greater accuracy is required.
  • the bottom plate is provided with a counterbore facing downward so that the operating part such as the stirring blade is positioned below the bottom surface of the cylinder 66, and is installed in it, or It is preferable to provide a circulation pipe (not shown) for extracting the ammonia-mixed fuel from the inside of the cylinder 66 to the outside and return it to the inside again, and to dispose the operating part of the stirrer 63 in the pipe.
  • the inlet 52 and the outlet 54 are also preferably provided on the bottom surface of the cylinder 66 so as not to be blocked by the reciprocating movement of the piston 67 .
  • the piston 67 is moved up and down (reciprocated) by a reciprocating drive device 68 including a motor 68a with variable output and rotational speed and a crank mechanism 68b.
  • the rotation of the motor 68a is decelerated by the reduction gear and then transmitted to the crank mechanism 68b.
  • the reciprocating drive device 68 is appropriately adjusted according to the pressure (measured value of the pressure gauge 62), the required variable range of the elevation (reciprocation) speed of the piston 67 accompanying injection and discharge, and the required accuracy of the elevation (reciprocation) stop position. Designed.
  • the piston 67 can move up and down (reciprocate) by half-turning the crank of the crank mechanism 68b in the forward and reverse directions within the range from its upward position to its downward position.
  • the H and L positions of the piston 67 are set at the top dead center or slightly below the top dead center and at the bottom dead center or slightly above the bottom dead center, respectively.
  • the H position and L position are calibrated and recognized by a position sensor that detects the position of the crank of the piston 67 or the crank mechanism 68b, or an angle sensor that detects the rotation angle of the motor 68a (not shown). reaches the H position or L position, the power supply to the motor 68a is cut off, and preferably the motor 68a is forcibly stopped by a brake mechanism (not shown).
  • the piston 67 is at point L, and after the liquid phase discharge valve 22a is opened, the piston 67 moves to point H at a linear velocity that keeps the measured value of the pressure gauge 62 substantially constant.
  • the liquid phase discharge valve 22a is closed and the ammonia mixed fuel is stored in that state.
  • the discharge valve 58 is opened and the ammonia mixed fuel is discharged, the descending speed of the piston 67 near the center between the H point and the L point is obtained from the discharge flow rate value measured by the volumetric flow meter 65.
  • the motor 68a is driven at a rotational speed substantially equal to the linear velocity applied, and is stopped when the piston 67 reaches the L position.
  • the reciprocating drive device 68 is not necessarily limited to the crank mechanism 68b described above, and may be a reciprocating drive mechanism such as a rack and pinion mechanism, a ball screw mechanism, or a feed screw mechanism. A device can also be employed.
  • the ammonia mixed fuel when the ammonia mixed fuel is injected into the storage closed container 50 through the injection port 52, a predetermined full filling Ammonia mixed fuel is injected until it reaches the amount or a predetermined amount equal to or less than the full filling amount, and after the ammonia mixed fuel is injected into the storage closed container 50, the ammonia is discharged from the storage closed container 50 through the outlet 54.
  • the mixed fuel When the mixed fuel is discharged, it is stored at a pressure higher than the saturated vapor pressure of the ammonia mixed fuel at the temperature of the ammonia mixed fuel in the closed storage container 50 while maintaining the airtightness of the closed storage container 50.
  • the ammonia-mixed fuel in the closed storage container 50 is compressed at a pressure exceeding its saturated vapor pressure in the process of discharging, so that the gas phase disappears and the whole becomes liquid. It is discharged from the discharge port 54 . Therefore, since evaporation (boiling) does not occur in the process of discharging, the gas can be discharged at a high pressure equal to or higher than the saturated vapor pressure without causing the aforementioned change in the composition of the discharged gas.
  • FIG. 11 shows a manufacturing apparatus 10 of one embodiment provided with an example of the injection/ejection control mechanism that falls within the scope of the above embodiments. Since the embodiment of FIG. 11 has substantially the same configuration as the previous embodiment shown in FIG. 10 are assigned to the corresponding constituent members, and the description common to the manufacturing apparatus 10 of FIG. 10 will be omitted below.
  • the manufacturing apparatus 10 of FIG. 11 when the ammonia mixed fuel is injected and filled, the injection and filling are performed by the same operation as in the case of the manufacturing apparatus 10 of FIG. 10, and the ammonia mixed fuel is stored in that state. be.
  • the ammonia-mixed fuel supply line 60 is discharged through the discharge port 54 . It is possible to change the discharge flow rate of the ammonia mixed fuel (measured by the volume flow meter 65) led to.
  • the series of operations described above is controlled by a control signal from the control device 32 .
  • the constituent members such as the storage sealed container 50 (the cylinder 66 and the piston 67) and the pressure gauge 62 may be subjected to sudden pressure fluctuations before and after the gas phase disappears, the pressure resistance that can withstand it is required. and structure.
  • the configuration of the mixing closed container 16 having the continuous quantitative introduction mechanism of the raw materials described in the embodiment of FIG. 5 can be provided.
  • the H point and L point are adjusted to be the top dead center and the bottom dead center of the piston 67, respectively, and are interlocked with the continuous lifting (reciprocation) of the piston 67 by the crank mechanism 68b that rotates at a constant speed.
  • the discharge valve 58 and the liquid phase discharge valve 22a are configured to be opened and closed at appropriate degrees of opening.
  • the preservation sealed container 50 of the present embodiment becomes functionally equivalent to a so-called plunger pump.
  • a rack and pinion mechanism, a ball screw mechanism, or a reciprocating drive device such as a feed screw mechanism may be employed.
  • the cylinder 66 is not only configured to stand upright as shown in FIG. Even with such a configuration, it is possible to achieve most of the functions described above.
  • the mixed state of the ammonia mixed fuel is evaluated in the same manner as the mixed state evaluation device described in the mixing sealed container 16. It is preferable that a mixed state evaluation device 69 configured as above is provided.
  • FIG. 12 is a block diagram of an example of essential parts of the manufacturing apparatus 10 of one embodiment. Based on the evaluation result of the mixed state obtained by the mixed state evaluation device 69, the control device 32 generates a control signal for adjusting the stirring mixing strength and the stirring mixing time by the stirrer 63, and based on this, the stirrer 63 provides agitation.
  • the ammonia-mixed fuel obtained by emulsifying liquid ammonia and raw material hydrocarbons may re-separate over time during storage in the closed storage container 50 .
  • the ammonia mixed fuel by re-stirring the ammonia mixed fuel with the stirrer 63, the ammonia mixed fuel can be put into an emulsion state again before being supplied to the combustor or the like.
  • connection mechanism 56 (see FIGS. 8 to 11) of the manufacturing apparatus 10 of one embodiment is configured to be detachable from each other with respect to the connection between the introduction line for introducing the ammonia-mixed fuel into the storage sealed container 50 and the injection port 52.
  • storage enclosure 50 is a container that can be mounted on a vehicle (not shown) in any one of land, water, and air space.
  • vehicle not shown
  • FIG. It may extend from another temporary storage container (not shown) in which the manufactured ammonia mixed fuel is temporarily stored.
  • the construction of this temporary storage container is basically similar to any of the constructions of the storage enclosures previously described.
  • Transportation equipment includes, for example, vehicles (small/large vehicles, motorbikes, etc.) including tank trucks capable of transporting ammonia and ammonia-mixed fuel, railway vehicles, etc. in land areas, and liquefied ammonia transportation vehicles in water areas.
  • Commercial ships including ships, passenger ships, warships, ships in general such as various work ships, submarines, etc. In the airspace, helicopters, aircraft, airships, drones, etc. are included.
  • Storage enclosure 50 has a size and structure that allows it to be moved or transported. According to the above configuration, the storage closed container 50 filled with the ammonia mixed fuel is separated by the detachable connection mechanism 56 and mounted on the transportation equipment, or the storage closed container 50 is mounted.
  • the ammonia mixed fuel produced by the manufacturing apparatus 10 is separated by the detachable connection mechanism 56, so that the ammonia mixed fuel can be efficiently delivered to the transportation equipment. Can be well loaded and transported.
  • FIGS. 13A and 13B are block diagrams illustrating an example of the configuration of an ammonia-mixed fuel supply device 70 according to one embodiment.
  • a supply device 70 shown in FIG. 13A (a range surrounded by a dashed line) includes at least the ammonia-mixed fuel manufacturing device 10 and the ammonia-mixed fuel supply line 60 described above.
  • FIG. 13(a) only the closed container for mixing 16 and the closed container for storage 50 are shown for simplification.
  • the ammonia-mixed fuel supply line 60 supplies the ammonia-mixed fuel discharged from the outlet 54 of the closed storage container 50 to the combustor 100 configured to burn the ammonia-mixed fuel.
  • the ammonia mixed fuel stored in the storage closed container 50 is produced in the mixing closed container 16 and then transferred to the storage closed container 50 through the liquid phase discharge line 22 .
  • the supply device 70 shown in FIG. 13( b ) also includes at least the above-described ammonia-mixed fuel production device 10 and the ammonia-mixed fuel supply line 60 .
  • the form shown in FIG. 13(b) is a form in which the manufacturing apparatus 10 is provided with the mixing closed container 16, but is not provided with the storage closed container 50.
  • FIG. A part of the ammonia mixed fuel supply line 60 becomes the liquid phase discharge line 22 of the closed container 16 for mixing.
  • ammonia-mixed fuel discharged from the closed mixing container 16 passes through the ammonia-mixed fuel supply line 60 to the combustor 100 configured to burn the ammonia-mixed fuel without passing through the storage closed container 50. supplied.
  • an ammonia-mixed fuel supplier 80 is provided on the ammonia-mixed fuel supply line 60.
  • the ammonia-mixed fuel supply device 80 is configured to supply the ammonia-mixed fuel to the combustor 100 at a predetermined flow rate and a predetermined discharge pressure.
  • the ammonia-mixed fuel supply device 80 is, for example, a pressurizer or a liquid-sending pump (for example, the above-mentioned figure) that pressurizes the ammonia-mixed fuel to the pressure required by the combustor 100 and supplies it by controlling the flow rate, if necessary.
  • the combustor 100 is, for example, a direct-injection combustor that supplies liquid-state ammonia-mixed fuel directly to the combustion chamber. A predetermined amount of air, oxygen-enriched air, oxygen gas, or the like required for combustion is separately introduced into the combustor through a separate introduction line (not shown). After being vaporized in the combustor 100, the ammonia-mixed fuel comes into contact with and diffusely mixes with the air, oxygen-enriched air, oxygen gas, or the like, and is combusted.
  • the combustor may be a combustor in which a pre-vaporizer (not shown) pre-vaporizes a liquid state ammonia mixed fuel and supplies the gas.
  • a pre-vaporizer (not shown) pre-vaporizes a liquid state ammonia mixed fuel and supplies the gas.
  • air, oxygen-enriched air, or oxygen may be premixed in a predetermined ratio with the vaporized ammonia mixed fuel.
  • the ammonia-mixed fuel supplier 80 may include the pre-vaporizer.
  • Auxiliary equipment such as an auxiliary burner is provided as appropriate. These are not shown.
  • the supply device 70 configured as described above can supply the ammonia-mixed fuel to the combustor 100 at a predetermined discharge pressure.
  • the ammonia-mixed fuel supply line 60, the combustor 100, the combustion gas discharge line (not shown) that discharges the exhaust gas from the combustor 100 to the outside air, and their surrounding constituent materials are restricted to materials having corrosion resistance to ammonia.
  • High-temperature gas-contacting parts in contact with the internal combustion gas and high-temperature parts in the combustion gas line preferably have resistance to high-temperature corrosion due to nitriding embrittlement based on nitrogen in ammonia, although this depends on the concentration of ammonia.
  • chromium steel alloys such as iron, steel, cast iron, and stainless steel may lack corrosion resistance at locations of 400° C. or higher that are in contact with high-concentration ammonia gas. Therefore, for these parts, it is necessary to use metals such as pure nickel with high corrosion resistance, Inconel (trademark), Hastelloy (trademark), Nimonic (trademark), etc. that contain a high nickel content. may become
  • FIG. 14 is a block diagram showing an example of the configuration of the feeding device 70 of one embodiment.
  • the supply device 70 includes an ammonia mixed fuel recirculation line 112 .
  • Ammonia-mixed fuel recirculation line 112 stores the part of the ammonia-mixed fuel flowing through ammonia-mixed fuel supply line 60 from branch 110 that is branched without being supplied to combustor 100 in closed container 16 for mixing or in closed container for storage. It is configured to flow back into vessel 50 . As shown in FIG.
  • one portion of the ammonia-mixed fuel is supplied from the ammonia-mixed fuel supplier 80 at a predetermined flow rate and a predetermined discharge pressure required by the combustor 100 .
  • the branched ammonia mixed fuel is subjected to the same pressure conditions as the ammonia mixed fuel in the closed mixing container 16 or the closed container 50 for storage.
  • a pressure adjustment mechanism (not shown) is preferably provided in the ammonia-mixed fuel recirculation line 112 to adjust so that
  • this pressure adjusting mechanism for example, a circulation pump or the like that can adjust the discharge pressure to be equal to the pressure in the mixing closed container 16 or the storage closed container 50 can be used.
  • the control device 32 calculates the required amount of ammonia-mixed fuel to be burned in the combustor 100 according to the required output of combustion in the combustor 100, and calculates this required amount , the surplus amount of the ammonia mixed fuel supplied from the feeder 80 is branched at the branching part 110, and passed through the ammonia mixed fuel recirculation line 112 to the closed container 16 for mixing or the closed container 50 for storage.
  • a control signal is sent to the branch valve of the branch section 110 and the pressure adjustment mechanism provided in the ammonia-mixed fuel recirculation line 112 so that the ammonia mixed fuel recirculation line 112 is recirculated.
  • the opening degree of the branch valve of the branch section 110 and the pressure adjustment mechanism are controlled. Further, for stable operation of the above control, the ammonia-mixed fuel recirculation line 112 may be provided with a flow control valve (not shown), and the opening of this flow control valve is similarly controlled by the control signal of the controller 32. is controlled appropriately. According to the supply device 70 configured as described above, a required amount of ammonia-mixed fuel can be continuously supplied to the combustor 100 at a stable predetermined discharge pressure.
  • FIG. 15 is a block diagram illustrating an example of the configuration of an ammonia mixed fuel combustion apparatus 120 according to one embodiment.
  • the combustion device 120 produces thermal energy by burning the produced ammonia mixed fuel, or converts the thermal energy produced by combustion into mechanical energy or other energy such as electrical energy. It is a device that converts and discharges combustion gases into the atmosphere, and the respective energy obtained can be utilized for various uses described below.
  • the combustion device 120 includes an ammonia mixed fuel supply device 70 (see FIG. 9), a combustor 100 and a combustion gas discharge line 130 .
  • Combustor 100 is configured to burn the ammonia blended fuel described above.
  • the supply device 70 is configured to supply the ammonia blended fuel to the combustor 100 as described above.
  • Combustion gas discharge line 130 is configured to discharge combustion gas resulting from combustion of the ammonia mixed fuel in combustor 100 to the atmosphere.
  • the combustion device 120 of one embodiment optionally includes a selective catalytic reactor 128 .
  • the selective catalytic reactor 128 is accompanied by nitrogen oxides, an ammonia concentration meter 122, a feed rate calculator 124, and a metering device.
  • a supply device 126 is provided.
  • a selective catalytic reactor 128 is preferably provided on the combustion gas discharge side of the combustor 100, that is, on the combustion gas discharge line .
  • the selective catalytic reactor 128 removes nitrogen oxides (including air pollutants such as nitrogen monoxide and nitrogen dioxide) in the combustion gas discharged from the combustor 100.
  • nitrogen oxides including air pollutants such as nitrogen monoxide and nitrogen dioxide
  • these may be collectively referred to as NOx.
  • the selective catalytic reactor 128 is a by-product when the ammonia mixed fuel is burned in the combustor 100, is contained in the combustion gas, and is discharged from the combustion chamber of the combustor 100 to the combustion gas discharge line.
  • Nitrogen oxides NOx passing through 130 are reductively decomposed.
  • Ammonia is known and widely used as a NOx reducing agent that selectively reductively decomposes NOx with high efficiency in the presence of an appropriate catalyst.
  • the selective catalytic reactor 1208 as the NOx reducing agent, the ammonia remaining in the combustion gas without being completely burned in the combustor 100 and discharged, or additionally supplied separately from the ammonia storage closed container 12 described above. It is possible to use either the ammonia that is supplied as a fuel or the ammonia-mixed fuel that is separately supplied from the storage closed container 50 described above.
  • 15 shows the above-described ammonia remaining in the combustion gas without being completely burned in the combustor 100 and discharged, the ammonia separately supplied from the above-described ammonia storage closed container 12, and the above-described storage closed container.
  • 50 shows an embodiment in which either one of the ammonia mixed fuel separately supplied from 50 is used together as a reducing agent.
  • a selective catalytic reaction supply line 132 configured to join a predetermined amount of either one of liquid state ammonia and ammonia mixed fuel to the combustion gas discharge line 130 is provided. is preferred. That is, the selective catalytic reaction supply line 132 is led from either the closed ammonia storage container 12 for storing ammonia in a liquid state or the closed storage container 50 for storing the ammonia mixed fuel.
  • either the liquid state ammonia or the ammonia in the ammonia mixed fuel is added to the selective catalytic reactor 128.
  • NOx coexisting in the combustion gas can be reliably reduced and decomposed.
  • the exhaust heat of the combustion gas vaporizes the ammonia, which is supplied to the selective catalytic reactor 128, and is reduced in the selective catalytic decomposition of NOx. act as an agent.
  • the coexisting feedstock hydrocarbons or feedstock alcohols also act as reducing agents in the selective catalytic reactor 128, particularly when the ammonia mixed fuel is supplied for catalytic reduction. Therefore, the synergistic effect of the reducing power of ammonia and the raw material hydrocarbon or raw material alcohol makes it possible to decompose nitrogen oxides NOx more efficiently.
  • the catalyst in the selective catalytic reactor 128 is preferably kept at a predetermined temperature so that the selective catalytic reduction described above proceeds efficiently.
  • the selective catalytic reactor 128 is provided or selected at a location within the flue gas discharge line 130 such that the temperature of the flue gas passing through the flue gas discharge line 130 generally corresponds to the predetermined temperature.
  • the temperature within the selective catalytic reactor 128 is adjusted accordingly by providing a temperature controller (not shown) that regulates the temperature of the catalyst within the selective catalytic reactor 128 .
  • a temperature controller (not shown) that regulates the temperature of the catalyst within the selective catalytic reactor 128 .
  • a honeycomb body made of a mixed oxide of vanadium, tungsten (or molybdenum), and titanium is preferably used as the catalyst.
  • the temperature of the catalyst used and suitable for selective catalytic reduction at that time is about 300 to 470°C.
  • an electric heater is used as the temperature controller for maintaining the catalyst temperature within such a temperature range.
  • Combustion device 120 is configured to combine a predetermined amount of either one of liquid state ammonia and ammonia mixed fuel into combustion gas discharge line 130 for use as a reducing agent for nitrogen oxides NOx in selective catalytic reactor 128.
  • a nitrogen oxide/ammonia concentration measuring device 122 it is preferable to include a nitrogen oxide/ammonia concentration measuring device 122, a supply amount calculating device 124, and a fixed quantity supplying device 126.
  • the nitrogen oxide/ammonia concentration measuring instrument 122 is provided in the combustion gas discharge line 130 on the combustion chamber side of the combustor 100 with respect to the junction 130a of the selective catalytic reaction supply line 132 and the combustion gas discharge line 130. , the concentration of nitrogen oxides and the concentration of ammonia on the side of the combustion chamber with respect to the confluence portion 130a.
  • a known measuring instrument can be used as the nitrogen oxide and ammonia concentration measuring instrument 122 .
  • the supply amount calculation device 124 calculates the amount of ammonia or ammonia mixed fuel to be supplied through the selective catalytic reaction supply line 132 based on the measurement result measured by the nitrogen oxide/ammonia concentration measuring device 122.
  • the supply amount calculation device 124 has, for example, a reference table that predetermines the relationship between the concentration to be measured and the amount of ammonia or ammonia mixed fuel, and from the measurement results measured by the nitrogen oxide and ammonia concentration measuring device 122, By referring to the lookup table, the amount of ammonia or ammonia mixed fuel to be supplied through the selective catalytic reaction supply line 132 is calculated.
  • the constant supply device 126 is provided in the selective catalytic reaction supply line 132 and is configured to control the supply amount of ammonia or ammonia-mixed fuel based on the amount calculated by the supply amount calculation device 124 .
  • the amount of ammonia or ammonia-mixed fuel supplied is controlled by the degree of opening of a regulating valve (not shown) provided in the selective catalytic reaction supply line 132, or a liquid-sending mechanism such as a liquid-sending pump provided in the quantitative supply device 126. (not shown) by adjusting the liquid delivery output.
  • NOx in the combustion gas can be reliably removed by catalytic reduction with ammonia supply as described above. However, if further confirmation of the concentration of NOx and residual ammonia still remaining in the combustion gases discharged from the selective catalytic reactor 128 and released to the atmosphere is required, the concentrations shown in FIG. In addition to the configuration, another set of nitrogen oxide/ammonia concentration measuring instruments (not shown) is preferably attached.
  • the combustor 100 is, for example, an internal combustion engine such as a gas turbine, a jet engine, a reciprocating engine, or a rotary engine configured to extract mechanical power using thermal energy of combustion gas generated by combustion of ammonia mixed fuel.
  • the combustion device 120 is a steam turbine (including a boiler), a Stirling engine, etc., configured to extract mechanical power by utilizing the thermal energy of the combustion gas generated by combustion of the ammonia mixed fuel.
  • An external combustion engine may be provided. In this case, there are cases where the external combustion engine and the combustor 100 are close to each other and can be regarded as substantially the same, and other cases where they are separated from each other.
  • a combustion gas transfer line is provided connecting between the combustor 100 and the external combustion engine.
  • a combustion gas discharge line 130 for combustion gas used in the external combustion engine and discharged into the atmosphere is provided after the external combustion engine.
  • the combustor 100 may include a heating processing device (not shown) configured to perform heating processing using thermal energy of combustion gas generated by combustion of the ammonia-mixed fuel. Heat processing tools use the thermal energy of combustion gas to calcine, roast, melt, cut, weld, weld, cast, anneal, bend iron, heat reduce, and incinerate materials such as metals, ceramics, and resins. It is an instrument.
  • a combustion gas transfer line not shown, is provided connecting between the combustor 100 and the hot processing tool.
  • a combustion gas discharge line for the combustion gas used in the heating and processing equipment and discharged into the atmosphere is provided at the rear stage of the heating and processing equipment.
  • a power generation facility is, for example, a power generation facility that generates power in any one of land, water, and air space.
  • at least one of the above-described internal combustion engine and the above-described external combustion engine is installed in the power generation facility as the combustor 100 for the ammonia mixed fuel.
  • the generator of the power generation facility is configured to generate power using the mechanical power extracted using the thermal energy of the combustion gas of the ammonia mixed fuel, and the power output end of the power generation facility is generated by the generator. configured to output electrical power.
  • the power plant comprises a control mechanism configured to control the amount of power at the power output.
  • a vehicle is a device configured to move or transport goods in any one of land, water, and air, the propulsion mechanism of which is configured to produce thrust to move the vehicle. It is a power engine.
  • at least one of an ammonia-mixed fuel combustion device with an internal combustion engine and an ammonia-mixed fuel combustion device with an external combustion engine is mounted as a propulsion engine on the transportation equipment.
  • the vehicle is configured to utilize mechanical power extracted by at least one of the internal combustion engine and the external combustion engine from the thermal energy of the combustion gas of the ammonia mixed fuel as at least part of the thrust of the vehicle. Equipped with a power conversion transmission mechanism.
  • the power conversion transmission mechanism is a series of well-known mechanisms that appropriately change the direction, torque, or speed of power used for propulsion drive and transmit it to the final drive unit. Including cranks, various gears, chains, belts, transmissions, drive shafts, drive wheels, propellers or screws, etc.
  • the mechanism includes a synchronizing mechanism of both powers and a resultant force mechanism such as a coaxial drive.
  • transportation equipment may be equipped with the power generation equipment described above.
  • the transportation equipment uses the thermal energy of the combustion gas of the ammonia-mixed fuel to generate electric power output from the power generation facility for at least one of the following: propulsion of the transportation equipment, operation control of the transportation equipment, and maintenance and management of the transportation equipment.
  • propulsion of the transportation equipment Preferably, there is at least one of an electric propulsion mechanism and a power supply mechanism configured to use at least a portion of the power requirements of the first.
  • the transport equipment may include at least one of an ammonia-mixed fuel combustion device with an internal combustion engine and an ammonia-mixed fuel combustion device with an external combustion engine.
  • the mechanical power extracted by at least one of the internal combustion engine and the external combustion engine from the energy of the combustion gas of the ammonia-mixed fuel is converted into at least a part of the power for propulsion of the transportation equipment and used. equipped with a power conversion transmission mechanism.
  • ammonia mixed fuel By efficiently burning ammonia using the ammonia mixed fuel in this way, it can be suitably used for internal combustion engines, external combustion engines, heat processing equipment, and power generation equipment that can comply with GHG emission regulations.
  • the ammonia mixed fuel, the ammonia mixed fuel production apparatus, the ammonia mixed fuel production method, the ammonia mixed fuel supply apparatus, the ammonia mixed fuel combustion apparatus, the power generation equipment using the ammonia mixed fuel, and the ammonia mixture of the present invention Although the transportation equipment using fuel has been described in detail, the present invention is not limited to the above embodiments and the following examples, and various improvements and modifications may be made without departing from the gist of the present invention. Of course.
  • Example 1 Using the ammonia mixed fuel manufacturing apparatus shown in FIG. 2, liquefied ammonia [NH 3 ] and liquefied propane [C 3 H 8 ] are placed in this order in a closed vessel for mixing (contents about 2 L) whose temperature is adjusted to about 5 ° C. ) at a charged mass ratio of about 75:25 (total mass of about 490 g) (prior to these introductions, the inside of the closed mixing vessel 16 was first filled with nitrogen gas, then with volatilized vapor of liquefied ammonia, gas is replaced sequentially).
  • the ammonia concentrations of the upper and lower layers were measured by gas chromatography and found to be about 16 mass % and about 87 mass %, respectively (liquid phase average ammonia concentration of the entire upper and lower layers was about 77 mass %). After that, when the liquidus temperature is raised while stirring is continued, the interface between the two liquid phases of the upper layer and the lower layer rises, the upper layer disappears at about 23 ° C., and an ammonia mixed fuel in which the whole is uniformly dissolved is obtained. rice field. At this time, the internal pressure (saturated vapor pressure) of the closed vessel for mixing was about 1.7 MPa.
  • Example 2 Using the same mixed fuel production apparatus as in Example 1, liquefied ammonia and liquefied n-butane [n-C 4 H 10 ] were mixed in a sealed vessel for mixing, the temperature of which was adjusted to about 5°C, starting with liquefied n-butane. (Internal capacity: about 2 L). Prior to the introduction of these components, the inside of the closed container 16 for mixing was first replaced with nitrogen gas and then with volatilized vapor of liquefied n-butane.
  • Example 3 Using the same ammonia mixed fuel production apparatus as in Example 1, first, as a mixed surfactant, having one long-chain alkyl group derived from coconut oil and a primary amino group [-NH 2 ] in the molecule.
  • a nonionic primary amine long-chain alkylamine [rheometric formula: C k H 2k+1 NH 2 , k ⁇ 8 to 18], one long-chain alkyl chain with 12 carbon atoms in the molecule, and chloride and an ionic quaternary ammonium chloride [rheometric formula: C 12 H 25 N + (CH 3 ) 3 ⁇ Cl - ] having a quaternary trimethylammonium group and a mixed system at a molar ratio of about 80:20
  • a surfactant was introduced into the closed container for mixing so that the concentration in the ammonia mixed fuel to be produced was 1 mass % (introduction amount: 5.76 g).
  • Example 2 liquefied n-butane and liquefied ammonia were added to the inside of a closed container for mixing (contents: about 2 L) temperature-controlled at about 5° C., and charged mass ratio: about 85:15. (total mass about 570 g).
  • Preliminary gas replacement was also performed in the same manner as in Example 2.
  • the mixture was stirred and mixed for about 30 minutes with a single-type impeller agitator while adjusting the liquid phase temperature to about 20°C.
  • the volume of the n-butane-based upper layer was smaller than in Example 2, and the entire liquid phase was slightly turbid and emulsified.
  • Example 3 the compounding ratios of the nonionic long-chain alkylamine and the ionic quaternary ammonium chloride were 0:100 (that is, ionic alone), 20:80, 50:50, 65: 35, 90:10, and 100:0 (that is, nonionic alone), respectively, and introduced so that the concentration in the ammonia mixed fuel to be produced was 1% by mass, except that the introduced amount 5.76 g), and in each case where stirring and mixing were performed under the same conditions as in Example 3, the temperature at which the whole was homogenized was investigated in the same manner as in Example 3.
  • the homogenized temperature is the same as in Example 2 in which no surfactant is added.
  • the temperature was about 32° C., and almost no emulsification effect was observed by addition of the surfactant.
  • the compounding ratio is 0:100, 20:80, 50:50, and 65:35, the interface between the upper and lower layers becomes a curved surface that is significantly curved downward, and the nonionic alkylamine at the interface A significant change in the interfacial tension between the upper and lower layers was observed upon presence.
  • the homogenization temperature was about 30°C, which was slightly higher than about 26°C when the compounding ratio was 80:20 in Example 3, and emulsification was observed. However, it was judged that the emulsion-forming ability was lowered.
  • Example 4 A mixed surfactant having the same components and the same blending ratio as those used in Example 3 was introduced into a closed container for mixing so that the concentration in the ammonia mixed fuel to be produced was 5% by mass (introduction amount 30 g), and stirring and mixing were performed at about 20° C. under the same conditions as in Example 3, except that the stirring and mixing time was extended to about 2 hours. After that, when the liquidus temperature was raised while stirring was continued, the upper layer disappeared at about 21°C, which was about 11°C lower than that in Example 2, and an ammonia-mixed fuel in which the whole was uniformly emulsified was obtained. .
  • the internal pressure (saturated vapor pressure) of the closed container for mixing was about 1.0 MPa, which was about 0.4 MPa lower than in Example 2. Even after the emulsified ammonia-mixed fuel was kept at about 21° C. for about 10 hours, the liquid phase was not separated and the internal pressure was kept at about 1.0 MPa.
  • Example 5 A nonionic long-chain alkylamine having a single long-chain alkyl group having 8 carbon atoms and a primary amino group [—NH 2 ] in the molecule, which has an alkyl chain length different from that of Example 3 [rhythmic formula: C 8 H 17 NH 2 ], and an ionic quaternary ammonium chloride [ratio: C 12 H 25 N + (CH 3 ) 3 ⁇ Cl ⁇ ], common to Example 3, and in a molar ratio of about 80:20 was introduced so that the concentration in the ammonia mixed fuel to be produced was 1% by mass (introduction amount: 5.76 g). Stirring and mixing was performed at about 20° C. under the same conditions.
  • Example 6 In common with Example 3, a long-chain alkylamine that is a nonionic primary amine having 8 to 18 carbon atoms [property formula: C k H 2k+1 NH 2 , k ⁇ 8 to 18], and a carbon
  • An ionic quaternary ammonium bromide having one long-chain alkyl group of number 12 and a quaternary trimethylammonium bromide group [property formula: C 12 H 25 N + (CH 3 ) 3 ⁇ Br ⁇ ] and a mixed surfactant containing at a molar ratio of about 80:20 was introduced so that the concentration in the ammonia mixed fuel to be produced was 1% by mass (introduction amount: 5.76 g).
  • Example 8 A nonionic polyoxyethylene alkyl ether having one long-chain alkyl group having 13 carbon atoms and a polyoxyethylene group [--O(C 2 H 4 O) 5 -H] in the molecule [rheological formula: C 13 H 27 O(C 2 H 4 O) 5 —H] and an ionic quaternary ammonium chloride (ratio: C 12 H 25 N + (CH 3 ) 3.Cl - ) in a molar ratio of about 80:20 was introduced so that the concentration in the ammonia mixed fuel to be produced was 1% by mass (introduction amount: 5.76 g). Stir mixing was carried out at about 20° C. under the same conditions as in Example 3.
  • Example 10 A nonionic long-chain primary amine having 8 carbon atoms (rheological formula: C 8 H 17 NH 2 ) and a long-chain alkyl having 10 to 18 carbon atoms derived from coconut oil in the molecule, common to Example 5
  • Example 3 Under the same conditions as in Example 3 except that the amount of the solution introduced was 5.76 g. After that, when the liquidus temperature was raised while stirring was continued, the upper layer disappeared at about 28°C, which was about 4°C lower than that in Example 2, and an ammonia-mixed fuel in which the whole was uniformly emulsified was obtained. . At this time, the internal pressure (saturated vapor pressure) of the closed container for mixing was approximately 1.2 MPa, which was approximately 0.2 MPa lower than that in Example 2. Even after the emulsified ammonia-mixed fuel was kept at about 27° C. for about 10 hours, the liquid phase was not separated and the internal pressure was kept at about 1.2 MPa.
  • saturated vapor pressure saturated vapor pressure
  • Example 11 the compounding ratio of the nonionic long-chain tertiary amine having a tertiary bis(polyethoxy)amino group and the ionic long-chain carboxylic acid was 0:100 (that is, ionic only), and 20 : 80, and stirring and mixing was performed under the same conditions except that each was introduced so that the concentration in the ammonia mixed fuel to be produced was 1% by mass (introduction amount: 5.76 g). In each case, the temperature at which the whole was homogenized was investigated in the same manner as in Example 3.
  • the homogenization temperature was about 32 to 33° C., which was the same as or slightly higher than in Example 2 in which no surfactant was added. Almost no effect of emulsification by addition of active agent was observed.
  • Example 12 A mixed surfactant having the same components and the same blending ratio as those used in Example 11 was introduced into the closed container for mixing so that the concentration in the ammonia mixed fuel to be produced was 5% by mass (introduction amount 30 g), and stirring and mixing were performed at about 20° C. under the same conditions as in Example 3, except that the stirring and mixing time was extended to about 2 hours. After that, when the liquidus temperature was raised while stirring was continued, the upper layer disappeared at about 23°C, which was about 9°C lower than that in Example 2, and an ammonia-mixed fuel in which the whole was uniformly emulsified was obtained. .
  • the internal pressure (saturated vapor pressure) of the closed container for mixing was about 1.1 MPa, which was about 0.3 MPa lower than in Example 2. Even after the emulsified ammonia-mixed fuel was kept at about 23° C. for about 10 hours, the liquid phase was not separated and the internal pressure was kept at about 1.1 MPa.
  • Example 13 Using the ammonia mixed fuel production apparatus shown in FIG. 2, liquefied ammonia and methanol (CH 3 OH) are first added to the inside of a closed container for mixing (inner capacity of about 2 L) whose temperature is adjusted to about 15 ° C. , was introduced at a feed mass ratio of about 70:30 (total mass of about 660 g). Prior to the introduction of these components, the inside of the closed container 16 for mixing was first replaced with nitrogen gas and then with volatilized vapor of liquefied ammonia. After these introductions were completed, all the valves were closed, and the mixture was stirred and mixed with a single impeller agitator while adjusting the liquid phase temperature to about 19°C.
  • CH 3 OH methanol
  • the liquid phase became a homogeneous solution.
  • the internal pressure saturated vapor pressure
  • the liquid phase temperature was raised to about 40° C. while stirring was continued, the liquid phase remained in a homogeneous solution state.
  • the liquid phase temperature was maintained at about 19° C. for about one day, the liquid phase was maintained in a compatible state and the internal pressure was maintained at about 0.7 MPa.
  • Example 13 the same conditions were used except that the charging mass ratio of liquefied ammonia and methanol was changed to about 50:50 (total mass: about 710 g) and about 30:70 (total mass: about 710 g).
  • the mixed state was examined when stirring and mixing were performed.
  • the liquid phase becomes a uniform solution in both cases where the starting composition ratio is about 50:50 and about 30:70, and the internal pressure (saturated vapor pressure) at the liquid phase temperature of about 19° C. is about 0.0. 5 MPa, and about 0.3 MPa.
  • the internal pressure saturated vapor pressure
  • the liquid phase temperature was lowered to about 44 ° C. while stirring is continued, a different phase begins to be released and floats in the solution, and at about 43 ° C., a new liquid phase phase-separated above the solution layer. (liquefied ammonia) appeared clearly (the internal pressure at this time was about 1.5 MPa).
  • the liquid phase was maintained in a compatible state and the internal pressure was maintained at about 1.7 to 1.8 MPa.

Abstract

This ammonia-mixed fuel contains: liquid ammonia; and a liquid combustion improver that improves combustion of the ammonia. The combustion improver is at least one of (a) liquefied petroleum gas, naphtha, gasoline, kerosene, and diesel oil, (b) a material hydrocarbon that is at least one hydrocarbon species contained as a component in at least one of the liquefied petroleum gas, the naphtha, the gasoline, the kerosene, and the diesel oil, and (c) a material alcohol that is an alcohol having three or less carbon atoms. The ammonia-mixed fuel is in a vapor-liquid equilibrium state, and at least a portion of the liquid phase part of the ammonia-mixed fuel is in a solution state in which the ammonia and the combustion improver are mutually dissolved, or in an emulsion state of the ammonia and the combustion improver.

