JPS59219391A - Fuel gas for hot processing of metal such as fusion cutting and welding - Google Patents

Fuel gas for hot processing of metal such as fusion cutting and welding

Info

Publication number
JPS59219391A
JPS59219391A JP9456283A JP9456283A JPS59219391A JP S59219391 A JPS59219391 A JP S59219391A JP 9456283 A JP9456283 A JP 9456283A JP 9456283 A JP9456283 A JP 9456283A JP S59219391 A JPS59219391 A JP S59219391A
Authority
JP
Japan
Prior art keywords
butadiene
gas
fuel gas
getadiene
acetylene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9456283A
Other languages
Japanese (ja)
Inventor
Tsutomu Oomae
大前 「つとむ」
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NICHIGOU ASECHIREN KK
Original Assignee
NICHIGOU ASECHIREN KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NICHIGOU ASECHIREN KK filed Critical NICHIGOU ASECHIREN KK
Priority to JP9456283A priority Critical patent/JPS59219391A/en
Publication of JPS59219391A publication Critical patent/JPS59219391A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a fuel gas which has a high flame temp. and is excellent in flame concn., low cost and suitable for hot processing of metal, such as fusion cutting or welding, obtained by mixing butadiene with at least one 1-4C hydrocarbon in a specified vol. ratio. CONSTITUTION:The fuel gas is prepd. by mixing 60-100vol% butadiene with 40-0vol% one or more 1-4C hydrocarbons selected from among acetylene, methylacetylene, ethylene, propylene, LPG (propane, butane and butene) and LNG (methane). A fuel gas which is lighter than air is obtained when 40- 100vol% butadiene is mixed with 60-0vol% hydrogen. Although butadiene and its blended with other gases have an advantage in that they can be liquefied for storage in a cylinder, butadiene has thermal polymerizability and so a polymerization inhibitor (e.g. hydroquinone) must be added.

Description

【発明の詳細な説明】 本発明は火炎温度が高く、火炎集中性があり、従って溶
断、溶接、スカーフィング、ガクジング等の金属熱加工
用語用途の性能にすぐれ、且つ経済性の有利な燃料ガス
を提供する事を目的とする。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a fuel gas which has a high flame temperature and flame concentration, and therefore has excellent performance in metal thermal processing applications such as fusing, welding, scarfing, and gagging, and is also economically advantageous. The purpose is to provide.

従来から火炎温度が高く、火炎集中性があり従って溶断
、溶接、スカーフィング、ガクジング等の金属熱加工諸
性能が総合的にすぐれているのはアセチレンであり、之
に次ぐのがメチルアセチレン、エチレンであった。他方
金属熱加工の経済性はガス自体の単価と消費酸素量及び
金属熱加工速度から総合的に判断される事であるがアセ
チレン、エチレン等では単価が廉くなく、元来酸素消費
量が少なく加工速度が早いこれらのガスの利点も及ばず
、経済性が必ずしも有利でなくなって来た。
Traditionally, acetylene has a high flame temperature and flame concentration, and therefore has excellent overall performance in metal heat processing such as fusing, welding, scarfing, and gagging, followed by methylacetylene and ethylene. Met. On the other hand, the economic efficiency of metal heat processing is judged comprehensively from the unit price of the gas itself, the amount of oxygen consumed, and the metal heat processing speed, but acetylene, ethylene, etc. are not cheap in unit price and have low oxygen consumption. These gases do not have the advantage of high processing speed, and are no longer economically advantageous.

その為もあってガス単価がより廉いLPG (プロパン
、ブタン)、フロピレン、LNG(メタン)等が性能的
には劣りなから溶断等に用いられる様になって来た。以
上の様な状況であるから現在の圧熱加工性能と経済性共
に揃った燃料ガスは得られていないと云っても過言では
ない。
For this reason, gases such as LPG (propane, butane), fluoropylene, LNG (methane), etc., which are cheaper in unit price, have come to be used for cutting purposes because they have inferior performance. Due to the above situation, it is no exaggeration to say that the current fuel gas with both pressure-thermal processing performance and economical efficiency cannot be obtained.

そこでアセチレン、エチレンよりは廉価で、LPG、プ
ロピレン、LNGよりは熱加工性能の良い燃料ガスを得
る目的で種々検討した結果はグタジエンがこの目的に適
う事を見出した。以下にその検Q”J過程を説01Jす
る。
Therefore, various studies were conducted to obtain a fuel gas that is cheaper than acetylene and ethylene and has better heat processing performance than LPG, propylene, and LNG, and as a result, it was found that gtadiene is suitable for this purpose. The inspection process will be explained below.

