JP2009085168A - Control device for internal combustion engine - Google Patents

Control device for internal combustion engine Download PDF

Info

Publication number
JP2009085168A
JP2009085168A JP2007258583A JP2007258583A JP2009085168A JP 2009085168 A JP2009085168 A JP 2009085168A JP 2007258583 A JP2007258583 A JP 2007258583A JP 2007258583 A JP2007258583 A JP 2007258583A JP 2009085168 A JP2009085168 A JP 2009085168A
Authority
JP
Japan
Prior art keywords
ammonia
internal combustion
combustion engine
fuel
gasoline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007258583A
Other languages
Japanese (ja)
Other versions
JP4919922B2 (en
Inventor
Hiroshi Miyagawa
浩 宮川
Makoto Koike
誠 小池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2007258583A priority Critical patent/JP4919922B2/en
Publication of JP2009085168A publication Critical patent/JP2009085168A/en
Application granted granted Critical
Publication of JP4919922B2 publication Critical patent/JP4919922B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a control device for an internal combustion engine capable of realizing stable operation inhibiting combustion fluctuations of the internal combustion engine while increasing the rate of ammonia used. <P>SOLUTION: An internal combustion engine 10 uses ammonia and gasoline (supporting fuel) promoting combustion of the ammonia as fuel wherein the ammonia is injected into an induction conduit 20 from an ammonia injector 22 and the gasoline is injected into the induction conduit 20 from a gasoline injector 24. An electronic control device 40 controlling actuation of the ammonia injector 22 and the gasoline injector 24 changes injection distributions of the ammonia and the supporting fuel according to variation of one or more of rotational speed and load of the internal combustion engine 10. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、内燃機関の制御装置に関し、特に、アンモニアと該アンモニアの燃焼を促進させるための助燃燃料とを燃料として使用する内燃機関の制御を行う装置に関する。   The present invention relates to a control device for an internal combustion engine, and more particularly to a device for controlling an internal combustion engine that uses ammonia and an auxiliary combustion fuel for promoting combustion of the ammonia as fuel.

石油系燃料以外の燃料としてアンモニア(NH3)を使用する内燃機関が提案されており、その関連技術が下記特許文献1及び非特許文献1に開示されている。アンモニアを内燃機関の燃料として使用することで二酸化炭素(CO2)の排出量削減を図ることが可能となるが、アンモニアはガソリン等の石油系燃料と比較して燃焼速度が遅く燃えにくい性質を有する。特許文献1では、燃焼後の排気ガスの熱を利用してアンモニアを分解して水素ガス(H2)を生成し、この水素ガスを副燃焼室内に導入して初期燃焼を行わせることで、燃焼室内のアンモニアの燃焼を促進させている。 An internal combustion engine that uses ammonia (NH 3 ) as a fuel other than petroleum-based fuels has been proposed, and related technologies are disclosed in Patent Document 1 and Non-Patent Document 1 below. Ammonia can be used as a fuel for internal combustion engines to reduce carbon dioxide (CO 2 ) emissions. However, ammonia has a slower combustion speed than petroleum-based fuels such as gasoline, making it difficult to burn. Have. In Patent Document 1, ammonia is decomposed using the heat of exhaust gas after combustion to generate hydrogen gas (H 2 ), and this hydrogen gas is introduced into the auxiliary combustion chamber to perform initial combustion. The combustion of ammonia in the combustion chamber is promoted.

特開平5−332152号公報JP-A-5-332152 Shawn M. Grannell他,"THE OPERATING FEATURES OF A STOICHIOMETRIC,AMMONIA AND GASOLINE DUAL FUELED SPARK IGNITION ENGINE",IMECE2006-13048,2006 ASME International Mechanical Engineering Congress and Exposition,2006Shawn M. Grannell et al., "THE OPERATING FEATURES OF A STOICHIOMETRIC, AMMONIA AND GASOLINE DUAL FUELED SPARK IGNITION ENGINE", IMECE2006-13048,2006 ASME International Mechanical Engineering Congress and Exposition, 2006

内燃機関において、燃焼変動を抑えた安定な運転を行うためには、ピストンが上死点付近にある間に燃焼を完結させるのに十分な燃焼速度で燃料を燃焼させる必要がある。ただし、燃料の燃焼速度は、燃料の種類のみならず内燃機関の運転条件によっても影響を受ける。アンモニアと助燃燃料とを燃料として使用する内燃機関において、その運転条件が変化して燃料の燃焼速度が低下すると、燃焼速度の遅いアンモニアの使用割合が過剰となり、燃焼変動が増大して内燃機関の安定な運転が困難となる。一方、内燃機関の運転条件が変化して燃料の燃焼速度が増大すると、燃焼速度の遅いアンモニアの使用割合が不足し、アンモニアの利用効率が制約されたり、ノッキングが生じて安定な運転が困難となる虞がある。特許文献1では、アンモニアと水素との使用配分が示されておらず、内燃機関の運転条件によっては、安定した燃焼を行うことが困難となる虞がある。   In an internal combustion engine, in order to perform a stable operation with reduced fluctuations in combustion, it is necessary to burn fuel at a combustion speed sufficient to complete combustion while the piston is near top dead center. However, the combustion speed of the fuel is affected not only by the type of fuel but also by the operating conditions of the internal combustion engine. In an internal combustion engine that uses ammonia and auxiliary combustion fuel as fuel, if the operating conditions change and the combustion speed of the fuel decreases, the usage rate of ammonia with a slow combustion speed becomes excessive, the combustion fluctuation increases, and the internal combustion engine Stable operation becomes difficult. On the other hand, if the operating conditions of the internal combustion engine change and the fuel combustion rate increases, the usage rate of ammonia with a slow combustion rate will be insufficient, and the efficiency of ammonia usage will be restricted, or knocking will occur and stable operation will be difficult. There is a risk of becoming. Patent Document 1 does not show the usage distribution of ammonia and hydrogen, and depending on the operating conditions of the internal combustion engine, it may be difficult to perform stable combustion.

本発明は、アンモニアの使用割合を増やしつつ、内燃機関の燃焼変動を抑えた安定な運転を実現することができる内燃機関の制御装置を提供することを目的とする。   An object of the present invention is to provide a control device for an internal combustion engine that can realize a stable operation in which the combustion fluctuation of the internal combustion engine is suppressed while increasing the usage ratio of ammonia.