Description

アンモニア混合燃料、アンモニア混合燃料の製造装置、アンモニア混合燃料の製造方法、アンモニア混合燃料の供給装置、アンモニア混合燃料の燃焼装置、アンモニア混合燃料を用いた発電設備、及び、アンモニア混合燃料を用いた輸送機器Ammonia mixed fuel, ammonia mixed fuel manufacturing apparatus, ammonia mixed fuel manufacturing method, ammonia mixed fuel supply apparatus, ammonia mixed fuel combustion apparatus, power generation facility using ammonia mixed fuel, and transportation using ammonia mixed fuel machine
 本発明は、アンモニア混合燃料、アンモニア混合燃料の製造装置、アンモニア混合燃料の製造方法、アンモニア混合燃料の供給装置、アンモニア混合燃料の燃焼装置、アンモニア混合燃料を用いた発電設備、及び、アンモニア混合燃料を用いた輸送機器に関する。 The present invention provides an ammonia mixed fuel, an ammonia mixed fuel manufacturing apparatus, an ammonia mixed fuel manufacturing method, an ammonia mixed fuel supply apparatus, an ammonia mixed fuel combustion apparatus, a power generation facility using an ammonia mixed fuel, and an ammonia mixed fuel. related to transport equipment using
 近年の温室効果ガス(以降、GHGという)の排出規制により、燃焼により二酸化炭素が発生する従来広く用いられてきた化石燃料(例えば、ガソリン、ケロシン、軽油、重油、石炭など)から、GHG排出を抑制できる他の燃料への転換が求められている。これに対して、アンモニアは炭素を含まないため、燃焼の際に二酸化炭素が発生しない。このためアンモニアは、GHG規制に対応するための代替燃料として、近年、有望視されている。
 しかし、アンモニアは、従来の化石燃料に比べて着火温度が非常に高く、燃焼速度が極めて遅いため、単独で安定に燃焼させることが困難である。
 このため、アンモニアの燃焼を補助するための助燃剤として、軽油その他の液体の炭化水素燃料や、メタン、水素等のガス燃料を、アンモニアに添加する技術が知られている。
Due to recent greenhouse gas (hereinafter referred to as GHG) emission regulations, GHG emissions have been reduced from conventionally widely used fossil fuels (e.g., gasoline, kerosene, light oil, heavy oil, coal, etc.) that generate carbon dioxide when burned. There is a need to switch to other fuels that can be controlled. In contrast, ammonia does not contain carbon, so no carbon dioxide is produced during combustion. For this reason, in recent years, ammonia has been viewed as a promising alternative fuel for complying with GHG regulations.
However, since ammonia has a very high ignition temperature and a very slow burning rate compared to conventional fossil fuels, it is difficult to stably burn ammonia alone.
For this reason, there is known a technique of adding light oil or other liquid hydrocarbon fuel, or gas fuel such as methane or hydrogen to ammonia as a combustion improver for assisting the combustion of ammonia.
 例えば、燃焼室内の混合気体を周期的に加圧圧縮することが可能な、2ストローク型ディーゼルエンジンを模擬した燃焼装置において、加圧した液化アンモニアと、パイロット燃料としての少量の軽油とを、空気が導入された燃焼室内に直接噴射することにより、ディーゼルエンジンの作動に要する拡散燃焼が可能になることが報告されている(非特許文献1)。
 上記の非特許文献1によれば、液化アンモニアの直接噴射式燃焼において、液化アンモニアは、従来の炭化水素系の揮発性燃料と同様にディーゼルエンジン内に噴射されて気化し、パイロット燃料の軽油の揮発後の自着火燃焼により加熱されてアンモニアも着火し、拡散燃焼するとされている。
For example, in a combustion device simulating a two-stroke diesel engine that can periodically pressurize and compress the gas mixture in the combustion chamber, pressurized liquefied ammonia and a small amount of light oil as a pilot fuel are mixed with air. It has been reported that direct injection into the combustion chamber into which is introduced enables diffusion combustion required for diesel engine operation (Non-Patent Document 1).
According to Non-Patent Document 1 above, in direct injection combustion of liquefied ammonia, liquefied ammonia is injected into a diesel engine and vaporized in the same way as conventional hydrocarbon-based volatile fuels, and light oil of pilot fuel is used. It is said that ammonia is heated by self-igniting combustion after volatilization, ignites ammonia, and undergoes diffusion combustion.
 また、非特許文献2では、発熱量ベースで全体の70%に相当する予気化したアンモニアに対し、発熱量ベースで30%に相当する助燃剤としての水素と、水素の体積比1/3の窒素と、所定量の空気とをあらかじめ混合し、4ストローク型エンジンの燃焼装置に噴射して火花着火することにより、未燃率2%で燃焼させ、エンジンを作動させ得ることが報告されている。ここで窒素を燃料ガスに加えているのは、実用化時に、アンモニアの一部を触媒分解することによって(反応式:NH→3/2H+1/2N)、その場で製造される水素を助燃剤に用いることを想定し、その際に副生成する窒素も、共に燃料ガスに加わる状況を模擬するためである。 In addition, in Non-Patent Document 2, hydrogen as a combustion improver corresponding to 30% on a calorific value basis for pre-vaporized ammonia corresponding to 70% of the total on a calorific value basis, and a hydrogen volume ratio of 1/3 It is reported that by pre-mixing nitrogen and a predetermined amount of air and injecting it into the combustion device of a four-stroke engine for spark ignition, the engine can be operated by burning with an unburned rate of 2%. . The reason why nitrogen is added to the fuel gas here is that it is produced on the spot by catalytically decomposing a part of ammonia (reaction formula: NH 3 →3/2H 2 +1/2N 2 ) at the time of practical use. This is because it is assumed that hydrogen is used as a combustion improver, and nitrogen, which is produced as a by-product at that time, is also added to the fuel gas.
 また、非特許文献3では、燃焼速度の増大や燃焼の安定化に向け、予気化したアンモニアに対し、水素ないしメタン、および所定量の空気を混合した予混合ガスに対する層流燃焼速度等の評価や、ガスタービン等への適用を想定した乱流燃焼挙動等の評価が報告されている。同文獻では、大気圧下、25℃で約7cm/s程度と低いアンモニアの層流燃焼速度が、メタン(層流燃焼速度約37cm/s)や水素(同約220cm/s)との混合によって増大すること等が確認されている。 In addition, in Non-Patent Document 3, in order to increase the combustion speed and stabilize the combustion, for pre-vaporized ammonia, hydrogen or methane, and a premixed gas mixed with a predetermined amount of air Evaluation of laminar combustion speed etc. , and evaluations of turbulent combustion behavior, etc., assuming application to gas turbines, etc. have been reported. In the same literature, under atmospheric pressure, the laminar burning velocity of ammonia, which is as low as about 7 cm/s at 25°C, is reduced by mixing with methane (laminar burning velocity about 37 cm/s) and hydrogen (about 220 cm/s). It has been confirmed that
 一方、近年、冷凍機、空調機等に用いられる冷媒によるオゾン層破壊や地球温暖化の防止などの環境上の観点から、従来のフロンや代替フロンに置き換わり得る「自然冷媒」として、液化アンモニアや、液化プロパン、およびその他の液化石油ガスの成分炭化水素種が注目されている。また、冷媒機能の拡張のため、これらの混合系の利用を想定し、これらの混合物の液相・気相の相平衡についても検討されている。例えば、液化アンモニアと、液化プロパン、液化プロピレン、液化n-ブタン、ないし液化1-ブテンとの2成分系における、液相・気相の平衡関係を評価した結果が報告されている(非特許文献4、5)。
 上記の非特許文献4および5によれば、液化アンモニアと、上記の液化石油ガス成分の各炭化水素種との混合物については、-10~20℃程度の温度域において、二相に分離した液相と気相との間に、不均一共沸系の気液液平衡関係(VLLE)が認められ、液相が相溶する組成範囲が昇温に伴って拡大することや、これらの気液液平衡関係の近似計算等が示されている。さらにプロピレンと1-ブテンについては、一定温度以上に温度が上昇すると、いかなる液相組成(混合比)においても液化アンモニアと完全に混和するようになり、均一液相と気相との間に、均一共沸系の気液平衡関係(VLE)が成り立つことも示されている。
On the other hand, in recent years, from an environmental point of view, such as the prevention of ozone depletion and global warming due to refrigerants used in refrigerators and air conditioners, liquefied ammonia and , liquefied propane, and other component hydrocarbon species of liquefied petroleum gas have received attention. In addition, assuming the use of these mixed systems for the expansion of refrigerant functions, the phase equilibrium between the liquid phase and the gas phase of these mixtures is also being studied. For example, the results of evaluating the equilibrium relationship between the liquid phase and the gas phase in a two-component system of liquefied ammonia, liquefied propane, liquefied propylene, liquefied n-butane, or liquefied 1-butene have been reported (non-patent literature 4, 5).
According to Non-Patent Documents 4 and 5 above, for a mixture of liquefied ammonia and each hydrocarbon species of the liquefied petroleum gas component, in a temperature range of about -10 to 20 ° C., the liquid separated into two phases. A heterogeneous azeotropic vapor-liquid-liquid equilibrium relationship (VLLE) is observed between the phase and the gas phase, and the composition range in which the liquid phase is compatible expands with increasing temperature. Approximate calculation of the liquid equilibrium relationship, etc. are shown. Furthermore, propylene and 1-butene become completely miscible with liquefied ammonia at any liquid phase composition (mixing ratio) when the temperature rises above a certain temperature, and between the homogeneous liquid phase and the gas phase, It has also been shown that a homogeneous azeotropic vapor-liquid equilibrium relationship (VLE) holds.
 上記報告の内、非特許文献1では、パイロット燃料の軽油を用いて液化アンモニアを着火させることができるとされているが、着火性の悪さや火炎伝播速度の小ささも同時に認められており、少量のパイロット燃料の軽油によって、燃料として供給されるアンモニアの全量を、均一かつ安定に完全燃焼させるのは、容易でないことが示唆される。また、アンモニアは窒素元素を含むため、特に、燃焼が均一かつ速やかに進行しない場合は、環境上有害なNO、NOや、地球温暖化係数が高いNO等を含む窒素酸化物(NOx)が多量に発生する虞もある。
 また、液化アンモニアに、非特許文献1でパイロット燃料に用いられた軽油等の液体の炭化水素燃料を混合して、液化アンモニアの燃焼性を改善することも考えられるが、極性が高い液化アンモニアと、軽油等の液体の非極性炭化水素とは、液相ではほとんど相溶しないため、均一かつ安定に混合して燃焼させることは困難である。
Among the above reports, Non-Patent Document 1 states that liquefied ammonia can be ignited using light oil as a pilot fuel, but at the same time, poor ignitability and low flame propagation speed are also recognized. It is suggested that it is not easy to uniformly and stably completely burn the entire amount of ammonia supplied as fuel with a small amount of pilot fuel diesel oil. In addition, since ammonia contains nitrogen elements, nitrogen oxides ( NOx ) may be generated in large amounts.
In addition, it is conceivable to improve the combustibility of liquefied ammonia by mixing liquefied ammonia with a liquid hydrocarbon fuel such as light oil used as a pilot fuel in Non-Patent Document 1. , gas oil and other liquid non-polar hydrocarbons are hardly compatible in the liquid phase, so it is difficult to uniformly and stably mix and burn them.
 また、いかなる物質同士でも、気相においては、極性に関わらず均一混合することを利用して、非特許文献2および3では、予気化させたアンモニアに対し、水素やメタンのガスを助燃剤として予混合することにより燃焼を改善させている。しかし、これらの助燃剤については、貯蔵および輸送の面で大きな欠点がある。アンモニア自体は、大気圧下での約-33℃程度の冷却、また常温(25℃)での約0.8MPa程度の加圧によって容易に液化し、液化アンモニアとして簡便に貯蔵、輸送できる。しかし、上述の水素およびメタンは、大気圧下では、それぞれ約-253℃および-162℃という極めて低温に冷却しなければ液化されず、液化には高価で大規模な冷却設備を必要とし、その冷却に要するエネルギーも非常に大きい。さらに水素は、液化状態においても、その体積エネルギー密度はガソリンや軽油の約29%程度しかなく、液化アンモニアの体積エネルギー密度と比べても26%小さい。また常温付近では、加圧によってはいずれも液化されず(超臨界状態になる)、これらの圧縮状態の体積エネルギー密度は、液化状態よりもさらに低い。さらに、非極性であるメタンや水素ガスの液化アンモニアへの溶解度は小さく、助燃に要する量を液化アンモニアに溶解させることも、実質的に無理である。このため、水素やメタンを助燃剤として用いる場合は、液化アンモニアのための設備とは別に、それらの貯蔵、輸送のために、高価で大規模な設備が必要になる。
 なお、非特許文献2では、アンモニアの触媒分解によって助燃剤の水素を得ることを想定しており、この場合は、水素自体を貯蔵、輸送する必要はない。しかし、アンモニアの燃焼の前段で、燃焼への供給経路から一部を分岐させたアンモニアから所定量の助燃剤の水素を逐次製造する必要があり、その工程において故障等の何らかの問題が生じた場合は、全系の停止を余儀なくされる。従って、これは、ロバスト性の高いプロセスにはなり難い。
In addition, using the fact that any substances are homogeneously mixed in the gas phase regardless of their polarity, Non-Patent Documents 2 and 3 use hydrogen or methane gas as a combustion improver for pre-vaporized ammonia. Combustion is improved by premixing. However, these combustion improvers have significant drawbacks in terms of storage and transportation. Ammonia itself is easily liquefied by cooling to about −33° C. under atmospheric pressure and pressurizing to about 0.8 MPa at normal temperature (25° C.), and can be easily stored and transported as liquefied ammonia. However, the hydrogen and methane described above cannot be liquefied under atmospheric pressure unless they are cooled to extremely low temperatures of about -253°C and -162°C, respectively. The energy required for cooling is also very large. Furthermore, even in a liquefied state, hydrogen has a volumetric energy density of only about 29% that of gasoline or light oil, which is 26% lower than that of liquefied ammonia. Also, near room temperature, none of them are liquefied (become supercritical) by pressurization, and their volumetric energy densities in the compressed state are even lower than in the liquefied state. Furthermore, the solubility of non-polar methane and hydrogen gas in liquefied ammonia is low, and it is practically impossible to dissolve the amount required for supporting combustion in liquefied ammonia. Therefore, when hydrogen or methane is used as a combustion improver, expensive and large-scale facilities are required for storing and transporting them, in addition to facilities for liquefied ammonia.
In Non-Patent Document 2, it is assumed that hydrogen as a combustion improver is obtained by catalytic decomposition of ammonia, and in this case, it is not necessary to store and transport hydrogen itself. However, in the preceding stage of ammonia combustion, it is necessary to sequentially produce a predetermined amount of hydrogen as a combustion improver from ammonia partially branched from the supply route to combustion, and if some problem such as a failure occurs in that process is forced to stop the entire system. Therefore, this is unlikely to be a robust process.
 一方、非特許文献4、5では、液化アンモニアと液化プロパン等の液化石油ガス成分とが、それらの気液平衡関係に基づいて、少なくとも部分的に溶解することが示され、また、これらの成分やその混合物が、それら自体が大気中に流出してもオゾン層破壊や地球温暖化を促進しにくい「冷媒」として使えることが記されている。しかし、それらを、燃焼してもCO等のGHGを生じにくい「燃料」として用い得ることについては、これらの文献では、全く想定されていない。さらに、液化アンモニアと液化石油ガス成分との混合液相が相分離する条件下での混合分散の可能性や、燃料としての使用上で要求されるそれらの混合のための要件、上記の液化石油ガス成分以外に用い得る助燃剤の種類等についても、記載も示唆もされていない。 On the other hand, Non-Patent Documents 4 and 5 show that liquefied ammonia and liquefied petroleum gas components such as liquefied propane are at least partially dissolved based on their gas-liquid equilibrium relationship. It is noted that these substances and their mixtures can be used as "refrigerants" that do not accelerate ozone depletion and global warming even if they themselves are released into the atmosphere. However, these documents do not assume that they can be used as a "fuel" that does not easily generate GHG such as CO2 even when burned. In addition, the possibility of mixing and dispersing the mixed liquid phase of liquefied ammonia and liquefied petroleum gas components under conditions where phase separation occurs, the requirements for mixing them when used as fuel, and the above-mentioned liquefied petroleum It does not describe or suggest the types of combustion improvers that can be used other than gas components.
 そこで、本発明は、液化アンモニアに対して、燃焼性や貯蔵性及び輸送性が高い助燃剤を、安定に混合、分散させることにより、GHGやNOxなどの排出を抑制しながら、液化アンモニアを効率よく燃焼させることができるアンモニア混合燃料を提供すること、及びこのアンモニア混合燃料の製造装置、アンモニア混合燃料の製造方法、及びアンモニア混合燃料の供給装置を提供するとともに、このアンモニア混合燃料を用いた燃焼装置、このアンモニア混合燃料を用いた発電設備、及び、このアンモニア混合燃料を用いた輸送機器を提供することを目的とする。 Therefore, the present invention stably mixes and disperses a combustion improver with high combustibility, storability, and transportability with respect to liquefied ammonia, thereby suppressing emissions of GHG, NOx, etc., and liquefied ammonia efficiently. To provide an ammonia mixed fuel that can be combusted well, to provide an apparatus for producing this ammonia mixed fuel, a method for producing an ammonia mixed fuel, and a supply apparatus for an ammonia mixed fuel, and to provide a combustion using this ammonia mixed fuel. An object of the present invention is to provide an apparatus, power generation equipment using this ammonia mixed fuel, and transportation equipment using this ammonia mixed fuel.
 本発明の一態様は、
 アンモニア混合燃料であって、
 液化状態のアンモニアと、
 前記アンモニアの燃焼を補助する助燃剤と、を含み、
 前記助燃剤は、
(a)液化石油ガス、ナフサ、ガソリン、ケロシン、および軽油、
(b)前記液化石油ガス、前記ナフサ、前記ガソリン、前記ケロシン、および前記軽油の内のいずれか一つに成分として含まれる少なくとも一つの炭化水素種である原料用炭化水素、および
(c)炭素数3以下のアルコールである原料用アルコール、
 の内の少なくとも一つであり、
 前記アンモニア混合燃料は、気液平衡状態にあり、かつ前記アンモニア混合燃料の液相部分の少なくとも一部が、前記アンモニアと前記助燃剤とが互いに溶解した溶液状態、または、前記アンモニアと前記助燃剤のエマルション状態にある、ことを特徴とする。
One aspect of the present invention is
An ammonia mixed fuel,
Ammonia in a liquefied state;
and a combustion improver that assists combustion of the ammonia,
The combustion improver is
(a) liquefied petroleum gas, naphtha, gasoline, kerosene, and diesel;
(b) a feedstock hydrocarbon which is at least one hydrocarbon species contained as a component in any one of the liquefied petroleum gas, the naphtha, the gasoline, the kerosene, and the light oil; and (c) carbon Raw material alcohol that is alcohol of number 3 or less,
is at least one of
The ammonia mixed fuel is in a gas-liquid equilibrium state, and at least a part of the liquid phase portion of the ammonia mixed fuel is in a solution state in which the ammonia and the combustion improver are mutually dissolved, or the ammonia and the combustion improver are dissolved. characterized by being in an emulsion state of
 本発明の他の一態様は、アンモニア混合燃料を製造する製造装置であって、
 液化状態のアンモニアを貯蔵する、アンモニア貯蔵用密閉容器と、
 (a)液化石油ガス、ナフサ、ガソリン、ケロシン、および軽油、(b)前記液化石油ガス、前記ナフサ、前記ガソリン、前記ケロシン、および前記軽油の内のいずれか一つに成分として含まれる少なくとも一つの炭化水素種である原料用炭化水素、および、(c)炭素数3以下のアルコールである原料用アルコール、の内の少なくともいずれか一つである、前記アンモニアの燃焼を補助する助燃剤を貯蔵する助燃剤貯蔵用密閉容器と、
 前記と、前記助燃剤とを撹拌機により撹拌混合することにより溶解した溶液状態、または、エマルション化された混合物を得、前記撹拌機による撹拌混合によって得られる混合物が、気液平衡状態を維持できるように構成された混合用密閉容器と、
 前記アンモニア貯蔵用密閉容器と前記混合用密閉容器とを接続し、前記アンモニアを前記混合用密閉容器内に所定量導入するように構成されたアンモニア定量導入機構が設けられたアンモニア導入ラインと、
 前記助燃剤貯蔵用密閉容器と前記混合用密閉容器とを接続し、前記助燃剤を前記助燃剤貯蔵用密閉容器から前記混合用密閉容器内に所定量導入するように構成された助燃剤定量導入機構が設けられた助燃剤導入ラインと、
 前記混合用密閉容器において前記撹拌機の撹拌混合によって得られる混合物を、アンモニア混合燃料として、前記混合用密閉容器から排出するように構成された少なくとも一つの液相排出ラインと、を備えることを特徴とする。
Another aspect of the present invention is a production apparatus for producing an ammonia mixed fuel,
an ammonia storage closed container for storing ammonia in a liquefied state;
(a) liquefied petroleum gas, naphtha, gasoline, kerosene, and light oil; and (c) a raw material alcohol, which is an alcohol having 3 or less carbon atoms. A closed container for storing a combustion improver,
A dissolved solution state or an emulsified mixture is obtained by stirring and mixing the above and the combustion improver with a stirrer, and the mixture obtained by stirring and mixing with the stirrer can maintain a vapor-liquid equilibrium state. A closed mixing container configured to
an ammonia introduction line provided with an ammonia fixed quantity introduction mechanism configured to connect the ammonia storage closed container and the mixing closed container and introduce a predetermined amount of the ammonia into the mixing closed container;
Combustion improver metered introduction configured to connect the combustion improver storage closed container and the mixing closed container, and to introduce a predetermined amount of the combustion improver from the combustion improver storage closed container into the mixing closed container. A combustion improver introduction line provided with a mechanism;
and at least one liquid phase discharge line configured to discharge the mixture obtained by stirring and mixing the agitator in the closed mixing vessel as an ammonia mixed fuel from the closed mixing vessel. and
 本発明の他の一実施形態は、アンモニア混合燃料の供給装置であって、
 前記アンモニア混合燃料の製造装置と、
 前記混合用密閉容器から排出される前記アンモニア混合燃料を、前記アンモニア混合燃料を燃焼させるように構成された燃焼器に供給するためのアンモニア混合燃料供給ラインと、を備えることを特徴とする。
 この実施形態において、前記供給装置は、前記燃焼器を複数備えていてもよい。この場合、前記供給装置は、前記燃焼器のそれぞれに前記アンモニア混合燃料が供給されるよう、前記アンモニア混合燃料供給ラインを複数備えることが好ましい。
Another embodiment of the present invention is an ammonia mixed fuel supply device,
a device for producing the ammonia mixed fuel;
an ammonia-mixed fuel supply line for supplying the ammonia-mixed fuel discharged from the mixing closed container to a combustor configured to burn the ammonia-mixed fuel.
In this embodiment, the supply device may include a plurality of combustors. In this case, the supply device preferably includes a plurality of ammonia mixed fuel supply lines so that the ammonia mixed fuel is supplied to each of the combustors.
 本発明の他の一態様は、アンモニア混合燃料の燃焼装置であって、
 前記アンモニア混合燃料を燃焼させるように構成された燃焼器と、
 前記アンモニア混合燃料を前記燃焼器に供給するように構成されたアンモニア混合燃料の供給装置と、
 前記燃焼器における前記アンモニア混合燃料の燃焼で生じる燃焼ガスを、大気中に排出するように構成された燃焼ガス排出ラインと、を備えることを特徴とする。
Another aspect of the present invention is an ammonia mixed fuel combustion apparatus,
a combustor configured to burn the ammonia mixed fuel;
an ammonia mixed fuel supply device configured to supply the ammonia mixed fuel to the combustor;
a combustion gas discharge line configured to discharge combustion gas generated by combustion of the ammonia-mixed fuel in the combustor into the atmosphere.
 本発明の他の一態様は、陸域、水域、および空域のいずれか一つにおいて、発電を行う発電設備であって、
 前記発電設備には、内燃機関を備えた前記アンモニア混合燃料の燃焼装置、および、外燃機関を備えた前記アンモニア混合燃料の燃焼装置の少なくともいずれか一方が搭載され、
 前記アンモニア混合燃料の前記燃焼ガスのエネルギーを利用して取り出される機械的動力を利用して発電するように構成された発電機と、
 前記発電機で発電される電力を出力するように構成された電力出力端と、
 前記電力出力端における電力量を制御するように構成された制御機構と、を備えることを特徴とする。
Another aspect of the present invention is a power generation facility that generates power in any one of land, water, and air space,
The power generation equipment is equipped with at least one of the ammonia-mixed fuel combustion device provided with an internal combustion engine and the ammonia-mixed fuel combustion device provided with an external combustion engine,
a generator configured to generate power using mechanical power extracted using the energy of the combustion gas of the ammonia mixed fuel;
a power output end configured to output power generated by the generator;
a control mechanism configured to control the amount of power at the power output.
 本発明の他の一態様は、陸域、水域、および空域のいずれか一つにおいて移動ないし物資輸送を行うように構成された輸送機器であって、
 内燃機関を備えた前記アンモニア混合燃料の燃焼装置、および、外燃機関を備えた前記アンモニア混合燃料の燃焼装置の少なくともいずれか一方が搭載され、
 前記アンモニア混合燃料の燃焼ガスのエネルギーから、前記内燃機関および前記外燃機関の少なくともいずれか一方によって取り出される前記機械的動力を前記輸送機器の推進の動力の少なくとも一部として利用するように構成された動力変換伝達機構と、を備えることを特徴とする。
Another aspect of the present invention is a transportation device configured to move or transport goods in any one of land area, water area, and air area,
At least one of the ammonia-mixed fuel combustion device provided with an internal combustion engine and the ammonia-mixed fuel combustion device provided with an external combustion engine is installed,
The mechanical power extracted by at least one of the internal combustion engine and the external combustion engine from the energy of the combustion gas of the ammonia-mixed fuel is used as at least part of the power for propulsion of the transportation equipment. and a power conversion transmission mechanism.
 本発明の他の一態様は、陸域、水域、および空域のいずれか一つにおいて移動ないし物資輸送を行うように構成された輸送機器であって、
 前記発電設備が搭載され、
 前記アンモニア混合燃料の前記燃焼ガスのエネルギーを利用して、前記発電設備から出力される前記電力を、前記輸送機器の推進、前記輸送機器の運転制御、および前記輸送機器の維持管理の少なくとも一つにおける所要電力の少なくとも一部に用いるように構成された電気推進機構および給電機構の少なくとも一方を備える、ことを特徴とする。
Another aspect of the present invention is a transportation device configured to move or transport goods in any one of land, water, and air space,
The power generation equipment is mounted,
Using the energy of the combustion gas of the ammonia-mixed fuel, the electric power output from the power generation facility is used for at least one of the following: propulsion of the transportation equipment, operation control of the transportation equipment, and maintenance and management of the transportation equipment. at least one of an electric propulsion mechanism and a power supply mechanism configured to use at least a portion of the power requirements in the
 本発明の他の一態様は、アンモニア混合燃料の製造方法であって、
(1)液体状態のアンモニアと、
 (a)液化石油ガス、ナフサ、ガソリン、ケロシン、及び軽油、
 (b)前記液化石油ガス、前記ナフサ、前記ガソリン、前記ケロシン、及び前記軽油の内のいずれか一つに成分として含まれる少なくとも一つの炭化水素種である原料用炭化水素、および、
 (c)炭素数3以下のアルコールである原料用アルコール、
 の少なくとも一つである、前記アンモニアの燃焼を補助する液体状態の助燃剤と、を混合用密閉容器内に導入し、
(2)前記アンモニアと、前記助燃剤とを、前記混合用密閉容器内で液相部分を残した気液平衡状態に保ちながら、撹拌混合することにより、前記アンモニアと前記助燃剤の液相部分の少なくとも一部が、前記アンモニアと前記助燃剤とが互いに溶解した溶液状態、または、前記アンモニアと前記助燃剤とのエマルション状態となった混合物を作製し、
(3)前記混合物を、前記混合用密閉容器から、アンモニア混合燃料として排出する、ことを特徴とする。
Another aspect of the present invention is a method for producing an ammonia mixed fuel, comprising:
(1) ammonia in a liquid state;
(a) liquefied petroleum gas, naphtha, gasoline, kerosene, and diesel oil;
(b) a feedstock hydrocarbon which is at least one hydrocarbon species contained as a component in any one of the liquefied petroleum gas, the naphtha, the gasoline, the kerosene, and the light oil; and
(c) a raw material alcohol that is an alcohol having 3 or less carbon atoms;
and a liquid-state combustion improver that assists combustion of the ammonia, which is at least one of
(2) The ammonia and the combustion improver are stirred and mixed while maintaining a gas-liquid equilibrium state with the liquid phase remaining in the closed container for mixing, thereby obtaining the liquid phase portion of the ammonia and the combustion improver. At least a part of is in a solution state in which the ammonia and the combustion improver are mutually dissolved, or a mixture in which the ammonia and the combustion improver are in an emulsion state,
(3) The mixture is discharged as an ammonia-mixed fuel from the closed container for mixing.
 上述のアンモニア混合燃料、アンモニア混合燃料の製造装置、アンモニア混合燃料の製造方法、アンモニア混合燃料の供給装置、及びアンモニア混合燃料を用いた燃焼装置によれば、液化アンモニアに対して、燃焼性、貯蔵性及び輸送性が高い助燃剤を、均一かつ安定に混合分散させることができ、これにより、GHGやNOxなどの排出を抑制しながら、液化アンモニアを効率よく燃焼させることができる。このため、上述のアンモニア混合燃料等を、発電設備さらには輸送機器等に好適に用いることができる。 According to the ammonia mixed fuel, the ammonia mixed fuel manufacturing apparatus, the ammonia mixed fuel manufacturing method, the ammonia mixed fuel supply apparatus, and the combustion apparatus using the ammonia mixed fuel described above, the combustibility and storage of liquefied ammonia It is possible to uniformly and stably mix and disperse the combustion improver with high ductility and transportability, thereby making it possible to efficiently burn liquefied ammonia while suppressing emissions of GHG, NOx, and the like. Therefore, the above-described ammonia mixed fuel and the like can be suitably used for power generation equipment, transportation equipment, and the like.
(a),(b)は、一実施形態のアンモニア混合燃料の性状(所定の温度における気液液平衡状態およびエマルション化状態)の例を説明する図である。(a) and (b) are diagrams illustrating an example of properties of an ammonia mixed fuel (a gas-liquid-liquid equilibrium state and an emulsified state at a predetermined temperature) of one embodiment. 一実施形態のアンモニア混合燃料の製造装置の構成の一例を示す図である。It is a figure showing an example of composition of a manufacture device of ammonia mixed fuel of one embodiment. (a),(b)は、図2の一実施形態のアンモニア混合燃料の製造装置の要部の変形の一例を示す図である。3(a) and 3(b) are diagrams showing an example of modification of the main part of the ammonia-mixed fuel manufacturing apparatus of the embodiment of FIG. 2. FIG. 別の一実施形態のアンモニア混合燃料の製造装置の構成の一例を示す図である。FIG. 4 is a diagram showing an example of the configuration of an ammonia-mixed fuel manufacturing apparatus according to another embodiment; 別の一実施形態のアンモニア混合燃料の製造装置の構成の一例を示す図である。FIG. 4 is a diagram showing an example of the configuration of an ammonia-mixed fuel manufacturing apparatus according to another embodiment; 別の一実施形態のアンモニア混合燃料の製造装置の構成の一例を示す図である。FIG. 4 is a diagram showing an example of the configuration of an ammonia-mixed fuel manufacturing apparatus according to another embodiment; 別の一実施形態のアンモニア混合燃料の製造装置の構成の一例を示す図である。FIG. 4 is a diagram showing an example of the configuration of an ammonia-mixed fuel manufacturing apparatus according to another embodiment; 別の一実施形態のアンモニア混合燃料の製造装置の構成の一例を示す図である。FIG. 4 is a diagram showing an example of the configuration of an ammonia-mixed fuel manufacturing apparatus according to another embodiment; 別の一実施形態のアンモニア混合燃料の製造装置の構成の一例を示す図である。FIG. 4 is a diagram showing an example of the configuration of an ammonia-mixed fuel manufacturing apparatus according to another embodiment; 別の一実施形態のアンモニア混合燃料の製造装置の構成の一例を示す図である。FIG. 4 is a diagram showing an example of the configuration of an ammonia-mixed fuel manufacturing apparatus according to another embodiment; 別の一実施形態のアンモニア混合燃料の製造装置の構成の一例を示す図である。FIG. 4 is a diagram showing an example of the configuration of an ammonia-mixed fuel manufacturing apparatus according to another embodiment; 一実施形態のアンモニア混合燃料の製造装置の要部の一例のブロック図である。1 is a block diagram of an example of a main part of an ammonia-mixed fuel manufacturing apparatus according to an embodiment; FIG. (a),(b)は、一実施形態のアンモニア混合燃料の供給装置の構成の例を説明するブロック図である。1(a) and 1(b) are block diagrams illustrating an example of the configuration of an ammonia-mixed fuel supply device according to an embodiment; FIG. 別の一実施形態のアンモニア混合燃料の供給装置の構成の例を示すブロック図である。FIG. 4 is a block diagram showing an example of the configuration of an ammonia-mixed fuel supply device according to another embodiment; 一実施形態のアンモニア混合燃料の燃焼装置の構成の例を説明するブロック図である。1 is a block diagram illustrating an example of a configuration of an ammonia-mixed fuel combustion apparatus according to an embodiment; FIG.
 以下、実施形態のアンモニア混合燃料、アンモニア混合燃料の製造装置、アンモニア混合燃料の製造方法、アンモニア混合燃料の供給装置、アンモニア混合燃料の燃焼装置、アンモニア混合燃料を用いた発電設備、及び、アンモニア混合燃料を用いた輸送機器について詳細に説明する。 Hereinafter, the ammonia mixed fuel of the embodiment, the ammonia mixed fuel manufacturing apparatus, the ammonia mixed fuel manufacturing method, the ammonia mixed fuel supply apparatus, the ammonia mixed fuel combustion apparatus, the power generation equipment using the ammonia mixed fuel, and the ammonia mixture Transportation equipment using fuel will be described in detail.
(アンモニア混合燃料)
 実施形態のアンモニア混合燃料は、液化状態のアンモニア(液化アンモニア)と助燃剤と、を含む燃料である。
 液化アンモニアは、着火し難く、燃焼速度が低い性質を有することから、アンモニアを着火し易くし、燃焼速度を向上させるために、助燃剤が用いられる。
 助燃剤として、
(a)液化石油ガス、ナフサ、ガソリン、ケロシン、および軽油、
(b)前記液化石油ガス、前記ナフサ、前記ガソリン、前記ケロシン、および前記軽油の内のいずれか一つに成分として含まれる少なくとも一つの炭化水素(以降、成分炭化水素ともいう)種である原料用炭化水素、および
(c)炭素数3以下のアルコールである原料用アルコール、
 の内の少なくとも一つが用いられる。
(ammonia mixed fuel)
The ammonia mixed fuel of the embodiment is a fuel containing ammonia in a liquefied state (liquefied ammonia) and a combustion improver.
Liquefied ammonia is difficult to ignite and has a low burning rate. Therefore, a combustion improver is used to facilitate ignition of ammonia and improve the burning rate.
As a combustion improver,
(a) liquefied petroleum gas, naphtha, gasoline, kerosene, and diesel;
(b) a feedstock that is at least one hydrocarbon (hereinafter also referred to as component hydrocarbon) species contained as a component in any one of the liquefied petroleum gas, the naphtha, the gasoline, the kerosene, and the diesel oil; and (c) a raw material alcohol that is an alcohol having 3 or less carbon atoms,
At least one of is used.
 ここで、液化石油ガス(LPG)は、油田、天然ガス田または製油施設などの副生ガスから、圧縮装置や冷却容器により、常温(25℃)付近で容易に液化する分画として一般に得られるものである。液化石油ガスは、炭素数3および4の鎖状炭化水素を成分として含む。液化石油ガスは液化させて容易に保存、輸送でき、気化後のガスは、携帯用燃料や、ガスエンジンを搭載した移動体の推進燃料等に用いられる。
 ナフサは、原油を常圧蒸留装置によって蒸留分離して得られる製品の内、沸点範囲が約30~200℃程度の留分に相当し、その成分は、炭素数およそ5~12程度の鎖状および脂環式炭化水素(ナフテン)、ベンゼン等の芳香族炭化水素等を主体とする。ナフサは、石油化学工業の原料の他、後述するガソリンの原料として主に使用される。ナフサおよびその成分炭化水素種も、燃料として用いることができる。
 ガソリンは、主に前記ナフサの軽質分を精製、改質して得られる炭化水素燃料で、ナフサと同様に炭素数およそ5~11程度の炭化水素の混合物であり、沸点がおよそ30℃~220℃の範囲、引火点が-40℃以下の石油製品である。ガソリンは、ナフサに比べ、改質によって生じるトルエン等の芳香族炭化水素や枝分かれ炭化水素が主体として含まれることで、オクタン価が向上し、特にガソリンエンジン内で安定に燃焼し得る燃料となり、自動車等、移動体用の推進燃料として広く用いられる。
 ケロシンは、沸点がおよそ150~280℃の範囲の留分に相当する、炭素数およそ8~15程度の鎖状炭化水素の成分を主体とする石油製品である。ケロシンを元に、所定の精製や凍結防止成分の添加などがなされた製品は、暖房用燃料(灯油)の他、航空機のジェットエンジン用燃料、ロケット燃料等に用いられ、本明細書において、ケロシンは、これらの製品も含むものとする。
 軽油は、沸点がおよそ180℃~350℃の範囲にある石油製品であり、成分は、炭素数およそ10~22程度の鎖状炭化水素を主体とする。軽油は、特にディーゼルエンジン中で好適に燃焼する燃料として、火力発電や、陸上の大型車両、鉄道や船舶の推進用に広く用いられる。
Here, liquefied petroleum gas (LPG) is generally obtained as a fraction that is easily liquefied at around normal temperature (25 ° C.) from by-product gas such as oil fields, natural gas fields, or oil refineries, by compression equipment or cooling vessels. It is a thing. Liquefied petroleum gas contains chain hydrocarbons with 3 and 4 carbon atoms as components. Liquefied petroleum gas can be easily stored and transported after being liquefied, and the gas after vaporization is used as a portable fuel, a propulsion fuel for vehicles equipped with a gas engine, and the like.
Naphtha corresponds to a fraction with a boiling point range of about 30 to 200° C. among the products obtained by distilling and separating crude oil by an atmospheric distillation apparatus, and its components are chain-like with about 5 to 12 carbon atoms. and aromatic hydrocarbons such as alicyclic hydrocarbons (naphthenes) and benzene. Naphtha is mainly used as a raw material for gasoline, which will be described later, as well as a raw material for the petrochemical industry. Naphtha and its component hydrocarbon species can also be used as fuels.
Gasoline is a hydrocarbon fuel obtained mainly by refining and reforming the light fraction of naphtha. Like naphtha, gasoline is a mixture of hydrocarbons having about 5 to 11 carbon atoms, and has a boiling point of about 30°C to 220°C. ℃ range, the flash point is -40 ℃ or less petroleum products. Compared to naphtha, gasoline contains mainly aromatic hydrocarbons such as toluene and branched hydrocarbons generated by reforming, which improves the octane number. , is widely used as a propellant for mobile vehicles.
Kerosene is a petroleum product mainly composed of chain hydrocarbon components with about 8 to 15 carbon atoms, corresponding to fractions with boiling points in the range of about 150 to 280°C. Products based on kerosene that have undergone predetermined refinement or addition of anti-freezing components are used as heating fuel (kerosene), aircraft jet engine fuel, rocket fuel, etc. In this specification, kerosene shall also include these products.
Gas oil is a petroleum product with a boiling point in the range of about 180° C. to 350° C., and mainly consists of chain hydrocarbons with about 10 to 22 carbon atoms. Light oil is widely used as a fuel that burns particularly well in diesel engines, for thermal power generation, and for the propulsion of large land vehicles, railroads, and ships.
 上記液化石油ガス、ナフサ、ガソリン、ケロシン、および軽油に含まれる上記原料用炭化水素は、一般に、炭素数3~20の直鎖、枝分かれ、または脂環式の飽和炭化水素、および/またはアルケン、芳香族等の不飽和炭化水素を主体とする。液化石油ガスの成分としては、具体的には、プロパン、プロピレン、n-ブタン、イソブタン、1-ブテン、cis-2-ブテン、trans-2-ブテン、イソブテンが含まれる。ナフサは、成分として、n-ペンタン、イソペンタン、ネオペンタン、n-ヘキサン、n-オクタン、n-デカン等の直鎖および枝分かれ飽和炭化水素、1-ペンテン、1-ヘキセン、イソペンテン等の直鎖および枝分かれ不飽和炭化水素、シクロヘキサン、シクロへプタン等の脂環式炭化水素、およびそれらの異性体等を含む。ガソリンは、オクタン価を向上させるために直鎖飽和炭化水素成分は除かれ、枝分かれ飽和又は不飽和炭化水素や、ナフサの改質により生じたトルエン等の芳香族炭化水素が主体として含まれる。ケロシンや軽油の成分としては、ガソリン中の成分炭化水素種よりも分子量の大きな直鎖飽和炭化水素が主体であり、ケロシンでは炭素数13~14のn-トリデカンやn-テトラデカン、軽油では炭素数15~16のn-ペンタデカンやn-ヘキサデカン等を中心とした、一連の直鎖飽和炭化水素種を主に含む。
 上記の液化石油ガス、ナフサ、ガソリン、ケロシン、軽油、および上記原料用炭化水素は、一般に、自然界で採掘される化石燃料、ないし化石燃料から、分離、精製、改質などを経て得られるものであるが、化学構造が概ね共通していれば、後述するように、バイオ由来の採取物ないしはその改質物であってもよく、あるいは成分が概ね同等の合成物であってもよい。
The feedstock hydrocarbons contained in the liquefied petroleum gas, naphtha, gasoline, kerosene, and light oil are generally linear, branched, or alicyclic saturated hydrocarbons having 3 to 20 carbon atoms, and/or alkenes, Mainly unsaturated hydrocarbons such as aromatics. Specific components of liquefied petroleum gas include propane, propylene, n-butane, isobutane, 1-butene, cis-2-butene, trans-2-butene, and isobutene. Naphtha is composed of linear and branched saturated hydrocarbons such as n-pentane, isopentane, neopentane, n-hexane, n-octane, n-decane, linear and branched hydrocarbons such as 1-pentene, 1-hexene, isopentene, etc. It includes unsaturated hydrocarbons, alicyclic hydrocarbons such as cyclohexane and cycloheptane, and isomers thereof. Gasoline contains mainly branched saturated or unsaturated hydrocarbons and aromatic hydrocarbons such as toluene produced by reforming naphtha, with straight-chain saturated hydrocarbon components removed to improve the octane number. The main components of kerosene and light oil are straight-chain saturated hydrocarbons with a larger molecular weight than the component hydrocarbon species in gasoline. It mainly contains a series of linear saturated hydrocarbon species centered around 15-16 n-pentadecanes and n-hexadecanes.
The above-mentioned liquefied petroleum gas, naphtha, gasoline, kerosene, light oil, and the above-mentioned raw material hydrocarbons are generally obtained from fossil fuels mined in nature or from fossil fuels through separation, refining, reforming, etc. However, as long as the chemical structure is generally common, it may be a bio-derived harvested product or its modified product, or a synthetic product having roughly the same components, as will be described later.
 液化石油ガス、ナフサ、ガソリン、ケロシン、軽油、およびこれらの成分である上記原料用炭化水素は、いずれも助燃剤として、アンモニアの着火のし難さを補償することができる。アンモニアの発火点は約650℃であり、発火点が特に高い炭化水素として知られるメタン(発火点約540℃)と比較しても非常に高く、着火しにくい。一方、例えば、計測者によってある程度の差異はあるが、液化石油ガス(発火点約400℃)、ナフサ(同約230~290℃)、ガソリン(同約300℃)、ケロシン(同約220℃)、軽油(同約250℃)、および液化石油ガスの一成分のプロパン(同約430℃)およびn-ブタン(同約365℃)、ナフサの一成分のシクロヘキサン(同245℃)、ナフサおよびガソリンの一成分のn-ヘキサン(同約220℃)及びトルエン(同480℃)、ケロシンの一成分のn-デカン(同約210℃)、軽油の一成分のn-ヘキサデカン(同約200℃)の発火点はいずれも低く、アンモニアの着火のし難さを補償する。また、液化石油ガス、ナフサ、ガソリン、ケロシン、軽油、およびこれらの構成成分の炭化水素種は、一般に、アンモニアよりも高い燃焼速度を有する(例えば、大気圧下、常温(25℃)でのこれらの層流燃焼速度は、メタンのそれと同等以上であり、いずれもアンモニアの層流燃焼速度の約7cm/sの約5~7倍程度)。以上から、これら液化石油ガス、ナフサ、ガソリン、ケロシン、軽油、およびこれらの構成成分の上記原料用炭化水素を助燃剤として添加することによって、アンモニアの低い燃焼性を補償することができる。 All of liquefied petroleum gas, naphtha, gasoline, kerosene, light oil, and the above raw material hydrocarbons, which are components thereof, can compensate for the difficulty of igniting ammonia as combustion improvers. The ignition point of ammonia is about 650° C., which is much higher than that of methane (about 540° C.), which is known as a hydrocarbon with a particularly high ignition point, and is difficult to ignite. On the other hand, for example, although there are some differences depending on the measurer, liquefied petroleum gas (ignition point about 400 ° C), naphtha (about 230 to 290 ° C), gasoline (about 300 ° C), kerosene (about 220 ° C) , light oil (approximately 250°C), propane (approximately 430°C) and n-butane (approximately 365°C), a component of liquefied petroleum gas, cyclohexane (approximately 245°C), a component of naphtha, naphtha and gasoline n-Hexane (approximately 220°C) and toluene (approximately 480°C), n-decane (approximately 210°C), a component of kerosene, n-hexadecane (approximately 200°C), a component of light oil Both have low ignition points, compensating for the difficulty of igniting ammonia. Also, liquefied petroleum gas, naphtha, gasoline, kerosene, diesel, and their constituent hydrocarbon species generally have higher burning rates than ammonia (e.g., these The laminar burning velocity of is equal to or higher than that of methane, and both are about 5 to 7 times the laminar burning velocity of ammonia, which is about 7 cm/s). From the above, the low combustibility of ammonia can be compensated for by adding these liquefied petroleum gas, naphtha, gasoline, kerosene, light oil, and the above-mentioned feedstock hydrocarbons as combustion improvers.
 また、上記原料用アルコールは、メタノール、エタノール、n-プロパノール、及びイソプロパノールを含む。これらの原料用アルコールも、アンモニアに比べ低い発火点(メタノール、エタノール、n-プロパノール、およびイソプロパノールの発火点は、それぞれ約385℃、約384℃、約370℃、および約450℃)であり、また、いずれも、高い燃焼速度を有するため(層流燃焼速度において、アンモニアの約6~7倍程度)、これらも助燃剤として用いることができる。また、これらの原料用アルコールは、アンモニアと同様、燃焼させた時にいわゆるススをほとんど生じないので、燃焼時の燃焼器内部(レシプロエンジンなどの摺動部も含む)や、煙道内の清浄性を保ちやすい利点もある。 In addition, the raw material alcohol includes methanol, ethanol, n-propanol, and isopropanol. These raw material alcohols also have lower ignition points than ammonia (the ignition points of methanol, ethanol, n-propanol, and isopropanol are about 385° C., about 384° C., about 370° C., and about 450° C., respectively), In addition, since both of them have a high burning rate (approximately 6 to 7 times that of ammonia in terms of laminar flow burning rate), they can also be used as a combustion improver. In addition, these raw material alcohols, like ammonia, do not produce so-called soot when burned, so the inside of the combustor (including sliding parts such as reciprocating engines) and the inside of the flue during combustion are clean. It also has the advantage of being easy to maintain.
 液化アンモニアと、このような助燃剤の混合物であるアンモニア混合燃料は、以下の本発明の形態によれば、その液相部分の少なくとも一部が、アンモニアと助燃剤とが互いに溶解した溶液状態、または、アンモニアと助燃剤とのエマルション状態とすることが可能である。
 例えば、液化アンモニアに、液体状態の液化石油ガス、またはその成分の炭化水素種を助燃剤として、密閉空間内で混合する場合は、アンモニアと、成分の各炭化水素種またはそれらの混合物としての液化石油ガスとの間には、後述するように、熱力学的な気液平衡関係(気相および液相(二相分離ないし相溶)の、気液二相ないし気液液三相間の相平衡関係)が成り立つ。この関係に基づいて、成分炭化水素種によって程度の差はあるが、単にこれらを液化アンモニアと混合するだけで、いずれも、少なくとも部分的に相溶し、熱力学的に安定な状態になる。さらに温度を上げれば、アンモニアと相溶するこれらの助燃剤の部分の割合がより高められ、さらには完全に混和させることもできる。また、好適な界面活性剤(後にその態様の一例を示す)をさらに添加することによって、所定の温度において単なる混合では溶解できなかったこれらの助燃剤の残りの部分の少なくとも一部を、その温度において、エマルション状態として均一化することが可能である。
 また、炭素数5以上の炭化水素種を成分とするナフサ、ガソリン、ケロシン、軽油、およびこれらの成分炭化水素種を助燃剤とする場合も、後述するように、熱力学的な気液平衡関係(気相および液相(二相分離ないし相溶)の、気液二相ないし気液液三相間の相平衡関係)が成り立ち、密閉空間内での気液平衡条件下で、アンモニアを溶解させることができる。例えば、直鎖炭化水素種よりも分散性が高い枝分かれ鎖状炭化水素種、脂環式炭化水素種およびベンゼン等の芳香族炭化水素を多く含むナフサは、比較的高いアンモニアとの相溶性を有する。また、枝分かれ鎖状炭化水素種に加えて、非極性ないし低極性であっても誘起双極子が大きい芳香族炭化水素種を多く含むガソリンは、液化アンモニアとの相溶性が高い(後述する実施例14を参照)。例えば、前記ベンゼン、および市販ガソリン中に成分として多く含まれる芳香族炭化水素種であるトルエン、o,m,p-キシレン等は、常温(25℃)付近において、前述のメタノールと同様、混合比によらず液化アンモニアと完全に混和する。
 また、後述の好適な界面活性剤を添加することによって、液化石油ガス及びその成分炭化水素種の場合と同様に、その少なくとも一部を、エマルション状態として更に可溶化させることも可能である。これらにより、混合燃料全体としての燃焼性がより均一に向上される。
 アンモニアとこれらの助燃剤が溶液状態またはエマルション状態になることによって、燃焼の際に気化し、着火したこれらの助燃剤の極めて近傍に、気化したアンモニアが混在する状況が生じ、気化したアンモニアが誘導的に着火し、また燃焼速度も向上する結果、全体として、良好な、同時かつ均一な燃焼が実現できる。
 また、炭素数3以下の上記原料用アルコールは、常温(25℃)付近、大気圧下で、液化アンモニアと同程度の極性をもつ液体であり、互いの分子間に働く水素結合の効果により親和性が高いため、液化したアンモニアと、広い組成範囲において相溶する。さらに、液化アンモニアと上記原料用アルコールの混合物中においては、両者の分子間に水素結合が生じてアンモニアの気化が抑制されるため、それらの混合溶液の飽和蒸気圧は、同一温度におけるアンモニア単独の飽和蒸気圧に比べて低下する。このことは、液化アンモニアと上記原料用アルコールの溶液を保存する時に、常温(25℃)近傍での保存の際の保存容器の耐圧や、大気圧下近傍での冷却液化の際の冷却に要するエネルギーを、アンモニア単独の場合に比べて大幅に軽減できることを意味し、保存、輸送において大きな利点になる。すなわち、貯蔵性、輸送性に優れる。
 また、燃焼の際には、アンモニアと上記原料用アルコールとが溶液状態になることによって、上記炭化水素種との混合の場合と同様に、気化後に極めて均一なこれらの混合ガスが生じると共に、アンモニアに溶解した原料用アルコールが助燃剤として働くため、アンモニア単独時に比べ、発火点が低下して着火性が向上し、燃焼速度も向上する結果、燃焼性が向上する。ただし、これらの原料用アルコールの内、エタノールについては、徐々にではあるが、溶液中でアンモニアと反応して分解し、火災などの危険性が高まる場合があることが知られている。このため、エタノールを含むアンモニア混合燃料については、こうした反応を抑制する添加剤等を加えない限りは、製造後に長期保存せず、燃料として速やかに燃焼され、消費されることが好ましい。
The ammonia-mixed fuel, which is a mixture of liquefied ammonia and such a combustion improver, is in a solution state in which at least part of the liquid phase portion is a solution in which ammonia and the combustion improver are mutually dissolved, according to the following embodiments of the present invention. Alternatively, it can be in an emulsion state of ammonia and a combustion improver.
For example, when mixing liquefied ammonia with liquefied petroleum gas in a liquid state or a hydrocarbon species of its components as a combustion improver in a closed space, liquefaction of ammonia and each hydrocarbon species of components or a mixture thereof Between petroleum gas and petroleum gas, as will be described later, there is a thermodynamic gas-liquid equilibrium relationship (phase equilibrium between gas-liquid two phases or gas-liquid three phases of gas phase and liquid phase (two-phase separation or mutual solution) relationship) holds. Based on this relationship, the simple mixing of these with liquefied ammonia, to varying degrees depending on the constituent hydrocarbon species, will result in both being at least partially compatible and thermodynamically stable. If the temperature is further increased, the proportion of these combustion improvers that are compatible with ammonia can be increased and even completely miscible. Further, by further adding a suitable surfactant (an example of which will be shown later), at least a part of the remaining part of these combustion improvers that could not be dissolved by simple mixing at a given temperature can be dissolved at that temperature. In, it is possible to homogenize as an emulsion state.
Also, when naphtha, gasoline, kerosene, light oil, and these component hydrocarbon species are used as combustion improvers containing hydrocarbon species having 5 or more carbon atoms, the thermodynamic vapor-liquid equilibrium relationship (phase equilibrium relationship between gas-liquid two phases or gas-liquid three phases of gas phase and liquid phase (two-phase separation or mutual solution)) is established, and ammonia is dissolved under gas-liquid equilibrium conditions in a closed space be able to. For example, naphthas, which are rich in branched chain hydrocarbon species, alicyclic hydrocarbon species and aromatic hydrocarbons such as benzene, which are more dispersible than straight chain hydrocarbon species, have relatively high compatibility with ammonia. . In addition to branched chain hydrocarbon species, gasoline containing a large amount of non-polar or low-polar aromatic hydrocarbon species with a large induced dipole has high compatibility with liquefied ammonia (Examples described later 14). For example, benzene, and toluene, o, m, p-xylene, etc., which are aromatic hydrocarbon species contained in large amounts in commercial gasoline, are mixed at around room temperature (25 ° C.) in the same manner as the above-mentioned methanol. completely miscible with liquefied ammonia.
At least a portion of the liquefied petroleum gas and its component hydrocarbon species can be further solubilized as an emulsion by adding a suitable surfactant as described below. As a result, the combustibility of the mixed fuel as a whole is more uniformly improved.
When ammonia and these combustion improvers are in a solution or emulsion state, a situation is created in which the vaporized ammonia is mixed in the very vicinity of these combustion improvers that have been vaporized during combustion and ignited, and the vaporized ammonia is induced. Good, simultaneous and uniform combustion can be achieved as a whole, as a result of the targeted ignition and improved burning velocity.
In addition, the raw material alcohol having 3 or less carbon atoms is a liquid having a polarity similar to that of liquefied ammonia at around room temperature (25° C.) under atmospheric pressure, and is compatible with each other due to the effect of hydrogen bonding between molecules. It is compatible with liquefied ammonia over a wide range of compositions due to its high toughness. Furthermore, in the mixture of liquefied ammonia and the raw material alcohol, hydrogen bonding occurs between the molecules of the two to suppress the vaporization of ammonia. Lower than the saturated vapor pressure. This is necessary for the pressure resistance of the storage container when storing the solution of liquefied ammonia and the raw material alcohol at around room temperature (25 ° C.) and for cooling when cooling and liquefying at around atmospheric pressure. This means that the energy can be greatly reduced compared to ammonia alone, which is a great advantage in terms of storage and transportation. That is, it is excellent in storability and transportability.
Further, during combustion, the ammonia and the raw material alcohol are in a solution state, and as in the case of mixing with the hydrocarbon species, an extremely homogeneous mixed gas of these is generated after vaporization, and the ammonia Since the raw material alcohol dissolved in NH3 acts as a combustion improver, the ignition point is lowered and the ignitability is improved compared to when ammonia is used alone. However, among these raw material alcohols, ethanol is known to gradually react with ammonia in a solution and decompose, increasing the risk of fire and the like. Therefore, it is preferable that the ammonia-mixed fuel containing ethanol is not stored for a long period of time after production and is quickly burned and consumed as a fuel, unless an additive or the like is added to suppress such reactions.
 アンモニアと助燃剤の質量比は、混合燃料の適用対象及び目的に合わせて適宜決められる。例えば、液化石油ガス、ナフサ、ガソリン、ケロシン、軽油などの炭化水素燃料およびこれらの成分炭化水素種の一部を液化アンモニアに置き換えて(例えば、アンモニアの含有量がおよそ1質量%以上、20質量%以下)、燃焼時に生じるCOの生成を抑制することを目的とする場合には、これらの助燃剤の質量の方がアンモニアの質量より相対的に多くなる。こうした組成比において、常温(25℃)に近いおよそ50℃程度までの温度域の密閉空間内で、液化アンモニアと助燃剤とは、その大半の部分を相溶させ得るか、または後述の好適な界面活性剤を添加することでエマルション化させることができる。このような質量比の混合燃料は、それまで使用していた炭化水素燃料に適合した燃焼器、バーナー、内燃又は外燃機関その他の既存の燃焼装置をそのまま使い続けながら、一定のGHG排出抑制を行う際に有利である。
 逆に、液化アンモニアを主成分とし、上述の炭化水素燃料およびこれらの成分炭化水素種や前記原料用アルコールを、助燃剤として相対的に少量含む混合燃料とすることも可能である(例えば、アンモニア含有量が、およそ80質量%以上、99質量%以下の時)。こうした質量比においても、常温(25℃)に近いおよそ50℃程度までの温度域で、液化アンモニアと助燃剤とは、総容積に対しその大半の部分を相溶させ得るか、または後述の好適な界面活性剤を添加することでエマルション化させることができる。液化アンモニアを主体とするこのような混合燃料を用いる場合は、より大幅にGHGの排出抑制を行うことができる。
The mass ratio of ammonia to the combustion improver is appropriately determined according to the application and purpose of the mixed fuel. For example, hydrocarbon fuels such as liquefied petroleum gas, naphtha, gasoline, kerosene, diesel oil, and some of these component hydrocarbon species are replaced with liquefied ammonia (for example, the ammonia content is about 1% by mass or more, 20% by mass %), the mass of these combustion improvers is relatively greater than the mass of ammonia if the aim is to suppress the production of CO 2 that occurs during combustion. In such a composition ratio, most of the liquefied ammonia and the combustion improver can be compatible with each other in a closed space with a temperature range of up to about 50°C, which is close to normal temperature (25°C), or a suitable Emulsification can be achieved by adding a surfactant. A mixed fuel with such a mass ratio can achieve a certain level of GHG emission control while continuing to use combustors, burners, internal or external combustion engines, and other existing combustion equipment that are compatible with hydrocarbon fuels. It is advantageous when doing
Conversely, it is also possible to make a mixed fuel containing liquefied ammonia as a main component and containing relatively small amounts of the above-mentioned hydrocarbon fuel, these component hydrocarbon species, and the raw material alcohol as a combustion improver (for example, ammonia when the content is about 80% by mass or more and 99% by mass or less). Even at such a mass ratio, in a temperature range up to about 50°C, which is close to normal temperature (25°C), most of the liquefied ammonia and the combustion improver can be compatible with each other with respect to the total volume, or It can be emulsified by adding a suitable surfactant. When using such a mixed fuel mainly composed of liquefied ammonia, GHG emissions can be suppressed to a greater extent.
 また、助燃剤が液化石油ガス、ナフサ、ガソリンおよびその成分炭化水素種、ないしは炭素数3以下の原料用アルコールである場合には、液化アンモニアとの混合分散性が高いため、アンモニア含有量が、質量比を示した前記の二つの場合の中間の、およそ20~80質量%の混合燃料であっても、常温(25℃)付近からおよそ50℃程度までの温度域で、撹拌することによって、総容積に対しその大半の部分を相溶させ得るか、または後述の好適な界面活性剤を添加することでエマルション化させることが可能である。一方、助燃剤がケロシン、軽油、およびこれらの成分炭化水素種の場合は、常温(25℃)付近からおよそ50℃程度までの温度域においては、液化アンモニアとの混合分散性が低いため、アンモニア含有量がおよそ20~80質量%程度の、前記助燃剤との質量比が拮抗するような混合比では、後述の好適な界面活性剤を用いても、全体をエマルションとして均一分散させるためには、その所要添加量が著しく多くなる(例えば、およそ10質量%以上の相当量が必要)。また、多量の界面活性剤を十分に分散させることも困難になる。従って、このような混合組成では、実際には、液相分離する部分が残留することが避け難い(このため、液化アンモニアまたは助燃剤のいずれかの添加量を、可溶化ないしエマルション化し得る上限量以内に制限する等により対処される)。ただし、後述する好適な界面活性剤を用いれば、最大約5質量%程度の添加によって、液相が分離したとしても、分離した二相の内で燃焼が劣るアンモニア側の相において、助燃剤(ケロシン、軽油、およびこれらの成分炭化水素種)を、およそ10質量%程度まではエマルション化、分散させ得るので、前記助燃剤を分散させたこのようなアンモニア側の相の燃焼性は、液化アンモニア単独時に比べて向上する。なお、液相分離した内の他方の相は、前記助燃剤を主体とするため、その燃焼性は高い。なお、後述するように、ケロシンおよびその成分炭化水素種についてもおよそ50~100℃程度まで加熱すれば、また軽油およびその成分炭化水素種についてもおよそ80~130℃程度まで加熱すれば、界面活性剤が無添加であっても、広い範囲の混合比において、液化アンモニアと相溶させることができる(130℃程度以上では、混合物は亜臨界ないし超臨界状態となって相溶する)。
 以上のアンモニア混合燃料の助燃剤において、原料用炭化水素と原料用アルコールとを共に含む場合も、それぞれの質量比については、混合燃料の適用対象及び目的に合わせて適宜定められる。
In addition, when the combustion improver is liquefied petroleum gas, naphtha, gasoline and its component hydrocarbon species, or a raw material alcohol having 3 or less carbon atoms, the mixed dispersibility with liquefied ammonia is high, so the ammonia content is Even with a mixed fuel of about 20 to 80% by mass, which is between the two cases where the mass ratio is shown, by stirring in a temperature range from about normal temperature (25 ° C.) to about 50 ° C., The majority of the total volume can be made compatible, or it can be emulsified by adding a suitable surfactant as described below. On the other hand, when the combustion improver is kerosene, light oil, or a component hydrocarbon species thereof, the mixed dispersibility with liquefied ammonia is low in the temperature range from about normal temperature (25°C) to about 50°C. At a mixing ratio where the content is about 20 to 80% by mass and the mass ratio with the combustion improver is competitive, even if a suitable surfactant described later is used, it is difficult to uniformly disperse the whole as an emulsion. , the required amount of addition is significantly increased (for example, an equivalent amount of about 10% by mass or more is required). It also becomes difficult to sufficiently disperse a large amount of surfactant. Therefore, in such a mixed composition, in fact, it is difficult to avoid a portion that undergoes liquid phase separation (for this reason, the added amount of either liquefied ammonia or the combustion improver is the upper limit amount that can be solubilized or emulsified. are dealt with by, for example, limiting them to within However, if a suitable surfactant, which will be described later, is used, even if the liquid phase is separated by adding a maximum of about 5% by mass, the combustion improver ( kerosene, light oil, and their component hydrocarbon species) can be emulsified and dispersed up to about 10% by mass, so the combustibility of such an ammonia-side phase in which the combustion improver is dispersed is greater than that of liquefied ammonia. Better than alone. In addition, since the other phase of the separated liquid phase is mainly composed of the combustion improver, its combustibility is high. As will be described later, if kerosene and its component hydrocarbon species are heated to about 50 to 100° C., and if light oil and its component hydrocarbon species are heated to about 80 to 130° C., surface activity Even if the agent is not added, it can be compatible with liquefied ammonia in a wide range of mixing ratios (at about 130° C. or higher, the mixture becomes subcritical or supercritical and compatible).
In the above combustion improver for the ammonia mixed fuel, even when both the raw material hydrocarbon and the raw material alcohol are contained, the mass ratio of each is appropriately determined according to the application and purpose of the mixed fuel.
 アンモニア混合燃料においては、その混合溶液状態、またはエマルション状態の部分は、全量に対する割合は大きいほどよく、可能であれば、平衡安定組成として製造後もそのまま維持されることが好ましい。これらにより、アンモニア混合燃料の全体の燃焼性を、より均一に向上させることができる。また、こうしたアンモニア混合燃料を、配管系を通して送液する際に、液相が二相に分離していると、各相の比重差によって配管系内の上下方向に各相が層状に分かれ、配管系内の淀み箇所にいずれかの相が滞留しやすくなり、その結果、送液出口でアンモニア混合燃料の組成がずれるような事態も生じ得る。しかし、混合溶液状態、またはエマルション状態の部分の全量に対する割合が大きいほど、そうした組成がずれるような事態を防止しやすい。
 特に、アンモニアに加える助燃剤が、界面活性剤を添加しなくても平衡関係によって相当程度相溶し得る、液化石油ガス、ナフサ、ガソリン、およびそれらの成分炭化水素種、および前記原料用アルコールである場合は、一旦相溶した部分については、溶解時の温度が保たれ、気液平衡状態が保持される限り、熱力学的に安定な溶液状態として、そのまま永久的に相溶し続ける(ただし、前述したように、助燃剤がエタノールを含む場合は、徐々にアンモニアとの反応が進行する)。
 また、混合分散後に形成されるエマルション状態が、安定に維持される時間は、長時間であるほどよい。安定な維持時間は、燃料としての保存および使用上、目安として、少なくとも5分間程度であり、好ましくは数日であり、より好ましくは1ヶ月程度以上である。特に、後述する好適な界面活性剤を十分な量添加し、適切な温度で撹拌することにより、エマルション状態の混合燃料を調製した場合には、一旦形成されたエマルションは、溶解時の温度が保たれ、気液平衡状態が保持される限りは熱力学的に準安定な状態を保つため、1日から数日、ないし1ヶ月程度以上の長期にわたって、その分散状態が維持され得る。
 アンモニア混合燃料が、非平衡状態の過渡的なエマルション状態にあり、その保存中に各成分が相分離するような場合は、アンモニア混合燃料を燃焼器に供給する前に、再度撹拌混合してエマルション状態に戻すとよい。その際、必要があれば、後述するように適宜温度調節を行う。これにより、アンモニア混合燃料が有する燃焼上の利点を復活させることができる。
 さらに、アンモニア混合燃料は、前記アンモニア混合燃料の液相部分の全体が、前記アンモニアと前記助燃剤とが互いに溶解した溶液状態、または、前記アンモニアと前記助燃剤とのエマルション状態となるような、液相組成に応じた所定の温度に保たれることが好ましい。
 アンモニア混合燃料は、後述するように、その構成成分の組成と温度とを、適正な組成および該組成に応じた適正な温度範囲に保つか、後述する好適な界面活性剤を十分な量添加して混合分散するかの、少なくともいずれか一方により、アンモニア混合燃料の液相部分の全体を、アンモニアと前記助燃剤とを互いに溶解した溶液状態とするか、または、前記アンモニアと前記助燃剤とのエマルション状態となるようにすることも可能である。アンモニア混合燃料の液相部分の全体が、アンモニアと前記助燃剤とが互いに溶解した溶液状態、または、アンモニアと前記助燃剤とのエマルション状態を保持することによって、アンモニア混合燃料の全体の燃焼性を、均一かつ最高度に向上させることができる。
In the ammonia mixed fuel, the proportion of the portion in the mixed solution state or emulsion state to the total amount is preferably as large as possible. As a result, the overall combustibility of the ammonia-mixed fuel can be improved more uniformly. In addition, when such an ammonia mixed fuel is sent through a piping system, if the liquid phase is separated into two phases, each phase will be divided into layers in the vertical direction in the piping system due to the difference in the specific gravity of each phase. Either of the phases tends to stay in the stagnation point in the system, and as a result, a situation may occur in which the composition of the ammonia-mixed fuel deviates at the liquid feed outlet. However, the larger the ratio of the portion in the mixed solution state or emulsion state to the total amount, the easier it is to prevent such a situation in which the composition deviates.
In particular, the liquefied petroleum gas, naphtha, gasoline, and their component hydrocarbon species, and the raw material alcohol, in which the combustion improver added to ammonia can be compatible to a considerable extent due to an equilibrium relationship without the addition of a surfactant. In some cases, as long as the temperature at the time of dissolution is maintained and the gas-liquid equilibrium state is maintained, the part that has once dissolved will remain in a thermodynamically stable solution state and will continue to be compatible permanently as it is (however, , as described above, when the combustion improver contains ethanol, the reaction with ammonia proceeds gradually).
In addition, the longer the time in which the emulsion state formed after mixing and dispersing is stably maintained, the better. The stable maintenance time is about 5 minutes, preferably several days, and more preferably about 1 month or more as a guide in terms of storage and use as a fuel. In particular, when a mixed fuel in an emulsion state is prepared by adding a sufficient amount of a suitable surfactant, which will be described later, and stirring at an appropriate temperature, the emulsion once formed maintains the temperature at the time of dissolution. As long as the gas-liquid equilibrium state is maintained, the dispersed state can be maintained for a long period of time, from one day to several days to about one month or more, because it maintains a thermodynamically metastable state.
If the ammonia mixed fuel is in a non-equilibrium transitional emulsion state and phase separation occurs during storage, the ammonia mixed fuel should be stirred and mixed again to form an emulsion before it is supplied to the combustor. It is good to restore the state. At that time, if necessary, the temperature is appropriately adjusted as described later. This can restore the combustion advantages of the ammonia-blended fuel.
Furthermore, the ammonia mixed fuel is such that the entire liquid phase portion of the ammonia mixed fuel is in a solution state in which the ammonia and the combustion improver are mutually dissolved, or in an emulsion state of the ammonia and the combustion improver. It is preferable to keep at a predetermined temperature according to the liquid phase composition.
As will be described later, the ammonia mixed fuel is maintained at a proper composition and a proper temperature range according to the composition and temperature of its constituent components, or a sufficient amount of a suitable surfactant described later is added. by at least one of mixing and dispersing the ammonia and the combustion improver so that the entire liquid phase portion of the ammonia mixed fuel is in a solution state in which the ammonia and the combustion improver are mutually dissolved, or the ammonia and the combustion improver are dissolved. It is also possible to make it into an emulsion state. The entire liquid phase portion of the ammonia mixed fuel maintains a solution state in which ammonia and the combustion improver are mutually dissolved, or an emulsion state of ammonia and the combustion improver, thereby improving the combustibility of the entire ammonia mixed fuel. , can be improved uniformly and to the highest degree.
 なお、特に、アンモニア(炭素を全く含まない)、液化石油ガス、炭素数3以下の原料用アルコールについては、発熱量当たりのCO排出が、化石燃料として従来多く用いられて来たガソリン、ケロシン、軽油、重油、石炭等に比べて少ないため、これらを助燃剤として混合したアンモニア混合燃料は、それ自体が、CO等の温室効果ガス(GHG)排出抑制において非常に効果的な燃料である。
 また、前述の液化石油ガス、ナフサ、ガソリン、ケロシン、軽油、およびこれらの成分の原料用炭化水素と同等の構造を持つ炭化水素種や、エタノールを除く炭素数3以下の原料用アルコールは、太陽光、風力、水力、地熱等の再生可能エネルギーや、原子力によって得られた電力や、該電力を用いた水の電気分解等で得られる水素によって、産業排ガスや大気中から分離採取されるCOを還元して合成されるCOやメタン等を経由し、化学合成によって製造される場合もある。再生可能エネルギーを元に製造される、こうした原料用炭化水素や、前記の原料用アルコールについては、化石燃料の場合とは異なり、それらを燃焼し、排ガスを大気中に放出しても、COの排出は実質的に抑制されると見做される。
 また、これらと同等の構造の炭化水素種や、メタノール、エタノールを含む炭素数3以下の原料用アルコールの多くは、光合成を行う植物や微生物の代謝生産物等の原料からも合成され得ることが知られている。光合成や代謝生産物等に基づくこうした生成物を助燃剤として用いる場合は、含有される炭素が大気中のCO由来であるため、燃焼しても大気中のCOを実質的に増加させないと見做される。従って、上述した再生可能エネルギーに基づく助燃剤、および光合成に基づくバイオ由来の助燃剤を混合したアンモニア混合燃料の使用は、地球温暖化を高度に抑制し得る。
In particular, for ammonia (which does not contain carbon at all), liquefied petroleum gas, and raw material alcohols with 3 or less carbon atoms, CO2 emissions per calorific value are lower than those of gasoline and kerosene, which have been widely used as fossil fuels. , light oil, heavy oil, coal, etc., so the ammonia mixed fuel, which is a mixture of these as a combustion improver, is itself a very effective fuel in reducing greenhouse gas (GHG) emissions such as CO2 . .
In addition, the aforementioned liquefied petroleum gas, naphtha, gasoline, kerosene, light oil, hydrocarbon species having structures equivalent to those of raw material hydrocarbons of these components, and raw material alcohols with 3 or less carbon atoms excluding ethanol are CO2 separated and collected from industrial exhaust gases and the atmosphere by using renewable energy such as light, wind power, hydraulic power, and geothermal power, electric power obtained from nuclear power, and hydrogen obtained by electrolysis of water using such electric power. In some cases, it is produced by chemical synthesis via CO, methane, etc. synthesized by reducing . Unlike fossil fuels, these raw material hydrocarbons and the above-mentioned raw material alcohols, which are produced based on renewable energy, are burned and the exhaust gas is released into the atmosphere, CO 2 emissions are assumed to be substantially reduced.
In addition, many of the hydrocarbon species with structures equivalent to these and raw material alcohols having 3 or less carbon atoms, including methanol and ethanol, can be synthesized from raw materials such as metabolites of plants and microorganisms that perform photosynthesis. Are known. When such products based on photosynthesis, metabolites, etc. are used as combustion improvers, the carbon contained is derived from atmospheric CO2 , so combustion must not substantially increase atmospheric CO2 . be regarded. Therefore, the use of the above-mentioned renewable energy-based combustion improver and the ammonia mixed fuel mixed with the photosynthesis-based bio-based combustion improver can greatly suppress global warming.
 アンモニア混合燃料は、燃料を液化状態で安定供給できるように保存および輸送する点から、気液平衡が維持される密閉環境内で隔離保存される、ことが好ましい。 From the viewpoint of storing and transporting the ammonia-mixed fuel so that the fuel can be stably supplied in a liquefied state, it is preferable that it be isolated and stored in a closed environment where gas-liquid equilibrium is maintained.
 一実施形態のアンモニア混合燃料は、助燃剤として、上記液化石油ガス、上記原料用炭化水素、および上記原料用アルコールの内の少なくとも一つを含み、上記原料用炭化水素は、上記液化石油ガスに成分として含まれる少なくとも一つの炭化水素種であり、原料用アルコールは、メタノールである、ことが好ましい。すなわち、アンモニア混合燃料は、助燃剤として、液化石油ガス、液化石油ガスに成分として含まれる少なくとも一つの炭化水素、及びメタノールの少なくとも一つを含むことが好ましい。
 液化石油ガスおよびその構成成分として含まれる炭化水素種は、従来、液体燃料として多く用いられて来たガソリン、ケロシン、軽油、あるいは、重油に比べると、燃焼の際に、発熱量当たりのCOの発生が少ない点で好ましい。
 液化石油ガスおよびその構成成分として含まれる炭化水素種は、前述のように、同一温度の液体状態において、アンモニアに比較的近い飽和蒸気圧を有し、かつ、メタン等のより低分子の炭化水素に比べて着火温度が低いため着火し易く、また、アンモニアのおよそ5~6倍程度の、メタンと同等以上の燃焼速度を有し、アンモニアの助燃剤として有利である。
 したがって、液化石油ガスあるいはその成分炭化水素種とアンモニアとが溶液状態またはエマルション状態になると、その燃焼の際には、非常に均一に混合された状態で略同時にかつ均一に気化し、気化した混合ガスが同時にかつ均一に加熱される状況が得られ易い。このため、液化石油ガスないしプロパン等のその成分炭化水素種が、気化した後に燃焼器内で発火することにより、液化石油ガスないしその成分炭化水素種のガスの極めて近くに混在する、気化したアンモニアが加熱されて着火され、全体として、特に良好な、同時かつ均一な燃焼が実現できる。
In one embodiment, the ammonia mixed fuel contains at least one of the liquefied petroleum gas, the raw material hydrocarbon, and the raw material alcohol as a combustion improver, and the raw material hydrocarbon is the liquefied petroleum gas. At least one hydrocarbon species contained as a component, and the starting alcohol is preferably methanol. That is, the ammonia mixed fuel preferably contains at least one of liquefied petroleum gas, at least one hydrocarbon contained as a component in liquefied petroleum gas, and methanol as a combustion improver.
Liquefied petroleum gas and the hydrocarbon species contained as its constituents produce less CO2 per calorific value during combustion than gasoline, kerosene, light oil, or heavy oil, which have traditionally been widely used as liquid fuels. is preferable in terms of less occurrence of
As described above, the liquefied petroleum gas and the hydrocarbon species contained as its constituents have a saturated vapor pressure relatively close to that of ammonia in the liquid state at the same temperature, and a lower molecular weight hydrocarbon such as methane. It is easy to ignite due to its low ignition temperature compared to , and has a burning rate equal to or higher than that of methane, which is about 5 to 6 times that of ammonia, and is advantageous as a combustion improver for ammonia.
Therefore, when liquefied petroleum gas or its component hydrocarbon species and ammonia are in a solution state or an emulsion state, they are mixed very uniformly and vaporize substantially simultaneously and uniformly during combustion. It is easy to obtain a situation in which the gases are heated simultaneously and uniformly. Thus, vaporized ammonia mixed in close proximity to the gas of liquefied petroleum gas or its constituent hydrocarbon species, such as liquefied petroleum gas or its constituent hydrocarbon species, such as propane, ignites in the combustor after vaporization. is heated and ignited, and overall a particularly good, simultaneous and homogeneous combustion can be achieved.
 従来、燃料として多く用いられて来た液体の化石燃料の内で、ガソリンを除く、ケロシン、軽油、およびこれらの成分の炭化水素種は、炭素数がおよそ8以上の非極性の直鎖飽和炭化水素を主体とする。一般に、こうした炭素数がおよそ8以上の非極性の直鎖飽和炭化水素種と液化アンモニアとの混合物は、その気液平衡条件下において、常温(25℃)付近からおよそ50℃程度までの温度範囲では、相溶しにくく、二相に分離する。後述する界面活性剤を添加せずにこれらを相溶させるためには、液化石油ガスおよびその成分炭化水素種に比べてより高い温度(例えば、ケロシンおよびその成分炭化水素種ではおよそ50~100℃程度、軽油およびその成分炭化水素種ではおよそ80~130℃程度)に加熱されることが必要であり、その際、アンモニアの気化性状により主に支配される飽和蒸気圧が上昇するので(例えば、およそ3~4MPaないしはそれ以上)、混合燃料の製造及び保存の際の製造装置には高い耐圧性が要求される。このため、こうした炭素数およそ8以上の非極性の直鎖飽和炭化水素と液化アンモニアとを、安定かつ精密に混合した状態で燃焼に供するためには、後述するような所定の界面活性剤の添加混合によるエマルション化が、一般には必要になる。
 一方、液化石油ガスの主要成分である、炭素数3および4の8種類の炭化水素(プロパン、プロピレン、n-ブタン、イソブタン、1-ブテン、cis-2-ブテン、trans-2-ブテン、およびイソブテン)については、いずれも非極性であるにもかかわらず、温度がおよそ40℃以下の所定の温度、飽和蒸気圧がおよそ2MPa以下の密閉空間内における気液平衡条件下において、界面活性剤を添加しなくても、高極性の液体アンモニアと、略あらゆる組成範囲で一様に相溶する。こうしたアンモニアおよび低分子炭化水素の相溶性、および関連する気液相の平衡関係については、冷媒としてのアンモニアおよび低分子炭化水素の混合性状に関する非特許文献4および5に、それらの一端が示されている。以下、非特許文献4および5に記載のデータを基に、助燃剤として液化石油ガスの主成分であるプロパン、およびn-ブタンを用いた場合を例として、上記の液化アンモニアと助燃剤とが相溶した溶液状態となる状況、およびエマルション状態となる状況について説明する。
Among the liquid fossil fuels that have been widely used as fuels, kerosene, light oil, and the hydrocarbon species of these components, excluding gasoline, are non-polar linear saturated hydrocarbons having about 8 or more carbon atoms. Mainly hydrogen. In general, a mixture of non-polar straight-chain saturated hydrocarbon species having about 8 or more carbon atoms and liquefied ammonia has a temperature range from about normal temperature (25 ° C.) to about 50 ° C. under the vapor-liquid equilibrium conditions. However, it is difficult to mix with each other and separates into two phases. In order to make them compatible without adding a surfactant, which will be described later, a higher temperature than liquefied petroleum gas and its component hydrocarbon species (e.g., about 50 to 100 ° C. for kerosene and its component hydrocarbon species) degree, about 80 to 130 ° C for gas oil and its component hydrocarbon species). about 3 to 4 MPa or more), a high pressure resistance is required for production equipment during production and storage of the mixed fuel. For this reason, in order to burn such non-polar straight-chain saturated hydrocarbons having about 8 or more carbon atoms and liquefied ammonia in a stable and precisely mixed state, it is necessary to add a predetermined surfactant as described later. Emulsification by mixing is generally required.
On the other hand, eight types of hydrocarbons with 3 and 4 carbon atoms (propane, propylene, n-butane, isobutane, 1-butene, cis-2-butene, trans-2-butene, and For isobutene), although both are non-polar, the surfactant is added under gas-liquid equilibrium conditions in a closed space with a predetermined temperature of about 40 ° C. or less and a saturated vapor pressure of about 2 MPa or less. Even if it is not added, it is uniformly compatible with highly polar liquid ammonia in almost all composition ranges. The compatibility of such ammonia and low-molecular-weight hydrocarbons and the related equilibrium relationship between gas-liquid phases are partly shown in Non-Patent Documents 4 and 5 concerning mixed properties of ammonia and low-molecular-weight hydrocarbons as refrigerants. ing. Hereinafter, based on the data described in Non-Patent Documents 4 and 5, the case where propane and n-butane, which are the main components of liquefied petroleum gas, are used as the combustion improver will be taken as an example. A situation in which a compatible solution state is obtained and a situation in which an emulsion state is obtained will be described.
 図1(a),(b)に、非特許文献4および5にそれぞれ記載されている、アンモニア-プロパン系およびアンモニア-n-ブタン系それぞれの気液液平衡(VLLE)の関係を図示する(図1(a),(b)では、液相および気相のアンモニア濃度(x、y)は、非特許文献4および5中で用いられたモル分率表示から、質量%表示に変換されている)。
 図1(a)では、20℃(上側)、および0℃(下側)における、アンモニア-プロパン系の不均一共沸系の気液液平衡(VLLE)における気液組成と飽和蒸気圧との関係が示されている。図中の実線(20℃ではPABQ、0℃ではP’A’B’Q’の軌跡)は、液相組成(x)と飽和蒸気圧(p)の関係(液相線)を示し、その下側の破線(20℃ではPOQ、0℃ではP’O’Q’の軌跡)は、液相と平衡関係にある気相組成(y)と飽和蒸気圧(p)の関係(気相線)を示す。20℃において、純プロパンの気液平衡を示す、気液相組成x,y=0のP点から、液相中のアンモニア濃度が上昇し、アンモニアの溶解が飽和するA点(アンモニア濃度x=16.2質量%)に達するまでは、プロパンを主体とする液相にアンモニアは均一に溶解し続け、液相単相状態を維持しながら飽和蒸気圧が上昇する。
 液相中のアンモニア濃度が飽和濃度xとなるA点に達すると(この時、気相は、飽和蒸気圧が極大になるO点(共沸点:気相アンモニア濃度y=31.2質量%、飽和蒸気圧p=1.64MPa)に到達)、前記のプロパンを主体とする液相中のアンモニア濃度はそれ以上上昇せず、該相とは相分離した、アンモニアを主体とする別の液相が現れる。このアンモニアを主体とする相分離した液相中では、プロパンが飽和溶解している(該相中のアンモニア濃度x=86.5質量%、プロパン濃度(飽和)1-x=13.5質量%)。液相組成がxからxに至る間(液相線の線分AB上)は、アンモニア濃度xのプロパン主体の液相と、アンモニア濃度xのアンモニア主体の液相の、相分離した二相が共存し、その間、気相は、これに平衡な、アンモニア濃度y、飽和蒸気圧pの共沸状態(O点)に維持される。また、液相が二相分離する領域にある線分AB上の点C(アンモニア濃度x)においては、アンモニア濃度xのプロパン主体の相と、アンモニア濃度xのアンモニア主体の相の、それぞれの質量比は、「てこの原理」により(x-x):(x-x)で表される。
 液相のアンモニア濃度がx(液相線上のB点)を超えて増加すると、前記のプロパンを主体とする相が消失し、液相は、プロパンを溶解した前記のアンモニアを主体とする単一相のみとなり、さらに該相中のアンモニア濃度を増加させると、液相線上のBQの軌跡を経て、単一相のまま、純アンモニアの気液平衡を示す図中のQ点に至る。これに平衡な気相の組成及び飽和蒸気圧は、気相線上のOQの軌跡を描き、気相アンモニア濃度の上昇に伴って、前記のQ点まで飽和蒸気圧が低下する。以上の挙動は、熱力学的な平衡関係に基づくので、純アンモニアの気液平衡を示すQ点側から、アンモニア濃度を減少させる方向に操作しても、同一になる。
1 (a) and (b) illustrate the relationship between the vapor-liquid-liquid equilibrium (VLLE) of the ammonia-propane system and the ammonia-n-butane system, respectively, described in Non-Patent Documents 4 and 5 ( In FIGS. 1(a) and 1(b), the ammonia concentrations (x, y) in the liquid phase and gas phase are converted from the mole fraction representation used in Non-Patent Documents 4 and 5 to mass % representation. are).
In FIG. 1(a), the relationship between the gas-liquid composition and the saturated vapor pressure in the gas-liquid-liquid equilibrium (VLLE) of the heterogeneous azeotropic ammonia-propane system at 20 ° C. (upper) and 0 ° C. (lower) relationship is shown. The solid line in the figure (the locus of PABQ at 20°C and P'A'B'Q' at 0°C) indicates the relationship (liquidus line) between the liquid phase composition (x) and the saturated vapor pressure (p). The lower dashed line (the locus of POQ at 20°C and P'O'Q' at 0°C) is the relationship between the gas phase composition (y) and the saturated vapor pressure (p) in equilibrium with the liquid phase (gas phase line ). At 20° C., from point P where the gas-liquid phase composition x, y = 0, which indicates the gas-liquid equilibrium of pure propane, the concentration of ammonia in the liquid phase rises to point A (ammonia concentration x A = 16.2% by mass), ammonia continues to uniformly dissolve in the liquid phase mainly composed of propane, and the saturated vapor pressure increases while maintaining the liquid single-phase state.
When the ammonia concentration in the liquid phase reaches the point A where the saturated concentration x A is reached (at this time, the gas phase reaches the point O where the saturated vapor pressure is maximized (azeotropic point: gas phase ammonia concentration y O = 31.2 mass %, the saturated vapor pressure p O =1.64 MPa) was reached), the concentration of ammonia in the propane-based liquid phase did not increase any further, and a phase-separated ammonia-based separate phase from the propane-based liquid phase A liquid phase appears. In this phase-separated liquid phase mainly composed of ammonia, propane is saturated and dissolved (ammonia concentration in the phase x B =86.5% by mass, propane concentration (saturation) 1−x B =13.5 mass%). Between the liquid phase composition x A and x B (on the line segment AB of the liquidus line), the propane-based liquid phase with the ammonia concentration x A and the ammonia-based liquid phase with the ammonia concentration x B undergo phase separation. In the meantime, the gas phase is maintained in an azeotropic state ( point O ) of ammonia concentration y 0 and saturated vapor pressure p 0 , which are in equilibrium with this. In addition, at point C (ammonia concentration x C ) on line segment AB in the region where the liquid phase separates into two phases, a propane-based phase with ammonia concentration x A and an ammonia-based phase with ammonia concentration x B , The respective mass ratios are represented by (x B −x C ):(x C −x A ) according to the “lever principle”.
When the concentration of ammonia in the liquid phase increases beyond x B (point B on the liquidus line), the propane-based phase disappears, and the liquid phase becomes the ammonia-based monolith with dissolved propane. When there is only one phase and the concentration of ammonia in the phase is further increased, the single phase remains at the point Q in the figure, which indicates the vapor-liquid equilibrium of pure ammonia, via the trajectory of BQ on the liquidus line. The vapor phase composition and saturated vapor pressure in equilibrium with this draw a locus of OQ on the vapor phase line, and the saturated vapor pressure decreases to the Q point as the vapor phase ammonia concentration increases. Since the above behavior is based on a thermodynamic equilibrium relationship, the behavior is the same even if the operation is performed in the direction of decreasing the ammonia concentration from the Q point indicating the vapor-liquid equilibrium of pure ammonia.
 以上から、20℃においては、前記のプロパンを主体とする液相中には、図1(a)中のPAの軌跡を経て、アンモニアを、その飽和濃度のx(=16.2質量%)まで、相分離させることなく、熱力学的に安定に溶解させることができる。また、前記のアンモニアを主体とする液相中には、同図中のQBの軌跡を経て、プロパンを、その飽和濃度の1-x(=13.5質量%)まで、相分離させることなく、熱力学的に安定に溶解させることができる。液化アンモニアに対し、液化プロパンを助燃剤として溶解させた20℃の混合燃料を想定すると、上記2つの液相の内のプロパンを主体とする液相は、助燃剤の液化プロパンの量が液化アンモニアに比べて著しく多い場合に該当する。液化プロパンの一部(ここでは16.2質量%以下)がアンモニアに置き換えられることにより、これを混合燃料として取り出し、燃焼に供すれば、全体として均一に燃焼する単相の相溶混合燃料となり、かつ、前記の置換の分、液化プロパンの単独燃焼時に比べ、COの生成を抑制することができる。また、上記2つの液相の内のアンモニアを主体とする液相は、助燃剤の液化プロパンの量が液化アンモニアに比べて少ない場合に該当する。液化アンモニアの一部(ここでは13.5質量%以下)がプロパンに置き換えられることにより、これを混合燃料として取り出し、燃焼に供すれば、全体として均一に燃焼する単相の相溶混合燃料となり、かつ、前記の置換の分、液化アンモニアの単独燃焼時に比べ、燃焼性を向上させることができる。
 また、図1(a)の20℃の気液液平衡関係において、C点の液相アンモニア濃度xにおいては、液相は二相に分離する(この時、比重差によって、上層がプロパンを主体とする相(アンモニア濃度x=16.2質量%)、下層がアンモニアを主体とする相(アンモニア濃度x=86.5質量%)になる)。この時、同図中のように、C点がB点に近い位置にある場合には、前述した「てこの原理」から、上記のプロパンを主体とする液相の質量は、上記のアンモニアを主体とする液相の質量に比べて相対的に少量になる。この全量を混合燃料として取り出し、燃焼に供する場合、相分離があるために、混合燃料としての燃焼の均一性は、上記の単相の相溶混合燃料の場合に比べて劣るが、少量相分離したプロパンを主体とする液相も、元々燃焼性が高いため、全体として良好に燃焼させることができる。一方、C点がA点に近い位置にある場合も、その全量を混合燃料として取り出し、燃焼に供する場合、混合燃料としての燃焼の均一性は上記の単相の相溶混合燃料の場合に比べて劣るが、少量相分離したアンモニアを主体とする液相も、濃度1-x(=13.5質量%)でプロパンが飽和溶解しているため、助燃効果が付与されるので、全体として良好に燃焼させることができる。また、後述するように、二相に分離した上層および/または下層が、それぞれ別々に混合燃料として取り出せ、それぞれの層を別々に燃焼に供することができれば、それぞれの層自体が単相の混合燃料となるため、それぞれが均一で良好な燃焼性を示す。
From the above, at 20 ° C., the liquid phase mainly composed of propane contains ammonia through the trajectory of PA in FIG. ) can be thermodynamically stably dissolved without phase separation. In addition, in the liquid phase mainly composed of ammonia, propane is phase-separated up to its saturation concentration 1-x B (= 13.5% by mass) through the locus of QB in the figure. can be thermodynamically stably dissolved. Assuming a mixed fuel at 20°C in which liquefied propane is dissolved as a combustion improver in liquefied ammonia, the liquid phase mainly composed of propane among the above two liquid phases has an amount of liquefied propane as a combustion improver that is equal to that of liquefied ammonia. It corresponds to the case where it is remarkably large compared to . Part of the liquefied propane (here, 16.2% by mass or less) is replaced with ammonia, and if this is taken out as a mixed fuel and subjected to combustion, it becomes a single-phase compatible mixed fuel that burns uniformly as a whole. In addition, due to the replacement, the production of CO 2 can be suppressed as compared with the combustion of liquefied propane alone. Of the two liquid phases, the liquid phase mainly composed of ammonia corresponds to the case where the amount of liquefied propane as the combustion improver is smaller than that of liquefied ammonia. Part of the liquefied ammonia (here, 13.5% by mass or less) is replaced with propane, and if this is taken out as a mixed fuel and subjected to combustion, it becomes a single-phase compatible mixed fuel that burns uniformly as a whole. Moreover, due to the replacement, the combustibility can be improved as compared with the combustion of liquefied ammonia alone.
In addition, in the gas-liquid-liquid equilibrium relationship at 20 ° C. in FIG. A phase mainly composed of ammonia (ammonia concentration x A =16.2% by mass), and a lower layer becomes a phase mainly composed of ammonia (ammonia concentration x B =86.5% by mass)). At this time, as shown in the figure, when point C is close to point B, from the above-mentioned "lever principle", the mass of the liquid phase mainly composed of propane is It is relatively small compared to the mass of the main liquid phase. When this entire amount is taken out as a mixed fuel and subjected to combustion, due to phase separation, the uniformity of combustion as a mixed fuel is inferior to that of the above-mentioned single-phase compatible mixed fuel, but a small amount of phase separation Since the liquid phase mainly composed of propane is also highly combustible, it can be combusted well as a whole. On the other hand, even when point C is close to point A, if the entire amount is taken out as a mixed fuel and subjected to combustion, the uniformity of combustion as a mixed fuel is lower than in the case of the above single-phase compatible mixed fuel. However, the liquid phase mainly composed of ammonia with a small amount of phase separation also has propane saturated and dissolved at a concentration of 1-x B (= 13.5% by mass), so a combustion-supporting effect is imparted. It can burn well. Further, as will be described later, if the upper and/or lower layers separated into two phases can be separately taken out as a mixed fuel, and each layer can be separately burned, each layer itself is a single-phase mixed fuel. Therefore, each shows uniform and good combustibility.
 図1(a)中の下方に示した、0℃におけるアンモニア-プロパン系の気液液平衡関係においては、液相線はP’A’B’Q’の軌跡で、また気相線はP’O’Q’の軌跡で表されている。0℃では、前述の20℃の時に比べ、液相での二相分離領域(液相線上のA’B’間)が拡大し、その両側の単相領域(液相線上のP’A’間およびB’Q’間)が縮小しており、また、共沸点O’での共沸蒸気圧pO’(=0.66MPa)を含め、飽和蒸気圧は20℃の時に比べて全般に低下している。単相領域(液相線上のP’A’間およびB’Q’間)の縮小は、温度の低下によって、液化アンモニア-液化プロパン間の相溶性が低下することを示す。従って、0℃において本系を単相の相溶混合燃料として用いる場合には、プロパンを主体とする液相中にはアンモニアを濃度xA’(=6.7質量%)まで、また、アンモニアを主体とする液相中にはプロパンを濃度1-xB’(=6.5質量%)まで、それぞれ溶解させることが可能であるが、20℃の時に比べると、それぞれの溶解度は低い。
 また、図1(b)には、0℃におけるアンモニア-n-ブタン系の気液液平衡(VLLE)における気液組成と飽和蒸気圧との関係が示されている。アンモニア-プロパン系との対比のため、同図中の記号(P’、A’、B’、Q’、O’等)は、図1(a)中のアンモニア-プロパン系の0℃において相当する記号と共通になっている。図1(b)の0℃におけるアンモニア-n-ブタン系の気液液平衡関係においても、実線で表した液相線(P’A’B’Q’の軌跡)、および破線で表した気相線(P’O’Q’の軌跡)が認められ、定性的には、図1(a)のアンモニア-プロパン系の気液液平衡と共通している。即ち、0℃において本系を単相の相溶混合燃料として用いる場合には、n-ブタンを主体とする液相中にはアンモニアを濃度xA’(=5.2質量%)まで、またアンモニアを主体とする液相中にはn-ブタンを濃度1-xB’(=2.7質量%)まで、それぞれ溶解させることが可能である。また、プロパンに比べて低いn-ブタンの揮発性を反映して、共沸点O’での共沸蒸気圧pO’(=0.53MPa)を含め、飽和蒸気圧は、アンモニア-プロパン系に比べて全般に低い。以上のような差異はあるが、アンモニア-n-ブタン系の気液平衡関係においても、液相が二相分離する温度及び組成領域を有する点では、前述のアンモニア-プロパン系の気液平衡関係と、定性的に共通である。
In the gas-liquid equilibrium relationship of the ammonia-propane system at 0 ° C. shown in the lower part of FIG. It is represented by the locus of 'O'Q'. At 0°C, the two-phase separation region in the liquid phase (between A'B' on the liquidus line) expands compared to the time of 20°C described above, and the single-phase region on both sides (P'A' on the liquidus line) expands. and B'Q') are reduced, and the saturated vapor pressure, including the azeotropic vapor pressure p O' (= 0.66 MPa) at the azeotropic point O', is generally compared to that at 20 ° C. declining. The shrinking of the single-phase regions (between P'A' and B'Q' on the liquidus line) indicates that the compatibility between liquefied ammonia and liquefied propane decreases with decreasing temperature. Therefore, when this system is used as a single-phase compatible mixed fuel at 0°C, the liquid phase mainly composed of propane contains ammonia up to a concentration x A' (= 6.7% by mass), and ammonia It is possible to dissolve propane up to a concentration of 1-x B' (=6.5% by mass) in the liquid phase mainly composed of , but the solubility of each is lower than at 20°C.
FIG. 1(b) shows the relationship between the gas-liquid composition and the saturated vapor pressure in the vapor-liquid-liquid equilibrium (VLLE) of the ammonia-n-butane system at 0.degree. For comparison with the ammonia-propane system, the symbols (P', A', B', Q', O', etc.) in FIG. 1(a) correspond to the ammonia-propane system at 0 ° C. It is common with the symbol to In the gas-liquid equilibrium relationship of the ammonia-n-butane system at 0 ° C. in FIG. A phase line (trajectory of P'O'Q') is recognized, and qualitatively, it is common to the vapor-liquid equilibrium of the ammonia-propane system in FIG. 1(a). That is, when this system is used as a single-phase compatible mixed fuel at 0 ° C., ammonia is added to the concentration x A' (= 5.2% by mass) in the liquid phase mainly composed of n-butane, and It is possible to dissolve n-butane up to a concentration of 1−x B′ (=2.7 mass %) in the liquid phase mainly composed of ammonia. Also, reflecting the lower volatility of n-butane compared to propane, the saturated vapor pressure, including the azeotropic vapor pressure p O' (=0.53 MPa) at the azeotropic point O', is generally low in comparison. Although there are differences as described above, even in the vapor-liquid equilibrium relationship of the ammonia-n-butane system, in terms of the temperature and composition region where the liquid phase separates into two phases, the vapor-liquid equilibrium relationship of the ammonia-propane system and qualitatively common.