純酸素により燃焼させた火炎温度については上記の諸ガ
スに関してその高温のものから順に並べるとアセチレン
3400〜ろろ00°C、エチレン5000°C8プロ
ピレン29D[]”C,LPG(プロパン)2800°
C,LNG(メタン)2700〜2780″C1水素2
500〜2660°Cのj哨となっている。
Regarding the flame temperature of combustion with pure oxygen, the above gases are arranged in descending order of temperature: acetylene 3,400 to Roro 00°C, ethylene 5,000°C, 8 propylene 29D []"C, LPG (propane) 2,800°
C, LNG (methane) 2700~2780″C1 Hydrogen 2
The temperature range is between 500 and 2660°C.

他方、燃焼生成ガス単位体積当りの発熱遍即ち火炎発熱
密度(1気圧15°Cの条件下)をこれらの各ガスにつ
いて総発熱用ベースて計算するとアセチレン4650−
4610 Kcal/l’if、エチレン6760 K
cal/ M”、プロピv ン370 [) Kcal
/M3、LPG (プロパン)ろろ80 Kcal/M
3、LNG(メタン)ろT 7 D Kcal/ M3
、水素ろ050 Kca l/ M”の順となり011
記の火炎温度の順と例外なく一致する。ゲタジエンの火
炎発熱密度は3870 Kcal/M3と算定されアセ
チレンには及ばないかエチレン吉同程度以上である。従
ってゲタジエンの純酸素中の火炎温度の実測値は知られ
ていないがエチンン並みの6000゛″Cと推定できる
。火炎集中性の最も良いのはアセチレン、水素でありエ
チレンか之に次き、プロピレン、LPG(プロノクン)
、ブタンは劣るとされている。これに関してはこれらの
ガスを純酸素中で完全燃焼させた化学式に於いて燃焼i
ff后のモル数の増減に関連伺けられる様である。燃焼
后の生成ガス(即ちCO2とH2O)モル数を燃焼前の
燃料ガスと酸素の合計モル数で除した燃焼ガス膨張率(
但し1.θ以下は収縮になる)の小さい順から並べると
次の様になる。
On the other hand, when the heat distribution per unit volume of combustion gas, that is, the flame heat generation density (under the condition of 1 atm and 15°C) is calculated for each of these gases on a total heat generation basis, acetylene 4650-
4610 Kcal/l'if, ethylene 6760 K
cal/ M”, Propyne 370 [) Kcal
/M3, LPG (propane) Rollo 80 Kcal/M
3. LNG (methane) filter T 7 D Kcal/ M3
, hydrogen filtration 050 Kcal/M” in order of 011
The order of flame temperatures matches without exception. The flame heat generation density of getadiene is calculated to be 3870 Kcal/M3, which is lower than that of acetylene or more than that of ethylene. Therefore, although the measured value of the flame temperature of getadiene in pure oxygen is not known, it can be estimated to be 6000゛''C, which is similar to that of ethinone.Acetylene and hydrogen have the best flame concentration, followed by ethylene, and propylene. , LPG (Pronokun)
, butane is considered inferior. Regarding this, in the chemical formula where these gases are completely combusted in pure oxygen, combustion i
This seems to be related to the increase/decrease in the number of moles after ff. The combustion gas expansion rate is calculated by dividing the number of moles of produced gas (i.e. CO2 and H2O) after combustion by the total number of moles of fuel gas and oxygen before combustion (
However, 1. (below θ is contraction) is arranged in descending order of magnitude as follows.

水素0.67、アセチレン0.857、エチレン1.0
1LNG (メタン)1.0、プロピレン1.09、L
PG(プロパン) 1.+ 67、ブタン1.20の順
となる。
Hydrogen 0.67, Acetylene 0.857, Ethylene 1.0
1LNG (methane) 1.0, propylene 1.09, L
PG (propane) 1. +67, and butane 1.20.

ゲタジエンの場合このガス膨張率は1076となりエチ
レン、LNG(メタン)とプロピレンの間になる事が示
される。従って火炎集中性は水素、アセチレンはもちろ
んエチレン、LNGKは及ば力いが、プロピレン、LP
G(プロパン)、ブタン等よりはすぐれていると期待さ
せる。
In the case of getadiene, this gas expansion coefficient is 1076, indicating that it is between ethylene, LNG (methane), and propylene. Therefore, the flame concentration is strong for hydrogen, acetylene, ethylene, and LNGK, but propylene, LP
It is expected to be superior to G (propane), butane, etc.

ゲタジエンの火炎温度と火炎集中性は以上述べた様て、
之等の影響する金属熱加工性能については、後述の実施
例に示す様に、現在孔く〆断に使用されているLPG 
(プロパン)に比へ1さるとも劣らぬ水準に達している
事か判明した。
As mentioned above, the flame temperature and flame concentration of getadiene are as follows:
Regarding the metal thermal processing performance affected by these factors, as shown in the examples below, LPG, which is currently used for hole cutting,
It has been found that the level is comparable to that of (propane).

実際の金属熱l111工の作業性の諸要素については今
迄ノホへて来た火炎温度か高い事、火炎集中性が筺好な
暑fの両因子に基く所の次の′5項目、即ち予熱時間か
短い事、熱加工速度か早い事及び火炎の調整か容易な事
等の項目が挙げられる。之等に加つるに点火し易く、火
炎の吹消えか少ない事の要素かあるかそれには燃料ガス
の最既着火温度が成る可く賎い事か望捷しい。最底着火
温度の吐い順から並へるとアセチレン305°C1プロ
ピレン458℃、L P G (プロパン)481°C
1エチレン490”C,水素5726C,LNG(メタ
ン)662パCの順である。ブタジェンの最底着火温度
1−1429℃でアセチレンよりは高いかプロピレンよ
りは低く従って作業性もアセチレンには及ばぬが池の諸
燃料ガスに比べるとすぐれている事が裏付けられている
Regarding the various elements of workability in actual metal heat l111 work, the following 5 items are based on the factors of high flame temperature and heat f with good flame concentration. Items include short preheating time, fast heat processing speed, and easy flame adjustment. In addition to these factors, it is desirable that the maximum ignition temperature of the fuel gas is as low as possible because it is easy to ignite and there is little chance of the flame blowing out. In order of lowest ignition temperature, acetylene is 305°C, propylene is 458°C, and LPG (propane) is 481°C.
1 ethylene 490"C, hydrogen 5726"C, and LNG (methane) 662"C.The lowest ignition temperature of butadiene is 1-1429"C, which is higher than acetylene but lower than propylene, so the workability is not as good as acetylene. It has been proven that this gas is superior to other fuel gases from ponds.

経済性については燃料ガスの原価(ガス単価に容器費、
充填費、運賃を合計したもの)のみならず、酸素消費量
と熱加工速度をも含めて総合判断される可きものである
。先つゲタジエンの原価について述べるならガス単価は
グロビレン並みかそれを若干」コロる程度であるが、ブ
タジェンの1気圧での沸点が−4,4°Cであってプロ
ピレン、LPGよりも高沸点(即ち低蒸気圧)である為
容器費、充填費、運賃の合計原価(即ちボンベ充填ガス
としてのゲタジエン価格)は同様ボンベ充填のプロピレ
ン、LPGの価格と大差なく、高圧ボンベ充填のエチレ
ン、水素、マス詰め高圧ボンベ充填のアセチレン等に比
へるとはるかに氏廉となる。
Regarding economic efficiency, the cost of fuel gas (gas unit price plus container cost,
This should be comprehensively judged, taking into account not only the total of filling costs and shipping costs, but also oxygen consumption and heat processing speed. First, if we talk about the cost of getadiene, the gas unit price is the same as or slightly higher than that of globylene, but the boiling point of butadiene at 1 atm is -4.4°C, which is higher than propylene and LPG ( (i.e., low vapor pressure), the total cost of container cost, filling cost, and freight (i.e., the price of getadiene as cylinder filling gas) is not much different from the price of propylene or LPG filled in a cylinder, but it is similar to the price of propylene or LPG filled in a high-pressure cylinder, It is far more reliable than acetylene etc. packed in mass-packed high-pressure cylinders.

次に酸素消費量については単位重匍当りの酸素のJlj
l所論量(重量単位)の少ないガスから並べるとアセチ
レンろ、072、メチルアセチレンろ195、ゲタジエ
ン5.253 、エチレン及びプロピレンろ、422、
ブタン6.578、LPG(プロパン)6.628、L
NG (ブタン) 3.990の順となりブタジェンは
アセチレン、メチルアセチレンに次いて池の晶ガスより
酸素消費比率が少なくて済む月1を示している。この事
は後述の実施例に於てもLPG (プロパン)に比べて
予熱用酸素所要量が少ない11コを実験的に示している
Next, regarding oxygen consumption, Jlj of oxygen per unit weight
In order of gases with the least theoretical amount (weight unit), acetylene filter, 072, methyl acetylene filter 195, getadiene 5.253, ethylene and propylene filter, 422,
Butane 6.578, LPG (propane) 6.628, L
NG (butane) is in the order of 3.990, and butadiene follows acetylene and methylacetylene, indicating that the oxygen consumption ratio is lower than that of pond crystal gas. This fact is also experimentally shown in the examples described below for 11 units, which require a smaller amount of oxygen for preheating than LPG (propane).