本発明に係る内燃機関の制御装置は、上述した目的を達成するために以下の手段を採った。   The control apparatus for an internal combustion engine according to the present invention employs the following means in order to achieve the above-described object.

本発明に係る内燃機関の制御装置は、アンモニアと該アンモニアの燃焼を促進させるための助燃燃料とを燃料として使用する内燃機関の制御を行う装置であって、内燃機関の運転条件の変化に応じてアンモニアと助燃燃料との使用配分を変化させる燃料配分制御手段を備えることを要旨とする。ここでの内燃機関の運転条件としては、内燃機関の回転数や負荷を挙げることができ、燃料配分制御手段は、内燃機関の回転数及び負荷のいずれか1つ以上の変化に応じてアンモニアと助燃燃料との使用配分を変化させることができる。   A control device for an internal combustion engine according to the present invention is a device for controlling an internal combustion engine that uses ammonia and an auxiliary combustion fuel for accelerating the combustion of the ammonia as fuel, and responds to changes in operating conditions of the internal combustion engine. The gist of the present invention is to provide fuel distribution control means for changing the usage distribution of ammonia and auxiliary fuel. The operating conditions of the internal combustion engine here can include the rotational speed and load of the internal combustion engine, and the fuel distribution control means is configured to react with ammonia in accordance with changes in one or more of the rotational speed and load of the internal combustion engine. The use distribution with the auxiliary fuel can be changed.

本発明の一態様では、燃料配分制御手段は、内燃機関の回転数の減少に対してアンモニアの使用割合を増大させ助燃燃料の使用割合を減少させることが好適である。また、本発明の一態様では、燃料配分制御手段は、内燃機関の負荷の増大に対してアンモニアの使用割合を増大させ助燃燃料の使用割合を減少させることが好適である。   In one aspect of the present invention, it is preferable that the fuel distribution control means increases the usage rate of ammonia and decreases the usage rate of auxiliary combustion fuel with respect to a decrease in the rotational speed of the internal combustion engine. In one aspect of the present invention, it is preferable that the fuel distribution control means increases the usage rate of ammonia and decreases the usage rate of the auxiliary combustion fuel with respect to an increase in the load of the internal combustion engine.

本発明の一態様では、助燃燃料は、水素、炭化水素系燃料、及びアルコール系燃料のいずれか1つ以上を含むことが好適である。   In one embodiment of the present invention, the auxiliary fuel preferably includes any one or more of hydrogen, hydrocarbon fuel, and alcohol fuel.

本発明によれば、内燃機関の運転条件の変化に応じてアンモニアと助燃燃料との使用配分を変化させることで、アンモニアの使用割合を増やしつつ、内燃機関の燃焼変動を抑えた安定な運転を実現することができる。   According to the present invention, by changing the usage distribution of ammonia and auxiliary combustion fuel in accordance with changes in the operating conditions of the internal combustion engine, a stable operation in which the combustion fluctuation of the internal combustion engine is suppressed while increasing the usage ratio of ammonia. Can be realized.

以下、本発明を実施するための形態(以下実施形態という)を図面に従って説明する。   DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments for carrying out the present invention (hereinafter referred to as embodiments) will be described with reference to the drawings.

図1は、本発明の実施形態に係る制御装置の概略構成を制御対象である内燃機関10とともに示す図である。内燃機関10は、アンモニア(第1の燃料)とこのアンモニアの燃焼を促進させるための助燃燃料(第2の燃料)とを燃料として使用するものである。図1は、助燃燃料としてガソリン(炭化水素系燃料)を使用する例を示している。   FIG. 1 is a diagram showing a schematic configuration of a control device according to an embodiment of the present invention together with an internal combustion engine 10 that is a control target. The internal combustion engine 10 uses ammonia (first fuel) and auxiliary combustion fuel (second fuel) for promoting combustion of the ammonia as fuel. FIG. 1 shows an example in which gasoline (hydrocarbon fuel) is used as an auxiliary fuel.

アンモニアタンク12内にはアンモニア(NH3)が貯溜されており、ガソリンタンク14内にはガソリンが貯溜されている。アンモニアタンク12内に貯溜されたアンモニアは、ポンプによりアンモニアインジェクタ22に供給され、ガソリンタンク14内に貯溜されたガソリンは、ポンプによりガソリンインジェクタ24に供給される。吸気管20内に臨むアンモニアインジェクタ22は、アンモニアタンク12から供給されたアンモニアを吸気管20内に噴射し、吸気管20内に臨むガソリンインジェクタ24は、ガソリンタンク14から供給されたガソリンを吸気管20内に噴射する。アンモニアインジェクタ22及びガソリンインジェクタ24からそれぞれ噴射されたアンモニア及びガソリンは、吸気行程にて空気とともにシリンダ11内に導入される。内燃機関10は、燃料(アンモニア及びガソリン)と空気との混合気をシリンダ11内で燃焼させることで動力を発生する。燃焼後の排出ガスは、排気行程にてシリンダ11内から排気管21内へ排出され、排気浄化装置として設けられた排気触媒30で浄化される。燃焼後の排出ガスには窒素酸化物(NOx)や未燃アンモニア等が含まれており、窒素酸化物や未燃アンモニア等が排気触媒30で浄化される。 Ammonia (NH 3 ) is stored in the ammonia tank 12, and gasoline is stored in the gasoline tank 14. The ammonia stored in the ammonia tank 12 is supplied to the ammonia injector 22 by the pump, and the gasoline stored in the gasoline tank 14 is supplied to the gasoline injector 24 by the pump. The ammonia injector 22 facing the intake pipe 20 injects the ammonia supplied from the ammonia tank 12 into the intake pipe 20, and the gasoline injector 24 facing the intake pipe 20 receives the gasoline supplied from the gasoline tank 14. 20 is injected. Ammonia and gasoline injected from the ammonia injector 22 and the gasoline injector 24, respectively, are introduced into the cylinder 11 together with air in the intake stroke. The internal combustion engine 10 generates power by burning a mixture of fuel (ammonia and gasoline) and air in the cylinder 11. The exhaust gas after combustion is discharged from the cylinder 11 into the exhaust pipe 21 in the exhaust stroke, and is purified by the exhaust catalyst 30 provided as an exhaust purification device. The exhaust gas after combustion contains nitrogen oxides (NOx), unburned ammonia, etc., and the nitrogen oxides, unburned ammonia, etc. are purified by the exhaust catalyst 30.