 一般に、上述したプロパンおよびn-ブタンだけでなく、それ以外の液化石油ガスの各成分炭化水素種も、それぞれ所定の温度域において、いずれも定性的には同様に、不均一共沸系の気液液平衡(VLLE)の関係を示す。また、いずれも、相対的な温度の上昇に伴い、例えば図1(a)に示した液相線上のA点-B点(ないしA’点-B’点)の間が接近して二相分離領域が縮小し、相溶性が増大する。さらに、それぞれの所定の温度(臨界共溶温度)以上においては、前記のA点(ないしA’点)およびB点(ないしA’点)が、共沸点のO点(ないしO’点)に収斂して、液相における二相分離領域が消失する。即ち、液化石油ガスの各成分炭化水素種は、上記の臨界共溶温度以上においては、液化アンモニアとの間で、いかなる組成比においても、液相で完全に混和するようになることが知られている。
 液化石油ガスの成分炭化水素種の内では、同一温度で比較すると、炭素数3のもの(プロパン、プロピレン)、二重結合を持つのもの(プロピレン、各種ブテン)は、それぞれ相対的に、それらの範疇外の成分炭化水素に比べ、液体アンモニアとの相溶性はより高くなる。例えば、上記の臨界共溶温度については、炭素数3の飽和直鎖炭化水素のプロパンでは約33℃、また炭素数4の直鎖飽和炭化水素のn-ブタンでは約38℃であり、これら以上の温度域では、いかなる組成比においても、共にアンモニアと液相混和することが確認されている。また、非特許文献4および5では、炭素数3の不飽和直鎖炭化水素のプロピレンでは0℃において、炭素数4の不飽和直鎖炭化水素の1-ブテンでは10℃において、組成によらずアンモニアと液相混和することも報告されている(ただし、これらの温度が臨界共溶温度か否かは明記されていない)。これらの液化石油ガスの各成分炭化水素種それぞれの、臨界共溶温度以上の温度域においては、これらとアンモニアとの完全混和液相と、蒸気相との間に、均一共沸系の気液平衡(VLE)の関係が成り立つ。
 また、例えば図1(a)の20℃でのアンモニア-プロパン系の気液液平衡関係におけるC点の液相組成(アンモニア濃度x)においては、前述のように、20℃では液相が相分離する。しかし、C点の液相組成においても、アンモニアとプロパンとが完全に相溶するような、20℃よりは高く、上記の臨界共溶温度(約33℃)よりは低い、所定の温度が必ず存在する。例えば、図1(a)中の20℃でのアンモニアとプロパンの平衡関係における、C点の組成xの位置に相当する、液相アンモニア濃度x≒77質量%の場合においては(この時、液相と気相を合わせた全体の平均組成、即ち仕込組成のアンモニア濃度は、後述の実施例1の条件に相当する約75質量%になる)、およそ23℃以上であれば、相分離することなく、均一な溶液になる(即ち、23℃では、B点とC点とが重なり、プロパンの飽和状態であるB点に相当するアンモニア濃度xが約77質量%になる。後述する実施例1参照)。こうした挙動は、プロパン以外の液化石油ガスの全ての成分炭化水素種についても、同様に認められる。即ち、液化石油ガスまたは液化石油ガスの成分炭化水素種と、アンモニアとの混合燃料においては、該混合燃料の液相組成に応じた上述の温度以上に、該混合燃料の温度が保たれることによって、同混合燃料の液相部分の全体が、アンモニアと助燃剤とが互いに溶解した溶液状態となるようにすることができる(後述する実施例2参照(助燃剤がn-ブタンの場合))。その結果、その全量を混合燃料として取り出し、燃焼に供する際に、助燃剤の効果を最高度に発現させ、該混合燃料を極めて均一に燃焼させることができる。
In general, not only the propane and n-butane described above, but also each component hydrocarbon species of liquefied petroleum gas other than them is qualitatively similar in a heterogeneous azeotropic gas in a predetermined temperature range. Figure 2 shows the liquid-liquid equilibrium (VLLE) relationship. In both cases, as the relative temperature rises, for example, the point A-B (or point A'-B') on the liquidus line shown in FIG. The separation area is reduced and the compatibility is increased. Furthermore, above each predetermined temperature (critical solution temperature), the A point (or A' point) and B point (or A' point) are the azeotropic point O (or O' point) With convergence, the two-phase separation region in the liquid phase disappears. That is, it is known that each component hydrocarbon species of liquefied petroleum gas becomes completely miscible with liquefied ammonia in the liquid phase at any composition ratio above the critical solution temperature. ing.
Among the component hydrocarbon species of liquefied petroleum gas, when compared at the same temperature, those with 3 carbon atoms (propane, propylene) and those with double bonds (propylene, various butenes) are relatively Compatibility with liquid ammonia is higher than that of component hydrocarbons outside the category of For example, the above critical solution temperature is about 33° C. for propane, which is a saturated straight-chain hydrocarbon having 3 carbon atoms, and about 38° C. for n-butane, which is a straight-chain saturated hydrocarbon having 4 carbon atoms. In the temperature range of , it has been confirmed that both are miscible with ammonia in the liquid phase at any composition ratio. In addition, in Non-Patent Documents 4 and 5, at 0 ° C. for propylene, which is an unsaturated straight-chain hydrocarbon having 3 carbon atoms, and at 10 ° C. for 1-butene, which is an unsaturated straight-chain hydrocarbon having 4 carbon atoms, regardless of the composition. Liquid-phase miscibility with ammonia has also been reported (although it is not specified whether these temperatures are critical solution temperatures). In the temperature range above the critical solution temperature of each component hydrocarbon species of these liquefied petroleum gases, homogeneous azeotropic gas-liquid An equilibrium (VLE) relationship holds.
Further, for example, in the liquid phase composition (ammonia concentration x C ) at point C in the gas-liquid-liquid equilibrium relationship of the ammonia-propane system at 20 ° C. in FIG. Phase separation occurs. However, even in the liquid phase composition at point C, a predetermined temperature that is higher than 20 ° C. and lower than the critical solution temperature (about 33 ° C.) at which ammonia and propane are completely compatible is always exist. For example, in the case of the liquid phase ammonia concentration x C ≈ 77% by mass, which corresponds to the position of the composition x C at point C in the equilibrium relationship between ammonia and propane at 20 ° C. in Fig. 1 (a) (at this time , the average composition of the total liquid phase and gas phase, that is, the concentration of ammonia in the feed composition is about 75% by mass, which corresponds to the conditions of Example 1 described later). (That is, at 23 ° C., point B and point C overlap, and the ammonia concentration x B corresponding to point B, which is the saturated state of propane, is about 77% by mass. It will be described later. See Example 1). Such behavior is similarly observed for all component hydrocarbon species of liquefied petroleum gas other than propane. That is, in a mixed fuel of liquefied petroleum gas or a component hydrocarbon species of liquefied petroleum gas and ammonia, the temperature of the mixed fuel is maintained above the above-mentioned temperature according to the liquid phase composition of the mixed fuel. Thus, the entire liquid phase portion of the mixed fuel can be in a solution state in which ammonia and the combustion improver are mutually dissolved (see Example 2 described later (when the combustion improver is n-butane)). . As a result, when the entire amount is taken out as a mixed fuel and used for combustion, the effect of the combustion improver can be maximized and the mixed fuel can be burned extremely uniformly.
 以上の液化アンモニアと液化石油ガスの成分炭化水素種との混合系においては、気液液平衡および気液平衡における飽和蒸気圧は、同一温度における液化アンモニアおよび液化石油ガスの成分炭化水素種のそれぞれ単独の飽和蒸気圧よりも、一般に高くなる。
 また、プロパン以外の液化石油ガスの成分炭化水素種、さらにはそれらの混合物である液化石油ガスと、液化アンモニアとの単相の相溶混合燃料についても、前述したプロパンの場合と同様に、液化アンモニアに溶解した液化石油ガスの成分炭化水素種が、気化後にアンモニアとの均一な混合ガスを形成し、その状態で助燃剤として働くため、液化アンモニア単独時に比べ、発火点が低下して着火性が向上すると共に、燃焼速度も増大する結果、燃焼性が向上する。一方、アンモニアと混和しきれずに相分離が起こるような混合組成および温度条件にあっても、相分離で生じた、アンモニアを主体とする液相には、液化石油ガス成分が助燃剤として飽和溶解しており、また、他方の液化石油ガスの成分炭化水素種を主体とする液相も、主体である成分炭化水素種自体が、もともと良好な燃焼性を有するため、全体として良好な燃焼を実現できる。さらに、相分離した各相を別々に混合燃料として取り出し、それぞれを別々に燃焼に供するなら、それぞれが均一な単相となり、良好な燃焼性を示す。
In the above mixed system of liquefied ammonia and liquefied petroleum gas component hydrocarbon species, the vapor-liquid equilibrium and the saturated vapor pressure in vapor-liquid equilibrium are respectively Generally higher than the saturated vapor pressure alone.
In addition, the component hydrocarbon species of liquefied petroleum gas other than propane, and the single-phase compatible mixed fuel of liquefied petroleum gas, which is a mixture thereof, and liquefied ammonia, can also be liquefied in the same manner as in the case of propane described above. The component hydrocarbon species of liquefied petroleum gas dissolved in ammonia forms a uniform mixed gas with ammonia after vaporization, and in that state acts as a combustion improver, so compared to liquefied ammonia alone, the ignition point is lower and ignitability. is improved and the burning velocity is also increased, resulting in improved combustibility. On the other hand, even if the mixture composition and temperature conditions are such that phase separation occurs due to immiscibility with ammonia, the liquefied petroleum gas component as a combustion improver is saturated and dissolved in the liquid phase mainly composed of ammonia generated by phase separation. In addition, the liquid phase mainly composed of the component hydrocarbon species of the other liquefied petroleum gas also has good combustibility as a whole because the component hydrocarbon species themselves have good combustibility. can. Furthermore, if the phase-separated phases are taken out separately as a mixed fuel and burned separately, each becomes a uniform single phase, exhibiting good combustibility.
 メタノールも、液化石油ガスないしその成分と同様にGHGの発生抑制する燃料として用いることができる。メタノールも発火点が約385℃と低いために着火し易く、また層流燃焼速度も約45cm/sであり、アンモニアの6~7倍高いため燃焼し易く、アンモニアの助燃剤として好適である。また、従来、液体燃料として多く用いられている重油、軽油、ケロシン、およびガソリンに比べて、燃焼の際の、発熱量当たりのCO発生も少ない。さらに、メタノールは、少なくとも0~40℃程度の温度範囲において、界面活性剤の添加なしに、液化アンモニアとの間で、いかなる組成においても液体状態で均一に混和(完全溶解)するので、液化石油ガスないしその主成分と同様に、気化後に着火したメタノールの極めて近くに混在する、気化したアンモニアが加熱、着火され、全体として、特に良好な、同時かつ均一な燃焼が実現できる。また、メタノールは、アンモニアと同様、燃焼時にいわゆるススを生じにくく、燃焼器内部や煙道内の清浄性を保ちやすい利点もある。液化アンモニアと液化石油ガス、またはその成分炭化水素種との混合系の場合とは異なり、液化アンモニアとメタノールの混合物は、液相組成によらず、液相完全混和の非共沸系の気液平衡を示す。従って、いかなる組成比においても、これを混合燃料として取り出し、燃焼に供するなら、均一で良好な燃焼が可能になる。さらに、液化アンモニアとメタノールの溶液中においては、両者の分子間に水素結合が生じてアンモニアの気化が抑制されるため、これらの混合溶液の飽和蒸気圧は、同一温度におけるアンモニア単独の飽和蒸気圧に比べて顕著に低下する(後述する実施例13を参照)。これは、液化アンモニアとメタノールの混合燃料を保存する際に、常温(25℃)近傍での保存の際の保存容器の耐圧性や、大気圧近傍での冷却液化保存の際の冷却に要するエネルギーが、アンモニア単独の時に比べて大幅に軽減できることを意味し、保存、輸送において大きな利点になる。 Methanol, like liquefied petroleum gas or its components, can also be used as a GHG-reducing fuel. Since methanol has a low ignition point of about 385° C., it is easily ignited, and its laminar combustion velocity is about 45 cm/s, which is 6 to 7 times higher than that of ammonia. In addition, compared with heavy oil, light oil, kerosene, and gasoline, which have conventionally been widely used as liquid fuels, less CO 2 is generated per calorific value during combustion. Furthermore, methanol is uniformly mixed (completely dissolved) in a liquid state with liquefied ammonia without the addition of a surfactant at least in the temperature range of about 0 to 40 ° C., so liquefied petroleum The vaporized ammonia, which, like the gas or its main component, is mixed very closely with the ignited methanol after vaporization, is heated and ignited, and overall a particularly good, simultaneous and homogeneous combustion can be achieved. Methanol, like ammonia, does not generate soot during combustion, and has the advantage of easily maintaining the cleanliness of the inside of the combustor and the inside of the flue. Unlike the mixed system of liquefied ammonia and liquefied petroleum gas or its component hydrocarbon species, the mixture of liquefied ammonia and methanol is a non-azeotropic gas-liquid system in which the liquid phase is completely miscible regardless of the liquid phase composition. indicates equilibrium. Therefore, if the mixed fuel is taken out as a mixed fuel and subjected to combustion at any composition ratio, uniform and good combustion becomes possible. Furthermore, in a solution of liquefied ammonia and methanol, since hydrogen bonding occurs between the molecules of the two and vaporization of ammonia is suppressed, the saturated vapor pressure of these mixed solutions is the saturated vapor pressure of ammonia alone at the same temperature (See Example 13 below). When storing a mixed fuel of liquefied ammonia and methanol, the pressure resistance of the storage container when storing at room temperature (25°C), and the energy required for cooling when storing in a liquefied state near atmospheric pressure. can be greatly reduced compared to ammonia alone, which is a great advantage in terms of storage and transportation.
 また、アンモニア混合燃料の原料であるアンモニア、液化石油ガスないしその成分炭化水素種、及びメタノールは、原料調達の点でも優れている。
 すなわち、アンモニアは、主として天然ガスの主成分のメタンを原料とし、ハーバー・ボッシュ法によって従来から世界的に大量に合成されて来た。このため、アンモニアの大量合成プラントは、世界の天然ガス田の近傍に建造されることが多い。アンモニアの原料となるメタンの含有量が高い天然ガス分の採取は、ガス田から採掘される原ガスから、より沸点の高い成分の炭化水素を、加圧または冷却で液化させることによって分離することにより、主に行われる。この沸点の高い成分中には、液化石油ガスの他、ナフサの成分が一般に含まれる。これらは、同一の天然ガス精製プラントにおいて、互いに分離され、それぞれ製品となる。したがって、天然ガスを原料とするアンモニアの製造プラントでは、多くの場合、液化石油ガスも、その近傍で併産される。このため、アンモニアの製造プラントにおいて、アンモニア混合燃料をも付帯的に製造する場合、上記アンモニア混合燃料に添加される助燃剤として、液化石油ガスおよびその成分であるプロパン、n-ブタン等の炭化水素は、製造面での原料調達において有利である。
In addition, ammonia, liquefied petroleum gas or its constituent hydrocarbon species, and methanol, which are raw materials for ammonia mixed fuel, are also excellent in terms of raw material procurement.
That is, ammonia has been produced from methane, which is the main component of natural gas, as a raw material, and has been synthesized worldwide in large quantities by the Haber-Bosch process. For this reason, large-scale ammonia synthesis plants are often built near natural gas fields around the world. Extraction of natural gas with a high methane content, which is used as a raw material for ammonia, involves separating hydrocarbons with higher boiling points from raw gas extracted from gas fields by pressurizing or cooling to liquefy them. It is mainly performed by In addition to liquefied petroleum gas, naphtha components are generally included in this high boiling point component. They are separated from each other in the same natural gas refining plant and each becomes a product. Therefore, in many cases, liquefied petroleum gas is also produced in the vicinity of an ammonia production plant that uses natural gas as a raw material. Therefore, when an ammonia mixed fuel is additionally produced in an ammonia production plant, liquefied petroleum gas and hydrocarbons such as propane and n-butane, which are components thereof, are used as combustion improvers added to the ammonia mixed fuel. is advantageous in procuring raw materials for manufacturing.
 また、メタノールも、同様に、天然ガス中の主成分のメタンを原料として大量製造される。メタンからのメタノール合成の初期工程は、脱硫工程、および水蒸気改質工程(CH+2HO→4H+CO、およびCH+HO→3H+CO)であり、これは、上述した天然ガス原料からのハーバー・ボッシュ法によるアンモニア製造の初期工程と同一である。このため、同一の製造プラントにおけるアンモニアとメタノールの併産は、天然ガス中の炭素の有効利用による環境へのCO排出抑制(アンモニア製造では排除される天然ガス中成分元素である炭素を、メタノール製造で活用)、および工程の共通化による効率向上の両面で有利である。実際に、両者を併産する大規模製造プラントも、近年、建設されている。したがって、天然ガスを原料とするアンモニアの製造プラントでは、メタノールも有利に併産され得る。このため、アンモニアの製造プラントにおいて、アンモニア混合燃料をも付帯的に製造する場合、アンモニア混合燃料に含まれる助燃剤として、メタノールも、製造面での原料調達において有利である。 Similarly, methanol is also mass-produced using methane, which is the main component in natural gas, as a raw material. The initial steps in the synthesis of methanol from methane are the desulfurization step and the steam reforming step (CH4+ 2H2O →4H2 + CO2 and CH4 + H2O3H2 + CO), which is the natural It is the same as the initial process of ammonia production by Haber-Bosch process from gas raw material. For this reason, the co-production of ammonia and methanol in the same production plant will reduce CO2 emissions to the environment by effectively using carbon in natural gas (carbon, which is a component element in natural gas that is eliminated in ammonia production, can be replaced by methanol). (used in manufacturing) and improved efficiency through common processes. In fact, large-scale manufacturing plants co-producing both have also been constructed in recent years. Therefore, in an ammonia production plant using natural gas as a raw material, methanol can also be advantageously co-produced. Therefore, when an ammonia mixed fuel is additionally produced in an ammonia production plant, methanol is also advantageous as a combustion improver contained in the ammonia mixed fuel in raw material procurement in terms of production.
 さらに、アンモニアを、その大量製造する拠点から、離れた大量消費の需要地に、輸送機器によって大量輸送することを想定する場合、アンモニアの大量製造の拠点において、輸送機器の推進用の燃料も容易かつ低コストで調達できることが、効率およびコスト上、好ましい。上述のように、液化石油ガスおよびその成分炭化水素種、ならびにメタノールは、アンモニアの大量製造の拠点において有利に調達できるため、これらを含むアンモニア混合燃料は、アンモニアを大量輸送する輸送機器の駆動用燃料として、有利に用いることができる。その上、液化石油ガスと液化アンモニアの飽和蒸気圧及び液化温度が近いという類似性を利用して、それらを貯蔵する耐圧または冷却タンクを共用することが可能なため、現在、世界で運航されている液化石油ガスの輸送船の内の約20%は、液化アンモニアも混載できる仕様になっている。このため、それらの輸送船の推進に用いるエンジン、ガスタービン、蒸気タービンなどの推進機関の燃料として、積載される液化アンモニアと液化石油ガスおよびその成分炭化水素種とを併用できることは、設備も集約できる上に、その輸送船の推進用内燃/外燃機関からのGHGの排出抑制の上でも、意義が大きい。 Furthermore, if it is assumed that ammonia will be mass-transported from the mass-manufacturing base to a remote mass-consumption demand area by transport equipment, it will be easy to use the fuel for the transport equipment at the mass-manufacturing base of ammonia. And it is preferable from the viewpoint of efficiency and cost that it can be procured at a low cost. As described above, liquefied petroleum gas and its constituent hydrocarbon species, as well as methanol, can be advantageously procured at sites for mass production of ammonia, and thus ammonia mixed fuels containing these can be used to drive transportation equipment that transports ammonia in bulk. It can be advantageously used as a fuel. Furthermore, by utilizing the similarity in the saturation vapor pressure and liquefying temperature of liquefied petroleum gas and liquefied ammonia, it is possible to share pressure-resistant or cooling tanks to store them, so currently, the liquefied ammonia is operated worldwide. About 20% of the liquefied petroleum gas carriers in Japan are designed to carry liquefied ammonia as well. For this reason, the fact that the liquefied ammonia, liquefied petroleum gas, and its constituent hydrocarbons can be used together as fuel for the engines, gas turbines, steam turbines, and other propulsion systems used to propel these transport ships is also a major contributor to facility consolidation. In addition to being able to do so, it is of great significance in terms of the suppression of GHG emissions from the propulsion internal/external combustion engines of the transport ship.
(界面活性剤、および界面活性剤によるエマルション化)
 一実施形態の、液化アンモニアと相溶しにくい、非極性の前記原料用炭化水素を助燃剤として含むアンモニア混合燃料では、液体状態のアンモニアと助燃剤とをエマルション状態にするために、界面活性剤が含まれることが好ましい。界面活性剤によるエマルション化は、アンモニア混合燃料に含まれる前記原料用炭化水素が、液化石油ガス、ナフサ、ガソリン、軽油、およびこれらの成分炭化水素種のいずれであっても、好適に適用できる。特に、前記原料用炭化水素が、ケロシン、軽油、およびこれらの成分炭化水素種のいずれかである場合は、常温(25℃)付近からおよそ50℃程度まで温度範囲においては、アンモニアと相溶しにくいため、界面活性剤の添加によるエマルション化が必要である。界面活性剤の添加で起こるエマルション化によって、アンモニア混合燃料の液相中において、その温度における気液液平衡上、相溶し得なかった相分離部分の少なくとも一部を、その温度を維持したまま、さらに液相中に分散することができる。
 例えば、液化石油ガスの成分炭化水素種であるプロパンを助燃剤としたアンモニア混合燃料の場合を一例とすると、図1(a)に示した20℃におけるアンモニア-プロパン系の気液平衡関係において、20℃では二相に分離する、図1(a)中のC点付近の液相組成(アンモニア濃度x≒77質量%)においても、好適な界面活性剤を適量添加することで、一様にエマルション化することができる。例えば、プロパンを主体とする上層の液相(アンモニア濃度x=16.2質量%、全体に対する質量割合(x-x)/(x-x)≒0.14)を、後述する実施例3で用いたものと共通の混合系界面活性剤を約1質量%添加してエマルション化することで、他方のアンモニアを主体とする下層の液相(アンモニア濃度x=86.5質量%、全体に対する質量割合(x-x)/(x-x)≒0.86)の中に一様に分散させることができる。この一様なエマルション状態は、約17℃まで冷却しても維持される(17℃未満で上層が分離出現)。以上のエマルション化は、n-ブタンの他、液化石油ガスの他の成分炭化水素種についても、同様に実現できる。
 以上のエマルション化により、所定の温度における助燃剤(液化石油ガスおよびその成分炭化水素種)のアンモニアへの可溶量が増大するため、該混合燃料の燃焼時における前述の助燃効果を一層高めることができる上に、可溶化に必要な温度を低減できることから、アンモニア混合燃料の飽和蒸気圧の上昇も抑えることができる。従って、界面活性剤の添加によるエマルション化によって、常温(25℃)近傍での保存の際の保存容器の所要耐圧を軽減できる。
(Surfactant and emulsification by surfactant)
In one embodiment, in the ammonia mixed fuel containing the non-polar raw material hydrocarbon that is difficult to mix with liquefied ammonia as a combustion improver, a surfactant is added to make the liquid ammonia and the combustion improver into an emulsion state. is preferably included. Emulsification with a surfactant can be suitably applied regardless of whether the raw material hydrocarbon contained in the ammonia-mixed fuel is liquefied petroleum gas, naphtha, gasoline, light oil, or component hydrocarbon species thereof. In particular, when the raw material hydrocarbon is kerosene, light oil, or any of these component hydrocarbon species, it is compatible with ammonia in the temperature range from about normal temperature (25 ° C.) to about 50 ° C. Therefore, it is necessary to emulsify by adding a surfactant. Due to the emulsification caused by the addition of a surfactant, at least a part of the phase-separated portion that could not be dissolved due to the vapor-liquid equilibrium at that temperature in the liquid phase of the ammonia mixed fuel is maintained at that temperature. , and can also be dispersed in the liquid phase.
For example, in the case of an ammonia mixed fuel in which propane, which is a component hydrocarbon species of liquefied petroleum gas, is used as a combustion improver, the vapor-liquid equilibrium relationship of the ammonia-propane system at 20 ° C. shown in FIG. Even in the liquid phase composition near point C in FIG. can be emulsified to For example, the upper liquid phase mainly composed of propane (ammonia concentration x A = 16.2 mass%, mass ratio to the whole (x B - x C ) / (x B - x A ) ≈ 0.14) will be described later. By adding about 1% by mass of a mixed surfactant common to that used in Example 3 and emulsifying it, the other lower liquid phase mainly composed of ammonia (ammonia concentration x B = 86.5 %, can be evenly distributed in the mass fraction of the total (x C −x A )/(x B −x A )≈0.86). This uniform emulsion state is maintained even when cooled down to about 17°C (upper layer appears separated below 17°C). The above-described emulsification can be similarly realized for other component hydrocarbon species of liquefied petroleum gas in addition to n-butane.
The above-described emulsification increases the solubility of the combustion improver (liquefied petroleum gas and its component hydrocarbon species) in ammonia at a predetermined temperature, so that the above-mentioned combustion support effect during combustion of the mixed fuel is further enhanced. In addition, since the temperature required for solubilization can be reduced, the rise in the saturated vapor pressure of the ammonia mixed fuel can also be suppressed. Therefore, by emulsification by adding a surfactant, the required pressure resistance of the storage container during storage at around room temperature (25° C.) can be reduced.
 界面活性剤の添加量は、後述する界面活性剤の分子量、配合組成および特性及び性能等によって調整されるが、基本的には、液化アンモニアおよび助燃剤の内で、他方を主体とする液相中における、微小液滴となって分散、懸濁される方の体積分率(近似的には質量分率でも可)に基づき、適宜決められる。例えば、液化アンモニアが微小液滴となり(助燃剤が液化石油ガスまたはその成分炭化水素種の場合は、該液化アンモニア主体の液相中には、助燃剤の一部が溶解している)、助燃剤を主体とする液相中に分散、懸濁される場合は(以後、この状態を「a/o(ammonia in oil)エマルション」と称する)、アンモニア混合燃料中の液化アンモニアの体積分率に応じて、界面活性剤の添加量が決められる。逆に、助燃剤が微小液滴となり(助燃剤が液化石油ガスまたはその成分炭化水素種の場合は、該助燃剤主体の液相中には、液化アンモニアの一部が溶解している)、アンモニアを主体とする液相中に分散、懸濁される場合は(以後、この状態を「o/a(oil in ammonia)エマルション」と称する)、混合燃料中の助燃剤の体積分率(近似的には質量分率)に応じて、界面活性剤の添加量が決められる。前述した、実施例3で使用している混合系界面活性剤によって形成されるエマルションは、このo/aエマルションに該当する。一般に、微小液滴となって分散、懸濁される方の液化アンモニアまたは助燃剤の混合燃料中の体積分率(近似的には質量分率)が大きいほど、界面活性剤の添加量も一般に多く必要とされる。所要界面活性剤量は、界面活性剤の種類によって異なるが、後述する好適な界面活性剤(非イオン系およびイオン系の界面活性剤を混合した混合系界面活性剤の内の高性能のもの)を用いる場合は、目安として、分散、懸濁される方の液化アンモニアまたは助燃剤の混合燃料中の体積分率(近似的には質量分率)の数値のおよそ1/10程度の質量分率の界面活性剤が、安定なエマルション形成には好ましい。通常、アンモニア混合燃料に、0.1~10質量%程度添加される。
 また、こうした、非イオン系およびイオン系の混合系界面活性剤を併せて用いる場合、極性のあるアンモニアと非極性の原料用炭化水素とを、前記のa/oエマルション、およびo/aエマルションのいずれの状態にもすることが可能である。さらに、これらのいずれかを優先的に形成させるように、それぞれの形成に特に適する界面活性剤を適宜選択したり、配合等により調整することもできる。一般に、液化アンモニアを主体とする分離液相側の体積が、原料炭化水素を主体とする分離液相側の体積よりも小さい場合は、a/oエマルションを形成させる方が、界面活性剤の量を節約して全体に均一分散させる上で有利であり、このため、a/oエマルションの方を形成させやすい界面活性剤が、選択ないし調合される。その逆の場合は、o/aエマルションをより形成させやすい界面活性剤が、選択ないし調合される。ただし、同一の界面活性剤の選択ないし調合により、a/oエマルション化、およびo/aエマルション化の両方に適合できる場合もある。
The amount of surfactant to be added is adjusted according to the molecular weight, compounding composition, characteristics and performance of the surfactant, which will be described later. It can be appropriately determined based on the volume fraction (approximately mass fraction is also possible) of the droplets dispersed and suspended in the medium. For example, liquefied ammonia becomes fine droplets (when the combustion improver is liquefied petroleum gas or its component hydrocarbon species, part of the combustion improver is dissolved in the liquid phase mainly composed of the liquefied ammonia), When dispersed or suspended in a liquid phase mainly composed of fuel (hereinafter, this state is referred to as "a/o (ammonia in oil) emulsion"), depending on the volume fraction of liquefied ammonia in the ammonia mixed fuel Then, the amount of surfactant to be added is determined. Conversely, the combustion improver becomes fine droplets (when the combustion improver is liquefied petroleum gas or its component hydrocarbon species, part of the liquefied ammonia is dissolved in the liquid phase mainly containing the combustion improver), When dispersed or suspended in a liquid phase mainly composed of ammonia (this state is hereinafter referred to as "o/a (oil in ammonia) emulsion"), the volume fraction of the combustion improver in the mixed fuel (approximately The amount of surfactant to be added is determined according to the mass fraction of The emulsion formed by the mixed surfactant used in Example 3 described above corresponds to this o/a emulsion. In general, the larger the volume fraction (approximately mass fraction) of the liquefied ammonia or combustion improver dispersed or suspended in the form of fine droplets in the mixed fuel, the larger the amount of surfactant added. Needed. The required amount of surfactant varies depending on the type of surfactant, but suitable surfactants described later (high-performance mixed surfactants in which nonionic and ionic surfactants are mixed) When using , as a guideline, the mass fraction of about 1/10 of the numerical value of the volume fraction (approximately mass fraction) in the mixed fuel of the liquefied ammonia or the combustion improver to be dispersed or suspended Surfactants are preferred for stable emulsion formation. Normally, about 0.1 to 10% by mass is added to the ammonia mixed fuel.
In addition, when such nonionic and ionic mixed surfactants are used together, the polar ammonia and the non-polar raw material hydrocarbon are added to the a / o emulsion and the o / a emulsion. Either state is possible. Furthermore, it is also possible to appropriately select a surfactant that is particularly suitable for each formation so as to preferentially form any one of them, or to adjust the composition by blending or the like. In general, when the volume of the separated liquid phase mainly composed of liquefied ammonia is smaller than the volume of the separated liquid phase mainly composed of raw hydrocarbons, it is better to form an a/o emulsion. is advantageous in terms of saving and uniformly dispersing the emulsion throughout, and for this reason, a surfactant that facilitates the formation of an a/o emulsion is selected or formulated. Conversely, surfactants that are more likely to form o/a emulsions are selected or formulated. However, it may be possible to adapt to both a/o emulsification and o/a emulsification by selecting or formulating the same surfactant.
 上記の一実施形態のアンモニア混合燃料における、好ましい界面活性剤は、少なくとも1種の非イオン性界面活性剤(A)と、少なくとも1種のイオン性界面活性剤(B)とを含む、混合系の界面活性剤である。ただし、ここでの「イオン性」および「非イオン性」は、液体状態のアンモニア混合燃料中の環境において、電離する性質を有するか否かで区別されるものとする。一般的な「イオン性」および「非イオン性」の語は、主として水の存在下において、水和イオンとして電離するか否かの観点で区別される。しかし、本発明におけるアンモニア混合燃料は実質的に水を含まないため、「イオン性」および「非イオン性」は、アンモニア混合燃料中で、主にアンモニアによって溶媒和されたイオンとして電離し得るか否かで区別される。また、その電離の過程では、イオン性および非イオン性界面活性剤分子の間や、これら界面活性剤分子とアンモニア分子との間での、Hやアニオン種/カチオン種等の移動、授受を伴う場合があり、上記の「イオン性」および「非イオン性」は、こうした一連の経過も含めた電離の有無で区別される。
 一般に、界面活性剤は、液相分離する二相のそれぞれに対して親和性を示す二つの部分を有する界面活性剤分子が、両相それぞれに親和性を有する部分を対向させながら、両相の界面において二次元的に配列する性質を持つ。こうした界面活性剤が、エマルション化の効果を発現するためには、分離した両液相のいずれかの相が、撹拌によって多数の微小液滴に分割され、他方の相中に分散されたときに、全ての該微小液滴の表層界面に界面活性剤分子が上記要領で二次元的に配列しながら、該微小液滴を覆い続けること(いわゆる「ミセル」の形成)、かつ、該微小液滴(ミセル)同士が再接触及び再融合することを妨げるように、該微小液滴(ミセル)同士の間に安定した静電的な反発力を生じさせること、の二つの要素を兼ね備える必要がある。
A preferred surfactant in the ammonia mixed fuel of one embodiment above is a mixed system comprising at least one nonionic surfactant (A) and at least one ionic surfactant (B) is a surfactant. However, "ionic" and "nonionic" here are distinguished by whether or not they have the property of being ionized in the environment of the liquid ammonia mixed fuel. The general terms "ionic" and "nonionic" are differentiated mainly in terms of whether or not they ionize as hydrated ions in the presence of water. However, since the ammonia mixed fuel in the present invention contains substantially no water, can "ionic" and "nonionic" ionize in the ammonia mixed fuel mainly as ions solvated by ammonia? or not. In addition, in the process of ionization, H + and anionic/cationic species, etc. are transferred and received between ionic and nonionic surfactant molecules and between these surfactant molecules and ammonia molecules. The above "ionic" and "nonionic" are distinguished by the presence or absence of ionization including such a series of processes.
In general, a surfactant has two parts that exhibit affinity for each of the two phases that undergo liquid-phase separation. It has the property of being arranged two-dimensionally at the interface. In order for such a surfactant to exhibit the effect of emulsification, when either phase of the two separated liquid phases is divided into a large number of fine droplets by stirring and dispersed in the other phase , while surfactant molecules are arranged two-dimensionally on the surface interface of all the microdroplets in the above manner, the microdroplets continue to be covered (formation of so-called "micelles"), and the microdroplets It is necessary to combine the two elements of generating a stable electrostatic repulsive force between the microdroplets (micelles) so as to prevent the (micelles) from recontacting and remelting. .
 一般的な、液化石油ガス、ナフサ、ガソリン、ケロシン、軽油、およびそれらの成分炭化水素種と、水との間のエマルションの形成の場合は、非イオン性あるいはイオン性のいずれについても、単独でエマルションを形成できる多くの界面活性剤がある。しかし、液化アンモニアと前記原料用炭化水素とを含むアンモニア混合燃料のエマルション化に際して、本発明者は、一般に市販されている非イオン性およびイオン性の代表的界面活性剤を単独で試用したが、エマルション形成の効果はいずれも乏しく、無添加の場合と同様に二層に分かれた。これは、アンモニアの極性が水ほど高くなく、前記原料用炭化水素との間の極性差が水系の場合に比べて小さいこと等から、微小液滴の表層界面に二次元配列して該微小液滴を覆いながら(ミセルの形成)、かつミセル間に十分な静電反発性を与えるという前述の二要素を、単独の界面活性剤では両立し難いためと推察される。
 しかし、本発明者は、後述するように、いくつかの種類の非イオン性の界面活性剤と、いくつかの種類のイオン性の界面活性剤とを、適切な量比で混合して使用することによって、液化アンモニアと前記原料用炭化水素(液化石油ガス、ナフサ、ガソリン、ケロシン、軽油、およびそれらの成分炭化水素種)とを含むアンモニア混合燃料を、安定かつ良好にエマルション化させ得ることを見出した。ここで、非イオン性の界面活性剤は、主に、微小液滴の表層界面に二次元配列しながら該微小液滴を覆う、極めて薄い膜(ミセル界面の膜)の安定形成に寄与する。一方、イオン性の界面活性剤は、主に、非イオン性の界面活性剤による前記膜の形成に加わりながら、それ自体が定常的に電離することによって、微小液滴(ミセル)の表層界面に安定した静電反発性を与え、微小液滴同士の再接触及び再融合を防止することに寄与する。このように、好適な非イオン性およびイオン性の界面活性剤を混合して使用した場合は、上述のそれぞれの寄与の相乗効果によって、アンモニア混合燃料を良好にエマルション化することができる。
 しかし、ミセル界面の膜形成に好適な非イオン性界面活性剤、あるいは電離反発に好適なイオン性界面活性剤であっても、それぞれ単独では、安定なエマルションを形成することは困難である。即ち、前者のみでは、形成されたミセル同士の静電反発が不足し、過渡的に生じたミセル同士の接触及び融合を繰り返して、結局二相に再分離する。また、後者のみでは二相界面での成膜性が不足するため、ミセル自体を形成し難い。
 なお、上記の「好適な界面活性剤」における「非イオン系界面活性剤(A)およびイオン系界面活性剤(B)の混合」の範疇には、それぞれの界面活性剤の単純な物理的混合の他に、一個の界面活性剤の分子中に、非イオン性およびイオン性の極性部位を共に備えるものを用いる態様も含まれるものとする。こうした界面活性剤には、上述のイオン性およびイオン性の2種類の極性部位が重合した共重合体(コポリマー)も含まれる。その分子構造としては、例えば、上述の好適な非イオン性界面活性剤の部分構造と、上述の好適なイオン性界面活性剤の部分構造とを主鎖中に直列に備えるものや、上述の好適な非イオン性界面活性剤の部分構造と、上述の好適なイオン性界面活性剤の部分構造とを側鎖として並列に備えるものなどがある。これらにおいて、非イオン性界面活性剤の部分構造部分と、イオン性界面活性剤の部分構造部分との量比は、前述した、非イオン性およびイオン性それぞれの界面活性剤の、単なる物理的な混合の場合に好適とされる、それぞれの量比に準じて決められる。
For the formation of emulsions between water and common liquefied petroleum gas, naphtha, gasoline, kerosene, gas oil and their component hydrocarbon species, either nonionic or ionic, alone There are many surfactants that can form emulsions. However, when emulsifying an ammonia-mixed fuel containing liquefied ammonia and the raw material hydrocarbon, the present inventor independently tried typical commercially available nonionic and ionic surfactants. The effect of emulsion formation was poor in both cases, and the emulsion was divided into two layers as in the case of no addition. This is because the polarity of ammonia is not as high as that of water, and the difference in polarity with the raw material hydrocarbon is smaller than in the case of an aqueous system. It is presumed that it is difficult for a single surfactant to achieve both of the above-mentioned two factors of covering droplets (forming micelles) and providing sufficient electrostatic repulsion between micelles.
However, as will be described later, the present inventor uses several kinds of nonionic surfactants and several kinds of ionic surfactants mixed in an appropriate amount ratio. As a result, an ammonia mixed fuel containing liquefied ammonia and the raw material hydrocarbons (liquefied petroleum gas, naphtha, gasoline, kerosene, light oil, and component hydrocarbon species thereof) can be stably and satisfactorily emulsified. Found it. Here, the nonionic surfactant mainly contributes to the stable formation of an extremely thin film (micelle interface film) covering the microdroplets while being two-dimensionally arranged on the surface layer interface of the microdroplets. On the other hand, the ionic surfactant mainly participates in the formation of the film by the nonionic surfactant, and is constantly ionized by itself to form the surface layer interface of the microdroplet (micelle). It provides stable electrostatic repulsion and contributes to preventing re-contact and re-fusion of fine droplets. In this way, when suitable nonionic and ionic surfactants are mixed and used, the synergistic effect of the respective contributions described above enables good emulsification of the ammonia mixed fuel.
However, even a nonionic surfactant suitable for film formation at the micelle interface or an ionic surfactant suitable for ionization repulsion cannot form a stable emulsion by itself. That is, with only the former, the electrostatic repulsion between the formed micelles is insufficient, and transient contacts and fusions of the micelles are repeated, eventually resulting in reseparation into two phases. Moreover, since the film-forming property at the two-phase interface is insufficient only with the latter, it is difficult to form the micelle itself.
In addition, in the category of "mixing of nonionic surfactant (A) and ionic surfactant (B)" in the above "suitable surfactant", simple physical mixing of each surfactant In addition, it is intended to include an embodiment using a surfactant having both nonionic and ionic polar sites in one surfactant molecule. Such surfactants also include copolymers in which the above-mentioned ionic and two types of ionic polar sites are polymerized. As the molecular structure, for example, a structure in which the partial structure of the preferred nonionic surfactant described above and the partial structure of the preferred ionic surfactant described above are provided in series in the main chain, or the preferred and the partial structure of the preferred ionic surfactant described above are provided in parallel as side chains. In these, the quantitative ratio of the partial structure portion of the nonionic surfactant and the partial structure portion of the ionic surfactant is a mere physical It is determined according to the respective quantitative ratios which are suitable for mixing.
 上記の好適な混合系界面活性剤の内で、特に好適な界面活性剤は、具体的には、以下の態様を有する。即ち、
(A)分子構造において、1級または2級アミノ基[-NH、または>NH]、ポリオキシアルキレンアミノ基[>N(C2aO)-H、または-N((C2bO)-H)((C2bO)-H)](aおよびbは2または3、cは1~8の整数、dおよびeはd+e=1~8となる0または正の整数である)、アミド基[-C(=O)NH]、ポリオキシアルキレンアミド基[-C(=O)N((C2fO)-H)((C2fO)-H)](fは2または3、gおよびhはg+h=1~8となる0または正の整数である)、およびポリオキシアルキレン基[-O(C2iO)-H](iは2または3、jは1~8の整数である)、の内のいずれかを、非イオン性極性部位として少なくとも1基有し、かつ、アルキル基[C2k+1-](kは7~18の整数である)、およびアルケニル基[C2l-1-](lは7~18の整数である)の内のいずれかを非極性部位として少なくとも1基有する、少なくとも1種の前記非イオン性界面活性剤と、
(B)分子構造において、4級メチルアンモニウム基、4級メチルアルカノールアンモニウム基、または4級アルカノールアンモニウム基[-N(CH(C2mOH)・X、または>N(CH(C2nOH)・X’](mおよびnは2または3、pおよびqはp+q=3となる0または正の整数、rおよびsはr+s=2となる0または正の整数、XおよびX’はCl、BrおよびIの内のいずれかである)、およびカルボキシル基[-C(=O)OH]、の内のいずれかを、イオン性極性部位として少なくとも1基有し、かつ、アルキル基[C2t+1-](tは7~18の整数である)、およびアルケニル基[C2u-1-](uは7~18の整数である)の内の少なくとも一方を、非極性部位として少なくとも1基有する、少なくとも1種の前記イオン性界面活性剤と、を含む、混合界面活性剤である。
Among the suitable mixed surfactants described above, particularly suitable surfactants specifically have the following aspects. Namely
(A) In the molecular structure, a primary or secondary amino group [—NH 2 or >NH], a polyoxyalkyleneamino group [>N(C a H 2a O) c —H, or —N ((C b H 2b O) d —H)((C b H 2b O) e —H)] (a and b are 2 or 3, c is an integer of 1 to 8, and d and e are 0 such that d+e=1 to 8 or positive integer), amide group [-C(=O)NH 2 ], polyoxyalkyleneamide group [-C(=O)N((C f H 2f O) g -H) ((C f H 2f O) h —H)] (f is 2 or 3, g and h are 0 or positive integers such that g+h=1 to 8), and a polyoxyalkylene group [—O(C i H 2i O ) j —H] (i is 2 or 3 and j is an integer of 1 to 8), and has at least one group as a nonionic polar moiety, and an alkyl group [C k H 2k+1 -] (k is an integer of 7 to 18), and alkenyl group [C l H 2l-1 -] (l is an integer of 7 to 18) as a nonpolar site. at least one nonionic surfactant having a group;
(B) In the molecular structure, a quaternary methylammonium group, a quaternary methylalkanolammonium group, or a quaternary alkanolammonium group [—N + (CH 3 ) p (C m H 2m OH) qX , or >N + (CH 3 ) r (C n H 2n OH) s ·X′ ] (m and n are 2 or 3, p and q are 0 or positive integers satisfying p+q=3, r and s are r+s=2 0 or a positive integer, X and X′ are Cl, Br and I), and a carboxyl group [—C(=O)OH], any of the ionic polar having at least one group as a site, and an alkyl group [C t H 2t+1 -] (t is an integer of 7 to 18) and an alkenyl group [C u H 2u-1 -] (u is an integer of 7 to 18 is an integer) and at least one ionic surfactant having at least one non-polar site.
 上記において、(A)は、非極性の前記原料用炭化水素を助燃剤として含むアンモニア混合燃料における、特に好適な界面活性剤を構成する主成分としての非イオン性界面活性剤であり、また(B)は、特に好適な界面活性剤を構成する副成分としてのイオン性界面活性剤である。前述のように、非イオン性界面活性剤(A)は主に、分離二液相間の界面において、その分子が二次元配列した薄膜、および該膜で覆われたミセルを形成することに寄与し、イオン性界面活性剤(B)は主に、前記膜中において電離し、該ミセル同士の静電反発をもたらすことに寄与する。
 上記の内、非イオン性界面活性剤(A)の分子は、非イオン性極性部位として、アンモニアと共通する(-N<)の構造を有する、1級または2級アミノ基[-NH、または>NH]、ポリオキシアルキレンアミノ基[>N(C2aO)-H、または-N((C2bO)-H)((C2bO)-H)](aおよびbは2または3、cは1~8の整数、dおよびeはd+e=1~8となる0または正の整数)、アミド基[-C(=O)NH]、および、ポリオキシアルキレンアミド基[-C(=O)N((C2fO)-H)((C2fO)-H)](fは2または3、gおよびhはg+h=1~8となる0または正の整数)のいずれか、ないしは、エーテル酸素(-O-)を多く含む、ポリオキシアルキレン基[-O(C2iO)-H](iは2または3、jは1~8の整数)を備えるため、液化アンモニアないし液化アンモニアを主体とする液相側に対して、水素結合に基づく高い親和性を有する。これらの非イオン性界面活性剤(A)は、その極性部がアミノ基である場合も含めて、水を含まないアンモニア混合燃料中においては、それ自体が電離に与ることはほとんどない(このため「非イオン性」に区分されている)。また、非イオン性界面活性剤(A)は、非極性の長鎖アルキル基[C2k+1-]ないし長鎖アルケニル基[C2l-1-](kおよびlは7~18の整数)を併せて備えるため、原料用炭化水素ないし原料用炭化水素を主体とする液相側に対しても、高い親和性を有する。しかも、市販の界面活性剤種の内では、液化アンモニアないし液化アンモニアを主体とする液相側、または原料用炭化水素ないし原料用炭化水素を主体とする液相側のどちらかに溶解する場合があるのに対し、上記の非イオン性界面活性剤(A)では、おそらくはその親和性のバランスに起因し、いずれの液相に対する溶解度も共に低く、両相のどちらにも溶解せずにそれらの界面に移行しやすい、という特徴も有する。
In the above, (A) is a nonionic surfactant as a main component constituting a particularly suitable surfactant in an ammonia mixed fuel containing the non-polar raw material hydrocarbon as a combustion improver, and ( B) is an ionic surfactant as a secondary component which constitutes a particularly preferred surfactant. As described above, the nonionic surfactant (A) mainly contributes to the formation of a thin film in which its molecules are arranged two-dimensionally at the interface between the two separated liquid phases, and the micelle covered with the film. However, the ionic surfactant (B) is mainly ionized in the membrane and contributes to electrostatic repulsion between the micelles.
Among the above, the molecule of the nonionic surfactant (A) has a primary or secondary amino group [—NH 2 , or >NH], a polyoxyalkyleneamino group [>N(C a H 2a O) c —H, or —N((C b H 2b O) d —H) ((C b H 2b O) e —H )] (a and b are 2 or 3, c is an integer of 1 to 8, d and e are 0 or positive integers such that d + e = 1 to 8), an amide group [-C(=O)NH 2 ], and a polyoxyalkyleneamide group [-C(=O)N((C f H 2f O) g -H) ((C f H 2f O) h -H)] (f is 2 or 3, g and h is 0 or a positive integer such that g + h = 1 to 8), or a polyoxyalkylene group [-O(C i H 2i O) j -H] ( i is 2 or 3 and j is an integer of 1 to 8), it has a high affinity based on hydrogen bonding with respect to liquefied ammonia or a liquid phase mainly composed of liquefied ammonia. These nonionic surfactants (A), including the case where the polar part is an amino group, hardly participate in ionization themselves in ammonia mixed fuels containing no water (this classified as “nonionic”). In addition, the nonionic surfactant (A) contains a nonpolar long-chain alkyl group [C k H 2k+1 -] or a long-chain alkenyl group [C l H 2l-1 -] (k and l are 7 to 18). integer), it has a high affinity for the raw material hydrocarbon or the liquid phase mainly composed of the raw material hydrocarbon. Moreover, among commercially available surfactants, there are cases where they dissolve in either liquefied ammonia or the liquid phase consisting mainly of liquefied ammonia, or the raw material hydrocarbon or the liquid phase consisting mainly of the raw material hydrocarbon. In contrast, the above nonionic surfactant (A), probably due to its affinity balance, has low solubility in both liquid phases and does not dissolve in either of the two phases. It also has the feature of being easily migrated to the interface.
 非イオン性界面活性剤(A)としては、液化アンモニアないし液化アンモニアを主体とする液相と、原料用炭化水素ないし原料用炭化水素を主体とする液相との間でエマルションを形成させる場合には、本発明者の試行の中では、一本の長鎖アルキル基と、1級アミノ基(-NH)とを持つ、長鎖アルキルアミン[示性式:C2k+1NH](kは7~18の整数)が、最も高い効果を示した。こうした長鎖アルキルアミンは、両相界面に移行して膜を良好に形成し、その結果、ミセルも形成しやすい。こうした長鎖アルキルアミンの非イオン性界面活性剤(A)は、前記のa/oエマルション、およびo/aエマルションのどちらの状態を形成させる場合にも、良好に用いることができる。特に、後者を形成しやすい傾向があるようであり、このため、多量の液化アンモニアと、比較的少量の原料用炭化水素を含む混合燃料のエマルション化において、特に効果が高い。
 また、非イオン性界面活性剤(A)の内で、液化アンモニアないし液化アンモニアを主体とする液相と、原料用炭化水素ないし原料用炭化水素を主体とする液相との間でエマルションを形成させる場合に、上記の長鎖アルキルアミンに準ずる界面での膜形成効果を示すものとしては、
 一本の長鎖アルキル基と、ポリオキシアルキレンアミノ基とを持つ長鎖アルキルポリオキシアルキレンアミン[示性式:C2k+1N((C2bO)-H)((C2bO)-H)](bは2または3、dおよびeはd+e=1~8となる0または正の整数、kは7~18の整数)、
 一本の長鎖アルキル基と、アミド基とを持つ長鎖アルキルアミド[示性式:C2k+1-C(=O)NH](kは7~18の整数)、
 一本の長鎖アルキル基と、ポリオキシアルキレンアミド基とを持つ長鎖アルキルポリオキシアルキレンアミド[示性式:C2k+1-C(=O)N((C2fO)-H)((C2fO)-H)](fは2または3、gおよびhはg+h=1~8となる0または正の整数、kは7~18の整数)、および、
 一本の長鎖アルキル基と、ポリオキシアルキレン基とを持つ、ポリアルコキシエチレン長鎖アルキルエーテル[示性式:C2k+1O(C2iO)-H](iは2または3、jは1~8の整数、kは7~18の整数)、を挙げることができる。
 また、上記の内で、ポリオキシアルキレン基(ポリエーテル)の部分構造を持つ、長鎖アルキル(および長鎖アルケニル)ポリオキシアルキレンアミン、長鎖アルキル(および長鎖アルケニル)ポリオキシアルキレンアミド、およびポリアルコキシエチレン長鎖アルキル(または長鎖アルケニル)エーテルは、液化アンモニアおよび原料用炭化水素に加えて、原料用アルコールも含む場合のエマルション形成の際に、特に効果的な場合がある。
As the nonionic surfactant (A), when an emulsion is formed between liquefied ammonia or a liquid phase mainly composed of liquefied ammonia and a raw material hydrocarbon or a liquid phase mainly composed of raw material hydrocarbon is a long-chain alkylamine [property formula: C k H 2k+1 NH 2 ] ( k is an integer from 7 to 18) showed the highest effect. Such long-chain alkylamines migrate to the interface of both phases to form films well, and as a result, tend to form micelles. Such a long-chain alkylamine nonionic surfactant (A) can be used satisfactorily in forming both the a/o emulsion and the o/a emulsion. In particular, it seems to tend to form the latter, and for this reason, it is particularly effective in emulsifying a mixed fuel containing a large amount of liquefied ammonia and a relatively small amount of raw material hydrocarbons.
Further, in the nonionic surfactant (A), an emulsion is formed between liquefied ammonia or a liquid phase mainly composed of liquefied ammonia and a raw material hydrocarbon or a liquid phase mainly composed of raw material hydrocarbon. In the case of using
A long-chain alkylpolyoxyalkyleneamine having one long-chain alkyl group and a polyoxyalkyleneamino group [rheometric formula: C k H 2k+1 N((C b H 2b O) d -H) ((C b H 2b O) e —H)] (b is 2 or 3, d and e are 0 or positive integers such that d+e=1 to 8, k is an integer of 7 to 18),
a long-chain alkylamide having one long-chain alkyl group and an amide group [rheometric formula: C k H 2k+1 -C(=O)NH 2 ] (k is an integer of 7 to 18),
A long-chain alkylpolyoxyalkyleneamide having one long-chain alkyl group and a polyoxyalkyleneamide group [rheometric formula: C k H 2k+1 -C(=O)N((C f H 2f O) g - H) ((C f H 2f O) h −H)] (f is 2 or 3, g and h are 0 or positive integers such that g+h=1 to 8, k is an integer of 7 to 18), and
A polyalkoxyethylene long-chain alkyl ether having one long-chain alkyl group and a polyoxyalkylene group [rhetic formula: C k H 2k+1 O(C i H 2i O) j -H] (i is 2 or 3, j is an integer of 1 to 8, and k is an integer of 7 to 18).
Also, among the above, long-chain alkyl (and long-chain alkenyl) polyoxyalkyleneamines, long-chain alkyl (and long-chain alkenyl) polyoxyalkyleneamides having a polyoxyalkylene group (polyether) partial structure, and Polyalkoxyethylene long-chain alkyl (or long-chain alkenyl) ethers may be particularly effective in forming emulsions where, in addition to liquefied ammonia and feedstock hydrocarbons, a feedstock alcohol is also included.
 一方、イオン性界面活性剤(B)としては、液化アンモニアないし液化アンモニアを主体とする液相と、原料用炭化水素ないし原料用炭化水素を主体とする液相との間でエマルションを形成させる場合には、本発明者の試行の中では、一本の長鎖アルキル基と、トリメチルアンモニウム基とを持つ4級長鎖アルキルトリメチルアンモニウム[示性式:C2k+1(CH・X](kは7~18の整数)が、最も高い効果を示した。4級長鎖アルキルトリメチルアンモニウムは、非イオン性界面活性剤(A)による界面での膜形成に加わりながら、液化アンモニアを主体とする液相との境界において電離し、このため、ミセル同士の接触及び融合を良好に防止する。こうした4級長鎖アルキルトリメチルアンモニウムのイオン性界面活性剤(B)は、前記のa/oエマルション、およびo/aエマルションのどちらの状態を形成させる場合にも、良好に用いることができる。非イオン性界面活性剤(A)における上記の長鎖アルキルアミンと同様に、特にo/aエマルションを形成しやすい傾向があるようであり、このため、多量の液化アンモニアと、比較的少量の原料用炭化水素を含む混合燃料のエマルション化において、特に効果が高い。
 また、上記トリメチルアンモニウム基のメチル基[-CH]の一つないし三つを、アルカノール基[C2mOH](mは2または3)で置換した4級アンモニウム基を極性部位として持つ長鎖アルキルメチルアルカノールアンモニウム[C2k+1(CH(C2mOH)・X](kは7~18の整数、mは2または3、pおよびqはp+q=3となる0または正の整数、XはCl、BrおよびIの内のいずれか)のイオン性界面活性剤(B)は、液化アンモニアないし液化アンモニアを主体とする液相と、原料用炭化水素ないし原料用炭化水素を主体とする液相との間でエマルションを形成させる場合に、前記トリメチルアンモニウム基を持つものに準じる、界面での膜形成および電離効果を示す。また、4級メチルアルカノールアンモニウム基を持つこれらのイオン性界面活性剤(B)は、液化アンモニアおよび液体状態の原料用炭化水素に加えて、原料用アルコールも含む場合のエマルション形成の際に、特に効果的な場合がある。
On the other hand, as the ionic surfactant (B), when an emulsion is formed between liquefied ammonia or a liquid phase mainly composed of liquefied ammonia and a raw material hydrocarbon or a liquid phase mainly composed of raw material hydrocarbon In the trial of the present inventor, a quaternary long-chain alkyltrimethylammonium [ratic formula: C k H 2k+1 N + (CH 3 ) 3・X ] (k is an integer from 7 to 18) showed the highest effect. The quaternary long-chain alkyltrimethylammonium participates in the film formation at the interface by the nonionic surfactant (A), and is ionized at the boundary with the liquid phase mainly composed of liquefied ammonia. Good fusion prevention. Such a quaternary long-chain alkyltrimethylammonium ionic surfactant (B) can be used satisfactorily in forming both the a/o emulsion and the o/a emulsion. Similar to the long-chain alkylamines described above in nonionic surfactants (A), there appears to be a particular tendency to form o/a emulsions, resulting in large amounts of liquefied ammonia and relatively small amounts of raw It is particularly effective in emulsification of mixed fuels containing hydrocarbons for commercial use.
In addition, one to three of the methyl groups [—CH 3 ] of the trimethylammonium group are substituted with an alkanol group [C m H 2m OH] (m is 2 or 3) to have a quaternary ammonium group as a polar site. long-chain alkylmethylalkanolammonium [C k H 2k+1 N + (CH 3 ) p (C m H 2m OH) qX ] (k is an integer of 7 to 18, m is 2 or 3, p and q are p+q = 3 or a positive integer, X is one of Cl, Br and I), the ionic surfactant (B) is a liquid phase mainly composed of liquefied ammonia or liquefied ammonia, and When an emulsion is formed with a liquid phase mainly composed of hydrogen or raw material hydrocarbons, it exhibits film formation and ionization effects at the interface similar to those having the trimethylammonium group. In addition, these ionic surfactants (B) having a quaternary methylalkanolammonium group are particularly useful during the formation of an emulsion containing a raw material alcohol in addition to liquefied ammonia and a liquid state raw material hydrocarbon. can be effective.
 さらに、イオン性界面活性剤(B)の極性部位として、カルボキシル基[-C(=O)OH]を持つものも、原料用炭化水素ないし原料用炭化水素を主体とする液相との間でエマルションを形成させる場合に、良好に用いることができる。例えば、極性部としてカルボキシル基を持つ長鎖アルキルカルボン酸[示性式:C2k+1C(=O)OH](kは7~18の整数)のイオン性界面活性剤(B)も、非イオン性界面活性剤(A)による界面での膜形成に加わりながら、液化アンモニアを主体とする液相との境界において、共存するアンモニア(および、(A)の内の長鎖アルキル(または長鎖アルケニル)アミン)にHを与えて電離し[電離式:-C(=O)OH+NH(またはC2k+1NH等)=-C(=O)O+NH (またはC2k+1NH 等)]、その結果、ミセル同士を静電反発させ、ミセル同士の接触及び融合を防止する。また、こうした長鎖アルキル基ないしアルケニル基とカルボキシル基を持つイオン性界面活性剤(B)は、前記のa/oエマルション、およびo/aエマルションのどちらの状態も形成し得るが、特に前者を形成しやすい傾向があり、このため、多量の原料用炭化水素と比較的少量の液化アンモニアを含む混合燃料のエマルション化に際して、特に効果が高い。
 さらに、二本の長鎖アルキル基またはアルケニル基と2級アミノ基[>NH]とを持つ、長鎖ジアルキル(または長鎖ジアルケニル)アミン[示性式:(C2k+1NH、または(C2l-1NH](kおよびlは7~18の整数)の(A)、ないしは、二本の長鎖アルキル基またはアルケニル基とジメチルアミノ基[>N(CH・X]を持つ、4級長鎖ジアルキル又はジアルケニルジメチルアンモニウム[示性式:(C2k+1(CH(C2nOH)・X’、または(C2l-1(CH(C2nOH)・X’](nは2または3、rおよびsはr+s=2となる0または正の整数、X’はCl、BrおよびIの内のいずれか)の(B)は、それぞれ、上記の一本の長鎖アルキル基またはアルケニル基と1級アミノ基(-NH)を持つ単純な長鎖アルキル(または長鎖アルケニル)アミンの(A)、ないしは、上記の一本の長鎖アルキル基またはアルケニル基とトリメチルアンモニウム基を持つ4級長鎖アルキルトリメチルアンモニウムの(B)に対して少量添加されたとき、o/aエマルションの方をより形成しやすくなる傾向がある。
Furthermore, as the polar site of the ionic surfactant (B), those having a carboxyl group [-C (= O) OH] also between the raw material hydrocarbon or the liquid phase mainly composed of the raw material hydrocarbon It can be used satisfactorily when forming an emulsion. For example, an ionic surfactant (B) of a long-chain alkylcarboxylic acid [rheometric formula: C k H 2k+1 C(=O)OH] (k is an integer of 7 to 18) having a carboxyl group as a polar moiety, While participating in the film formation at the interface by the nonionic surfactant (A), the coexisting ammonia (and the long-chain alkyl (or long-chain Chain alkenyl) amine) is ionized by giving H + [ionization formula: -C (=O) OH + NH 3 (or C k H 2k + 1 NH 2 etc.) = - C (= O) O - + NH 4 + (or C k H 2k+1 NH 3 + etc.)], resulting in electrostatic repulsion between the micelles and preventing contact and fusion of the micelles. In addition, the ionic surfactant (B) having such a long-chain alkyl or alkenyl group and a carboxyl group can form both the a/o emulsion and o/a emulsion, but the former is particularly preferred. It tends to form easily, and is therefore particularly effective when emulsifying a mixed fuel containing a large amount of feedstock hydrocarbon and a relatively small amount of liquefied ammonia.
Furthermore, long-chain dialkyl (or long-chain dialkenyl) amines having two long-chain alkyl or alkenyl groups and a secondary amino group [>NH] [ratio: (C k H 2k+1 ) 2 NH 2 , or (C l H 2l-1 ) 2 NH 2 ] (k and l are integers of 7 to 18) (A), or two long-chain alkyl or alkenyl groups and a dimethylamino group [>N + ( CH 3 ) 2 ·X ], quaternary long-chain dialkyl or dialkenyldimethylammonium [ratio: (C k H 2k+1 ) 2 N + (CH 3 ) r (C n H 2n OH) s ·X′ , or (C l H 2l−1 ) 2 N + (CH 3 ) r (C n H 2n OH) s ·X′ ] (n is 2 or 3, r and s are 0 or a positive integer, X' is any of Cl, Br and I) (B) each have a single long-chain alkyl or alkenyl group and a primary amino group (—NH 2 ) as described above; For (A) a simple long-chain alkyl (or long-chain alkenyl) amine, or (B) a quaternary long-chain alkyltrimethylammonium having a single long-chain alkyl or alkenyl group and a trimethylammonium group When added in small amounts, o/a emulsions tend to form more readily.
 以上の混合系界面活性剤((A)+(B))中の非イオン性界面活性剤(A)とイオン性界面活性剤(B)との混合比は、モル比において、およそ0.7:0.3~0.9:0.1の範囲であることが好ましく、特に、およそ0.80:0.20程度において、最も良好にエマルションを形成する(後述する実施例3および実施例11と、参考例1、2とを比較参照)。
 また、上記において、非イオン性界面活性剤(A)およびイオン性界面活性剤(B)の長鎖アルキル基またはアルケニル基の炭素数k、l、tおよびuは、アンモニア混合燃料の調製および保存される温度によって適宜選択される。一般には、その温度が高くなるほど、炭素数の大きいものが適する。例えば、調製および混合の温度が、大気圧下でのアンモニアの液化温度(-33℃)の近傍(例えばマイナス数10℃程度)の場合は、低温下での界面活性剤の固化析出等を抑えるため、k、l、tおよびuはおよそ7~8程度が適する。また常温(25℃)の近傍、例えばおよそ0~50℃程度の場合は、分離液相界面での配列の安定性と流動性の両立のため、これらの炭素数はおよそ10~14程度が適する場合が多い。より高い温度では、概ねそれ以上の炭素数が適する。従って、界面活性剤は、その機能を発現するのに好適な温度域をそれぞれ有している。一方、アンモニア混合燃料の調製および保存される温度は、助燃剤の種類によって選択される場合が多い。例えば、助燃剤が液化石油ガスおよびその成分炭化水素種である場合は、その飽和蒸気圧がなるべく低くなる方が、混合用の容器の耐圧性や操作のしやすさ等の観点から好ましいため、調製および混合の温度は、大気圧下でのアンモニアの液化温度の近傍から、常温(25℃)の近傍、即ちおよそマイナス数10℃~50℃程度で行われる。また、助燃剤がナフサ、ガソリン、ケロシン、および軽油、ないし、それらの成分炭化水素種である場合は、その粘度や、撹拌混合性の観点から、調製および混合の温度は、常温(25℃)の近傍、例えばおよそ0~50℃程度か、ないしはそれ以上の温度域が選ばれることが多い。また、上記鎖長(炭素数k、l、tおよびu)が一定範囲に分布した、複数の鎖長(炭素数)の混合系界面活性剤を用いる場合に、より安定したエマルションを形成できる場合もある。例えば、安価なヤシ油由来の長鎖アルキル基の炭素数には特定の分布があり(k,t≒8~18程度:一般に、この内、k,t=12の割合が約6割で最多)、これらを有する混合系界面活性剤は、安定したエマルションを形成しやすい場合がある。
 従って、エマルション化させたい液相組成に応じた温度域に適する、長鎖アルキル基またはアルケニル基を有する界面活性剤が上述のように選ばれ、その温度域が保たれることによって、アンモニア混合燃料は、前記アンモニア混合燃料の液相部分の少なくとも一部、更には全体が、前記アンモニアと前記助燃剤とのエマルション状態となり、良好に燃焼させることができる。
The mixing ratio of the nonionic surfactant (A) and the ionic surfactant (B) in the above mixed surfactant ((A) + (B)) is approximately 0.7 in terms of molar ratio. :0.3 to 0.9:0.1 is preferred, and in particular, about 0.80:0.20 provides the best emulsion formation (Examples 3 and 11 described later) and Reference Examples 1 and 2).
Further, in the above, the carbon numbers k, l, t and u of the long-chain alkyl or alkenyl groups of the nonionic surfactant (A) and the ionic surfactant (B) are determined according to the preparation and storage of the ammonia mixed fuel. It is appropriately selected depending on the temperature to be applied. Generally, the higher the temperature, the more suitable the carbon number is. For example, if the preparation and mixing temperature is in the vicinity of the liquefaction temperature (-33°C) of ammonia under atmospheric pressure (for example, about several tens of degrees below zero), solidification and precipitation of the surfactant at low temperatures can be suppressed. Therefore, it is suitable that k, l, t and u are about 7 to 8. In the vicinity of room temperature (25° C.), for example, in the case of about 0 to 50° C., the number of carbon atoms is suitable to be about 10 to 14 in order to achieve both stability of arrangement and fluidity at the separated liquid phase interface. often. At higher temperatures, generally higher carbon numbers are suitable. Therefore, each surfactant has a suitable temperature range to exhibit its function. On the other hand, the temperature at which the ammonia mixed fuel is prepared and stored is often selected according to the type of combustion improver. For example, when the combustion improver is liquefied petroleum gas and its component hydrocarbon species, it is preferable that the saturated vapor pressure is as low as possible from the viewpoint of the pressure resistance of the mixing vessel and ease of operation. The temperature for preparation and mixing is from the vicinity of the liquefying temperature of ammonia under atmospheric pressure to the vicinity of normal temperature (25°C), that is, about -several 10°C to 50°C. In addition, when the combustion improver is naphtha, gasoline, kerosene, light oil, or their component hydrocarbon species, the temperature for preparation and mixing is normal temperature (25 ° C.) from the viewpoint of viscosity and stirring and mixing properties. , for example, a temperature range of about 0 to 50° C. or higher is often selected. In addition, when using a mixed surfactant having a plurality of chain lengths (carbon numbers) in which the chain lengths (carbon numbers k, l, t and u) are distributed in a certain range, a more stable emulsion can be formed. There is also For example, the number of carbon atoms in long-chain alkyl groups derived from inexpensive coconut oil has a specific distribution (k, t ≈ 8 to 18: in general, k, t = 12 accounts for about 60%, which is the largest ), mixed surfactants having these may tend to form stable emulsions.
Therefore, a surfactant having a long-chain alkyl group or alkenyl group suitable for the temperature range corresponding to the liquid phase composition to be emulsified is selected as described above, and by maintaining that temperature range, ammonia mixed fuel At least a part of the liquid phase portion of the ammonia-mixed fuel, or even the whole, is in an emulsion state of the ammonia and the combustion improver, so that good combustion can be achieved.
 また、上記各分子構造を有する非イオン性およびイオン性の界面活性剤は、極性のあるアンモニア分子に対し(さらに、追加して添加され得る炭素数3以下の原料用アルコールの分子に対しても)、水素結合に基づく親和性が高く、分子の原子配列の局所構造も互いに類似する、適度な極性の極性部位を備える。 In addition, the nonionic and ionic surfactants having each of the above molecular structures are effective against polar ammonia molecules (and against raw material alcohol molecules with 3 or less carbon atoms that can be additionally added). .
 さらに、以上のアンモニア混合燃料に用いる非イオン性およびイオン性の界面活性剤は、アンモニアによって呈するアルカリ性に対して耐久性に問題がある分子構造部分を有しておらず、化学的に安定である。一方、例えば、アルカリ性下で劣化しやすいエステル基(-C(=O)-O-)、ウレタン基(-O-C(=O)-NH-)等が分子構造中に含まれることは好ましくない。また、特に、アンモニア混合燃料を燃焼させる燃焼器が、摺動性を要する可動部を持つレシプロエンジン等の場合は、混合燃料の燃焼時の際に、摺動性を劣化させ得る、燃焼ガス中の灰分となる副生成物が生じるような界面活性剤は避けることが好ましい。例えば、前記のイオン性界面活性剤としては、極性部位が、例えばスルホン酸塩(極性部が-SO ・Na等)の界面活性剤を用いることも可能であるが、その場合、燃焼後に生じる硫酸ナトリウム等を含む灰分が、摺動上不利な副生成物として生成するので、本発明のアンモニア混合燃料に用いる界面活性剤としては、好ましくない。
 後述する実施例3~12には、助燃剤として液化石油ガスの1成分であるn-ブタンを用い、種々の混合系界面活性剤を所定量添加し混合した場合に、エマルション(この場合はo/aエマルション)の形成よって上下二相分離状態が解消され、均一に可溶化される下限温度、およびその時の飽和蒸気圧を列記した(比較対照の基準は、界面活性剤を添加しない実施例2)。これらの実施例から、混合系界面活性剤の添加によるエマルション化により、可溶化に必要な温度を低減でき、それにより、アンモニア混合燃料の飽和蒸気圧の上昇も抑えることができることが判る。このため、これらの混合系界活性剤の添加によるエマルション化によって、所定の温度における助燃剤n-ブタンのアンモニアへの可溶量が増大する上に、貯蔵保存の際の保存容器の所要耐圧も軽減できる。
Furthermore, the nonionic and ionic surfactants used in the above ammonia mixed fuel do not have a molecular structure portion that has a durability problem against the alkalinity exhibited by ammonia, and are chemically stable. . On the other hand, for example, it is preferable that an ester group (-C(=O)-O-), a urethane group (-O-C(=O)-NH-), etc., which are likely to deteriorate under alkaline conditions, be included in the molecular structure. do not have. In particular, in the case where the combustor that burns the ammonia mixed fuel is a reciprocating engine or the like that has a movable part that requires slidability, the slidability may be deteriorated when the mixed fuel is burned. It is preferred to avoid surfactants that produce ash by-products. For example, as the ionic surfactant, it is possible to use a surfactant having a polar part such as a sulfonate (polar part is -SO 3 - ·Na + etc.). Since ash containing sodium sulfate and the like that is produced later is produced as a by-product that is disadvantageous in sliding, it is not preferable as a surfactant used in the ammonia mixed fuel of the present invention.
In Examples 3 to 12 described later, when n-butane, which is one component of liquefied petroleum gas, is used as a combustion improver, and a predetermined amount of various mixed surfactants are added and mixed, an emulsion (in this case, o /a emulsion) is formed to eliminate the upper and lower two-phase separation state, and the lower limit temperature at which the upper and lower two phases are uniformly solubilized and the saturated vapor pressure at that time are listed (the standard for comparison is Example 2 in which no surfactant is added) ). From these examples, it can be seen that emulsification by adding a mixed surfactant can reduce the temperature required for solubilization, thereby suppressing an increase in the saturated vapor pressure of the ammonia-mixed fuel. For this reason, emulsification by adding these mixed system surfactants increases the solubility of the combustion improver n-butane in ammonia at a predetermined temperature, and also increases the required pressure resistance of the storage container during storage. can be reduced.
(アンモニア混合燃料の製造装置および製造方法)
 図2は、一実施形態のアンモニア混合燃料の製造装置の構成の一例を示す図である。
 図2に示す製造装置10は、助燃剤が、液化石油ガス、および液化石油ガスの成分炭化水素種である場合の、アンモニア混合燃料を製造する装置である。液化石油ガス、およびその構成成分として含まれる炭化水素種は、ガソリン、ケロシン、軽油、あるいは、重油等の従来多く用いられて来た液体化石燃料に比べると、燃焼の際に、発熱量当たりのCO発生が少ない点で好ましい。また、液化石油ガスおよびその成分炭化水素種は、同一温度の液体状態において、アンモニアに近い飽和蒸気圧を有し、かつ、アンモニアに比べ発火温度が低いために着火し易く、またアンモニアに比べて高い燃焼速度(層流燃焼速度においてアンモニアの5~6倍程度)を有しており、燃焼し易い。このため、液化石油ガス、その成分として含まれる炭化水素種は、アンモニアの助燃剤として好ましい。このような助燃剤を含むアンモニア混合燃料を、図2に示される製造装置10で製造することができる。
 製造装置10は、アンモニア貯蔵用密閉容器12、助燃剤貯蔵用密閉容器14、混合用密閉容器16、アンモニア導入ライン18、助燃剤導入ライン20、気相排出ライン21、液相排出ライン22、撹拌機24、温度計33、および圧力計31を主に備える。この他に、図2に示す製造装置10は、界面活性剤貯蔵容器26、界面活性剤導入ライン28、窒素ガス導入機構30、流量計18a,20a,28a、調整弁18b,20b,28b,18c,20c,28c、及び制御装置32を備える。調整弁18c,20c,28cは、原料を混合用密閉容器16内に導入する入口弁である。さらに、混合用密閉容器16には、その周囲に、混合用密閉容器16内の温度を調節する温度調節用ジャケット17、およびその下部に温度調節媒体入口ノズル17a、さらに上部に温度調節媒体出口ノズル17bが設けられる。
(Ammonia mixed fuel manufacturing device and manufacturing method)
FIG. 2 is a diagram showing an example of the configuration of an ammonia-mixed fuel manufacturing apparatus according to one embodiment.
The production apparatus 10 shown in FIG. 2 is an apparatus for producing an ammonia mixed fuel when the combustion improver is liquefied petroleum gas and component hydrocarbon species of the liquefied petroleum gas. Liquefied petroleum gas and hydrocarbon species contained as its constituent components have a higher calorific value during combustion than conventional liquid fossil fuels such as gasoline, kerosene, light oil, and heavy oil. It is preferable in terms of less CO 2 generation. In addition, liquefied petroleum gas and its component hydrocarbon species have a saturated vapor pressure close to that of ammonia in a liquid state at the same temperature, and are easier to ignite because they have a lower ignition temperature than ammonia, and are more easily ignited than ammonia. It has a high burning velocity (about 5 to 6 times that of ammonia in terms of laminar burning velocity) and is easy to burn. For this reason, liquefied petroleum gas and the hydrocarbon species contained as its components are preferred as combustion improvers for ammonia. An ammonia-mixed fuel containing such a combustion improver can be produced by the production apparatus 10 shown in FIG.
The manufacturing apparatus 10 includes an ammonia storage closed container 12, a combustion improver storage closed container 14, a mixing closed container 16, an ammonia introduction line 18, a combustion improver introduction line 20, a gas phase discharge line 21, a liquid phase discharge line 22, and agitation. A thermometer 24 , a thermometer 33 and a pressure gauge 31 are mainly provided. In addition to this, the manufacturing apparatus 10 shown in FIG. , 20c, 28c and a controller 32. FIG. The regulating valves 18c, 20c, 28c are inlet valves for introducing the raw materials into the closed vessel 16 for mixing. Furthermore, the closed mixing container 16 has a temperature adjusting jacket 17 for adjusting the temperature inside the closed mixing container 16, a temperature adjusting medium inlet nozzle 17a at its lower part, and a temperature adjusting medium outlet nozzle at its upper part. 17b is provided.
 アンモニア貯蔵用密閉容器12は、液体状態のアンモニア(液化アンモニア)を貯蔵するボンベあるいはタンクである。
 助燃剤貯蔵用密閉容器14は、アンモニアの燃焼を補助する、液体状態の助燃剤を貯蔵するボンベあるいはタンクである。ここでの助燃剤は、上述したように、(a)液化石油ガス、(b)液化石油ガスに成分として含まれる少なくとも一つの炭化水素種である原料用炭化水素、の内の少なくともいずれか一つである。
The ammonia storage closed container 12 is a cylinder or tank for storing ammonia in a liquid state (liquefied ammonia).
The combustion improver storage sealed container 14 is a cylinder or tank that stores a liquid state combustion improver that assists the combustion of ammonia. The combustion improver here is, as described above, at least one of (a) liquefied petroleum gas and (b) raw material hydrocarbon which is at least one hydrocarbon species contained as a component in liquefied petroleum gas. is one.
 混合用密閉容器16には、撹拌機24が設けられている。混合用密閉容器16は、液体状態のアンモニアと、助燃剤とを撹拌機24により撹拌混合することにより溶解した溶液状態、または、エマルション化された混合物を得、撹拌機による撹拌混合によって得られる混合物が、気液平衡状態を維持できるように構成されている。具体的には、混合用密閉容器16内が、アンモニア、助燃剤、およびそれらの混合物の飽和蒸気圧を維持することができるように、混合用密閉容器16は耐圧構造と気密性を有する。 A stirrer 24 is provided in the closed container 16 for mixing. The closed container 16 for mixing obtains a dissolved solution state or an emulsified mixture by stirring and mixing liquid state ammonia and a combustion improver with a stirrer 24, and a mixture obtained by stirring and mixing with a stirrer. is configured to maintain a vapor-liquid equilibrium state. Specifically, the closed mixing container 16 has a pressure-resistant structure and airtightness so that the inside of the closed mixing container 16 can maintain the saturated vapor pressure of ammonia, the combustion improver, and their mixture.
 アンモニア導入ライン18は、アンモニア貯蔵用密閉容器12と混合用密閉容器16に所定量導入するように構成された流量計18a及び調整弁18b,18cが、アンモニア定量導入機構として設けられる。制御装置32は、流量計18aによるアンモニア流量の計測結果を受信し、調整弁18b,18cの開度を制御する制御信号を生成し、生成した制御信号を調整弁18b,18cに送る。定量導入の際には、アンモニアの導入開始時からのアンモニアの流量の時間積分値が、混合用密閉容器16に導入されるべき設定量に達したと制御装置32が判定した時点で、制御装置32が生成する制御信号により、調整弁18b,18cは全閉とされ、導入が停止される。
 なお、流量計18aには、例えば、アンモニア導入ライン18の配管内の流体の上昇流によって浮上する浮きの浮上高さにより流量を求めるフローメーター、臨界ノズル式または熱式流量センサ式マスフローメーターあるいはマスフローコントローラー、超音波式流速計、あるいは、コリオリ式流量計等が用いられる。このとき、アンモニアの導入開始から終了までの流量計測値の時間積分によって、アンモニアの導入量を求めることができる。
 なお、図2の流量計18aに替えて、混合用密閉容器16の重量を秤量する秤量器(図示されていない)を別に設け、混合用密閉容器16内への液化アンモニアの導入に伴う前記秤量器の秤量値から、アンモニアの導入量を制御することも可能である。ただし、この制御方式は、後述する図5に示した、原料のアンモニアおよび助燃剤の連続導入による、組成一定のアンモニア混合燃料の連続製造の場合には適用できない。その場合は、前記アンモニア定量導入機構は、前記秤量器、および調整弁18b,18cで構成される。定量導入に際しては、前記秤量器による秤量結果を制御装置32が受信し、調整弁18b,18cの開度を制御する制御信号を生成し、生成した制御信号を調整弁18b,18cに送る。定量導入の際には、アンモニア導入量の秤量結果(アンモニアの導入開始前の混合用密閉容器16の質量が差し引かれた値)が、混合用密閉容器16に導入されるべき設定量に達したと制御装置32が判定した時点で、制御装置32が生成する制御信号により、調整弁18b,18cは全閉とされ、導入が停止される。
The ammonia introduction line 18 is provided with a flow meter 18a and control valves 18b and 18c configured to introduce a predetermined amount of ammonia into the closed container 12 for storing ammonia and the closed container 16 for mixing as an ammonia fixed quantity introduction mechanism. The control device 32 receives the measurement results of the ammonia flow rate by the flow meter 18a, generates control signals for controlling the opening degrees of the regulating valves 18b and 18c, and sends the generated control signals to the regulating valves 18b and 18c. In the case of constant introduction, when the control device 32 determines that the time integral value of the flow rate of ammonia from the start of introduction of ammonia reaches the set amount to be introduced into the mixing closed container 16, the control device The control signal generated by 32 causes the regulating valves 18b, 18c to be fully closed, stopping the introduction.
The flow meter 18a may be, for example, a flow meter that determines the flow rate from the floating height of a float that rises due to the upward flow of fluid in the ammonia introduction line 18, a critical nozzle type or thermal flow sensor type mass flow meter, or a mass flow meter. A controller, an ultrasonic flow meter, a Coriolis flow meter, or the like is used. At this time, the introduction amount of ammonia can be obtained by time integration of the flow rate measurement value from the start to the end of introduction of ammonia.
In addition, instead of the flow meter 18a in FIG. It is also possible to control the amount of ammonia introduced from the weighed value of the vessel. However, this control method cannot be applied to continuous production of an ammonia-mixed fuel having a constant composition by continuously introducing raw material ammonia and a combustion improver, as shown in FIG. 5, which will be described later. In that case, the ammonia quantitative introduction mechanism is composed of the weighing device and the control valves 18b and 18c. Upon quantitative introduction, the control device 32 receives the result of weighing by the scaler, generates control signals for controlling the opening degrees of the regulating valves 18b and 18c, and sends the generated control signals to the regulating valves 18b and 18c. At the time of quantitative introduction, the weighing result of the amount of introduced ammonia (the value obtained by subtracting the mass of the closed mixing vessel 16 before starting the introduction of ammonia) reached the set amount to be introduced into the closed mixing vessel 16. When the control device 32 determines that, the control valves 18b and 18c are fully closed by the control signal generated by the control device 32, and the introduction is stopped.
 助燃剤導入ライン20は、助燃剤貯蔵用密閉容器14と混合用密閉容器16とを接続する。助燃剤導入ライン20には、助燃剤を助燃剤貯蔵用密閉容器14から混合用密閉容器16に所定量導入するように構成された流量計20a及び調整弁20b,20cが、助燃剤定量導入機構として設けられる。流量計20aには、液化アンモニアの流量計18aと同様の機構のものが用いられる。制御装置32は、流量計20aによる計測結果を受信し、調整弁20b,20cの開度を制御する制御信号を生成し、生成した制御信号を調整弁20b,20cに送る。定量導入の際には、助燃剤の導入開始時からの助燃剤の流量の時間積分値が、混合用密閉容器16に導入されるべき設定量に達したと制御装置32が判定した時点で、制御装置32が生成する制御信号により、調整弁20b,20cは全閉とされ、導入が停止される。
 また、液化アンモニアの導入の際と同様に、流量計20aに替えて、混合用密閉容器16の重量を秤量する前記秤量器(図示されていない)による秤量値から、助燃剤の導入量を把握し、制御することも可能である。ただし、この制御方式は、後述する図5に示した、原料のアンモニアおよび助燃剤の連続導入による、組成一定のアンモニア混合燃料の連続製造の場合には適用できない。その場合は、前記助燃剤定量導入機構は、前記秤量器、および調整弁20b,20cで構成される。定量導入に際しては、前記秤量器による助燃剤の秤量結果を制御装置32が受信して、調整弁20b,20cの開度を制御する制御信号を生成し、生成した制御信号を調整弁20b,20cに送る。定量導入の際には、助燃剤導入量の秤量結果(助燃剤の導入開始前の混合用密閉容器16の質量が差し引かれた値)が、混合用密閉容器16に導入されるべき設定量に達したと制御装置32が判定した時点で、制御装置32が生成する制御信号により、調整弁20b,20cは全閉とされ、導入が停止される。
 液体状態のアンモニアの飽和蒸気圧、及び、液化石油ガスまたは液化石油ガスの成分炭化水素である上記助燃剤の飽和蒸気圧は、常温(25℃)付近では、いずれも大気圧よりかなり高い。このため、混合用密閉容器16の内圧が大気圧程度であり、これらの飽和蒸気圧よりも十分に低ければ、図2に示されるように、アンモニア導入ライン18及び助燃剤導入ライン20に送液ポンプが設けられなくても、アンモニア貯蔵用密閉容器12、および助燃剤貯蔵用密閉容器14の内部の飽和蒸気圧による液相の吐出によって、それぞれを混合用密閉容器16内に導入できる。
The combustion improver introduction line 20 connects the combustion improver storage closed container 14 and the mixing closed container 16 . In the combustion improver introduction line 20, a flow meter 20a and control valves 20b and 20c configured to introduce a predetermined amount of the combustion improver from the combustion improver storage closed container 14 to the mixing closed container 16 are provided. is provided as The flowmeter 20a has the same mechanism as the liquefied ammonia flowmeter 18a. The control device 32 receives the measurement results from the flow meter 20a, generates control signals for controlling the opening degrees of the regulating valves 20b and 20c, and sends the generated control signals to the regulating valves 20b and 20c. In the case of constant introduction, when the control device 32 determines that the time integral value of the flow rate of the combustion improver from the start of the introduction of the combustion improver reaches the set amount to be introduced into the closed mixing container 16, A control signal generated by the control device 32 fully closes the regulating valves 20b and 20c to stop the introduction.
Also, in the same manner as when introducing the liquefied ammonia, the amount of the combustion improver to be introduced is grasped from the weighed value obtained by the weighing device (not shown) that weighs the weight of the mixing sealed container 16 instead of the flowmeter 20a. can also be controlled. However, this control method cannot be applied to continuous production of an ammonia-mixed fuel having a constant composition by continuously introducing raw material ammonia and a combustion improver, as shown in FIG. 5, which will be described later. In that case, the combustion improver fixed quantity introduction mechanism is composed of the weighing device and the control valves 20b and 20c. When introducing a fixed quantity, the control device 32 receives the result of weighing the combustion improver by the scaler, generates a control signal for controlling the opening degree of the regulating valves 20b, 20c, and transmits the generated control signal to the regulating valves 20b, 20c. send to At the time of constant introduction, the weighing result of the amount of the combustion improver introduced (the value obtained by subtracting the mass of the closed mixing container 16 before the start of the introduction of the combustion improver) becomes the set amount to be introduced into the closed mixing container 16. When the control device 32 determines that it has reached, the control valves 20b and 20c are fully closed by a control signal generated by the control device 32, and the introduction is stopped.
The saturated vapor pressure of ammonia in a liquid state and the saturated vapor pressure of the liquefied petroleum gas or the combustion improver, which is a component hydrocarbon of the liquefied petroleum gas, are both considerably higher than the atmospheric pressure at around normal temperature (25° C.). Therefore, if the internal pressure of the closed container 16 for mixing is approximately atmospheric pressure and is sufficiently lower than the saturated vapor pressure of these, as shown in FIG. Even if a pump is not provided, each of the closed ammonia storage container 12 and the closed combustion improver storage container 14 can be introduced into the closed mixing container 16 by discharging the liquid phase due to the saturated vapor pressure inside the closed container 14 .
 窒素ガス導入機構30は、製造装置10の立ち上げ時、およびアンモニア混合燃料の製造の終了後等に、防爆的な観点から、必要に応じて、各導入ライン及び混合用密閉容器16内に存在するガスを窒素ガスで置換するために設けられる。窒素ガス導入機構30には、窒素ガスをアンモニア導入ライン18及び助燃剤導入ライン20に所定量を導入するための窒素ガス導入弁30aが設けられる。窒素ガス導入弁30aの開度は、制御装置32が調整弁18b,18c,20b,20cの開度を制御する制御信号に基づいて生成される制御信号により制御される。
 前述した、混合用密閉容器16内への、液化アンモニア、および液化石油ガスまたは液化石油ガスの成分炭化水素種である助燃剤の導入は、以下の手順で行われることが好ましい。これらの液化ガスであるアンモニアおよび助燃剤の導入の際には、それぞれの貯蔵用密閉容器(12、14)内での、それぞれの飽和蒸気圧による吐出によって、混合用密閉容器16内にそれぞれを導入できる。その際、両方の導入を完結させるには、これらの導入中は、アンモニア貯蔵用密閉容器12の内圧(アンモニアの飽和蒸気圧)、および助燃剤貯蔵用密閉容器14の内圧(助燃剤の飽和高気圧)よりも、混合用密閉容器16内の両者の混合物の飽和蒸気圧が、常に低くなる必要がある。このため、一連の導入行程の前に、後述する温度制御によって、混合用密閉容器16内の該混合物の液相の温度が、その飽和蒸気圧が十分に低く(例えば、およそ0.05~0.1MPa程度以下)なるような、所定の温度に保持される(多くの場合、実質的に、外部環境よりも低い温度への冷却になる)。
 その後、気相排出弁21aが開けられ(大気開放状態になる)、窒素ガス導入機構30によって、所定量の窒素ガスが各導入ラインを経て混合用密閉容器16に通され、防爆的な観点から、必要に応じて、各導入ラインおよび混合用密閉容器16内の空気が窒素ガスによって一旦置換される。次に、前述した定量導入機構によって、液化アンモニア、助燃剤、および界面活性剤のそれぞれの所定量が、それぞれの導入ラインを経て、混合用密閉容器16内に順次導入される。これらの導入中、混合用密閉容器16の内圧上昇によって、液化アンモニアや助燃剤等がそれ以上導入できなくなるような事態を避けるため、後述するように、導入の順序としては、基本的に、前記の混合用密閉容器16内の撹拌混合中の温度における飽和蒸気圧の低いものから、順に導入されることが好ましい。液化ガスである液化アンモニアおよび助燃剤の液化石油ガスおよびその成分炭化水素種の原料の内、前記設定温度での飽和蒸気圧が低いものから順に、混合用密閉容器16内に導入される。ここで、例えば、アンモニアと、液化石油ガスの一成分のプロパンとの間では、約15℃以下ではアンモニアよりプロパンの方が飽和蒸気圧は高く、それ以上の温度では逆転すること等に注意し、導入順序が選ばれる必要がある。その際はまず、前記液化ガスの原料の内で最初に導入される、飽和蒸気圧が最も低い液化ガス成分の気化ガスにより、混合用密閉容器16内を満たしていた窒素ガスが十分に排除され、置換されることが好ましい。このガス置換後に気相排出弁21aが閉じられ、調整弁18b、18cないしは調整弁20b、20cが開けられると同時に、前記の最初に導入される液化ガス原料の導入量(流量の時間積分値)の計測が開始され、所定量の導入の完了後に、調整弁18b、18cないしは調整弁20b、20cが閉じられる。それに続く二番目の液化ガス原料以降の導入の際は、前述のガス置換は行われず、飽和蒸気圧の低い順に、残りの液化ガス原料の所定量が同様にして導入される。
Nitrogen gas introduction mechanism 30 exists in each introduction line and mixing closed container 16 as necessary from the viewpoint of explosion protection at the time of starting up the manufacturing apparatus 10 and after the completion of manufacturing the ammonia mixed fuel. It is provided to replace the gas to be used with nitrogen gas. The nitrogen gas introduction mechanism 30 is provided with a nitrogen gas introduction valve 30 a for introducing a predetermined amount of nitrogen gas into the ammonia introduction line 18 and the combustion improver introduction line 20 . The degree of opening of the nitrogen gas introduction valve 30a is controlled by control signals generated by the controller 32 based on control signals for controlling the degrees of opening of the adjustment valves 18b, 18c, 20b, and 20c.
The introduction of the liquefied ammonia and the liquefied petroleum gas or the combustion improver, which is a component hydrocarbon species of the liquefied petroleum gas, into the closed mixing container 16 described above is preferably carried out by the following procedure. When these liquefied gases, ammonia and the combustion improver, are introduced into the closed container for mixing (12, 14), they are discharged by their respective saturated vapor pressures into the closed container for mixing (16). can be introduced. At that time, in order to complete the introduction of both, during these introductions, the internal pressure of the ammonia storage closed container 12 (the saturated vapor pressure of ammonia) and the internal pressure of the combustion improver storage closed container 14 (the saturated high pressure of the combustion improver ), the saturated vapor pressure of both mixtures in the closed mixing vessel 16 must always be lower than in the case of For this reason, before a series of introduction steps, the temperature of the liquid phase of the mixture in the closed mixing container 16 is adjusted to a sufficiently low saturated vapor pressure (for example, about 0.05 to 0.05) by temperature control described later. .1 MPa or less) (in many cases, it is substantially cooled to a lower temperature than the external environment).
After that, the gas phase discharge valve 21a is opened (becomes open to the atmosphere), and the nitrogen gas introduction mechanism 30 allows a predetermined amount of nitrogen gas to pass through each introduction line into the mixing sealed container 16, and from an explosion-proof viewpoint, If necessary, the air in each introduction line and the closed container 16 for mixing is once replaced with nitrogen gas. Next, predetermined amounts of the liquefied ammonia, the combustion improver, and the surfactant are sequentially introduced into the closed mixing container 16 through the respective introduction lines by the quantitative introduction mechanism described above. In order to avoid a situation in which the internal pressure of the closed container 16 for mixing rises during the introduction of these, the liquefied ammonia, the combustion improver, etc. cannot be introduced any more. It is preferable that the components having the lowest saturated vapor pressure at the temperature during stirring and mixing in the closed container 16 for mixing are introduced in order. Among raw materials of liquefied ammonia as liquefied gas, liquefied petroleum gas as combustion improver, and its constituent hydrocarbon species, those having the lowest saturated vapor pressure at the set temperature are introduced into closed mixing vessel 16 in that order. Here, for example, between ammonia and propane, which is one component of liquefied petroleum gas, it should be noted that the saturated vapor pressure of propane is higher than that of ammonia at temperatures below about 15°C, and the reverse occurs at temperatures above that. , the order of introduction needs to be chosen. At that time, first, the nitrogen gas filling the closed container 16 for mixing is sufficiently eliminated by the vaporized gas of the liquefied gas component having the lowest saturated vapor pressure, which is introduced first among the raw materials of the liquefied gas. , is preferably replaced. After this gas replacement, the gas phase discharge valve 21a is closed, and the adjustment valves 18b, 18c or the adjustment valves 20b, 20c are opened. is started, and after the introduction of the predetermined amount is completed, the regulating valves 18b, 18c or the regulating valves 20b, 20c are closed. When the second and subsequent liquefied gas raw materials are introduced, the gas replacement described above is not performed, and a predetermined amount of the remaining liquefied gas raw materials are similarly introduced in descending order of saturated vapor pressure.
 以上の構成および手順によれば、アンモニア導入ライン18および助燃剤導入ライン20に送液ポンプが設けられなくても、それぞれの貯蔵用密閉容器12および14内における液化アンモニア、および液化石油ガスまたは液化石油ガスの成分炭化水素種である助燃剤の飽和蒸気圧による吐出により、アンモニアおよび助燃剤を、より低い内圧に抑えられた混合用密閉容器16内に導入することができる。しかし、アンモニアおよび上記助燃剤が既に導入されている混合用密閉容器16内に、アンモニアと助燃剤との混合物の飽和蒸気圧(多くの場合、混合物の飽和蒸気圧は、アンモニアおよび上記助燃剤の単独時の飽和蒸気圧よりも高い)に抗して、原料のアンモニアおよび上記助燃剤を加圧導入できる方が有利な場合もある。特に、後述するように、アンモニアおよび上記助燃剤を混合用密閉容器16内に連続的に追加定量導入し、アンモニア混合燃料を連続的に製造する場合等には、アンモニア導入ライン18および/または助燃剤導入ライン20には、それぞれ送液ポンプを設ける必要がある。その場合の送液ポンプとしては、混合用密閉容器16内の、アンモニアと上記助燃剤との混合物の飽和蒸気圧よりも十分に高い揚程と、アンモニア混合燃料の製造速度及び排出速度に見合う十分な吐出量とを有し、吐出量が可変であることが要求され、高揚程の遠心ポンプの他、ギヤ型、スクリュー型、プランジャー型、一軸偏心ねじ型等の容積型の型式のものが適宜選ばれる。なお、こうした高揚程の送液ポンプが、アンモニア導入ライン18および助燃剤導入ライン20に設けられる場合は、前述した導入順序に拠らなくても、アンモニアや助燃剤を、混合用密閉容器16内に強制的に導入することも可能である。
 送液ポンプがアンモニア導入ラインおよび/または助燃剤導入ラインに設けられる場合は、それぞれの送液ポンプも、調整弁18b、18cおよび/または調整弁20b、20cに連動して駆動ないし停止される。この時、送液ポンプが非容積型の遠心ポンプ等である場合は、上記の各調整弁の開度が調整されることにより、送液量が制御される。一方、上述したベーン型、ギヤ型、スクリュー型、プランジャー型、一軸偏心ねじ型等、容積型の送液ポンプを用いる場合は、上記の各調整弁の開度は送液中ほぼ全開とし、送液ポンプ自体のモータの回転数が制御されることにより、所定の吐出量になるよう制御される。以上の一連の導入が完了し、調整弁18b、18c、20b、20cが全て閉じられ、混合用密閉容器16が密閉状態とされた後に、混合用密閉容器16内の上記混合物の液相温度は、後述する温度調節機構によって、飽和蒸気圧を低めるための導入時の前記所定の温度から、後述するアンモニア混合燃料の製造において好ましい温度域に切り替えられ、それ以降のアンモニア混合燃料の製造中にわたって該温度が保持されることが、好ましい。以上の一連の制御は、制御装置32が生成する制御信号に基づいて行われる。
According to the above configuration and procedure, even if the ammonia introduction line 18 and the combustion improver introduction line 20 are not provided with liquid feed pumps, the liquefied ammonia and the liquefied petroleum gas or liquefied gas in the respective closed storage containers 12 and 14 By discharging the combustion improver, which is a component hydrocarbon species of petroleum gas, at saturated vapor pressure, ammonia and the combustion improver can be introduced into the closed mixing vessel 16 whose internal pressure is suppressed to a lower level. However, the saturated vapor pressure of the mixture of ammonia and the combustion improver (in many cases, the saturated vapor pressure of the mixture is equal to the saturated vapor pressure of the ammonia and the combustion improver) in the closed mixing vessel 16 into which the ammonia and the combustion improver have already been introduced. In some cases, it is advantageous to be able to pressurize and introduce the raw material ammonia and the above-mentioned combustion improver against the saturated vapor pressure (higher than the saturated vapor pressure when it is alone). In particular, as will be described later, when ammonia and the above-mentioned combustion improver are continuously introduced into the closed container for mixing 16 in an additional fixed quantity to continuously produce an ammonia-mixed fuel, the ammonia introduction line 18 and/or the aid Each of the fuel introduction lines 20 needs to be provided with a liquid feed pump. In that case, the liquid feed pump has a head sufficiently higher than the saturated vapor pressure of the mixture of ammonia and the combustion improver in the mixing sealed container 16, and a sufficient pump that matches the production rate and discharge rate of the ammonia mixed fuel. In addition to high-head centrifugal pumps, positive displacement types such as gear types, screw types, plunger types, and uniaxial eccentric screw types are suitable. To be elected. In addition, when such a high-lift liquid-sending pump is provided in the ammonia introduction line 18 and the combustion improver introduction line 20, the ammonia and the combustion improver can be fed into the mixing sealed container 16 without relying on the order of introduction described above. It is also possible to forcibly introduce