金属の熱加工速度特に溶断速度についてはガス消費部同
−の場合前述の火炎温度が高く、火炎集中性が良い程早
いわけであるが、後述の実施例が示すようにLPG (
プロパン)に比へてゲタジエンの方か溶断速度か堅く、
特に300V開先の場合その差か顕著である事が判る。
Regarding the thermal processing speed of metal, especially the fusing speed, when the gas consumption part is the same, the higher the flame temperature mentioned above and the better the flame concentration, the faster it is.As shown in the examples below, LPG (
Compared to propane), getadiene has a faster cutting speed and is harder.
It can be seen that the difference is particularly noticeable in the case of a 300V groove.

以上の様に経済性の点ではゲタジエンはガス原価、酸素
消費用、熱加工速度等を総合して判断すれは、在来の金
属熱加工ガスとして最も廉価なLPG(プロパン、ブタ
ン、ブテン)、プロピレンに比べて同程度である事が示
されている。
As mentioned above, in terms of economic efficiency, getadiene is the cheapest conventional metal heat processing gas, LPG (propane, butane, butene), It has been shown that it is comparable to propylene.

以」−はゲタジエン純度98%以上の単味ガスにつ′ハ
ての熱加工用ガスとしての適性について説明しだが、こ
れらの諸適性を著しるしく低下させない程度に池の燃料
ガスの1種又は数種を原則として4 Q vo1%以下
(即ちゲタジエン分は60vo1%以上)を添加混合し
ても使用できる。混合の効果は1)比較的氏発熱量の燃
料ガスの火炎温度の上昇、2)ブタジェン自体の氏蒸気
圧の昇圧、3)ゲタジエン自体のガス比重の軽量化及び
4)高価な高性能ガスのコストダウン等である。
The following describes the suitability of a simple gas with getadiene purity of 98% or more as a gas for thermal processing. Alternatively, it can also be used by adding and mixing several types of 4Q vo1% or less (that is, the getadiene content is 60vo1% or more) in principle. The effects of mixing are 1) an increase in the flame temperature of the fuel gas with a relatively calorific value of 1000 m², 2) an increase in the vapor pressure of butadiene itself, 3) a reduction in the gas specific gravity of getadiene itself, and 4) a reduction in the use of expensive high-performance gases. Cost reduction, etc.

1)の場合はLPG(プロパン、プロピレン、ブテン)
、LNG(メタン)、プロピレン、市ガス、水素を添加
混合する場合であり、之等のガスの火炎温度を上げる主
効果即ち力01J−アンプの効果がある。
In the case of 1), LPG (propane, propylene, butene)
, LNG (methane), propylene, city gas, and hydrogen are added and mixed, and there is a main effect of increasing the flame temperature of these gases, that is, a force 01 J-amp effect.

2)の場合ブタンジエンは沸点が高く(1気圧下で−4
,4°C)で、加圧容器(ボンベ)内で冬季気化し難い
のを補なうのに、これらのガスのうち水素以外の03〜
C3の炭化水素ガス群はゲタジエン液によく溶けて室温
下の蒸気圧を押し上げるのて有用である。ろ)の場合ブ
タジェンガスの室温下比重か空気に対し1.87と重い
が、その為例えば換気性の悪い船体内、構内での溶断作
業に於けるガス洩れは船、槽底部に滞留して爆発災害を
もたらす危険かある。この場合ゲタジエンに比重0.0
7と極めて軽量な水素を前述の原則とは例外的に50〜
60VO1%を添加して気相混合すると、この混合ガス
比重は0.97〜0.8となり空気の比重1.0よりも
軽くなって吐い所に滞留し難くなり、その池の軽量なア
セチレン、LNG(メタン)、水素、及びエチレン並み
に船体構造内及び槽内でも安全に使えるようになる。
In case 2), butane diene has a high boiling point (-4 at 1 atm).
, 4°C), and to compensate for the fact that it is difficult to vaporize in a pressurized container (cylinder) during winter, it is necessary to
The C3 hydrocarbon gas group is useful because it dissolves well in the getadiene liquid and raises the vapor pressure at room temperature. In the case of butadiene gas, the specific gravity at room temperature is 1.87 compared to air, so if gas leaks during fusing work inside a ship or yard with poor ventilation, it will stay at the bottom of the ship or tank and cause an explosion. There is a risk of causing a disaster. In this case, getadiene has a specific gravity of 0.0.
As an exception to the above-mentioned principle, hydrogen, which is extremely lightweight at 50~
When 60 VO 1% is added and mixed in the gas phase, the specific gravity of this mixed gas is 0.97 to 0.8, which is lighter than the specific gravity of air of 1.0, making it difficult to stay at the discharge point, and the light acetylene in the pond, It can be used safely inside ship structures and tanks, as well as LNG (methane), hydrogen, and ethylene.

4)の場合アセチレンの様に性能は良いが単価が決して
廉くない燃料ガスにゲタジエンを添加混合する場合はこ
れらの高価なガスのコスト低減が主目的表なるか、この
様な目的には従来がらプロピレン、LNG (メタン)
を用いる事が知られている。所がゲタジエンの場合は前
述の如くプロピレン、LNG(メタン)等に比へ火炎温
度が高く、火炎集中性が良い故、元来高性能のアセチレ
ン(場合によってはメチルアセチレン、又はエチレン)
の性能を顕著に低下させないで、コストダウンを計れる
利点がある。以上ゲタジエンに能の燃料ガスを添加混合
する事の諸効果を述べたが、その混合添加する方法につ
いては加圧容器内でゲタジエン液に混合溶解させる方式
が、沸点が近く溶解度の高いプロピレン、LPG(プロ
パン、ブタン、ブテン)、メチルアセチレン等の場合適
している。
In the case of 4), when getadiene is added to and mixed with a fuel gas such as acetylene, which has good performance but is not cheap, the main purpose is to reduce the cost of these expensive gases. Propylene, LNG (methane)
It is known to use However, in the case of getadiene, as mentioned above, the flame temperature is higher than that of propylene, LNG (methane), etc., and the flame concentration is good, so it is originally a high-performance acetylene (in some cases, methylacetylene or ethylene).
This has the advantage of reducing costs without significantly reducing performance. The various effects of adding and mixing getadiene with a specific fuel gas have been described above, but the method of mixing and adding it is to mix and dissolve it in the getadiene liquid in a pressurized container. (propane, butane, butene), methylacetylene, etc.

flli点の隔りが大きいアセチレン、エチレン、LN
G(メタン)、水素等の場合はブタジェンガスに気相で
添加混合する方法が望ましく、常圧若しくは数気圧の政
加圧のガス容器内で混合するか、又は別々の加圧容器か
ら別々の配管を通じ例えばエジェクター・タイプの瞬間
ガス混合器により混合させる方法等を適当に選択できる
Acetylene, ethylene, and LN with large fli points
In the case of G (methane), hydrogen, etc., it is preferable to add and mix it to butadiene gas in the gas phase, and either to mix it in a gas container under normal pressure or several atmospheres of pressure, or to separate pipes from separate pressurized containers. For example, a method of mixing using an ejector type instantaneous gas mixer can be appropriately selected.

尚、ゲタジエンを池のガスと混合した熱加工用燃料ガス
の例としては従来からプロピレン45〜50 vo1%
、メチルアセチレン・ゲタジエン55〜50 vo1%
の公表組成の「スーパー・ジェット」なる商品名のガス
、及び水素45〜5 Q vo1%、プロピレン・メチ
ルアセチレン・ゲタジエン55〜50 vo1%の公表
組成の「ハイドロジェント−8」なる商品名のガスの2
種類が知られている。
Incidentally, as an example of a fuel gas for thermal processing in which getadiene is mixed with pond gas, propylene 45 to 50 vol.
, methylacetylene/getadiene 55-50 vol1%
A gas with the trade name "Super Jet" with a published composition of 2
types are known.

これらのガス中のブタジェンはメチルアセチレンを含む
粗溜分に含有され同伴する成分として副次的に混入して
いるものであって、本願のようにその特性を生かす為に
積極的に使用する独立的な主成分でない点で基本的に異
なっている。その事は次に示すこれら両ガス中に合壕れ
るゲタジエン分の含有値からも理解できよう。これら公
知の両ガス中のゲタジエン濃度の直接公表値はないが、
「スーパー ジェ・ソトガス」については比重1.52
なるデータが公知である故、これから推算したブタジェ
ンガス濃度は+ 6.3 vo1%〜17.5 vo1
%であり、その池メチルアセチレンはうろ、7 vo1
%〜ろ7.5 vo1%となり、残り5O−45vo1
%はプロピレンである。「ハイドロジェットSガス」に
ついては比重0.87及び理論酸素量(モル単位)2.
7のデータが□公知である故これから推算したブタジェ
ンガス濃度は28〜l 0vo1%であり、共の能メチ
ルアセチレン17〜21vo1%、プロピレン5〜23
 vo1%、残り50〜45 vo1%は水弟である。
Butadiene in these gases is contained in the crude distillate containing methylacetylene and is mixed as a secondary component, and as in this application, it is an independent gas that is actively used to take advantage of its properties. It is basically different in that it is not a principal component. This can be understood from the following content of getadiene in both gases. Although there are no directly published values for getadiene concentrations in both of these known gases,
Regarding “Super Je Sotogas”, the specific gravity is 1.52.
Since the data is known, the butadiene gas concentration estimated from this is +6.3 vol% to 17.5 vol.
%, and the pond methyl acetylene is Uro, 7 vol.
%~ro 7.5 vo1%, remaining 5O-45 vol
% is propylene. "Hydrojet S Gas" has a specific gravity of 0.87 and a theoretical oxygen amount (in moles) of 2.
Since the data in No. 7 is publicly known, the butadiene gas concentration estimated from this is 28-10vol%, and the same concentration of methylacetylene is 17-21vo1%, propylene is 5-23vol%.
VO1%, remaining 50-45 VO1% are water brothers.

何れにしてもこれら公知の両商品ガス中のブタジェン分
は3 Q vo1%以下÷あり、本願の場合のゲタジエ
ン濃度を原則として60 vo1%〜100 vo1%
、例外として水素による軽量化をはかる場合でもゾクジ
エン濃度40’vo1%以上とするのとはその組成範囲
について全く異なっているのである。
In any case, the butadiene content in both of these known commercial gases is 3 Q vo 1% or less divided by 60 vo 1% to 100 vo 1%, based on the getadiene concentration in the case of the present application.
As an exception, even in the case of weight reduction using hydrogen, the composition range is completely different from the case where the concentration of Zokudiene is 40'vo1% or more.

以上述べたゲタジエンの単味ガス及び混合ガス(原則と
してゲタジエン60 vo1%以上)は蒸気圧が数気圧
〜10数気圧(室温〜50″C)に留まる故、現在汎用
されているLPG用軽量ボンベ内に液化貯蔵し得る利点
があるが、ブタジェンは元来熱重合性があるので重合禁
止剤(例えはt−ブチルカテコール、ハイドロキノン等
)100〜50ppnlを予じめ添加しておく必要があ
り、且つ50°C以上に加熱しない注意も必要である。
The above-mentioned getadiene single gas and mixed gas (in principle, getadiene 60 vol 1% or more) have a vapor pressure of only a few atmospheres to 10-odd atmospheres (room temperature to 50"C), so they cannot be used in the currently widely used lightweight LPG cylinders. However, since butadiene is inherently thermally polymerizable, it is necessary to add 100 to 50 ppnl of a polymerization inhibitor (e.g. t-butylcatechol, hydroquinone, etc.) in advance. Also, care must be taken not to heat it above 50°C.

次に実施例及び対照例を挙げて本発明の金属熱加工用燃
料ガスとしての有効性を説明する。
Next, the effectiveness of the present invention as a fuel gas for metal thermal processing will be explained with reference to Examples and Comparative Examples.

実施例1 ゲタジエン純度98.5 vo1%を液化しボンベに充
填しであるのを溶断テストし、市販のLPG(プロパン
85%、ブタン10%、ブテン5%)と比較対照した。
Example 1 Getadiene with a purity of 98.5 vol. 1% was liquefied and filled into a cylinder, which was subjected to a fusing test and compared with commercially available LPG (propane 85%, butane 10%, butene 5%).

溶断試験は厚さ25關の軟鋼板(SS41 )を切断速
度をIカットでけろ60.400.450各am /分
、60度Vカットでは320,360゜400各mm1
分とし、それぞれで火口はプロパン用ストレートπ2を
用い自動切断器で溶断テストを実施した。ガス消費量は
WES規格の1級ガス切断面が得られる切断速度のうち
のガスの最少消費用で、粗さRが25S程度の美しい切
断面が得られるデータを表1に示した。
The fusing test was performed on a 25-thick mild steel plate (SS41) at a cutting speed of 60, 400, 450 am/min each with an I cut, and 320, 360, 400 am/min each with a 60 degree V cut.
A fusing test was conducted using an automatic cutter using a propane straight π2 for each crater. Table 1 shows the data for the minimum gas consumption of the cutting speed at which a class 1 gas cut surface according to the WES standard can be obtained, and a beautiful cut surface with a roughness R of about 25S can be obtained.

表    1 (−の表1で溶断速度か開先か■カットの場合は/10
0 mm /” min 、Vカットの場合ば36 D
 mrJmllTの揚高〜(4:ブタジェンと1・I)
 Gの切断コストを比較しだ所1カットでは差かなかっ
たか、■カットでG−、[ブタジェンの力かL P G
に比へて、プブス)肖費−量と予熱酸素−111か何れ
もブタジェンの方か少なくて済み、より経済的な事を示
している、。
Table 1 (- Table 1 shows fusing speed or beveling ■/10 for cut
0 mm/” min, 36 D for V cut
Height of mrJmllT ~ (4: Butadiene and 1・I)
When I compared the cutting costs of G, there was no difference with just one cut. ■ Cutting G-, [Is it the power of Butadiene? L P G
Compared to the above, Butadiene requires less in both the quantity and preheating oxygen, indicating that it is more economical.

実施例 側施例1に対しブタジェンの代りに7クジエン6Q v
o1%にアヤチレン、エチし/ン、フロヒレン、LPG
 (プロパン、ブタン、プデン系)、LNG(メタシ系
)それぞれ4 Clvol%の混合ガス及びブタレニン
4 Q vo1%に水素60 vo1%の混合ガスを用
いる池は全く同じ条件、要領で実施した。
Example side Example 1: 7kudiene 6Q instead of butadiene v
O1% contains Ayachilene, Ethylene, Fluhilene, LPG
(propane, butane, butene type), LNG (metacrylic type), each using a mixed gas of 4 Clvol%, and a mixed gas of 60 vol% of hydrogen in 4Q vol% of butarenine were conducted under exactly the same conditions and procedure.

ガス消費量はW E S規格1級i■1iか安定して得
られるうちて恨少限の値を記載した。対照例はブタジェ
ン30vo1%以下の混合ガスとじた。
The gas consumption is listed as the lowest value that can be stably obtained according to the WES standard 1st class i■1i. In the control example, a mixed gas containing 30vol 1% or less of butadiene was used.

実施例2に於いては対照例2に比へブタジェン分か多い
丈、溶断速度を早く出来る事、同一溶断速度下てはガス
消′j&m、予熱酸素用共に少なくて/斉む41か示さ
れている。
In Example 2, compared to Control Example 2, it was shown that the length had more butadiene, the fusing speed could be made faster, and at the same fusing speed, both gas extinguishing and preheating oxygen were less/equal. ing.

Claims (1)

【特許請求の範囲】 1)ゲタジエン60〜I 00 vo1%とアセチレン
、メチルアセチレン、エチレン、フロピレン、LPG(
7’ロパン、ブタン、ブタン)、LNG(メタン)等の
01〜C4炭化水素の1種又は数種40〜Ovo1%を
混合して成る溶断、溶接等の金属熱加工用燃料ガス。 2)ゲタジエン40−1’00 vo1%と水素′60
〜Q vo1%より成る溶断、溶接等の金属熱加工用燃
料ガス。
[Claims] 1) Getadiene 60-100 vol% and acetylene, methylacetylene, ethylene, flopylene, LPG (
A fuel gas for metal thermal processing such as fusing and welding, which is a mixture of 40 to 1% Ovo of one or more of 01 to C4 hydrocarbons such as 7'-ropane, butane, butane), LNG (methane), etc. 2) Getadiene 40-1'00 vo1% and hydrogen'60
A fuel gas for metal thermal processing such as fusing and welding consisting of ~Q vo1%.
JP9456283A 1983-05-27 1983-05-27 Fuel gas for hot processing of metal such as fusion cutting and welding Pending JPS59219391A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9456283A JPS59219391A (en) 1983-05-27 1983-05-27 Fuel gas for hot processing of metal such as fusion cutting and welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9456283A JPS59219391A (en) 1983-05-27 1983-05-27 Fuel gas for hot processing of metal such as fusion cutting and welding

Publications (1)

Publication Number Publication Date
JPS59219391A true JPS59219391A (en) 1984-12-10

Family

ID=14113754

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9456283A Pending JPS59219391A (en) 1983-05-27 1983-05-27 Fuel gas for hot processing of metal such as fusion cutting and welding

Country Status (1)

Country Link
JP (1) JPS59219391A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100407185B1 (en) * 1998-01-16 2004-01-24 에스.에이. 화이트 마르틴스 Additivated gas for oxy-cutting and/or heating applications, composition and use of an additivated gas
WO2010032376A1 (en) * 2008-09-16 2010-03-25 大陽日酸株式会社 Gas cutting method and gas cutting device
RU2503473C1 (en) * 2012-07-05 2014-01-10 Федеральное государственное бюджетное учреждение науки Институт структурной макрокинетики и проблем материаловедения Российской академии наук Method of preventing detonation and destruction of stationary detonation wave with propane or propane-butane in hydrogen-air mixtures
US8733543B2 (en) 2011-05-12 2014-05-27 Pro-Cyl, Llc Environmentally friendly fuel gas within a refillable and non-corrosive gas cylinder
JP2018034191A (en) * 2016-08-31 2018-03-08 大陽日酸株式会社 Gas cutting fuel gas and gas cutting method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100407185B1 (en) * 1998-01-16 2004-01-24 에스.에이. 화이트 마르틴스 Additivated gas for oxy-cutting and/or heating applications, composition and use of an additivated gas
WO2010032376A1 (en) * 2008-09-16 2010-03-25 大陽日酸株式会社 Gas cutting method and gas cutting device
JP2010069487A (en) * 2008-09-16 2010-04-02 Nissan Tanaka Corp Gas cutting method and gas cutting device
US8574379B2 (en) 2008-09-16 2013-11-05 Taiyo Nippon Sanso Corporation Method for cutting with gas and apparatus for cutting with gas
US8733543B2 (en) 2011-05-12 2014-05-27 Pro-Cyl, Llc Environmentally friendly fuel gas within a refillable and non-corrosive gas cylinder
US9322572B2 (en) 2011-05-12 2016-04-26 John Earl Webb Environmentally friendly fuel gas within a refillable and non-corrosive gas cylinder
RU2503473C1 (en) * 2012-07-05 2014-01-10 Федеральное государственное бюджетное учреждение науки Институт структурной макрокинетики и проблем материаловедения Российской академии наук Method of preventing detonation and destruction of stationary detonation wave with propane or propane-butane in hydrogen-air mixtures
JP2018034191A (en) * 2016-08-31 2018-03-08 大陽日酸株式会社 Gas cutting fuel gas and gas cutting method

Similar Documents

Publication Publication Date Title
Simmons et al. Some limiting oxygen concentrations for diffusion flames in air diluted with nitrogen
US3232725A (en) Method of storing natural gas for transport
US6012533A (en) Fire safety system
US5866751A (en) Energy recovery and transport system
US5236467A (en) Double fortified hydrocarbon and process for making and using the same
EP2079819A2 (en) Hydrocarbon fuel compositions
US5380346A (en) Fortified hydrocarbon and process for making and using the same
WO2022230988A1 (en) Ammonia-mixed fuel, production device for ammonia-mixed fuel, production method for ammonia-mixed fuel, supply device for ammonia-mixed fuel, combustion device for ammonia-mixed fuel, power generation equipment using ammonia-mixed fuel, and transport device using ammonia-mixed fuel
JPS59219391A (en) Fuel gas for hot processing of metal such as fusion cutting and welding
PT1364153E (en) Method and substance for refrigerated natural gas transport
CN1261621A (en) Using method of welding torch gas hydrocarbon by adding composite additive to improve quality
US1096797A (en) Gas process and product.
CN100436571C (en) Formula of multifunction fuel and its production process
US3796554A (en) Welding gas
JPS6183292A (en) Mixed gas
US2043212A (en) Welding
US3989479A (en) Gaseous fuel mixture
EP0524835A1 (en) Fortified hydrocarbon and process for making and using the same
CA2178940C (en) Fortified hydrocarbon and process for making and using the same
CA2702434A1 (en) Use of liquefied gas compositions
JPS60394B2 (en) Fuel gas composition for cutting and heating metals
US6099294A (en) Method of regulating the oxidation of hydrogen in air, including the transition to combustion, the intensity of combustion, the transition from combustion to explosion and the intensity of explosion
WO1994001515A1 (en) Liquified fuel gas and process for making and using the same
WO1993002828A2 (en) Fortified torch gas and process for making and using the same
AU3650593A (en) Fortified hydrocarbon and process for making and using the same