図1は、アンモニア及び助燃燃料(ガソリン)を吸気管20内に噴射する例を示しているが、アンモニアインジェクタ22をシリンダ11内に臨ませてアンモニアをシリンダ11内に直接噴射することもできるし、ガソリンインジェクタ24をシリンダ11内に臨ませてガソリンをシリンダ11内に直接噴射することもできる。また、点火栓の火花放電によりシリンダ11内の混合気に点火することでシリンダ11内の混合気を火炎伝播燃焼させることもできるし、シリンダ11内の燃料(アンモニア及び助燃燃料)を圧縮自着火により燃焼させることもできる。   FIG. 1 shows an example in which ammonia and auxiliary fuel (gasoline) are injected into the intake pipe 20. However, ammonia can be directly injected into the cylinder 11 with the ammonia injector 22 facing the cylinder 11. It is also possible to inject gasoline directly into the cylinder 11 with the gasoline injector 24 facing the cylinder 11. Further, by igniting the air-fuel mixture in the cylinder 11 by spark discharge from the spark plug, the air-fuel mixture in the cylinder 11 can be subjected to flame propagation combustion, and the fuel (ammonia and auxiliary fuel) in the cylinder 11 is compressed and self-ignited. Can also be burned.

電子制御装置(ECU)40は、CPUを中心としたマイクロプロセッサとして構成されており、処理プログラムを記憶したROMと、一時的にデータを記憶するRAMと、入出力ポートと、を備える。この電子制御装置40には、図示しない各センサにより検出された内燃機関10の回転数を示す信号、及びスロットル開度を示す信号等が入力ポートを介して入力されている。一方、電子制御装置40からは、アンモニアインジェクタ22の駆動制御を行うためのアンモニア噴射制御信号、及びガソリンインジェクタ24の駆動制御を行うためのガソリン噴射制御信号等が出力ポートを介して出力されている。電子制御装置40は、内燃機関10の回転数及びスロットル開度に基づいて燃料の目標総噴射量及び目標噴射配分を演算し、燃料の総噴射量及び噴射配分が目標総噴射量及び目標噴射配分にそれぞれ一致するようにアンモニアインジェクタ22及びガソリンインジェクタ24の駆動制御をそれぞれ行うことで、アンモニアの噴射量(使用量)及びガソリンの噴射量(使用量)をそれぞれ制御する。これによって、アンモニアとガソリン(助燃燃料)との噴射配分(使用配分)を制御することができる。   The electronic control unit (ECU) 40 is configured as a microprocessor centered on a CPU, and includes a ROM that stores a processing program, a RAM that temporarily stores data, and an input / output port. A signal indicating the rotational speed of the internal combustion engine 10 detected by each sensor (not shown), a signal indicating the throttle opening, and the like are input to the electronic control device 40 via an input port. On the other hand, from the electronic control unit 40, an ammonia injection control signal for performing drive control of the ammonia injector 22, a gasoline injection control signal for performing drive control of the gasoline injector 24, and the like are output via an output port. . The electronic control unit 40 calculates the target total injection amount and target injection distribution of the fuel based on the rotational speed of the internal combustion engine 10 and the throttle opening, and the total injection amount and injection distribution of the fuel are the target total injection amount and target injection distribution. By controlling the drive of the ammonia injector 22 and the gasoline injector 24 so as to coincide with each other, the injection amount (use amount) of ammonia and the injection amount (use amount) of gasoline are respectively controlled. Thereby, the injection distribution (use distribution) of ammonia and gasoline (support fuel) can be controlled.

アンモニアは、ガソリン等の炭化水素系燃料と比較して燃焼速度が遅く燃えにくい物質であるが、アンモニアだけでなく助燃燃料(図1に示す例ではガソリン)もシリンダ11内にて燃焼させることで、アンモニアの燃焼を促進させることができる。アンモニアに対して助燃燃料の使用割合を変化させた場合の燃焼速度の変化を計算により調べた結果を図2に示す。図2は、助燃燃料としてガソリンを用いたときの燃焼速度の計算結果と、助燃燃料として水素を用いたときの燃焼速度の計算結果とを示す。図2に示すように、助燃燃料の使用割合を増加させる(アンモニアの使用割合を減少させる)ことで、燃焼速度を増大できることがわかる。   Ammonia is a substance whose combustion speed is slow and difficult to burn compared to hydrocarbon fuels such as gasoline, but not only ammonia but also auxiliary combustion fuel (gasoline in the example shown in FIG. 1) is burned in the cylinder 11. Ammonia combustion can be promoted. FIG. 2 shows the result of examining the change in the combustion rate when the usage rate of the auxiliary combustion fuel is changed with respect to ammonia by calculation. FIG. 2 shows the calculation result of the combustion rate when gasoline is used as the auxiliary fuel, and the calculation result of the combustion rate when hydrogen is used as the auxiliary fuel. As shown in FIG. 2, it can be seen that the combustion rate can be increased by increasing the usage rate of the auxiliary fuel (decreasing the usage rate of ammonia).

内燃機関において、燃焼変動を抑えた安定な運転を行うためには、ピストンが上死点付近にある間に燃焼を完結させるのに十分な火炎伝播速度で燃料を燃焼させる必要がある。ただし、火炎伝播速度は、燃料の種類のみならず内燃機関の運転条件によっても影響を受ける。内燃機関の運転条件が変化した結果、必要な火炎伝播速度が得られる使用割合と比べてアンモニアの使用割合が多すぎるときは、燃焼速度が遅くなって燃焼変動が増大し、内燃機関の安定な運転が困難となる。一方、必要な火炎伝播速度が得られる使用割合と比べてアンモニアの使用割合が少なすぎるときは、アンモニアの利用効率が制約されたり、ノッキングが生じて安定な運転が困難となる虞がある。   In an internal combustion engine, in order to perform a stable operation with reduced fluctuations in combustion, it is necessary to burn fuel at a flame propagation speed sufficient to complete combustion while the piston is near top dead center. However, the flame propagation speed is affected not only by the type of fuel but also by the operating conditions of the internal combustion engine. As a result of changes in the operating conditions of the internal combustion engine, when the usage rate of ammonia is too high compared to the usage rate at which the required flame propagation speed is obtained, the combustion rate becomes slow and the combustion fluctuations increase, resulting in a stable internal combustion engine. Driving becomes difficult. On the other hand, when the usage rate of ammonia is too small compared to the usage rate at which a necessary flame propagation speed is obtained, there is a possibility that the usage efficiency of ammonia may be restricted or knocking may occur, making stable operation difficult.

そこで、本実施形態では、電子制御装置40は、内燃機関10の運転条件の変化に応じてアンモニアと助燃燃料との噴射配分(使用配分)を変化させるように、アンモニアインジェクタ22及びガソリンインジェクタ24の駆動制御をそれぞれ行う。ここでの内燃機関10の運転条件としては、内燃機関10の回転数や負荷を挙げることができ、電子制御装置40は、内燃機関10の回転数及び負荷のいずれか1つ以上の変化に応じてアンモニアと助燃燃料との使用配分を変化させる。これによって、アンモニアの利用効率を向上させつつ、内燃機関10の燃焼変動を抑えた安定な運転を実現する。内燃機関10の回転数については、例えば図示しない回転数センサにより検出することができ、内燃機関10の負荷については、例えばスロットル開度や燃料の目標総噴射量から取得することができる。以下、アンモニアと助燃燃料との噴射配分制御の詳細について説明する。   Therefore, in the present embodiment, the electronic control unit 40 controls the ammonia injector 22 and the gasoline injector 24 so as to change the injection distribution (usage distribution) of ammonia and auxiliary combustion fuel according to the change in the operating condition of the internal combustion engine 10. Each drive control is performed. The operating conditions of the internal combustion engine 10 here include the rotational speed and load of the internal combustion engine 10, and the electronic control unit 40 responds to changes in one or more of the rotational speed and load of the internal combustion engine 10. Change the distribution of use of ammonia and auxiliary fuel. This realizes a stable operation in which the combustion efficiency of the internal combustion engine 10 is suppressed while improving the utilization efficiency of ammonia. The rotational speed of the internal combustion engine 10 can be detected by, for example, a rotational speed sensor (not shown), and the load of the internal combustion engine 10 can be obtained from, for example, the throttle opening or the target total injection amount of fuel. Hereinafter, the details of the injection distribution control of ammonia and auxiliary fuel will be described.

アンモニアの噴射割合を変化させた場合の燃焼変動の変化を実験により調べた結果を図3,4に示す。図3は、内燃機関の回転数を変化させながらアンモニア噴射割合に対する燃焼変動(トルク変動)の特性を調べた実験結果であり、図4は、内燃機関の負荷(トルク)を変化させながらアンモニア噴射割合に対する燃焼変動(トルク変動)の特性を調べた実験結果である。図3,4に示す実験結果においては、燃焼変動が許容限界レベルを超えると内燃機関の安定な運転が困難となる。   FIGS. 3 and 4 show the results of experimentally examining changes in combustion fluctuations when the ammonia injection ratio is changed. FIG. 3 is an experimental result of examining characteristics of combustion fluctuation (torque fluctuation) with respect to the ammonia injection ratio while changing the rotational speed of the internal combustion engine, and FIG. 4 shows ammonia injection while changing the load (torque) of the internal combustion engine. It is the experimental result which investigated the characteristic of the combustion fluctuation | variation (torque fluctuation | variation) with respect to a ratio. In the experimental results shown in FIGS. 3 and 4, when the combustion fluctuation exceeds the allowable limit level, stable operation of the internal combustion engine becomes difficult.

図3に示すように、いずれの回転数においても、アンモニアの噴射割合がある程度以上になると、燃焼変動が許容限界レベルを超えて内燃機関の安定な運転が困難になることがわかる。そして、内燃機関の回転数が高くなるほど燃焼変動が許容限界レベルに達するときのアンモニア噴射割合が低くなる(内燃機関の回転数が低くなるほど燃焼変動が許容限界レベルに達するときのアンモニア噴射割合が高くなる)ことがわかる。内燃機関の回転数が低い運転条件では、内燃機関の回転数が高い運転条件と比較して、ピストンの移動速度が低く、燃焼のための時間を比較的長く取ることができる。そのため、内燃機関の回転数が低い運転条件では、内燃機関の回転数が高い運転条件よりアンモニア噴射割合を高くして燃料の燃焼速度が低くなっても、燃焼変動を許容限界レベル以下に抑えられることが、図3に示す実験結果からわかる。一方、内燃機関の回転数が高い運転条件では、内燃機関の回転数が低い運転条件よりアンモニア噴射割合を低くして燃料の燃焼速度を高くしないと、燃焼変動を許容限界レベル以下に抑えられないことが、図3に示す実験結果からわかる。そこで、本実施形態では、電子制御装置40は、内燃機関10の回転数の減少に対してアンモニアの噴射割合を増大させて助燃燃料の噴射割合を減少させるように、アンモニアインジェクタ22及びガソリンインジェクタ24の駆動制御をそれぞれ行う。これによって、内燃機関10の回転数が変化しても、アンモニアの利用効率を向上させつつ、燃焼変動(トルク変動)が許容限界レベル以下に抑えられるように、アンモニアと助燃燃料との噴射配分を制御することができる。   As shown in FIG. 3, it can be seen that, at any rotation speed, when the injection ratio of ammonia exceeds a certain level, the combustion fluctuation exceeds the allowable limit level, and stable operation of the internal combustion engine becomes difficult. The higher the engine speed, the lower the ammonia injection rate when the combustion fluctuation reaches the allowable limit level (the lower the engine speed, the higher the ammonia injection ratio when the combustion fluctuation reaches the allowable limit level). I understand). Under operating conditions where the rotational speed of the internal combustion engine is low, the moving speed of the piston is low and it is possible to take a relatively long time for combustion as compared with operating conditions where the rotational speed of the internal combustion engine is high. For this reason, under operating conditions where the rotational speed of the internal combustion engine is low, even if the ammonia injection ratio is increased and the combustion speed of the fuel is reduced compared to operating conditions where the rotational speed of the internal combustion engine is high, combustion fluctuations can be suppressed below the allowable limit level. This can be seen from the experimental results shown in FIG. On the other hand, under operating conditions where the rotational speed of the internal combustion engine is high, combustion fluctuations cannot be suppressed below the permissible limit level unless the fuel injection rate is increased by lowering the ammonia injection ratio than in operating conditions where the rotational speed of the internal combustion engine is low. This can be seen from the experimental results shown in FIG. Therefore, in the present embodiment, the electronic control unit 40 increases the ammonia injection ratio with respect to the decrease in the rotational speed of the internal combustion engine 10 to decrease the auxiliary combustion fuel injection ratio and the ammonia injector 22 and the gasoline injector 24. Each drive control is performed. As a result, even if the rotational speed of the internal combustion engine 10 changes, the distribution of injection of ammonia and auxiliary combustion fuel is distributed so that combustion fluctuation (torque fluctuation) can be suppressed to an allowable limit level or less while improving the utilization efficiency of ammonia. Can be controlled.

図4に示すように、いずれの負荷(トルク)においても、アンモニアの噴射割合がある程度以上になると、燃焼変動が許容限界レベルを超えて内燃機関の安定な運転が困難になることがわかる。そして、内燃機関の負荷が高くなるほど燃焼変動が許容限界レベルに達するときのアンモニア噴射割合が高くなる(内燃機関の負荷が低くなるほど燃焼変動が許容限界レベルに達するときのアンモニア噴射割合が低くなる)ことがわかる。内燃機関の負荷が高い運転条件では、内燃機関の負荷が低い運転条件と比較して、シリンダ内圧力が増加するため、燃焼が促進されて火炎伝播速度が高くなる。そのため、内燃機関の負荷が高い運転条件では、内燃機関の負荷が低い運転条件よりアンモニア噴射割合を高くして燃料の燃焼速度が低くなっても、燃焼変動を許容限界レベル以下に抑えられることが、図4に示す実験結果からわかる。一方、内燃機関の負荷が低い運転条件では、内燃機関の負荷が高い運転条件よりアンモニア噴射割合を低くして燃料の燃焼速度を高くしないと、燃焼変動を許容限界レベル以下に抑えられないことが、図4に示す実験結果からわかる。そこで、本実施形態では、電子制御装置40は、内燃機関10の負荷(トルク)の増大に対してアンモニアの噴射割合を増大させて助燃燃料の噴射割合を減少させるように、アンモニアインジェクタ22及びガソリンインジェクタ24の駆動制御をそれぞれ行う。これによって、内燃機関10の負荷が変化しても、アンモニアの利用効率を向上させつつ、燃焼変動(トルク変動)が許容限界レベル以下に抑えられるように、アンモニアと助燃燃料との噴射配分を制御することができる。   As shown in FIG. 4, it can be seen that, at any load (torque), if the injection ratio of ammonia exceeds a certain level, the combustion fluctuation exceeds the allowable limit level and it becomes difficult to operate the internal combustion engine stably. The higher the load on the internal combustion engine, the higher the ammonia injection rate when the combustion fluctuation reaches the allowable limit level (the lower the load on the internal combustion engine, the lower the ammonia injection ratio when the combustion fluctuation reaches the allowable limit level). I understand that. In the operating condition where the load of the internal combustion engine is high, the in-cylinder pressure increases compared to the operating condition where the load of the internal combustion engine is low, so that combustion is promoted and the flame propagation speed increases. Therefore, under operating conditions where the load on the internal combustion engine is high, even if the ammonia injection ratio is increased and the combustion speed of the fuel is reduced compared with operating conditions where the load on the internal combustion engine is low, the combustion fluctuations can be suppressed below the allowable limit level. From the experimental results shown in FIG. On the other hand, under operating conditions where the load of the internal combustion engine is low, combustion fluctuations cannot be suppressed below the allowable limit level unless the ammonia injection ratio is lowered and the combustion speed of the fuel is increased compared to operating conditions where the load of the internal combustion engine is high. From the experimental results shown in FIG. Therefore, in the present embodiment, the electronic control unit 40 increases the ammonia injection ratio with respect to the increase in the load (torque) of the internal combustion engine 10 and decreases the injection ratio of the auxiliary fuel so as to decrease the injection ratio of the auxiliary fuel. The drive control of the injector 24 is performed. As a result, even if the load of the internal combustion engine 10 changes, the injection distribution of ammonia and auxiliary combustion fuel is controlled so that the combustion fluctuation (torque fluctuation) can be suppressed to a permissible limit level or more while improving the utilization efficiency of ammonia. can do.

また、アンモニアは、火炎伝播速度を低下させる性質がある一方、ノッキングのような急激な燃焼を抑制する効果もある。ノッキングは特に低速高負荷の運転条件で問題となるため、こうした運転条件においてアンモニアの噴射割合を増大させることで、ノッキングの発生を抑制することができ、熱効率を向上させることができる。高負荷の運転条件においてアンモニアの噴射割合を変化させた場合の熱効率の変化を実験により調べた結果を図5に示す。図5に示すように、アンモニアの噴射割合が低い場合はノッキングにより熱効率が制約を受けるが、アンモニアの噴射割合が十分高ければノッキングを抑制することができ、熱効率を向上できることがわかる。   In addition, ammonia has a property of reducing the flame propagation speed, but also has an effect of suppressing rapid combustion such as knocking. Since knocking is a problem particularly under low-speed and high-load operating conditions, increasing the injection ratio of ammonia under these operating conditions can suppress the occurrence of knocking and improve the thermal efficiency. FIG. 5 shows the result of an experiment examining the change in thermal efficiency when the injection ratio of ammonia is changed under high load operating conditions. As shown in FIG. 5, when the injection ratio of ammonia is low, the thermal efficiency is restricted by knocking. However, if the injection ratio of ammonia is sufficiently high, knocking can be suppressed and the thermal efficiency can be improved.

以上の実験結果を基に作成した、内燃機関10の運転条件(回転数及びトルク)に対するアンモニア噴射割合の関係を表す特性マップの一例を図6に示す。図6に示す特性マップにおいては、燃焼変動(トルク変動)が許容限界レベル以下に抑えられる条件でアンモニア噴射割合が最も高くなるように、内燃機関10の回転数及びトルクに対するアンモニア噴射割合が設定されている。図6に示す特性マップにおいては、内燃機関10の回転数の増大に対してアンモニア噴射割合が減少し、内燃機関10のトルクの低下に対してアンモニア噴射割合が減少している。この特性マップは、電子制御装置40内の記憶装置に記憶される。電子制御装置40は、この特性マップにおいて、与えられた内燃機関10の回転数及びトルクに対応するアンモニアの目標噴射割合を算出し、アンモニアの噴射割合がこの目標噴射割合に一致するようにアンモニアと助燃燃料との噴射配分を制御する。これによって、内燃機関10の回転数及びトルクが変化しても、アンモニアの利用効率を向上させつつ、燃焼変動(トルク変動)が許容限界レベル以下に抑えられるように、アンモニアと助燃燃料との噴射配分を制御することができる。   FIG. 6 shows an example of a characteristic map that is created based on the above experimental results and represents the relationship of the ammonia injection ratio with respect to the operating conditions (rotation speed and torque) of the internal combustion engine 10. In the characteristic map shown in FIG. 6, the ammonia injection ratio with respect to the rotational speed and torque of the internal combustion engine 10 is set so that the ammonia injection ratio becomes the highest under the condition that the combustion fluctuation (torque fluctuation) is suppressed to the allowable limit level or less. ing. In the characteristic map shown in FIG. 6, the ammonia injection ratio decreases as the rotational speed of the internal combustion engine 10 increases, and the ammonia injection ratio decreases as the torque of the internal combustion engine 10 decreases. This characteristic map is stored in a storage device in the electronic control unit 40. In this characteristic map, the electronic control unit 40 calculates a target injection ratio of ammonia corresponding to the given rotation speed and torque of the internal combustion engine 10, and compares the ammonia injection ratio with the target injection ratio so that the ammonia injection ratio matches the target injection ratio. Control injection distribution with auxiliary fuel. Thereby, even if the rotation speed and torque of the internal combustion engine 10 change, the injection of ammonia and auxiliary fuel is performed so that the combustion fluctuation (torque fluctuation) can be suppressed to the allowable limit level or less while improving the efficiency of using ammonia. The distribution can be controlled.

以上説明したように、本実施形態によれば、内燃機関10の運転状態(回転数及びトルク)の変化に応じてアンモニアと助燃燃料との噴射配分を変化させることで、アンモニアの使用割合を増やしつつ、内燃機関10の燃焼変動を抑えた安定な運転を実現することができる。それとともに、ノッキングの発生を抑制して熱効率の向上を実現することができる。   As described above, according to the present embodiment, the usage ratio of ammonia is increased by changing the injection distribution of ammonia and auxiliary fuel in accordance with the change in the operating state (rotation speed and torque) of the internal combustion engine 10. However, it is possible to realize a stable operation in which the combustion fluctuation of the internal combustion engine 10 is suppressed. At the same time, the occurrence of knocking can be suppressed and thermal efficiency can be improved.

次に、本実施形態の他の構成例について説明する。   Next, another configuration example of this embodiment will be described.

図7は、助燃燃料として水素(H2)を使用する例を示している。図7は、過給器28及びインタークーラ29を有する過給エンジンの例を示しており、排気管21における排気触媒30の下流側にアンモニア分解器31が設けられている。アンモニア分解器31は、排気管21内に排出された燃焼後の排出ガスの熱を利用して、アンモニアタンク12から供給されたアンモニアを分解して水素を生成する。アンモニア分解器31で生成された水素(分解ガス)は、クーラ32で冷却されてから分解ガス噴射弁33に供給され、分解ガス噴射弁33から吸気管20内に噴射される。ただし、本実施形態では、例えばプラズマを利用してアンモニアを改質することで水素を生成することもできる。電子制御装置40は、アンモニアインジェクタ22及び分解ガス噴射弁33の駆動制御をそれぞれ行うことで、アンモニアの噴射量及び水素の噴射量をそれぞれ制御し、アンモニアと水素との噴射配分(使用配分)を制御する。助燃燃料として水素を使用する場合は、図2に示すように燃焼速度向上効果が大きいため、より少ない水素の添加で内燃機関10の燃焼変動を抑えた安定な運転を実現することができ、アンモニア利用効率をさらに向上させることができる。 FIG. 7 shows an example in which hydrogen (H 2 ) is used as the auxiliary fuel. FIG. 7 shows an example of a supercharged engine having a supercharger 28 and an intercooler 29, and an ammonia decomposer 31 is provided in the exhaust pipe 21 downstream of the exhaust catalyst 30. The ammonia decomposer 31 decomposes the ammonia supplied from the ammonia tank 12 using the heat of the exhaust gas after combustion discharged into the exhaust pipe 21 to generate hydrogen. The hydrogen (cracked gas) generated by the ammonia cracker 31 is cooled by the cooler 32 and then supplied to the cracked gas injection valve 33 and injected from the cracked gas injection valve 33 into the intake pipe 20. However, in the present embodiment, hydrogen can be generated by reforming ammonia using, for example, plasma. The electronic control unit 40 controls the ammonia injection amount and the hydrogen injection amount by performing drive control of the ammonia injector 22 and the cracked gas injection valve 33, respectively, and makes an injection distribution (use distribution) of ammonia and hydrogen. Control. When hydrogen is used as a supplementary fuel, the combustion speed improvement effect is large as shown in FIG. 2, so that stable operation with reduced combustion fluctuations of the internal combustion engine 10 can be realized by adding less hydrogen. Utilization efficiency can be further improved.

また、図8は、助燃燃料としてエタノール(アルコール系燃料)を使用する例を示している。図8に示す構成例では、エタノールタンク15内に貯溜されたエタノールは、エタノールインジェクタ25から吸気管20内に噴射される。電子制御装置40は、アンモニアインジェクタ22及びエタノールインジェクタ25の駆動制御をそれぞれ行うことで、アンモニアの噴射量及びエタノールの噴射量をそれぞれ制御し、アンモニアとエタノールとの噴射配分(使用配分)を制御する。エタノールはガソリンよりもオクタン価が高いため、助燃燃料としてエタノールを使用する場合は、アンモニアの利用とあわせて耐ノック性を高めることができ、より高い圧縮比とすることができる。   FIG. 8 shows an example in which ethanol (alcohol fuel) is used as the auxiliary fuel. In the configuration example shown in FIG. 8, the ethanol stored in the ethanol tank 15 is injected from the ethanol injector 25 into the intake pipe 20. The electronic control unit 40 performs drive control of the ammonia injector 22 and the ethanol injector 25 to control the injection amount of ammonia and the injection amount of ethanol, respectively, and control the injection distribution (use distribution) of ammonia and ethanol. . Since ethanol has a higher octane number than gasoline, when ethanol is used as an auxiliary fuel, knock resistance can be enhanced together with the use of ammonia, and a higher compression ratio can be achieved.

また、本実施形態では、助燃燃料として軽油(炭化水素系燃料)を使用することも可能である。さらに、助燃燃料として複数種類の燃料を使用することも可能であり、例えば、炭化水素系燃料(ガソリンや軽油等)、水素、及びアルコール系燃料(エタノール等)のうち、複数種類を組み合わせて使用することも可能である。水素、ガソリン、軽油、及びエタノールは、いずれもアンモニアよりも燃えやすい物質であり、燃焼速度も高い。そのため、アンモニアの燃焼速度を向上させるための助燃燃料として好適である。   In the present embodiment, it is also possible to use light oil (hydrocarbon fuel) as the auxiliary fuel. Furthermore, it is possible to use multiple types of fuel as auxiliary fuel, for example, using a combination of multiple types of hydrocarbon fuels (gasoline, light oil, etc.), hydrogen, and alcohol fuels (ethanol, etc.) It is also possible to do. Hydrogen, gasoline, light oil, and ethanol are all flammable substances than ammonia and have a high burning rate. Therefore, it is suitable as a supplementary fuel for improving the combustion rate of ammonia.

以上、本発明を実施するための形態について説明したが、本発明はこうした実施形態に何等限定されるものではなく、本発明の要旨を逸脱しない範囲内において、種々なる形態で実施し得ることは勿論である。   As mentioned above, although the form for implementing this invention was demonstrated, this invention is not limited to such embodiment at all, and it can implement with a various form in the range which does not deviate from the summary of this invention. Of course.

本発明の実施形態に係る制御装置及び制御対象である内燃機関の概略構成を示す図である。1 is a diagram illustrating a schematic configuration of a control device according to an embodiment of the present invention and an internal combustion engine that is a control target. アンモニアに対して助燃燃料の使用割合を変化させた場合の燃焼速度の変化を計算により調べた結果を示す図である。It is a figure which shows the result of having investigated by calculation the change of the combustion rate at the time of changing the usage-amount of auxiliary combustion fuel with respect to ammonia. 内燃機関の回転数を変化させながらアンモニア噴射割合に対する燃焼変動の特性を調べた実験結果を示す図である。It is a figure which shows the experimental result which investigated the characteristic of the combustion fluctuation | variation with respect to the ammonia injection ratio, changing the rotation speed of an internal combustion engine. 内燃機関の負荷を変化させながらアンモニア噴射割合に対する燃焼変動の特性を調べた実験結果を示す図である。It is a figure which shows the experimental result which investigated the characteristic of the combustion fluctuation | variation with respect to the ammonia injection ratio, changing the load of an internal combustion engine. 高負荷の運転条件においてアンモニアの噴射割合を変化させた場合の熱効率の変化を実験により調べた結果を示す図である。It is a figure which shows the result of having investigated by experiment the change of the thermal efficiency at the time of changing the injection ratio of ammonia on the high load operating condition. 内燃機関の運転条件に対するアンモニア噴射割合の関係を表す特性マップの一例を示す図である。It is a figure which shows an example of the characteristic map showing the relationship of the ammonia injection ratio with respect to the operating condition of an internal combustion engine. 本発明の実施形態に係る制御装置及び制御対象である内燃機関の他の概略構成を示す図である。It is a figure which shows the other schematic structure of the control apparatus which concerns on embodiment of this invention, and the internal combustion engine which is a control object. 本発明の実施形態に係る制御装置及び制御対象である内燃機関の他の概略構成を示す図である。It is a figure which shows the other schematic structure of the control apparatus which concerns on embodiment of this invention, and the internal combustion engine which is a control object.

符号の説明Explanation of symbols

10 内燃機関、11 シリンダ、12 アンモニアタンク、14 ガソリンタンク、15 エタノールタンク、20 吸気管、21 排気管、22 アンモニアインジェクタ、24 ガソリンインジェクタ、25 エタノールインジェクタ、30 排気触媒、31 アンモニア分解器、33 分解ガス噴射弁、40 電子制御装置。   DESCRIPTION OF SYMBOLS 10 Internal combustion engine, 11 Cylinder, 12 Ammonia tank, 14 Gasoline tank, 15 Ethanol tank, 20 Intake pipe, 21 Exhaust pipe, 22 Ammonia injector, 24 Gasoline injector, 25 Ethanol injector, 30 Exhaust catalyst, 31 Ammonia decomposer, 33 Decomposition Gas injection valve, 40 electronic control unit.

Claims (4)

アンモニアと該アンモニアの燃焼を促進させるための助燃燃料とを燃料として使用する内燃機関の制御を行う装置であって、
内燃機関の運転条件の変化に応じてアンモニアと助燃燃料との使用配分を変化させる燃料配分制御手段を備える、内燃機関の制御装置。
An apparatus for controlling an internal combustion engine that uses ammonia and an auxiliary combustion fuel for promoting combustion of the ammonia as fuel,
A control device for an internal combustion engine, comprising fuel distribution control means for changing a usage distribution of ammonia and auxiliary combustion fuel according to a change in operating conditions of the internal combustion engine.
請求項1に記載の内燃機関の制御装置であって、
燃料配分制御手段は、内燃機関の回転数の減少に対してアンモニアの使用割合を増大させ助燃燃料の使用割合を減少させる、内燃機関の制御装置。
A control device for an internal combustion engine according to claim 1,
The fuel distribution control means is a control device for an internal combustion engine that increases the usage rate of ammonia and decreases the usage rate of auxiliary combustion fuel with respect to a decrease in the rotational speed of the internal combustion engine.
請求項1または2に記載の内燃機関の制御装置であって、
燃料配分制御手段は、内燃機関の負荷の増大に対してアンモニアの使用割合を増大させ助燃燃料の使用割合を減少させる、内燃機関の制御装置。
An internal combustion engine control apparatus according to claim 1 or 2,
The fuel distribution control means is a control device for an internal combustion engine that increases the usage rate of ammonia and decreases the usage rate of auxiliary combustion fuel with respect to an increase in load of the internal combustion engine.
請求項1〜3のいずれか1に記載の内燃機関の制御装置であって、
助燃燃料は、水素、炭化水素系燃料、及びアルコール系燃料のいずれか1つ以上を含む、内燃機関の制御装置。
The control apparatus for an internal combustion engine according to any one of claims 1 to 3,
A control device for an internal combustion engine, wherein the auxiliary combustion fuel includes at least one of hydrogen, hydrocarbon fuel, and alcohol fuel.
JP2007258583A 2007-10-02 2007-10-02 Control device for internal combustion engine Expired - Fee Related JP4919922B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007258583A JP4919922B2 (en) 2007-10-02 2007-10-02 Control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007258583A JP4919922B2 (en) 2007-10-02 2007-10-02 Control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2009085168A true JP2009085168A (en) 2009-04-23
JP4919922B2 JP4919922B2 (en) 2012-04-18

Family

ID=40658880

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007258583A Expired - Fee Related JP4919922B2 (en) 2007-10-02 2007-10-02 Control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP4919922B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010109599A1 (en) * 2009-03-25 2010-09-30 トヨタ自動車株式会社 Controller for internal combustion engine
WO2011145434A1 (en) * 2010-05-21 2011-11-24 トヨタ自動車株式会社 Ammonia-burning internal combustion engine
WO2011145435A1 (en) * 2010-05-21 2011-11-24 トヨタ自動車株式会社 Internal combustion engine control device
KR101480915B1 (en) * 2013-08-14 2015-01-09 현대오트론 주식회사 Method for controlling mixture ratio of fuel for vehicles
CN115247602A (en) * 2022-07-15 2022-10-28 天津大学 Ammonia gas dilution gasoline engine control system
WO2022230988A1 (en) * 2021-04-30 2022-11-03 株式会社三井E&Sマシナリー Ammonia-mixed fuel, production device for ammonia-mixed fuel, production method for ammonia-mixed fuel, supply device for ammonia-mixed fuel, combustion device for ammonia-mixed fuel, power generation equipment using ammonia-mixed fuel, and transport device using ammonia-mixed fuel
WO2023090218A1 (en) * 2021-11-16 2023-05-25 株式会社Ihi原動機 Reciprocating engine system and operation method for reciprocating engine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59173542A (en) * 1983-03-19 1984-10-01 Toyota Motor Corp Bifuel feed device in internal-combustion engine
JPH07331265A (en) * 1994-06-13 1995-12-19 Mikio Sugiyama Method for utilizing liquid ammonia as hydrogen fuel
JPH08158980A (en) * 1994-12-06 1996-06-18 Mitsubishi Motors Corp Auxiliary fuel ignition type gas engine and operating method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59173542A (en) * 1983-03-19 1984-10-01 Toyota Motor Corp Bifuel feed device in internal-combustion engine
JPH07331265A (en) * 1994-06-13 1995-12-19 Mikio Sugiyama Method for utilizing liquid ammonia as hydrogen fuel
JPH08158980A (en) * 1994-12-06 1996-06-18 Mitsubishi Motors Corp Auxiliary fuel ignition type gas engine and operating method thereof

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010109599A1 (en) * 2009-03-25 2010-09-30 トヨタ自動車株式会社 Controller for internal combustion engine
JP5472459B2 (en) * 2010-05-21 2014-04-16 トヨタ自動車株式会社 Control device for internal combustion engine
WO2011145435A1 (en) * 2010-05-21 2011-11-24 トヨタ自動車株式会社 Internal combustion engine control device
CN102906409A (en) * 2010-05-21 2013-01-30 丰田自动车株式会社 Ammonia-burning internal combustion engine
CN102906410A (en) * 2010-05-21 2013-01-30 丰田自动车株式会社 Internal combustion engine control device
JP5310945B2 (en) * 2010-05-21 2013-10-09 トヨタ自動車株式会社 Ammonia combustion internal combustion engine
WO2011145434A1 (en) * 2010-05-21 2011-11-24 トヨタ自動車株式会社 Ammonia-burning internal combustion engine
CN102906410B (en) * 2010-05-21 2015-02-11 丰田自动车株式会社 Internal combustion engine control device
KR101480915B1 (en) * 2013-08-14 2015-01-09 현대오트론 주식회사 Method for controlling mixture ratio of fuel for vehicles
WO2022230988A1 (en) * 2021-04-30 2022-11-03 株式会社三井E&Sマシナリー Ammonia-mixed fuel, production device for ammonia-mixed fuel, production method for ammonia-mixed fuel, supply device for ammonia-mixed fuel, combustion device for ammonia-mixed fuel, power generation equipment using ammonia-mixed fuel, and transport device using ammonia-mixed fuel
WO2023090218A1 (en) * 2021-11-16 2023-05-25 株式会社Ihi原動機 Reciprocating engine system and operation method for reciprocating engine
JP7394270B2 (en) 2021-11-16 2023-12-07 株式会社Ihi原動機 Reciprocating engine system, how to operate a reciprocating engine
CN115247602A (en) * 2022-07-15 2022-10-28 天津大学 Ammonia gas dilution gasoline engine control system
CN115247602B (en) * 2022-07-15 2023-10-31 天津大学 Ammonia diluted gasoline engine control system

Also Published As

Publication number Publication date
JP4919922B2 (en) 2012-04-18

Similar Documents

Publication Publication Date Title
WO2010109599A1 (en) Controller for internal combustion engine
JP3991789B2 (en) An internal combustion engine that compresses and ignites the mixture.
JP4412290B2 (en) Gas fuel internal combustion engine
WO2010109601A1 (en) Controller of internal combustion engine
US8151741B2 (en) Control device of internal combustion engine
JP4919922B2 (en) Control device for internal combustion engine
WO2012157041A1 (en) Method and device for controlling internal combustion engine
JP2009085169A (en) Control device for internal combustion engine
JP4126971B2 (en) INTERNAL COMBUSTION ENGINE OPERATED BY COMPRESSED SELF-IGNITION OF MIXED AIR AND CONTROL METHOD FOR INTERNAL COMBUSTION ENGINE
JP2009108777A (en) Compression ignition type internal combustion engine
WO2012137351A1 (en) Control system for multifuel internal combustion engine
JP2008274905A (en) Combustion control device for multi-fuel internal combustion engine
JP6181361B2 (en) Method for controlling fuel in an internal combustion engine using gasoline direct injection, in particular controlled ignition
JP5556956B2 (en) Control device and method for internal combustion engine
JP5115660B2 (en) Fuel injection control device for internal combustion engine
WO2012114482A1 (en) Internal combustion engine control system
JP6435051B2 (en) Powertrain system
JP7213929B1 (en) Engine system and gaseous fuel combustion method
JP6703792B2 (en) Method of realizing variable compression ratio and variable air-fuel ratio in internal combustion engine
Memarzadeh et al. Transient plasma discharge ignition for internal combustion engines
JP2011157940A (en) Compression ignition internal combustion engine
JP4281824B2 (en) Compression ignition internal combustion engine
JP2009144530A (en) Control device of internal combustion engine
JP2009287443A (en) Internal combustion engine using multiple fuels

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20081226

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20100119

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20100119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100120

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110712

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110714

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120124

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120131

R150 Certificate of patent or registration of utility model

Ref document number: 4919922

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150210

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees