WO2022230882A1 - 情報処理装置、情報処理方法、及びコンピュータプログラム - Google Patents

情報処理装置、情報処理方法、及びコンピュータプログラム Download PDF

Info

Publication number
WO2022230882A1
WO2022230882A1 PCT/JP2022/018903 JP2022018903W WO2022230882A1 WO 2022230882 A1 WO2022230882 A1 WO 2022230882A1 JP 2022018903 W JP2022018903 W JP 2022018903W WO 2022230882 A1 WO2022230882 A1 WO 2022230882A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
spectral distribution
information processing
glare
evaluation
Prior art date
Application number
PCT/JP2022/018903
Other languages
English (en)
French (fr)
Inventor
惠二 内川
祥子 松村
健司 鈴木
典明 浅田
Original Assignee
三井化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井化学株式会社 filed Critical 三井化学株式会社
Priority to JP2023517558A priority Critical patent/JPWO2022230882A1/ja
Publication of WO2022230882A1 publication Critical patent/WO2022230882A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/02Subjective types, i.e. testing apparatus requiring the active assistance of the patient
    • A61B3/06Subjective types, i.e. testing apparatus requiring the active assistance of the patient for testing light sensitivity, e.g. adaptation; for testing colour vision
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter

Definitions

  • the present disclosure relates to an information processing device, an information processing method, and a computer program.
  • Optical members such as lenses and filters have optical properties such as spectral transmittance, chromatic aberration, or refractive index.
  • Such optical members for correcting human visual function for example, spectacles must be selected to have optical characteristics suitable for each individual's visual function.
  • Attenuating glare is a phenomenon that reduces the ability of the visual system to see a visual object when a bright light source (glare light source) is present near the visual object.
  • the present disclosure has been made in view of the above points, and can present information on the relationship between the color of light (hereinafter, color means the spectral distribution of light) and the glare that humans perceive for that color.
  • An object is to provide an information processing device, an information processing method, and a computer program.
  • an information processing apparatus uses an evaluation function whose variable is the amount of response to a given spectral distribution of light for at least one of the types of human photoreceptors. and a presenting unit for presenting an evaluation result of the predetermined spectral distribution of light by the evaluating unit.
  • the types of photoreceptors may be L-cones, M-cones, S-cones, and intrinsic photosensitive retinal ganglion cells (ipRGCs).
  • the predetermined spectral distribution of light may be a background color that has higher visibility than a reference color in a visibility test for a subject using a plurality of visual targets with different background colors and the same luminance.
  • the presentation unit may present information about the spectral distribution of light that reduces the glare felt by the subject.
  • the evaluation function may be a function calculated in advance for each person.
  • the evaluation function may be a function calculated in advance based on the average value of test results for a plurality of people.
  • the presenting unit may present information as to whether or not the predetermined spectral distribution of light is a spectral distribution of light that has high visibility and is not dazzling compared to other spectral distributions of light. good.
  • the evaluation unit may generate the evaluation function using glare test results.
  • the information processing method is characterized in that, for at least one of the types of human photoreceptor cells, the processor generates an evaluation function whose variable is a response amount to a predetermined spectral distribution of light. is used to evaluate the glare with respect to the spectral distribution of the light, and present the evaluation result with respect to the predetermined spectral distribution of the light.
  • the computer program according to the present disclosure uses an evaluation function in which the response amount to a predetermined spectral distribution of light is a variable for at least one of the types of human photoreceptor cells. to evaluate the glare with respect to the spectral distribution of light and present the evaluation result with respect to the predetermined spectral distribution of light.
  • the spectral distribution of light and the spectral distribution of light are evaluated by evaluating glare with respect to the spectral distribution of light using an evaluation function whose variable is the amount of response to a predetermined spectral distribution of light. It is possible to provide an information processing device, an information processing method, and a computer program capable of presenting information related to human glare.
  • FIG. 1 is a diagram illustrating an overview of an information processing device according to an embodiment of technology disclosed herein; FIG. It is a block diagram which shows the hardware constitutions of an information processing apparatus.
  • 2 is a block diagram showing an example of the functional configuration of an information processing device;
  • FIG. It is a figure which shows the example of the spectral distribution of light. It is a figure which shows an example of an evaluation function with a graph. It is a figure which shows an example of the spectral distribution of the light of a test object.
  • 4 is a flowchart showing the flow of information processing by an information processing device; It is a flowchart which shows the flow of design processing of the color lens of spectacles by an information processing apparatus.
  • FIG. 1 is a diagram showing an overview of the information processing apparatus according to this embodiment.
  • the information processing apparatus 10 receives information (color information) on the spectral distribution of light, and outputs an evaluation result for the color information. Specifically, the information processing apparatus 10 inputs the spectral distribution of light as color information, and outputs the result of evaluating the glare of the spectral distribution of the light as the evaluation result. For example, the information processing apparatus 10 receives the spectral distribution of light and evaluates the degree of glare in the spectral distribution of light using a function prepared in advance.
  • the information processing apparatus 10 outputs evaluation results for the input color information, thereby presenting whether or not the spectral distribution of light corresponding to the input color information is a spectral distribution of light that is less likely to cause glare to humans. can.
  • FIG. 2 is a block diagram showing the hardware configuration of the information processing device 10. As shown in FIG.
  • the information processing apparatus 10 includes a CPU (Central Processing Unit) 11, a ROM (Read Only Memory) 12, a RAM (Random Access Memory) 13, a storage 14, an input section 15, a display section 16, and a communication interface. (I/F) 17.
  • CPU Central Processing Unit
  • ROM Read Only Memory
  • RAM Random Access Memory
  • storage 14 an input section 15, a display section 16, and a communication interface. (I/F) 17.
  • I/F communication interface.
  • the CPU 11 is a central processing unit that executes various programs and controls each section. That is, the CPU 11 reads a program from the ROM 12 or the storage 14 and executes the program using the RAM 13 as a work area. The CPU 11 performs control of the above components and various arithmetic processing according to programs recorded in the ROM 12 or the storage 14 . In this embodiment, the ROM 12 or the storage 14 stores a computer program for outputting the glare evaluation result for the input color information.
  • the ROM 12 stores various programs and various data.
  • RAM 13 temporarily stores programs or data as a work area.
  • the storage 14 is configured by a storage device such as a HDD (Hard Disk Drive), SSD (Solid State Drive), or flash memory, and stores various programs including an operating system and various data.
  • the input unit 15 includes a pointing device such as a mouse and a keyboard, and is used for various inputs.
  • the display unit 16 is, for example, a liquid crystal display, and displays various information.
  • the display unit 16 may employ a touch panel system and function as the input unit 15 .
  • the communication interface 17 is an interface for communicating with other devices, and uses standards such as Ethernet (registered trademark), FDDI, and Wi-Fi (registered trademark), for example.
  • the information processing device 10 When executing the above computer program, the information processing device 10 implements various functions using the above hardware resources. A functional configuration realized by the information processing apparatus 10 will be described.
  • FIG. 3 is a block diagram showing an example of the functional configuration of the information processing device 10. As shown in FIG.
  • the information processing apparatus 10 has an evaluation unit 101 and a presentation unit 102 as functional configurations. Each functional configuration is realized by the CPU 11 reading and executing a computer program stored in the ROM 12 or the storage 14 .
  • the evaluation unit 101 evaluates the glare perceived by humans with respect to the spectral distribution of light. Specifically, the evaluation unit 101 uses a predetermined function to evaluate the glare with respect to the spectral distribution of the light.
  • the evaluation unit 101 evaluates glare using an evaluation function that outputs the degree of glare of the spectral distribution of light, using the response amount to which the spectral distribution of light is input for each type of human photoreceptor as a variable. evaluate.
  • This evaluation function is a function in which a predetermined visual target is sequentially presented to the subject while changing the spectral distribution of light, and a test is performed to determine whether or not the subject feels glare, and a coefficient is set to fit the test result. is.
  • L-cones Human photoreceptors are classified into four types: L-cones, M-cones, S-cones, and intrinsic photosensitive retinal ganglion cells (ipRGCs).
  • ipRGCs intrinsic photosensitive retinal ganglion cells
  • L-cone There is an L-cone that has sensitivity in the long wavelength region.
  • ipRGC intrinsically photosensitive retinal ganglion cells
  • the evaluation unit 101 first converts the spectral distribution of the light to be evaluated (monochromatic light or compound light) into response amounts of four factors: L-cone, M-cone, S-cone, and ipRGC.
  • FIG. 4 is a diagram showing an example of a spectral distribution of light. By multiplying the spectral sensitivities of the L-cone, M-cone, S-cone, and the spectral sensitivity of ipRGC for each wavelength of the spectral distribution and accumulating them, the spectral distribution of light is converted into the response amounts of the above four factors. can be done.
  • the evaluation unit 101 converts the spectral distribution of light into the response amount of the above four factors
  • the evaluation unit 101 inputs the response amount of each factor into an evaluation function prepared in advance for each factor.
  • the evaluation function is a function that quantitatively obtains the brightness of the spectral distribution of the target light from the amount of response of each factor.
  • FIG. 5 is a graph showing an example of an evaluation function used by the evaluation unit 101.
  • the horizontal axis represents the response amount with the spectral distribution of light as an input, and the vertical axis represents the glare level. The higher the value, the brighter the spectral distribution of the light.
  • the evaluation unit 101 can evaluate how bright the spectral distribution of the light is by using the function shown in FIG.
  • FIG. 6 is a diagram showing an example of the spectral distribution of the test object.
  • the three spectral distributions shown in FIG. 6 have different energies for each wavelength, but have the same chromaticity.
  • a test was conducted in which the subjects were presented with light having the spectral distribution shown in FIG.
  • a test was conducted on subjects by a paired comparison method. Specifically, two circular targets with a visual angle of about 10° were presented to the subject for several seconds at intervals of several seconds, and the subject answered which target was brighter than the previously presented target. Conduct a test to
  • An evaluation function was generated by plotting the results of this test on a graph and obtaining a fitting function.
  • the stimulus to the L-, M-, and S-cones is constant to obtain an evaluation function regarding the response amount of ipRGC.
  • an evaluation function represented by the following formula (1) was obtained.
  • is the amount of glare sensation of the spectral distribution of the light of the object
  • ipRGC is the amount of response of ipRGC.
  • 0.763 ⁇ exp(0.0957 ⁇ ipRGC) (1)
  • Evaluation functions for L-, M-, and S-cones can also be obtained by a similar procedure.
  • the information processing apparatus 10 can improve the evaluation accuracy of glare by combining the evaluation functions obtained for the four factors.
  • the information processing apparatus 10 may combine, for example, the evaluation functions obtained for the four factors as in the following formula (2).
  • ⁇ ′ a ⁇ L+b ⁇ M+c ⁇ S+d ⁇ ipRGC (2)
  • L is the amount of glare sensation for the L cone
  • M is the amount of glare sensation for the M cone
  • S is the amount of glare sensation for the S cone
  • ipRGC is the amount of glare sensation for the ipRGC.
  • the evaluation unit 101 can evaluate the glare perceived by humans with respect to the spectral distribution of the light from the input color information.
  • the information processing device 10 may derive an evaluation function for each individual. By deriving an evaluation function for each individual, the information processing apparatus 10 can perform quantitative evaluation of glare customized for each individual.
  • the evaluation function may be created or updated according to the accumulated glare test results for the subject.
  • the creation or update of the evaluation function may be performed in the information processing device 10 or may be performed in another device.
  • the presentation unit 102 presents information about the glare of the spectral distribution of light that is evaluated by the evaluation unit 101 . Specifically, the presentation unit 102 presents the degree of glare of the spectral distribution of light that is the evaluation target of the evaluation unit 101 .
  • the degree of glare is, for example, an output value of an evaluation function used by the evaluation unit 101 to evaluate glare.
  • the information processing apparatus 10 can evaluate the brightness of the spectral distribution of light using an evaluation function and present the evaluation result.
  • FIG. 7 is a flow chart showing the flow of evaluation processing of the glare of the spectral distribution of light by the information processing device 10 .
  • the CPU 11 reads a computer program from the ROM 12 or the storage 14, develops it in the RAM 13, and executes it, thereby performing evaluation processing of the glare of the spectral distribution of light.
  • step S101 the CPU 11 acquires color information to be evaluated.
  • the CPU 11 acquires, for example, information on the spectral distribution of light as color information to be evaluated.
  • the spectral distribution of light to be evaluated is determined by any method. For example, as described later, as a result of a visual function test on a subject, the spectral distribution of light with the best visibility can be determined as an evaluation target.
  • step S102 the CPU 11 uses the color information to evaluate the brightness of the spectral distribution of light. Specifically, the CPU 11 converts the acquired color information into response amounts of the four photoreceptor factors, and inputs the response amounts into the evaluation function described above, thereby evaluating the glare of the spectral distribution of light.
  • step S103 the CPU 11 presents the evaluation result of the glare of the spectral distribution of light. Specifically, the CPU 11 presents the output value of the evaluation function as the evaluation result of the glare of the spectral distribution of light.
  • the information processing device 10 can quantitatively evaluate the glare of the spectral distribution of light and present the evaluation results.
  • the information processing apparatus 10 By using the information processing apparatus 10 according to the present embodiment, for example, it is possible to design colored lenses for eyeglasses that achieve both reduction in glare and improvement in visibility.
  • FIG. 8 is a flow chart showing design processing of color lenses of spectacles using the information processing apparatus 10 according to the present embodiment. Design processing is performed by the CPU 11 reading a computer program from the ROM 12 or the storage 14, developing it in the RAM 13, and executing it.
  • the CPU 11 acquires the results of the visual function test for the subject.
  • a visual function test on a subject may be performed, for example, by the method disclosed in Non-Patent Document 2 or the like.
  • a visual function test for a subject is performed by sequentially displaying target images (for example, Landolt's ring) having the same luminance with different background colors to the subject.
  • step S112 the CPU 11 extracts a spectral distribution of light with higher visibility than white (transparent lens) as a result of the visual function test.
  • step S113 the CPU 11 calculates the response amounts of the four factors of the L-cone, M-cone, S-cone, and ipRGC of the spectral distribution of the light extracted in step S112.
  • step S114 the CPU 11 inputs the response amount calculated in step S113 to the evaluation function, and evaluates the glare of the spectral distribution of light extracted in step S112.
  • step S115 the CPU 11 compares the evaluation result in step S114 with the previously prepared evaluation result of white (transparent lens) glare.
  • step S116 the CPU 11 determines whether the spectral distribution of the light extracted in step S112 is brighter than white.
  • step S116 if the spectral distribution of the light extracted in step S112 is brighter than white (step S116; No), the CPU 11 returns to step S112, and the visibility is higher than that of white (transparent lens). Extract the spectral distribution of another light.
  • step S116 if the spectral distribution of the light extracted in step S112 is brighter than white (step S116; Yes), in step S117, the CPU 11 converts the spectral distribution of the light extracted in step S112 to A spectral distribution of light that has high visibility and reduces glare is determined, and the spectral distribution of the light is provided as a color lens for spectacles.
  • the spectral distribution of light may be, for example, the spectral distribution of illumination light, the spectral transmittance of a filter, or the like.
  • the reference color is brighter than white, but the present disclosure is not limited to such an example.
  • the CPU 11 may determine whether the color is less dazzling than another color instead of white as the reference color.
  • the information processing apparatus 10 can provide a spectral distribution of light that has high visibility and reduces glare. Further, the information processing apparatus 10 performs the process shown in FIG. 8 to obtain a spectral distribution of light that has high visibility but cannot reduce glare, or a spectral distribution of light that has low visibility but can reduce glare. distribution can be determined.
  • the CPU 11 may first evaluate the glare with respect to the spectral distribution of light, and acquire the result of a visibility test performed on the subject for the spectral distribution of light that the subject feels is not dazzling.
  • the information processing executed by the CPU reading the software (program) in each of the above embodiments may be executed by various processors other than the CPU.
  • the processor is a PLD (Programmable Logic Device) whose circuit configuration can be changed after manufacturing, such as an FPGA (Field-Programmable Gate Array), and an ASIC (Application Specific Integrated Circuit) to execute specific processing.
  • a dedicated electric circuit or the like which is a processor having a specially designed circuit configuration, is exemplified.
  • information processing may be performed by one of these various processors, or a combination of two or more processors of the same or different type (for example, multiple FPGAs, a combination of a CPU and an FPGA, etc.). ) can be run.
  • the hardware structure of these various processors is, more specifically, an electric circuit in which circuit elements such as semiconductor elements are combined.
  • the information processing program has been pre-stored (installed) in the ROM or storage, but the present invention is not limited to this.
  • Programs are recorded on non-transitory recording media such as CD-ROM (Compact Disk Read Only Memory), DVD-ROM (Digital Versatile Disk Read Only Memory), and USB (Universal Serial Bus) memory.
  • CD-ROM Compact Disk Read Only Memory
  • DVD-ROM Digital Versatile Disk Read Only Memory
  • USB Universal Serial Bus

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Ophthalmology & Optometry (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Spectrometry And Color Measurement (AREA)

Abstract

人間の視細胞の種類の少なくともいずれかについて、所定の光の分光分布に対する応答量を変数とする関数を用いて、上記所定の光の分光分布に対する眩しさを評価する評価部101と、評価部101による所定の光の分光分布に対する評価結果を提示する提示部102と、を備える、情報処理装置10が提供される。

Description

情報処理装置、情報処理方法、及びコンピュータプログラム
 本開示は、情報処理装置、情報処理方法、及びコンピュータプログラムに関する。
 レンズやフィルタなどの光学部材は、分光透過率、色収差又は屈折率等の光学特性を有している。このような光学部材で人間の視機能を補正するためのもの(例えば、眼鏡)は、各個人の視機能に適した光学特性を有するものが選択される必要がある。
 近年、多様な光環境を考慮して、被験者の視機能を検査するべく、減能グレアを想定した視機能検査が注目されている(例えば、特許文献1、2等参照)。減能グレアとは、視対象の近くに高輝度の光源(グレア光源)が存在するときに、視対象を見るときの視覚系の視認能力を低下させる現象である。
国際公開第2018/012334号 国際公開第2021/049308号
 従来は、高輝度の光源が存在する場合の視対象の視認性に着目していたが、色と、その色について人間が感じる眩しさとの関係に着目した技術は存在していなかった。
 本開示は、上記の点に鑑みてなされたものであり、光の色(以降、色とは光の分光分布を意味する)と、その色について人間が感じる眩しさとの関係に関する情報を提示できる情報処理装置、情報処理方法、及びコンピュータプログラムを提供することを目的とする。
 上記目的を達成するために、本開示に係る情報処理装置は、人間の視細胞の種類の少なくともいずれかについて、所定の光の分光分布に対する応答量を変数とする評価関数を用いて、前記光の分光分布に対する眩しさを評価する評価部と、前記評価部による前記所定の光の分光分布に対する評価結果を提示する提示部と、を備える。
 前記視細胞の種類は、L錐体、M錐体、S錐体、及び内因性光感受性網膜神経節細胞(ipRGC)であってもよい。
 前記所定の光の分光分布は、複数の、背景色が異なる同一の輝度の視標を用いた被験者に対する視認性検査において基準色より視認性が高かった背景色であってもよい。
 前記提示部は、前記被験者が感じる眩しさを軽減する光の分光分布に関する情報を提示してもよい。
 前記評価関数は、人間毎に予め算出された関数であってもよい。
 前記評価関数は、複数の人間に対する検査結果の平均値に基づいて予め算出された関数であってもよい。
 前記提示部は、前記所定の光の分光分布が、他の光の分光分布と比較して視認性が高く、眩しさを感じない光の分光分布であるか否かの情報を提示してもよい。
 前記評価部は、眩しさの検査結果を用いて前記評価関数を生成してもよい。
 また、上記目的を達成するために、本開示に係る情報処理方法は、プロセッサが、人間の視細胞の種類の少なくともいずれかについて、所定の光の分光分布に対する応答量を変数とする評価関数を用いて、前記光の分光分布に対する眩しさを評価し、前記所定の光の分光分布に対する評価結果を提示する。
 また、上記目的を達成するために、本開示に係るコンピュータプログラムは、コンピュータに、人間の視細胞の種類の少なくともいずれかについて、所定の光の分光分布に対する応答量を変数とする評価関数を用いて、前記光の分光分布に対する眩しさを評価し、前記所定の光の分光分布に対する評価結果を提示する、処理を実行させる。
 本開示によれば、所定の光の分光分布に対する応答量を変数とする評価関数を用いて、光の分光分布に対する眩しさを評価することで、光の分光分布と、その光の分光分布について人間が感じる眩しさとの関係に関する情報を提示できる情報処理装置、情報処理方法、及びコンピュータプログラムを提供することができる。
開示の技術の実施形態に係る情報処理装置の概要を示す図である。 情報処理装置のハードウェア構成を示すブロック図である。 情報処理装置の機能構成の例を示すブロック図である。 光の分光分布の例を示す図である。 評価関数の一例をグラフで示す図である。 試験対象の光の分光分布の一例を示す図である。 情報処理装置による情報処理の流れを示すフローチャートである。 情報処理装置による眼鏡のカラーレンズの設計処理の流れを示すフローチャートである。
 以下、本開示の実施形態の一例を、図面を参照しつつ説明する。なお、各図面において同一または等価な構成要素および部分には同一の参照符号を付与している。また、図面の寸法比率は、説明の都合上誇張されており、実際の比率とは異なる場合がある。
 図1は、本実施形態に係る情報処理装置の概要を示す図である。
 本実施形態に係る情報処理装置10は、光の分光分布に関する情報(色情報)を入力とし、その色情報に対する評価結果を出力する。具体的に、情報処理装置10は、色情報として光の分光分布を入力し、その光の分光分布の眩しさについて評価した結果を、評価結果として出力する。例えば、情報処理装置10は、光の分光分布を入力し、その光の分光分布の眩しさの度合いを、予め用意した関数を用いて評価する。
 情報処理装置10は、入力された色情報に対する評価結果を出力することで、入力した色情報に対応する光の分光分布が、人間が眩しさを感じにくい光の分光分布であるかどうかを提示できる。
 図2は、情報処理装置10のハードウェア構成を示すブロック図である。
 図2に示すように、情報処理装置10は、CPU(Central Processing Unit)11、ROM(Read Only Memory)12、RAM(Random Access Memory)13、ストレージ14、入力部15、表示部16及び通信インタフェース(I/F)17を有する。各構成は、バス19を介して相互に通信可能に接続されている。
 CPU11は、中央演算処理ユニットであり、各種プログラムを実行したり、各部を制御したりする。すなわち、CPU11は、ROM12またはストレージ14からプログラムを読み出し、RAM13を作業領域としてプログラムを実行する。CPU11は、ROM12またはストレージ14に記録されているプログラムにしたがって、上記各構成の制御および各種の演算処理を行う。本実施形態では、ROM12またはストレージ14には、入力された色情報に対する眩しさの評価結果を出力するコンピュータプログラムが格納されている。
 ROM12は、各種プログラムおよび各種データを格納する。RAM13は、作業領域として一時的にプログラムまたはデータを記憶する。ストレージ14は、HDD(Hard Disk Drive)、SSD(Solid State Drive)またはフラッシュメモリ等の記憶装置により構成され、オペレーティングシステムを含む各種プログラム、および各種データを格納する。
 入力部15は、マウス等のポインティングデバイス、およびキーボードを含み、各種の入力を行うために使用される。
 表示部16は、たとえば、液晶ディスプレイであり、各種の情報を表示する。表示部16は、タッチパネル方式を採用して、入力部15として機能しても良い。
 通信インタフェース17は、他の機器と通信するためのインタフェースであり、たとえば、イーサネット(登録商標)、FDDI、Wi-Fi(登録商標)等の規格が用いられる。
 上記のコンピュータプログラムを実行する際に、情報処理装置10は、上記のハードウェア資源を用いて、各種の機能を実現する。情報処理装置10が実現する機能構成について説明する。
 図3は、情報処理装置10の機能構成の例を示すブロック図である。
 図3に示すように、情報処理装置10は、機能構成として、評価部101及び提示部102を有する。各機能構成は、CPU11がROM12またはストレージ14に記憶されたコンピュータプログラムを読み出し、実行することにより実現される。
 評価部101は、光の分光分布に対して人間が感じる眩しさを評価する。具体的には、評価部101は、所定の関数を用いて、前記光の分光分布に対する眩しさを評価する
 ここで、評価部101が評価の際に用いる評価関数について説明する。
 評価部101は、人間の視細胞の種類毎の、光の分光分布を入力とした応答量を変数として、その光の分光分布の眩しさの度合いを出力する評価関数を用いて、眩しさを評価する。この評価関数は、被験者に対して所定の視標を、光の分光分布を変えて順次提示して、眩しさを感じたかどうかの検査を行い、その検査結果にフィッティングするよう係数を設定した関数である。
 評価部101による眩しさの評価手法について説明する。
 人間の視細胞は、L錐体、M錐体、S錐体、及び内因性光感受性網膜神経節細胞(ipRGC)の4種類に分類される。明るい所で刺激光を視覚系信号に変換する錐体には3種類、即ち、分光感度のピークによって最も短波長領域に感度を有するS錐体、中波長領域に感度を有するM錐体、及び長波長領域に感度を持つL錐体がある。また、上記視細胞以外に光に反応する内因性光感受性網膜神経節細胞(intrinsically photosensitive retinal ganglion cell:ipRGC)が存在する。
 評価部101は、まず、評価対象となる光(単色光、又は複合光)の分光分布を、L錐体、M錐体、S錐体、ipRGCの4因子の応答量に変換する。図4は、ある光の分光分布の例を示す図である。分光分布の波長毎にL錐体、M錐体、S錐体の分光感度、及びipRGCの分光感度を乗じ、積算することによって、光の分光分布から、上記4因子の応答量へ変換することができる。L錐体、M錐体、S錐体の分光感度は、「CIE 2006 10-deg LMS fundamentals」にて開示されている。ipRGCの分光感度は、「S. Tsujimura K. Okajima “Pupillary light reflex associated with melanopsin and cone photorecetors,” AIC 2015 Tokyo, midterm meeting of the international colour association, Tokyo, Japan, 19-22 May 2015, pp.165-169 (2015)」に開示されている。
 評価部101は、光の分光分布から、上記4因子の応答量へ変換すると、各因子の応答量を、各因子について予め用意した評価関数に入力する。当該評価関数は、各因子の応答量から、対象の光の分光分布の眩しさを定量的に求める関数である。
 図5は、評価部101が用いる評価関数の一例をグラフで示す図である。図5に示したグラフは、横軸が光の分光分布を入力とした応答量、縦軸が眩しさのレベルを表しており、数値が高いほどその光の分光分布が眩しいことを意味する。評価部101は、図5に示したような関数を用いることで、その光の分光分布がどれだけ眩しいかを評価することができる。
 図5にグラフで示した評価関数の導出手法を説明する。
 まず、評価関数の導出に際し、試験対象の分光分布を用意する。図6は、試験対象の分光分布の一例を示す図である。図6に示した3つの分光分布は、波長ごとのエネルギーがそれぞれ異なっているが、同じ色度である。
 そして、図6に示した分光分布を有する光を被験者にそれぞれ順次提示して、眩しく感じたものを被験者に回答させる試験を行った。本実施形態では、一対比較法によって被験者に対する試験を実施した。具体的には、視角が約10°の2つの円形視標を1つずつ被験者に数秒間隔で数秒間提示して、前に提示した視標とどちらの視標が眩しく感じたかを被験者に回答させる試験を実施する。
 この試験の実施結果をグラフにプロットして、フィッティング関数を求めることで、評価関数を生成した。本実施形態では、L錐体、M錐体、S錐体への刺激を一定にしてipRGCの応答量に関する評価関数を得た。具体的に、以下の数式(1)で表される評価関数が得られた。Ψは対象の光の分光分布の眩しさ感覚量、ipRGCは、ipRGCの応答量である。
 Ψ=0.763×exp(0.0957×ipRGC) ・・・(1)
 なお、L錐体、M錐体、S錐体に関しても同様の手順によって評価関数を得ることができる。情報処理装置10は、4因子についてそれぞれ求めた評価関数を組み合わせることで、眩しさの評価精度を向上させることが出来る。情報処理装置10は、例えば、4因子についてそれぞれ求めた評価関数を以下の数式(2)のように組み合わせてもよい。
 Ψ’=a×L+b×M+c×S+d×ipRGC ・・・(2)
 上記数式(2)において、a、b、c、dはそれぞれ係数であり、a+b+c+d=1である。また、LはL錐体に対する眩しさ感覚量、MはM錐体に対する眩しさ感覚量、SはS錐体に対する眩しさ感覚量、ipRGCはipRGCに対する眩しさ感覚量である。
 評価部101は、上述したように予め用意された評価関数を用いることで、入力された色情報から、その光の分光分布について人間が感じる眩しさを評価することが出来る。
 なお、被験者それぞれによって眩しさの感覚は異なりうる。従って、情報処理装置10は、個人毎に評価関数を導出してもよい。個人毎に評価関数を導出すれば、情報処理装置10は、各個人にカスタマイズした眩しさの定量的な評価が可能になる。
 また、評価関数は、被験者に対する眩しさの検査結果の蓄積に応じて作成、又は更新されてもよい。評価関数の作成、又は更新は、情報処理装置10において行われてもよく、他の装置で行われてもよい。
 提示部102は、評価部101の評価対象となった光の分光分布の眩しさに関する情報を提示する。具体的には、提示部102は、評価部101の評価対象となった光の分光分布の眩しさの度合いを提示する。眩しさの度合いは、例えば評価部101が眩しさの評価に用いた評価関数の出力値である。
 本実施形態に係る情報処理装置10は、図3に示したような構成を有することで、評価関数を用いて光の分光分布の眩しさを評価し、その評価結果を提示することが出来る。
 次に、情報処理装置10の作用について説明する。
 図7は、情報処理装置10による光の分光分布の眩しさの評価処理の流れを示すフローチャートである。CPU11がROM12又はストレージ14からコンピュータプログラムを読み出して、RAM13に展開して実行することにより、光の分光分布の眩しさの評価処理が行なわれる。
 ステップS101において、CPU11は、評価対象の色情報を取得する。CPU11は、評価対象の色情報として、例えば光の分光分布の情報を取得する。評価対象の光の分光分布は任意の手法により決定される。例えば後述するように、被験者に対する視機能検査の結果、視認性が最も良かった光の分光分布が評価対象として決定され得る。
 ステップS101に続いて、ステップS102において、CPU11は、色情報を用いて、光の分光分布の眩しさを評価する。具体的に、CPU11は、取得した色情報を視細胞の4因子の応答量に変換し、上述した評価関数に応答量を入力することで、光の分光分布の眩しさを評価する。
 ステップS102に続いて、ステップS103において、CPU11は、光の分光分布の眩しさの評価結果を提示する。具体的に、CPU11は、光の分光分布の眩しさの評価結果として、評価関数の出力値を提示する。
 情報処理装置10は、一連の処理を実行することで、光の分光分布の眩しさを定量的に評価し、その評価結果を提示することが出来る。
 本実施形態に係る情報処理装置10を用いることで、例えば、眩しさの軽減と、視認性の向上との両方を達成する眼鏡のカラーレンズの設計を行うことができる。
 図8は、本実施形態に係る情報処理装置10を用いた眼鏡のカラーレンズの設計処理を示すフローチャートである。CPU11がROM12又はストレージ14からコンピュータプログラムを読み出して、RAM13に展開して実行することにより、設計処理が行なわれる。
 ステップS111において、CPU11は、被験者に対する視機能検査の結果を取得する。
 被験者に対する視機能検査は、例えば、非特許文献2等で開示されている方法により行われてもよい。例えば、被験者に対する視機能検査は、背景色を異ならせ、輝度が同一の視標画像(例えばランドルト環)を被験者に順次表示することにより行われる。
 ステップS111に続いて、ステップS112において、CPU11は、視機能検査の結果、白色(透明レンズ)よりも視認性が高い光の分光分布を抽出する。
 ステップS112に続いて、ステップS113において、CPU11は、ステップS112で抽出した光の分光分布の、L錐体、M錐体、S錐体、ipRGCの4因子の応答量を算出する。
 ステップS113に続いて、ステップS114において、CPU11は、ステップS113で算出した応答量を評価関数に入力して、ステップS112で抽出した光の分光分布の眩しさを評価する。
 ステップS114に続いて、ステップS115において、CPU11は、ステップS114における評価結果と、予め用意した白色(透明レンズ)の眩しさの評価結果とを比較する。
 ステップS115に続いて、ステップS116において、CPU11は、ステップS112で抽出した光の分光分布が、白色より眩しくないかどうか判断する。
 ステップS116の判断の結果、ステップS112で抽出した光の分光分布が、白色より眩しければ(ステップS116;No)、CPU11は、ステップS112に戻り、白色(透明レンズ)よりも視認性が高い、別の光の分光分布を抽出する。
 一方、ステップS116の判断の結果、ステップS112で抽出した光の分光分布が、白色より眩しければ(ステップS116;Yes)、ステップS117において、CPU11は、ステップS112で抽出した光の分光分布を、視認性が高く、眩しさを軽減する光の分光分布と判定し、その光の分光分布を眼鏡のカラーレンズとして提供する。なお光の分光分布として提供するのは、例えば、照明光の分光分布、フィルタの分光透過率等であってもよい。
 なお、図8に示したフローチャートでは、基準色として白色より眩しくないかどうかを判断していたが、本開示は係る例に限定されない。CPU11は、基準色として白色ではなく別の色より眩しくないかどうかを判断してもよい。
 情報処理装置10は、図8に示した処理を実行することで、視認性が高く、かつ眩しさを軽減する光の分光分布を提供できる。また、情報処理装置10は、図8に示した処理を実行することで、視認性は高いが眩しさを軽減できない光の分光分布、又は、視認性は低いが眩しさを軽減できる光の分光分布を判別することができる。
 また、図8に示したフローチャートでは、先に視認性検査の結果を取得し、視認性が高かった光の分光分布に対する眩しさの評価を行っていたが、本開示は係る例に限定されない。CPU11は、先に光の分光分布に対する眩しさの評価を行い、眩しくないと感じられる光の分光分布に対して被験者に対して実施された視認性検査の結果を取得してもよい。
 なお、上記各実施形態でCPUがソフトウェア(プログラム)を読み込んで実行した情報処理を、CPU以外の各種のプロセッサが実行してもよい。この場合のプロセッサとしては、FPGA(Field-Programmable Gate Array)等の製造後に回路構成を変更可能なPLD(Programmable Logic Device)、及びASIC(Application Specific Integrated Circuit)等の特定の処理を実行させるために専用に設計された回路構成を有するプロセッサである専用電気回路等が例示される。また、情報処理を、これらの各種のプロセッサのうちの1つで実行してもよいし、同種又は異種の2つ以上のプロセッサの組み合わせ(例えば、複数のFPGA、及びCPUとFPGAとの組み合わせ等)で実行してもよい。また、これらの各種のプロセッサのハードウェア的な構造は、より具体的には、半導体素子等の回路素子を組み合わせた電気回路である。
 また、上記各実施形態では、情報処理のプログラムがROMまたはストレージに予め記憶(インストール)されている態様を説明したが、これに限定されない。プログラムは、CD-ROM(Compact Disk Read Only Memory)、DVD-ROM(Digital Versatile Disk Read Only Memory)、及びUSB(Universal Serial Bus)メモリ等の非一時的(non-transitory)記録媒体に記録された形態で提供されてもよい。また、プログラムは、ネットワークを介して外部装置からダウンロードされる形態としてもよい。
 10 情報処理装置
 101 評価部
 102 提示部

Claims (10)

  1.  人間の視細胞の種類の少なくともいずれかについて、所定の光の分光分布に対する応答量を変数とする評価関数を用いて、前記光の分光分布に対する眩しさを評価する評価部と、
     前記評価部による前記所定の光の分光分布に対する評価結果を提示する提示部と、
    を備える、情報処理装置。
  2.  前記視細胞の種類は、L錐体、M錐体、S錐体、及び内因性光感受性網膜神経節細胞(ipRGC)である、請求項1に記載の情報処理装置。
  3.  前記所定の光の分光分布は、複数の、背景色が異なる同一の輝度の視標を用いた被験者に対する視認性検査において基準色より視認性が高かった背景色である、請求項1又は2に記載の情報処理装置。
  4.  前記提示部は、前記被験者が感じる眩しさを軽減する光の分光分布に関する情報を提示する、請求項3に記載の情報処理装置。
  5.  前記評価関数は、人間毎に予め算出された関数である、請求項1~4のいずれか1項に記載の情報処理装置。
  6.  前記評価関数は、複数の人間に対する検査結果の平均値に基づいて予め算出された関数である、請求項1~4のいずれか1項に記載の情報処理装置。
  7.  前記提示部は、前記所定の光の分光分布が、他の光の分光分布と比較して視認性が高く、眩しさを感じない光の分光分布であるか否かの情報を提示する、請求項1~6のいずれか1項に記載の情報処理装置。
  8.  前記評価部は、眩しさの検査結果を用いて前記評価関数を生成する、請求項1~7のいずれか1項に記載の情報処理装置。
  9.  プロセッサが、
     人間の視細胞の種類の少なくともいずれかについて、所定の光の分光分布に対する応答量を変数とする評価関数を用いて、前記光の分光分布に対する眩しさを評価し、
     前記所定の光の分光分布に対する評価結果を提示する、
    処理を実行する、情報処理方法。
  10.  コンピュータに、
     人間の視細胞の種類の少なくともいずれかについて、所定の光の分光分布に対する応答量を変数とする評価関数を用いて、前記光の分光分布に対する眩しさを評価し、
     前記所定の光の分光分布に対する評価結果を提示する、
    処理を実行させる、コンピュータプログラム。
PCT/JP2022/018903 2021-04-28 2022-04-26 情報処理装置、情報処理方法、及びコンピュータプログラム WO2022230882A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023517558A JPWO2022230882A1 (ja) 2021-04-28 2022-04-26

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-076636 2021-04-28
JP2021076636 2021-04-28

Publications (1)

Publication Number Publication Date
WO2022230882A1 true WO2022230882A1 (ja) 2022-11-03

Family

ID=83848173

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/018903 WO2022230882A1 (ja) 2021-04-28 2022-04-26 情報処理装置、情報処理方法、及びコンピュータプログラム

Country Status (2)

Country Link
JP (1) JPWO2022230882A1 (ja)
WO (1) WO2022230882A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013011877A (ja) * 2011-06-01 2013-01-17 Tokai Kogaku Kk 大脳視覚野等の誘発活動による眼鏡レンズの評価方法及びその評価方法を用いた眼鏡レンズの設計方法
WO2016208683A1 (ja) * 2015-06-24 2016-12-29 株式会社 東芝 白色光源システム

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013011877A (ja) * 2011-06-01 2013-01-17 Tokai Kogaku Kk 大脳視覚野等の誘発活動による眼鏡レンズの評価方法及びその評価方法を用いた眼鏡レンズの設計方法
WO2016208683A1 (ja) * 2015-06-24 2016-12-29 株式会社 東芝 白色光源システム

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
HIROKUNI HIGASHI, YOSHIKA TAKAHASHI, KATSUNORI OKAJIMA: "Contribution of Melanopsin to Discomfort Glare Perception", JOURNAL OF THE ILLUMINATING ENGINEERING INSTITUTE OF JAPAN, vol. 106, no. 1, 1 May 2022 (2022-05-01), pages 29 - 35, XP055982523, ISSN: 0019-2341, DOI: 10.2150/jieij.21000612 *
KIMITAKA SHIRAKURA , YUKIO AKASHI, TAKASHI SAITO: "The Effect of Spectral Power Distribution on the Perception of Scene Brightness in Nighttime Lit Streets", JOURNAL OF THE ILLUMINATING ENGINEERING INSTITUTE OF JAPAN, vol. 96, no. 5, 1 May 2012 (2012-05-01), pages 259 - 271, XP055982520, ISSN: 0019-2341, DOI: 10.2150/jieij.96.259 *
TSUJIMURA, SEIICHI.: " Melanopsin Cells Affect Brightness Perception.", JOURNAL OF CHRONOBIOLOGY, vol. 20, 1 January 2014 (2014-01-01), pages 11 - 19, XP009540671 *
UCHIKAWA, KEIJI: "Elucidation of Visual Mechanism of Glare Perception in Humans", 7 January 2022 (2022-01-07), JP, pages 1 - 2, XP009541143, Retrieved from the Internet <URL:https://www.kait.jp/tech_news/2086.html#:~:text=%E3%83%86%E3%82%B9%E3%83%88%E5%85%89%E3%81%8C1%E3%81%8B%E3%82%89,%E8%B2%A2%E7%8C%AE%E3%81%99%E3%82%8B%E3%81%A8%E6%9C%9F%E5%BE%85%E3%81%A7%E3%81%8D%E3%81%BE%E3%81%99%E3%80%82> *

Also Published As

Publication number Publication date
JPWO2022230882A1 (ja) 2022-11-03

Similar Documents

Publication Publication Date Title
Gómez-Robledo et al. Do EnChroma glasses improve color vision for colorblind subjects?
Paramei et al. Variation of color discrimination across the life span
TWI752052B (zh) 視機能檢查系統、光學特性算出系統、視機能檢查裝置、光學特性算出裝置、視機能檢查方法、光學特性算出方法、程式及記錄媒體
Martínez-Domingo et al. Assessment of VINO filters for correcting red-green Color Vision Deficiency
US9378563B2 (en) Method for simulating the effect of viewing an image through a colored filter or ophthalmic spectacle lens
JP7100500B2 (ja) 視機能検査および光学特性算出システム
US20220350171A1 (en) Method for Determining a Filter for a Transparent Support Based on a Determined Individual Light Sensitivity
DeLawyer et al. Relative contributions of melanopsin to brightness discrimination when hue and luminance also vary
Moreland et al. Quantitative assessment of commercial filter ‘aids’ for red‐green colour defectives
Flatla et al. SSMRecolor: improving recoloring tools with situation-specific models of color differentiation
Luidolt et al. Gaze-dependent simulation of light perception in virtual reality
Pattie et al. Do EnChroma glasses improve performance on clinical tests for red-green color deficiencies?
Gundlach et al. Design considerations for the enhancement of human color vision by breaking binocular redundancy
JP6765519B2 (ja) 色処理プログラム、色処理方法、色彩感覚検査システム、出力システム、色覚補正画像処理システムおよび色覚シミュレーション画像処理システム
Marques et al. Discrimination of natural colors in anomalous trichromacy and the effects of EnChroma and Vino filters
WO2022230882A1 (ja) 情報処理装置、情報処理方法、及びコンピュータプログラム
US20080046207A1 (en) Quantitative evaluation of a color filter
Liu et al. A model to predict visual comfort for mobile displays
Coffey et al. Effect of laser eye protection devices on color perception
Lee et al. Predicting color matches from luminance matches
Somers et al. Predicted effectiveness of EnChroma multi-notch filters for enhancing color perception in anomalous trichromats
Várady et al. Mesopic spectral sensitivity functions based on visibility and recognition contrast thresholds
Montrucchio et al. Thresholds of vision of the human visual system: Visual adaptation for monocular and binocular vision
Gundlach et al. Enhancing human color vision by breaking binocular redundancy
WO2024058160A1 (ja) 視覚情報提供装置、視覚情報提供方法、及び視覚情報提供プログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22795795

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023517558

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22795795

Country of ref document: EP

Kind code of ref document: A1