When liquid-sending pumps are provided in the ammonia introduction line and/or the combustion improver introduction line, the respective liquid-sending pumps are also driven or stopped in conjunction with the regulating valves 18b, 18c and/or the regulating valves 20b, 20c. At this time, if the liquid-sending pump is a non-displacement-type centrifugal pump or the like, the liquid-sending amount is controlled by adjusting the opening degree of each of the adjustment valves. On the other hand, when using the above-mentioned vane type, gear type, screw type, plunger type, uniaxial eccentric screw type, etc. volume type liquid transfer pump, the opening degree of each of the above adjustment valves is almost fully opened during liquid transfer, By controlling the number of revolutions of the motor of the liquid transfer pump itself, the liquid is controlled to have a predetermined discharge amount. After the series of introductions described above is completed, the regulating valves 18b, 18c, 20b, and 20c are all closed and the closed mixing container 16 is sealed, the liquid phase temperature of the mixture in the closed mixing container 16 is , by a temperature control mechanism described later, the predetermined temperature at the time of introduction for lowering the saturated vapor pressure is switched to a preferable temperature range in the production of the ammonia mixed fuel described later, and the temperature range is changed during the subsequent production of the ammonia mixed fuel. It is preferred that the temperature is maintained. The series of controls described above is performed based on the control signal generated by the control device 32 .
 液相排出ライン22は、普通、混合用密閉容器16の下部、好ましくは底部に設けられ、撹拌機24の撹拌混合によって得られる混合物の概ね全量を、アンモニア混合燃料として、混合用密閉容器16から排出できるように構成される。
 ただし、助燃剤が、液化石油ガス、ナフサ、ガソリン、ケロシン、軽油、ないしはこれらの成分炭化水素種であるときは、混合用密閉容器16内のアンモニアとの混合物の液相が上下二層に分離する状況も生じ得る。この時、比重差で別れた下層の液相部分については、前述した図2のように、混合用密閉容器16の前記底部に設けられた液相排出ライン22から排出される。
 一方、図2の製造装置10の変形例として、図3(a)に示すように、上下層界面よりやや上に配管上端の開口部が来るように、液相排出ライン22を混合用密閉容器の底部から上方に延長することにより、上層の液相部分も、別途、排出させることもできる。即ち、製造装置10の液相排出ラインとしては、図2の22、および図3の22のいずれの形態も含まれ、さらには、図3(b)に示すように、22および22の両方を備えるものも含まれる。これらの液相排出ライン22、22、22には、調整弁22a、22a、22aが設けられ、制御装置32からの制御信号により調整弁22a、22a、22aの開度が制御される。なお、図3(a),(b)では、製造装置10の内、上記の構成に関わる部分のみを示し、それ以外の部分については省略されている。
The liquid phase discharge line 22 is usually provided at the bottom, preferably the bottom, of the closed mixing vessel 16, and substantially the entire amount of the mixture obtained by stirring and mixing with the stirrer 24 is discharged from the closed mixing vessel 16 as ammonia mixed fuel. configured for ejection.
However, when the combustion improver is liquefied petroleum gas, naphtha, gasoline, kerosene, light oil, or component hydrocarbon species thereof, the liquid phase of the mixture with ammonia in the closed mixing container 16 is separated into upper and lower layers. situations may arise. At this time, the liquid phase portion of the lower layer separated by the difference in specific gravity is discharged from the liquid phase discharge line 22 provided at the bottom of the closed container 16 for mixing, as shown in FIG.
On the other hand, as a modification of the manufacturing apparatus 10 of FIG. 2 , as shown in FIG. By extending upward from the bottom of the container, the liquid phase portion of the upper layer can also be discharged separately. That is, the liquid phase discharge line of the manufacturing apparatus 10 includes both forms of 22 in FIG. 2 and 222 in FIG . Also included are those that have both. These liquid phase discharge lines 22, 22 1 , 22 2 are provided with regulating valves 22a, 22a 1 , 22a 2 , and control signals from the control device 32 control the opening of the regulating valves 22a, 22a 1 , 22a 2 . controlled. 3(a) and 3(b) show only the parts related to the above configuration in the manufacturing apparatus 10, and the other parts are omitted.
 混合用密閉容器16に設けられる撹拌機24としては、界面活性剤を添加しない単純混合だけで、液体状態のアンモニアと助燃剤が相溶する場合は、一般的な単式の撹拌翼式で十分である。しかし、界面活性剤を添加してエマルションを形成させる場合は、前記の単式の撹拌翼式が適用できる場合もあるが、より分散効果が高い、単式または複式のプラネタリー(遊星回転)型撹拌翼式、超音波照射式、狭隘部に撹拌対象の液体混合物を強制加圧流通させ、循環させる型式等を、より効果的に用いることができる。撹拌効果が高い型式の撹拌機を用いると、エマルション状態を形成し易くなるが、撹拌対象の液体混合物の粘性摩擦に伴う発熱による内圧上昇が起こる場合がある。この不都合は、後述する実施形態における一連の温度調節機構による、混合用密閉容器16内部の温度調節によって解消できる。 As the stirrer 24 provided in the closed container 16 for mixing, a general single stirrer blade type is sufficient for simple mixing without adding a surfactant, and when the liquid state ammonia and the combustion improver are mutually soluble. be. However, when a surfactant is added to form an emulsion, the above single stirring impeller type may be applied, but a single or multiple planetary (planetary rotation) stirring impeller with a higher dispersion effect A method of forcibly pressurizing and circulating the liquid mixture to be stirred in a narrow space, etc., can be used more effectively. If a stirrer of a type with a high stirring effect is used, the emulsion state is easily formed, but the internal pressure may rise due to the heat generated due to the viscous friction of the liquid mixture to be stirred. This inconvenience can be resolved by adjusting the temperature inside the closed container 16 for mixing by means of a series of temperature control mechanisms in the embodiment described later.
 一実施形態の製造装置10においては、混合用密閉容器16の内部のアンモニアと助燃剤との混合物の温度が、所定の温度になるよう調節するように構成された温度調節機構が設けられる。この温度調節機構によって、以下の三つの機能が実現できる。
 温度調節機構の一つ目の機能として、混合用密閉容器16内に、液体状態のアンモニアと、液化石油ガスおよびその成分炭化水素種である助燃剤とが導入され、撹拌機24により撹拌混合される際に、混合用密閉容器16の内圧(原料であるアンモニアまたは助燃剤の気化ガス成分によって気相の窒素が事前に十分置換されていれば、前記内圧は前記混合物の飽和蒸気圧に等しくなる)が、混合用密閉容器16の設定耐圧を超えないような温度範囲にあるように、前記混合物の液相温度が制御される。即ち、混合用密閉容器16内の前記混合物の飽和蒸気圧が混合用密閉容器16の設定耐圧を超えないように、前記混合物の液相温度が制御される。それにより、想定される最高の混合温度における前記混合物の飽和蒸気圧を、混合用密閉容器16の設計耐圧とすることができ(一般には、安全余裕がさらに加味された圧力値が採用される)、混合用密閉容器16の耐圧を、それ以上、不必要に高める必要がなくなるため、混合用密閉容器16、および製造装置10が軽量化、低コスト化される。なお、混合用密閉容器16内の前記混合物の液相組成が定まれば、前記混合物の飽和蒸気圧と温度との間には、気液平衡に基づく一様な関係がある(飽和蒸気圧と温度との関係は、例えばアントワン式等の近似式で、一般に精度よく表される)。以上の耐圧設計は、助燃剤として、上記の液化石油ガスあるいはその成分炭化水素種以外に、後述するナフサ、ガソリン、ケロシン、軽油、およびこれらの成分炭化水素種や、原料用アルコールを用いる場合、さらには、これらの内の複数を組み合わせて助燃剤に用いる場合にも適用でき、混合用密閉容器16、および製造装置10が、同様に軽量化、低コスト化される。
 前記温度調節機構は、前記撹拌機24の他、温度計33、圧力計31、温度調節用ジャケット17、および、温度調節媒体mの加熱および冷却機構と、温度調節媒体mの循環ポンプとを備える恒温槽を含む。恒温槽は、製造装置10の外部に設置され、図2中には示されていない。温度調節媒体mとしては、調節温度域において凝固ないし揮発しにくい不活性液体、例えば水、エチレングリコール、ジエチレングリコール等が選ばれる。図2において、温度調節用ジャケット17は、混合用密閉容器16の外周を覆う熱交換器であり、所定の温度に調節された液体の温度調節媒体mが、ジャケット17の内部を流通し、混合用密閉容器16の外周が加熱ないし冷却されることによって、熱交換により、混合用密閉容器16の内部のアンモニアと助燃剤の混合物の温度が目標の温度になるよう、調節される。温度調節媒体mは、前記恒温槽中で所定の温度に調節された上で、配管(図示されていない)を経由してジャケット17の下部に設けられた温度調節媒体入口ノズル17aに流入し、熱交換が行われた後、ジャケット17の上部に設けられた温度調節媒体出口ノズル17bから排出され、配管(図示されていない)を経由して前記恒温槽に戻る。混合用密閉容器16内部の前記混合物の上記の温度調節に際しては、まず制御装置32が生成する撹拌機24の制御信号に基づき、撹拌機24が所定の出力で駆動され、混合用密閉容器16内の前記混合物が撹拌される。それと共に、制御装置32が生成する制御信号に基づき前記恒温槽の温度調節が作動し、前記恒温槽で温度調節された温度調節媒体mが、ジャケット17に流入し、前記恒温槽に循環される。前記混合物の温度調節中は、前記撹拌および温度調節媒体mの循環が継続されると共に、混合用密閉容器16内の気液界面近傍の液相温度が温度計33によって、また温度調節用ジャケット17内の気相内圧が圧力計31によってそれぞれ経時計測され、制御装置32は、温度計33および圧力計31による計測結果を経時受信する。
In the manufacturing apparatus 10 of one embodiment, a temperature control mechanism configured to control the temperature of the mixture of ammonia and the combustion improver in the closed mixing container 16 to a predetermined temperature is provided. This temperature control mechanism can realize the following three functions.
As a first function of the temperature control mechanism, ammonia in a liquid state, liquefied petroleum gas, and a combustion improver that is a component hydrocarbon species thereof are introduced into the closed mixing container 16 and stirred and mixed by the stirrer 24. In this case, the internal pressure of the closed container 16 for mixing (if the nitrogen in the gas phase is sufficiently replaced in advance by the vaporized gas component of the raw material ammonia or the combustion improver, the internal pressure becomes equal to the saturated vapor pressure of the mixture) ) is within a temperature range that does not exceed the set pressure resistance of the closed vessel 16 for mixing. That is, the liquid phase temperature of the mixture is controlled so that the saturated vapor pressure of the mixture in the closed mixing container 16 does not exceed the set pressure resistance of the closed mixing container 16 . As a result, the saturated vapor pressure of the mixture at the highest possible mixing temperature can be set to the design pressure resistance of the closed mixing container 16 (generally, a pressure value with a safety margin added is adopted). Since there is no need to unnecessarily increase the pressure resistance of the closed mixing container 16, the closed mixing container 16 and the manufacturing apparatus 10 can be reduced in weight and cost. In addition, once the liquid phase composition of the mixture in the closed container 16 for mixing is determined, there is a uniform relationship between the saturated vapor pressure and the temperature of the mixture based on vapor-liquid equilibrium (saturated vapor pressure and The relationship with temperature is generally represented with high accuracy by an approximation formula such as Antoine's formula, for example). In addition to the liquefied petroleum gas or its component hydrocarbons, naphtha, gasoline, kerosene, light oil, and their component hydrocarbons, as well as raw material alcohol, are used as combustion improvers for the above pressure resistance design. Furthermore, it can be applied to a case where a plurality of these are used in combination as a combustion improver, and the closed container 16 for mixing and the manufacturing apparatus 10 can be similarly lightened and reduced in cost.
In addition to the stirrer 24, the temperature control mechanism includes a thermometer 33, a pressure gauge 31, a temperature control jacket 17, a heating and cooling mechanism for the temperature control medium m, and a circulation pump for the temperature control medium m. Includes constant temperature bath. The constant temperature bath is installed outside the manufacturing apparatus 10 and is not shown in FIG. As the temperature control medium m, an inert liquid that does not easily solidify or volatilize in the control temperature range, such as water, ethylene glycol, diethylene glycol, etc., is selected. In FIG. 2, the temperature control jacket 17 is a heat exchanger that covers the outer periphery of the mixing container 16, and a liquid temperature control medium m adjusted to a predetermined temperature flows through the jacket 17 and mixes. By heating or cooling the outer circumference of the closed vessel 16 for mixing, the temperature of the mixture of ammonia and the combustion improver inside the closed vessel 16 for mixing is adjusted to the target temperature by heat exchange. The temperature control medium m is adjusted to a predetermined temperature in the constant temperature bath, and flows through a pipe (not shown) into the temperature control medium inlet nozzle 17a provided at the bottom of the jacket 17, After the heat exchange is performed, it is discharged from the temperature control medium outlet nozzle 17b provided on the upper part of the jacket 17 and returned to the constant temperature bath via a pipe (not shown). When adjusting the temperature of the mixture inside the closed mixing vessel 16, the stirrer 24 is first driven with a predetermined output based on a control signal for the stirrer 24 generated by the control device 32, and the inside of the closed mixing vessel 16 is is stirred. At the same time, the temperature control of the constant temperature bath is actuated based on the control signal generated by the control device 32, and the temperature control medium m whose temperature has been adjusted in the constant temperature bath flows into the jacket 17 and is circulated in the constant temperature bath. . During the temperature adjustment of the mixture, the stirring and circulation of the temperature adjustment medium m are continued, and the liquid phase temperature near the gas-liquid interface in the closed mixing container 16 is measured by the thermometer 33 and the temperature adjustment jacket 17. The internal gas phase pressure is measured by the pressure gauge 31 over time, and the control device 32 receives the measurement results by the thermometer 33 and the pressure gauge 31 over time.
 前記温度調節機構の二つ目の機能として、アンモニアおよび助燃剤が混合用密閉容器16内に導入される際に、これらの導入が円滑に進むように、混合用密閉容器16内の前記混合物の気相内圧、および液相温度が、以下のように制御される。例えば、混合用密閉容器16内への液化ガス原料の一連の導入過程では、前述したように、混合用密閉容器16内に既に導入された液化ガス原料の混合物の気相内圧(飽和蒸気圧)が、これから導入される、個々の原料の液化アンモニア、液化石油ガス及びその成分炭化水素種の、それぞれの貯蔵用密閉容器内の飽和蒸気圧の内の最も低い圧力値よりも、常に低くなるように保持される必要があり、そのために要求される温度以下に、前記液相温度が調節される。また、混合用密閉容器16内への原料の導入が完了した後の、撹拌混合によるアンモニア混合燃料の製造工程では、混合用密閉容器16内の原料の混合物の液相が、後述する好ましい温度域に保持されることが好ましい。これらの温度調節においては、混合用密閉容器16内の気相内圧の制御目標値と圧力計31による実際の内圧計測値との差、または、前記混合物の制御目標の温度値と温度計33による実際の温度値との差が、それぞれ定められた許容範囲内(例えば、前者では±0.01MPa以内等、後者では±1℃以内等)となるように、温度調節用ジャケット17に流入する温度調節媒体mの温度が、制御装置32が生成する制御信号に基づく前記恒温槽の加熱/冷却用電力の出力制御によって、調節される。
 前記温度調節機構の応答速度及び精度を高めるためには、温度調節後の混合用密閉容器16内部の前記混合物の気相内圧または液相温度と、前記恒温槽における温度調節媒体mの温度との関係が、制御装置32によって事前に認識されており、それらの関係を踏まえて制御装置32が生成する制御信号により、前記恒温槽内の温度調節媒体mの温度に対するPID制御等を用いて、前記恒温槽の加熱および冷却用電力の出力が制御されることが好ましい。また、これらの制御の過程で、何らかの予期しない状況により、前記圧力計31による混合用密閉容器16の気相内圧の計測値が、前記の混合用密閉容器16の設計耐圧に到達する虞があると制御装置32によって判断された場合には、制御装置32が生成する制御信号に基づき、前記恒温槽において温度調節媒体mが適宜急冷されるか、または、前記恒温槽による温度調節媒体mの循環が停止されることにより(この内、後者は、周囲環境の温度よりも温度調節媒体mの温度が高い場合に有効)、内圧のそれ以上の上昇が回避される。
 なお、以上において、防爆などの安全性の確保を前提として、上記の温度調節用ジャケット17での温度調節媒体mとの熱交換による混合用密閉容器16内の温度調節に替えて、例えばペルティエ素子、あるいはペルティエ素子と電熱ヒーターの組み合わせ等が混合用密閉容器16の外周に設けられ(図2では図示されていない)、それによって温度調節が行われてもよい。この場合、混合用密閉容器16内の温度調節は、温度計33で計測された内部温度値を受信した制御装置32が生成する制御信号に基づき、上記のペルティエ素子等による加熱又は冷却の出力が制御されることにより、行われる。
As a second function of the temperature control mechanism, when the ammonia and the combustion improver are introduced into the closed mixing container 16, the mixture in the closed mixing container 16 is The gas phase internal pressure and liquid phase temperature are controlled as follows. For example, in the process of introducing a series of liquefied gas raw materials into the closed mixing vessel 16, as described above, the gas phase internal pressure (saturated vapor pressure) of the mixture of liquefied gas raw materials already introduced into the closed mixing vessel 16 is always lower than the lowest saturated vapor pressure in the closed storage vessel for each of the raw material liquefied ammonia, liquefied petroleum gas and its component hydrocarbon species to be introduced from now on. and the liquidus temperature is adjusted below the required temperature. In addition, in the step of producing the ammonia mixed fuel by stirring and mixing after the introduction of the raw materials into the closed mixing vessel 16 is completed, the liquid phase of the mixture of raw materials in the closed mixing vessel 16 is in the preferred temperature range described later. is preferably held at . In these temperature adjustments, the difference between the control target value of the gas phase internal pressure in the closed mixing container 16 and the actual internal pressure measurement value by the pressure gauge 31, or the control target temperature value of the mixture and the thermometer 33 The temperature flowing into the temperature control jacket 17 is such that the difference from the actual temperature value is within a predetermined allowable range (for example, within ±0.01 MPa for the former and within ±1° C. for the latter). The temperature of the regulating medium m is regulated by controlling the power output for heating/cooling of the thermostat based on the control signal generated by the controller 32 .
In order to increase the response speed and accuracy of the temperature control mechanism, the temperature of the temperature control medium m in the constant temperature bath must The relationship is recognized in advance by the control device 32, and the control signal generated by the control device 32 based on those relationships uses PID control or the like for the temperature of the temperature adjustment medium m in the thermostatic bath to control the above Preferably, the power output for heating and cooling the thermostat is controlled. In the process of these controls, there is a possibility that the gas phase internal pressure of the closed mixing vessel 16 measured by the pressure gauge 31 may reach the design pressure resistance of the closed mixing vessel 16 due to some unforeseen circumstances. If the control device 32 determines that the is stopped (of which the latter is effective when the temperature of the temperature control medium m is higher than the temperature of the surrounding environment), a further increase in the internal pressure is avoided.
In the above, on the premise of ensuring safety such as explosion protection, instead of adjusting the temperature in the closed mixing container 16 by heat exchange with the temperature adjusting medium m in the temperature adjusting jacket 17, for example, a Peltier element Alternatively, a combination of a Peltier element and an electric heater or the like may be provided around the outer periphery of the closed mixing container 16 (not shown in FIG. 2) to control the temperature. In this case, the temperature control in the closed mixing vessel 16 is based on the control signal generated by the control device 32 that receives the internal temperature value measured by the thermometer 33, and the heating or cooling output by the Peltier element or the like is controlled. It is done by being controlled.
 前記温度調節機構の三つ目の機能として、好ましい別の一実施形態の製造装置10においては、混合用密閉容器16内へのアンモニアと助燃剤の導入後に、撹拌機24により撹拌混合されるとき、気液平衡状態を維持している混合用密閉容器16内のアンモニアと助燃剤との混合物の液相部分の全体が、前記混合物の液相組成に応じて、アンモニアと助燃剤とが互いに溶解した溶液状態、または、アンモニアと助燃剤とのエマルション状態となるような温度範囲にあるように、前述の温度調節機構によって、前記混合物の温度が調節される。それにより、前記混合物は、その全体が、安定かつ均一に助燃剤が分散されたアンモニア混合燃料となり、これをその状態のまま燃焼させれば、前述したように、全体として均一な気化が生じ、それに続く均一かつ高速な燃焼が可能になる。以上の温度調節による、液相部分全体の溶液化、またはエマルション化によるアンモニア混合燃料の安定化及び均一化は、助燃剤として、上記の液化石油ガスおよびその成分炭化水素種以外に、後述する、ナフサ、ガソリン、ケロシン、軽油、およびこれらの成分炭化水素種や、原料用アルコールを用いる場合、さらには、これらの内の複数を組み合わせて助燃剤に用いる場合にも適用でき、同様にその燃焼性を向上できる。
 なお、上記において、「アンモニアと助燃剤とが互いに溶解した溶液状態、または、アンモニアと助燃剤とのエマルション状態となるような温度範囲」としては、助燃剤の種類、および前記混合物の液相組成に応じて、適宜、適切な温度範囲が選択され、前記温度調節機構によって、その温度範囲内にあるように調節される。助燃剤が液化石油ガスまたはその成分炭化水素種である場合について、図1(a)に共沸系液相二相分離の相平衡関係を示した、20℃におけるアンモニア―プロパン系を例として、以下、上記の温度範囲について説明する。
As the third function of the temperature control mechanism, in the manufacturing apparatus 10 of another preferred embodiment, when the ammonia and the combustion improver are introduced into the mixing sealed container 16 and then stirred and mixed by the stirrer 24 , the entire liquid phase portion of the mixture of ammonia and the combustion improver in the closed mixing vessel 16 maintaining the gas-liquid equilibrium state is such that the ammonia and the combustion improver dissolve in each other according to the liquid phase composition of the mixture. The temperature of the mixture is adjusted by the above-described temperature control mechanism so that the mixture is in a temperature range such that it is in a solution state or an emulsion state of ammonia and the combustion improver. As a result, the mixture as a whole becomes an ammonia mixed fuel in which the combustion improver is stably and uniformly dispersed. Subsequent uniform and rapid combustion is possible. The stabilization and homogenization of the ammonia-mixed fuel by the solutionization of the entire liquid phase portion or the emulsification by the temperature control described above can be achieved by using the above-mentioned liquefied petroleum gas and its component hydrocarbon species as combustion improvers, as described later. Naphtha, gasoline, kerosene, light oil, and their component hydrocarbon species, when using raw material alcohol, furthermore, when using a combination of these as a combustion improver, can also be applied, and the combustibility can be improved.
In the above, the "temperature range in which the ammonia and the combustion improver are in a solution state or an emulsion state of the ammonia and the combustion improver" includes the type of the combustion improver and the liquid phase composition of the mixture. An appropriate temperature range is selected accordingly, and the temperature control mechanism adjusts the temperature within that range. In the case where the combustion improver is liquefied petroleum gas or its constituent hydrocarbon species, FIG. The above temperature range will be described below.
 例えば、上述のように、混合用密閉容器16内のアンモニア混合燃料は、前記臨界共溶温度(アンモニア-プロパン混合系の場合は約33℃)未満の比較的低温域では、液相が二相に分離する組成範囲を有する気液平衡系となる。相分離した二相のそれぞれは、前述したように、いずれも単一の「アンモニアと助燃剤とが互いに溶解した溶液状態」になっており、それらの二相の少なくとも一方を外部に取り出せるなら、それは、安定かつ均一に助燃剤が分散されたアンモニア混合燃料になる。後述する構成によってこれらの二相はいずれも外部に取り出せるため、こうした二相分離状態となる液相組成に応じた温度範囲であれば、それは、上記の「アンモニアと助燃剤とが互いに溶解した溶液状態、または、アンモニアと助燃剤とのエマルション状態となるような温度範囲」に含まれる。
 また、前述したように、アンモニアと液化石油ガスないしその成分炭化水素種との混合物において、ある所定の温度以上になれば、液相全体が単一相の溶液になるような温度が存在する。例えば、上述の図1(a)に示したように、アンモニア-プロパン混合系では、A点およびB点の両組成(アンモニア濃度x=16.2質量%、およびx=86.5質量%)においては、共に20℃以上に保持されることによって全体が均一な溶液となるため、単一相としてこれを外部に取り出すなら、この温度以上が、上述の「アンモニアと助燃剤とが互いに溶解した溶液状態、または、アンモニアと助燃剤とのエマルション状態となるような温度範囲」になる。さらに、前述した臨界共溶温度(アンモニア-プロパン混合系の場合は約33℃)以上の温度域では相分離する組成域が消失し、いかなる液相組成においても混合物は均一な溶液となり、これを外部に取り出すことができる。従って、前記臨界共溶温度以上の温度域は、組成によらず、「アンモニアと助燃剤とが互いに溶解した溶液状態、または、アンモニアと助燃剤とのエマルション状態となるような温度範囲」になる。
 さらに、例えば、図1(a)中に示したアンモニア-プロパン混合系におけるC点の組成(アンモニア濃度x=77質量%)においては、前述したように、約1質量%程度の好適な混合系界面活性剤(実施例3で使用したものと同一)が添加され、撹拌混合されることによって、約17℃以上に保持すると、相分離部分がエマルション化されて消失し、全体を均一な状態にすることができる。界面活性剤を添加しない場合、23℃で均一溶液化する。なお、界面活性剤を使用する場合の製造装置10の仕様及び運転方法等については後述する。従って、図中のC点の組成(アンモニア濃度77質量%)においては、上記所定量の好適な混合系界面活性剤の所定量(約1質量%程度)が添加される場合、約17℃以上が、上記の「アンモニアと助燃剤とが互いに溶解した溶液状態、または、アンモニアと助燃剤とのエマルション状態となるような温度範囲」になる。この時、前記混合系界面活性剤としては、この温度範囲において、最も性能が発揮されるようなものが選ばれることが好ましい。換言すれば、そうした界面活性剤が選ばれれば、前記の温度範囲は、該界面活性剤の乳化性能を十分に引き出せる温度範囲にも合致する。
 以上のような、組成に応じた「アンモニアと助燃剤とが互いに溶解した溶液状態、または、アンモニアと助燃剤とのエマルション状態となるような温度範囲」で製造された均一なアンモニア混合燃料は、その状態で取り出され、燃焼に供されれば、高い燃焼性を示す。
For example, as described above, the ammonia mixed fuel in the closed mixing container 16 has two liquid phases in a relatively low temperature range below the critical solution temperature (about 33 ° C. in the case of an ammonia-propane mixed system). It becomes a vapor-liquid equilibrium system with a composition range that separates into As described above, each of the phase-separated two phases is in a single “solution state in which ammonia and a combustion improver are dissolved in each other”, and if at least one of the two phases can be taken out, The result is an ammonia mixed fuel with a stably and uniformly dispersed combustion improver. Since both of these two phases can be taken out to the outside by the configuration described later, if the temperature range corresponds to the liquid phase composition in which such a two-phase separation state is obtained, it is the above-mentioned "a solution in which ammonia and a combustion improver are mutually dissolved. state, or a temperature range in which an emulsion state of ammonia and a combustion improver is achieved.
Also, as described above, in a mixture of ammonia and liquefied petroleum gas or its component hydrocarbon species, there exists a temperature above which the entire liquid phase becomes a single-phase solution. For example, as shown in FIG. 1(a) above, in the ammonia-propane mixed system, both compositions at points A and B (ammonia concentration x A =16.2% by mass and x B =86.5% by mass %), the entire solution is uniform when both are held at 20° C. or higher. The temperature range is such that it becomes a dissolved solution state or an emulsion state of ammonia and the combustion improver. Furthermore, in the temperature range above the above-mentioned critical solution temperature (about 33 ° C. in the case of the ammonia-propane mixed system), the composition region in which phase separation occurs disappears, and the mixture becomes a uniform solution at any liquid phase composition. It can be taken outside. Therefore, regardless of the composition, the temperature range above the critical solution temperature is "a temperature range in which the ammonia and the combustion improver are in a solution state or an emulsion state of the ammonia and the combustion improver". .
Furthermore, for example, in the composition at point C (ammonia concentration x C =77% by mass) in the ammonia-propane mixed system shown in FIG. When a system surfactant (same as that used in Example 3) is added and mixed with stirring to maintain the temperature at about 17° C. or higher, the phase separation part is emulsified and disappears, and the whole is in a uniform state. can be When no surfactant is added, the solution is homogenized at 23°C. The specifications and operation method of the manufacturing apparatus 10 when using a surfactant will be described later. Therefore, in the composition at point C (ammonia concentration of 77% by mass) in the figure, when a predetermined amount (about 1% by mass) of the above predetermined amount of suitable mixed surfactant is added, the is the above-mentioned "temperature range in which the ammonia and the combustion improver are in a solution state or an emulsion state of the ammonia and the combustion improver". At this time, as the mixed surfactant, it is preferable to select one that exhibits the best performance in this temperature range. In other words, if such a surfactant is selected, the above temperature range also matches the temperature range in which the emulsifying performance of the surfactant can be sufficiently brought out.
As described above, the uniform ammonia mixed fuel produced in "a temperature range in which the ammonia and the combustion improver are in a solution state or an emulsion state of the ammonia and the combustion improver" according to the composition, If it is taken out in that state and subjected to combustion, it exhibits high combustibility.
 次に、図2の混合用密閉容器16内において、前記温度調節機構により液相温度を一定に調節されながら撹拌混合され、液相排出ライン22から排出される、アンモニア-液化石油ガス(ないし液化石油ガスの成分炭化水素種)系のアンモニア混合燃料の、液相温度による組成変動の状況について、前述の図1(a)の20℃におけるアンモニア―プロパン系の気液液平衡の場合を例として、以下、説明する。アンモニアとの混合物が同様に液相二相分離の共沸系となる、その他の液化石油ガスの成分炭化水素種を助燃剤とする場合も、温度域、圧力域、及び組成域に差異はあるが、定性的には同様の状況となる。 Next, in the closed container 16 for mixing in FIG. Concerning the situation of compositional fluctuation due to the liquidus temperature of the ammonia mixed fuel of petroleum gas component hydrocarbon species), the case of the vapor-liquid equilibrium of the ammonia-propane system at 20 ° C. in the above-mentioned Fig. 1 (a) is taken as an example. , will be described below. The mixture with ammonia similarly forms an azeotropic system of liquid-phase two-phase separation. Even when using other component hydrocarbon species of liquefied petroleum gas as a combustion improver, there are differences in the temperature range, pressure range, and composition range. However, the situation is qualitatively the same.
(i)液相が単相となる液相組成の場合
 上述の図1(a)の20℃での気液液平衡図において、液相が単相の溶液になる領域には、液相アンモニア濃度が0質量%~xの、プロパンが主体となるP点~A点間の領域と、液相アンモニア濃度がx~100質量%の、アンモニアが主体となるB点~Q点間の領域との2通りがあり、それぞれに対応する仕込組成比で、液化アンモニアおよび液化プロパンを混合用密閉容器16に導入し、撹拌混合することによって、上記二つの領域の液相組成を有する、単相のアンモニア混合燃料が調製される。これを、混合用密閉容器16内の飽和蒸気圧に基づく吐出により、液相排出ライン22から排出させることができる。
 ただし、上記の排出の進行に伴い、上記の単相のアンモニア混合燃料の組成は、排出の進行に伴って、以下のように変化することに注意する必要がある。以下では、単純化のため、排出時にも液相の十分な撹拌混合が継続され、液相全体の組成及び温度が常に均一であり、かつ液相温度は変化しないものとする。実際は、後述の蒸発に伴う吸熱により、液相の排出に伴って液相温度が幾分低下するが、これは、前述した温度調節機構によって補償される。
(i) In the case of a liquid phase composition in which the liquid phase is a single phase In the gas-liquid-liquid equilibrium diagram at 20 ° C. in FIG. A region between points P and A where propane is the main component, where the concentration is 0% by mass to x A , and between points B and Q where ammonia is the main component, where the concentration of liquid phase ammonia is x B ~ 100% by mass. By introducing liquefied ammonia and liquefied propane into the closed mixing container 16 at the charging composition ratio corresponding to each, and stirring and mixing, the liquid phase composition of the above two regions is obtained. A phase ammonia blend fuel is prepared. This can be discharged from the liquid phase discharge line 22 by discharge based on the saturated vapor pressure in the closed vessel 16 for mixing.
However, it should be noted that the composition of the above single-phase ammonia mixed fuel changes as follows as the emission progresses. In the following, for the sake of simplification, it is assumed that the liquid phase is sufficiently stirred and mixed even during discharge, the composition and temperature of the entire liquid phase are always uniform, and the liquid phase temperature does not change. In practice, the endothermic heat associated with evaporation, which will be described later, causes the liquid phase temperature to drop somewhat as the liquid phase is expelled, but this is compensated for by the temperature regulation mechanism described above.
 例えば、図1(a)中のA点に相当する、排出開始時の液相アンモニア濃度が飽和濃度のxであるような、プロパンが主体のアンモニア混合燃料を排出させる場合には、排出の進行に伴って気液界面が低下することにより、気相部分の容積が増加し、混合用密閉容器16内が減圧される。この変化に対し、混合用密閉容器16内では、気相容積の増加分、アンモニア-プロパンの混合物が液相から気相側に蒸発(沸騰)することにより、気液平衡が動的に維持される。排出開始時の液相組成xに平衡な蒸発ガスの組成は、xよりアンモニア濃度の高い共沸組成yであるため、液相からアンモニアの方が相対的に多く蒸発するので、液相のアンモニア濃度はxから幾分低下する。アンモニア混合燃料の排出がさらに進行するに従い、混合用密閉容器16内の液相の状態は、排出開始時の図1(a)中のA点(アンモニア濃度x)から、純プロパンのP点(アンモニア濃度0質量%)に向かって、液相線AP上を移動するように変化し、それに伴い、気相側に蒸発するガスの状態は、図1(a)中のO点(アンモニア濃度y)から、純プロパンのP点に向かって、気相線OP上を移動するように変化する。この過程で、混合用密閉容器16内の内圧は、液相排出に伴い、O点の共沸蒸気圧から、P点の純プロパンの飽和蒸気圧に向かって低下する。
 なお、液相アンモニア濃度が0質量%~xの間の値であるアンモニア混合燃料を排出する場合には、上述の液相線APおよび気相線OPのそれぞれの途中の点から、上記操作を始めることに等しい。
 一方、図1(a)中のB点に相当する、排出開始時の液相プロパン濃度が飽和濃度の1-xであるような、アンモニアが主体のアンモニア混合燃料を排出させる場合には、以下の状態変化を示す。即ち、アンモニア混合燃料の排出が進行するに従い、混合用密閉容器16内の液相(即ち、液相排出ライン22から排出されるアンモニア混合燃料)の状態は、排出開始時の図1(a)中のB点(アンモニア濃度x)から、純アンモニアのQ点(アンモニア濃度100質量%に向かって液相線AQ上を移動するように変化し、それに伴い、気相側に蒸発するガスの状態は、図1(a)中のO点(アンモニア濃度y)から、純アンモニアのQ点に向かって気相線OQ上を移動するように変化する。この過程で、混合用密閉容器16内の内圧は、液相排出に伴い、O点の共沸蒸気圧から、Q点の純アンモニアの飽和蒸気圧に向かって低下する。
 なお、液相アンモニア濃度がx~100質量%の間の値であるアンモニア混合燃料を排出する場合には、上述の液相線BQおよび気相線OQのそれぞれの途中の点から、上記挙動が始まることに等しい。
 従って、液相が単相の溶液になる組成領域においては、アンモニア混合燃料の排出の進行に伴う、上記の組成変化が許容される必要がある。しかし、以上において、上記排出時に液相の撹拌を停止し、液相中および気液界面での各成分の物質移動を抑制すると、排出される混合用密閉容器16内の液相排出ライン22近傍の液相組成変化を減少できる。さらに、液相排出弁22aの開度を広げ、アンモニア混合燃料の排出速度を速めると、混合用密閉容器16内のアンモニア混合燃料のより多くの部分を、上記の組成変化を抑制しながら、排出させることができる。排出中の組成変化が、燃料として用いる際に何らかの支障を生じ得るのであれば、その時点で液相排出弁22aが閉じられ、排出が終了される。
For example, when discharging an ammonia mixed fuel mainly composed of propane such that the liquid phase ammonia concentration at the start of discharge is x A of the saturated concentration, which corresponds to point A in FIG. As the gas-liquid interface decreases as it progresses, the volume of the gas phase portion increases, and the pressure in the closed container 16 for mixing is reduced. In response to this change, the mixture of ammonia and propane evaporates (boiling) from the liquid phase to the gas phase in the volume of the gas phase in the closed mixing container 16, thereby dynamically maintaining the gas-liquid equilibrium. be. Since the composition of the evaporative gas in equilibrium with the liquid phase composition x A at the start of discharge is the azeotropic composition y O with a higher ammonia concentration than x A , relatively more ammonia evaporates from the liquid phase. The ammonia concentration of the phase drops somewhat from xA . As the discharge of the ammonia mixed fuel further progresses, the state of the liquid phase in the closed mixing container 16 changes from point A (ammonia concentration x A ) in FIG. (ammonia concentration 0% by mass), the state of the gas changes so as to move along the liquidus line AP and evaporates to the gas phase side along with that is the point O (ammonia concentration y 0 ) to point P of pure propane, moving along the vapor line OP. In this process, the internal pressure in the closed mixing vessel 16 decreases from the azeotropic vapor pressure at point O to the saturated vapor pressure of pure propane at point P as the liquid phase is discharged.
When discharging an ammonia-mixed fuel having a liquid-phase ammonia concentration between 0% by mass and x A , the above operation is performed from a midpoint on each of the liquidus line AP and the gaseous line OP. is equivalent to starting
On the other hand, when discharging an ammonia mixed fuel containing mainly ammonia such that the liquid phase propane concentration at the start of discharge is 1-x B of the saturated concentration, which corresponds to point B in FIG. 1(a), Shows the following state changes: That is, as the discharge of the ammonia-mixed fuel progresses, the state of the liquid phase in the mixing closed container 16 (that is, the ammonia-mixed fuel discharged from the liquid-phase discharge line 22) changes from that shown in FIG. From point B (ammonia concentration x B ) to point Q of pure ammonia (ammonia concentration of 100% by mass), the gas evaporates to the gas phase side. The state changes from point O (ammonia concentration y O ) in FIG. The inner pressure decreases from the azeotropic vapor pressure at the O point to the saturated vapor pressure of pure ammonia at the Q point as the liquid phase is discharged.
When discharging an ammonia-mixed fuel having a liquid-phase ammonia concentration of between x B and 100% by mass, the above-mentioned behavior can be determined from points in the middle of each of the above-described liquidus line BQ and gaseous line OQ. is equal to the beginning of
Therefore, in the compositional region where the liquid phase becomes a single-phase solution, it is necessary to allow the above compositional change accompanying the progress of discharge of the ammonia-mixed fuel. However, in the above, if the agitation of the liquid phase is stopped during the discharge and the mass transfer of each component in the liquid phase and at the gas-liquid interface is suppressed, the vicinity of the liquid phase discharge line 22 in the closed mixing container 16 that is discharged can reduce the liquid phase composition change of Furthermore, when the opening degree of the liquid phase discharge valve 22a is widened to speed up the discharge speed of the ammonia-mixed fuel, a larger portion of the ammonia-mixed fuel in the mixing sealed container 16 is discharged while suppressing the composition change. can be made If the change in composition during discharge could cause some trouble when used as fuel, the liquid phase discharge valve 22a is closed at that point to terminate the discharge.
(ii)液相が二相に分離する液相組成の場合
 図1(a)の20℃での気液液平衡図において、液相が二相に分離する領域は、液相のアンモニア濃度x~xのA点~B点間の領域であり、この領域内の任意位置のC点(二液相全体の平均状態)の液相組成(アンモニア濃度x)対応する仕込組成比で、液化アンモニアおよび液化プロパンを混合用密閉容器16に導入し、撹拌混合することによって、アンモニア濃度が飽和濃度のxである、プロパンが主体の液相と、プロパン濃度が飽和濃度の1-x(この時、アンモニア濃度はx)である、アンモニアが主体の液相との、二相に分離した状態が形成される。この時、液化プロパンの比重は液化アンモニアの比重より小さいため、アンモニア濃度xのプロパン主体の相が上層に、また、アンモニア濃度xのアンモニア主体の相が下層になる。一般に、液化石油ガスのその他の構成成分炭化水素種およびこれらからの混合物の液化石油ガスも、全て液化アンモニアより小さい比重を持つので、これらを主体とする相は常に上層になる。この時、二相分離状態が継続する限りは、一定のアンモニア濃度xを有するアンモニアが主体の下層を、アンモニア混合燃料として、混合用密閉容器16内の飽和蒸気圧に基づく吐出により、液相排出ライン22から排出させることができる。
 以上において、上記の一定のアンモニア濃度xを有する、アンモニアが主体の下層を、なるべく多量に排出させるためには、上記のC点(二液相全体の平均状態)の位置が、線分ABの中央付近からB点寄りの位置になるような仕込組成比で、液化アンモニアおよび液化プロパンが、混合用密閉容器16に導入されることが好ましい。これは、C点がA点に近いと、前述のてこの原理により、排出し得るアンモニア濃度xの下層の絶対量が少なくなり、下層の排出が終わってアンモニア濃度xの上層の排出に移る時期が早まるためであり、またC点がB点に近過ぎると、前記(i)で説明した液相排出中の蒸発(C点がB点に近い場合、アンモニアよりプロパンの方が相対的に多く蒸発される)に伴う液相の平均濃度の変化(上昇)によって上層が早々に消失し、前記(i)で述べた単相状態に移行して、アンモニア濃度がxから上昇するためである。
(ii) In the case of a liquid phase composition in which the liquid phase separates into two phases In the gas-liquid-liquid equilibrium diagram at 20 ° C. in FIG. A ∼ x is the region between points A and B of B, and the liquid phase composition (ammonia concentration x C ) at point C (average state of the entire two liquid phases) at an arbitrary position in this region is the starting composition ratio corresponding to , liquefied ammonia and liquefied propane are introduced into the closed mixing container 16 and stirred and mixed to form a propane-based liquid phase having an ammonia concentration of the saturated concentration x A and a propane concentration of 1-x the saturated concentration. B (at this time, the ammonia concentration is x B ), and a two-phase separated state is formed with a liquid phase mainly composed of ammonia. At this time, since the specific gravity of liquefied propane is smaller than that of liquefied ammonia, the propane - based phase with ammonia concentration xA is the upper layer, and the ammonia - based phase with ammonia concentration xB is the lower layer. In general, the other constituent hydrocarbon species of the liquefied petroleum gas and the liquefied petroleum gas mixtures thereof also all have lower specific gravities than the liquefied ammonia, so that the phase dominated by these will always be in the upper layer. At this time, as long as the two-phase separation state continues, the lower layer, which is mainly composed of ammonia having a certain ammonia concentration x B , is used as the ammonia mixed fuel, and is discharged based on the saturated vapor pressure in the closed mixing vessel 16 to the liquid phase. It can be discharged from the discharge line 22 .
In the above, in order to discharge as much of the ammonia-based lower layer as possible, which has a constant ammonia concentration xB, the position of the above point C (the average state of the entire two liquid phases) must be aligned with the line segment AB It is preferable that the liquefied ammonia and the liquefied propane are introduced into the closed mixing vessel 16 at a charge composition ratio such that the position is closer to the point B from the vicinity of the center of . This is because when point C is close to point A, the absolute amount of the lower layer of ammonia concentration x B that can be discharged decreases due to the principle of leverage described above, and when the discharge of the lower layer ends, the upper layer of ammonia concentration x A can be discharged. If point C is too close to point B, evaporation during liquid phase discharge explained in (i) above (when point C is close to point B, propane is relatively The upper layer quickly disappears due to the change (increase) in the average concentration of the liquid phase accompanying the above (i), and the ammonia concentration increases from x B is.
 上記で、図2の混合用密閉容器16内において、前述したように、液相排出ライン22の配管を、混合用密閉容器16の底面から上方に延長し、前記配管の上端の排出口の位置が、排出開始時における上層の底面よりやや高い程度になるような構成(図3(a)の22)とすれば、上述したアンモニア濃度xの下層を残して、アンモニア濃度xのプロパン主体の上層のみを、アンモニア混合燃料として排出させることも可能である。この場合は、上層をなるべく多量に排出させるためには、上記のC点(二液相全体の平均状態)の位置が、線分ABの中央付近からA点寄りの位置になるような仕込組成比で、液化アンモニアおよび液化プロパンが混合用密閉容器16に導入されることが好ましい。
 さらに、前述したように、混合用密閉容器16内の排出口が、図2のように混合用密閉容器16の底面にある液相排出ライン22と、図3(a)に示すような、排出口の位置が、排出開始時における上層の底よりやや高い程度にある液相排出ライン22との二つを併せ持つような形態(図3(b))とすれば、アンモニア濃度xの下層と、アンモニア濃度xの上層とを、アンモニア混合燃料として同時に排出させることも可能である。この場合は、上記のC点(二液相全体の平均状態)の位置が、線分ABの中央付近になるような仕込組成比で、液化アンモニアおよび液化プロパンが混合用密閉容器16に導入されることが好ましい。
 ただし、以上においては、上記アンモニア濃度xの上記上層および/またはアンモニア濃度xの上記下層の排出の進行に伴い、気液界面および/または上層と下層との界面が下降して、いずれは、液相排出ライン22、22、22の混合用密閉容器16内の上層および/または下層の、それぞれの容器内排出口の高さ位置が、下降する気液界面および/または上層と下層との界面に到達し、それ以上、上記上層および/または下層の排出が続けられなくなる。このため、排出物中の異相(対象外の液相の層ないし気相)の混入を避けたければ、その時点までに、液相排出弁22a、22a、22aが閉じられる。
As described above, in the closed mixing container 16 of FIG. is slightly higher than the bottom of the upper layer at the start of discharge (22 2 in FIG. 3A), leaving the lower layer with ammonia concentration x B described above, propane with ammonia concentration x A It is also possible to discharge only the upper layer of the main body as an ammonia mixed fuel. In this case, in order to discharge the upper layer as much as possible, the position of the above point C (average state of the entire two liquid phases) is the position of the point A from near the center of the line segment AB. Preferably, liquefied ammonia and liquefied propane are introduced into the closed mixing vessel 16 in proportion.
Furthermore, as described above, the discharge ports in the closed mixing container 16 are the liquid phase discharge line 22 at the bottom of the closed mixing container 16 as shown in FIG. If the position of the outlet is a little higher than the bottom of the upper layer at the start of discharge, and the liquid phase discharge line 221 is combined (Fig. 3(b)), the lower layer of ammonia concentration x B and the upper layer of the ammonia concentration x A can be simultaneously discharged as an ammonia mixed fuel. In this case, liquefied ammonia and liquefied propane are introduced into the closed mixing vessel 16 at a charge composition ratio such that the position of point C (the average state of the entire two liquid phases) is near the center of line segment AB. preferably.
However, in the above, as the discharge of the upper layer with the ammonia concentration xA and/or the lower layer with the ammonia concentration xB progresses, the gas - liquid interface and/or the interface between the upper layer and the lower layer descends, eventually , liquid- phase discharge lines 22, 22 1 , 22 2 in the upper and/or lower layers in the closed container 16 for mixing, the height positions of the respective in-vessel discharge ports are lowered gas-liquid interfaces and/or the upper and lower layers and the discharge of the upper and/or lower layers can no longer be continued. Therefore, if it is desired to avoid mixing of a different phase (non-target liquid phase layer or gas phase) in the discharge, the liquid phase discharge valves 22a, 22a 1 , 22a 2 are closed by then.
 以上において、二相分離領域内の液相組成(アンモニア濃度x)に対応する仕込組成比で、液化アンモニアおよび液化プロパンを混合用密閉容器16に導入する場合は、上記上層中のアンモニア濃度x(xは、上層中のアンモニアの飽和濃度に相当)、および上記下層中のアンモニア濃度x(1-xは、上記下層中のプロパンの飽和濃度に相当)は、前記温度調節機構により、混合用密閉容器16内の液相を撹拌混合しながら、その温度を所定の温度に保つことによって、以下のように制御できる。
 例えば、上述の図1(a)に示した、0℃における二相分離領域の両端のアンモニア濃度x’およびx’は、前述したように、それぞれ約6.7質量%および約93.5質量%である。20℃では二相分離領域の液相組成範囲が0℃の時より縮小し、xは約16.2質量%、xは約86.5質量%となる。上述のように、前記温度調節機構により、混合用密閉容器16内の液相温度が0℃ないし20℃に保たれることによって、上記の各組成(x、x)を有する上層および/または下層を排出させることができる。撹拌混合中の液相の保持温度を0℃よりさらに低下させると、xおよびxは、それぞれ0質量%および100質量%に近づく。また、20℃を超えてさらに液相温度を上昇させると、二相分離領域が次第に縮小してxおよびxが互いに近づき、前記臨界共溶温度(約33℃)に至って二相分離領域は消失し、xおよびxは、前記臨界共溶温度での共沸点Oのアンモニア濃度x(=y≒32質量%)に等しくなる。
 従って、アンモニア-プロパン混合系においては、二相分離領域内の任意の液相組成(アンモニア濃度x)に対応する仕込組成比で、液化アンモニアおよび液化プロパンを混合用密閉容器16に導入し、0℃未満の低温から、前記臨界共溶温度(約33℃)までの所定の一定値に混合用密閉容器16内の液相温度を保つことによって、上層および下層のアンモニア濃度を、それぞれ、0質量%の近傍から前記臨界共溶温度(約33℃)における共沸点Oのアンモニア濃度x(=y)までの範囲内の所定値x、および、前記臨界共溶温度(約33℃)における共沸点Oのアンモニア濃度x(=y)から100質量%の近傍までの範囲内の所定値xに、それぞれ制御できる。これにより、これらの組成を有する上層および/または下層を、単相溶液のアンモニア混合燃料として、液相排出ライン22および/または22から、それぞれ排出させることができる。
 また、特殊な状況として、原料のアンモニアおよびプロパンを、前記臨界共沸温度(約33℃)における上記共沸組成x(=y≒32質量%)に等しい導入組成比で、混合用密閉容器16内にそれぞれ導入して撹拌混合し、前記温度調節機構により、前記臨界共沸温度(約33℃)またはそれ以上に液相温度を保持すると、混合用密閉容器16内の混合物の液相は、上記共沸組成の単相の溶液となる。この液相から蒸発する際の蒸気の組成も、常に液相と同一の上記共沸組成であるため、液相の排出に伴う蒸発の進行に関わらず、液相組成を上記共沸組成に保ちながら、混合用密閉容器16内の液相の全量を、単相溶液のアンモニア混合燃料として、液相排出ライン22(22)から排出できる。
 本実施形態の製造装置10によれば、以上で説明したアンモニア-プロパン系のみでなく、アンモニアとの混合物が同様に液相二相分離の共沸系気液平衡を示す、その他の液化石油ガスの成分炭化水素種や、それらの混合物である液化石油ガスを助燃剤とする場合も、二相に分離する温度域、圧力域、及び組成域に差異はあるが、同様の装置および方法によって、上記のアンモニア-プロパン系の場合と同様に、排出組成を制御しながら、混合用密閉容器16内の混合物の液相を、アンモニア混合燃料として排出させることが可能である。
 ただし、前述したように、以上のアンモニア混合燃料の排出に伴い、混合用密閉容器16内の混合物の気液界面や、液相分離時の上下層の界面が下降し、液相排出ライン22、22、22の混合用密閉容器内の排出口位置に達して、アンモニア混合燃料中に異相が混入し得ること、および混合物の蒸発が進行し、それによって、排出されるアンモニア混合燃料の組成が変化し得ることには、注意を要する。
In the above, when liquefied ammonia and liquefied propane are introduced into the closed mixing vessel 16 at a charging composition ratio corresponding to the liquid phase composition (ammonia concentration x C ) in the two-phase separation region, the ammonia concentration x in the upper layer A (x A corresponds to the saturated concentration of ammonia in the upper layer) and the ammonia concentration x B (1−x B corresponds to the saturated concentration of propane in the lower layer) in the lower layer are the temperature control mechanism By keeping the temperature of the liquid phase in the closed container for mixing 16 at a predetermined temperature while stirring and mixing, the following control can be achieved.
For example, the ammonia concentrations x A ' and x B ' at both ends of the two-phase separation region at 0° C. shown in FIG. 5% by mass. At 20° C., the liquid phase composition range of the two-phase separation region is narrower than at 0° C., with x A being about 16.2 mass % and x B being about 86.5 mass %. As described above, the liquidus temperature in the closed container 16 for mixing is maintained at 0° C. to 20° C. by the temperature control mechanism, so that the upper layer and/or having the above compositions (x A , x B ) Or the lower layer can be drained. As the holding temperature of the liquid phase during stirring and mixing is further lowered below 0° C., x A and x B approach 0 wt % and 100 wt %, respectively. In addition, when the liquidus temperature is further increased beyond 20°C, the two-phase separation region gradually shrinks and x A and x B approach each other, reaching the critical solution temperature (about 33°C) and reaching the two-phase separation region. vanishes, and x A and x B become equal to the ammonia concentration x O (=y O ≈32% by mass) at the azeotropic point O at the critical solution temperature.
Therefore, in the ammonia-propane mixed system, liquefied ammonia and liquefied propane are introduced into the closed mixing vessel 16 at a charge composition ratio corresponding to an arbitrary liquid phase composition (ammonia concentration x C ) in the two-phase separation region, By maintaining the liquidus temperature in the closed mixing container 16 at a predetermined constant value from a low temperature of less than 0° C. to the critical solution temperature (about 33° C.), the ammonia concentrations in the upper and lower layers are respectively reduced to 0. A predetermined value x A within the range from the vicinity of mass% to the ammonia concentration x O (= y O ) at the azeotropic point O at the critical solution temperature (about 33 ° C.), and the critical solution temperature (about 33 ° C. ) can be controlled to a predetermined value x B within a range from the ammonia concentration x O (=y O ) at the azeotropic point O to the vicinity of 100% by mass. This allows the upper layer and/or the lower layer having these compositions to be discharged as a single-phase solution ammonia mixed fuel from the liquid phase discharge lines 22-1 and/or 22-2 , respectively.
In addition, as a special situation, the raw material ammonia and propane are introduced at a composition ratio equal to the above azeotropic composition x O (= y O ≈ 32% by mass) at the critical azeotropic temperature (about 33 ° C.), and a closed mixing When each introduced into the container 16 and stirred and mixed, and the liquid phase temperature is maintained at the critical azeotropic temperature (about 33 ° C.) or higher by the temperature control mechanism, the liquid phase of the mixture in the closed container 16 for mixing becomes a single-phase solution with the above azeotropic composition. Since the composition of the vapor when evaporating from the liquid phase is always the same azeotropic composition as the liquid phase, the liquid phase composition is maintained at the azeotropic composition regardless of the progress of evaporation accompanying the discharge of the liquid phase. Meanwhile, the entire amount of the liquid phase in the mixing sealed container 16 can be discharged from the liquid phase discharge line 22 (22 1 ) as a single-phase solution ammonia-mixed fuel.
According to the production apparatus 10 of the present embodiment, not only the ammonia-propane system described above, but also other liquefied petroleum gases in which a mixture with ammonia similarly exhibits an azeotropic gas-liquid equilibrium of liquid phase two-phase separation When using a component hydrocarbon species or a mixture of liquefied petroleum gas as a combustion improver, there are differences in the temperature range, pressure range, and composition range in which the two phases are separated, but by using the same apparatus and method, As in the case of the ammonia-propane system described above, it is possible to discharge the liquid phase of the mixture in the closed mixing container 16 as an ammonia mixed fuel while controlling the discharge composition.
However, as described above, as the ammonia mixed fuel is discharged, the gas-liquid interface of the mixture in the mixing sealed container 16 and the interface between the upper and lower layers at the time of liquid phase separation descend, and the liquid phase discharge line 22, 22 1 , 22 2 reaching the outlet position in the closed container for mixing, the heterophase can be mixed in the ammonia mixed fuel, and the evaporation of the mixture progresses, thereby the composition of the discharged ammonia mixed fuel Note that can vary.
 一実施形態の製造装置10では、図2および図3(a),(b)に示した前述の構成に加えて、図4に示すように、前記混合用密閉容器16内の前記混合物の飽和蒸気圧以上の吐出圧で、前記窒素ガスを前記混合用密閉容器16内の気相部分に導入できるように構成された、窒素ガス導入ライン30bを備える。図4においても、図2に示す構成部分と同じ構成及び作用を有する場合、同じ符号を付してその説明を省略している。これにより、前述した、アンモニア混合燃料の排出に伴う、混合用密閉容器16内の混合物の蒸発の進行による、液相組成の変化を抑制しながら、アンモニア混合燃料を迅速に排出させることが可能になる。この実施形態は、混合用密閉容器16内の混合物の液相が単一相になる場合、二相分離(上下層に分離)する場合のいずれに対しても適用できる。図4では前者の形態を示している。
 窒素ガス導入ライン30bは、約14.7MPa程度の内圧で充填された、一般の加圧窒素ガスボンベ等の貯蔵容器から導かれる。また、同等の圧力を有するなら、図4に示したように、前記窒素ガス導入機構30の配管から分岐されてもよい。窒素ガス導入ライン30bには、その上流側から前記混合用密閉容器16までの間に、窒素ガス減圧弁30c、窒素ガス圧力計30d、および窒素ガス調整弁30eを備える。窒素ガス導入ライン30bで導かれた窒素ガスは、減圧弁30cにより、窒素ガス圧力計30dの指示値が混合用密閉容器16内の混合物の飽和蒸気圧以上の圧力(例えば、前記飽和蒸気圧+0.05~0.1Mpa程度)になるように減圧される。前記混合物の液相が混合用密閉容器16から排出される際、液相排出弁22a、22a1、22aが開けられるのと連動して、窒素ガス調整弁30eが開かれ、気相側から導入される窒素ガスにより強制的に押し出される形で、前記混合物がアンモニア混合燃料として、液相排出ラインから排出される。これらの弁操作は、制御装置32によって制御される。
 上記の窒素ガス導入によるアンモニア混合燃料の排出の際には、混合用密閉容器16内の気相部において、導入される窒素による容器内の混合物からの蒸発ガスの拡散及び希釈が起こり、それによって気液界面での気液平衡のずれが生じ、液相の排出中も前述した液相からのガスの蒸発が続くため、厳密には、液相の組成変化は起こり得る。しかし、実質的には、液相の組成変化は低減される。特に、混合物中のアンモニア濃度が比較的低く、助燃剤(液化石油ガスまたはその成分炭化水素種)の濃度が高い場合は、これらの混合物の蒸発ガスの比重が窒素ガスより大きくなり、蒸発ガスの方が気相部下方の気液界面近傍に滞留しやすいので、気液平衡のずれが抑えられ、前述のアンモニア混合燃料の組成変化が抑制される。また、混合用密閉容器16の容器形状が上下方向に長く、窒素ガスの導入流速が大きい程、内部流体の排出が、いわゆる「押し出し流れ(Plug Flow)」に近づき、上述の窒素ガスと蒸発ガスの対流及び拡散希釈が起こりにくくなるため、前述の組成変化が抑制される。
In the manufacturing apparatus 10 of one embodiment, in addition to the above-described configurations shown in FIGS. 2 and 3 (a) and (b), as shown in FIG. A nitrogen gas introduction line 30b is provided so that the nitrogen gas can be introduced into the gas phase portion in the closed mixing vessel 16 at a discharge pressure equal to or higher than the vapor pressure. In FIG. 4 as well, when the components have the same configurations and actions as those of the components shown in FIG. As a result, it is possible to quickly discharge the ammonia mixed fuel while suppressing the change in the liquid phase composition due to the progress of evaporation of the mixture in the mixing sealed container 16 accompanying the discharge of the ammonia mixed fuel as described above. Become. This embodiment can be applied to both the case where the liquid phase of the mixture in the closed container 16 for mixing becomes a single phase and the case of two-phase separation (separation into upper and lower layers). FIG. 4 shows the former form.
The nitrogen gas introduction line 30b is led from a storage container such as a general pressurized nitrogen gas cylinder filled with an internal pressure of about 14.7 MPa. Alternatively, if the pressure is the same, it may be branched from the piping of the nitrogen gas introduction mechanism 30 as shown in FIG. The nitrogen gas introduction line 30b is provided with a nitrogen gas pressure reducing valve 30c, a nitrogen gas pressure gauge 30d, and a nitrogen gas regulating valve 30e between its upstream side and the closed container 16 for mixing. The nitrogen gas introduced through the nitrogen gas introduction line 30b is controlled by the pressure reducing valve 30c so that the indicated value of the nitrogen gas pressure gauge 30d is equal to or higher than the saturated vapor pressure of the mixture in the closed mixing container 16 (for example, the saturated vapor pressure +0 The pressure is reduced to about 0.05 to 0.1 Mpa). When the liquid phase of the mixture is discharged from the closed container 16 for mixing, the nitrogen gas control valve 30e is opened in conjunction with the opening of the liquid phase discharge valves 22a, 22a 1 and 22a 2 to The mixture is discharged from the liquid phase discharge line as an ammonia-mixed fuel in a form forced out by the introduced nitrogen gas. These valve operations are controlled by controller 32 .
When the ammonia mixed fuel is discharged by introducing the nitrogen gas, the introduced nitrogen diffuses and dilutes the evaporative gas from the mixture in the container in the gas phase part in the closed mixing container 16, thereby Strictly speaking, the composition of the liquid phase may change because the gas-liquid equilibrium is shifted at the gas-liquid interface, and the vaporization of the gas from the liquid phase continues even during the discharge of the liquid phase. However, substantially the composition change of the liquid phase is reduced. In particular, when the concentration of ammonia in the mixture is relatively low and the concentration of the combustion improver (liquefied petroleum gas or its component hydrocarbon species) is high, the specific gravity of the evaporative gas in these mixtures is greater than that of nitrogen gas, Since it is easier to stay in the vicinity of the gas-liquid interface below the gas phase portion, the deviation of the gas-liquid equilibrium is suppressed, and the change in the composition of the ammonia mixed fuel described above is suppressed. In addition, as the container shape of the closed container 16 for mixing is longer in the vertical direction and the introduction flow rate of nitrogen gas is higher, the discharge of the internal fluid approaches the so-called “plug flow”, and the above-mentioned nitrogen gas and evaporative gas convection and diffusive dilution are less likely to occur, thus suppressing the aforementioned composition change.
 一実施形態の製造装置10は、図2に示した前述の構成に加えて、原料のアンモニアおよび助燃剤が、液相排出ライン22を通って排出される液相の組成比および流量と等しい流量で、混合用密閉容器16内の混合物の飽和蒸気圧に抗して、導入ライン18および20を経て、混合用密閉容器16内に連続的に導入され続け得るように、アンモニアおよび助燃剤の前記定量導入機構が構成される。本実施形態の一例を図5に示す。図5においても、図2に示す構成部分と同じ構成及び作用を有する場合、同じ符号を付してその説明を省略している。
 これらの構成によって、混合用密閉容器16内の混合物の気液界面の高さ位置、および混合物の液相が二相分離する場合は上下層の界面の高さ位置を一定に維持しながら、かつ、組成が一定に維持された液相を、アンモニア混合燃料として連続的に排出し続けることが可能になる。この実施形態も、混合用密閉容器16内の混合物の液相が単一相になる場合、二相分離(上下二層に分離)する場合のいずれに対しても適用できる。図5では、後者の内の、相分離した上下二層の両方を排出する場合の形態を示している。
 本実施形態においては、前記定量導入機構に含まれる機器として、図2に示した各構成機器に加えて、図5に示すように、混合用密閉容器16内の混合物の飽和蒸気圧に抗して、原料の液化アンモニアおよび助燃剤を導入できるように、アンモニア導入ライン18および助燃剤導入ライン20には、送液ポンプ18dおよび20dがそれぞれ設けられる。これらの送液ポンプとしては、前述した高揚程のものが選択される。また、液相排出ライン22、22、22を通り、混合用密閉容器16内からアンモニア混合燃料として排出される、液相部分の流量を計測する排出流量計22b、22b、22bと、前記液相部分の組成(アンモニア濃度等)を評価する組成評価手段22c、22c、22cとが、液相排出ライン22、22、22に設けられる。これらは、液相排出弁22a、22a、22aの上流及び下流のどちら側にあっても構わない。
 アンモニア混合燃料の排出の際は、液相排出弁22a、22a、22aが開かれ、液相排出が開始されるのと同時に、制御装置32は、排出流量計22b、22b、22bにより計測される、液相排出ライン22、22、22を通る排出流量、および組成評価手段22c、22c、22cにより計測される液相組成の受信を開始し、これらから、液相排出ライン22、22、22を通る排出液相中のアンモニアおよび助燃剤の流量をそれぞれ算出する。さらに、算出されたアンモニアおよび助燃剤の排出流量と、流量計18aおよび20aによって計測される、混合用密閉容器16内に導入される原料の液化アンモニアおよび助燃剤の導入流量値がそれぞれ等しくなるように、制御装置32の送信する制御信号により、送液ポンプ18dおよび20dの出力、および/または、調整弁18cおよび20cの開度が制御される。この過程で、混合用密閉容器16内の混合物の液相の混合撹拌および温度制御は、そのまま継続される。これらの制御によれば、混合用密閉容器16内の混合物の気液界面や上下層の界面の高さ位置が一定に維持され、気液相の組成および飽和蒸気圧も一定に保たれる。従って、液相の排出が進行しても、元の気液平衡状態がそのまま維持され、気相への蒸発が起こらないので、液相組成も一定に保たれる。このため、一定の組成でアンモニア混合燃料を製造し、連続的に排出することができる。
In addition to the above-described configuration shown in FIG. so that ammonia and the combustion improver can be continuously introduced into the closed mixing vessel 16 via the introduction lines 18 and 20 against the saturated vapor pressure of the mixture in the closed mixing vessel 16. A metered introduction mechanism is configured. An example of this embodiment is shown in FIG. In FIG. 5 as well, when the components have the same configurations and actions as those of the components shown in FIG.
With these configurations, the height position of the gas-liquid interface of the mixture in the closed container 16 for mixing, and the height position of the interface between the upper and lower layers when the liquid phase of the mixture separates into two phases are maintained constant, and , the liquid phase whose composition is kept constant can be continuously discharged as an ammonia-mixed fuel. This embodiment can also be applied to either the case where the liquid phase of the mixture in the closed container 16 for mixing becomes a single phase or the case of two-phase separation (separation into upper and lower layers). FIG. 5 shows the form of discharging both the phase-separated upper and lower two layers of the latter.
In this embodiment, in addition to the constituent devices shown in FIG. Liquid feed pumps 18d and 20d are provided in the ammonia introduction line 18 and the combustion improver introduction line 20, respectively, so that the raw material liquefied ammonia and the combustion improver can be introduced. As these liquid-sending pumps, the high-lift pumps described above are selected. In addition, discharge flowmeters 22b, 22b 1 and 22b 2 for measuring the flow rate of the liquid phase portion discharged as the ammonia-mixed fuel from the mixing sealed container 16 through the liquid phase discharge lines 22, 22 1 and 22 2 , and , and composition evaluation means 22c, 22c 1 , 22c 2 for evaluating the composition (ammonia concentration, etc.) of the liquid phase portion are provided in the liquid phase discharge lines 22, 22 1 , 22 2 . These may be on either upstream or downstream side of the liquid phase discharge valves 22a, 22a 1 , 22a 2 .
When the ammonia mixed fuel is discharged, the liquid phase discharge valves 22a, 22a 1 and 22a 2 are opened and the liquid phase discharge is started. and the liquid phase composition as measured by the composition evaluating means 22c, 22c 1 , 22c 2 , measured by the liquid phase The flow rates of ammonia and combustion improver in the exhaust liquid phase through exhaust lines 22, 22 1 , 22 2 are calculated respectively. Further, the calculated discharge flow rate of ammonia and the combustion improver is equal to the introduction flow rate of the raw material liquefied ammonia and the combustion improver introduced into the closed mixing vessel 16, which are measured by the flowmeters 18a and 20a. In addition, the control signal transmitted by the control device 32 controls the outputs of the liquid feed pumps 18d and 20d and/or the opening degrees of the regulating valves 18c and 20c. During this process, the mixing stirring and temperature control of the liquid phase of the mixture in the closed mixing container 16 are continued. According to these controls, the height position of the gas-liquid interface and the interface between the upper and lower layers of the mixture in the closed container 16 for mixing is kept constant, and the composition of the gas-liquid phase and the saturated vapor pressure are also kept constant. Therefore, even if the discharge of the liquid phase progresses, the original gas-liquid equilibrium state is maintained as it is, and evaporation to the gas phase does not occur, so the liquid phase composition is also kept constant. Therefore, the ammonia mixed fuel can be produced with a constant composition and discharged continuously.
 上記の原料の連続追加導入による一定組成でのアンモニア混合燃料の連続製造において、前記組成評価手段22c、22c、22cとしては、液相排出ラインにおいて、インラインで迅速に計測及び評価できるものであることが好ましく、例えば、それぞれ所定の検量方法(検量線)に基づく、フーリエ変換赤外吸光分析計によるN-H伸縮振動(アンモニアの定量の場合)やC-H伸縮振動(炭化水素の定量の場合)等の各成分の赤外吸収帯における吸光強度の評価、屈折率計により計測される排出液相の屈折率、および超音波濃度計を用いた超音波照射による音速測定等のそれぞれに基づく、アンモニアないし助燃剤の濃度評価手段などを挙げることができるが、特にこれらには限られない。こうした組成評価手段により計測されたデータは、組成評価手段自体が内蔵する検量方法によってアンモニアないし助燃剤の濃度に換算されるか、または計測データ自体のままで制御装置32に送信され、後者は制御装置32内でアンモニアないし助燃剤の濃度に換算された後、排出流量計22b、22b、22bから送信された液相排出ライン22、22、22の流量値に乗じられることにより、アンモニアおよび助燃剤のそれぞれの排出流量が算出される。なお、液相の排出前における、混合用密閉容器16内への液化アンモニアと助燃剤それぞれの初期の導入量と、液相組成との関係が既知である場合には、初期のそれぞれの導入量から液相組成を求めることができるため、上記の組成評価手段22c、22c、22cを省略することもできる。 In the continuous production of the ammonia-mixed fuel with a constant composition by the continuous addition of the raw material, the composition evaluation means 22c, 22c 1 , 22c 2 are capable of rapid in-line measurement and evaluation in the liquid phase discharge line. For example, based on a predetermined calibration method (calibration curve), N-H stretching vibration (in the case of ammonia quantification) and C-H stretching vibration (quantification of hydrocarbons) by a Fourier transform infrared spectrophotometer In the case of ), the evaluation of the absorption intensity in the infrared absorption band of each component, the refractive index of the discharged liquid phase measured by a refractometer, and the sound velocity measurement by ultrasonic irradiation using an ultrasonic concentration meter. Ammonia or combustion improver concentration evaluation means based on, but not limited to, these. The data measured by the composition evaluation means is either converted into the concentration of ammonia or a combustion improver by a calibration method incorporated in the composition evaluation means itself, or is transmitted to the control device 32 as it is, and the latter controls the control. After being converted into the concentration of ammonia or combustion improver in the device 32, by multiplying the flow rate values of the liquid phase discharge lines 22, 22 1 and 22 2 transmitted from the discharge flowmeters 22b, 22b 1 and 22b 2 , The respective discharge flow rates of ammonia and combustion improver are calculated. If the relationship between the initial amounts of liquefied ammonia and the combustion improver introduced into the closed mixing container 16 before discharging the liquid phase and the liquid phase composition is known, the initial amounts of each introduced , the composition evaluation means 22c, 22c 1 and 22c 2 can be omitted.
 一実施形態の製造装置10は、図2、さらには、図3(a),(b)、図4、および図5に示すように、界面活性剤を貯蔵する界面活性剤貯蔵容器26、界面活性剤導入ライン28、及び送液ポンプ28dを備える。界面活性剤導入ライン28は、界面活性剤貯蔵容器26と混合用密閉容器16とを接続する。界面活性剤導入ライン28は、その飽和蒸気圧が低いことから、自発的には混合用密閉容器16に導入されないため、送液ポンプ28dを用いて界面活性剤貯蔵容器26から混合用密閉容器16に供給される。界面活性剤導入ライン28には、界面活性剤を所定量混合用密閉容器16内に導入するように構成された流量計28a及び調整弁28b,28cが、界面活性剤の定量導入機構として設けられる。制御装置32は、流量計28aによる計測結果を受信し、調整弁28b,28cの開度を制御する制御信号を生成し、生成した制御信号を調整弁28b,28cに送る。ただし、後述するように、界面活性剤の状態が粘稠なスラリーないし泥状である場合は、流量計28a及び調整弁28b、28cは、それに適合した、閉塞しにくい仕様のものが採用される必要がある。さらに、後述するように、粘稠なスラリーないし泥状の界面活性剤の移送に適合した送液ポンプ28dが併せて採用される必要があり、また調整弁28b,28cの開閉による定量制御が困難な場合は、送液ポンプ28d自体の吐出量が、制御装置32が生成する制御信号により制御されることによって、定量供給される。即ち、前記界面活性剤の定量導入機構に、送液ポンプ28dも含まれることになる。また、前記窒素ガス導入機構30は、製造装置10の立ち上げ時、およびアンモニア混合燃料の製造の終了後等に、防爆的な観点から、必要に応じて、界面活性剤導入ライン28に存在するガスを置換する。このために、窒素ガスを界面活性剤導入ライン28に所定量を導入するための窒素ガス導入弁30aが設けられる。この窒素ガス導入弁30aの開度は、制御装置32により制御される。
 したがって、混合用密閉容器16内で、界面活性剤は、液体状態のアンモニアと、助燃剤とともに撹拌機24により撹拌混合され、界面活性剤を含む混合物を液相排出ライン22から排出されるように構成される。このように、界面活性剤を用いることにより、極性のあるアンモニアと非極性の助燃剤とをエマルション状態にしたアンモニア混合燃料を容易に製造することができる。
The manufacturing apparatus 10 of one embodiment includes a surfactant storage container 26 for storing a surfactant, a An activator introduction line 28 and a liquid feed pump 28d are provided. A surfactant introduction line 28 connects the surfactant storage container 26 and the closed mixing container 16 . Since the surfactant introduction line 28 has a low saturated vapor pressure, it is not voluntarily introduced into the closed mixing container 16. Therefore, the liquid feed pump 28d is used to transfer the surfactant from the storage container 26 to the closed mixing container 16. supplied to The surfactant introduction line 28 is provided with a flow meter 28a and regulating valves 28b and 28c configured to introduce a predetermined amount of surfactant into the mixing sealed container 16 as a quantitative introduction mechanism for the surfactant. . The control device 32 receives the measurement results from the flow meter 28a, generates control signals for controlling the opening degrees of the regulating valves 28b and 28c, and sends the generated control signals to the regulating valves 28b and 28c. However, as will be described later, when the state of the surfactant is a viscous slurry or mud, the flowmeter 28a and the control valves 28b and 28c are adapted to specifications that are less likely to clog. There is a need. Furthermore, as will be described later, it is necessary to use a liquid feed pump 28d suitable for transferring viscous slurry or muddy surfactant, and quantitative control by opening and closing the adjustment valves 28b and 28c is difficult. In such a case, the discharge amount of the liquid transfer pump 28d itself is controlled by a control signal generated by the control device 32, so that a fixed amount of liquid is supplied. In other words, the liquid feed pump 28d is also included in the quantitative introduction mechanism for the surfactant. In addition, the nitrogen gas introduction mechanism 30 is present in the surfactant introduction line 28 as necessary from the viewpoint of explosion protection, such as when the production apparatus 10 is started up and after the production of the ammonia mixed fuel is completed. Replace gas. For this purpose, a nitrogen gas introduction valve 30a for introducing a predetermined amount of nitrogen gas into the surfactant introduction line 28 is provided. The control device 32 controls the degree of opening of the nitrogen gas introduction valve 30a.
Therefore, in the closed container 16 for mixing, the surfactant is agitated and mixed together with the liquid ammonia and the combustion improver by the agitator 24 so that the mixture containing the surfactant is discharged from the liquid phase discharge line 22. Configured. Thus, by using a surfactant, it is possible to easily produce an ammonia-mixed fuel in which polar ammonia and a non-polar combustion improver are in an emulsion state.
 助燃剤が、前述した液化石油ガスまたはその成分炭化水素種である場合は、気液平衡状態における液相において、少なくともその一部がアンモニアと常温(25℃)近傍で相溶するが、相溶せずに相分離する部分についても、界面活性剤の添加によってエマルション化させることができる。
 アンモニア混合燃料のエマルション化に用いる界面活性剤としては、前述したように、アンモニア混合燃料中において相分離した二液相間の界面で、二次元配列してミセルを形成する能力が高い、少なくとも1種の非イオン性界面活性剤(A)と、前記界面において電離し、前記ミセル同士を静電反発させ、接触及び融合を防止する能力が高い、少なくとも1種のイオン性界面活性剤(B)とを含む、混合系の界面活性剤であることが好ましい。これらの非イオン性界面活性剤(A)、およびイオン系界面活性剤(B)としては、前述した分子構造のものを好適に用いることができる。これらの混合系の界面活性剤を使用するに当たっては、界面活性剤貯蔵容器に貯蔵される前に、十分に混合され、分散されることが好ましい。
 上述の界面活性剤は、常温(25℃)近傍では、一般に、液体ないし固体の状態にある。イオン性の界面活性剤や、非イオン性であっても炭素数の多い(鎖長の長い)長鎖アルキル基を有する界面活性剤は、常温(25℃)近傍で固体になる場合が多い。上記の非イオン性界面活性剤(A)、およびイオン系界面活性剤(B)の混合後に、液体状態、または固形分が沈降しにくい安定なスラリー状態となり、導入の際に十分な流動性を有する混合系界面活性剤を用いる場合は、図2中に図示された界面活性剤の導入系(界面活性剤貯蔵容器26、界面活性剤導入ライン28、および送液ポンプ28d)により、混合用密閉容器16内に導入することができる。一方、上記の混合系界面活性剤が、固体もしくはそれに近いような流動性が不足する状態になり、そのままでは導入しにくい場合は、混合燃料の原料である液化アンモニア、液化石油ガス、およびその成分炭化水素種のいずれかを界面活性剤に事前に少量添加し、混合、分散することにより、上記の界面活性剤の導入系によって導入が可能な流動状態(例えば、スラリーないし泥状)にされることが好ましい。混合用密閉容器16内への界面活性剤の導入の際、混合系界面活性剤が粘稠な液体またはスラリーないし泥状である場合は、送液ポンプ28dとしては、そうした対象も定量的に吐出及び送液することが可能な型式のものが採用される。
 なお、界面活性剤自体は、常温(25℃)、大気圧付近ではその飽和蒸気圧が低く、ほとんどゼロに近い。液体状態、または固形分が沈降しにくい安定なスラリー状態にある界面活性剤自体を、そのまま送液により混合用密閉容器16内に導入する場合は、界面活性剤の導入に際しては、前述したアンモニア等の液化ガスの事前導入による混合用密閉容器16の内圧上昇によって、界面活性剤がそれ以上導入できなくなるような事態を避ける必要がある。このため、界面活性剤は、好ましくは、液化ガスであるアンモニア、液化石油ガスおよびその成分炭化水素種である助燃剤よりも先に、混合用密閉容器16内に導入される。この時、界面活性剤は、流量計28aで計測された流量値の時間積分値に基づき制御装置32が生成する制御信号により制御される、調整弁28b、28cの開閉、および送液ポンプ28dの駆動及び停止によって、定量導入される。一方、前述したように、界面活性剤が固体もしくはそれに近い状態であり、液化アンモニア、液化石油ガス、およびその成分炭化水素種のいずれかの添加によって、スラリー化ないし泥状化された状態で、混合用密閉容器16内に導入される場合には、それぞれ、同一の原料系の液化アンモニア、原液化石油ガス、およびその成分炭化水素種のいずれかの導入と連動して、定量導入されることが好ましい。
When the combustion improver is the above-mentioned liquefied petroleum gas or its component hydrocarbon species, at least part of it is compatible with ammonia in the liquid phase in the gas-liquid equilibrium state at around normal temperature (25 ° C.), but the compatible The part that phase separates without the phase separation can also be emulsified by adding a surfactant.
As the surfactant used for emulsifying the ammonia mixed fuel, as described above, at least 1 a species of nonionic surfactant (A) and at least one ionic surfactant (B) that is highly capable of ionizing at the interface and causing electrostatic repulsion between the micelles to prevent contact and fusion. It is preferably a mixed surfactant containing and. As these nonionic surfactant (A) and ionic surfactant (B), those having the above-described molecular structures can be preferably used. When using these mixed surfactants, they are preferably thoroughly mixed and dispersed before being stored in a surfactant storage container.
The surfactants described above are generally in a liquid or solid state near room temperature (25° C.). Ionic surfactants and nonionic surfactants having a long-chain alkyl group with a large number of carbon atoms (long chain length) often become solid near room temperature (25° C.). After mixing the above nonionic surfactant (A) and ionic surfactant (B), it becomes a liquid state or a stable slurry state in which the solid content is difficult to settle, and sufficient fluidity is obtained at the time of introduction. When using a mixed surfactant having It can be introduced into container 16 . On the other hand, when the above mixed surfactant is in a state of lacking fluidity such as solid or nearly so, and it is difficult to introduce it as it is, liquefied ammonia, liquefied petroleum gas, and its components, which are raw materials of mixed fuel By adding a small amount of any of the hydrocarbon species to the surfactant in advance and mixing and dispersing it, a fluid state (e.g., slurry or mud) that can be introduced by the above-described surfactant introduction system is formed. is preferred. When introducing the surfactant into the mixing sealed container 16, if the mixed surfactant is a viscous liquid or slurry or muddy, the liquid feed pump 28d can also quantitatively discharge such an object. and a type capable of feeding liquid is adopted.
The surfactant itself has a low saturated vapor pressure, which is almost zero, at room temperature (25° C.) and atmospheric pressure. When the surfactant itself, which is in a liquid state or a stable slurry state in which the solid content does not easily settle, is introduced into the closed mixing container 16 by feeding the surfactant as it is, the above-mentioned ammonia or the like is used when introducing the surfactant. It is necessary to avoid a situation in which the internal pressure of the closed mixing container 16 rises due to the previous introduction of the liquefied gas, and the surfactant cannot be introduced any more. For this reason, the surfactant is preferably introduced into the closed mixing vessel 16 before the liquefied gas ammonia, liquefied petroleum gas, and the combustion improver, which is a component hydrocarbon species thereof. At this time, the surfactant is controlled by the control signal generated by the control device 32 based on the time integral value of the flow rate measured by the flow meter 28a, opening and closing the adjustment valves 28b and 28c, and the liquid feed pump 28d. Dosage is introduced by driving and stopping. On the other hand, as described above, when the surfactant is in a solid or near solid state and is slurried or sludged by the addition of liquefied ammonia, liquefied petroleum gas, or any of its component hydrocarbon species, When introduced into the closed container for mixing 16, they should be introduced quantitatively in conjunction with the introduction of any of the same raw material liquefied ammonia, raw liquefied petroleum gas, and component hydrocarbon species thereof. is preferred.
 助燃剤が液化石油ガスまたは液化石油ガスの成分炭化水素種である場合に、界面活性剤の導入によりマルション化されたアンモニア混合燃料を製造する際にも、基本的に、図2、図3(a),(b)、図4、および図5に示した製造装置10を、組成および混合温度等の条件に応じて、好適に用いることができる。例えば、前述したアンモニア―プロパン系の混合物においては、界面活性剤の添加混合によるエマルション化の効果により、上下二層に分離する組成範囲および温度域が、界面活性剤を添加しない場合に比べて変化する。しかし、界面活性剤の添加でエマルション化された場合においても、上下二層に分離する組成範囲および温度域があること、および、温度上昇により単一の層になること自体は、界面活性剤を添加しない場合と、本質的に変わらない。
 従って、例えば、図2に示した構成の製造装置10(液相排出ライン22の排出口位置が、混合用密閉容器16内の底面にある装置)を用いることにより、混合物の液相が単一層になる組成及び温度条件であればその単一層を、また、上下二層に分離する場合はその下層を、前述した界面活性剤を添加しない場合と同様の操作を行うことによって、エマルション化したアンモニア混合燃料として排出させることができる。また、例えば、図3(b)に示した構成の製造装置10(液相排出ライン22、および22の排出口位置が、それぞれ、混合用密閉容器16内の混合物の上下二層の上層底面のやや上、および容器内底面にある装置)を用いることにより、上下二層に分離した液相の上層および/または下層を、エマルション化したアンモニア混合燃料として排出させることができる。また、窒素ガス導入ライン30bを有する図4の製造装置10を用いることにより、液相排出の進行に伴う組成変化を抑制しながら、エマルション化したアンモニア混合燃料として迅速に排出させることができる。
2 and 3 ( The production apparatus 10 shown in a), (b), FIG. 4, and FIG. 5 can be suitably used according to conditions such as composition and mixing temperature. For example, in the above-mentioned ammonia-propane mixture, due to the effect of emulsification by adding and mixing a surfactant, the composition range and temperature range separating into upper and lower layers change compared to when no surfactant is added. do. However, even when emulsified with the addition of a surfactant, there is a composition range and a temperature range that separates the upper and lower layers, and the formation of a single layer due to a temperature rise itself does not allow the surfactant to be used. It is essentially the same as when it is not added.
Therefore, for example, by using the manufacturing apparatus 10 having the configuration shown in FIG. If the composition and temperature conditions are to It can be discharged as mixed fuel. Further, for example, the manufacturing apparatus 10 having the configuration shown in FIG . The upper and/or lower layers of the liquid phase separated into upper and lower layers can be discharged as an emulsified ammonia-mixed fuel. Further, by using the manufacturing apparatus 10 of FIG. 4 having the nitrogen gas introduction line 30b, it is possible to quickly discharge the mixed fuel as an emulsified ammonia mixed fuel while suppressing the change in composition accompanying the progress of the liquid phase discharge.
 更に、図5に示した、排出流量に等しい導入流量で、原料のアンモニアと助燃剤、および界面活性剤を混合用密閉容器16に連続導入する構成によれば、上下二層に分離した液相の上層および/または下層を、液相排出の進行に伴う組成変化を抑制しながら、エマルション化したアンモニア混合燃料を連続的に製造し、排出させることができる。ここで、図5の製造装置10においては、上記目的のために構成される、前述のアンモニアと助燃剤の定量導入機構(送液ポンプ18d、20d、排出流量計22a、22a、22a、液相組成評価手段22b、22b、22b、および制御装置32を含む機構)に加えて、排出流量に等しい導入流量で界面活性剤を混合用密閉容器16内に導入するように構成された、界面活性剤の定量導入機構(送液ポンプ28dを含む)を備える。ここで、送液ポンプ28dは、混合用密閉容器16内の混合物の飽和蒸気圧に抗して導入される必要があるため、同じことが要求される、前述した液化アンモニアや助燃剤用の高揚程送液ポンプと同様の型式のものが選択される。
 この実施形態においては、制御装置32は、混合用密閉容器16内に予め原料として導入されたアンモニア、前記助燃剤、および界面活性剤のそれぞれの量から、アンモニア混合燃料中の界面活性剤の濃度を算出する。さらに制御装置32は、アンモニア混合燃料の排出開始時点から、排出流量計22a、22a、22aによって計測されたアンモニア混合燃料の排出流量の計測値を受信し、この排出流量に前記界面活性剤の濃度を乗じることにより、液相排出ライン22、22、22を通して排出される界面活性剤の排出流量を求める。制御装置32は、この排出流量に等しい流量で、界面活性剤貯蔵容器26から混合用密閉容器16内に、界面活性剤を連続定量導入するように、送液ポンプ28dの出力、および調整弁28bおよび28cの開度を調整する制御信号を送信する。
Furthermore, according to the configuration shown in FIG. 5, in which the raw material ammonia, the combustion improver, and the surfactant are continuously introduced into the closed mixing vessel 16 at an introduction flow rate equal to the discharge flow rate, the liquid phase separated into upper and lower two layers An emulsified ammonia mixed fuel can be continuously produced and discharged from the upper layer and/or the lower layer while suppressing a composition change accompanying the progress of liquid phase discharge. Here, in the manufacturing apparatus 10 of FIG. 5, the quantitative introduction mechanism for ammonia and the combustion improver ( liquid feed pumps 18d, 20d, discharge flowmeters 22a, 22a 1 , 22a 2 , Mechanism including liquid phase composition evaluation means 22b, 22b 1 , 22b 2 , and control device 32) In addition, it was configured to introduce the surfactant into the closed mixing container 16 at an introduction flow rate equal to the discharge flow rate. , a surfactant metering introduction mechanism (including a liquid feed pump 28d). Here, the liquid feed pump 28d needs to be introduced against the saturated vapor pressure of the mixture in the closed container 16 for mixing, so the same is required for the above-mentioned liquefied ammonia and the booster for the combustion improver. A pump of the same type as the liquid transfer pump is selected.
In this embodiment, the controller 32 determines the concentration of the surfactant in the ammonia-mixed fuel from the respective amounts of the ammonia, the combustion improver, and the surfactant previously introduced as raw materials into the closed mixing vessel 16. Calculate Further, the control device 32 receives the measured values of the discharge flow rate of the ammonia mixed fuel measured by the discharge flow meters 22a, 22a 1 and 22a 2 from the time when the discharge of the ammonia mixed fuel is started. to determine the discharge flow rate of the surfactant discharged through the liquid phase discharge lines 22, 22 1 , 22 2 . The control device 32 controls the output of the liquid feed pump 28d and the adjustment valve 28b so as to continuously and quantitatively introduce the surfactant from the surfactant storage container 26 into the mixing sealed container 16 at a flow rate equal to this discharge flow rate. , and a control signal for adjusting the opening of 28c.
 また、図2、図4、および図5の構成を後述のように一部変更することにより、以上で述べた、(a)として液化石油ガス、および(b)として液化石油ガスに成分として含まれる少なくとも一つの炭化水素種を助燃剤として用いる場合に替えて、(a)としてナフサ、ガソリン、ケロシン、および軽油の内の少なくとも一つ、(b)としてナフサ、ガソリン、ケロシン、および軽油の内の少なくとも一つの成分炭化水素種の少なくともいずれかを用いて、アンモニア混合燃料を製造することもできる。この場合、助燃剤貯蔵用密閉容器14は、ナフサ、ガソリン、ケロシン、および軽油、またはこれらに成分として含まれる少なくとも一つの炭化水素種の少なくとも一つを貯蔵する容器である。これらの常温(25℃)付近、大気圧近傍で液体である原料用炭化水素は、アンモニアに比べ発火温度が低いために着火し易く、またアンモニアに比べて高い燃焼速度(層流燃焼速度においてアンモニアの5~7倍程度)を有しており、燃焼し易い。このため、ナフサ、ガソリン、ケロシン、および軽油、およびこれらの成分として含まれる炭化水素種も、アンモニアの助燃剤として用いることができる。
 常温(25℃)付近および大気圧近傍で液体である、ナフサ、ガソリン、ケロシンおよび軽油、およびこれらの成分炭化水素種である助燃剤を用いる場合は、助燃剤貯蔵用密閉容器14内の助燃剤の飽和蒸気圧は、常温(25℃)付近ではほぼゼロに近いため、液相が飽和蒸気圧によって吐出されることはなく、混合用密閉容器16内に、自発的には流入しないので、助燃剤導入ライン20には、上記助燃剤を、助燃剤貯蔵用密閉容器14から混合用密閉容器16に供給するための送液ポンプ20dが、さらに設けられる必要がある。このとき、前記助燃剤定量導入機構には、上記の送液ポンプ20dも含まれ、その駆動および出力は、制御装置32が生成する制御信号により制御される。この送液ポンプが設けられる場合、助燃剤の定量供給の際には、これらの送液ポンプは、調整弁20b、20cの開度ないし開閉と連動して、制御装置32が生成する制御信号により、出力制御ないし駆動又は停止される。
 ナフサ、ガソリン、ケロシン、軽油、およびこれらの成分炭化水素種である場合の助燃剤、および後述する界面活性剤を、送液ポンプ20dを用いた送液により混合用密閉容器16内に導入する際には、これらの導入に際して、前述した液化ガスであるアンモニアの事前導入による混合用密閉容器16の内圧上昇によって、これらがそれ以上導入できなくなるような事態を避ける必要がある。このため、特に高揚程の送液ポンプを用いない場合は、ナフサ、ガソリン、ケロシン、軽油、およびこれらの成分炭化水素種である助燃剤、および界面活性剤は、好ましくは、アンモニアよりも先に、混合用密閉容器16内に導入される。その導入時には、多くの場合、温度調節は特に必要とされない。しかし、それに続くアンモニアの導入時には、前述したように、アンモニア貯蔵用密閉容器12の内圧(アンモニアの飽和蒸気圧)よりも、混合用密閉容器16内の混合物の飽和蒸気圧がさらに常に低くなる必要があるため、混合用密閉容器16内の該混合物の液相の温度が、その飽和蒸気圧が十分に低くなるような所定の温度に保持される必要がある。また、前述したように、界面活性剤が固体もしくはそれに近い状態である場合は、液化アンモニア、ナフサ、ガソリン、ケロシン、軽油、およびこれらの成分炭化水素種のいずれかの添加によって、スラリー化ないし泥状化された状態で、混合用密閉容器16内に導入されることが好ましく、その際は、それぞれ、同一の原料系の液化アンモニア、ナフサ、ガソリン、ケロシン、軽油、およびこれらの成分炭化水素種、およびその成分炭化水素種のいずれかの導入と連動して定量導入されることが好ましい。
2, 4, and 5 are partially changed as described later, the components contained in the liquefied petroleum gas as (a) and the liquefied petroleum gas as (b) described above can be obtained as components. (a) at least one of naphtha, gasoline, kerosene, and gas oil, and (b) naphtha, gasoline, kerosene, and gas oil. Ammonia blended fuels can also be produced using at least one of the component hydrocarbon species of. In this case, the combustion improver storage sealed container 14 is a container for storing at least one of naphtha, gasoline, kerosene, light oil, or at least one hydrocarbon species contained as a component thereof. These raw hydrocarbons, which are liquid near normal temperature (25 ° C.) and atmospheric pressure, have a lower ignition temperature than ammonia and are easily ignited. about 5 to 7 times) and is easily combustible. Therefore, naphtha, gasoline, kerosene, and light oil, and the hydrocarbon species contained as their components, can also be used as combustion improvers for ammonia.
In the case of using naphtha, gasoline, kerosene, and light oil, which are liquid near normal temperature (25° C.) and near atmospheric pressure, and combustion improvers that are component hydrocarbon species thereof, the combustion improver in the combustion improver storage sealed container 14 Since the saturated vapor pressure of is almost zero near normal temperature (25° C.), the liquid phase is not expelled by the saturated vapor pressure and does not spontaneously flow into the closed container 16 for mixing. The combustion improver introduction line 20 must be further provided with a liquid feed pump 20d for supplying the combustion improver from the combustion improver storage closed container 14 to the mixing closed container 16. As shown in FIG. At this time, the combustion improver fixed quantity introduction mechanism also includes the liquid feed pump 20d described above, and its drive and output are controlled by the control signal generated by the controller 32 . When these liquid-sending pumps are provided, these liquid-sending pumps are interlocked with the degree of opening or opening/closing of the control valves 20b and 20c in response to a control signal generated by the control device 32 when supplying a constant amount of the combustion improver. , is output controlled or driven or deactivated.
When introducing naphtha, gasoline, kerosene, light oil, a combustion improver in the case of these component hydrocarbon species, and a surfactant described later into the closed mixing container 16 by liquid feeding using the liquid feeding pump 20d Therefore, it is necessary to avoid a situation in which the internal pressure of the closed mixing container 16 rises due to the prior introduction of ammonia, which is a liquefied gas, so that these gases cannot be introduced any more. For this reason, naphtha, gasoline, kerosene, light oil, and their component hydrocarbon species, combustion improvers, and surfactants, are preferably added prior to ammonia, especially when high-lift liquid feed pumps are not used. , is introduced into the closed container 16 for mixing. During its introduction, in most cases no particular temperature control is required. However, when ammonia is subsequently introduced, as described above, the saturated vapor pressure of the mixture in the closed mixing container 16 must always be lower than the internal pressure of the closed ammonia storage container 12 (saturated vapor pressure of ammonia). Therefore, the temperature of the liquid phase of the mixture in the closed mixing container 16 must be maintained at a predetermined temperature at which the saturated vapor pressure is sufficiently low. Also, as described above, when the surfactant is in a solid or near solid state, it can be slurried or muddled by the addition of liquefied ammonia, naphtha, gasoline, kerosene, light oil, and any of these component hydrocarbon species. It is preferable to introduce into the closed mixing vessel 16 in a liquefied state. , and any of its constituent hydrocarbon species.
 助燃剤が、ナフサ、ガソリン、ケロシン、軽油、またはこれらの成分炭化水素種の内の少なくとも一つである場合には、前述した液化石油ガスおよびその成分炭化水素種の場合と同様に、界面活性剤無添加のときには、平衡状態において、極性のある液化アンモニアを主体とする相と、助燃剤を主体とする相との二層に分かれる場合、および全体が均一な溶液になる場合の両方が起こり得る。その際、液化石油ガスおよびその成分炭化水素種の場合と同様に、昇温によって、二相分離状態から均一な溶液状態に変化する。更に、前述した臨界共溶温度も同様に存在し、該温度以上においては、いかなる組成においても完全に混和するようになる。ただし、助燃剤がナフサ、ガソリン、ケロシン、軽油、およびそれらの成分炭化水素種である場合は、液化アンモニアとの混合燃料は一般に共沸挙動を示さず、その飽和蒸気圧は、同一温度における純粋なアンモニアの飽和蒸気圧に略等しいか、それよりも低い値となる。二層に分かれる場合には、ナフサ、ガソリン、ケロシン、軽油、およびそれらの成分炭化水素種の比重が、液化アンモニアの比重よりいずれも大きいため、液化石油ガスおよびその成分炭化水素種である場合とは逆に、密閉容器中において、これらの助燃剤を主体とする相は、液化アンモニアを主体とする相の下層になる。 When the combustion improver is naphtha, gasoline, kerosene, diesel, or at least one of their component hydrocarbon species, surfactant When no additive is added, in the equilibrium state, both a phase separated into two layers, a phase mainly composed of polar liquefied ammonia and a phase mainly composed of the combustion improver, and a case that the whole solution becomes uniform occur. obtain. In doing so, as in the case of liquefied petroleum gas and its constituent hydrocarbon species, the elevated temperature causes a change from a two-phase separation state to a homogeneous solution state. In addition, the aforementioned critical solution temperature also exists, above which any composition becomes completely miscible. However, when the combustion improver is naphtha, gasoline, kerosene, diesel, and their component hydrocarbon species, the blended fuel with liquefied ammonia generally does not exhibit azeotropic behavior, and its saturated vapor pressure is equal to that of pure is approximately equal to or lower than the saturated vapor pressure of ammonia. In the case of two layers, naphtha, gasoline, kerosene, light oil, and their component hydrocarbon species have a higher specific gravity than liquefied ammonia, so liquefied petroleum gas and its component hydrocarbon species Conversely, in a closed container, the phase mainly composed of these combustion improvers becomes the lower layer of the phase mainly composed of liquefied ammonia.
 助燃剤がナフサ、ガソリン、ケロシン、軽油、およびそれらの成分炭化水素種である場合にも、上述した気液液平衡によって決まる溶解度以上に、助燃剤および/またはアンモニアを他方の液相中に溶け込ませたい場合には、適切な界面活性剤の添加によるエマルション化が必要となる。特に、助燃剤がケロシン、軽油、およびそれらの成分炭化水素である場合には、蒸気圧を低く抑えられる常温(25℃)近傍からおよそ50℃程度までの低温域においては、助燃剤および/またはアンモニアの溶解度は共におよそ5質量%程度以下の低濃度に留まるため、界面活性剤の添加が重要になる。その際、混合分散し得る液化アンモニアと助燃剤の溶解度は、界面活性剤の性能およびその添加量にほぼ支配される。このため、混合物の全体が均一にエマルション化された層になるよう、好適な界面活性剤が十分な量添加されることが好ましい。界面活性剤の添加量が少ない場合は、過渡的にエマルション化された部分が上下二層に分離しない内に迅速に燃焼に供され、使い切られることが好ましい。または、後述する保存用密閉容器内で一定期間保存された後には、再撹拌混合によって、全体が良好に分散されたエマルション状態に戻された後に燃焼に供されてもよい。なお、界面活性剤の添加なしでも比較的アンモニアとの相溶性が高いナフサ、ガソリン、ないしそれらの成分炭化水素種(特に芳香族炭化水素種)を助燃剤として用いる時には、界面活性剤の添加が不要になる場合もある。その際には、界面活性剤の導入系(界面活性剤貯蔵容器26、界面活性剤導入ライン28、流量計28a、調整弁28b、28c、および送液ポンプ28d)を省略することができる。
 助燃剤がナフサ、ガソリン、ケロシン、軽油、またはこれらの成分炭化水素種である場合も、図3(a),(b)や、図5に示した、二相分離液相の上層部分を排出させるための液相排出ライン22、およびそれに付属する機器(液相排出弁22a、排出流量計22b、および組成評価手段22c)を用い、二相分離液相の上層および/または下層をアンモニア混合燃料として排出させることも可能である。
Even when the combustion improver is naphtha, gasoline, kerosene, diesel oil, and their component hydrocarbon species, the combustion improver and/or ammonia are dissolved in the other liquid phase beyond the solubility determined by the vapor-liquid equilibrium described above. If desired, emulsification by addition of a suitable surfactant is required. In particular, when the combustion improver is kerosene, light oil, and their component hydrocarbons, in a low temperature range from about normal temperature (25 ° C.) to about 50 ° C. where the vapor pressure can be kept low, the combustion improver and / or Since the solubility of ammonia remains at a low concentration of about 5% by mass or less, addition of a surfactant is important. At that time, the solubility of the liquefied ammonia and the combustion improver that can be mixed and dispersed is substantially controlled by the performance of the surfactant and its addition amount. For this reason, it is preferred that a sufficient amount of a suitable surfactant is added so that the entire mixture forms a uniformly emulsified layer. When the amount of the surfactant added is small, it is preferable that the transiently emulsified portion is rapidly burned and used up before it separates into upper and lower layers. Alternatively, after being stored for a certain period of time in a closed container for storage, which will be described later, it may be subjected to combustion after returning to a well-dispersed emulsion state by re-stirring and mixing. When naphtha, gasoline, or their component hydrocarbon species (particularly aromatic hydrocarbon species), which have relatively high compatibility with ammonia even without the addition of a surfactant, are used as a combustion improver, the addition of a surfactant is required. It may not be necessary. In this case, the surfactant introduction system (surfactant storage container 26, surfactant introduction line 28, flow meter 28a, control valves 28b, 28c, and liquid feed pump 28d) can be omitted.
When the combustion improver is naphtha, gasoline, kerosene, light oil, or component hydrocarbon species thereof, the upper layer portion of the two-phase separated liquid phase shown in FIGS. 3(a) and 3(b) and FIG. Using the liquid phase discharge line 22 2 and the equipment attached thereto (liquid phase discharge valve 22a 2 , discharge flow meter 22b 2 , and composition evaluation means 22c 2 ), the upper layer and / or lower layer of the two-phase separation liquid phase can be discharged as an ammonia mixed fuel.
 助燃剤が、ナフサ、ガソリン、ケロシン、軽油、またはこれらの成分炭化水素種の内の少なくとも一つを含む均一で安定なアンモニア混合燃料を製造するためには、基本的に、前述した助燃剤が液化石油ガスおよびその成分炭化水素種の場合と共通の分子構造の混合系界面活性剤を、良好に用いることができる。ただし、前述したように、該界面活性剤の長鎖アルキル基ないしアルケニル基の鎖長は、液化石油ガスおよびその成分炭化水素種の場合よりも長鎖のものが好ましいことが多い。こうした適切な混合系界面活性剤の十分な量が添加され、撹拌混合されると、相分離部分(アンモニアまたは助燃剤)がエマルション化によって他方の相中に分散され、混合燃料の全体が均一化され得る。その際には、前述した、助燃剤が液化石油ガスおよびその成分炭化水素種である場合と同様に、前記界面活性剤の乳化性能が十分発揮されるような温度範囲に保持されることが好ましい。以上で製造されたアンモニア混合燃料を取り出し、その状態で燃焼させれば、高い燃焼性を示す。
 なお、助燃剤が、ナフサ、ガソリン、ケロシン、軽油、またはその成分炭化水素種である場合も、図2の製造装置を用いる場合には、エマルション化された混合物の液相部分を液相排出ライン22から排出させる際に、助燃剤が液化石油ガスまたはその成分炭化水素種である場合と同様に、排出液相の組成変化が進行する。即ち、液相の排出に伴い、混合用密閉容器16内の混合物の気液界面が下降し、混合物の液相から気相への蒸発(沸騰)が起こる。その際、液相組成によらず、上記蒸発ガス中のアンモニア濃度は、液相中のアンモニア濃度よりも高くなるので、液相排出の進行に伴って、液相中のアンモニア濃度が低下するからである。
 これに対し、図4の製造装置10(図示されない助燃剤送液ポンプ20dを備える装置)を用いれば、前述した、助燃剤が液化石油ガスまたはその成分炭化水素種である場合と同様に、混合用密閉容器16内の気相への窒素の加圧導入により、排出液相中の上記組成変化を抑制しながら、アンモニア混合燃料として迅速に排出させることができる。また、図5の製造装置10(液相排出ライン22およびそれに付属する前記機器は、多くの場合省かれる)を用いれば、排出される液相中のアンモニア、助燃剤、および界面活性剤のそれぞれの排出流量と等しい流量で、原料の液化アンモニア、助燃剤、および界面活性剤を連続的に定量導入することにより(これらの送液用のポンプには、前述した高揚程のものが選ばれる)、排出液相中の上記組成変化を生じさせることなく、アンモニア混合燃料として連続的に排出させることができる。
 以上のように、助燃剤が、ナフサ、ガソリン、ケロシン、軽油、およびこれらの成分炭化水素種のいずれかである場合も、図2や図4(これらは、図示されない助燃剤送液ポンプ20dを備える)、および図5に示した製造装置10を用いれば、それぞれの効用を伴って、アンモニア混合燃料を製造することができる。その際、液化アンモニア、助燃剤および界面活性剤の定量導入や、撹拌混合時の温度調節の他、上述したものを含む一連の制御は、前述した、助燃剤が液化石油ガスおよびその成分炭化水素種のいずれかである場合と基本的に同様に、制御装置32の制御信号に基づいて行われる。
In order to produce a homogeneous and stable ammonia mixed fuel in which the combustion improver contains naphtha, gasoline, kerosene, diesel, or at least one of these component hydrocarbon species, the above-described combustion improver is basically Mixed system surfactants with molecular structures common to those of liquefied petroleum gas and its component hydrocarbon species can be successfully used. However, as noted above, the chain length of the long chain alkyl or alkenyl groups in the surfactant is often preferred to be longer than in liquefied petroleum gas and its component hydrocarbon species. When a sufficient amount of such a suitable mixing system surfactant is added and mixed with stirring, the phase separated part (ammonia or combustion improver) is dispersed in the other phase by emulsification, and the entire mixed fuel is homogenized. can be At that time, as in the case where the combustion improver is liquefied petroleum gas and its component hydrocarbon species, as described above, it is preferable to maintain the temperature within a range in which the emulsification performance of the surfactant is sufficiently exhibited. . If the ammonia-mixed fuel produced as described above is taken out and burned in that state, it exhibits high combustibility.
Incidentally, even when the combustion improver is naphtha, gasoline, kerosene, light oil, or its constituent hydrocarbon species, when using the production apparatus of FIG. Upon exiting 22, compositional changes in the exiting liquid phase proceed in the same manner as if the combustion improver were liquefied petroleum gas or its constituent hydrocarbon species. That is, as the liquid phase is discharged, the gas-liquid interface of the mixture in the closed mixing container 16 descends, causing evaporation (boiling) of the mixture from the liquid phase to the gas phase. At that time, regardless of the liquid phase composition, the ammonia concentration in the evaporative gas becomes higher than the ammonia concentration in the liquid phase, so the ammonia concentration in the liquid phase decreases as the liquid phase discharge progresses. is.
On the other hand, if the manufacturing apparatus 10 of FIG. 4 (equipment equipped with a fuel improver liquid feeding pump 20d not shown) is used, it is possible to mix and By pressurizing nitrogen into the gas phase in the closed vessel 16 for gas, it is possible to rapidly discharge the mixed fuel as an ammonia mixed fuel while suppressing the composition change in the discharged liquid phase. 5 (the liquid phase discharge line 222 and the equipment attached thereto are often omitted), the ammonia, the combustion improver, and the surfactant in the discharged liquid phase can be By continuously metering in the raw material liquefied ammonia, the combustion improver, and the surfactant at a flow rate equal to the respective discharge flow rates (the pumps for these liquids are selected to have a high head as described above). ), it can be continuously discharged as an ammonia-mixed fuel without causing the above compositional change in the discharged liquid phase.
As described above, even when the combustion improver is naphtha, gasoline, kerosene, light oil, or any of these component hydrocarbon species, the fuel improver liquid feed pump 20d (not shown) is used as shown in FIG. 2 and FIG. provided) and the production apparatus 10 shown in FIG. At that time, in addition to the quantitative introduction of liquefied ammonia, the combustion improver and the surfactant, and the temperature adjustment during stirring and mixing, a series of controls including the above-mentioned are performed as described above. It is performed based on the control signal of the control device 32 basically in the same manner as in the case of any of the species.
 図6は、図2に示す製造装置10の構成とは異なる別の一実施形態の製造装置10の構成の一例を示す図である。図6に示す例は、助燃剤としてメタノール等の上記(c)の分子内炭素数3以下の原料用アルコールを用いる場合の装置形態を示している。原料用アルコールは、アンモニアと比べて低い発火温度を有するため着火し易く、またアンモニアより高い燃焼速度(層流燃焼速度においてアンモニアの6~7倍程度)を有するために燃焼し易い。また、重油、軽油、ケロシン、ガソリン等の従来多く用いられて来た液体の化石燃料に比べて、燃焼の際の、発熱量当たりのCO発生も少ない。このため、原料用アルコールは、アンモニアの助燃剤として好ましい。また、原料用アルコールは、極性を有し、さらにアンモニアとの分子間に水素結合を生じるので、気液平衡状態において、そのアンモニアとの混合燃料の液相部分は、広い組成範囲および温度範囲において相溶した溶液状態になる。その際、混合燃料は共沸挙動を示さず、その飽和蒸気圧は、同一温度における純粋なアンモニアの飽和蒸気圧よりも低い値となる。このため、界面活性剤は多くの場合不要であり、製造装置10において、界面活性剤の導入系(界面活性剤貯蔵容器26、界面活性剤導入ライン28、流量計28a、調整弁28b、28c、および送液ポンプ28d)を省略することができる。また、外部環境温度が常温(25℃)またはその近傍の、例えばおよそ0℃から40℃程度であれば、多くの場合、撹拌混合の際に、特に温度調節を行う必要もない。このため、助燃剤が原料用アルコールである場合は、製造装置10の構成を簡素化することができる。なお、図6に示す構成部分の符号も、図2に示す構成部分と同じ構成及び作用を有する場合、同じ符号を付してその説明を省略している。
 図6に示す助燃剤貯蔵用密閉容器14には、原料用アルコールが貯蔵されている。原料用アルコールは飽和蒸気圧が低く、助燃剤貯蔵用密閉容器14内の飽和蒸気圧では吐出されず、混合用密閉容器16内に自発的には導入されないので、送液ポンプ20dが設けられている。送液ポンプ20dにより、原料用アルコールは助燃剤貯蔵用密閉容器14から混合用密閉容器16に供給される。また、常温(25℃)付近、大気圧近傍で液体である原料用アルコールの導入時には特に温度調節を行う必要はないが、その後に行われる液化アンモニアの導入の際には、送液ポンプ20dが特に高揚程のものでない場合、混合用密閉容器16内の気相内圧が、これから導入される原料の液化アンモニアの貯蔵用密閉容器内の飽和蒸気圧よりも常に低くなるように、混合用密閉容器16内の温度が保持される必要がある。
FIG. 6 is a diagram showing an example of a configuration of a manufacturing apparatus 10 according to another embodiment, which is different from the configuration of the manufacturing apparatus 10 shown in FIG. The example shown in FIG. 6 shows the configuration of the apparatus in the case of using the raw material alcohol (c) having 3 or less carbon atoms in the molecule, such as methanol, as the combustion improver. The raw material alcohol has a lower ignition temperature than ammonia, so it is easily ignited, and has a higher burning rate than ammonia (about 6 to 7 times that of ammonia in terms of laminar combustion rate), so it burns easily. In addition, compared to liquid fossil fuels such as heavy oil, light oil, kerosene, gasoline, etc., which have been widely used, less CO 2 is generated per calorific value during combustion. Therefore, raw material alcohol is preferable as a combustion improver for ammonia. In addition, since the raw material alcohol is polar and forms a hydrogen bond between molecules with ammonia, the liquid phase portion of the mixed fuel with ammonia in a gas-liquid equilibrium state is It becomes a compatible solution state. In that case, the mixed fuel does not exhibit azeotropic behavior and its saturated vapor pressure is lower than that of pure ammonia at the same temperature. For this reason, a surfactant is not necessary in many cases, and in the manufacturing apparatus 10, a surfactant introduction system (surfactant storage container 26, surfactant introduction line 28, flow meter 28a, adjustment valves 28b, 28c, and the liquid feed pump 28d) can be omitted. Moreover, if the external environment temperature is normal temperature (25° C.) or its vicinity, for example, about 0° C. to 40° C., in many cases, there is no particular need to adjust the temperature during stirring and mixing. Therefore, when the combustion improver is raw material alcohol, the configuration of the manufacturing apparatus 10 can be simplified. 6 have the same configuration and action as those of the components shown in FIG. 2, the same reference numerals are given and the description thereof is omitted.
Raw material alcohol is stored in the combustion improver storage sealed container 14 shown in FIG. The raw material alcohol has a low saturated vapor pressure, and is not discharged under the saturated vapor pressure in the combustion improver storage closed container 14, and is not spontaneously introduced into the mixing closed container 16. Therefore, the liquid feed pump 20d is provided. there is The raw material alcohol is supplied from the combustion improver storage sealed container 14 to the mixing closed container 16 by the liquid feed pump 20d. Further, when introducing the raw material alcohol, which is liquid near normal temperature (25° C.) and near atmospheric pressure, it is not necessary to particularly adjust the temperature. Especially when the lift is not high, the gas phase internal pressure in the closed mixing container 16 is always lower than the saturated vapor pressure in the closed container for storage of the raw material liquefied ammonia to be introduced from now on. The temperature within 16 must be maintained.
 なお、助燃剤が原料用アルコールである場合も、図2の製造装置を用いる場合には、溶液状態の混合物の液相部分を液相排出ライン22から排出させる際に、助燃剤が液化石油ガスまたはその成分炭化水素種である場合と同様に、排出液相の組成変化が進行する。即ち、液相の排出に伴い、混合用密閉容器16内の混合物の気液界面が下降し、混合物の液相から気相への蒸発(沸騰)が起こる。その際、液相組成によらず、上記蒸発ガス中のアンモニア濃度は、液相中のアンモニア濃度よりも高くなるので、液相排出の進行に伴って、液相中のアンモニア濃度が低下するからである。
 これに対し、図4の製造装置10(図示されない助燃剤送液ポンプ20dを備える)を用いれば、前述した、助燃剤が液化石油ガスまたはその成分炭化水素種である場合と同様に、混合用密閉容器16内の気相への窒素の加圧導入により、排出液相中の上記組成変化を抑制しながら、アンモニア混合燃料として迅速に排出させることができる。また、図5の製造装置10(液相排出ライン22およびそれに付属する前記機器は省かれる)を用いれば、排出される液相中のアンモニアおよび助燃剤のそれぞれの排出流量と等しい流量で、原料の液化アンモニアおよび助燃剤を連続的に定量導入することにより(これらの送液用のポンプには、前述した高揚程のものが選ばれる)、排出液相中の上記組成変化を生じさせることなく、アンモニア混合燃料として連続的に排出させることができる。
 以上のように、助燃剤が原料用アルコールである場合も、図2や図4(これらは、図示されない助燃剤送液ポンプ20dを備え、界面活性剤の導入系は省かれる)、および図5(液相排出ライン22およびそれに付属する前記機器、および界面活性剤の導入系は省かれる)の製造装置10を用いれば、それぞれの効用を伴って、アンモニア混合燃料を製造することができる。その際、液化アンモニアおよび助燃剤の定量導入や、撹拌混合時の温度調節の他、上述したものを含む一連の制御は、前述した、助燃剤が液化石油ガスおよびその成分炭化水素種のいずれかである場合と基本的に同様に、制御装置32の制御信号に基づいて行われる。
Even when the combustion improver is raw material alcohol, when the manufacturing apparatus of FIG. Or, as with its constituent hydrocarbon species, compositional changes in the draining liquid phase proceed. That is, as the liquid phase is discharged, the gas-liquid interface of the mixture in the closed mixing container 16 descends, causing evaporation (boiling) of the mixture from the liquid phase to the gas phase. At that time, regardless of the liquid phase composition, the ammonia concentration in the evaporative gas becomes higher than the ammonia concentration in the liquid phase, so the ammonia concentration in the liquid phase decreases as the liquid phase discharge progresses. is.
On the other hand, if the manufacturing apparatus 10 of FIG. 4 (equipped with a fuel improver liquid feed pump 20d not shown) is used, the mixture for mixing can be used in the same manner as in the case where the fuel improver is liquefied petroleum gas or its component hydrocarbon species, as described above. By pressurizing the introduction of nitrogen into the gas phase in the closed container 16, it is possible to rapidly discharge the mixture as an ammonia-mixed fuel while suppressing the composition change in the discharged liquid phase. 5 (the liquid - phase discharge line 222 and the equipment attached thereto are omitted), the discharge flow rate of ammonia and the combustion improver in the discharged liquid phase is equal to that of each, By continuously and quantitatively introducing the raw material liquefied ammonia and the combustion improver (the above-described high pump is selected as the pump for supplying these liquids), the composition change in the discharged liquid phase is caused. can be discharged continuously as an ammonia-mixed fuel.
As described above, even when the combustion improver is raw material alcohol, FIG. 2 or FIG. ( The liquid phase discharge line 222 and the equipment attached thereto, and the system for introducing the surfactant are omitted.) By using the manufacturing apparatus 10, the ammonia mixed fuel can be manufactured with each effect. At that time, in addition to the constant introduction of liquefied ammonia and the combustion improver, temperature control during stirring and mixing, a series of controls including those described above are carried out, as described above, where the combustion improver is either liquefied petroleum gas or its component hydrocarbon species. is performed based on the control signal of the control device 32, basically in the same manner as in the case of .
 一実施形態のアンモニア混合燃料における助燃剤は、上記(a)~(c)のいずれか一つであってもよいが、上記(a)~(c)のうちの複数の組み合わせであってもよい。例えば、上記(a)として液化石油ガス、および上記(b)として液化石油ガスの成分である炭化水素種の、少なくともいずれか一つと、(c)の原料用アルコールとを、助燃剤として併用することもできる。図7は、この別の一実施形態の製造装置の構成の一例を示す図であり、図7に示す例は、液化石油ガスあるいは液化石油ガスの成分である炭化水素種と、原料用アルコールとを、共に助燃剤として用いる場合の装置形態を示している。図7に示す構成部分の符号も、図2に示す構成部分と同じ構成及び作用を有する場合、同じ符号を付してその説明を省略している。
 製造装置10は、助燃剤貯蔵用密閉容器14,14を備える。助燃剤貯蔵用密閉容器14は、液化石油ガスあるいは液化石油ガスの成分炭化水素種を貯蔵し、助燃剤貯蔵用密閉容器14は、原料用アルコールを貯蔵する。助燃剤貯蔵用密閉容器14,14から混合用密閉容器16に延びる助燃剤導入ライン20,20が設けられており、助燃剤導入ライン20,20には、流量計20a,20a及び調整弁20b,20c,20b,20cが設けられる。制御装置32は、流量計20a,20aによる計測結果を受信し、調整弁20b,20c,20b,20cの開度を制御する制御信号を生成し、生成した制御信号を調整弁20b,20c,20b,20cに送る。窒素ガス導入機構30は、製造装置10の立ち上げ時、およびアンモニア混合燃料の製造の終了後等に、防爆的な観点から、必要に応じて、各導入ライン及び混合用密閉容器16内に存在するガスを置換するために設けられ、窒素ガスを助燃剤導入ライン20,20に所定量を導入するための窒素ガス導入弁30aが設けられている。窒素ガス導入弁30aの開度は、制御装置32により制御される。
The combustion improver in the ammonia mixed fuel of one embodiment may be any one of the above (a) to (c), but may be a combination of a plurality of the above (a) to (c). good. For example, at least one of the liquefied petroleum gas as the above (a) and the hydrocarbon species that is a component of the liquefied petroleum gas as the above (b), and the raw material alcohol of (c) are used in combination as a combustion improver. can also FIG. 7 is a diagram showing an example of the configuration of the production apparatus of this another embodiment, and the example shown in FIG. are both used as a combustion improver. 7 have the same configuration and action as those of the components shown in FIG. 2, the same reference numerals are given and the description thereof is omitted.
The manufacturing apparatus 10 includes combustion improver storage sealed containers 14 1 and 14 2 . The combustion improver storage closed container 14-1 stores the liquefied petroleum gas or the component hydrocarbon species of the liquefied petroleum gas, and the combustion improver storage closed container 14-2 stores raw material alcohol. Combustion improver introduction lines 20 1 and 20 2 extending from the combustion improver storage closed containers 14 1 and 14 2 to the mixing closed container 16 are provided. , 20a 2 and regulating valves 20b 1 , 20c 1 , 20b 2 , 20c 2 are provided. The control device 32 receives measurement results from the flowmeters 20a 1 and 20a 2 , generates control signals for controlling the opening degrees of the adjustment valves 20b 1 , 20c 1 , 20b 2 and 20c 2 , and adjusts the generated control signals. It is sent to valves 20b 1 , 20c 1 , 20b 2 and 20c 2 . Nitrogen gas introduction mechanism 30 exists in each introduction line and mixing closed container 16 as necessary from the viewpoint of explosion protection at the time of starting up the manufacturing apparatus 10 and after the completion of manufacturing the ammonia mixed fuel. A nitrogen gas introduction valve 30a is provided for introducing a predetermined amount of nitrogen gas into the combustion improver introduction lines 20.sub.1 and 20.sub.2 . The opening degree of the nitrogen gas introduction valve 30a is controlled by the controller 32. As shown in FIG.
 なお、原料用アルコールの飽和蒸気圧は低く、常温(25℃)付近ではゼロに近い。このため、助燃剤貯蔵用密閉容器14内の飽和蒸気圧では吐出されず、混合用密閉容器16内に自発的には導入されないので、助燃剤導入ライン20には、助燃剤貯蔵用密閉容器14から混合用密閉容器16に供給するための送液ポンプ20dが設けられる。常温(25℃)付近、大気圧近傍で液体である原料用アルコールの導入時には、特に温度調節を行う必要はないが、その後に行われる液化アンモニア、液化石油ガス、およびその成分炭化水素種の導入の際には、これらに特に高揚程の送液ポンプを用いない場合は、混合用密閉容器16内の気相内圧が、原料の液化アンモニア、液化石油ガス、およびその成分炭化水素種のそれぞれの貯蔵用密閉容器内における、最も低い飽和蒸気圧よりも、さらに常に低くなるように、混合用密閉容器16内の温度が保持される必要がある。多くの場合、実質的に、外部環境よりも低い温度への冷却になる。アンモニア、液化石油ガスおよび液化石油ガスの成分炭化水素種、および原料用アルコールの、混合用密閉容器16内への定量導入および定量導入時の温度調節は、制御装置32が生成する制御信号に基づき、前述した定量導入機構および温度調節機構によって行われる。
 また、上記(a)~(c)のうちの複数の組み合わせを助燃剤として用いる別の実施形態として、図5に示された構成を一部変更し、上記の液化石油ガスあるいは液化石油ガスの成分炭化水素種に替えて、(a)としてナフサ、ガソリン、ケロシンおよび軽油、また(b)としてこれらの成分炭化水素種のいずれか、の少なくともいずれか一つを、原料用アルコールと共に助燃剤として用い、アンモニア混合燃料を製造することもできる。この場合、例えば、ナフサ、ガソリン、ケロシン、軽油、およびこれらの成分炭化水素種は、助燃剤貯蔵用密閉容器14に貯蔵され、助燃剤導入ライン20を通して混合用密閉容器16に導入される。ナフサ、ガソリン、ケロシン、軽油、およびこれらの成分炭化水素種の飽和蒸気圧は低く、常温(25℃)付近では原料用アルコールと同様にほぼゼロであるため、混合用密閉容器16内に自発的には導入されないので、その助燃剤導入ライン20にも送液ポンプ20dが設けられる。常温(25℃)付近、大気圧近傍で液体である、ナフサ、ガソリン、ケロシン、軽油、およびこれらの成分炭化水素種、および原料用アルコールの導入時には、特に温度調節を行う必要はないが、その後に行われる液化アンモニアの導入の際には、混合用密閉容器16内の気相内圧が、原料の液化アンモニアの貯蔵用密閉容器内における飽和蒸気圧よりも常に低くなるように、混合用密閉容器16内の温度が保持される必要がある。この場合も、その定量導入および温度調節は、制御装置32の制御信号に基づいて行われる。
Note that the saturated vapor pressure of raw material alcohol is low, and is close to zero at room temperature (25° C.). Therefore, the combustion improver is not discharged at the saturated vapor pressure in the closed combustion improver storage container 142 and is not voluntarily introduced into the mixed combustion improver closed container 16. A liquid feed pump 20d2 is provided for supplying from the container 142 to the closed container 16 for mixing. When introducing the raw material alcohol, which is liquid near normal temperature (25°C) and atmospheric pressure, there is no particular need to adjust the temperature, but the subsequent introduction of liquefied ammonia, liquefied petroleum gas, and their component hydrocarbon species. In this case, if a high-head liquid-sending pump is not particularly used for these, the internal pressure of the gas phase in the closed vessel 16 for mixing is set to The temperature in the mixing enclosure 16 should be kept always below the lowest saturated vapor pressure in the storage enclosure. In many cases, this results in substantial cooling to a lower temperature than the external environment. Ammonia, liquefied petroleum gas, component hydrocarbon species of the liquefied petroleum gas, and raw material alcohol are quantitatively introduced into the closed container for mixing 16, and the temperature adjustment at the time of quantitative introduction is based on the control signal generated by the controller 32. , is performed by the aforementioned metering introduction mechanism and temperature control mechanism.
Further, as another embodiment using a plurality of combinations of the above (a) to (c) as a combustion improver, the configuration shown in FIG. In place of the component hydrocarbon species, at least one of naphtha, gasoline, kerosene and light oil as (a), and any of these component hydrocarbon species as (b), together with the raw material alcohol, as a combustion improver. It can also be used to produce an ammonia mixed fuel. In this case, for example, naphtha, gasoline, kerosene, light oil, and component hydrocarbon species thereof are stored in the combustion improver storage closed container 14-1 and introduced into the mixing closed container 16 through the combustion improver introduction line 20-1. . The saturated vapor pressure of naphtha, gasoline, kerosene, light oil, and their component hydrocarbon species is low, and is almost zero at around room temperature (25° C.) like the raw material alcohol. , the combustion improver introduction line 20-1 is also provided with a liquid feed pump 20d -1 . When introducing naphtha, gasoline, kerosene, light oil, component hydrocarbon species thereof, and raw material alcohol, which are liquids near normal temperature (25° C.) and atmospheric pressure, there is no particular need to perform temperature control. When the liquefied ammonia is introduced into the closed container for mixing, the gas phase internal pressure in the closed container for mixing 16 is always lower than the saturated vapor pressure in the closed container for storage of the raw material liquefied ammonia. The temperature within 16 must be maintained. Also in this case, the quantitative introduction and temperature adjustment are performed based on the control signal of the controller 32 .
 上述した、非極性の液化石油ガスや、液化アンモニアとほとんど相溶しないナフサ、ガソリン、ケロシン、軽油、およびこれらの成分炭化水素種(以下では、これらを「原料用炭化水素」と総称する)と、液化アンモニア、および原料用アルコールとを組み合わせて助燃剤として用いる場合には、極性のある液化アンモニアおよび非極性の原料用炭化水素の両方に対し親和性を有する原料用アルコールの効果によって、界面活性剤を添加しなくても、相溶し得る部分が大幅に増加する。しかし、混合比によっては、エマルション化により均一化させるために、界面活性剤が必要となる場合がある。例えば、原料用アルコールがメタノールである場合、メタノールの添加量が全体のおよそ10質量%以下で、かつ、液化アンモニアがおよそ10~70質量%(残りは原料用炭化水素)のときには、非極性の原料用炭化水素が溶解しきらず、液相において、それを主体とする相が相分離する場合がある。この相分離部分をエマルション化させ、均一分散させるためには、界面活性剤が必要となる。
 この時の界面活性剤としても、前述した混合系界面活性剤を好適に用いることができる。該混合系界面活性剤を添加して撹拌混合した場合、アンモニア混合燃料は、少なくとも部分的にエマルション状態となる。また、アンモニアと助燃剤との混合組成にもよるが、十分な量の界面活性剤を添加して撹拌混合すれば、その全体をエマルション状態にすることも可能である。その際、加熱により原料用炭化水素の溶解性、分散性が一般に向上するので、必要に応じ、混合用密閉容器16内の混合物の温度が、混合分散に好適な所定の温度以上になるよう、制御装置32の制御信号に基づき、前述した温度調節機構によって調節されながら撹拌されることが好ましい。さらには、前記混合系界面活性剤としては、その温度域において、乳化力(エマルション化の能力)を十分発揮するのに適した鎖長のアルキル基ないしアルケニル基を有するものが選ばれることが好ましい。なお、上記の混合系界面活性剤が、固体もしくはそれに近い状態となり、そのままでは導入しにくい場合は、アンモニア混合燃料の原料である、液化アンモニア、原料用炭化水素、または原料用アルコールのいずれかを界面活性剤に事前に少量添加し、混合、分散することにより、界面活性剤の導入系によって導入が可能な状態(例えば、スラリーないし泥状)にすることが好ましい。一方、液化アンモニアと原料用アルコールの合計量が十分に多く、非極性の原料用炭化水素の量比が小さい場合は、界面活性剤を加えなくても、ほぼ一様に溶解した溶液状態にできる場合もある。このような場合は、製造装置10において、界面活性剤の導入系(界面活性剤貯蔵容器26、界面活性剤導入ライン28、および送液ポンプ28d)を省略することができる。
The above-mentioned non-polar liquefied petroleum gas, naphtha, gasoline, kerosene, light oil, and their component hydrocarbon species (hereinafter collectively referred to as "raw hydrocarbons") that are almost incompatible with liquefied ammonia. , liquefied ammonia, and raw material alcohol are used in combination as a combustion improver, the effect of the raw material alcohol, which has an affinity for both the polar liquefied ammonia and the non-polar raw material hydrocarbon, causes surface activity. Even without the addition of the agent, the compatible portion is greatly increased. However, depending on the mixing ratio, a surfactant may be required for homogenization by emulsification. For example, when the raw material alcohol is methanol, the amount of methanol added is about 10% by mass or less of the total, and the amount of liquefied ammonia is about 10 to 70% by mass (the rest is the raw material hydrocarbon). In some cases, the raw material hydrocarbon is not completely dissolved, and a phase consisting mainly of it is separated in the liquid phase. A surfactant is required to emulsify and uniformly disperse the phase-separated portion.
As the surfactant at this time, the above-described mixed surfactant can be suitably used. When the mixed surfactant is added and stirred and mixed, the ammonia-mixed fuel is at least partially in an emulsion state. Further, depending on the composition of the mixture of ammonia and combustion improver, it is possible to make the whole into an emulsion state by adding a sufficient amount of surfactant and stirring and mixing. At that time, heating generally improves the solubility and dispersibility of the raw material hydrocarbons. Based on the control signal of the control device 32, it is preferable to agitate while being controlled by the temperature control mechanism described above. Furthermore, as the mixed surfactant, it is preferable to select one having an alkyl group or alkenyl group with a chain length suitable for sufficiently exhibiting emulsifying power (emulsification ability) in the temperature range. . In addition, when the above mixed surfactant becomes a solid or a state close to it and is difficult to introduce as it is, any of the raw materials of the ammonia mixed fuel, liquefied ammonia, raw hydrocarbon, or raw alcohol, is used. It is preferable to add a small amount in advance to the surfactant, mix and disperse the surfactant to obtain a state (for example, slurry or mud) that can be introduced by the surfactant introduction system. On the other hand, when the total amount of liquefied ammonia and raw material alcohol is sufficiently large and the amount ratio of the non-polar raw material hydrocarbon is small, a substantially uniformly dissolved solution state can be obtained without adding a surfactant. In some cases. In such a case, the surfactant introduction system (surfactant storage container 26, surfactant introduction line 28, and liquid feed pump 28d) can be omitted from the manufacturing apparatus 10. FIG.
 また、上記(a)~(c)のうちの複数の組み合わせを助燃剤として用いる、さらに別の実施形態として、液化石油ガス、および液化石油ガスの成分炭化水素種の少なくともいずれか一つと、ナフサ、ガソリン、ケロシン、軽油、およびこれらの成分炭化水素種の少なくともいずれか一つとを助燃剤として併せて用い、図7と同様の製造装置によって、アンモニア混合燃料を製造することもできる。
 この場合、図7において、混合用密閉容器16内への導入に際して送液ポンプを必要としない、液化石油ガスおよびその成分炭化水素種は助燃剤貯蔵用密閉容器14に貯蔵され、送液ポンプ(図5中の20d)が必要な、ナフサ、ガソリン、ケロシン、軽油、およびこれらの成分炭化水素種は助燃剤貯蔵用密閉容器14に貯蔵され、導入ライン20および20を通して混合用密閉容器16内にそれぞれ導入される。
 これら助燃剤、即ち液化石油ガス、ナフサ、ガソリン、ケロシン、軽油、およびこれらの成分炭化水素種の内、液化石油ガスの成分炭化水素種は、常温(25℃)付近の気液平衡状態での液相において、液化アンモニアと部分的に相溶するが、常温(25℃)付近、大気圧近傍で液体の、ナフサ、ガソリン、ケロシン、軽油の成分炭化水素種は、ほとんど相溶しない。このため、均一かつ安定に分散されたアンモニア混合燃料を製造するには、界面活性剤の添加によるエマルション化が必要である。
 この時の界面活性剤としても、前述した混合系界面活性剤を好適に用いることができる。該混合系界面活性剤を添加し、混合分散させた場合、アンモニア混合燃料は、少なくとも部分的にエマルション状態となる。また、アンモニアと助燃剤との混合組成にもよるが、十分な量の界面活性剤を添加すれば、その全体をエマルション状態にすることも可能である。その際、加熱により原料用炭化水素の溶解性が一般に向上するので、必要に応じ、混合用密閉容器16内の混合物の温度が混合分散に好適な所定の温度以上になるよう、制御装置32の制御信号に基づき、前述した温度調節機構によって調節されながら撹拌されることが好ましい。さらには、前記混合系界面活性剤としては、その温度域において、乳化力を十分発揮するのに適した鎖長のアルキル基ないしアルケニル基を有するものが選ばれることが好ましい。なお、上記の混合系界面活性剤が、固体もしくはそれに近い状態となり、そのままでは導入しにくい場合は、アンモニア混合燃料の原料である、液化アンモニアまたは原料用炭化水素を界面活性剤に事前に少量添加し、混合、分散することにより、界面活性剤の導入系によって導入が可能な状態(例えば、スラリーないし泥状)にすることが好ましい。
Further, as still another embodiment in which a plurality of combinations of the above (a) to (c) are used as a combustion improver, at least one of liquefied petroleum gas and component hydrocarbon species of liquefied petroleum gas, and naphtha , gasoline, kerosene, light oil, and at least one of these component hydrocarbon species can be used together as a combustion improver to produce an ammonia mixed fuel by a production apparatus similar to that of FIG.
In this case, in FIG. 7, the liquefied petroleum gas and its component hydrocarbon species, which do not require a liquid feed pump when introduced into the mixing closed vessel 16 , are stored in the combustion improver storage closed vessel 141, and the liquid feed pump is used. (20d 2 in FIG. 5), naphtha, gasoline, kerosene, light oil, and their constituent hydrocarbon species are stored in a combustion improver storage closed container 14 2 and mixed through introduction lines 20 1 and 20 2 . Each is introduced into the sealed container 16 .
Among these combustion improvers, ie, liquefied petroleum gas, naphtha, gasoline, kerosene, light oil, and component hydrocarbon species thereof, component hydrocarbon species of liquefied petroleum gas are In the liquid phase, it is partially compatible with liquefied ammonia, but is almost incompatible with component hydrocarbon species of naphtha, gasoline, kerosene, and light oil that are liquid near normal temperature (25°C) and atmospheric pressure. Therefore, in order to produce an ammonia-mixed fuel that is uniformly and stably dispersed, emulsification by addition of a surfactant is required.
As the surfactant at this time, the above-described mixed surfactant can be suitably used. When the mixed surfactant is added and mixed and dispersed, the ammonia mixed fuel becomes at least partially in an emulsion state. Also, depending on the composition of the mixture of ammonia and combustion improver, it is possible to make the whole mixture into an emulsion state by adding a sufficient amount of surfactant. At that time, since the solubility of the raw material hydrocarbon is generally improved by heating, if necessary, the control device 32 is operated so that the temperature of the mixture in the closed mixing container 16 is equal to or higher than a predetermined temperature suitable for mixing and dispersing. It is preferable to stir while being controlled by the temperature control mechanism described above based on the control signal. Furthermore, as the mixed surfactant, it is preferable to select one having an alkyl group or alkenyl group with a chain length suitable for sufficiently exhibiting emulsifying power in the temperature range. In addition, if the above mixed surfactant is in a solid state or in a state close to it and is difficult to introduce as it is, a small amount of liquefied ammonia or a raw material hydrocarbon, which is the raw material of the ammonia mixed fuel, is added to the surfactant in advance. Then, by mixing and dispersing, it is preferable to make a state (for example, slurry or mud) that can be introduced by a surfactant introduction system.
 以上で述べたような、助燃剤が、上記(a)~(c)のうちの複数の組み合わせである、それぞれの場合のアンモニア混合燃料の製造に際しては、混合用密閉容器16内に各原料成分を導入する際に、原料の貯蔵用密閉容器内の飽和蒸気圧による吐出に拠る場合や、送液ポンプが特に高揚程のものでない場合、混合用密閉容器16への好ましい導入順の目安を総括すると、アンモニアおよび助燃剤を含む、混合用密閉容器内への全ての導入対象について、混合用密閉容器内の温度における飽和蒸気圧の、より低い導入対象から順番に導入することが有利である。具体的には、以下のようになる。即ち、まず、常温(25℃)付近で飽和蒸気圧が低い液体である、原料用アルコール、ナフサ、ガソリン、ケロシン、軽油およびこれらの成分炭化水素種、および界面活性剤が、常温(25℃)付近で飽和蒸気圧が高いアンモニア、液化石油ガスおよびその成分炭化水素種よりも先に、送液ポンプを用いて混合用密閉容器16内に導入される。これらの所定量の導入の前後で、調整弁20b、20c、28b、28cが開閉され、導入中は、それぞれの導入量が所定量となるように制御される。次に、温度調節機構によって混合用密閉容器16内が十分に冷却された後、液化ガスである液化アンモニア、液化石油ガスおよびその成分炭化水素種の内、前記設定温度での飽和蒸気圧が低いものから順に、それ自体の飽和蒸気圧による吐出によって、混合用密閉容器16内に導入される。その際、初めに導入される、飽和蒸気圧が最も低い液化ガスの気化ガスによって、混合用密閉容器16内の気相が予めガス置換される。これらの所定量の導入の前後で、調整弁18b、18c、20b、20cが開閉され、導入中は、それぞれの導入量が所定量となるように制御される。また、界面活性剤が、それ自体では導入が困難な、固体もしくはそれに近い状態である場合には、原料の液化アンモニア、液化石油ガス、ナフサ、ガソリン、ケロシン、軽油、およびこれらの成分炭化水素種のいずれかの添加によって、スラリー化ないし泥状化された状態で混合用密閉容器16内に導入されることが好ましく、その場合は、それぞれ、その流動化媒体と共通の原料系である液化アンモニア、液化石油ガス、ナフサ、ガソリン、ケロシン、軽油、およびこれらの成分炭化水素種のいずれかの導入と連動して、定量導入される。以上の各原料の定量導入が完了し、全ての調整弁が閉じられた後に、混合用密閉容器16の内部の液相が、好ましい温度範囲に保持されるよう、温度調節機構によって温度調節されながら、撹拌機24によって撹拌され、アンモニア混合燃料が製造される。
 助燃剤が、上記(a)~(c)のうちの複数の組み合わせである、上記のいずれの場合も、定量導入機構および温度調節機構は、図2の説明において記したものと同様に構成され、制御装置32の制御信号に基づいて、定量導入および温度調節が行われる。その後、さらに、前記混合物の液相組成に応じて、適宜、適切な温度範囲に保持されるように、制御装置32の生成する制御信号に基づいて温度制御が行われることにより、その全体において、安定かつ均一に助燃剤が分散されたアンモニア混合燃料を製造することができる。
As described above, when the ammonia mixed fuel is produced in each case where the combustion improver is a combination of a plurality of the above (a) to (c), each raw material component is placed in the closed container 16 for mixing. When introducing is based on the discharge due to the saturated vapor pressure in the closed container for storing the raw materials, or when the liquid transfer pump is not particularly high-lifted, a guideline for the preferred order of introduction to the closed container for mixing 16 is summarized. Then, it is advantageous to introduce all of the introduction targets into the closed mixing vessel, including the ammonia and the combustion improver, in order from the introduction target with the lower saturated vapor pressure at the temperature in the closed mixing vessel. Specifically, it is as follows. That is, first, raw material alcohol, naphtha, gasoline, kerosene, light oil and component hydrocarbon species thereof, which are liquids having a low saturated vapor pressure at around room temperature (25 ° C.), and surfactants are heated at room temperature (25 ° C.). Ammonia, liquefied petroleum gas, and their component hydrocarbon species, which have high saturated vapor pressures in the vicinity, are introduced into the closed mixing container 16 using a liquid feed pump prior to them. Before and after the introduction of these predetermined amounts, the regulating valves 20b 2 , 20c 2 , 28b, and 28c are opened and closed, and during the introduction, each introduction amount is controlled to be the predetermined amount. Next, after the inside of the closed container 16 for mixing is sufficiently cooled by the temperature control mechanism, among liquefied gases such as liquefied ammonia, liquefied petroleum gas and their component hydrocarbon species, the saturated vapor pressure at the set temperature is low. It is introduced into the closed container for mixing 16 in order from the first by discharging due to its own saturated vapor pressure. At this time, the gas phase in the closed container 16 for mixing is preliminarily replaced with the vaporized gas of the liquefied gas having the lowest saturated vapor pressure, which is introduced first. Before and after the introduction of these predetermined amounts, the regulating valves 18b, 18c, 20b 1 and 20c 1 are opened and closed, and during the introduction, each introduction amount is controlled to be the predetermined amount. In addition, when the surfactant is in a solid state or in a state close to it, which is difficult to introduce by itself, liquefied ammonia, liquefied petroleum gas, naphtha, gasoline, kerosene, light oil, and component hydrocarbon species thereof may be used. is preferably introduced into the closed mixing vessel 16 in a slurried or sludged state by the addition of either of , liquefied petroleum gas, naphtha, gasoline, kerosene, light oil, and any of these component hydrocarbon species. After the quantitative introduction of each raw material is completed and all the adjustment valves are closed, the temperature of the liquid phase inside the closed container for mixing 16 is controlled by the temperature control mechanism so that it is kept within a preferable temperature range. , is agitated by an agitator 24 to produce an ammonia mixed fuel.
In any of the above cases where the combustion improver is a combination of a plurality of the above (a) to (c), the quantitative introduction mechanism and the temperature control mechanism are configured in the same manner as described in the explanation of FIG. , based on the control signal of the control device 32, metered introduction and temperature adjustment are performed. After that, the temperature is controlled based on the control signal generated by the control device 32 so that the temperature is maintained in an appropriate temperature range according to the liquid phase composition of the mixture. An ammonia-mixed fuel in which the combustion improver is stably and uniformly dispersed can be produced.
 また、以上で述べたような、助燃剤が、上記(a)~(c)のうちの複数の組み合わせである、それぞれの場合のアンモニア混合燃料の製造に際しても、図7の製造装置を用いる場合には、エマルション化された混合物の液相部分を液相排出ライン22から排出させる際に、前述した排出液相の組成変化が進行する。即ち、液相の排出に伴い、混合用密閉容器16内の混合物の気液界面が下降し、混合物の液相から気相への蒸発(沸騰)が起こる。その際、各種助燃剤が共存するため上記蒸発ガス組成は複雑になるが(蒸発ガスの含有成分は主に、アンモニアと、液化石油ガスまたはその成分炭化水素種および/または原料用アルコールとの混合ガスになる)、蒸発ガスの組成と液相組成とが異なるのは、前述した各種助燃剤使用の場合と同様であり、液相におけるこれらの組成液相排出の進行に伴って、液相組成が変化する。
 これに対し、図4の製造装置10の窒素ガス導入ライン30bを、図7の製造装置10の構成に合わせて設けた製造装置を用いれば、混合用密閉容器16内の気相への窒素の加圧導入により、排出液相中の上記組成変化を抑制しながら、アンモニア混合燃料として迅速に排出させることができる。また、図5の製造装置10の原料の連続定量導入機構を、図7の製造装置10の構成に併せて設けた製造装置を用いれば、排出される液相中のアンモニア、各種助燃剤、および界面活性剤のそれぞれの排出流量と等しい流量で、原料の液化アンモニア、各種助燃剤、および界面活性剤を連続的に定量導入することにより(これらの送液用のポンプには、前述した高揚程のものが選ばれる)、排出液相中の上記組成変化を生じさせることなく、アンモニア混合燃料として連続的に排出させることができる。
 以上のように、助燃剤が、上記(a)~(c)のうちの複数の組み合わせである、それぞれの場合のアンモニア混合燃料の製造においても、図7の製造装置10、および、図7の製造装置10に図4ないし図5の製造装置10の機能を加えた製造装置によって、それぞれの効用を伴って、アンモニア混合燃料を製造することができる。その際、液化アンモニア、助燃剤および界面活性剤の定量導入や、撹拌混合時の温度調節の他、上述したものを含む一連の制御も、制御装置32の制御信号に基づいて行われる。
In addition, as described above, when the combustion improver is a combination of a plurality of the above (a) to (c), when manufacturing the ammonia mixed fuel in each case, the manufacturing apparatus of FIG. 7 is used. , when the liquid phase portion of the emulsified mixture is discharged from the liquid phase discharge line 22, the above-described change in the composition of the discharged liquid phase progresses. That is, as the liquid phase is discharged, the gas-liquid interface of the mixture in the closed mixing container 16 descends, causing evaporation (boiling) of the mixture from the liquid phase to the gas phase. At that time, the composition of the evaporative gas is complicated because various combustion improvers coexist (the main components of the evaporative gas are ammonia, liquefied petroleum gas or its component hydrocarbon species, and / or a mixture of alcohol for raw materials. gas), and the composition of the evaporative gas differs from that of the liquid phase, as in the case of using various combustion improvers described above. changes.
On the other hand, if a manufacturing apparatus in which the nitrogen gas introduction line 30b of the manufacturing apparatus 10 of FIG. 4 is provided in accordance with the configuration of the manufacturing apparatus 10 of FIG. By pressurized introduction, it is possible to rapidly discharge as an ammonia-mixed fuel while suppressing the composition change in the discharged liquid phase. Further, if a manufacturing apparatus in which the continuous quantitative introduction mechanism of the raw material of the manufacturing apparatus 10 of FIG. 5 is provided in accordance with the configuration of the manufacturing apparatus 10 of FIG. By continuously and quantitatively introducing raw material liquefied ammonia, various combustion improvers, and surfactants at a flow rate equal to the discharge flow rate of each of the surfactants is selected), it can be continuously discharged as an ammonia mixed fuel without causing the above compositional change in the discharged liquid phase.
As described above, even in the production of the ammonia-mixed fuel in each case where the combustion improver is a plurality of combinations of the above (a) to (c), the production apparatus 10 of FIG. By adding the functions of the manufacturing apparatus 10 of FIGS. 4 and 5 to the manufacturing apparatus 10, the ammonia mixed fuel can be manufactured with the respective effects. At that time, a series of controls including those described above are performed based on the control signal of the control device 32, in addition to the quantitative introduction of the liquefied ammonia, the combustion improver and the surfactant, the temperature control during stirring and mixing.
 以上において、製造装置10のアンモニア導入ライン18、液相排出ライン22、および混合用密閉容器16を構成し、アンモニアを含む流体が接する部分(配管、容器、調整弁、撹拌機、冷却器などの機材、定量導入機構)は、アンモニアに対して耐久性がある材質が用いられる。例えば、銅および白銅や真鍮等の銅を含有する合金、アルミニウムおよびジュラルミン等のアルミニウムを含有する合金、亜鉛およびトタン等の亜鉛を含有する合金は、アンモニアに対する耐食性の点で好ましくない。また、鉄あるいは鋼も、特に炭素含有量が多い場合は応力腐食割れを生じやすいため、採用に際しては、炭素含有量が少なく、アンモニアに対する耐久性が確認された素材が選定される必要がある。使用可能な材質として、例えば、前記のアンモニアに対する耐久性が認められた鉄あるいは鋼材の他、オーステナイト系ステンレス等(ただし、ニッケル含有量の比較的高いステンレス等は、アンモニアによって応力腐食割れを生じやすいとされ、注意を要する)、セラミックスのガラス、石英等、またプラスチック、ゴムでは、ポリエチレン、ポリプロピレン、ポリテトラフルオロエチレン、クロロプレンゴム、及びパーフルオロエラストマー等が挙げられる。これらの材質は、60℃程度以下における耐食性で優れており、好適に用いることができる。なお、混合用密閉容器16内での混合撹拌の際、液体状態のアンモニア(液化アンモニア)、あるいは液化した原料用炭化水素を用いる場合、キャビテーションが起こり易い場合があるため、撹拌機24については、キャビテーションによるエロージョンに対しても耐久性を有する材質を用いることが好ましい。 In the above, the ammonia introduction line 18, the liquid phase discharge line 22, and the closed container 16 for mixing of the manufacturing apparatus 10 are configured, and the parts that are in contact with the fluid containing ammonia (pipes, containers, regulating valves, stirrers, coolers, etc. Equipment, fixed quantity introduction mechanism) are made of materials that are durable against ammonia. For example, copper and copper-containing alloys such as cupronickel and brass, aluminum and aluminum-containing alloys such as duralumin, and zinc and zinc-containing alloys such as tin are not preferable in terms of corrosion resistance to ammonia. Also, iron or steel, especially if it has a high carbon content, is prone to stress corrosion cracking. Therefore, it is necessary to select a material that has a low carbon content and is confirmed to be durable against ammonia. Materials that can be used include, for example, iron or steel materials that are recognized to be durable against ammonia, as well as austenitic stainless steel (however, stainless steel with a relatively high nickel content is susceptible to stress corrosion cracking due to ammonia). and caution is required), ceramics such as glass and quartz, and plastics and rubbers such as polyethylene, polypropylene, polytetrafluoroethylene, chloroprene rubber, and perfluoroelastomer. These materials are excellent in corrosion resistance at about 60° C. or less and can be suitably used. When mixing and stirring in the closed mixing vessel 16, if liquid ammonia (liquefied ammonia) or liquefied raw material hydrocarbons are used, cavitation may easily occur. It is preferable to use a material that is resistant to erosion caused by cavitation.
 一実施形態の製造装置10によれば、混合用密閉容器16には、混合物の混合状態を評価するように構成された混合状態評価装置(図2には、その一例として後述のサイトグラス29が図示されている。それ以外は図示されていない)が設けられていることが好ましい。この場合、混合状態評価装置の評価結果に応じて、制御装置32は、撹拌機24による撹拌混合の強さおよび撹拌混合時間を調整することが好ましい。この場合、制御装置32は、撹拌混合の強さおよび撹拌混合時間を調整する撹拌調整装置である。
 混合状態評価装置としては、例えば、内部混合物が二相に分離していないか、エマルション状態になっているか等を観察し得る、少なくとも上層、下層部に設けた耐圧サイトグラス29(覗き窓)、あるいはファイバ-スコープと、耐圧サイトグラスあるいはファイバスコープを介して液体の状態を表示するモニタとを有する装置が挙げられる。また、混合状態評価装置としては、混合用密閉容器16の内部の液体の少なくとも上層、下層の濁度、誘電率、屈折率等の物性の差異を評価する計測器を用いることもできる。さらには、混合状態評価装置は、上記装置構成に加えて、混合のミクロ分散状態を観察し得る顕微鏡、人工知能(AI)技術による、これらの自動認識評価装置を併せて備えてもよい。ただし、気液平衡データが既知であり、相溶する組成及び温度条件にある原料系を用いる場合、例えば、原料用炭化水素を加えずに、アンモニアと炭素数3以下の原料用アルコールを混合する場合等、ほぼ均一に相溶ないしエマルション化することが事前に判明している場合は、混合状態評価装置はなくてもよい。
According to the manufacturing apparatus 10 of one embodiment, the mixing sealed container 16 includes a mixed state evaluation device configured to evaluate the mixed state of the mixture (in FIG. 2, as an example thereof, a sight glass 29 described later is provided. (not shown otherwise) is preferably provided. In this case, it is preferable that the controller 32 adjusts the strength of stirring and mixing by the stirrer 24 and the stirring and mixing time according to the evaluation result of the mixing state evaluation device. In this case, the controller 32 is an agitation regulator that regulates the agitation mixing intensity and the agitation mixing time.
As a mixed state evaluation device, for example, a pressure-resistant sight glass 29 (viewing window) provided at least in the upper and lower layers so that it is possible to observe whether the internal mixture is separated into two phases or whether it is in an emulsion state, Alternatively, a device having a fiber scope and a monitor that displays the state of the liquid through the pressure-resistant sight glass or the fiber scope may be used. As the mixing state evaluation device, a measuring instrument for evaluating differences in physical properties such as turbidity, dielectric constant, and refractive index between at least the upper and lower layers of the liquid inside the closed container 16 for mixing can also be used. Furthermore, in addition to the above device configuration, the mixed state evaluation device may also include a microscope capable of observing the micro-dispersed state of the mixture, and an automatic recognition evaluation device based on artificial intelligence (AI) technology. However, if the gas-liquid equilibrium data is known and a raw material system with a compatible composition and temperature condition is used, for example, ammonia and a raw material alcohol having 3 or less carbon atoms are mixed without adding a raw material hydrocarbon. If it is known in advance that the materials will be compatible or emulsified almost uniformly, for example, the mixed state evaluation device may not be necessary.
 また、液化アンモニアを混合用密閉容器16内に導入する際に、図7に示すように、アンモニア導入ライン18内を通る液体状態のアンモニアを、混合用密閉容器16の内部温度と同じ温度に温度調節するように構成された温度調節装置18eが、アンモニア導入ライン18に設けられる、ことが好ましい。
 また、液化石油ガス及びその成分炭化水素種である助燃剤を、助燃剤導入ライン20を通して混合用密閉容器16内に導入する際に、図7に示すように、助燃剤導入ライン20内を通る助燃剤を、混合用密閉容器16の内部温度と同じ温度に温度調節するように構成された温度調節装置20eが、助燃剤導入ライン20に設けられる、ことが好ましい。これらの温度調節装置は、例えば、熱交換器またはペルティエ素子等によって構成される。これらの液化ガス原料の導入の際には、混合用密閉容器16の内圧は、前述した温度調節機構により、液化アンモニアおよび液化石油ガスないしその成分炭化水素種の貯蔵用密閉容器12および14内の飽和蒸気圧よりも低くなるように温度調節されており、多くの場合、これは、実質的に外部環境よりも低い温度への冷却になる。従って、上記の温度調節装置によるそれぞれの導入ラインの温度調節も、多くの場合、外部環境より低い温度への冷却になる。
 これにより、混合用密閉容器16内にこれらの液化ガス原料が導入される際、内部温度を上昇させることがないので、混合用密閉容器16内で、これらの混合物から不要な気化が発生して飽和蒸気圧を高めることを抑制することができる。
 また、これらの導入の際に、送液ポンプを設けない時、外部環境の温度が低過ぎ、前記アンモニア貯蔵用密閉容器12および/または助燃剤貯蔵用密閉容器14の内部のそれぞれの飽和蒸気圧が、混合用密閉容器16内へのそれぞれの導入に対して不足するような場合には、前記アンモニア貯蔵用密閉容器12および/または助燃剤貯蔵用密閉容器14に加熱装置13および/または15を設け、適宜加熱することにより、それぞれの飽和蒸気圧を上昇させることもできる。加熱装置13および15としては、例えば、電熱ヒーターや、適宜温度調節される加熱媒体が入った恒温槽等が用いられる。
 なお、混合用密閉容器16に設けられる前述の温度調節機構、及び導入ライン18、20に設けられる温度調節装置18e,20eによる温度調節、さらに貯蔵用密閉容器12、14のそれぞれに設けられ加熱装置13および15による加熱は、混合用密閉容器16および導入ライン18、20のそれぞれに設けられた温度計33、18fおよび20fの結果に基づいて、制御装置32によって制御される。
Further, when introducing the liquefied ammonia into the closed mixing container 16, as shown in FIG. A temperature control device 18 e configured to regulate is preferably provided in the ammonia introduction line 18 .
Further, when introducing the liquefied petroleum gas and the combustion improver, which is a component hydrocarbon species thereof, into the closed mixing container 16 through the combustion improver introduction line 20-1, as shown in FIG. Preferably, the combustion improver introduction line 20-1 is provided with a temperature control device 20e1 configured to adjust the temperature of the combustion improver passing through to the same temperature as the internal temperature of the closed mixing vessel 16. These temperature control devices are constituted by, for example, heat exchangers or Peltier elements. When these liquefied gas raw materials are introduced, the internal pressure of the closed container 16 for mixing is controlled by the above-described temperature control mechanism to increase the internal pressure of the closed containers 12 and 141 for storage of liquefied ammonia and liquefied petroleum gas or their component hydrocarbon species. is temperature regulated to be below the saturated vapor pressure of the atmosphere, and in many cases this will result in cooling to a temperature substantially lower than the external environment. Therefore, the temperature regulation of the respective introduction line by the above-mentioned temperature regulation devices also often results in cooling to a temperature lower than that of the external environment.
As a result, when these liquefied gas raw materials are introduced into the closed mixing vessel 16, the internal temperature does not rise, so unnecessary vaporization of the mixture occurs in the closed mixing vessel 16. It is possible to suppress increasing the saturated vapor pressure.
In addition, when these are introduced, if the liquid feed pump is not provided, the temperature of the external environment is too low, and the saturated vapor inside the ammonia storage closed container 12 and/or the combustion improver storage closed container 14-1 Heating devices 13 and/or 15 are provided in said ammonia storage enclosure 12 and/or combustion improver storage enclosure 14 in the event that the pressure is insufficient for each introduction into the mixing enclosure 16. By providing and appropriately heating, the saturated vapor pressure of each can be increased. As the heating devices 13 and 15, for example, an electric heater, a constant temperature bath containing a heating medium whose temperature is appropriately controlled, or the like is used.
The temperature control mechanism provided in the closed container for mixing 16, the temperature control devices 18e and 20e1 provided in the introduction lines 18 and 201, and the temperature control devices provided in the closed container for storage 12 and 141, respectively . Heating by the heating devices 13 and 15 is controlled by a control device 32 based on the results of thermometers 33, 18f and 20f1 provided in the closed mixing container 16 and introduction lines 18 and 201, respectively .
 図8は、一実施形態の製造装置10の要部の一例のブロック図である。図8に示すように、製造装置10は、アンモニア混合燃料を気液平衡状態で保存するように構成されたアンモニア混合燃料の保存用密閉容器50を備える。保存用密閉容器50は、アンモニア混合燃料が注入される注入口52と、アンモニア混合燃料を液体状態で外部に排出するように構成された、保存用密閉容器50の下部、好ましくは底面に設けられた排出口54とを備える。注入口52には、気密及び内圧を維持しながらアンモニア混合燃料を液相排出ライン22から保存用密閉容器50に注入するように構成された連結機構56が設けられる。気密構造として、注入口52には、ガスケットあるいはOリング等によるシール機構(図示されない)が設けられている。保存用密閉容器50の内壁は、混合用密閉容器16と同様に、アンモニアに接触するので、保存用密閉容器50及び連結機構56は、アンモニアに対して耐食性を有する材質が用いられる。
 排出口54には、アンモニア混合燃料を液化状態で外部に排出するアンモニア混合燃料供給ライン60が接続されている。アンモニア混合燃料供給ライン60には、アンモニア混合燃料の供給量を制御装置32によって制御する排出弁58が設けられている。
FIG. 8 is a block diagram of an example of essential parts of the manufacturing apparatus 10 of one embodiment. As shown in FIG. 8, the manufacturing apparatus 10 includes an ammonia-mixed fuel storage closed container 50 configured to store the ammonia-mixed fuel in a vapor-liquid equilibrium state. The closed container for storage 50 is provided with an inlet 52 into which the ammonia mixed fuel is injected, and a lower portion, preferably a bottom surface, of the closed container for storage 50 configured to discharge the ammonia mixed fuel in a liquid state to the outside. and an outlet 54 . The injection port 52 is provided with a connection mechanism 56 configured to inject the ammonia-mixed fuel from the liquid phase discharge line 22 into the storage closed container 50 while maintaining airtightness and internal pressure. As an airtight structure, the injection port 52 is provided with a sealing mechanism (not shown) such as a gasket or an O-ring. Since the inner wall of the storage closed container 50 contacts ammonia similarly to the mixing closed container 16, the storage closed container 50 and the connecting mechanism 56 are made of a material having corrosion resistance to ammonia.
An ammonia-mixed fuel supply line 60 for discharging the ammonia-mixed fuel in a liquefied state to the outside is connected to the discharge port 54 . The ammonia-mixed fuel supply line 60 is provided with a discharge valve 58 that controls the supply amount of the ammonia-mixed fuel by the control device 32 .
 混合用密閉容器16から、保存用密閉容器50内にアンモニア混合燃料を導入し、充填する際には、それに先立ち、保存用密閉容器50内に存在していた空気等の混入を避けるため、保存用密閉容器50内の残存空気等が、気相排出ライン59を通しての真空排気により予め排気されるか、または、アンモニア混合燃料の揮発蒸気により置換される必要がある。前者の場合は、アンモニア混合燃料供給ライン60に真空ポンプ(図示されない)が接続され、液相排出弁22aを閉じたまま、排出弁58を開き、真空ポンプによって保存用密閉容器50の内圧がおよそ0.01MPa程度以下になるまで真空排気された後、排出弁58が閉じられる。その後、液相排出弁22aが開けられ、アンモニア混合燃料が保存用密閉容器50内に充填される。後者の場合は、図9の構成に加え、後述の図10中に示されるような、保存用密閉容器50の上部、好ましくは最上面に、保存用密閉容器50内の気相部のガスを上部に排出する気相排出ライン59(気相排出ライン59には気相排出弁59aが設けられる)を備えることが好ましい。この時、液相排出弁22aを閉じたまま、気相排出弁59aを開いた後、液相排出弁22aを少し開いて保存用密閉容器50内にアンモニア混合燃料を少量導入させ、その揮発蒸気によって保存用密閉容器50内の残存空気等をパージした後、気相排出弁59aが閉じられることにより、保存用密閉容器50がガス置換される。その後、液相排出弁22aが開けられ、アンモニア混合燃料が保存用密閉容器50内に充填される。
 以上のアンモニア混合燃料の充填の際には、後述する温度調節装置(図示されない)が設けられ、保存用密閉容器50内への充填量を多くする(充填後の気相部分の体積を小さくする)ように、内部の飽和蒸気圧がおよそ0.05~0.1MPa程度以下となるよう、保存用密閉容器50の内部が十分に冷却できることが好ましい。これにより、混合用密閉容器16内のアンモニア混合燃料の飽和蒸気圧に基づく吐出によって、液相排出ライン22を経て、アンモニア混合燃料を保存用密閉容器50内に効率的に充填することができる。
When introducing and filling the ammonia-mixed fuel from the mixing closed container 16 into the storage closed container 50, prior to that, in order to avoid mixing of air etc. that existed in the storage closed container 50, storage is performed. It is necessary that residual air and the like in the closed container 50 for the gas-phase is exhausted in advance by evacuation through the gas-phase exhaust line 59, or replaced with volatilized vapor of the ammonia-mixed fuel. In the former case, a vacuum pump (not shown) is connected to the ammonia mixed fuel supply line 60, the liquid phase discharge valve 22a is kept closed, the discharge valve 58 is opened, and the internal pressure of the storage closed container 50 is reduced by the vacuum pump to approximately After being evacuated to about 0.01 MPa or less, the discharge valve 58 is closed. After that, the liquid-phase discharge valve 22a is opened, and the ammonia-mixed fuel is filled in the preservation sealed container 50. As shown in FIG. In the latter case, in addition to the configuration shown in FIG. 9, the gas in the gas phase portion in the closed storage container 50 is added to the upper portion, preferably the uppermost surface, of the closed storage container 50 as shown in FIG. 10 described later. It is preferable to provide a vapor phase discharge line 59 (the vapor phase discharge line 59 is provided with a vapor phase discharge valve 59a) for discharging to the top. At this time, after opening the vapor phase discharge valve 59a while keeping the liquid phase discharge valve 22a closed, the liquid phase discharge valve 22a is slightly opened to introduce a small amount of ammonia mixed fuel into the preservation closed container 50, and the volatilized vapor. After purging residual air and the like in the storage closed container 50 by closing the gas phase discharge valve 59a, the storage closed container 50 is replaced with gas. After that, the liquid-phase discharge valve 22a is opened, and the ammonia-mixed fuel is filled in the preservation sealed container 50. As shown in FIG.
When filling the above ammonia mixed fuel, a temperature control device (not shown), which will be described later, is provided to increase the filling amount in the storage sealed container 50 (to reduce the volume of the gas phase portion after filling ), it is preferable that the inside of the sealed storage container 50 can be sufficiently cooled so that the saturated vapor pressure inside is about 0.05 to 0.1 MPa or less. As a result, the storage closed container 50 can be efficiently filled with the ammonia mixed fuel through the liquid phase discharge line 22 by the discharge based on the saturated vapor pressure of the ammonia mixed fuel in the closed mixing container 16 .
 一実施形態の製造装置10の保存用密閉容器50には、図8に示すように、アンモニア混合燃料を撹拌混合するように構成された撹拌機63が設けられている、ことが好ましい。 As shown in FIG. 8, the closed storage container 50 of the manufacturing apparatus 10 of one embodiment is preferably provided with a stirrer 63 configured to stir and mix the ammonia-mixed fuel.
 一実施形態の製造装置10の保存用密閉容器50は、保存用密閉容器50内部のアンモニア混合燃料の温度を適宜に調節するように構成された温度調節装置(図示されない)が設けられている。温度調節装置として、例えば、温度調節媒体を流すことにより混合用密閉容器16を温度調節する熱交換器、あるいはペルティエ素子が挙げられる。温度調節装置による温度調節は、保存用密閉容器50内部の液相温度を計測する温度計61の温度計測値に基づき、制御装置32が生成する制御信号により制御される。
 この温度調節装置には、上述の混合用密閉容器16における温度調節機構と同様に、以下の三つの機能がある。一つ目は、保存用密閉容器50の内圧が、その設定耐圧を超えないような温度範囲にあるようにするための内部温度の冷却制御である。この温度制御の際は、保存用密閉容器50内部の内圧を計測する圧力計62の内圧計測値が、前記耐圧のレベルに達し得ると制御装置32によって予測された場合に、制御装置32が生成する制御信号に基づき、保存用密閉容器50が温度調節装置により速やかに冷却される。
 二つ目は、前述した、アンモニア混合燃料の充填を効率的かつ円滑に行えるよう、保存用密閉容器50の内圧を低減するための冷却制御である。
 三つ目は、気液平衡状態を維持している保存用密閉容器50内のアンモニアと助燃剤との混合物の液相部分の全体が、前記混合物の液相組成に応じて、アンモニアと助燃剤とが互いに溶解した溶液状態、または、アンモニアと助燃剤とのエマルション状態となるような温度範囲にあるように、前記混合物の温度を調節する制御である。そのためには、保存用密閉容器50が、前記温度調節装置と、前記撹拌機63とを併せて備え、保存用密閉容器50内のアンモニア混合燃料が、撹拌機63により撹拌混合される際に、アンモニア混合燃料の液相部分の全体が、アンモニア混合燃料の液相組成に応じて、アンモニアと助燃剤とが互いに溶解した溶液状態、または、アンモニアと助燃剤とのエマルション状態となる温度範囲にあるように、温度調節装置が、前記アンモニア混合燃料の温度を調節するように構成される、ことが好ましい。ここで、「アンモニアと助燃剤とが互いに溶解した溶液状態、または、アンモニアと助燃剤とのエマルション状態となる温度範囲」としては、前述した、それぞれの混合原料系のアンモニア混合燃料における、相溶ないしエマルション化による均一化に適した温度範囲が選ばれる。この温度制御も、温度計61による温度計測値に従い、制御装置32が生成する制御信号に基づいて、温度調節装置により行われる。
 アンモニア混合燃料が、混合用密閉容器16から排出され、保存用密閉容器50内に充填される時には、含有される助燃剤の種類に関わらず、充填されるアンモニア混合燃料全体は、一様で均一な溶液状態、または一様なエマルション状態となっている(上下層に分かれない)。保存用密閉容器50の内部の温度が、混合用密閉容器16内の液相温度と等しく維持されることにより、上記の一様で均一な溶液状態、または一様なエマルション状態を保持することができる。また、アンモニア混合燃料を保存用密閉容器50内に充填した後に、上記の撹拌混合および温度調節を一定期間停止した場合においても、アンモニア混合燃料を燃焼に供する前に、撹拌混合および充填時と同一温度への温度調節を再度行えば、一様で均一な溶液状態、または一様なエマルション状態に復旧させることができる。
The storage sealed container 50 of the manufacturing apparatus 10 of one embodiment is provided with a temperature control device (not shown) configured to appropriately adjust the temperature of the ammonia-mixed fuel inside the storage sealed container 50. Examples of the temperature control device include a heat exchanger for controlling the temperature of the closed mixing container 16 by flowing a temperature control medium, or a Peltier element. The temperature control by the temperature control device is controlled by a control signal generated by the control device 32 based on the temperature measurement value of the thermometer 61 that measures the liquid phase temperature inside the storage sealed container 50 .
This temperature control device has the following three functions in the same manner as the temperature control mechanism in the above-described closed container 16 for mixing. The first is cooling control of the internal temperature so that the internal pressure of the preservation sealed container 50 is within a temperature range that does not exceed the set pressure resistance. During this temperature control, the control device 32 generates Based on the control signal, the storage sealed container 50 is rapidly cooled by the temperature control device.
The second is the cooling control for reducing the internal pressure of the preservation sealed container 50 so that the ammonia-mixed fuel can be efficiently and smoothly charged as described above.
The third is that the entire liquid phase portion of the mixture of ammonia and the combustion improver in the storage closed container 50 maintaining the gas-liquid equilibrium state is mixed with the ammonia and the combustion improver depending on the liquid phase composition of the mixture. are dissolved in each other, or the temperature of the mixture is controlled so as to be in a temperature range in which the ammonia and the combustion improver are in an emulsion state. For this purpose, the storage closed container 50 is equipped with the temperature control device and the stirrer 63, and when the ammonia-mixed fuel in the storage closed container 50 is stirred and mixed by the stirrer 63, The entire liquid phase portion of the ammonia mixed fuel is in a temperature range in which the ammonia and the combustion improver are in a solution state or an emulsion state of the ammonia and the combustion improver depending on the liquid phase composition of the ammonia mixed fuel. As such, the temperature control device is preferably configured to control the temperature of said ammonia blended fuel. Here, the "temperature range in which the ammonia and the combustion improver are in a solution state in which the ammonia and the combustion improver are dissolved with each other, or the temperature range in which the ammonia and the combustion improver are in an emulsion state" is the temperature range in which the ammonia mixed fuel of each mixed raw material system is compatible with each other. Alternatively, a temperature range suitable for homogenization by emulsification is selected. This temperature control is also performed by the temperature control device based on the control signal generated by the control device 32 according to the temperature measured by the thermometer 61 .
When the ammonia-mixed fuel is discharged from the mixing closed container 16 and filled into the storage closed container 50, the entire charged ammonia-mixed fuel is uniform and uniform regardless of the type of combustion improver contained. It is in a solution state or a uniform emulsion state (not divided into upper and lower layers). By maintaining the temperature inside the storage sealed container 50 equal to the liquid phase temperature in the mixing closed container 16, the above uniform and uniform solution state or uniform emulsion state can be maintained. can. In addition, even if the above stirring and mixing and temperature control are stopped for a certain period after the ammonia mixed fuel is filled in the storage closed container 50, the same amount as during stirring and mixing and filling is performed before the ammonia mixed fuel is burned. If the temperature is adjusted again, a uniform and homogeneous solution state or a uniform emulsion state can be restored.
 なお、保存用密閉容器50からのアンモニア混合燃料の排出の際にも、混合用密閉容器からの排出の場合に説明した、混合燃料の組成変化が起こる。別の一実施形態の製造装置10の保存用密閉容器50には、この組成変化の抑制のため、図9に示すように、図8の保存用密閉容器50の構成に加えて、上述の図4に示した窒素ガス導入ライン30bと同様の構成の窒素ガス注入ライン64と、保存用密閉容器50の上部、好ましくは最上面に、保存用密閉容器50内の気相部のガスを上部に排出する気相排出ライン59(気相排出ライン59には気相排出弁59aが設けられる)と、を備える。
 上記の構成により、前述した、アンモニア混合燃料の排出に伴う、保存用密閉容器50内の混合物の蒸発の進行による、液相組成の変化を抑制しながら、アンモニア混合燃料を迅速に排出させることができる。
 窒素ガス注入ライン64は、約10~15MPa程度の内圧まで充填された、一般の加圧窒素ガスボンベ等の貯蔵容器(図示されない)から導かれる。窒素ガス注入ライン64には、その上流側から前記混合用密閉容器16までの間に、減圧弁64a、圧力計64b、および調整弁64cを備える。窒素ガス注入ライン64で導かれた窒素ガスは、減圧弁64aにより、圧力計64bの指示値が、保存用密閉容器50内の混合物の飽和蒸気圧(圧力計62の指示値)以上の所定の圧力(例えば、前記飽和蒸気圧+0.05~0.1MPa程度)になるように減圧される。前記混合物の液相が保存用密閉容器50から排出される際、排出弁58が開けられるのと連動して、調整弁64cが開かれ、気相側から注入される窒素ガスにより強制的に押し出される形で、アンモニア混合燃料が、アンモニア混合燃料供給ライン60に排出される。これらの一連の弁の操作は、制御装置32の送信する制御信号によって制御される。以上によって、保存用密閉容器50からのアンモニア混合燃料の排出の際には、図4に示した混合用密閉容器16から排出されるアンモニア混合燃料の排出の場合と同様に、保存用密閉容器50内の気相部に窒素ガスが加圧注入されることにより、実質的に組成変化が軽減され、かつ迅速に排出される。また、アンモニア混合燃料を、混合用密閉容器16から液相排出ライン22を通して再度保存用密閉容器50内に注入する際には、事前に気相排出弁59aを開き、液相排出弁22aを少し開いて保存用密閉容器50内にアンモニア混合燃料を少量導入させ、その揮発蒸気によって保存用密閉容器50内のガス(空気、窒素等)をパージした後、気相排出弁59aが閉じられることにより、保存用密閉容器50内がガス置換される。
Also when the ammonia mixed fuel is discharged from the closed storage container 50, the composition of the mixed fuel changes as described in the case of discharging from the closed mixing container. In addition to the configuration of the storage closed container 50 shown in FIG. A nitrogen gas injection line 64 having the same configuration as the nitrogen gas introduction line 30b shown in FIG. and a gas phase discharge line 59 for discharging (the gas phase discharge line 59 is provided with a gas phase discharge valve 59a).
With the above configuration, it is possible to quickly discharge the ammonia mixed fuel while suppressing the change in the liquid phase composition due to the progress of evaporation of the mixture in the storage closed container 50 accompanying the discharge of the ammonia mixed fuel. can.
The nitrogen gas injection line 64 is led from a storage container (not shown) such as a general pressurized nitrogen gas cylinder filled to an internal pressure of about 10-15 MPa. The nitrogen gas injection line 64 is provided with a pressure reducing valve 64a, a pressure gauge 64b, and a regulating valve 64c between its upstream side and the closed container 16 for mixing. The nitrogen gas introduced through the nitrogen gas injection line 64 is controlled by the pressure reducing valve 64a so that the indicated value of the pressure gauge 64b is equal to or higher than the saturated vapor pressure of the mixture in the sealed storage container 50 (the indicated value of the pressure gauge 62). The pressure is reduced to (for example, the saturated vapor pressure plus about 0.05 to 0.1 MPa). When the liquid phase of the mixture is discharged from the closed storage container 50, the control valve 64c is opened in conjunction with the opening of the discharge valve 58, and the nitrogen gas injected from the gas phase side forces the liquid phase out. The ammonia-mixed fuel is discharged to the ammonia-mixed fuel supply line 60. The series of operations of these valves are controlled by control signals transmitted by the controller 32 . As described above, when the ammonia-mixed fuel is discharged from the storage closed container 50, the storage closed container 50 Nitrogen gas is pressurized and injected into the gas phase portion of the inside, thereby substantially reducing the change in composition and expediting the discharge. When the ammonia-mixed fuel is injected again into the storage sealed container 50 from the mixed closed container 16 through the liquid phase discharge line 22, the gas phase discharge valve 59a is opened in advance, and the liquid phase discharge valve 22a is slightly closed. After opening to introduce a small amount of ammonia-mixed fuel into the storage closed container 50 and purging the gas (air, nitrogen, etc.) in the storage closed container 50 with the volatilized vapor, the gas phase discharge valve 59a is closed. , the inside of the sealed storage container 50 is replaced with gas.
 別の一実施形態の製造装置10では、保存用密閉容器50の底面に前記排出口54を備え、排出口54には、排出口54から液相で排出されるアンモニア混合燃料の排出体積流量を、連続計測するように構成された体積流量計65が設けられる。さらに、注入口52を経て、保存用密閉容器50内にアンモニア混合燃料が注入される際には、所定の満充填量または前記満充填量以下の所定量に達するまでアンモニア混合燃料が注入され、かつ、排出口54を経て保存用密閉容器50内からアンモニア混合燃料が排出される際には、保存用密閉容器50の気密および内圧を維持しながら、体積流量計65で計測された排出体積流量に略等しい容積変化速度で、保存用密閉容器50の内容積が連続的に減少するように構成された注入排出制御機構を備える。
 アンモニア混合燃料の排出の際に前記組成変化が生じるのは、混合用密閉容器16での同様の状況について前述したように、アンモニア混合燃料の排出に伴い、排出された液相の体積分、保存用密閉容器50内の気相部分の体積が増加し、かつ内圧が低下することにより、保存用密閉容器50内の液相から気相へのアンモニア混合燃料の蒸発(沸騰)が起こり、その際の蒸気の組成が、液相組成と異なるためである。従って、保存用密閉容器50内の気液平衡状態が液相の排出中も維持されるように、気相部分の体積および内圧が維持されれば、前記蒸発は起こらず、排出されるアンモニア混合燃料の組成も一定に保たれる。よって、上述のように、保存用密閉容器50内からアンモニア混合燃料が排出される際に、保存用密閉容器50の気密および内圧を維持しながら、体積流量計65で計測された排出体積流量に等しい容積変化速度で、保存用密閉容器50の内容積を連続的に減少させるような前記注入排出制御機構が設けられれば、排出組成を一定に保ちながら、アンモニア混合燃料を排出することができる。
In the production apparatus 10 of another embodiment, the discharge port 54 is provided on the bottom surface of the storage closed container 50, and the discharge port 54 is provided with a discharge volume flow rate of the ammonia mixed fuel discharged in the liquid phase from the discharge port 54. , a volumetric flow meter 65 configured to continuously measure is provided. Furthermore, when the ammonia mixed fuel is injected into the storage sealed container 50 through the injection port 52, the ammonia mixed fuel is injected until reaching a predetermined full filling amount or a predetermined amount less than the full filling amount, In addition, when the ammonia mixed fuel is discharged from the storage closed container 50 through the discharge port 54, while maintaining the airtightness and internal pressure of the storage closed container 50, the discharge volume flow rate measured by the volume flow meter 65 is increased. A filling and discharging control mechanism configured to continuously decrease the internal volume of the closed storage container 50 at a volume change rate substantially equal to .
The reason why the composition change occurs when the ammonia mixed fuel is discharged is that, as described above regarding the similar situation in the closed container 16 for mixing, the volume of the liquid phase discharged accompanying the discharge of the ammonia mixed fuel is stored. As the volume of the gas phase portion in the storage closed container 50 increases and the internal pressure decreases, the ammonia mixed fuel evaporates (boiling) from the liquid phase to the gas phase in the storage closed container 50. This is because the vapor composition of is different from the liquid phase composition. Therefore, if the volume and internal pressure of the gas phase portion are maintained such that the gas-liquid equilibrium state in the storage closed container 50 is maintained even during the discharge of the liquid phase, the evaporation does not occur and the discharged ammonia mixture does not occur. The composition of the fuel is also kept constant. Therefore, as described above, when the ammonia-mixed fuel is discharged from the storage sealed container 50, while maintaining the airtightness and internal pressure of the storage sealed container 50, the discharge volume flow rate measured by the volume flow meter 65 If the injection/discharge control mechanism is provided so as to continuously decrease the internal volume of the closed storage container 50 at the same volume change rate, the ammonia-mixed fuel can be discharged while maintaining the discharge composition constant.
 図10に、上記の実施形態の範疇に入る、前記注入排出制御機構の一例が設けられた、一実施形態の製造装置10を示す。保存用密閉容器50は、直立した外筒形状を有する、外筒の軸方向に直交する内部断面積が一定な胴部(例えば円筒状)と、前記胴部の下端開口部を密閉する、注入口52および排出口54が設けられた底板と、で形成されるシリンダ66と、このシリンダ66内を、気密を維持しながら上下方向に往復移動可能なピストン67と、ピストン67を上下方向に往復移動させ得るように構成された往復駆動装置68と、を備えて成る。
 ここで、前記注入排出制御機構は、以下の制御を行うように構成される。即ち、注入口52を経て、保存用密閉容器50内にアンモニア混合燃料が注入される際には、往復駆動装置68によって、シリンダ66内で、ピストン67の下面は、満充填時位置(以下、H位置と称する)または満充填時位置より下方の所定位置まで押し上げられた後、停止する。その際、H位置が、混合用密閉容器16内のアンモニア混合燃料の気液界面の高さ程度になるように、混合用密閉容器16とシリンダ66が相対的に配置されることが好ましい。この状態で、アンモニア混合燃料がシリンダ66内に保存される。
 アンモニア混合燃料の充填後、排出口54を経て、保存用密閉容器50内からアンモニア混合燃料が排出される際には、圧力計62で計測される、保存用密閉容器50内のアンモニア混合燃料の飽和蒸気圧(内圧に等しい)に抗しながら、体積流量計65で計測された排出体積流量を、シリンダ66の胴部の前記内部断面積で除することにより算出される値に略等しい線速度で、往復駆動装置68によってピストン67が連続的に押し下げられた後、その下面が、シリンダ66の前記底板の近傍の排出終了位置(以下、L位置と称する)で停止する。この排出時において、前記内部断面積と前記線速度の積が前記排出体積流量とほぼ等しくなるため、前述した、排出体積流量に略等しい容積変化速度で保存用密閉容器50の内容積を連続的に減少させることができ、その結果、組成変化を抑制しながら、アンモニア混合燃料を排出させることができる。
FIG. 10 shows a manufacturing apparatus 10 of one embodiment provided with an example of the injection/ejection control mechanism that falls within the scope of the above embodiments. The sealed container for storage 50 has an upright outer cylindrical shape, and seals the body (for example, cylindrical) having a constant internal cross-sectional area orthogonal to the axial direction of the outer cylinder, and the lower end opening of the body. a bottom plate provided with an inlet 52 and a discharge port 54; a reciprocating drive 68 configured to move.
Here, the injection/discharge control mechanism is configured to perform the following controls. That is, when the ammonia-mixed fuel is injected into the storage sealed container 50 through the injection port 52, the reciprocating drive device 68 moves the lower surface of the piston 67 in the cylinder 66 to the full-filled position (hereinafter referred to as H position), or after being pushed up to a predetermined position below the full-filling position, it stops. At this time, it is preferable that the closed mixing container 16 and the cylinder 66 are arranged relative to each other so that the H position is about the height of the gas-liquid interface of the ammonia-mixed fuel in the closed mixing container 16 . In this state, the ammonia mixed fuel is stored in cylinder 66 .
After filling the ammonia mixed fuel, when the ammonia mixed fuel is discharged from the storage closed container 50 through the discharge port 54, the amount of ammonia mixed fuel in the storage closed container 50 measured by the pressure gauge 62 A linear velocity approximately equal to the value calculated by dividing the discharge volumetric flow rate measured by the volumetric flowmeter 65 by the internal cross-sectional area of the body of the cylinder 66 while resisting the saturated vapor pressure (equal to the internal pressure). After the piston 67 is continuously pushed down by the reciprocating drive device 68, the lower surface of the piston 67 stops at the discharge end position (hereinafter referred to as the L position) near the bottom plate of the cylinder 66. As shown in FIG. At the time of this discharge, since the product of the internal cross-sectional area and the linear velocity becomes substantially equal to the discharge volume flow rate, the internal volume of the storage sealed container 50 is continuously changed at a volume change rate substantially equal to the discharge volume flow rate. As a result, the ammonia mixed fuel can be discharged while suppressing the composition change.
 図10の実施形態においては、保存用密閉容器50の胴部および底板がシリンダ66、また、その上面が往復移動するピストン67となるため、ピストン67の下面およびシリンダ66の内部にはピストン67の往復移動を妨げるような障害物がないことが好ましい。このため、図11に示すように、温度計61の導管(シースなど)および圧力計62の導管は、シリンダ66の胴部最下部の内面または底面の内面に、それぞれの導管の先端部が面一になるように設置される。この時、温度計61の導管(シースなど)先端の温度計測部が接液するよう、周囲のシリンダ66の内壁は座繰りされる。圧力計62の導管は、精度を高める必要がある場合は、圧力計側部がアンモニア混合燃料の気液界面より上に位置するように延長され、液柱圧の影響が除かれることが好ましい。また、撹拌機63が設置される場合は、シリンダ66の底面より下方に撹拌翼等の稼働部が位置するよう、下方に向けて底板に座繰りを設け、その中に設置されるか、または、シリンダ66内部のアンモニア混合燃料を外部に抜き出し、再度内部に還流させる循環配管(図示されない)を設け、その配管内に撹拌機63の稼働部を配置するなどの構成が好ましい。さらに、注入口52および排出口54も、ピストン67の往復移動によって塞がることがないように、シリンダ66の底面に設けられることが好ましい。
 図10の例においては、ピストン67は、出力および回転数可変のモータ68aおよびクランク機構68bを含む往復駆動装置68によって昇降(往復)される。本例の往復駆動装置68では、モータ68aの回転が減速ギヤで減速された後、クランク機構68bに伝えられているが、これに限定されず、モータ68aの出力特性、アンモニア混合燃料の飽和蒸気圧(圧力計62の計測値)、注入及び排出に伴うピストン67の昇降(往復)速度の所要可変範囲、および昇降(往復)停止位置の要求精度等に合わせて、適宜、往復駆動装置68が設計される。
 ピストン67は、クランク機構68bのクランクが、その上向き位置から下向き位置までの範囲で正逆方向に半回転することによって、昇降(往復)し得る。この時、ピストン67のH位置およびL位置は、それぞれ、ピストン67の上死点ないし上死点よりやや下方、および下死点ないし下死点よりやや上方に設定される。H位置およびL位置は、ピストン67、またはクランク機構68bのクランクの位置を検出する位置センサ、もしくはモータ68aの回転角度を検出する角度センサ等(これらは図示されない)によって校正及び認識され、ピストン67がH位置ないしL位置に達した時点で、モータ68aへの通電が遮断されると共に、好ましくは、図示されないブレーキ機構によって、モータ68aが強制停止される。
 アンモニア混合燃料の注入の開始時点では、ピストン67はL点にあり、液相排出弁22aが開けられた後、圧力計62の計測値が略一定を保つような線速度でピストン67がH点またはH点より下方の所定の位置まで上昇し、シリンダ66の内部にアンモニア混合燃料が注入、充填された後、液相排出弁22aが閉じられ、その状態でアンモニア混合燃料が保存される。その後、排出弁58が開けられ、アンモニア混合燃料が排出される際には、H点とL点の中央付近でのピストン67の下降速度が、体積流量計65で計測される排出流量値から求められる前記線速度に略等しくなる回転速度で、モータ68aが駆動され、ピストン67がL位置に達した時点で停止される。以上の一連の操作は、制御装置32の制御信号によって制御される。
 なお、本実施形態においては、前記往復駆動装置68は、上述したクランク機構68bには必ずしも限定されず、他に、例えば、ラック&ピニオン機構や、ボールねじ機構、ないしは送りねじ機構等による往復駆動装置を採用することもできる。
In the embodiment of FIG. 10, the body and the bottom plate of the sealed storage container 50 are the cylinder 66, and the upper surface is the piston 67 that reciprocates. It is preferable that there are no obstacles that impede the back-and-forth movement. For this reason, as shown in FIG. 11, the conduit (sheath, etc.) of the thermometer 61 and the conduit of the pressure gauge 62 are arranged so that the tip of each conduit faces the inner surface of the lowermost part of the cylinder 66 or the inner surface of the bottom surface. installed so as to be the same. At this time, the inner wall of the surrounding cylinder 66 is countersunk so that the temperature measuring portion at the tip of the conduit (such as a sheath) of the thermometer 61 is in contact with the liquid. The manometer 62 conduit is preferably extended so that the side of the manometer is above the gas-liquid interface of the ammonia-blended fuel to eliminate the effects of liquid column pressure if greater accuracy is required. In addition, when the stirrer 63 is installed, the bottom plate is provided with a counterbore facing downward so that the operating part such as the stirring blade is positioned below the bottom surface of the cylinder 66, and is installed in it, or It is preferable to provide a circulation pipe (not shown) for extracting the ammonia-mixed fuel from the inside of the cylinder 66 to the outside and return it to the inside again, and to dispose the operating part of the stirrer 63 in the pipe. Furthermore, the inlet 52 and the outlet 54 are also preferably provided on the bottom surface of the cylinder 66 so as not to be blocked by the reciprocating movement of the piston 67 .
In the example of FIG. 10, the piston 67 is moved up and down (reciprocated) by a reciprocating drive device 68 including a motor 68a with variable output and rotational speed and a crank mechanism 68b. In the reciprocating drive device 68 of this example, the rotation of the motor 68a is decelerated by the reduction gear and then transmitted to the crank mechanism 68b. The reciprocating drive device 68 is appropriately adjusted according to the pressure (measured value of the pressure gauge 62), the required variable range of the elevation (reciprocation) speed of the piston 67 accompanying injection and discharge, and the required accuracy of the elevation (reciprocation) stop position. Designed.
The piston 67 can move up and down (reciprocate) by half-turning the crank of the crank mechanism 68b in the forward and reverse directions within the range from its upward position to its downward position. At this time, the H and L positions of the piston 67 are set at the top dead center or slightly below the top dead center and at the bottom dead center or slightly above the bottom dead center, respectively. The H position and L position are calibrated and recognized by a position sensor that detects the position of the crank of the piston 67 or the crank mechanism 68b, or an angle sensor that detects the rotation angle of the motor 68a (not shown). reaches the H position or L position, the power supply to the motor 68a is cut off, and preferably the motor 68a is forcibly stopped by a brake mechanism (not shown).
At the start of the injection of the ammonia-mixed fuel, the piston 67 is at point L, and after the liquid phase discharge valve 22a is opened, the piston 67 moves to point H at a linear velocity that keeps the measured value of the pressure gauge 62 substantially constant. Alternatively, it rises to a predetermined position below the H point, and after the ammonia mixed fuel is injected and filled into the cylinder 66, the liquid phase discharge valve 22a is closed and the ammonia mixed fuel is stored in that state. After that, when the discharge valve 58 is opened and the ammonia mixed fuel is discharged, the descending speed of the piston 67 near the center between the H point and the L point is obtained from the discharge flow rate value measured by the volumetric flow meter 65. The motor 68a is driven at a rotational speed substantially equal to the linear velocity applied, and is stopped when the piston 67 reaches the L position. The above series of operations are controlled by control signals from the control device 32 .
In the present embodiment, the reciprocating drive device 68 is not necessarily limited to the crank mechanism 68b described above, and may be a reciprocating drive mechanism such as a rack and pinion mechanism, a ball screw mechanism, or a feed screw mechanism. A device can also be employed.
 別の一実施形態の保存用密閉容器50を備える製造装置10においては、さらに、注入口52を経て、保存用密閉容器50内に前記アンモニア混合燃料が注入される際には、所定の満充填量または満充填量以下の所定量に達するまで、アンモニア混合燃料が注入され、かつ、保存用密閉容器50へのアンモニア混合燃料の注入後、排出口54を経て、保存用密閉容器50内からアンモニア混合燃料が排出される際には、保存用密閉容器50の気密を維持しながら、保存用密閉容器50内のアンモニア混合燃料の温度における、アンモニア混合燃料の飽和蒸気圧よりも高い圧力で、保存用密閉容器50から、アンモニア混合燃料が押し出されるように構成された注入排出制御機構を備える。
 上記の構成によれば、保存用密閉容器50内のアンモニア混合燃料は、排出の過程においてその飽和蒸気圧を超える圧力で圧縮されるため、気相部分が消失し、全体が液体状態となって排出口54から排出される。このため、排出の過程で蒸発(沸騰)が起こらないので、前述した排出組成変化を生じることなく、飽和蒸気圧以上の高圧で排出させることができる。
In the manufacturing apparatus 10 provided with the storage closed container 50 of another embodiment, when the ammonia mixed fuel is injected into the storage closed container 50 through the injection port 52, a predetermined full filling Ammonia mixed fuel is injected until it reaches the amount or a predetermined amount equal to or less than the full filling amount, and after the ammonia mixed fuel is injected into the storage closed container 50, the ammonia is discharged from the storage closed container 50 through the outlet 54. When the mixed fuel is discharged, it is stored at a pressure higher than the saturated vapor pressure of the ammonia mixed fuel at the temperature of the ammonia mixed fuel in the closed storage container 50 while maintaining the airtightness of the closed storage container 50. It has an injection/discharge control mechanism configured to push out the ammonia-mixed fuel from the sealed container 50 .
According to the above configuration, the ammonia-mixed fuel in the closed storage container 50 is compressed at a pressure exceeding its saturated vapor pressure in the process of discharging, so that the gas phase disappears and the whole becomes liquid. It is discharged from the discharge port 54 . Therefore, since evaporation (boiling) does not occur in the process of discharging, the gas can be discharged at a high pressure equal to or higher than the saturated vapor pressure without causing the aforementioned change in the composition of the discharged gas.
 図11に、上記の実施形態の範疇に入る、前記注入排出制御機構の一例が設けられた、一実施形態の製造装置10を示す。図11の実施形態においては、図10に示した前述の実施形態と実質的に同一の構成(例えば、共通の作動機構のモータ68aおよびクランク機構68bを有する往復駆動装置68等)を持つため、対応する各構成部材については図10と同一の記号を付し、また、以下において、図10の製造装置10と共通する説明は省略する。
 図11の製造装置10においては、アンモニア混合燃料の注入、充填の際には、図10の製造装置10の場合と同様の操作により注入、充填が行われ、その状態でアンモニア混合燃料が保存される。排出の際には、モータ68aがピストン67を徐々に下降させると、下降開始前の圧力計62の初期値(=飽和蒸気圧)が暫く保たれた後、シリンダ66内の気相が消失した時点で内圧が上昇し始める。更にピストン67を下降させながら、圧力計62の計測値が、保存用密閉容器50の耐圧を超えない所定の圧力値に達した時点で、排出弁58が所定の開度で開かれ、アンモニア混合燃料が排出される。排出中、圧力計62の計測値が前記所定の圧力を維持するように、排出弁58の開度とピストン67の下降速度とが調節されれば、排出口54を経てアンモニア混合燃料供給ライン60に導かれるアンモニア混合燃料の排出流量(体積流量計65で計測される)を変化させることができる。以上の一連の操作は、制御装置32の制御信号によって制御される。
FIG. 11 shows a manufacturing apparatus 10 of one embodiment provided with an example of the injection/ejection control mechanism that falls within the scope of the above embodiments. Since the embodiment of FIG. 11 has substantially the same configuration as the previous embodiment shown in FIG. 10 are assigned to the corresponding constituent members, and the description common to the manufacturing apparatus 10 of FIG. 10 will be omitted below.
In the manufacturing apparatus 10 of FIG. 11, when the ammonia mixed fuel is injected and filled, the injection and filling are performed by the same operation as in the case of the manufacturing apparatus 10 of FIG. 10, and the ammonia mixed fuel is stored in that state. be. When discharging, when the motor 68a gradually lowers the piston 67, the initial value (=saturated vapor pressure) of the pressure gauge 62 before the start of lowering is maintained for a while, and then the gas phase in the cylinder 66 disappears. At this point, the internal pressure begins to rise. While further lowering the piston 67, when the measured value of the pressure gauge 62 reaches a predetermined pressure value that does not exceed the pressure resistance of the storage sealed container 50, the discharge valve 58 is opened to a predetermined opening, and ammonia is mixed. Fuel is discharged. If the opening of the discharge valve 58 and the descending speed of the piston 67 are adjusted so that the measured value of the pressure gauge 62 maintains the predetermined pressure during discharge, the ammonia-mixed fuel supply line 60 is discharged through the discharge port 54 . It is possible to change the discharge flow rate of the ammonia mixed fuel (measured by the volume flow meter 65) led to. The series of operations described above is controlled by a control signal from the control device 32 .
 本実施形態においては、保存用密閉容器50(シリンダ66およびピストン67)、および圧力計62等の構成部材は、気相の消失前後で急激な圧力変動を受けることがあるため、それに耐えられる耐圧および構造を有する必要がある。
 なお、本実施形態の保存用密閉容器50の構成に加えて、上述の図5の実施形態で説明した、原料の連続定量導入機構を備えた混合用密閉容器16の構成を設けることもできる。その場合は、上記H点およびL点が、それぞれピストン67の上死点および下死点になるように調整され、かつ、定速回転するクランク機構68bによるピストン67の連続昇降(往復)に連動して、排出弁58と液相排出弁22aが、それぞれ適切な開度で開閉されるように構成されることが好ましい。これにより、図5の混合用密閉容器16によってアンモニア混合燃料を連続的に製造しながら、本実施形態の保存用密閉容器50によって飽和蒸気圧以上に加圧して連続排出させることが可能になる。この時、本実施形態の保存用密閉容器50は、機能的に、いわゆるプランジャーポンプと同等になる。
 なお、上述の図5に示した原料の連続定量導入機構を備えない場合は、本実施形態においても、前記往復駆動装置68は、上述したクランク機構68bには必ずしも限定されず、他に、例えば、ラック&ピニオン機構や、ボールねじ機構、ないしは送りねじ機構等による往復駆動装置を採用してもよい。
 また、以上の本実施例においては、排出過程において、シリンダ66内で気相部分がなくなることから、図11に示したような、シリンダ66が直立する構成だけでなく、例えば90度横倒しにしたような構成であっても、上述した機能を概ね達成することが可能である。
In this embodiment, since the constituent members such as the storage sealed container 50 (the cylinder 66 and the piston 67) and the pressure gauge 62 may be subjected to sudden pressure fluctuations before and after the gas phase disappears, the pressure resistance that can withstand it is required. and structure.
In addition to the configuration of the storage sealed container 50 of the present embodiment, the configuration of the mixing closed container 16 having the continuous quantitative introduction mechanism of the raw materials described in the embodiment of FIG. 5 can be provided. In that case, the H point and L point are adjusted to be the top dead center and the bottom dead center of the piston 67, respectively, and are interlocked with the continuous lifting (reciprocation) of the piston 67 by the crank mechanism 68b that rotates at a constant speed. Then, it is preferable that the discharge valve 58 and the liquid phase discharge valve 22a are configured to be opened and closed at appropriate degrees of opening. As a result, while the ammonia-mixed fuel is continuously produced by the closed container 16 for mixing in FIG. At this time, the preservation sealed container 50 of the present embodiment becomes functionally equivalent to a so-called plunger pump.
In addition, in the case where the raw material continuous quantitative introduction mechanism shown in FIG. , a rack and pinion mechanism, a ball screw mechanism, or a reciprocating drive device such as a feed screw mechanism may be employed.
Further, in the present embodiment described above, since the gas phase portion disappears in the cylinder 66 during the discharge process, the cylinder 66 is not only configured to stand upright as shown in FIG. Even with such a configuration, it is possible to achieve most of the functions described above.
 さらに、一実施形態の製造装置10の保存用密閉容器50には、図12に示すように、混合用密閉容器16で説明した混合状態評価装置と同様に、アンモニア混合燃料の混合状態を評価するように構成された混合状態評価装置69が設けられていることが好ましい。図12は、一実施形態の製造装置10の要部の一例のブロック図である。混合状態評価装置69によって得られる混合状態の評価結果に基づいて、制御装置32は、撹拌機63による撹拌混合の強さ及び撹拌混合時間を調整する制御信号を生成し、これに基づいて撹拌機63が撹拌を行う。特に、液体状態のアンモニアと原料用炭化水素をエマルション化させたアンモニア混合燃料は、保存用密閉容器50内で保存中、時間経過に伴い再分離する場合がある。この場合、撹拌機63によりアンモニア混合燃料を再撹拌することにより、アンモニア混合燃料を燃焼器等に供給する前に再度エマルション状態にすることができる。 Furthermore, as shown in FIG. 12, in the storage sealed container 50 of the manufacturing apparatus 10 of one embodiment, the mixed state of the ammonia mixed fuel is evaluated in the same manner as the mixed state evaluation device described in the mixing sealed container 16. It is preferable that a mixed state evaluation device 69 configured as above is provided. FIG. 12 is a block diagram of an example of essential parts of the manufacturing apparatus 10 of one embodiment. Based on the evaluation result of the mixed state obtained by the mixed state evaluation device 69, the control device 32 generates a control signal for adjusting the stirring mixing strength and the stirring mixing time by the stirrer 63, and based on this, the stirrer 63 provides agitation. In particular, the ammonia-mixed fuel obtained by emulsifying liquid ammonia and raw material hydrocarbons may re-separate over time during storage in the closed storage container 50 . In this case, by re-stirring the ammonia mixed fuel with the stirrer 63, the ammonia mixed fuel can be put into an emulsion state again before being supplied to the combustor or the like.
 一実施形態の製造装置10の連結機構56(図8~11参照)は、アンモニア混合燃料を保存用密閉容器50に導入する導入ラインと注入口52の接続に関して、互いに脱着可能に構成されており、保存用密閉容器50は、陸域、水域、および空域のいずれか一つにおける輸送機器(図示されない)に搭載されることが可能な容器である。例えば、図8に示された形態の場合、保存用密閉容器50に接続される導入ラインは、混合用密閉容器16から延びる液相排出ライン22であるが、この導入ラインは、製造装置10で製造したアンモニア混合燃料を一時的に貯蔵した、図示されない別の一時貯蔵容器から延びるものであってもよい。この一時貯蔵容器の構成は、基本的に、これまでに説明した貯蔵用密閉容器の構成の内のいずれかと同様のものになる。輸送機器は、例えば、陸域においては、アンモニアおよびアンモニア混合燃料を輸送し得るタンクローリー等を含む車両(小型/大型自動車、原動機付バイクその他)、鉄道車両等、水域においては、液化アンモニア輸送用の船舶を含む商船、客船、艦艇、各種作業船等の船舶一般、潜水艇等、また空域においては、ヘリコプター、航空機、飛行船、ドローン等を含む。保存用密閉容器50は、移動ないし運搬されることが可能な、規模および構造を有する。以上の構成によれば、アンモニア混合燃料を充填した後の保存用密閉容器50を、前記の脱着可能な連結機構56で切り離して前記輸送機器に搭載するか、または、該保存用密閉容器50を予め前記輸送機器に設置しておき、これにアンモニア混合燃料を充填した後、前記の脱着可能な連結機構56で切り離すことにより、製造装置10で製造されたアンモニア混合燃料を、前記輸送機器に効率よく積載し、輸送することができる。 The connection mechanism 56 (see FIGS. 8 to 11) of the manufacturing apparatus 10 of one embodiment is configured to be detachable from each other with respect to the connection between the introduction line for introducing the ammonia-mixed fuel into the storage sealed container 50 and the injection port 52. , storage enclosure 50 is a container that can be mounted on a vehicle (not shown) in any one of land, water, and air space. For example, in the case of the form shown in FIG. It may extend from another temporary storage container (not shown) in which the manufactured ammonia mixed fuel is temporarily stored. The construction of this temporary storage container is basically similar to any of the constructions of the storage enclosures previously described. Transportation equipment includes, for example, vehicles (small/large vehicles, motorbikes, etc.) including tank trucks capable of transporting ammonia and ammonia-mixed fuel, railway vehicles, etc. in land areas, and liquefied ammonia transportation vehicles in water areas. Commercial ships including ships, passenger ships, warships, ships in general such as various work ships, submarines, etc. In the airspace, helicopters, aircraft, airships, drones, etc. are included. Storage enclosure 50 has a size and structure that allows it to be moved or transported. According to the above configuration, the storage closed container 50 filled with the ammonia mixed fuel is separated by the detachable connection mechanism 56 and mounted on the transportation equipment, or the storage closed container 50 is mounted. After being installed in the transportation equipment in advance and filled with the ammonia mixed fuel, the ammonia mixed fuel produced by the manufacturing apparatus 10 is separated by the detachable connection mechanism 56, so that the ammonia mixed fuel can be efficiently delivered to the transportation equipment. Can be well loaded and transported.
(アンモニア混合燃料の供給装置)
 図13(a),(b)は、一実施形態のアンモニア混合燃料の供給装置70の構成の例を説明するブロック図である。
 図13(a)に示す供給装置70(破線で囲まれた範囲)は、上述したアンモニア混合燃料の製造装置10、及びアンモニア混合燃料供給ライン60を少なくとも備える。図13(a)では、簡略表示のために、混合用密閉容器16と保存用密閉容器50のみが示されている。アンモニア混合燃料供給ライン60は、保存用密閉容器50の排出口54から排出されるアンモニア混合燃料を、アンモニア混合燃料を燃焼するように構成された燃焼器100に供給する。保存用密閉容器50に貯蔵されるアンモニア混合燃料は、混合用密閉容器16で製造された後に、液相排出ライン22を経て、保存用密閉容器50に移送されたものである。
 図13(b)に示す供給装置70(破線で囲まれた範囲)も、上述したアンモニア混合燃料の製造装置10、及びアンモニア混合燃料供給ライン60を少なくとも備える。図13(b)に示す形態は、製造装置10として混合用密閉容器16を備えるが、保存用密閉容器50を備えない形態である。アンモニア混合燃料供給ライン60の一部は、混合用密閉容器16の液相排出ライン22となる。すなわち、混合用密閉容器16から排出されるアンモニア混合燃料は、アンモニア混合燃料供給ライン60を経て、アンモニア混合燃料を燃焼させるように構成された燃焼器100に、保存用密閉容器50を経ることなく供給される。
(Ammonia mixed fuel supply device)
FIGS. 13A and 13B are block diagrams illustrating an example of the configuration of an ammonia-mixed fuel supply device 70 according to one embodiment.
A supply device 70 shown in FIG. 13A (a range surrounded by a dashed line) includes at least the ammonia-mixed fuel manufacturing device 10 and the ammonia-mixed fuel supply line 60 described above. In FIG. 13(a), only the closed container for mixing 16 and the closed container for storage 50 are shown for simplification. The ammonia-mixed fuel supply line 60 supplies the ammonia-mixed fuel discharged from the outlet 54 of the closed storage container 50 to the combustor 100 configured to burn the ammonia-mixed fuel. The ammonia mixed fuel stored in the storage closed container 50 is produced in the mixing closed container 16 and then transferred to the storage closed container 50 through the liquid phase discharge line 22 .
The supply device 70 shown in FIG. 13( b ) (area surrounded by broken lines) also includes at least the above-described ammonia-mixed fuel production device 10 and the ammonia-mixed fuel supply line 60 . The form shown in FIG. 13(b) is a form in which the manufacturing apparatus 10 is provided with the mixing closed container 16, but is not provided with the storage closed container 50. FIG. A part of the ammonia mixed fuel supply line 60 becomes the liquid phase discharge line 22 of the closed container 16 for mixing. That is, the ammonia-mixed fuel discharged from the closed mixing container 16 passes through the ammonia-mixed fuel supply line 60 to the combustor 100 configured to burn the ammonia-mixed fuel without passing through the storage closed container 50. supplied.
 図13(a),(b)では、アンモニア混合燃料供給ライン60上に、アンモニア混合燃料供給機80が設けられている。アンモニア混合燃料供給機80は、アンモニア混合燃料を、所定の流量および所定の吐出圧で、燃焼器100に供給するように構成されている。アンモニア混合燃料供給機80は、例えば、必要に応じて、アンモニア混合燃料を燃焼器100の要求する圧力に昇圧し、流量を制御して供給する、加圧機ないし送液ポンプ(例えば、上述の図11に示した保存用密閉容器50であってもよい)、および、燃焼器100内にアンモニア混合燃料を吐出させるインジェクタを含む。これらは図示されていない。
 燃焼器100は、例えば、液体状態のアンモニア混合燃料を直接燃焼室に供給する直噴型の燃焼器である。燃焼器には、燃焼に要求される所定量の空気、酸素富化空気、または酸素ガス等が、別途設けられる導入ライン(図示されない)によって、別途導入される。アンモニア混合燃料は、燃焼器100内で気化した後に、前記空気、酸素富化空気、または酸素ガス等と接触及び拡散混合し、燃焼する。また、前記燃焼器は、予気化器(図示されない)により液体状態のアンモニア混合燃料を予気化させ、そのガスが供給される燃焼器であってもよい。この場合、気化したアンモニア混合燃料に所定の比率で空気、酸素富化空気、または酸素を予混合してもよい。アンモニア混合燃料供給機80は、アンモニア混合燃料を気化させてガスを供給する場合、アンモニア混合燃料供給機80は上記予気化器を備えてもよい。以上の燃焼器においては、燃焼が円滑に進行するように、必要に応じて、アンモニア混合燃料の気化ガスを着火させるための点火プラグ、ないしは、アンモニア混合燃料の気化ガスをその発火温度以上に加熱する補助バーナー等の補機が、適宜設けられる。これらは図示されていない。
 上記のように構成された供給装置70によって、アンモニア混合燃料を、所定の吐出圧で、燃焼器100に供給できる。
13(a) and 13(b), an ammonia-mixed fuel supplier 80 is provided on the ammonia-mixed fuel supply line 60. In FIG. The ammonia-mixed fuel supply device 80 is configured to supply the ammonia-mixed fuel to the combustor 100 at a predetermined flow rate and a predetermined discharge pressure. The ammonia-mixed fuel supply device 80 is, for example, a pressurizer or a liquid-sending pump (for example, the above-mentioned figure) that pressurizes the ammonia-mixed fuel to the pressure required by the combustor 100 and supplies it by controlling the flow rate, if necessary. 11 ), and an injector for discharging the ammonia mixed fuel into the combustor 100 . These are not shown.
The combustor 100 is, for example, a direct-injection combustor that supplies liquid-state ammonia-mixed fuel directly to the combustion chamber. A predetermined amount of air, oxygen-enriched air, oxygen gas, or the like required for combustion is separately introduced into the combustor through a separate introduction line (not shown). After being vaporized in the combustor 100, the ammonia-mixed fuel comes into contact with and diffusely mixes with the air, oxygen-enriched air, oxygen gas, or the like, and is combusted. Also, the combustor may be a combustor in which a pre-vaporizer (not shown) pre-vaporizes a liquid state ammonia mixed fuel and supplies the gas. In this case, air, oxygen-enriched air, or oxygen may be premixed in a predetermined ratio with the vaporized ammonia mixed fuel. When the ammonia-mixed fuel supplier 80 supplies gas by vaporizing the ammonia-mixed fuel, the ammonia-mixed fuel supplier 80 may include the pre-vaporizer. In the above combustor, if necessary, a spark plug for igniting the vaporized gas of the ammonia mixed fuel, or heating the vaporized gas of the ammonia mixed fuel to the ignition temperature or higher so that the combustion proceeds smoothly. Auxiliary equipment such as an auxiliary burner is provided as appropriate. These are not shown.
The supply device 70 configured as described above can supply the ammonia-mixed fuel to the combustor 100 at a predetermined discharge pressure.
 アンモニア混合燃料供給ライン60、燃焼器100、燃焼器100から外気に排気ガスを排出する燃焼ガス排出ライン(図示されない)およびその周りの構成素材は、アンモニアに対する耐食性を有する材質に制限される。加えて、アンモニアの気化ガスを含む気体が接し、かつ燃焼熱等によっておよそ400℃以上に加熱される部位、例えば燃焼器100内にアンモニア混合燃料を吐出するアンモニア混合燃料のインジェクタ周り、燃焼器100内部の燃焼ガスに接する高温の接ガス部、および燃焼ガスライン内の高温部については、アンモニアの濃度に依存するが、アンモニア中の窒素に基づく窒化脆化による高温腐食に対する耐性を有することが好ましい。特に高濃度のアンモニアガスが接する400℃以上の箇所については、鉄、鋼、鋳鉄あるいはステンレス鋼等のクロム鋼系合金では耐食性が不足することがある。このため、これらの部位については、材質として、耐食性の高い純ニッケル等の金属や、ニッケルを高い含有率で含む、インコネル(商標)、ハステロイ(商標)、ナイモニック(商標)等を用いることが必要になる場合がある。 The ammonia-mixed fuel supply line 60, the combustor 100, the combustion gas discharge line (not shown) that discharges the exhaust gas from the combustor 100 to the outside air, and their surrounding constituent materials are restricted to materials having corrosion resistance to ammonia. In addition, a portion that is in contact with a gas containing vaporized ammonia gas and is heated to about 400° C. or more by combustion heat or the like, for example, around an ammonia mixed fuel injector that discharges the ammonia mixed fuel into the combustor 100, the combustor 100 High-temperature gas-contacting parts in contact with the internal combustion gas and high-temperature parts in the combustion gas line preferably have resistance to high-temperature corrosion due to nitriding embrittlement based on nitrogen in ammonia, although this depends on the concentration of ammonia. . In particular, chromium steel alloys such as iron, steel, cast iron, and stainless steel may lack corrosion resistance at locations of 400° C. or higher that are in contact with high-concentration ammonia gas. Therefore, for these parts, it is necessary to use metals such as pure nickel with high corrosion resistance, Inconel (trademark), Hastelloy (trademark), Nimonic (trademark), etc. that contain a high nickel content. may become
 図14は、一実施形態の供給装置70の構成の例を示すブロック図である。
 図14に示す供給装置70(破線で囲まれた範囲)のアンモニア混合燃料供給ライン60には、燃焼器100に至る途中に、アンモニア混合燃料を、所定の量の比で分岐する分岐部110が設けられる。供給装置70は、アンモニア混合燃料還流ライン112を備える。アンモニア混合燃料還流ライン112は、分岐部110から、アンモニア混合燃料供給ライン60を流れるアンモニア混合燃料のうち、燃焼器100に供給されずに分岐される部分を、混合用密閉容器16または保存用密閉容器50内に還流するように構成される。図14に示すように、図示されない分岐弁によって構成される分岐部110において、燃焼器100の要求する所定の流量および所定の吐出圧でアンモニア混合燃料供給機80が供給する、アンモニア混合燃料の一部が分岐され、混合用密閉容器16または保存用密閉容器50内に還流させるため、分岐されたアンモニア混合燃料を、混合用密閉容器16または保存用密閉容器50内のアンモニア混合燃料と同じ圧力条件になるように調整する、図示されない圧力調整機構が、アンモニア混合燃料還流ライン112に設けられることが好ましい。この圧力調整機構としては、例えば、混合用密閉容器16または保存用密閉容器50内の圧力に等しくなるよう吐出圧を調整できる循環ポンプ等を用いることができる。上記の分岐及び還流の際に、制御装置32は、燃焼器100での燃焼の所要出力に応じて、燃焼器100での燃焼に供されるアンモニア混合燃料の所要量を算出し、この所要量に対して、供給機80から供給されるアンモニア混合燃料のうち、余剰となる量を分岐部110において分岐させ、アンモニア混合燃料還流ライン112を介して混合用密閉容器16または保存用密閉容器50内に還流させるよう、分岐部110の分岐弁、およびアンモニア混合燃料還流ライン112に設けられた前記圧力調整機構に対し、制御信号を送信する。これらの制御信号に基づき、分岐部110の前記分岐弁の開度、および前記圧力調整機構が制御される。また、上記制御の安定動作のために、アンモニア混合燃料還流ライン112には、図示されない流量調整弁が設けられてもよく、この流量調整弁の開度も、制御装置32の制御信号によって、同様に適宜制御される。
 上記のように構成された供給装置70によれば、所要量のアンモニア混合燃料を、安定した所定の吐出圧で、燃焼器100に継続供給することができる。
FIG. 14 is a block diagram showing an example of the configuration of the feeding device 70 of one embodiment.
In the ammonia-mixed fuel supply line 60 of the supply device 70 (the area surrounded by the dashed line) shown in FIG. be provided. The supply device 70 includes an ammonia mixed fuel recirculation line 112 . Ammonia-mixed fuel recirculation line 112 stores the part of the ammonia-mixed fuel flowing through ammonia-mixed fuel supply line 60 from branch 110 that is branched without being supplied to combustor 100 in closed container 16 for mixing or in closed container for storage. It is configured to flow back into vessel 50 . As shown in FIG. 14 , in a branching section 110 configured by a branch valve (not shown), one portion of the ammonia-mixed fuel is supplied from the ammonia-mixed fuel supplier 80 at a predetermined flow rate and a predetermined discharge pressure required by the combustor 100 . In order to flow back into the closed mixing container 16 or the closed container 50 for storage, the branched ammonia mixed fuel is subjected to the same pressure conditions as the ammonia mixed fuel in the closed mixing container 16 or the closed container 50 for storage. A pressure adjustment mechanism (not shown) is preferably provided in the ammonia-mixed fuel recirculation line 112 to adjust so that As this pressure adjusting mechanism, for example, a circulation pump or the like that can adjust the discharge pressure to be equal to the pressure in the mixing closed container 16 or the storage closed container 50 can be used. During the above branching and recirculation, the control device 32 calculates the required amount of ammonia-mixed fuel to be burned in the combustor 100 according to the required output of combustion in the combustor 100, and calculates this required amount , the surplus amount of the ammonia mixed fuel supplied from the feeder 80 is branched at the branching part 110, and passed through the ammonia mixed fuel recirculation line 112 to the closed container 16 for mixing or the closed container 50 for storage. A control signal is sent to the branch valve of the branch section 110 and the pressure adjustment mechanism provided in the ammonia-mixed fuel recirculation line 112 so that the ammonia mixed fuel recirculation line 112 is recirculated. Based on these control signals, the opening degree of the branch valve of the branch section 110 and the pressure adjustment mechanism are controlled. Further, for stable operation of the above control, the ammonia-mixed fuel recirculation line 112 may be provided with a flow control valve (not shown), and the opening of this flow control valve is similarly controlled by the control signal of the controller 32. is controlled appropriately.
According to the supply device 70 configured as described above, a required amount of ammonia-mixed fuel can be continuously supplied to the combustor 100 at a stable predetermined discharge pressure.
(アンモニア混合燃料の燃焼装置)
 図15は、一実施形態のアンモニア混合燃料の燃焼装置120の構成の例を説明するブロック図である。
 本実施形態において、燃焼装置120は、製造されたアンモニア混合燃料を燃焼することにより、熱エネルギーを生じさせるか、または、燃焼により生じる熱エネルギーを、力学的エネルギーあるいは電気エネルギー等の他のエネルギーに変換し、燃焼ガスを大気に排出する装置であり、得られるそれぞれのエネルギーは、後述する種々の用途に利用され得る。
 燃焼装置120は、アンモニア混合燃料の供給装置70(図9参照)、燃焼器100、及び燃焼ガス排出ライン130を備える。
 燃焼器100は、上述したアンモニア混合燃料を燃焼させるように構成される。
 供給装置70は、上述したようにアンモニア混合燃料を燃焼器100に供給するように構成される。
 燃焼ガス排出ライン130は、燃焼器100におけるアンモニア混合燃料の燃焼で生じる燃焼ガスを、大気中に排出するように構成される。
(Combustion device for ammonia mixed fuel)
FIG. 15 is a block diagram illustrating an example of the configuration of an ammonia mixed fuel combustion apparatus 120 according to one embodiment.
In this embodiment, the combustion device 120 produces thermal energy by burning the produced ammonia mixed fuel, or converts the thermal energy produced by combustion into mechanical energy or other energy such as electrical energy. It is a device that converts and discharges combustion gases into the atmosphere, and the respective energy obtained can be utilized for various uses described below.
The combustion device 120 includes an ammonia mixed fuel supply device 70 (see FIG. 9), a combustor 100 and a combustion gas discharge line 130 .
Combustor 100 is configured to burn the ammonia blended fuel described above.
The supply device 70 is configured to supply the ammonia blended fuel to the combustor 100 as described above.
Combustion gas discharge line 130 is configured to discharge combustion gas resulting from combustion of the ammonia mixed fuel in combustor 100 to the atmosphere.
 さらに、一実施形態の燃焼装置120は、必要に応じて、選択的触媒反応器128を備える。図15に示すように、燃焼装置120が選択的触媒反応器128を備える場合、選択的触媒反応器128に付随して、窒素酸化物、アンモニア濃度計測器122、供給量算出装置124、及び定量供給装置126を備える。 Additionally, the combustion device 120 of one embodiment optionally includes a selective catalytic reactor 128 . As shown in FIG. 15, when the combustion device 120 includes a selective catalytic reactor 128, the selective catalytic reactor 128 is accompanied by nitrogen oxides, an ammonia concentration meter 122, a feed rate calculator 124, and a metering device. A supply device 126 is provided.
 この燃焼装置120において、図15に示されるように、選択的触媒反応器128が、燃焼器100の燃焼ガスの排出側、すなわち燃焼ガス排出ライン130に設けられていることが好ましい。選択的触媒反応器128は、燃焼器100から排出される燃焼ガス中の窒素酸化物(大気汚染物質である一酸化窒素、二酸化窒素等が含まれる。以下、これらをNOxと総称する場合がある)を、触媒還元によって分解するように構成された反応器である。すなわち、選択的触媒反応器128は、燃焼器100でアンモニア混合燃料が燃焼する際に副生成し、燃焼ガス中に含まれた状態で、燃焼器100の燃焼室から排出されて燃焼ガス排出ライン130を通る窒素酸化物NOxを、還元分解する。 In this combustion device 120, as shown in FIG. 15, a selective catalytic reactor 128 is preferably provided on the combustion gas discharge side of the combustor 100, that is, on the combustion gas discharge line . The selective catalytic reactor 128 removes nitrogen oxides (including air pollutants such as nitrogen monoxide and nitrogen dioxide) in the combustion gas discharged from the combustor 100. Hereinafter, these may be collectively referred to as NOx. ) by catalytic reduction. That is, the selective catalytic reactor 128 is a by-product when the ammonia mixed fuel is burned in the combustor 100, is contained in the combustion gas, and is discharged from the combustion chamber of the combustor 100 to the combustion gas discharge line. Nitrogen oxides NOx passing through 130 are reductively decomposed.
 アンモニアは、適切な触媒の存在下で、NOxを高効率で選択的に還元分解するNOx還元剤として知られ、広く用いられる。選択的触媒反応器128においては、NOx還元剤として、燃焼器100において燃焼し切れずに燃焼ガス中に残留し排出されたアンモニア、またはそれに加えて、上述のアンモニア貯蔵用密閉容器12から別途供給されるアンモニア、および上述の保存用密閉容器50から別途供給されるアンモニア混合燃料の、いずれか一方を、用いることができる。
 図15は、前述した、燃焼器100において燃焼し切れずに燃焼ガス中に残留し排出されたアンモニアと、上述のアンモニア貯蔵用密閉容器12から別途供給されるアンモニア、および上述の保存用密閉容器50から別途供給されるアンモニア混合燃料のいずれか一方とを、還元剤として共に用いる場合の実施形態を示している。これにおいては、液体状態のアンモニア、およびアンモニア混合燃料の内のいずれか一方の所定量を、燃焼ガス排出ライン130に合流させるように構成された、選択的触媒反応用供給ライン132が設けられることが好ましい。即ち、選択的触媒反応用供給ライン132は、液体状態のアンモニアを貯蔵するアンモニア貯蔵用密閉容器12、及びアンモニア混合燃料を保存する保存用密閉容器50の、いずれか一方から導かれる。
Ammonia is known and widely used as a NOx reducing agent that selectively reductively decomposes NOx with high efficiency in the presence of an appropriate catalyst. In the selective catalytic reactor 128, as the NOx reducing agent, the ammonia remaining in the combustion gas without being completely burned in the combustor 100 and discharged, or additionally supplied separately from the ammonia storage closed container 12 described above. It is possible to use either the ammonia that is supplied as a fuel or the ammonia-mixed fuel that is separately supplied from the storage closed container 50 described above.
FIG. 15 shows the above-described ammonia remaining in the combustion gas without being completely burned in the combustor 100 and discharged, the ammonia separately supplied from the above-described ammonia storage closed container 12, and the above-described storage closed container. 50 shows an embodiment in which either one of the ammonia mixed fuel separately supplied from 50 is used together as a reducing agent. In this, a selective catalytic reaction supply line 132 configured to join a predetermined amount of either one of liquid state ammonia and ammonia mixed fuel to the combustion gas discharge line 130 is provided. is preferred. That is, the selective catalytic reaction supply line 132 is led from either the closed ammonia storage container 12 for storing ammonia in a liquid state or the closed storage container 50 for storing the ammonia mixed fuel.
 図15の実施形態においては、燃焼器100から排出される燃焼ガス中の残留アンモニアに加え、さらに、液体状態のアンモニア、およびアンモニア混合燃料中のアンモニアのいずれか一方を、選択的触媒反応器128に供給することにより、燃焼ガス中に共存するNOxを、確実に還元分解することができる。これらは、燃焼ガスと、前記いずれか一方のアンモニアとの合流部130aにおいて、燃焼ガスの排熱で上記アンモニアが気化して選択的触媒反応器128に供給され、NOxの選択的触媒分解における還元剤として働く。特に、アンモニア混合燃料を触媒還元のために供給する場合は、共存する原料用炭化水素あるいは原料用アルコールも、選択的触媒反応器128における還元剤として作用する。したがって、アンモニアと、原料用炭化水素あるいは原料用アルコールとの、それぞれの還元力の相乗効果により、より効率的に窒素酸化物NOxを分解することができる。
 また、選択的触媒反応器128内の触媒は、以上の選択的触媒還元が効率的に進行するような所定の温度に保持されることが好ましい。このため、燃焼ガス排出ライン130を通る燃焼ガス温度が、前記の所定の温度に概ね一致するような燃焼ガス排出ライン130内の位置に、選択的触媒反応器128が設けられるか、または、選択的触媒反応器128内部の触媒の温度を調節する温度調節器(図示されない)を設けることにより、選択的触媒反応器128内の温度が適宜調節されることが好ましい。例えば、還元剤として、アンモニア貯蔵用密閉容器12内の液体状態のアンモニアが用いられる場合には、触媒としては、バナジウム・タングステン(ないしモリブデン)・チタンの混合酸化物からなるハニカム体などが好適に用いられ、また、その際の選択的触媒還元に好適な触媒の温度は、およそ300~470℃程度になる。こうした温度域に触媒温度を保持する前記温度調節器としては、例えば電熱ヒーターなどが用いられる。
In the embodiment of FIG. 15, in addition to the residual ammonia in the combustion gas discharged from the combustor 100, either the liquid state ammonia or the ammonia in the ammonia mixed fuel is added to the selective catalytic reactor 128. NOx coexisting in the combustion gas can be reliably reduced and decomposed. At the confluence portion 130a of the combustion gas and one of the ammonia, the exhaust heat of the combustion gas vaporizes the ammonia, which is supplied to the selective catalytic reactor 128, and is reduced in the selective catalytic decomposition of NOx. act as an agent. The coexisting feedstock hydrocarbons or feedstock alcohols also act as reducing agents in the selective catalytic reactor 128, particularly when the ammonia mixed fuel is supplied for catalytic reduction. Therefore, the synergistic effect of the reducing power of ammonia and the raw material hydrocarbon or raw material alcohol makes it possible to decompose nitrogen oxides NOx more efficiently.
Also, the catalyst in the selective catalytic reactor 128 is preferably kept at a predetermined temperature so that the selective catalytic reduction described above proceeds efficiently. To this end, the selective catalytic reactor 128 is provided or selected at a location within the flue gas discharge line 130 such that the temperature of the flue gas passing through the flue gas discharge line 130 generally corresponds to the predetermined temperature. Preferably, the temperature within the selective catalytic reactor 128 is adjusted accordingly by providing a temperature controller (not shown) that regulates the temperature of the catalyst within the selective catalytic reactor 128 . For example, when liquid ammonia in the ammonia storage closed container 12 is used as the reducing agent, a honeycomb body made of a mixed oxide of vanadium, tungsten (or molybdenum), and titanium is preferably used as the catalyst. The temperature of the catalyst used and suitable for selective catalytic reduction at that time is about 300 to 470°C. As the temperature controller for maintaining the catalyst temperature within such a temperature range, for example, an electric heater is used.
 液体状態のアンモニア、およびアンモニア混合燃料のいずれか一つを所定量燃焼ガス排出ライン130に合流させて、選択的触媒反応器128における窒素酸化物NOxの還元剤として用いるために、燃焼装置120は、図15に示すように、窒素酸化物・アンモニア濃度計測器122、供給量算出装置124、及び定量供給装置126を備えることが好ましい。
 窒素酸化物・アンモニア濃度計測器122は、選択的触媒反応用供給ライン132と燃焼ガス排出ライン130との合流部130aに対して燃焼器100の燃焼室の側の燃焼ガス排出ライン130に設けられ、合流部130aに対して燃焼室の側の窒素酸化物の濃度、およびアンモニアの濃度をそれぞれ計測するように構成されている。窒素酸化物、アンモニア濃度計測器122は、公知の計測器を用いることができる。
Combustion device 120 is configured to combine a predetermined amount of either one of liquid state ammonia and ammonia mixed fuel into combustion gas discharge line 130 for use as a reducing agent for nitrogen oxides NOx in selective catalytic reactor 128. , as shown in FIG. 15, it is preferable to include a nitrogen oxide/ammonia concentration measuring device 122, a supply amount calculating device 124, and a fixed quantity supplying device 126. FIG.
The nitrogen oxide/ammonia concentration measuring instrument 122 is provided in the combustion gas discharge line 130 on the combustion chamber side of the combustor 100 with respect to the junction 130a of the selective catalytic reaction supply line 132 and the combustion gas discharge line 130. , the concentration of nitrogen oxides and the concentration of ammonia on the side of the combustion chamber with respect to the confluence portion 130a. A known measuring instrument can be used as the nitrogen oxide and ammonia concentration measuring instrument 122 .
 供給量算出装置124は、窒素酸化物・アンモニア濃度計測器122で計測される計測結果に基づいて、選択的触媒反応用供給ライン132を通して供給されるべき、アンモニアまたはアンモニア混合燃料の量を算出するように構成される。供給量算出装置124は、例えば、計測される濃度とアンモニアまたはアンモニア混合燃料の量との関係を予め定めた参照テーブルを備え、窒素酸化物、アンモニア濃度計測器122で計測された計測結果から、参照テーブルを参照することにより、選択的触媒反応用供給ライン132を通して供給されるべき、アンモニアまたはアンモニア混合燃料の量を算出する。
 定量供給装置126は、選択的触媒反応用供給ライン132に設けられ、供給量算出装置124による量の算出結果に基づいて、アンモニアまたはアンモニア混合燃料の供給量を制御するように構成される。アンモニアまたはアンモニア混合燃料の供給量の制御は、選択的触媒反応用供給ライン132に設けられる図示されない調整弁の開度、あるいは、定量供給装置126内に備えられた送液ポンプ等の送液機構(図示されない)の送液出力を調整することにより行われる。これにより、燃焼ガス中の窒素酸化物あるいはアンモニアの濃度が変動しても、この変動に応じて、還元剤の量を適量に調整することができる。
 燃焼ガス中のNOxは、以上で説明したアンモニア供給による触媒還元によって、確実に除去され得る。ただし、選択的触媒反応器128から排出され、大気中に放出される燃焼ガスの中に、なおも残留するNOxおよび残留アンモニアの濃度を、さらに確認する必要がある場合は、図15に示される構成に加えて、選択的触媒反応器128の後段の燃焼ガス排出ライン130に、前記の窒素酸化物・アンモニア濃度計測器122と同一構成の、もう一組の窒素酸化物・アンモニア濃度計測器(図示されない)が付設されることが好ましい。
The supply amount calculation device 124 calculates the amount of ammonia or ammonia mixed fuel to be supplied through the selective catalytic reaction supply line 132 based on the measurement result measured by the nitrogen oxide/ammonia concentration measuring device 122. configured as The supply amount calculation device 124 has, for example, a reference table that predetermines the relationship between the concentration to be measured and the amount of ammonia or ammonia mixed fuel, and from the measurement results measured by the nitrogen oxide and ammonia concentration measuring device 122, By referring to the lookup table, the amount of ammonia or ammonia mixed fuel to be supplied through the selective catalytic reaction supply line 132 is calculated.
The constant supply device 126 is provided in the selective catalytic reaction supply line 132 and is configured to control the supply amount of ammonia or ammonia-mixed fuel based on the amount calculated by the supply amount calculation device 124 . The amount of ammonia or ammonia-mixed fuel supplied is controlled by the degree of opening of a regulating valve (not shown) provided in the selective catalytic reaction supply line 132, or a liquid-sending mechanism such as a liquid-sending pump provided in the quantitative supply device 126. (not shown) by adjusting the liquid delivery output. As a result, even if the concentration of nitrogen oxides or ammonia in the combustion gas fluctuates, the amount of the reducing agent can be appropriately adjusted according to this fluctuation.
NOx in the combustion gas can be reliably removed by catalytic reduction with ammonia supply as described above. However, if further confirmation of the concentration of NOx and residual ammonia still remaining in the combustion gases discharged from the selective catalytic reactor 128 and released to the atmosphere is required, the concentrations shown in FIG. In addition to the configuration, another set of nitrogen oxide/ammonia concentration measuring instruments ( not shown) is preferably attached.
 燃焼器100は、例えば、アンモニア混合燃料の燃焼で生じる燃焼ガスの熱エネルギーを利用して機械的動力を取り出すように構成された、ガスタービン、ジェットエンジン、レシプロエンジン、ロータリーエンジン等の内燃機関であってもよい。また、燃焼装置120は、アンモニア混合燃料の燃焼で生じる前記燃焼ガスの熱エネルギーを利用して、機械的動力を取り出すように構成された、蒸気タービン(ボイラが包含される)、スターリングエンジン等の外燃機関を備えてもよい。この場合、外燃機関と燃焼器100とが近接し略同一と見なせる場合と、離間した別体である場合とがある。離間した別体の場合、燃焼器100と外燃機関との間を接続する、図示されない燃焼ガス移送ラインが設けられる。外燃機関で使用して大気中に排出される燃焼ガスの燃焼ガス排出ライン130は、外燃機関の後段に設けられる。
 さらに、燃焼器100は、アンモニア混合燃料の燃焼で生じる燃焼ガスの熱エネルギーを用いて、加熱加工を行うように構成された図示されない加熱加工器具を備えてもよい。加熱加工器具は、燃焼ガスの熱エネルギーによって、例えば、金属、セラミックス、樹脂等の素材のか焼、焙焼、溶融、溶断、溶接、溶着、鋳造、焼鈍、撓鉄、加熱還元、焼却等を行う器具である。この場合、外燃機関と同様に加熱加工器具と燃焼器100とが近接し略同一と見なせる場合と、離間した別体である場合とがある。離間した別体の場合、燃焼器100と加熱加工器具との間を接続する、図示されない燃焼ガス移送ラインが設けられる。加熱加工器具で使用して大気中に排出される燃焼ガスの燃焼ガス排出ラインは、加熱加工器具の後段に設けられる。
The combustor 100 is, for example, an internal combustion engine such as a gas turbine, a jet engine, a reciprocating engine, or a rotary engine configured to extract mechanical power using thermal energy of combustion gas generated by combustion of ammonia mixed fuel. There may be. In addition, the combustion device 120 is a steam turbine (including a boiler), a Stirling engine, etc., configured to extract mechanical power by utilizing the thermal energy of the combustion gas generated by combustion of the ammonia mixed fuel. An external combustion engine may be provided. In this case, there are cases where the external combustion engine and the combustor 100 are close to each other and can be regarded as substantially the same, and other cases where they are separated from each other. In the case of a separate body, a combustion gas transfer line, not shown, is provided connecting between the combustor 100 and the external combustion engine. A combustion gas discharge line 130 for combustion gas used in the external combustion engine and discharged into the atmosphere is provided after the external combustion engine.
Furthermore, the combustor 100 may include a heating processing device (not shown) configured to perform heating processing using thermal energy of combustion gas generated by combustion of the ammonia-mixed fuel. Heat processing tools use the thermal energy of combustion gas to calcine, roast, melt, cut, weld, weld, cast, anneal, bend iron, heat reduce, and incinerate materials such as metals, ceramics, and resins. It is an instrument. In this case, as in the case of an external combustion engine, there are cases in which the heating and processing instrument and the combustor 100 are close to each other and can be regarded as substantially the same, and in other cases they are separated from each other. In the case of a separate unit, a combustion gas transfer line, not shown, is provided connecting between the combustor 100 and the hot processing tool. A combustion gas discharge line for the combustion gas used in the heating and processing equipment and discharged into the atmosphere is provided at the rear stage of the heating and processing equipment.
(その他のアンモニア混合燃料の適用)
 アンモニア混合燃料の燃焼は、発電設備や輸送機器の推進機関に用いることができる。
 発電設備は、例えば、陸域、水域、および空域のいずれか一つにおいて、発電を行う発電設備である。この場合、発電設備には、アンモニア混合燃料の燃焼器100として、上述した内燃機関、および上述した外燃機関の少なくともいずれか一方が搭載される。発電設備の発電機は、アンモニア混合燃料の燃焼ガスの熱エネルギーを利用して取り出される機械的動力を利用して発電するように構成され、発電設備の電力出力端は、発電機で発電される電力を出力するように構成される。この場合、発電設備には、電力出力端における電力量を制御するように構成された制御機構を備える。
(Application of other ammonia mixed fuels)
Combustion of ammonia mixed fuels can be used for propulsion engines of power generation equipment and transportation equipment.
A power generation facility is, for example, a power generation facility that generates power in any one of land, water, and air space. In this case, at least one of the above-described internal combustion engine and the above-described external combustion engine is installed in the power generation facility as the combustor 100 for the ammonia mixed fuel. The generator of the power generation facility is configured to generate power using the mechanical power extracted using the thermal energy of the combustion gas of the ammonia mixed fuel, and the power output end of the power generation facility is generated by the generator. configured to output electrical power. In this case, the power plant comprises a control mechanism configured to control the amount of power at the power output.
 輸送機器は、陸域、水域、および空域のいずれか一つにおいて移動ないし物資輸送を行うように構成された機器であり、その推進機関は、輸送機関を移動させる推力を生じるように構成された動力機関である。この場合、輸送機器には、内燃機関を備えたアンモニア混合燃料の燃焼装置、および、外燃機関を備えたアンモニア混合燃料の燃焼装置の少なくともいずれか一方が、推進機関として搭載される。さらに、輸送機器は、アンモニア混合燃料の燃焼ガスの熱エネルギーから、内燃機関および外燃機関の少なくともいずれか一方によって取り出される機械的動力を輸送機器の推力の少なくとも一部として利用するように構成された動力変換伝達機構を備える。
 輸送機器として、例えば、陸域においては、アンモニアおよびアンモニア混合燃料を輸送し得るタンクローリー等を含む車両(小型及び大型自動車、原動機付バイクその他)、鉄道車両等、水域においては、液化アンモニア輸送用の船舶を含む商船、客船、艦艇、各種作業船等の船舶一般、潜水艇等、また空域においては、ヘリコプター、航空機、飛行船、ドローン等が挙げられる。この場合、動力変換伝達機構は、推進駆動に用いるための、動力の方向、トルク、あるいは速度を適宜変更して、最終的な駆動部に伝達する公知の一連の機構であり、例えば、カム、クランク、各種ギヤ、チェーン、ベルト、変速機、駆動軸、駆動輪、プロペラないしスクリュー等を含む。上述した内燃機関、外燃機関の他にも動力を供給し得る動力源があり、これらの動力を合わせて輸送機器を推進駆動させる場合、動力変換伝達機構は、上記駆動部に伝達する一連の機構の他に、両者の動力の同期機構および同軸駆動等の合力機構を含む。
A vehicle is a device configured to move or transport goods in any one of land, water, and air, the propulsion mechanism of which is configured to produce thrust to move the vehicle. It is a power engine. In this case, at least one of an ammonia-mixed fuel combustion device with an internal combustion engine and an ammonia-mixed fuel combustion device with an external combustion engine is mounted as a propulsion engine on the transportation equipment. Further, the vehicle is configured to utilize mechanical power extracted by at least one of the internal combustion engine and the external combustion engine from the thermal energy of the combustion gas of the ammonia mixed fuel as at least part of the thrust of the vehicle. Equipped with a power conversion transmission mechanism.
As transportation equipment, for example, in land areas, vehicles including tank trucks (small and large automobiles, motorbikes, etc.) that can transport ammonia and ammonia mixed fuel, railway vehicles, etc. In water areas, liquefied ammonia transportation Commercial ships including ships, passenger ships, warships, ships in general such as various work ships, submarines, etc., and in airspace, helicopters, aircraft, airships, drones, etc. In this case, the power conversion transmission mechanism is a series of well-known mechanisms that appropriately change the direction, torque, or speed of power used for propulsion drive and transmit it to the final drive unit. Including cranks, various gears, chains, belts, transmissions, drive shafts, drive wheels, propellers or screws, etc. In addition to the above-described internal combustion engine and external combustion engine, there are other power sources that can supply power. In addition to the mechanism, it includes a synchronizing mechanism of both powers and a resultant force mechanism such as a coaxial drive.
 また、輸送機器には、上述した発電設備が搭載される場合もある。この場合、輸送機器は、アンモニア混合燃料の燃焼ガスの熱エネルギーを利用して、発電設備で出力される電力を、輸送機器の推進、輸送機器の運転制御、および輸送機器の維持管理の少なくとも一つにおける、所要電力の少なくとも一部に用いるように構成された、電気推進機構および給電機構の少なくとも一方を備えることが好ましい。この場合、輸送機器には、内燃機関を備えたアンモニア混合燃料の燃焼装置、および、外燃機関を備えた前記アンモニア混合燃料の燃焼装置の少なくともいずれか一方を備えてもよい。この場合、アンモニア混合燃料の燃焼ガスのエネルギーから、内燃機関および外燃機関の少なくともいずれか一方によって取り出される機械的動力を輸送機器の推進の動力の少なくとも一部に変換して使用するように構成された動力変換伝達機構を備える。 In addition, transportation equipment may be equipped with the power generation equipment described above. In this case, the transportation equipment uses the thermal energy of the combustion gas of the ammonia-mixed fuel to generate electric power output from the power generation facility for at least one of the following: propulsion of the transportation equipment, operation control of the transportation equipment, and maintenance and management of the transportation equipment. Preferably, there is at least one of an electric propulsion mechanism and a power supply mechanism configured to use at least a portion of the power requirements of the first. In this case, the transport equipment may include at least one of an ammonia-mixed fuel combustion device with an internal combustion engine and an ammonia-mixed fuel combustion device with an external combustion engine. In this case, the mechanical power extracted by at least one of the internal combustion engine and the external combustion engine from the energy of the combustion gas of the ammonia-mixed fuel is converted into at least a part of the power for propulsion of the transportation equipment and used. equipped with a power conversion transmission mechanism.
 このようにアンモニア混合燃料を用いてアンモニアを効率よく燃焼させることで、GHG排出規制に対応可能な内燃機関、外燃機関、加熱加工器具、及び発電設備に好適に利用することができる。 By efficiently burning ammonia using the ammonia mixed fuel in this way, it can be suitably used for internal combustion engines, external combustion engines, heat processing equipment, and power generation equipment that can comply with GHG emission regulations.
 以上、本発明のアンモニア混合燃料、アンモニア混合燃料の製造装置、アンモニア混合燃料の製造方法、アンモニア混合燃料の供給装置、アンモニア混合燃料の燃焼装置、アンモニア混合燃料を用いた発電設備、及び、アンモニア混合燃料を用いた輸送機器について詳細に説明したが、本発明は上記実施形態及び下記実施例に限定されず、本発明の主旨を逸脱しない範囲において、種々の改良や変更をしてもよいのはもちろんである。 As described above, the ammonia mixed fuel, the ammonia mixed fuel production apparatus, the ammonia mixed fuel production method, the ammonia mixed fuel supply apparatus, the ammonia mixed fuel combustion apparatus, the power generation equipment using the ammonia mixed fuel, and the ammonia mixture of the present invention Although the transportation equipment using fuel has been described in detail, the present invention is not limited to the above embodiments and the following examples, and various improvements and modifications may be made without departing from the gist of the present invention. Of course.
 (実施例1)
 図2に示したアンモニア混合燃料製造装置を用い、液化アンモニア[NH]および液化プロパン[C]を、この順に、約5℃に温度調節された混合用密閉容器(内容量約2L)の内部に、仕込質量比約75:25(合計質量約490g)にて導入した(これらの導入に先立ち、混合用密閉容器16内をまず窒素ガスによって、次に液化アンモニアの揮発蒸気によって、順次ガス置換している)。液化アンモニアおよび液化プロパンの導入の完了後、全ての弁を閉じ、約20℃に液相温度を調節しながら、単式撹拌翼の撹拌機で撹拌混合したところ、間もなく液相は、プロパン主体の上層と、アンモニア主体の下層の二相に分かれて安定した。この時、上層と下層の体積比は、およそ15:85(合計体積約810cm)であり、また、内圧(飽和蒸気圧)は、約1.6MPaであった。またこの時、気密を維持したまま、気相排出ライン21を利用して上層および下層中にキャピラリを挿入し(図示されない)、上層および下層からそれぞれ約0.5cmずつをサンプルとして採取して、上層および下層のアンモニア濃度をガスクロマトグラフ法により測定したところ、それぞれ約16質量%、および約87質量%(上下層全体の液相平均アンモニア濃度は約77質量%)であった。
 その後、撹拌を継続しながら液相温度を上昇させると、上層及び下層の二液相界面が上昇していき、約23℃において上層が消失し、全体が均一に溶解したアンモニア混合燃料が得られた。この時、混合用密閉容器の内圧(飽和蒸気圧)は、約1.7MPaであった。液相温度をそれ以上に上昇させても液相は均一状態を保ったが、その後、液相温度を約23℃未満に低下させると、再び二相に分かれた。また、液相温度を約23℃に維持しながら約1日保持した後も、液相は分離せず、内圧も約1.7MPaに保たれた。
(Example 1)
Using the ammonia mixed fuel manufacturing apparatus shown in FIG. 2, liquefied ammonia [NH 3 ] and liquefied propane [C 3 H 8 ] are placed in this order in a closed vessel for mixing (contents about 2 L) whose temperature is adjusted to about 5 ° C. ) at a charged mass ratio of about 75:25 (total mass of about 490 g) (prior to these introductions, the inside of the closed mixing vessel 16 was first filled with nitrogen gas, then with volatilized vapor of liquefied ammonia, gas is replaced sequentially). After the introduction of the liquefied ammonia and liquefied propane was completed, all the valves were closed, and while the liquid phase temperature was adjusted to about 20°C, stirring and mixing was performed using a single impeller stirrer. , and separated into two phases, a lower layer mainly composed of ammonia, and stabilized. At this time, the volume ratio between the upper layer and the lower layer was approximately 15:85 (total volume approximately 810 cm 3 ), and the internal pressure (saturated vapor pressure) was approximately 1.6 MPa. At this time, while maintaining airtightness, capillaries were inserted into the upper and lower layers using the gas phase discharge line 21 (not shown), and samples of about 0.5 cm 3 each were collected from the upper and lower layers. , the ammonia concentrations of the upper and lower layers were measured by gas chromatography and found to be about 16 mass % and about 87 mass %, respectively (liquid phase average ammonia concentration of the entire upper and lower layers was about 77 mass %).
After that, when the liquidus temperature is raised while stirring is continued, the interface between the two liquid phases of the upper layer and the lower layer rises, the upper layer disappears at about 23 ° C., and an ammonia mixed fuel in which the whole is uniformly dissolved is obtained. rice field. At this time, the internal pressure (saturated vapor pressure) of the closed vessel for mixing was about 1.7 MPa. When the liquidus temperature was increased further, the liquid phase remained homogeneous, but when the liquidus temperature was subsequently lowered below about 23°C, it separated into two phases again. Further, even after the liquid phase temperature was kept at about 23° C. for about one day, the liquid phase was not separated and the internal pressure was kept at about 1.7 MPa.
 (実施例2)
 実施例1と同一の混合燃料製造装置を用い、液化アンモニアおよび液化n-ブタン[n-C10]を、液化n-ブタンから先に、約5℃に温度調節された混合用密閉容器(内容量約2L)の内部に、仕込質量比約85:15(合計質量約570g)にて導入した。これらの導入に先立ち、混合用密閉容器16内をまず窒素ガスによって、次に液化n-ブタンの揮発蒸気によって、順次ガス置換した。液化アンモニアおよび液化n-ブタンの導入の完了後、全ての弁を閉じ、約20℃に液相温度を調節しながら、単式撹拌翼の撹拌機で撹拌混合したところ、間もなく液相は、n-ブタン主体の上層と、アンモニア主体の下層の二相に分かれて安定した。この時、上層と下層の体積比は、およそ7:93(合計体積約940cm)であり、また、内圧(飽和蒸気圧)は約1.0MPaであった。
 その後、撹拌を継続しながら液相温度を上昇させると、上層及び下層の二液相界面が上昇していき、約32℃において上層が消失し、全体が均一に溶解したアンモニア混合燃料が得られた。この時、混合用密閉容器の内圧(飽和蒸気圧)は、約1.4MPaであった。液相温度をそれ以上に上昇させても液相は均一状態を保ったが、その後、液相温度を約32℃未満に低下させると、再び二相に分かれた。また、液相温度を約32℃に維持しながら約10時間保持した後も、液相は分離せず、内圧も約1.4MPaに保たれた。
(Example 2)
Using the same mixed fuel production apparatus as in Example 1, liquefied ammonia and liquefied n-butane [n-C 4 H 10 ] were mixed in a sealed vessel for mixing, the temperature of which was adjusted to about 5°C, starting with liquefied n-butane. (Internal capacity: about 2 L). Prior to the introduction of these components, the inside of the closed container 16 for mixing was first replaced with nitrogen gas and then with volatilized vapor of liquefied n-butane. After the introduction of the liquefied ammonia and the liquefied n-butane was completed, all the valves were closed, and while the liquid phase temperature was adjusted to about 20°C, stirring and mixing were performed using a single stirring blade stirrer. It separated into two phases, a butane-based upper layer and an ammonia-based lower layer, and stabilized. At this time, the volume ratio between the upper layer and the lower layer was approximately 7:93 (total volume approximately 940 cm 3 ), and the internal pressure (saturated vapor pressure) was approximately 1.0 MPa.
After that, when the liquidus temperature is raised while stirring is continued, the interface between the two liquid phases of the upper layer and the lower layer rises, the upper layer disappears at about 32 ° C., and an ammonia mixed fuel in which the whole is uniformly dissolved is obtained. rice field. At this time, the internal pressure (saturated vapor pressure) of the closed container for mixing was about 1.4 MPa. When the liquidus temperature was increased further, the liquid phase remained homogeneous, but when the liquidus temperature was subsequently lowered below about 32°C, it separated into two phases again. Further, even after the liquid phase temperature was kept at about 32° C. for about 10 hours, the liquid phase was not separated and the internal pressure was kept at about 1.4 MPa.
 (実施例3)
 実施例1と同一のアンモニア混合燃料製造装置を用い、最初に、混合系界面活性剤として、分子内にヤシ油由来の長鎖アルキル基一本と1級アミノ基[-NH]とを有する非イオン性の1級アミンである長鎖アルキルアミン[示性式:C2k+1NH、k≒8~18]と、分子内に炭素数12の長鎖アルキル鎖一本と、塩化物である4級トリメチルアンモニウム基とを有するイオン性の4級アンモニウム塩化物[示性式:C1225(CH・Cl]との、モル比約80:20の混合系界面活性剤を、製造されるアンモニア混合燃料中の濃度が1質量%となるように、混合用密閉容器内に導入した(導入量5.76g)。その後、実施例2の時と全く同様に、液化n-ブタンおよび液化アンモニアを、約5℃に温度調節された混合用密閉容器(内容量約2L)の内部に、仕込質量比約85:15(合計質量約570g)にて導入した。事前のガス置換も実施例2と同様に実施した。
 導入完了後、約20℃に液相温度を調節しながら、単式撹拌翼の撹拌機で約30分間撹拌混合したところ、n-ブタン主体の上層と、アンモニア主体の下層の二相に分かれて安定したが、n-ブタン主体の上層の体積は実施例2の時に比べて減少し、また液相全体が薄く濁り、エマルション化していた。
 その後、撹拌を継続しながら液相温度を上昇させると、実施例2の時よりも約6℃低い約26℃において上層が消失し、全体が均一にエマルション化したアンモニア混合燃料が得られた。この時、混合用密閉容器の内圧(飽和蒸気圧)は約1.1MPaとなり、実施例2の時に比べ約0.3MPa低下した。液相温度をそれ以上に上昇させても液相は均一なエマルション状態を保ったが、その後、液相温度を約26℃未満に低下させると、再び二相に分かれた。
 このエマルション化したアンモニア混合燃料を、約26℃に維持したまま約10時間保持した後も、液相は分離せず、内圧も約1.1MPaに保たれた。
(Example 3)
Using the same ammonia mixed fuel production apparatus as in Example 1, first, as a mixed surfactant, having one long-chain alkyl group derived from coconut oil and a primary amino group [-NH 2 ] in the molecule. A nonionic primary amine long-chain alkylamine [rheometric formula: C k H 2k+1 NH 2 , k ≈ 8 to 18], one long-chain alkyl chain with 12 carbon atoms in the molecule, and chloride and an ionic quaternary ammonium chloride [rheometric formula: C 12 H 25 N + (CH 3 ) 3 · Cl - ] having a quaternary trimethylammonium group and a mixed system at a molar ratio of about 80:20 A surfactant was introduced into the closed container for mixing so that the concentration in the ammonia mixed fuel to be produced was 1 mass % (introduction amount: 5.76 g). After that, in exactly the same manner as in Example 2, liquefied n-butane and liquefied ammonia were added to the inside of a closed container for mixing (contents: about 2 L) temperature-controlled at about 5° C., and charged mass ratio: about 85:15. (total mass about 570 g). Preliminary gas replacement was also performed in the same manner as in Example 2.
After the introduction was completed, the mixture was stirred and mixed for about 30 minutes with a single-type impeller agitator while adjusting the liquid phase temperature to about 20°C. However, the volume of the n-butane-based upper layer was smaller than in Example 2, and the entire liquid phase was slightly turbid and emulsified.
After that, when the liquidus temperature was increased while stirring was continued, the upper layer disappeared at about 26°C, which was about 6°C lower than in Example 2, and an ammonia-mixed fuel that was uniformly emulsified as a whole was obtained. At this time, the internal pressure (saturated vapor pressure) of the closed container for mixing was approximately 1.1 MPa, which was approximately 0.3 MPa lower than in Example 2. When the liquidus temperature was increased further, the liquid phase remained a homogeneous emulsion, but when the liquidus temperature was subsequently lowered below about 26°C, it separated into two phases again.
Even after the emulsified ammonia-mixed fuel was kept at about 26° C. for about 10 hours, the liquid phase was not separated and the internal pressure was kept at about 1.1 MPa.
 (参考例1)
 上記実施例3において、上記非イオン性の長鎖アルキルアミンとイオン性の4級アンモニウム塩化物の配合比を、0:100(即ち、イオン性単独)、20:80、50:50、65:35、90:10、および100:0(即ち、非イオン性単独)にそれぞれ変更し、製造されるアンモニア混合燃料中の濃度がいずれも1質量%となるようにそれぞれ導入した以外は(導入量5.76g)、実施例3と共通の条件で撹拌混合を行ったそれぞれの場合について、実施例3と同様に、全体が均一化される温度を調べた。すると、配合比が0:100、20:80、50:50、65:35、および100:0の場合は、均一化される温度は、いずれも、界面活性剤を添加しない実施例2と同じ約32℃となり、界面活性剤の添加によるエマルション化の効果は、ほとんど認められなかった。ただし、配合比が0:100、20:80、50:50、および65:35の場合は、上下層の界面が下側に凸状に著しく湾曲した曲面となり、界面における非イオン性アルキルアミンの存在による、上下層間の界面張力の著しい変化が認められた。また、配合比90:10の場合は、均一化される温度は、上記実施例3の配合比80:20の場合の約26℃に比べてやや高い約30℃となり、エマルション化が認められたものの、エマルションの形成能はよりは低下したと判断された。
(Reference example 1)
In Example 3 above, the compounding ratios of the nonionic long-chain alkylamine and the ionic quaternary ammonium chloride were 0:100 (that is, ionic alone), 20:80, 50:50, 65: 35, 90:10, and 100:0 (that is, nonionic alone), respectively, and introduced so that the concentration in the ammonia mixed fuel to be produced was 1% by mass, except that the introduced amount 5.76 g), and in each case where stirring and mixing were performed under the same conditions as in Example 3, the temperature at which the whole was homogenized was investigated in the same manner as in Example 3. Then, when the compounding ratio is 0:100, 20:80, 50:50, 65:35, and 100:0, the homogenized temperature is the same as in Example 2 in which no surfactant is added. The temperature was about 32° C., and almost no emulsification effect was observed by addition of the surfactant. However, when the compounding ratio is 0:100, 20:80, 50:50, and 65:35, the interface between the upper and lower layers becomes a curved surface that is significantly curved downward, and the nonionic alkylamine at the interface A significant change in the interfacial tension between the upper and lower layers was observed upon presence. In addition, when the compounding ratio was 90:10, the homogenization temperature was about 30°C, which was slightly higher than about 26°C when the compounding ratio was 80:20 in Example 3, and emulsification was observed. However, it was judged that the emulsion-forming ability was lowered.
 (実施例4)
 実施例3で用いたものと同一成分及び同一配合比の混合系界面活性剤を、製造されるアンモニア混合燃料中の濃度が5質量%となるように混合用密閉容器内に導入し(導入量30g)、撹拌混合時間を約2時間に延長した以外は、実施例3と同一の条件で、約20℃にて撹拌混合を行った。
 その後、撹拌を継続しながらその液相温度を上昇させると、実施例2の時よりも約11℃低い約21℃において上層が消失し、全体が均一にエマルション化したアンモニア混合燃料が得られた。この時、混合用密閉容器の内圧(飽和蒸気圧)は約1.0MPaとなり、実施例2に比べ約0.4MPa低下した。
 このエマルション化したアンモニア混合燃料を、約21℃に維持したまま約10時間保持した後も、液相は分離せず、内圧も約1.0MPaに保たれた。
(Example 4)
A mixed surfactant having the same components and the same blending ratio as those used in Example 3 was introduced into a closed container for mixing so that the concentration in the ammonia mixed fuel to be produced was 5% by mass (introduction amount 30 g), and stirring and mixing were performed at about 20° C. under the same conditions as in Example 3, except that the stirring and mixing time was extended to about 2 hours.
After that, when the liquidus temperature was raised while stirring was continued, the upper layer disappeared at about 21°C, which was about 11°C lower than that in Example 2, and an ammonia-mixed fuel in which the whole was uniformly emulsified was obtained. . At this time, the internal pressure (saturated vapor pressure) of the closed container for mixing was about 1.0 MPa, which was about 0.4 MPa lower than in Example 2.
Even after the emulsified ammonia-mixed fuel was kept at about 21° C. for about 10 hours, the liquid phase was not separated and the internal pressure was kept at about 1.0 MPa.
 (実施例5)
 実施例3とはアルキル鎖長の異なる、分子内に炭素数8の長鎖アルキル基一本と1級アミノ基[-NH]とを有する非イオン性の長鎖アルキルアミン[示性式:C17NH]を採用し、これと、実施例3と共通の、イオン性の4級アンモニウム塩化物[示性式:C1225(CH・Cl]とを、モル比約80:20で含む混合系界面活性剤を、製造されるアンモニア混合燃料中の濃度が1質量%になるように導入した(導入量5.76g)以外は、実施例3と同一の条件で、約20℃にて撹拌混合を行った。
 その後、撹拌を継続しながらその液相温度を上昇させると、実施例2の時よりも約5℃低い約27℃において上層が消失し、全体が均一にエマルション化したアンモニア混合燃料が得られた。この時、混合用密閉容器の内圧(飽和蒸気圧)は約1.1MPaとなり、実施例2に比べ約0.3MPa低下した。
 このエマルション化したアンモニア混合燃料を、約27℃に維持したまま約10時間保持した後も、液相は分離せず、内圧も約1.1MPaに保たれた。
(Example 5)
A nonionic long-chain alkylamine having a single long-chain alkyl group having 8 carbon atoms and a primary amino group [—NH 2 ] in the molecule, which has an alkyl chain length different from that of Example 3 [rhythmic formula: C 8 H 17 NH 2 ], and an ionic quaternary ammonium chloride [ratio: C 12 H 25 N + (CH 3 ) 3 ·Cl ], common to Example 3, and in a molar ratio of about 80:20 was introduced so that the concentration in the ammonia mixed fuel to be produced was 1% by mass (introduction amount: 5.76 g). Stirring and mixing was performed at about 20° C. under the same conditions.
After that, when the liquidus temperature was raised while stirring was continued, the upper layer disappeared at about 27°C, which was about 5°C lower than in Example 2, and an ammonia-mixed fuel in which the whole was uniformly emulsified was obtained. . At this time, the internal pressure (saturated vapor pressure) of the closed container for mixing was about 1.1 MPa, which was about 0.3 MPa lower than in Example 2.
Even after the emulsified ammonia-mixed fuel was kept at about 27° C. for about 10 hours, the liquid phase was not separated and the internal pressure was kept at about 1.1 MPa.
 (実施例6)
 実施例3と共通の、炭素数8~18の非イオン性の1級アミンである長鎖アルキルアミン[示性式:C2k+1NH、k≒8~18]と、分子内に炭素数12の長鎖アルキル基一本と、臭化物である4級トリメチルアンモニウム基とを有する、イオン性の4級アンモニウム臭化物[示性式:C1225(CH・Br]とを、モル比約80:20で含む混合系界面活性剤を、製造されるアンモニア混合燃料中の濃度が1質量%になるように導入した(導入量5.76g)以外は、実施例3と同一の条件で、約20℃にて撹拌混合を行った。
 その後、撹拌を継続しながらその液相温度を上昇させると、実施例2の時よりも約2℃低い約30℃において上層が消失し、全体が均一にエマルション化したアンモニア混合燃料が得られた。この時、混合用密閉容器の内圧(飽和蒸気圧)は約1.2MPaとなり、実施例2に比べ約0.2MPa低下した。
 このエマルション化したアンモニア混合燃料を、約30℃に維持したまま約10時間保持した後も、液相は分離せず、内圧も約1.2MPaに保たれた。
(Example 6)
In common with Example 3, a long-chain alkylamine that is a nonionic primary amine having 8 to 18 carbon atoms [property formula: C k H 2k+1 NH 2 , k≈8 to 18], and a carbon An ionic quaternary ammonium bromide having one long-chain alkyl group of number 12 and a quaternary trimethylammonium bromide group [property formula: C 12 H 25 N + (CH 3 ) 3 ·Br ] and a mixed surfactant containing at a molar ratio of about 80:20 was introduced so that the concentration in the ammonia mixed fuel to be produced was 1% by mass (introduction amount: 5.76 g). Stirring and mixing were carried out at about 20° C. under the same conditions as above.
After that, when the liquidus temperature was raised while stirring was continued, the upper layer disappeared at about 30°C, which was about 2°C lower than that in Example 2, and an ammonia-mixed fuel in which the whole was uniformly emulsified was obtained. . At this time, the internal pressure (saturated vapor pressure) of the closed container for mixing was approximately 1.2 MPa, which was approximately 0.2 MPa lower than that in Example 2.
Even after the emulsified ammonia-mixed fuel was kept at about 30° C. for about 10 hours, the liquid phase was not separated and the internal pressure was kept at about 1.2 MPa.
 (実施例7)
 分子内にヤシ油由来の炭素数8~18の長鎖アルキル基一本と3級ジエタノールアミド基[-C(=O)N(COH)]とを有する非イオン性の長鎖アルキルジエタノールアミド[示性式:C2k+1C(=O)N(COH)](kは8~18の整数)と、実施例3と共通の、イオン性の4級アンモニウム塩化物(示性式:C1225(CH・Cl)とを、モル比約80:20で含む混合系界面活性剤を、製造されるアンモニア混合燃料中の濃度が1質量%になるように導入した(導入量5.76g)以外は、実施例3と同一の条件で、約20℃にて撹拌混合を行った。
 その後、撹拌を継続しながらその液相温度を上昇させると、実施例2の時よりも約2℃低い約30℃において上層が消失し、全体が均一にエマルション化したアンモニア混合燃料が得られた。この時、混合用密閉容器の内圧(飽和蒸気圧)は約1.3MPaとなり、実施例2に比べ約0.1MPa低下した。
 このエマルション化したアンモニア混合燃料を、約30℃に維持したまま約10時間保持した後も、液相は分離せず、内圧も約1.3MPaに保たれた。
(Example 7)
A nonionic long-chain compound having one long-chain alkyl group with 8 to 18 carbon atoms derived from coconut oil and a tertiary diethanolamide group [-C(=O)N(C 2 H 4 OH) 2 ] in the molecule. A chain alkyldiethanolamide [proper formula: C k H 2k+1 C(=O)N(C 2 H 4 OH) 2 ] (where k is an integer from 8 to 18) and the ionic 4 A mixed surfactant containing ammonium chloride (rheological formula: C 12 H 25 N + (CH 3 ) 3 · Cl - ) at a molar ratio of about 80:20 in the ammonia mixed fuel to be produced Stirring and mixing was performed at about 20° C. under the same conditions as in Example 3, except that the concentration was 1% by mass (introduction amount: 5.76 g).
After that, when the liquidus temperature was raised while stirring was continued, the upper layer disappeared at about 30°C, which was about 2°C lower than that in Example 2, and an ammonia-mixed fuel in which the whole was uniformly emulsified was obtained. . At this time, the internal pressure (saturated vapor pressure) of the closed vessel for mixing was about 1.3 MPa, which was lower than that of Example 2 by about 0.1 MPa.
Even after the emulsified ammonia-mixed fuel was kept at about 30° C. for about 10 hours, the liquid phase was not separated and the internal pressure was kept at about 1.3 MPa.
 (実施例8)
 分子内に炭素数13の長鎖アルキル基一本とポリオキシエチレン基[-O(C24O)-H]とを有する非イオン性のポリオキシエチレンアルキルエーテル[示性式:C1327O(C24O)-H]と、実施例3と共通の、イオン性の4級アンモニウム塩化物(示性式:C1225(CH・Cl)とを、モル比約80:20で含む混合系界面活性剤を、製造されるアンモニア混合燃料中の濃度が1質量%になるように導入した(導入量5.76g)以外は、実施例3と同一の条件で、約20℃にて撹拌混合を行った。
 その後、撹拌を継続しながらその液相温度を上昇させると、実施例2の時よりも約3℃低い約29℃において上層が消失し、全体が均一にエマルション化したアンモニア混合燃料が得られた。この時、混合用密閉容器の内圧(飽和蒸気圧)は約1.2MPaとなり、実施例2に比べ約0.2MPa低下した。
 このエマルション化したアンモニア混合燃料を、約29℃に維持したまま約10時間保持した後も、液相は分離せず、内圧も約1.2MPaに保たれた。
(Example 8)
A nonionic polyoxyethylene alkyl ether having one long-chain alkyl group having 13 carbon atoms and a polyoxyethylene group [--O(C 2 H 4 O) 5 -H] in the molecule [rheological formula: C 13 H 27 O(C 2 H 4 O) 5 —H] and an ionic quaternary ammonium chloride (ratio: C 12 H 25 N + (CH 3 ) 3.Cl - ) in a molar ratio of about 80:20 was introduced so that the concentration in the ammonia mixed fuel to be produced was 1% by mass (introduction amount: 5.76 g). Stir mixing was carried out at about 20° C. under the same conditions as in Example 3.
After that, when the liquidus temperature was raised while stirring was continued, the upper layer disappeared at about 29°C, which was about 3°C lower than that in Example 2, and an ammonia-mixed fuel in which the whole was uniformly emulsified was obtained. . At this time, the internal pressure (saturated vapor pressure) of the closed container for mixing was approximately 1.2 MPa, which was approximately 0.2 MPa lower than that in Example 2.
Even after the emulsified ammonia mixed fuel was kept at about 29° C. for about 10 hours, the liquid phase was not separated and the internal pressure was kept at about 1.2 MPa.
 (実施例9)
 分子内にヤシ油由来の炭素数8~18の長鎖アルキル基一本と3級ポリオキシエチレンアミノ基[-N((CO)-H)((CO)-H)](dおよびeはd+e=5となる正の整数)とを有する非イオン性の長鎖3級アミン[示性式:C2s+1((CO)-H)((CO)-H)](sは8~18の整数、dおよびeはd+e=5となる正の整数)と、実施例3と共通の、イオン性の4級アンモニウム塩化物(示性式:C1225(CH・Cl)とを、モル比約80:20で含む混合系界面活性剤を、製造されるアンモニア混合燃料中の濃度が1質量%になるように導入した(導入量5.76g)以外は、実施例3と同一の条件で、約20℃にて撹拌混合を行った。
 その後、撹拌を継続しながらその液相温度を上昇させると、実施例2の時よりも約3℃低い約29℃において上層が消失し、全体が均一にエマルション化したアンモニア混合燃料が得られた。この時、混合用密閉容器の内圧(飽和蒸気圧)は約1.2MPaとなり、実施例2に比べ約0.2MPa低下した。
 このエマルション化したアンモニア混合燃料を、約29℃に維持したまま約10時間保持した後も、液相は分離せず、内圧も約1.2MPaに保たれた。
(Example 9)
In the molecule, one long-chain alkyl group having 8 to 18 carbon atoms derived from coconut oil and a tertiary polyoxyethyleneamino group [-N((C 2 H 4 O) d -H) ((C 2 H 4 O) e −H)] (d and e are positive integers such that d+e=5), and a nonionic long-chain tertiary amine [property formula: C s H 2s+1 N + ((C 2 H 4 O) d —H)((C 2 H 4 O) e —H)] (s is an integer of 8 to 18, and d and e are positive integers such that d+e=5) and the ionic and a quaternary ammonium chloride (rheological formula: C 12 H 25 N + (CH 3 ) 3 · Cl ) at a molar ratio of about 80:20, the ammonia mixed fuel to be produced. Stirring and mixing were carried out at about 20° C. under the same conditions as in Example 3, except that the content was 1% by mass (introduction amount: 5.76 g).
After that, when the liquidus temperature was raised while stirring was continued, the upper layer disappeared at about 29°C, which was about 3°C lower than that in Example 2, and an ammonia-mixed fuel in which the whole was uniformly emulsified was obtained. . At this time, the internal pressure (saturated vapor pressure) of the closed container for mixing was approximately 1.2 MPa, which was approximately 0.2 MPa lower than that in Example 2.
Even after the emulsified ammonia mixed fuel was kept at about 29° C. for about 10 hours, the liquid phase was not separated and the internal pressure was kept at about 1.2 MPa.
 (実施例10)
 実施例5と共通の、炭素数8の非イオン性の長鎖1級アミン(示性式:C17NH)と、分子内にヤシ油由来の炭素数10~18の長鎖アルキル基一本と、カルボキシル基[-C(=O)OH]とを有するイオン性の長鎖カルボン酸[示性式:C2k+1C(=O)OH、kは10~18の整数]とを、モル比約80:20で含む混合系界面活性剤を、製造されるアンモニア混合燃料中の濃度が1質量%になるように導入した(導入量5.76g)以外は、実施例3と同一の条件で、約20℃にて撹拌混合を行った。
 その後、撹拌を継続しながらその液相温度を上昇させると、実施例2の時よりも約3℃低い約29℃において上層が消失し、全体が均一にエマルション化したアンモニア混合燃料が得られた。この時、混合用密閉容器の内圧(飽和蒸気圧)は約1.2MPaとなり、実施例2に比べ約0.2MPa低下した。
 このエマルション化したアンモニア混合燃料を、約29℃に維持したまま約10時間保持した後も、液相は分離せず、内圧も約1.2MPaに保たれた。
(Example 10)
A nonionic long-chain primary amine having 8 carbon atoms (rheological formula: C 8 H 17 NH 2 ) and a long-chain alkyl having 10 to 18 carbon atoms derived from coconut oil in the molecule, common to Example 5 An ionic long-chain carboxylic acid having one group and a carboxyl group [-C(=O)OH] [rheometric formula: C k H 2k+1 C(=O)OH, k is an integer of 10 to 18] and a mixed surfactant containing at a molar ratio of about 80:20 was introduced so that the concentration in the ammonia mixed fuel to be produced was 1% by mass (introduction amount: 5.76 g). Stirring and mixing were carried out at about 20° C. under the same conditions as above.
After that, when the liquidus temperature was raised while stirring was continued, the upper layer disappeared at about 29°C, which was about 3°C lower than that in Example 2, and an ammonia-mixed fuel in which the whole was uniformly emulsified was obtained. . At this time, the internal pressure (saturated vapor pressure) of the closed container for mixing was approximately 1.2 MPa, which was approximately 0.2 MPa lower than that in Example 2.
Even after the emulsified ammonia mixed fuel was kept at about 29° C. for about 10 hours, the liquid phase was not separated and the internal pressure was kept at about 1.2 MPa.
 (実施例11)
 実施例9と共通の、3級ポリオキシエチレンアミノ基を有する非イオン性の長鎖3級アミン[示性式:C2s+1((CO)-H)((CO)-H)](dおよびeはd+e=5となる正の整数)と、実施例10と共通の、炭素数10~18のイオン性の長鎖カルボン酸[示性式:C2k+1C(=O)OH、k≒10~18]とを、モル比約80:20で含む混合系界面活性剤を、製造されるアンモニア混合燃料中の濃度が1質量%になるように導入した(導入量5.76g)以外は、実施例3と同一の条件で、約20℃にて撹拌混合を行った。
 その後、撹拌を継続しながらその液相温度を上昇させると、実施例2の時よりも約4℃低い約28℃において上層が消失し、全体が均一にエマルション化したアンモニア混合燃料が得られた。この時、混合用密閉容器の内圧(飽和蒸気圧)は約1.2MPaとなり、実施例2に比べ約0.2MPa低下した。
 このエマルション化したアンモニア混合燃料を、約27℃に維持したまま約10時間保持した後も、液相は分離せず、内圧も約1.2MPaに保たれた。
(Example 11)
A nonionic long-chain tertiary amine having a tertiary polyoxyethylene amino group in common with Example 9 [ratio: C s H 2s+1 N + ((C 2 H 4 O) d -H) (( C 2 H 4 O) e —H)] (d and e are positive integers such that d + e = 5), and an ionic long-chain carboxylic acid having 10 to 18 carbon atoms, common to Example 10 [ formula: C k H 2k+1 C(=O)OH, k≈10 to 18] in a molar ratio of about 80:20, the concentration in the ammonia mixed fuel to be produced is 1% by mass. Stirring and mixing was carried out at about 20° C. under the same conditions as in Example 3 except that the amount of the solution introduced was 5.76 g.
After that, when the liquidus temperature was raised while stirring was continued, the upper layer disappeared at about 28°C, which was about 4°C lower than that in Example 2, and an ammonia-mixed fuel in which the whole was uniformly emulsified was obtained. . At this time, the internal pressure (saturated vapor pressure) of the closed container for mixing was approximately 1.2 MPa, which was approximately 0.2 MPa lower than that in Example 2.
Even after the emulsified ammonia-mixed fuel was kept at about 27° C. for about 10 hours, the liquid phase was not separated and the internal pressure was kept at about 1.2 MPa.
 (参考例2)
 上記実施例11において、3級ビス(ポリエトキシ)アミノ基を有する非イオン性の長鎖3級アミンとイオン性の長鎖カルボン酸の配合比を0:100(即ち、イオン性単独)、および20:80にそれぞれ変更し、製造されるアンモニア混合燃料中の濃度がいずれも1質量%になるようにそれぞれ導入した(導入量5.76g)以外は、共通の条件で撹拌混合を行った。それぞれの場合について、実施例3と同様に、全体が均一化される温度を調べた。すると、配合比が0:100、および20:80のいずれの場合も、均一化される温度は、界面活性剤を添加しない実施例2と同じか、わずかに高い約32~33℃となり、界面活性剤の添加によるエマルション化の効果は、ほとんど認められなかった。
(Reference example 2)
In Example 11 above, the compounding ratio of the nonionic long-chain tertiary amine having a tertiary bis(polyethoxy)amino group and the ionic long-chain carboxylic acid was 0:100 (that is, ionic only), and 20 : 80, and stirring and mixing was performed under the same conditions except that each was introduced so that the concentration in the ammonia mixed fuel to be produced was 1% by mass (introduction amount: 5.76 g). In each case, the temperature at which the whole was homogenized was investigated in the same manner as in Example 3. Then, in both cases of blending ratios of 0:100 and 20:80, the homogenization temperature was about 32 to 33° C., which was the same as or slightly higher than in Example 2 in which no surfactant was added. Almost no effect of emulsification by addition of active agent was observed.
 (実施例12)
 実施例11で用いたものと同一成分及び同一配合比の混合系界面活性剤を、製造されるアンモニア混合燃料中の濃度が5質量%となるように混合用密閉容器内に導入し(導入量30g)、撹拌混合時間を約2時間に延長した以外は、実施例3と同一の条件で、約20℃にて撹拌混合を行った。
 その後、撹拌を継続しながらその液相温度を上昇させると、実施例2の時よりも約9℃低い約23℃において上層が消失し、全体が均一にエマルション化したアンモニア混合燃料が得られた。この時、混合用密閉容器の内圧(飽和蒸気圧)は約1.1MPaとなり、実施例2に比べ約0.3MPa低下した。
 このエマルション化したアンモニア混合燃料を、約23℃に維持したまま約10時間保持した後も、液相は分離せず、内圧も約1.1MPaに保たれた。
(Example 12)
A mixed surfactant having the same components and the same blending ratio as those used in Example 11 was introduced into the closed container for mixing so that the concentration in the ammonia mixed fuel to be produced was 5% by mass (introduction amount 30 g), and stirring and mixing were performed at about 20° C. under the same conditions as in Example 3, except that the stirring and mixing time was extended to about 2 hours.
After that, when the liquidus temperature was raised while stirring was continued, the upper layer disappeared at about 23°C, which was about 9°C lower than that in Example 2, and an ammonia-mixed fuel in which the whole was uniformly emulsified was obtained. . At this time, the internal pressure (saturated vapor pressure) of the closed container for mixing was about 1.1 MPa, which was about 0.3 MPa lower than in Example 2.
Even after the emulsified ammonia-mixed fuel was kept at about 23° C. for about 10 hours, the liquid phase was not separated and the internal pressure was kept at about 1.1 MPa.
 (実施例13)
 図2に示したアンモニア混合燃料製造装置を用い、液化アンモニアおよびメタノール(CHOH)を、メタノールから先に、約15℃に温度調節された混合用密閉容器(内容量約2L)の内部に、仕込質量比約70:30(合計質量約660g)にて導入した。これらの導入に先立ち、混合用密閉容器16内をまず窒素ガスによって、次に液化アンモニアの揮発蒸気によって、順次ガス置換した。これらの導入の完了後、全ての弁を閉じ、約19℃に液相温度を調節しながら、単式撹拌翼の撹拌機で撹拌混合したところ、間もなく液相は均一な溶液となった。この時、内圧(飽和蒸気圧)は、同温度における純アンモニアの飽和蒸気圧約0.8MPaよりも約0.1MPa低い、約0.7MPaであった。
 その後、撹拌を継続しながら液相温度を約40℃まで上昇させても、液相は均一な溶液状態のままだった。また、液相温度を約19℃に維持しながら約1日保持した後も、液相は相溶したまま維持され、内圧も約0.7MPaに保たれた。
 また、上記実施例13において、液化アンモニアとメタノールの仕込質量比を約50:50(合計質量約710g)、および約30:70(合計質量約710g)にそれぞれ変更した以外は、共通の条件で撹拌混合を行った場合について、実施例13と同様に、混合状態を調べた。すると、仕込組成比が約50:50、および約30:70のいずれの場合も、液相は均一な溶液となり、液相温度約19℃での内圧(飽和蒸気圧)は、それぞれ約0.5MPa、および約0.3MPaであった。また、これらのいずれの仕込組成比の場合も、液相温度を約19℃に維持しながら約1日保持した後も、液相は相溶したまま維持され、内圧もそれぞれ約0.5MPa、および約0.3MPaに保たれた。
(Example 13)
Using the ammonia mixed fuel production apparatus shown in FIG. 2, liquefied ammonia and methanol (CH 3 OH) are first added to the inside of a closed container for mixing (inner capacity of about 2 L) whose temperature is adjusted to about 15 ° C. , was introduced at a feed mass ratio of about 70:30 (total mass of about 660 g). Prior to the introduction of these components, the inside of the closed container 16 for mixing was first replaced with nitrogen gas and then with volatilized vapor of liquefied ammonia. After these introductions were completed, all the valves were closed, and the mixture was stirred and mixed with a single impeller agitator while adjusting the liquid phase temperature to about 19°C. Soon after, the liquid phase became a homogeneous solution. At this time, the internal pressure (saturated vapor pressure) was approximately 0.7 MPa, which is approximately 0.1 MPa lower than the approximately 0.8 MPa saturated vapor pressure of pure ammonia at the same temperature.
After that, even if the liquid phase temperature was raised to about 40° C. while stirring was continued, the liquid phase remained in a homogeneous solution state. In addition, even after the liquid phase temperature was maintained at about 19° C. for about one day, the liquid phase was maintained in a compatible state and the internal pressure was maintained at about 0.7 MPa.
In addition, in Example 13 above, the same conditions were used except that the charging mass ratio of liquefied ammonia and methanol was changed to about 50:50 (total mass: about 710 g) and about 30:70 (total mass: about 710 g). In the same manner as in Example 13, the mixed state was examined when stirring and mixing were performed. As a result, the liquid phase becomes a uniform solution in both cases where the starting composition ratio is about 50:50 and about 30:70, and the internal pressure (saturated vapor pressure) at the liquid phase temperature of about 19° C. is about 0.0. 5 MPa, and about 0.3 MPa. In addition, in the case of any of these feed composition ratios, even after holding for about one day while maintaining the liquid phase temperature at about 19 ° C., the liquid phase is maintained as dissolved, and the internal pressure is also about 0.5 MPa, respectively. and kept at about 0.3 MPa.
 (実施例14)
 図2に示したアンモニア混合燃料製造装置を用い、液化アンモニアおよび日本国内市販のレギュラーガソリン(注:レギュラーガソリンの比重は約0.74g/cmで、液化アンモニアの比重より大きい)を、レギュラーガソリンから先に、約15℃に温度調節された混合用密閉容器(内容量約2L)の内部に、仕込質量比を、液化アンモニア:レギュラーガソリン=約40:60(合計質量約670g)として導入した。これらの導入に先立ち、混合用密閉容器16内をまず窒素ガスによって、次に液化アンモニアの揮発蒸気によって、順次ガス置換した。これらの導入の完了後、全ての弁を閉じ、約46℃に液相温度を調節しながら、単式撹拌翼の撹拌機で撹拌混合したところ、間もなく液相は均一な溶液となった。この時、内圧(飽和蒸気圧)は、同温度における純アンモニアの飽和蒸気圧と略等しい約1.7~1.8MPaであった。
 その後、撹拌を継続しながら液相温度をそれ以上上昇させても、液相は均一な溶液状態のままだった。一方、撹拌を継続しながら液相温度を約44℃に低下させると、溶液内に異相が遊離して浮遊し始め、約43℃では、上記溶液の層の上側に相分離した新たな液相(液化アンモニア)が明確に現れた(この時の内圧は約1.5MPa)。また、液相液相温度を約46℃に維持しながら約1日保持した後も、液相は相溶したまま維持され、内圧も約1.7~1.8MPaに保たれた。
(Example 14)
Using the ammonia mixed fuel manufacturing apparatus shown in FIG. First, it was introduced into a closed container for mixing (contents about 2 L) whose temperature was adjusted to about 15 ° C. with a charging mass ratio of liquefied ammonia: regular gasoline = about 40: 60 (total mass about 670 g). . Prior to the introduction of these components, the inside of the closed container 16 for mixing was first replaced with nitrogen gas and then with volatilized vapor of liquefied ammonia. After these introductions were completed, all the valves were closed, and the liquid phase was stirred and mixed with a single stirring impeller agitator while adjusting the liquid phase temperature to about 46° C. Soon, the liquid phase became a homogeneous solution. At this time, the internal pressure (saturated vapor pressure) was approximately 1.7 to 1.8 MPa, which is approximately equal to the saturated vapor pressure of pure ammonia at the same temperature.
After that, even if the liquid phase temperature was further increased while stirring was continued, the liquid phase remained in a homogeneous solution state. On the other hand, when the liquid phase temperature is lowered to about 44 ° C. while stirring is continued, a different phase begins to be released and floats in the solution, and at about 43 ° C., a new liquid phase phase-separated above the solution layer. (liquefied ammonia) appeared clearly (the internal pressure at this time was about 1.5 MPa). In addition, even after holding for about one day while maintaining the liquid phase temperature at about 46° C., the liquid phase was maintained in a compatible state and the internal pressure was maintained at about 1.7 to 1.8 MPa.
10 製造装置
12 アンモニア貯蔵用密閉容器
14,14,14 助燃剤貯蔵用密閉容器
16 混合用密閉容器
17 温度調節用ジャケット
17a 温度調節媒体入口ノズル
17b 温度調節媒体出口ノズル
18 アンモニア導入ライン
18a,20a,20a,20a,28a 流量計
18b,20b,28b,18c,19c,20b,20c,20b,20c,20c,22a,28c,58 調整弁
18d,20d 冷却装置
19d,20d,20d,28d 送液ポンプ
20,20,20 助燃剤導入ライン
21 気相排出ライン
21a 気相排出弁
22、22、22 液相排出ライン
22a、22a、22a 液相排出弁
22b、22b、22b 排出流量計
22c、22c、22c 組成評価手段
24,63 撹拌機
26 界面活性剤貯蔵容器
28 界面活性剤導入ライン
30 窒素ガス導入機構
30a 窒素ガス導入弁
30b 窒素ガス導入ライン
30c 窒素ガス圧力計
30d 窒素ガス減圧弁
30e 窒素ガス調整弁
31 圧力計
32 制御装置
33 温度計
50 保存用密閉容器
52 注入口
54 排出口
56 連結機構
58 排出弁
59 気相排出ライン
59a 気相排出弁
60 アンモニア混合燃料供給ライン
61 温度計
62 圧力計
63 撹拌機
64 窒素ガス注入ライン
64a 減圧弁
64b 圧力計
64c 調整弁
65 体積流量計
66 シリンダ
67 ピストン
68 往復駆動装置
68a モータ
68b クランク機構
69 混合状態評価装置
70 供給装置
80 供給機
100 燃焼器
110 分岐部
112 アンモニア混合燃料還流ライン
120 燃焼装置
122 窒素酸化物・アンモニア濃度計測器
124 供給量算出装置
126 定量供給装置
128 選択的触媒反応器
130 燃焼ガス排出ライン
10 manufacturing apparatus 12 ammonia storage closed container 14, 14 1 , 14 2 combustion improver storage closed container 16 mixing closed container 17 temperature control jacket 17a temperature control medium inlet nozzle 17b temperature control medium outlet nozzle 18 ammonia introduction line 18a, 20a, 20a 1 , 20a 2 , 28a Flow meters 18b, 20b, 28b, 18c, 19c, 20b 1 , 20c 1 , 20b 2 , 20c 2 , 20c, 22a, 28c, 58 Regulating valves 18d, 20d 1 Cooling device 19d, 20d, 20d 2 , 28d liquid feed pumps 20, 20 1 , 20 2 combustion improver introduction line 21 gas phase discharge line 21a gas phase discharge valves 22, 22 1 , 22 2 liquid phase discharge lines 22a, 22a 1 , 22a 2 liquid phases Discharge valves 22b, 22b 1 , 22b 2 Discharge flowmeters 22c, 22c 1 , 22c 2 Composition evaluation means 24, 63 Stirrer 26 Surfactant storage container 28 Surfactant introduction line 30 Nitrogen gas introduction mechanism 30a Nitrogen gas introduction valve 30b Nitrogen gas introduction line 30c Nitrogen gas pressure gauge 30d Nitrogen gas pressure reducing valve 30e Nitrogen gas regulating valve 31 Pressure gauge 32 Control device 33 Thermometer 50 Sealed storage container 52 Inlet 54 Outlet 56 Connection mechanism 58 Outlet valve 59 Vapor phase outline 59a Gas phase discharge valve 60 Ammonia mixed fuel supply line 61 Thermometer 62 Pressure gauge 63 Stirrer 64 Nitrogen gas injection line 64a Pressure reducing valve 64b Pressure gauge 64c Regulating valve 65 Volume flow meter 66 Cylinder 67 Piston 68 Reciprocating drive device 68a Motor 68b Crank Mechanism 69 Mixed state evaluation device 70 Supply device 80 Supply device 100 Combustor 110 Branching part 112 Ammonia mixed fuel recirculation line 120 Combustion device 122 Nitrogen oxide/ammonia concentration measuring device 124 Supply amount calculation device 126 Constant supply device 128 Selective catalytic reaction vessel 130 combustion gas discharge line

Claims (61)

  1.  アンモニア混合燃料であって、
     液化状態のアンモニアと、
     前記アンモニアの燃焼を補助する助燃剤と、を含み、
     前記助燃剤は、
    (a)液化石油ガス、ナフサ、ガソリン、ケロシン、および軽油、
    (b)前記液化石油ガス、前記ナフサ、前記ガソリン、前記ケロシン、および前記軽油の内のいずれか一つに成分として含まれる少なくとも一つの炭化水素種である原料用炭化水素、および
    (c)炭素数3以下のアルコールである原料用アルコール、
     の内の少なくとも一つであり、
     前記アンモニア混合燃料は、気液平衡状態にあり、かつ前記アンモニア混合燃料の液相部分の少なくとも一部が、前記アンモニアと前記助燃剤とが互いに溶解した溶液状態、または、前記アンモニアと前記助燃剤とのエマルション状態にある、ことを特徴とするアンモニア混合燃料。
    An ammonia mixed fuel,
    Ammonia in a liquefied state;
    and a combustion improver that assists combustion of the ammonia,
    The combustion improver is
    (a) liquefied petroleum gas, naphtha, gasoline, kerosene, and diesel;
    (b) a feedstock hydrocarbon which is at least one hydrocarbon species contained as a component in any one of the liquefied petroleum gas, the naphtha, the gasoline, the kerosene, and the light oil; and (c) carbon a raw material alcohol that is an alcohol of number 3 or less;
    is at least one of
    The ammonia mixed fuel is in a gas-liquid equilibrium state, and at least a part of the liquid phase portion of the ammonia mixed fuel is in a solution state in which the ammonia and the combustion improver are mutually dissolved, or the ammonia and the combustion improver are dissolved. An ammonia mixed fuel characterized by being in an emulsion state with
  2.  前記アンモニア混合燃料は、前記アンモニア混合燃料の液相部分の全体が、前記アンモニアと前記助燃剤とが互いに溶解した溶液状態、または、前記アンモニアと前記助燃剤とのエマルション状態となるような、液相組成に応じた所定の温度を保つ、請求項1に記載のアンモニア混合燃料。 The ammonia mixed fuel is a liquid in which the entire liquid phase portion of the ammonia mixed fuel is in a solution state in which the ammonia and the combustion improver are mutually dissolved, or in an emulsion state of the ammonia and the combustion improver. The ammonia mixed fuel according to claim 1, which maintains a predetermined temperature according to phase composition.
  3.  前記アンモニア混合燃料は、気液平衡が維持される密閉環境内で隔離保存される、請求項1または2に記載のアンモニア混合燃料。 The ammonia mixed fuel according to claim 1 or 2, wherein the ammonia mixed fuel is isolated and stored in a closed environment in which gas-liquid equilibrium is maintained.
  4.  前記アンモニア混合燃料は、前記助燃剤として、前記液化石油ガス、前記原料用炭化水素、および前記原料用アルコールの内の少なくとも一つを含み、
     前記原料用炭化水素は、前記液化石油ガスに成分として含まれる少なくとも一つの炭化水素種であり、
     前記原料用アルコールは、メタノールである、請求項1~3のいずれか1項に記載のアンモニア混合燃料。
    The ammonia mixed fuel contains at least one of the liquefied petroleum gas, the raw material hydrocarbon, and the raw material alcohol as the combustion improver,
    The raw material hydrocarbon is at least one hydrocarbon species contained as a component in the liquefied petroleum gas,
    The ammonia mixed fuel according to any one of claims 1 to 3, wherein the raw material alcohol is methanol.
  5.  前記アンモニア混合燃料は、さらに、界面活性剤を0.1~10質量%含む、請求項1~4のいずれか1項に記載のアンモニア混合燃料。 The ammonia mixed fuel according to any one of claims 1 to 4, wherein the ammonia mixed fuel further contains 0.1 to 10% by mass of a surfactant.
  6.  前記界面活性剤は、少なくとも1種の非イオン性界面活性剤と、少なくとも1種のイオン性界面活性剤とを含む、請求項5に記載のアンモニア混合燃料。 The ammonia mixed fuel according to claim 5, wherein the surfactant includes at least one nonionic surfactant and at least one ionic surfactant.
  7.  前記界面活性剤は、
     (A)分子構造において、1級または2級アミノ基[-NH、または>NH]、ポリオキシアルキレンアミノ基[>N(C2aO)-H、または-N((C2bO)-H)((C2bO)-H)](aおよびbは2または3、cは1~8の整数、dおよびeはd+e=1~8となる0または正の整数である)、アミド基[-C(=O)NH]、ポリオキシアルキレンアミド基[-C(=O)N((C2fO)-H)((C2fO)-H)](fは2または3、gおよびhはg+h=1~8となる0または正の整数である)、およびポリオキシアルキレン基[-O(C2iO)-H](iは2または3、jは1~8の整数である)、の内のいずれかを、非イオン性極性部位として少なくとも1基有し、
     かつ、アルキル基[C2k+1-](kは7~18の整数である)、およびアルケニル基[C2l-1-](lは7~18の整数である)の内のいずれかを非極性部位として少なくとも1基有する、少なくとも1種の前記非イオン性界面活性剤と、
     (B)分子構造において、4級メチルアンモニウム基、4級メチルアルカノールアンモニウム基、または4級アルカノールアンモニウム基[-N(CH(C2mOH)・X、または>N(CH(C2nOH)・X’](mおよびnは2または3、pおよびqはp+q=3となる0または正の整数、rおよびsはr+s=2となる0または正の整数、XおよびX’はCl、BrおよびIの内のいずれかである)、およびカルボキシル基[-C(=O)OH]、の内のいずれかを、イオン性極性部位として少なくとも1基有し、
     かつ、アルキル基[C2t+1-](tは7~18の整数である)、およびアルケニル基[C2u-1-](uは7~18の整数である)の内の少なくとも一方を、非極性部位として少なくとも1基有する、少なくとも1種の前記イオン性界面活性剤と、を含む、請求項6に記載のアンモニア混合燃料。
    The surfactant is
    (A) In the molecular structure, a primary or secondary amino group [—NH 2 or >NH], a polyoxyalkyleneamino group [>N(C a H 2a O) c —H, or —N ((C b H 2b O) d —H)((C b H 2b O) e —H)] (a and b are 2 or 3, c is an integer of 1 to 8, and d and e are 0 such that d+e=1 to 8 or positive integer), amide group [-C(=O)NH 2 ], polyoxyalkyleneamide group [-C(=O)N((C f H 2f O) g -H) ((C f H 2f O) h —H)] (f is 2 or 3, g and h are 0 or positive integers such that g+h=1 to 8), and a polyoxyalkylene group [—O(C i H 2i O ) j —H] (i is 2 or 3 and j is an integer of 1 to 8), at least one group as a nonionic polar moiety,
    and any of an alkyl group [C k H 2k+1 -] (k is an integer of 7 to 18) and an alkenyl group [C l H 2l-1 -] (l is an integer of 7 to 18) at least one nonionic surfactant having at least one group as a nonpolar site,
    (B) In the molecular structure, a quaternary methylammonium group, a quaternary methylalkanolammonium group, or a quaternary alkanolammonium group [—N + (CH 3 ) p (C m H 2m OH) qX , or >N + (CH 3 ) r (C n H 2n OH) s ·X′ ] (m and n are 2 or 3, p and q are 0 or positive integers satisfying p+q=3, r and s are r+s=2 0 or a positive integer, X and X′ are Cl, Br and I), and a carboxyl group [—C(=O)OH], any of the ionic polar having at least one group as a moiety,
    and at least an alkyl group [C t H 2t+1 -] (t is an integer of 7 to 18) and an alkenyl group [C u H 2u-1 -] (u is an integer of 7 to 18) 7. The ammonia mixed fuel of claim 6, comprising at least one ionic surfactant having at least one non-polar site on one side.
  8.  アンモニア混合燃料を製造する製造装置であって、
     液化状態のアンモニアを貯蔵するアンモニア貯蔵用密閉容器と、
     (a)液化石油ガス、ナフサ、ガソリン、ケロシン、および軽油、(b)前記液化石油ガス、前記ナフサ、前記ガソリン、前記ケロシン、および前記軽油の内のいずれか一つに成分として含まれる少なくとも一つの炭化水素種である原料用炭化水素、および、(c)炭素数3以下のアルコールである原料用アルコール、の内の少なくともいずれか一つである、前記アンモニアの燃焼を補助する助燃剤を貯蔵する助燃剤貯蔵用密閉容器と、
     前記アンモニアと、前記助燃剤とを撹拌機により撹拌混合することにより溶解した溶液状態、または、エマルション化された混合物を得、前記撹拌機による撹拌混合によって得られる混合物が、気液平衡状態を維持できるように構成された混合用密閉容器と、
     前記アンモニア貯蔵用密閉容器と前記混合用密閉容器とを接続し、前記アンモニアを前記混合用密閉容器内に所定量導入するように構成されたアンモニア定量導入機構が設けられたアンモニア導入ラインと、
     前記助燃剤貯蔵用密閉容器と前記混合用密閉容器とを接続し、前記助燃剤を前記助燃剤貯蔵用密閉容器から前記混合用密閉容器内に所定量導入するように構成された助燃剤定量導入機構が設けられた助燃剤導入ラインと、
     前記混合用密閉容器において前記撹拌機の撹拌混合によって得られる混合物を、アンモニア混合燃料として、前記混合用密閉容器から排出するように構成された少なくとも一つの液相排出ラインと、を備えることを特徴とするアンモニア混合燃料の製造装置。
    A manufacturing device for manufacturing an ammonia mixed fuel,
    an ammonia storage closed container for storing ammonia in a liquefied state;
    (a) liquefied petroleum gas, naphtha, gasoline, kerosene, and light oil; and (c) a raw material alcohol, which is an alcohol having 3 or less carbon atoms. A closed container for storing a combustion improver,
    The ammonia and the combustion improver are stirred and mixed with a stirrer to obtain a dissolved solution state or an emulsified mixture, and the mixture obtained by stirring and mixing with the stirrer maintains a vapor-liquid equilibrium state. a mixing enclosure configured to allow
    an ammonia introduction line provided with an ammonia fixed quantity introduction mechanism configured to connect the ammonia storage closed container and the mixing closed container and introduce a predetermined amount of the ammonia into the mixing closed container;
    Combustion improver metered introduction configured to connect the combustion improver storage closed container and the mixing closed container, and to introduce a predetermined amount of the combustion improver from the combustion improver storage closed container into the mixing closed container. A combustion improver introduction line provided with a mechanism;
    and at least one liquid phase discharge line configured to discharge the mixture obtained by stirring and mixing the agitator in the closed mixing vessel as an ammonia mixed fuel from the closed mixing vessel. Ammonia mixed fuel manufacturing equipment.
  9.  前記混合用密閉容器内に、前記アンモニアと前記助燃剤とが導入され、前記撹拌機により撹拌混合される際に、前記混合用密閉容器内における前記混合物の飽和蒸気圧が、前記混合用密閉容器の設定された耐圧を超えない温度範囲にあるように、前記混合物の温度を調節するように構成される温度調節機構が設けられる、請求項8に記載のアンモニア混合燃料の製造装置。 When the ammonia and the combustion improver are introduced into the closed mixing vessel and stirred and mixed by the stirrer, the saturated vapor pressure of the mixture in the closed mixing vessel increases to the closed mixing vessel. 9. The apparatus for producing an ammonia mixed fuel according to claim 8, further comprising a temperature control mechanism configured to control the temperature of said mixture so that the temperature does not exceed a set pressure resistance.
  10.  前記混合用密閉容器内に、前記アンモニアと前記助燃剤とが導入され、前記撹拌機により撹拌混合される際に、前記混合用密閉容器内において前記混合物が気液平衡状態を維持し、前記混合物の液相部分の全体が、前記混合物の液相組成に応じて、前記アンモニアと前記助燃剤とが互いに溶解した溶液状態、または、前記アンモニアと前記助燃剤とのエマルション状態となるような温度範囲にあるように、前記温度調節機構が、前記混合物の温度を調節するように構成される、請求項9に記載のアンモニア混合燃料の製造装置。 When the ammonia and the combustion improver are introduced into the closed mixing vessel and stirred and mixed by the stirrer, the mixture maintains a gas-liquid equilibrium state in the closed mixing vessel, and the mixture is in a solution state in which the ammonia and the combustion improver are mutually dissolved, or in an emulsion state of the ammonia and the combustion improver, depending on the liquid phase composition of the mixture. 10. The apparatus for producing an ammonia mixed fuel according to claim 9, wherein the temperature control mechanism is configured to control the temperature of the mixture.
  11.  前記アンモニア混合燃料は、前記助燃剤として、前記液化石油ガス、前記原料用炭化水素、および前記原料用アルコールの内の少なくとも一つを含み、
     前記原料用炭化水素は、前記液化石油ガスに成分として含まれる少なくとも一つの炭化水素種であり、
     前記原料用アルコールは、メタノールであり、
     前記助燃剤貯蔵用密閉容器は、前記液化石油ガス、前記原料用炭化水素、および前記原料用アルコールの内の少なくとも一つを貯蔵する、請求項8~10のいずれか1項に記載のアンモニア混合燃料の製造装置。
    The ammonia mixed fuel contains at least one of the liquefied petroleum gas, the raw material hydrocarbon, and the raw material alcohol as the combustion improver,
    The raw material hydrocarbon is at least one hydrocarbon species contained as a component in the liquefied petroleum gas,
    The raw material alcohol is methanol,
    The ammonia mixture according to any one of claims 8 to 10, wherein the combustion improver storage sealed container stores at least one of the liquefied petroleum gas, the raw material hydrocarbon, and the raw material alcohol. Fuel manufacturing equipment.
  12.  前記液相排出ラインから前記アンモニア混合燃料を排出する際に、前記混合用密閉容器内の前記混合物の飽和蒸気圧以上の吐出圧で、窒素ガスを、前記混合用密閉容器内の気相部分に導入できるように構成され、前記混合用密閉容器と接続された窒素ガス導入ラインをさらに備える、請求項8~11のいずれか1項に記載のアンモニア混合燃料の製造装置。 When discharging the ammonia-mixed fuel from the liquid-phase discharge line, nitrogen gas is supplied to the gas phase portion in the closed mixing vessel at a discharge pressure equal to or higher than the saturated vapor pressure of the mixture in the closed mixing vessel. The apparatus for producing an ammonia-mixed fuel according to any one of claims 8 to 11, further comprising a nitrogen gas introduction line configured to allow introduction of nitrogen gas and connected to the closed container for mixing.
  13.  前記液相排出ラインは、前記液相排出ラインを通して排出されるアンモニア混合燃料の排出流量を連続的に計測するように構成された排出流量計を備え、
     前記排出流量計によって計測される前記アンモニア混合燃料の前記排出流量と、前記アンモニア混合燃料の液相組成と、から算出される、前記液相排出ラインを通して排出される前記アンモニアの排出流量に等しい流量で、前記アンモニア貯蔵用密閉容器から前記混合用密閉容器内に前記アンモニアを連続的に定量導入でき、並行して、前記アンモニア混合燃料の前記排出流量と、前記アンモニア混合燃料の液相組成と、から算出される、前記液相排出ラインを通して排出される前記助燃剤の排出流量に等しい流量で、前記助燃剤貯蔵用密閉容器から前記混合用密閉容器内に前記助燃剤を連続的に定量導入できるように、前記アンモニア定量導入機構および前記助燃剤定量導入機構がそれぞれ構成される、請求項8~11のいずれか1項に記載のアンモニア混合燃料の製造装置。
    the liquid phase discharge line comprises a discharge flow meter configured to continuously measure the discharge flow rate of the ammonia-blended fuel discharged through the liquid phase discharge line;
    A flow rate equal to the discharge flow rate of the ammonia discharged through the liquid phase discharge line, which is calculated from the discharge flow rate of the ammonia mixed fuel measured by the discharge flow meter and the liquid phase composition of the ammonia mixed fuel. so that the ammonia can be continuously quantitatively introduced from the ammonia storage closed container into the mixing closed container, and in parallel, the discharge flow rate of the ammonia mixed fuel, the liquid phase composition of the ammonia mixed fuel, The combustion improver can be continuously and quantitatively introduced into the mixing closed container from the combustion improver storage closed container at a flow rate equal to the discharge flow rate of the combustion improver discharged through the liquid phase discharge line, which is calculated from 12. The apparatus for producing an ammonia-mixed fuel according to claim 8, wherein said quantitative introduction mechanism for ammonia and said quantitative introduction mechanism for combustion improver are respectively configured as follows.
  14.  さらに、界面活性剤を貯蔵する界面活性剤貯蔵容器と、
     前記界面活性剤貯蔵容器と前記混合用密閉容器とを接続し、前記界面活性剤を所定量前記混合用密閉容器内に導入するように構成された界面活性剤定量導入機構が設けられた界面活性剤導入ラインと、を備え、
     前記混合用密閉容器内で、前記界面活性剤は、前記アンモニアと、前記助燃剤とともに前記撹拌機により撹拌混合され、前記界面活性剤を含む前記混合物を前記液相排出ラインが排出する、請求項8~12のいずれか1項に記載のアンモニア混合燃料の製造装置。
    Furthermore, a surfactant storage container for storing the surfactant,
    A surface active agent provided with a quantitative surfactant introduction mechanism configured to connect the surfactant storage container and the closed mixing container and introduce a predetermined amount of the surfactant into the closed mixing container. and an agent introduction line,
    The surfactant is stirred and mixed together with the ammonia and the combustion improver by the stirrer in the closed mixing container, and the liquid phase discharge line discharges the mixture containing the surfactant. 13. The apparatus for producing an ammonia mixed fuel according to any one of 8 to 12.
  15.  前記アンモニア定量導入機構および前記助燃剤定量導入機構は、請求項13に記載の前記アンモニア定量導入機構および前記助燃剤定量導入機構であり、
     請求項13に記載の前記排出流量計をさらに備え、
     前記界面活性剤定量導入機構は、前記混合用密閉容器内に予め導入された、前記アンモニア、前記助燃剤、および前記界面活性剤のそれぞれの量から算出される前記アンモニア混合燃料中の前記界面活性剤の濃度と、前記排出流量計によって計測された前記アンモニア混合燃料の前記排出流量と、を乗じて求められる、前記液相排出ラインを通して排出される前記界面活性剤の排出流量に等しい流量で、前記界面活性剤貯蔵容器から前記混合用密閉容器内に前記界面活性剤を連続的に定量導入できるように構成される、請求項14に記載のアンモニア混合燃料の製造装置。
    The ammonia quantitative introduction mechanism and the combustion improver quantitative introduction mechanism are the ammonia quantitative introduction mechanism and the combustion improver quantitative introduction mechanism according to claim 13,
    further comprising the exhaust flow meter of claim 13;
    The surfactant quantitative introduction mechanism is the surfactant in the ammonia mixed fuel calculated from the respective amounts of the ammonia, the combustion improver, and the surfactant previously introduced into the mixing closed container. at a flow rate equal to the discharge flow rate of the surfactant discharged through the liquid phase discharge line, determined by multiplying the concentration of the agent by the discharge flow rate of the ammonia blend fuel measured by the discharge flow meter; 15. The apparatus for producing an ammonia-mixed fuel according to claim 14, wherein said surfactant is continuously introduced from said surfactant storage container into said closed container for mixing.
  16.  前記界面活性剤は、少なくとも1種の非イオン性界面活性剤と、少なくとも1種のイオン性界面活性剤とを含む、請求項14または15に記載のアンモニア混合燃料の製造装置。 The apparatus for producing ammonia mixed fuel according to claim 14 or 15, wherein the surfactant includes at least one nonionic surfactant and at least one ionic surfactant.
  17.  前記界面活性剤は、
     (A)分子構造において、1級または2級アミノ基[-NH、または>NH]、ポリオキシアルキレンアミノ基[>N(C2aO)-H、または-N((C2bO)-H)((C2bO)-H)](aおよびbは2または3、cは1~8の整数、dおよびeはd+e=1~8となる0または正の整数である)、アミド基[-C(=O)NH]、ポリオキシアルキレンアミド基[-C(=O)N((C2fO)-H)((C2fO)-H)](fは2または3、gおよびhはg+h=1~8となる0または正の整数である)、およびポリオキシアルキレン基[-O(C2iO)-H](iは2または3、jは1~8の整数である)、の内のいずれかを、非イオン性極性部位として少なくとも1基有し、
     かつ、アルキル基[C2k+1-](kは7~18の整数である)、およびアルケニル基[C2l-1-](lは7~18の整数である)の内のいずれかを非極性部位として少なくとも1基有する、少なくとも1種の前記非イオン性界面活性剤と、
     (B)分子構造において、4級メチルアンモニウム基、4級メチルアルカノールアンモニウム基、または4級アルカノールアンモニウム基[-N(CH(C2mOH)・X、または>N(CH(C2nOH)・X’](mおよびnは2または3、pおよびqはp+q=3となる0または正の整数、rおよびsはr+s=2となる0または正の整数、XおよびX’はCl、BrおよびIの内のいずれかである)、およびカルボキシル基[-C(=O)OH]、の内のいずれかを、イオン性極性部位として少なくとも1基有し、
     かつ、アルキル基[C2t+1-](tは7~18の整数である)、およびアルケニル基[C2u-1-](uは7~18の整数である)の内の少なくとも一方を、非極性部位として少なくとも1基有する、少なくとも1種の前記イオン性界面活性剤と、を含む、請求項16に記載のアンモニア混合燃料の製造装置。
    The surfactant is
    (A) In the molecular structure, a primary or secondary amino group [—NH 2 or >NH], a polyoxyalkyleneamino group [>N(C a H 2a O) c —H, or —N ((C b H 2b O) d —H)((C b H 2b O) e —H)] (a and b are 2 or 3, c is an integer of 1 to 8, and d and e are 0 such that d+e=1 to 8 or positive integer), amide group [-C(=O)NH 2 ], polyoxyalkyleneamide group [-C(=O)N((C f H 2f O) g -H) ((C f H 2f O) h —H)] (f is 2 or 3, g and h are 0 or positive integers such that g+h=1 to 8), and a polyoxyalkylene group [—O(C i H 2i O ) j —H] (i is 2 or 3 and j is an integer of 1 to 8), at least one group as a nonionic polar moiety,
    and any of an alkyl group [C k H 2k+1 -] (k is an integer of 7 to 18) and an alkenyl group [C l H 2l-1 -] (l is an integer of 7 to 18) at least one nonionic surfactant having at least one group as a nonpolar site,
    (B) In the molecular structure, a quaternary methylammonium group, a quaternary methylalkanolammonium group, or a quaternary alkanolammonium group [—N + (CH 3 ) p (C m H 2m OH) qX , or >N + (CH 3 ) r (C n H 2n OH) s ·X′ ] (m and n are 2 or 3, p and q are 0 or positive integers satisfying p+q=3, r and s are r+s=2 0 or a positive integer, X and X′ are Cl, Br and I), and a carboxyl group [—C(=O)OH], any of the ionic polar having at least one group as a moiety,
    and at least an alkyl group [C t H 2t+1 -] (t is an integer of 7 to 18) and an alkenyl group [C u H 2u-1 -] (u is an integer of 7 to 18) 17. The apparatus for producing an ammonia mixed fuel according to claim 16, comprising at least one ionic surfactant having at least one non-polar site on one side.
  18.  前記助燃剤が、前記(a)および前記(b)に記載された内の少なくとも一つであり、
     前記アンモニアと前記助燃剤とが前記混合用密閉容器内で撹拌混合されたときに、前記混合物の液相部分が上下二層に分離し、かつ、前記上下二層に分離した前記液相部分のそれぞれの層の全体が溶液状態ないしエマルション状態となるように、所定の量比での前記アンモニアと前記助燃剤との前記混合用密閉容器内への導入を行うよう前記アンモニア定量導入機構及び前記助燃剤定量導入機構は構成され、かつ、所定の液相温度に保持した前記撹拌混合が行われるよう前記温度調節機構は構成され、
     前記上下二層の内の少なくとも一層の前記液相部分を、前記混合用密閉容器から、一つまたは二つの前記液相排出ラインを通して排出させることにより、前記アンモニアと前記助燃剤とが一つないし二つの所定の組成比で溶液状態ないしエマルション状態となった、一つないし二つのアンモニア混合燃料を製造する、請求項8又は9に記載のアンモニア混合燃料の製造装置。
    The combustion improver is at least one of (a) and (b) above,
    When the ammonia and the combustion improver are stirred and mixed in the closed container for mixing, the liquid phase portion of the mixture separates into upper and lower two layers, and the liquid phase portion separated into the upper and lower two layers The quantitative introduction mechanism for ammonia and the auxiliary for introducing the ammonia and the combustion improver into the closed container for mixing at a predetermined amount ratio so that the whole of each layer is in a solution state or an emulsion state. The fuel quantitative introduction mechanism is configured, and the temperature control mechanism is configured so that the stirring and mixing is performed while maintaining a predetermined liquidus temperature,
    By discharging the liquid phase portion of at least one of the upper and lower two layers from the closed container for mixing through one or two of the liquid phase discharge lines, the ammonia and the combustion improver are one or more 10. The apparatus for producing an ammonia mixed fuel according to claim 8 or 9, which produces one or two ammonia mixed fuels in solution state or emulsion state with two predetermined composition ratios.
  19.  前記混合用密閉容器には、前記混合物の混合状態を評価するように構成された混合状態評価装置が設けられ、
     前記混合状態評価装置の評価結果に応じて、前記撹拌機による撹拌混合の強さおよび撹拌混合時間を調整する撹拌調整装置を備える、請求項8~18のいずれか1項に記載のアンモニア混合燃料の製造装置。
    The mixing sealed container is provided with a mixing state evaluation device configured to evaluate the mixing state of the mixture,
    Ammonia mixed fuel according to any one of claims 8 to 18, comprising a stirring adjustment device that adjusts the stirring mixing strength and stirring mixing time by the stirrer according to the evaluation result of the mixed state evaluation device. manufacturing equipment.
  20.  前記アンモニアおよび前記助燃剤を前記混合用密閉容器内に導入する際に、前記アンモニア導入ライン内を通る前記アンモニアの温度、および前記助燃剤導入ライン内を通る前記助燃剤の温度が、前記混合用密閉容器の内部の前記混合物の温度と等しくなるように、前記アンモニアの温度及び前記助燃剤の温度を調節するように構成された温度調節装置が、前記アンモニア導入ラインおよび前記助燃剤導入ラインそれぞれに設けられる、請求項8~19のいずれか1項に記載のアンモニア混合燃料の製造装置。 When the ammonia and the combustion improver are introduced into the closed container for mixing, the temperature of the ammonia passing through the ammonia introduction line and the temperature of the combustion improver passing through the combustion improver introduction line are A temperature control device configured to adjust the temperature of the ammonia and the temperature of the combustion improver so as to be equal to the temperature of the mixture inside the closed container is provided in each of the ammonia introduction line and the combustion improver introduction line. An ammonia mixed fuel production apparatus according to any one of claims 8 to 19, provided.
  21.  前記アンモニアおよび前記助燃剤を前記混合用密閉容器内に導入する際に、前記アンモニア貯蔵用密閉容器内の前記アンモニアおよび/または前記助燃剤貯蔵用密閉容器内の前記助燃剤を加熱する加熱装置が前記アンモニア貯蔵用密閉容器および/または助燃剤貯蔵用密閉容器に設けられる、請求項8~20のいずれか1項に記載のアンモニア混合燃料の製造装置。 a heating device for heating the ammonia in the ammonia storage closed container and/or the combustion enhancer in the combustion enhancer storage closed container when the ammonia and the combustion enhancer are introduced into the mixing closed container; The apparatus for producing an ammonia mixed fuel according to any one of claims 8 to 20, which is provided in the ammonia storage closed container and/or the combustion improver storage closed container.
  22.  前記アンモニア混合燃料を気液平衡状態で保存するように構成されたアンモニア混合燃料の保存用密閉容器をさらに備え、
     前記保存用密閉容器は、前記アンモニア混合燃料が注入される注入口と、前記アンモニア混合燃料を外部に排出するように構成された、前記保存用密閉容器の下部に設けられた排出口とを備え、
     前記注入口には、気密及び内圧を維持しながら前記アンモニア混合燃料を前記液相排出ラインから前記保存用密閉容器に注入するように構成された連結機構が設けられる、請求項8~21のいずれか1項に記載のアンモニア混合燃料の製造装置。
    further comprising an ammonia mixed fuel storage closed container configured to store the ammonia mixed fuel in a gas-liquid equilibrium state;
    The storage closed container includes an inlet into which the ammonia mixed fuel is injected, and an outlet provided at the bottom of the storage closed container configured to discharge the ammonia mixed fuel to the outside. ,
    Any of claims 8 to 21, wherein the injection port is provided with a connection mechanism configured to inject the ammonia-mixed fuel from the liquid phase discharge line into the storage closed container while maintaining airtightness and internal pressure. 2. The apparatus for producing an ammonia mixed fuel according to claim 1.
  23.  前記保存用密閉容器には、前記アンモニア混合燃料を撹拌混合するように構成された撹拌機が設けられている、請求項22に記載のアンモニア混合燃料の製造装置。 The ammonia mixed fuel manufacturing apparatus according to claim 22, wherein the storage closed container is provided with a stirrer configured to stir and mix the ammonia mixed fuel.
  24.  前記保存用密閉容器には、前記アンモニア混合燃料の混合状態を評価するように構成された混合状態評価装置が設けられ、
     前記混合状態評価装置によって得られる前記混合状態の評価結果に基づいて、前記保存用密閉容器に設けられた前記撹拌機による撹拌混合の強さ及び撹拌混合時間を調整する撹拌調整装置を備える、請求項23に記載のアンモニア混合燃料の製造装置。
    The storage sealed container is provided with a mixing state evaluation device configured to evaluate the mixing state of the ammonia mixed fuel,
    A stirring adjustment device that adjusts the strength of stirring and mixing by the stirrer provided in the storage closed container and the stirring and mixing time based on the evaluation result of the mixed state obtained by the mixed state evaluation device. Item 24. An ammonia-mixed fuel manufacturing apparatus according to Item 23.
  25.  前記保存用密閉容器は、前記保存用密閉容器の内圧が前記保存用密閉容器の設定された耐圧を超えない温度範囲にあるように、前記保存用密閉容器の内部の前記アンモニア混合燃料の温度を調節するように構成される温度調節装置が設けられる、請求項23または24に記載のアンモニア混合燃料の製造装置。 The storage closed container adjusts the temperature of the ammonia-mixed fuel inside the storage closed container so that the internal pressure of the storage closed container does not exceed the set pressure resistance of the storage closed container. 25. Apparatus for producing ammonia blended fuel according to claim 23 or 24, wherein a temperature control device configured to regulate is provided.
  26.  前記保存用密閉容器内の前記アンモニア混合燃料が前記撹拌機により撹拌混合される際に、前記アンモニア混合燃料の液相部分の全体が、前記アンモニア混合燃料の液相組成に応じて、前記アンモニアと前記助燃剤とが互いに溶解した溶液状態、または、前記アンモニアと前記助燃剤とのエマルション状態となる温度範囲にあるように、前記温度調節装置が、前記アンモニア混合燃料の温度を調節するように構成される、請求項23~25のいずれか1項に記載のアンモニア混合燃料の製造装置。 When the ammonia mixed fuel in the storage closed container is stirred and mixed by the stirrer, the entire liquid phase portion of the ammonia mixed fuel is mixed with the ammonia according to the liquid phase composition of the ammonia mixed fuel. The temperature control device is configured to adjust the temperature of the ammonia mixed fuel so that it is in a temperature range in which the combustion improver and the combustion improver are in a solution state or an emulsion state of the ammonia and the combustion improver. The apparatus for producing an ammonia mixed fuel according to any one of claims 23 to 25, wherein
  27.  前記排出口から前記アンモニア混合燃料を排出させる際に、前記保存用密閉容器内の前記アンモニア混合燃料の飽和蒸気圧以上の吐出圧で、前記保存用密閉容器内の気相部分に窒素ガスを導入できるように構成され、前記保存用密閉容器と接続された窒素ガス導入ラインをさらに備える、請求項22~26のいずれか1項に記載のアンモニア混合燃料の製造装置。 When the ammonia mixed fuel is discharged from the discharge port, nitrogen gas is introduced into the gas phase portion in the storage closed container at a discharge pressure equal to or higher than the saturated vapor pressure of the ammonia mixed fuel in the storage closed container. The ammonia-mixed fuel manufacturing apparatus according to any one of claims 22 to 26, further comprising a nitrogen gas introduction line connected to the storage closed container.
  28.  前記保存用密閉容器は、前記保存用密閉容器の底面に前記排出口を備え、
     前記排出口には、前記排出口から液相で排出される前記アンモニア混合燃料の体積流量を、連続的に計測するように構成された体積流量計が設けられ、
     前記注入口を経て前記保存用密閉容器内に前記アンモニア混合燃料が注入される際には、前記保存用密閉容器の満充填量以下の所定量に達するまで、前記アンモニア混合燃料が注入されるように構成され、前記保存用密閉容器への前記アンモニア混合燃料の注入後、前記排出口を経て前記保存用密閉容器内から前記アンモニア混合燃料が排出される際は、前記保存用密閉容器の気密および内圧を維持しながら、前記体積流量計で計測された前記排出体積流量に略等しい容積変化速度で、前記保存用密閉容器の内容積が連続的に減少するように構成された注入排出制御機構をさらに備える、請求項22~26のいずれか1項に記載のアンモニア混合燃料の製造装置。
    The storage closed container has the discharge port on the bottom surface of the storage closed container,
    The outlet is provided with a volumetric flow meter configured to continuously measure the volumetric flow rate of the ammonia mixed fuel discharged from the outlet in a liquid phase,
    When the ammonia-mixed fuel is injected into the storage closed container through the injection port, the ammonia-mixed fuel is injected until a predetermined amount equal to or less than the full filling amount of the storage closed container is reached. After the ammonia-mixed fuel is injected into the storage closed container, when the ammonia-mixed fuel is discharged from the storage closed container through the discharge port, the storage closed container is airtight and an injection/discharge control mechanism configured to continuously decrease the internal volume of the storage closed container at a rate of volume change substantially equal to the discharge volumetric flow rate measured by the volumetric flowmeter while maintaining the internal pressure; The apparatus for producing an ammonia mixed fuel according to any one of claims 22 to 26, further comprising:
  29.  前記保存用密閉容器は、
     直立した外筒形状を有し、前記外筒形状の軸方向に直交する内部断面積が一定な胴部と、前記胴部の下端開口部を密閉する、前記注入口および前記排出口が設けられた底板と、を有するシリンダと、
     前記シリンダ内を、気密を維持しながら上下方向に往復移動可能なピストンと、
     前記ピストンを上下方向に往復移動させ得るように構成された往復駆動装置と、を備え、
     前記注入排出制御機構は、
     前記注入口を経て前記保存用密閉容器内に前記アンモニア混合燃料が注入される際には、前記シリンダ内で、前記ピストンが、前記往復駆動装置によって、所定の満充填時位置または前記満充填時位置より下方の所定位置まで押し上げられた後、停止し、
     さらに、前記アンモニア混合燃料の充填後、前記排出口を経て前記保存用密閉容器内から前記アンモニア混合燃料が排出される際には、前記保存用密閉容器内の前記アンモニア混合燃料の飽和蒸気圧に抗しながら、前記体積流量計で計測された前記排出体積流量を、前記シリンダの前記胴部の前記内部断面積で除することにより算出される値に略等しい線速度で、前記ピストンが、前記往復駆動装置によって連続的に押し下げられた後、前記底板の近傍で停止するように構成される、請求項28に記載のアンモニア混合燃料の製造装置。
    The closed container for storage is
    A body having an upright outer cylindrical shape and having a constant internal cross-sectional area orthogonal to the axial direction of the outer cylindrical shape, and the inlet and the outlet for sealing the lower end opening of the body are provided. a cylinder having a bottom plate;
    a piston capable of reciprocating vertically in the cylinder while maintaining airtightness;
    a reciprocating drive device configured to reciprocate the piston in the vertical direction;
    The injection and discharge control mechanism is
    When the ammonia-mixed fuel is injected into the closed storage container through the injection port, the piston is moved in the cylinder by the reciprocating drive to a predetermined full-filled position or at the full-filled state. Stop after being pushed up to a predetermined position below the position,
    Furthermore, after filling the ammonia mixed fuel, when the ammonia mixed fuel is discharged from the storage closed container through the discharge port, the saturated vapor pressure of the ammonia mixed fuel in the storage closed container While resisting, the piston moves at a linear velocity approximately equal to the value calculated by dividing the exhaust volumetric flow rate measured by the volumetric flowmeter by the internal cross-sectional area of the barrel of the cylinder. 29. The apparatus for producing ammonia mixed fuel according to claim 28, configured to stop near the bottom plate after being continuously pushed down by a reciprocating drive.
  30.  前記注入口を経て前記保存用密閉容器内に前記アンモニア混合燃料が注入される際には、前記保存用密閉容器の満充填量以下の所定量に達するまで、前記アンモニア混合燃料が注入されるように構成され、
     前記保存用密閉容器への前記アンモニア混合燃料の注入後、前記排出口を経て、前記保存用密閉容器内から前記アンモニア混合燃料が排出される際には、前記保存用密閉容器の気密を維持しながら、前記保存用密閉容器内の前記アンモニア混合燃料の温度における前記アンモニア混合燃料の飽和蒸気圧よりも高い圧力で、前記保存用密閉容器から、前記アンモニア混合燃料が押し出されるように構成された注入排出制御機構をさらに備える、請求項22~26のいずれか1項に記載のアンモニア混合燃料の製造装置。
    When the ammonia-mixed fuel is injected into the storage closed container through the injection port, the ammonia-mixed fuel is injected until a predetermined amount equal to or less than the full filling amount of the storage closed container is reached. configured to
    After the ammonia mixed fuel is injected into the storage closed container, when the ammonia mixed fuel is discharged from the storage closed container through the discharge port, the storage closed container is kept airtight. while the ammonia mixed fuel is extruded from the storage closed container at a pressure higher than the saturated vapor pressure of the ammonia mixed fuel at the temperature of the ammonia mixed fuel in the storage closed container. The apparatus for producing ammonia mixed fuel according to any one of claims 22 to 26, further comprising an emission control mechanism.
  31.  前記保存用密閉容器は、
     外筒形状を有し、前記外筒形状の軸方向に直交する内部断面積が一定な胴部と、前記胴部の一端の開口部を密閉する、前記注入口および前記排出口が設けられた底板と、を有するシリンダと、
     前記シリンダ内を、気密を維持しながら前記軸方向に往復移動可能なピストンと、
     前記ピストンを前記軸方向に往復移動させ得るように構成された往復駆動装置と、を備え、
     前記注入排出制御機構は、
     前記注入口を経て前記保存用密閉容器内に前記アンモニア混合燃料が注入される際には、前記シリンダ内で、前記ピストンが、前記往復駆動装置によって、所定の満充填時位置または前記満充填時位置より下方の所定位置まで押し上げられた後、停止するよう構成され、
     前記アンモニア混合燃料の充填後、前記排出口を経て、前記保存用密閉容器内から前記アンモニア混合燃料が排出される際には、前記保存用密閉容器の気密を維持しながら、前記保存用密閉容器内の前記アンモニア混合燃料の飽和蒸気圧を超える圧力で、前記ピストンが、前記往復駆動装置によって連続的に押し下げられた後、前記底板の近傍で停止するように構成される、請求項28に記載のアンモニア混合燃料の製造装置。
    The closed container for storage is
    A body having an outer cylindrical shape and having a constant internal cross-sectional area orthogonal to the axial direction of the outer cylindrical shape, and the inlet and the outlet for sealing an opening at one end of the body are provided. a cylinder having a bottom plate;
    a piston capable of reciprocating in the cylinder in the axial direction while maintaining airtightness;
    a reciprocating drive device configured to reciprocate the piston in the axial direction;
    The injection and discharge control mechanism is
    When the ammonia-mixed fuel is injected into the closed storage container through the injection port, the piston is moved in the cylinder by the reciprocating drive to a predetermined full-filled position or at the full-filled state. configured to stop after being pushed up to a predetermined position below the position;
    After the ammonia mixed fuel is filled, when the ammonia mixed fuel is discharged from the storage closed container through the discharge port, the storage closed container is kept airtight. 29. The piston of claim 28 configured to stop near the bottom plate after being continuously depressed by the reciprocating drive at a pressure above the saturated vapor pressure of the ammonia-blended fuel within. Ammonia mixed fuel manufacturing equipment.
  32.  前記連結機構は、前記アンモニア混合燃料を前記保存用密閉容器に導入する導入ラインと前記注入口の接続に関して、互いに脱着可能に構成され、
     前記保存用密閉容器は、陸域、水域、および空域のいずれか一つにおける輸送機器に搭載される、請求項22~31のいずれか1項に記載のアンモニア混合燃料の製造装置。
    The connection mechanism is configured to be detachable from each other with respect to the connection between the introduction line for introducing the ammonia-mixed fuel into the storage sealed container and the injection port,
    32. The apparatus for producing an ammonia-mixed fuel according to any one of claims 22 to 31, wherein said closed container for storage is mounted on a transportation device in any one of land area, water area, and air area.
  33.  請求項8~32のいずれか1項に記載の前記アンモニア混合燃料の製造装置と、
     前記液相排出ラインから排出される前記アンモニア混合燃料を、前記アンモニア混合燃料を燃焼させるように構成された燃焼器に供給するためのアンモニア混合燃料供給ラインと、を備えることを特徴とするアンモニア混合燃料の供給装置。
    The ammonia mixed fuel manufacturing apparatus according to any one of claims 8 to 32,
    an ammonia mixed fuel supply line for supplying the ammonia mixed fuel discharged from the liquid phase discharge line to a combustor configured to burn the ammonia mixed fuel. Fuel supply device.
  34.  請求項21~32のいずれか1項に記載の前記アンモニア混合燃料の製造装置と、
     前記保存用密閉容器の前記排出口から排出される前記アンモニア混合燃料を、前記アンモニア混合燃料を燃焼するように構成された燃焼器に供給するためのアンモニア混合燃料供給ラインと、を備えることを特徴とするアンモニア混合燃料の供給装置。
    The ammonia mixed fuel manufacturing apparatus according to any one of claims 21 to 32,
    an ammonia mixed fuel supply line for supplying the ammonia mixed fuel discharged from the discharge port of the storage sealed container to a combustor configured to burn the ammonia mixed fuel. Ammonia mixed fuel supply device.
  35.  前記アンモニア混合燃料供給ラインには、前記アンモニア混合燃料を、所定の流量および所定の吐出圧で、前記燃焼器に供給するように構成されたアンモニア混合燃料供給機が設けられる、請求項33または34に記載のアンモニア混合燃料の供給装置。 35. The ammonia mixed fuel supply line is provided with an ammonia mixed fuel supply machine configured to supply the ammonia mixed fuel to the combustor at a predetermined flow rate and a predetermined discharge pressure. 2. The ammonia mixed fuel supply device according to 1.
  36.  前記アンモニア混合燃料供給ラインには、前記燃焼器に至る途中に、前記アンモニア混合燃料を、所定の量の比で分岐する分岐部が設けられ、
     前記アンモニア混合燃料供給ラインを流れる前記アンモニア混合燃料のうち、前記燃焼器に供給されずに分岐される部分を、前記混合用密閉容器内または前記保存用密閉容器内に還流するように構成されたアンモニア混合燃料還流ラインを備える、請求項33~35のいずれか1項に記載のアンモニア混合燃料の供給装置。
    The ammonia-mixed fuel supply line is provided with a branch part that branches the ammonia-mixed fuel at a predetermined amount ratio on the way to the combustor,
    A portion of the ammonia-mixed fuel flowing through the ammonia-mixed fuel supply line that is branched without being supplied to the combustor is recirculated into the mixing closed container or the storage closed container. An ammonia-mixed fuel supply device according to any one of claims 33 to 35, comprising an ammonia-mixed fuel recirculation line.
  37.  請求項1~7のいずれか1項に記載の前記アンモニア混合燃料を燃焼させるように構成された燃焼器と、
     請求項33~36のいずれか1項に記載の前記アンモニア混合燃料の供給装置と、
     前記燃焼器における前記アンモニア混合燃料の燃焼で生じる燃焼ガスを、大気中に排出するように構成された燃焼ガス排出ラインと、を備えることを特徴とするアンモニア混合燃料の燃焼装置。
    a combustor configured to burn the ammonia mixed fuel according to any one of claims 1 to 7;
    The ammonia mixed fuel supply device according to any one of claims 33 to 36,
    and a combustion gas discharge line configured to discharge combustion gas generated by combustion of the ammonia mixed fuel in the combustor into the atmosphere.
  38.  前記燃焼ガス排出ラインには、前記燃焼器で前記アンモニア混合燃料が燃焼する際に副生成し、前記燃焼ガス中に含まれ、前記燃焼器の燃焼室から排出されて前記燃焼ガス排出ラインを通る窒素酸化物を、前記アンモニアまたは前記アンモニア混合燃料の気化ガスを用いて、触媒還元によって分解するように構成された選択的触媒反応器が設けられる、請求項37に記載のアンモニア混合燃料の燃焼装置。 In the combustion gas discharge line, by-produced when the ammonia mixed fuel is burned in the combustor, contained in the combustion gas, discharged from the combustion chamber of the combustor and passed through the combustion gas discharge line 38. Apparatus for combustion of ammonia mixed fuel according to claim 37, further comprising a selective catalytic reactor configured to decompose nitrogen oxides by catalytic reduction with said ammonia or said ammonia mixed fuel vapor gas. .
  39.  前記アンモニアを貯蔵する前記アンモニア貯蔵用密閉容器、および前記アンモニア混合燃料を保存する前記保存用密閉容器のいずれか一方から、前記アンモニアおよび前記アンモニア混合燃料の内のいずれか一方の所定量を、前記燃焼室と前記選択的触媒反応器との間の前記燃焼ガス排出ラインに設けられた合流部において、前記燃焼ガスに合流させるように構成された選択的触媒反応用供給ラインを備える、請求項38に記載のアンモニア混合燃料の燃焼装置。 A predetermined amount of either one of the ammonia and the ammonia mixed fuel is removed from either one of the closed ammonia storage container that stores the ammonia and the closed storage container that stores the ammonia mixed fuel. 39. A selective catalytic reaction feed line configured to join the combustion gas at a junction provided in the combustion gas discharge line between the combustion chamber and the selective catalytic reactor according to claim 38. Combustion device for ammonia mixed fuel according to 1.
  40.  前記選択的触媒反応用供給ラインと前記燃焼ガス排出ラインとの前記合流部に対して前記燃焼室の側の前記燃焼ガス排出ラインに設けられ、前記合流部に対して前記燃焼室の側の前記窒素酸化物の濃度、およびアンモニアの濃度をそれぞれ計測するように構成された窒素酸化物濃度計測器、およびアンモニア濃度計測器と、
     前記窒素酸化物濃度計測器、および前記アンモニア濃度計測器のそれぞれで計測される濃度結果に基づいて、前記選択的触媒反応用供給ラインを通して供給されるべき、前記アンモニアまたは前記アンモニア混合燃料の量を算出するように構成された供給量算出装置と、
     前記選択的触媒反応用供給ラインに設けられ、前記供給量算出装置による前記量の算出結果に基づいて、前記選択的触媒反応用供給ラインを通して供給される前記アンモニアまたは前記アンモニア混合燃料の供給量を制御するように構成された定量供給装置と、を備える、請求項39に記載のアンモニア混合燃料の燃焼装置。
    provided in the combustion gas discharge line on the combustion chamber side with respect to the junction of the selective catalytic reaction supply line and the combustion gas discharge line, and on the combustion chamber side with respect to the junction; a nitrogen oxide concentration measuring instrument and an ammonia concentration measuring instrument configured to respectively measure the concentration of nitrogen oxides and the concentration of ammonia;
    Based on the concentration results measured by the nitrogen oxide concentration measuring instrument and the ammonia concentration measuring instrument, the amount of the ammonia or the ammonia mixed fuel to be supplied through the selective catalytic reaction supply line is determined. a supply amount calculation device configured to calculate
    Provided in the selective catalytic reaction supply line, the supply amount of the ammonia or the ammonia mixed fuel supplied through the selective catalytic reaction supply line is calculated based on the calculation result of the amount by the supply amount calculation device. 40. Apparatus for combustion of ammonia mixed fuel according to claim 39, comprising a dosing device configured to control.
  41.  前記燃焼器は、前記アンモニア混合燃料の燃焼で生じる前記燃焼ガスのエネルギーを利用して機械的動力を取り出すように構成された内燃機関として用いられる、請求項37~40のいずれか1項に記載のアンモニア混合燃料の燃焼装置。 41. The combustor according to any one of claims 37 to 40, wherein said combustor is used as an internal combustion engine configured to extract mechanical power using the energy of said combustion gas produced by combustion of said ammonia mixed fuel. Ammonia mixed fuel combustion equipment.
  42.  前記アンモニア混合燃料の燃焼で生じる前記燃焼ガスのエネルギーを利用して、機械的動力を取り出すように構成された外燃機関と、
     前記燃焼ガスを、前記燃焼器から前記外燃機関に移送するように構成された燃焼ガス移送ラインと、を備える、請求項37~40のいずれか1項に記載のアンモニア混合燃料の燃焼装置。
    an external combustion engine configured to extract mechanical power using the energy of the combustion gas generated by combustion of the ammonia-mixed fuel;
    and a combustion gas transfer line configured to transfer said combustion gases from said combustor to said external combustion engine.
  43.  前記アンモニア混合燃料の燃焼で生じる前記燃焼ガスのエネルギーを用いて、加熱加工を行うように構成された加熱加工器具と、
     前記燃焼ガスを前記燃焼器から前記加熱加工器具に移送するように構成された燃焼ガス移送ラインと、を備える、請求項37~40のいずれか1項に記載のアンモニア混合燃料の燃焼装置。
    A heating processing tool configured to perform heating processing using the energy of the combustion gas generated by burning the ammonia mixed fuel;
    and a combustion gas transfer line configured to transfer the combustion gas from the combustor to the heat processing tool.
  44.  陸域、水域、および空域のいずれか一つにおいて、発電を行う発電設備であって、
     請求項41に記載の前記内燃機関を備えた前記アンモニア混合燃料の燃焼装置、および、請求項42に記載の前記外燃機関を備えた前記アンモニア混合燃料の燃焼装置の少なくともいずれか一方が設けられ、
     前記内燃機関および前記外燃機関の前記少なくともいずれか一方によって前記アンモニア混合燃料の前記燃焼ガスのエネルギーから取り出される機械的動力を利用して発電するように構成された発電機と、
     前記発電機で発電される電力を出力するように構成された電力出力端と、
     前記電力出力端における電力量を制御するように構成された制御機構と、を備えることを特徴とする発電設備。
    In any one of land area, water area, and air area, a power generation facility that generates electricity,
    At least one of the ammonia mixed fuel combustion apparatus comprising the internal combustion engine according to claim 41 and the ammonia mixed fuel combustion apparatus comprising the external combustion engine according to claim 42 is provided. ,
    a generator configured to generate power using mechanical power extracted from energy of the combustion gas of the ammonia mixed fuel by the at least one of the internal combustion engine and the external combustion engine;
    a power output end configured to output power generated by the generator;
    and a control mechanism configured to control the amount of power at the power output.
  45.  陸域、水域、および空域のいずれか一つにおいて移動ないし物資輸送を行うように構成された輸送機器であって、
     請求項41に記載の前記内燃機関を備えた前記アンモニア混合燃料の燃焼装置、および、請求項42に記載の前記外燃機関を備えた前記アンモニア混合燃料の燃焼装置の少なくともいずれか一方が搭載され、
     前記内燃機関および前記外燃機関の前記少なくともいずれか一方によって前記アンモニア混合燃料の燃焼ガスのエネルギーから取り出される前記機械的動力を、前記輸送機器の推進の動力の少なくとも一部として利用するように構成された動力変換伝達機構を備える、ことを特徴とする輸送機器。
    Vehicles configured to move or transport goods in any one of land, water, and air,
    At least one of the ammonia mixed fuel combustion apparatus provided with the internal combustion engine according to claim 41 and the ammonia mixed fuel combustion apparatus provided with the external combustion engine according to claim 42 is installed. ,
    The mechanical power extracted from the energy of the combustion gas of the ammonia-mixed fuel by the at least one of the internal combustion engine and the external combustion engine is used as at least part of power for propulsion of the transportation equipment. A transportation device characterized by comprising a power conversion transmission mechanism configured as described above.
  46.  陸域、水域、および空域のいずれか一つにおいて移動ないし物資輸送を行うように構成された輸送機器であって、
     請求項44に記載の前記発電設備が搭載され、
     前記アンモニア混合燃料の前記燃焼ガスのエネルギーを利用して、前記発電設備から出力される前記電力を、前記輸送機器の推進における所要電力の少なくとも一部に用いるように構成された電気推進機構、
     前記電力を、前記輸送機器の運転制御における所要電力の少なくとも一部に用いるように構成された運転制御機構、および、
     前記電力を、前記輸送機器の維持管理における所要電力の少なくとも一部に用いるように構成された維持管理用給電機構、の内の少なくとも一つを備える、ことを特徴とする輸送機器。
    Vehicles configured to move or transport goods in any one of land, water, and air,
    The power generation equipment according to claim 44 is mounted,
    An electric propulsion mechanism configured to use the energy of the combustion gas of the ammonia mixed fuel to use the power output from the power generation facility for at least part of the power required to propel the transportation equipment,
    an operation control mechanism configured to use the electric power for at least part of required electric power in operation control of the transportation equipment; and
    a maintenance feed mechanism configured to use the electric power for at least part of power required for maintenance of the transportation equipment.
  47.  さらに、前記発電設備に設けられた、前記内燃機関および前記外燃機関の少なくともいずれか一方によって、前記アンモニア混合燃料の燃焼ガスのエネルギーから取り出される前記機械的動力を、前記輸送機器の推進の動力の少なくとも一部に変換して使用するように構成された動力変換伝達機構をさらに備える、請求項46に記載の輸送機器。 Further, the mechanical power extracted from the energy of the combustion gas of the ammonia mixed fuel by at least one of the internal combustion engine and the external combustion engine provided in the power generation facility is used as power for propulsion of the transportation equipment. 47. A vehicle according to claim 46, further comprising a power conversion transmission mechanism configured to convert and use at least a portion of a.
  48.  アンモニア混合燃料の製造方法であって、
    (1)液化状態のアンモニアと、
     (a)液化石油ガス、ナフサ、ガソリン、ケロシン、及び軽油、
     (b)前記液化石油ガス、前記ナフサ、前記ガソリン、前記ケロシン、及び前記軽油の内のいずれか一つに成分として含まれる少なくとも一つの炭化水素種である原料用炭化水素、および、
     (c)炭素数3以下のアルコールである原料用アルコール、
     の少なくとも一つである、前記アンモニアの燃焼を補助する助燃剤と、を混合用密閉容器内に導入し、
    (2)前記アンモニアと、前記助燃剤とを、前記混合用密閉容器内で、液相部分を残した気液平衡状態に保ちながら、撹拌混合することにより、前記アンモニアと前記助燃剤の液相部分の少なくとも一部が、前記アンモニアと前記助燃剤とが互いに溶解した溶液状態、または、前記アンモニアと前記助燃剤とのエマルション状態となった混合物を作製し、
    (3)前記混合物を、前記混合用密閉容器から、アンモニア混合燃料として排出する、ことを特徴とするアンモニア混合燃料の製造方法。
    A method for producing an ammonia mixed fuel,
    (1) ammonia in a liquefied state;
    (a) liquefied petroleum gas, naphtha, gasoline, kerosene, and diesel oil;
    (b) a feedstock hydrocarbon which is at least one hydrocarbon species contained as a component in any one of the liquefied petroleum gas, the naphtha, the gasoline, the kerosene, and the light oil; and
    (c) a raw material alcohol that is an alcohol having 3 or less carbon atoms;
    A combustion improver that assists combustion of the ammonia, which is at least one of
    (2) The ammonia and the combustion improver are stirred and mixed in the closed vessel for mixing while maintaining a gas-liquid equilibrium state with the liquid phase portion remaining, whereby the liquid phase of the ammonia and the combustion improver is preparing a mixture in which at least part of the portion is in a solution state in which the ammonia and the combustion improver are mutually dissolved or in an emulsion state of the ammonia and the combustion improver;
    (3) A method for producing an ammonia mixed fuel, characterized in that the mixture is discharged from the closed container for mixing as an ammonia mixed fuel.
  49.  前記アンモニアと、前記助燃剤とを、前記混合用密閉容器内に導入して撹拌混合するとき、前記混合用密閉容器内における前記アンモニアおよび前記助燃剤の飽和蒸気圧が、前記混合用密閉容器の設定された耐圧を超えないように、前記アンモニアおよび前記助燃剤の前記混合物の温度を調節する、請求項48に記載のアンモニア混合燃料の製造方法。 When the ammonia and the combustion improver are introduced into the closed mixing vessel and stirred and mixed, the saturated vapor pressure of the ammonia and the combustion improver in the closed mixing vessel increases to that of the closed mixing vessel. 49. The method for producing an ammonia mixed fuel according to claim 48, wherein the temperature of said mixture of said ammonia and said combustion improver is adjusted so as not to exceed a set pressure resistance.
  50.  前記混合物を作製する際に、
     前記液体状態の前記アンモニアと、前記液体状態の前記助燃剤とを、所定の量比で前記混合用密閉容器内に導入し、
     前記アンモニアと前記助燃剤とを、前記混合用密閉容器内で撹拌混合しながら、
     前記混合物の液相部分の全体が、前記所定の量比に応じて、前記アンモニアと前記助燃剤とが互いに溶解した溶液状態、または、前記アンモニアと前記助燃剤とのエマルション状態となるような温度範囲にあるように、前記混合物の温度を調節する、請求項48または49に記載のアンモニア混合燃料の製造方法。
    When making the mixture,
    introducing the ammonia in the liquid state and the combustion improver in the liquid state at a predetermined amount ratio into the closed container for mixing;
    While stirring and mixing the ammonia and the combustion improver in the closed container for mixing,
    A temperature at which the entire liquid phase portion of the mixture becomes a solution state in which the ammonia and the combustion improver are mutually dissolved, or an emulsion state of the ammonia and the combustion improver, according to the predetermined amount ratio. 50. A method for producing an ammonia blended fuel according to claim 48 or 49, comprising adjusting the temperature of said mixture to be within a range.
  51.  前記アンモニア混合燃料は、前記助燃剤として、前記液化石油ガス、前記原料用炭化水素、および前記原料用アルコールの内の少なくとも一つを含み、
     前記原料用炭化水素は、前記液化石油ガスに成分として含まれる少なくとも一つの炭化水素種であり、
     前記原料用アルコールは、メタノールである、請求項48~50のいずれか1項に記載のアンモニア混合燃料の製造方法。
    The ammonia mixed fuel contains at least one of the liquefied petroleum gas, the raw material hydrocarbon, and the raw material alcohol as the combustion improver,
    The raw material hydrocarbon is at least one hydrocarbon species contained as a component in the liquefied petroleum gas,
    The method for producing an ammonia mixed fuel according to any one of claims 48 to 50, wherein the raw material alcohol is methanol.
  52.  前記混合用密閉容器から、前記混合物を排出する際に、前記混合用密閉容器内の前記混合物の飽和蒸気圧以上の吐出圧で、前記混合用密閉容器内に窒素ガスを注入する、請求項48~51のいずれか1項に記載のアンモニア混合燃料の製造方法。 48. When discharging the mixture from the closed mixing container, nitrogen gas is injected into the closed mixing container at a discharge pressure equal to or higher than the saturated vapor pressure of the mixture in the closed mixing container. 51. A method for producing an ammonia mixed fuel according to any one of items 1 to 51.
  53.  前記混合用密閉容器から、前記混合物を排出する際に、前記混合用密閉容器から排出される前記混合物中に含まれる前記アンモニアの排出流量に等しい流量で、前記アンモニアを連続的に前記混合用密閉容器に補充しながら撹拌混合し続け、並行して、前記混合用密閉容器から排出される、前記混合物中に含まれる前記助燃剤の排出流量に等しい流量で、前記助燃剤を連続的に混合用密閉容器内に補充しながら撹拌混合し続けることにより、前記アンモニアと前記助燃剤との混合組成が一定に維持された前記アンモニア混合燃料を連続的に製造する、請求項48~51のいずれか1項に記載のアンモニア混合燃料の製造方法。 When the mixture is discharged from the closed mixing vessel, the ammonia is continuously added to the closed mixing vessel at a flow rate equal to the discharge flow rate of the ammonia contained in the mixture discharged from the closed mixing vessel. Stirring and mixing is continued while replenishing the container, and in parallel, the combustion improver is continuously mixed at a flow rate equal to the discharge flow rate of the combustion improver contained in the mixture discharged from the closed mixing container. 52. Any one of claims 48 to 51, wherein the ammonia-mixed fuel in which the mixture composition of the ammonia and the combustion improver is maintained constant is continuously produced by continuing stirring and mixing while replenishing the mixture in the sealed container. 3. A method for producing the ammonia mixed fuel according to claim 1.
  54.  前記混合物を作製するとき、界面活性剤を、前記混合用密閉容器内に併せて導入し、前記アンモニアと、前記助燃剤とともに撹拌混合することにより、前記混合物の一成分として前記界面活性剤を含む、前記エマルション状態の前記混合物を作製する、請求項48~52のいずれか1項に記載のアンモニア混合燃料の製造方法。 When preparing the mixture, a surfactant is introduced into the closed container for mixing and stirred and mixed together with the ammonia and the combustion improver to contain the surfactant as one component of the mixture. , the method for producing an ammonia mixed fuel according to any one of claims 48 to 52, wherein the mixture in the emulsion state is produced.
  55.  前記混合物を作製するとき、前記混合物中の前記界面活性剤の濃度が0.1~10質量%となるように、前記混合用密閉容器内に前記界面活性剤を導入する、請求項54に記載のアンモニア混合燃料の製造方法。 55. The method according to claim 54, wherein when the mixture is produced, the surfactant is introduced into the closed container for mixing so that the concentration of the surfactant in the mixture is 0.1 to 10% by mass. method for producing an ammonia blended fuel.
  56.  請求項53に記載の方法によって、前記アンモニアと前記助燃剤との混合組成が一定に維持された前記アンモニア混合燃料を連続的に製造する場合に、前記混合用密閉容器から前記混合物を排出する際に、さらに、前記混合用密閉容器から排出される前記混合物中に含まれる前記界面活性剤の排出流量に等しい流量で、前記界面活性剤を、前記混合用密閉容器内に連続的に補充しながら、撹拌混合し続けることにより、前記界面活性剤の濃度が一定に維持された、前記アンモニア混合燃料を連続的に製造する、請求項54または55に記載のアンモニア混合燃料の製造方法。 When continuously producing the ammonia-mixed fuel in which the mixture composition of the ammonia and the combustion improver is maintained constant by the method according to claim 53, when discharging the mixture from the closed mixing vessel Furthermore, while continuously replenishing the surfactant into the closed mixing container at a flow rate equal to the discharge flow rate of the surfactant contained in the mixture discharged from the closed mixing container 56. The method for producing an ammonia mixed fuel according to claim 54 or 55, wherein the ammonia mixed fuel in which the concentration of the surfactant is maintained constant is continuously produced by continuing stirring and mixing.
  57.  前記界面活性剤は、少なくとも1種の非イオン性界面活性剤と、少なくとも1種のイオン性界面活性剤とを含む、請求項54~56のいずれか1項に記載のアンモニア混合燃料の製造方法。 The method for producing an ammonia mixed fuel according to any one of claims 54 to 56, wherein the surfactant comprises at least one nonionic surfactant and at least one ionic surfactant. .
  58.  前記界面活性剤は、
     (A)分子構造において、1級または2級アミノ基[-NH、または>NH]、ポリオキシアルキレンアミノ基[>N(C2aO)-H、または-N((C2bO)-H)((C2bO)-H)](aおよびbは2または3、cは1~8の整数、dおよびeはd+e=1~8となる0または正の整数である)、アミド基[-C(=O)NH]、ポリオキシアルキレンアミド基[-C(=O)N((C2fO)-H)((C2fO)-H)](fは2または3、gおよびhはg+h=1~8となる0または正の整数である)、およびポリオキシアルキレン基[-O(C2iO)-H](iは2または3、jは1~8の整数である)、の内のいずれかを、非イオン性極性部位として少なくとも1基有し、
     かつ、アルキル基[C2k+1-](kは7~18の整数である)、およびアルケニル基[C2l-1-](lは7~18の整数である)の内のいずれかを非極性部位として少なくとも1基有する、少なくとも1種の前記非イオン性界面活性剤と、
     (B)分子構造において、4級メチルアンモニウム基、4級メチルアルカノールアンモニウム基、または4級アルカノールアンモニウム基[-N(CH(C2mOH)・X、または>N(CH(C2nOH)・X’](mおよびnは2または3、pおよびqはp+q=3となる0または正の整数、rおよびsはr+s=2となる0または正の整数、XおよびX’はCl、BrおよびIの内のいずれかである)、およびカルボキシル基[-C(=O)OH]、の内のいずれかを、イオン性極性部位として少なくとも1基有し、
     かつ、アルキル基[C2t+1-](tは7~18の整数である)、およびアルケニル基[C2u-1-](uは7~18の整数である)の内の少なくとも一方を、非極性部位として少なくとも1基有する、少なくとも1種の前記イオン性界面活性剤と、を含む、請求項57に記載のアンモニア混合燃料の製造方法。
    The surfactant is
    (A) In the molecular structure, a primary or secondary amino group [—NH 2 or >NH], a polyoxyalkyleneamino group [>N(C a H 2a O) c —H, or —N ((C b H 2b O) d —H)((C b H 2b O) e —H)] (a and b are 2 or 3, c is an integer of 1 to 8, and d and e are 0 such that d+e=1 to 8 or positive integer), amide group [-C(=O)NH 2 ], polyoxyalkyleneamide group [-C(=O)N((C f H 2f O) g -H) ((C f H 2f O) h —H)] (f is 2 or 3, g and h are 0 or positive integers such that g+h=1 to 8), and a polyoxyalkylene group [—O(C i H 2i O ) j —H] (i is 2 or 3 and j is an integer of 1 to 8), at least one group as a nonionic polar moiety,
    and any of an alkyl group [C k H 2k+1 -] (k is an integer of 7 to 18) and an alkenyl group [C l H 2l-1 -] (l is an integer of 7 to 18) at least one nonionic surfactant having at least one group as a nonpolar site,
    (B) In the molecular structure, a quaternary methylammonium group, a quaternary methylalkanolammonium group, or a quaternary alkanolammonium group [—N + (CH 3 ) p (C m H 2m OH) qX , or >N + (CH 3 ) r (C n H 2n OH) s ·X′ ] (m and n are 2 or 3, p and q are 0 or positive integers satisfying p+q=3, r and s are r+s=2 0 or a positive integer, X and X′ are Cl, Br and I), and a carboxyl group [—C(=O)OH], any of the ionic polar having at least one group as a moiety,
    and at least an alkyl group [C t H 2t+1 -] (t is an integer of 7 to 18) and an alkenyl group [C u H 2u-1 -] (u is an integer of 7 to 18) and at least one of said ionic surfactants having at least one non-polar site on one side.
  59.  前記アンモニアおよび前記助燃剤を含む、前記混合用密閉容器内への全ての導入対象を、前記混合用密閉容器内に導入する際に、導入される前記全ての導入対象について、前記混合用密閉容器内の温度における飽和蒸気圧のより低い前記導入対象から順番に、前記混合用密閉容器内に導入する、請求項48~58のいずれか1項に記載のアンモニア混合燃料の製造方法。 When introducing all the objects to be introduced into the closed mixing vessel, including the ammonia and the combustion improver, into the closed mixing vessel, all the introduced objects to be introduced into the closed mixing vessel The method for producing an ammonia-mixed fuel according to any one of claims 48 to 58, wherein the objects to be introduced are introduced into the closed mixing container in order from the one having the lowest saturated vapor pressure at the internal temperature.
  60.  前記アンモニアと前記助燃剤とが、前記混合用密閉容器内で撹拌混合されたときに、前記混合物の液相部分の全体が溶液状態ないしエマルション状態となるように、所定の量比での、前記アンモニアと前記助燃剤との前記混合用密閉容器内への導入と、所定の液相温度に保持した、前記混合用密閉容器内での前記撹拌混合と、を行い、
     前記液相部分を、前記混合用密閉容器から排出させることにより、前記アンモニアと前記助燃剤とが、所定の範囲の組成比で溶液状態ないしエマルション状態となったアンモニア混合燃料を製造する、請求項48~59のいずれか1項に記載のアンモニア混合燃料の製造方法。
    When the ammonia and the combustion improver are stirred and mixed in the closed container for mixing, the above introducing ammonia and the combustion improver into the closed mixing vessel, and stirring and mixing in the closed mixing vessel maintained at a predetermined liquidus temperature;
    An ammonia-mixed fuel is produced in which the ammonia and the combustion improver are in a solution state or an emulsion state at a composition ratio within a predetermined range by discharging the liquid phase portion from the mixing closed container. 60. A method for producing an ammonia mixed fuel according to any one of 48 to 59.
  61.  前記助燃剤が、前記(a)および前記(b)に記載された内の少なくとも一つであり、
     前記アンモニアと前記助燃剤とが前記混合用密閉容器内で撹拌混合されたときに、前記混合物の液相部分が上下二層に分離し、かつ、前記上下二層に分離した前記液相部分のそれぞれの全体が溶液状態ないしエマルション状態となるように、所定の量比での前記アンモニアと前記助燃剤との前記混合用密閉容器内への導入と、所定の液相温度に保持した、前記混合用密閉容器内での前記撹拌混合と、を行い、
     前記上下二層の内の少なくとも一層の前記液相部分を、前記混合用密閉容器から排出させることにより、前記アンモニアと前記助燃剤とが一つないし二つの所定の組成比で溶液状態ないしエマルション状態となった、一つないし二つのアンモニア混合燃料を製造する、請求項48に記載のアンモニア混合燃料の製造方法。
    The combustion improver is at least one of (a) and (b) above,
    When the ammonia and the combustion improver are stirred and mixed in the closed container for mixing, the liquid phase portion of the mixture separates into upper and lower two layers, and the liquid phase portion separated into the upper and lower two layers The ammonia and the combustion improver are introduced into the closed container for mixing at a predetermined amount ratio so that each of them is entirely in a solution state or an emulsion state, and the mixture is maintained at a predetermined liquidus temperature. and performing the stirring and mixing in a closed container for
    By discharging the liquid phase portion of at least one of the upper and lower two layers from the closed container for mixing, the ammonia and the combustion improver are in a solution state or an emulsion state at a predetermined composition ratio of one or two. 49. The method for producing an ammonia fuel blend according to claim 48, wherein the one or two ammonia fuel blends are produced such that
PCT/JP2022/019333 2021-04-30 2022-04-28 Ammonia-mixed fuel, production device for ammonia-mixed fuel, production method for ammonia-mixed fuel, supply device for ammonia-mixed fuel, combustion device for ammonia-mixed fuel, power generation equipment using ammonia-mixed fuel, and transport device using ammonia-mixed fuel WO2022230988A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020237036849A KR20230159607A (en) 2021-04-30 2022-04-28 Ammonia blended fuel, ammonia blended fuel manufacturing device, ammonia blended fuel manufacturing method, ammonia blended fuel supply device, ammonia blended fuel combustion device, ammonia blended fuel power generation equipment, and ammonia blended fuel transportation equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021077943A JP2022171351A (en) 2021-04-30 2021-04-30 Ammonia mixed fuel, ammonia mixed fuel manufacturing apparatus, ammonia mixed fuel manufacturing method, ammonia mixed fuel supply apparatus, ammonia mixed fuel combustion apparatus, power generation facility using ammonia mixed fuel, and transport mashine using ammonia mixed fuel
JP2021-077943 2021-04-30

Publications (1)

Publication Number Publication Date
WO2022230988A1 true WO2022230988A1 (en) 2022-11-03

Family

ID=83848586

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/019333 WO2022230988A1 (en) 2021-04-30 2022-04-28 Ammonia-mixed fuel, production device for ammonia-mixed fuel, production method for ammonia-mixed fuel, supply device for ammonia-mixed fuel, combustion device for ammonia-mixed fuel, power generation equipment using ammonia-mixed fuel, and transport device using ammonia-mixed fuel

Country Status (3)

Country Link
JP (1) JP2022171351A (en)
KR (1) KR20230159607A (en)
WO (1) WO2022230988A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116223556A (en) * 2023-02-16 2023-06-06 北京中科富海低温科技有限公司 Binary gas-liquid phase balance test system and binary gas-liquid phase balance test method
CN117111567A (en) * 2023-10-19 2023-11-24 广州恒广复合材料有限公司 Method and device for controlling production process of quaternary ammonium salt in washing and caring composition

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5218203B2 (en) * 1971-10-08 1977-05-20
US20080308056A1 (en) * 2007-05-29 2008-12-18 Mike Schiltz Hydrogen and Ammonia Fueled Internal Combustion Engine
JP2009085168A (en) * 2007-10-02 2009-04-23 Toyota Motor Corp Control device for internal combustion engine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5218203B2 (en) * 1971-10-08 1977-05-20
US20080308056A1 (en) * 2007-05-29 2008-12-18 Mike Schiltz Hydrogen and Ammonia Fueled Internal Combustion Engine
JP2009085168A (en) * 2007-10-02 2009-04-23 Toyota Motor Corp Control device for internal combustion engine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116223556A (en) * 2023-02-16 2023-06-06 北京中科富海低温科技有限公司 Binary gas-liquid phase balance test system and binary gas-liquid phase balance test method
CN116223556B (en) * 2023-02-16 2023-07-28 北京中科富海低温科技有限公司 Binary gas-liquid phase balance test system and binary gas-liquid phase balance test method
CN117111567A (en) * 2023-10-19 2023-11-24 广州恒广复合材料有限公司 Method and device for controlling production process of quaternary ammonium salt in washing and caring composition
CN117111567B (en) * 2023-10-19 2023-12-29 广州恒广复合材料有限公司 Method and device for controlling production process of quaternary ammonium salt in washing and caring composition

Also Published As

Publication number Publication date
KR20230159607A (en) 2023-11-21
JP2022171351A (en) 2022-11-11

Similar Documents

Publication Publication Date Title
WO2022230988A1 (en) Ammonia-mixed fuel, production device for ammonia-mixed fuel, production method for ammonia-mixed fuel, supply device for ammonia-mixed fuel, combustion device for ammonia-mixed fuel, power generation equipment using ammonia-mixed fuel, and transport device using ammonia-mixed fuel
Valera-Medina et al. Review on ammonia as a potential fuel: from synthesis to economics
US20110061622A1 (en) Fuel composition
Galfetti et al. Ballistic and rheological characterization of paraffin-based fuels for hybrid rocket propulsion
US9593284B2 (en) Methods for the preparation and delivery of fuel compositions
US20160168497A1 (en) System and Method for Reducing The Amount of Polluting Contents in the Exhaust Gas of a Liquid Fueled Combustion Engine
Glushkov et al. Effects of the initial gel fuel temperature on the ignition mechanism and characteristics of oil-filled cryogel droplets in the high-temperature oxidizer medium
KR20020050760A (en) Sub-critical water-fuel composition and combustion system
US6953870B2 (en) Self-propelled liquid fuel
Aziz et al. Ammonia utilization technology for thermal power generation: A review
CN1236025C (en) Safety environmental protection industrial welding cutting gas using matural gas as main raw material
CN101573561B (en) Premixer for gas and fuel for use in combination with energy release/conversion device
Sun et al. Effect of nitroethane on explosion parameters of multi-component mixed fuel aerosol
KR20040085158A (en) Alkoxylated alkyl ester and alcohol emulsion compositions for fuel cell reformer start-up
JP2006511926A (en) Composite oil-in-water-in-oil (O / W / O) emulsion composition for starting a fuel cell reformer
Yadav et al. Hydrogen compressed natural gas and liquefied compressed natural gas: Fuels for future
KR102155265B1 (en) A fuel composition comprising of water for coal bunning
RU2701821C1 (en) Heat and gas plant for production and use of hydrogen-containing gaseous fuel
Mathews et al. Biphasic Dispersion Fuels for High-Regression-Rate Hybrid Rockets
JPS59219391A (en) Fuel gas for hot processing of metal such as fusion cutting and welding
KR20050085859A (en) Complex water-in-oil-in-water(w/o/w) emulsion compositions for fuel cell reformer start-up
CN101890552A (en) Process method for cutting metal by using oxygen-methanol gasoline flame
EP2209877A2 (en) Use of liquefied-gas compositions
Dou et al. Combustion Characteristics and Application Performance of JP-10/Nano-Sized Aluminum Gel-Fueled Scramjet
Babu et al. Basics of Combustion Thermodynamics

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22795901

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20237036849

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237036849

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE