WO2022230701A1 - ユーザ装置及び通信制御方法 - Google Patents

ユーザ装置及び通信制御方法 Download PDF

Info

Publication number
WO2022230701A1
WO2022230701A1 PCT/JP2022/017992 JP2022017992W WO2022230701A1 WO 2022230701 A1 WO2022230701 A1 WO 2022230701A1 JP 2022017992 W JP2022017992 W JP 2022017992W WO 2022230701 A1 WO2022230701 A1 WO 2022230701A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
user equipment
message
redcap
communication
Prior art date
Application number
PCT/JP2022/017992
Other languages
English (en)
French (fr)
Inventor
治彦 曽我部
秀明 ▲高▼橋
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2022230701A1 publication Critical patent/WO2022230701A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/10Access restriction or access information delivery, e.g. discovery data delivery using broadcasted information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/22Processing or transfer of terminal data, e.g. status or physical capabilities
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/08Reselecting an access point

Definitions

  • the present disclosure relates to user equipment and communication control methods used in mobile communication systems.
  • RedCap UE capacity-limited user equipment
  • Such limited capacity user equipment may, for example, have a limited maximum bandwidth for communication or a limited number of receive branches.
  • a user device is a user device with limited communication capability, and when the user device is communicating with a cell of a base station, from an adjacent base station that manages an adjacent cell different from the cell, a communication unit that receives a message for determining whether or not the user equipment can communicate in the adjacent cell; and whether or not to report the radio quality measurement result for the adjacent cell to the base station based on the message. and a control unit that determines whether.
  • a communication control method is a communication control method executed by a user apparatus having limited communication capability, wherein, while the user apparatus is communicating with a cell of a base station, an adjacent cell different from the cell receiving a message for determining whether or not the user equipment can communicate in the adjacent cell from an adjacent base station managing the and determining whether to report to the base station.
  • FIG. 1 is an explanatory diagram showing an example of a schematic configuration of a system according to an embodiment of the present disclosure
  • FIG. 1 is a diagram showing a configuration example of a protocol stack of a system according to an embodiment of the present disclosure
  • FIG. FIG. 2 is a diagram illustrating a configuration example of a UE according to an embodiment of the present disclosure
  • FIG. FIG. 2 is a diagram illustrating a configuration example of a BS according to an embodiment of the present disclosure
  • FIG. FIG. 2 is a diagram showing an operation example 1 of the mobile communication system according to the embodiment of the present disclosure
  • FIG. 1 is an explanatory diagram showing an example of a schematic configuration of a system according to an embodiment of the present disclosure
  • FIG. 1 is a diagram showing a configuration example of a protocol stack of a system according to an embodiment of the present disclosure
  • FIG. FIG. 2 is a diagram illustrating a configuration example of a UE according to an embodiment of the present disclosure
  • FIG. FIG. 2 is a diagram illustrating
  • FIG. 4 is a diagram showing an example of information included in a message according to an embodiment of the present disclosure
  • FIG. FIG. 4 is a diagram showing an operation example of a UE in operation example 1 of the mobile communication system according to the embodiment of the present disclosure
  • FIG. 4 is a diagram showing an operation example 2 of the mobile communication system according to the embodiment of the present disclosure
  • the base station manages Assume that a handover is performed from a cell in which a base station is located to a neighboring cell managed by a neighboring base station.
  • the adjacent base station does not support communication with the limited-capability user equipment, there is a problem that the limited-capability user equipment fails to handover to the adjacent cell, and the communication of the limited-capability user equipment is interrupted.
  • one of the objectives is to provide a user device and a communication control method that can suppress handover failures.
  • the system 1 is, for example, a mobile communication system conforming to Technical Specifications (TS) of 3GPP, which is a standardization project for mobile communication systems.
  • TS Technical Specifications
  • a mobile communication system based on the 3GPP standard 5th Generation System (5GS), that is, NR (New Radio) will be described as an example.
  • 5GS 5th Generation System
  • NR New Radio
  • the system 1 is not limited to this example.
  • the system 1 may be a TS-compliant system, either LTE (Long Term Evolution) or another generation system (eg, 6th generation) of the 3GPP standard.
  • LTE Long Term Evolution
  • 6th generation 3GPP standard
  • the system 1 may be a system conforming to a TS of standards other than the 3GPP standards.
  • the system 1 includes a 5G radio access network (so-called Next Generation Radio Access Network: NG-RAN) 20, a 5G core network (5G Core Network: 5GC) 30, a user device (User Equipment: UE) 100 and
  • 5G radio access network so-called Next Generation Radio Access Network: NG-RAN
  • 5G Core Network 5G Core Network: 5GC
  • UE User Equipment
  • the NG-RAN 20 includes a base station (BS) 200, which is a node of the radio access network.
  • BS200 is a radio
  • BS200 manages one or more cells.
  • the BS 200 performs radio communication with the UE 100 that has established a connection with its own cell in the radio resource control (RRC) layer.
  • the base station 200 has a radio resource management (RRM) function, a user data (hereinafter simply referred to as “data”) routing function, a measurement control function for mobility control/scheduling, and the like.
  • RRM radio resource management
  • data user data
  • a "cell” is used as a term indicating the minimum unit of a wireless communication area.
  • a “cell” is also used as a term indicating a function or resource for radio communication with the UE 100 .
  • One cell belongs to one carrier frequency.
  • FIG. 1 shows an example in which BS 201 manages cell C1 and BS 202 manages cell C2.
  • the UE 100 is located in the overlapping area of cell C1 and cell C2.
  • the BS 200 communicates with the UE 100 using, for example, the RAN protocol stack.
  • the protocol stack includes, for example, an RRC (Radio Resource Control) layer, an SDAP (Service Data Adaptation Protocol) layer, a PDCP (Packet Data Convergence Protocol) layer, an RLC (Radio Link Control) layer, a MAC (Medium Control) layer and a physical layer ( Physical: PHY) layer.
  • RRC Radio Resource Control
  • SDAP Service Data Adaptation Protocol
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC Medium Control
  • Physical: PHY Physical: Physical: PHY
  • the BS 200 is, for example, a gNB that provides NR user plane and control plane protocol termination towards the UE 100 and is connected to the 5GC 30 via the NG interface.
  • the BS 200 may be an eNB that provides E-UTRA user plane and control plane protocol termination towards the UE 100, eg in LTE.
  • the BS 200 may include multiple units.
  • the plurality of units may include a first unit hosting a higher layer included in the protocol stack and a second unit hosting a lower layer included in the protocol stack.
  • the upper layers may include the RRC layer, the SDAP layer and the PDCP layer, and the lower layers may include the RLC layer, the MAC layer and the PHY layer.
  • the first unit may be a CU (central unit), and the second unit may be a DU (Distributed Unit).
  • the plurality of units may include a third unit that performs processing below the PHY layer.
  • the second unit may perform processing above the PHY layer.
  • the third unit may be an RU (Radio Unit).
  • the BS 200 may be one of multiple units and may be connected to other units of the multiple units. Also, the BS 200 may be an IAB (Integrated Access and Backhaul) donor or an IAB node.
  • IAB Integrated Access and Backhaul
  • the 5GC 30 includes a core network device 300.
  • the core network device 300 may be a device that supports the control plane, and may be a device that performs various types of mobility management for the UE 100 .
  • the core network device 300 communicates with the UE 100 using NAS (Non-Access Stratum) signaling, and manages information on the tracking area in which the UE 100 resides.
  • Core network device 300 performs paging through base station 200 in order to notify UE 100 of an incoming call.
  • the core network device 300 may be a 5G/NR AMF (Access and Mobility Management Function) or a 4G/LTE MME (Mobility Management Entity).
  • the core network device 300 is a device that supports the user plane, and is a device that performs data transfer control for the UE 100 .
  • the core network device 300 may be a 5G/NR UPF (User Plane Function) or a 4G/LTE S-GW (Serving Gateway).
  • the core network device 300 may include AMF and/or UPF, for example.
  • Core network device 300 is connected to BS 200 via an NG interface.
  • UE 100 can communicate with BS 200 when located within the coverage area of BS 200.
  • UE 100 can communicate with BS 200 using the protocol stacks described above.
  • UE 100 is an example of a communication device that communicates with base station 200 .
  • UE 100 may be a device used by a user.
  • the UE 100 is, for example, a portable wireless communication device such as a mobile phone terminal such as a smart phone, a tablet terminal, a notebook PC, a communication module, or a communication card.
  • the UE 100 may be a vehicle (eg, car, train, etc.) or a device provided in the vehicle.
  • the UE 100 may be a transport body other than a vehicle (for example, a ship, an airplane, etc.) or a device provided in a transport body other than a vehicle.
  • the UE 100 may be a sensor or a device provided in the sensor.
  • the UE 100 includes a mobile station, a mobile terminal, a mobile device, a mobile unit, a subscriber station, a subscriber terminal, a subscriber device, a subscriber unit, a wireless station, a wireless terminal, a wireless device, a wireless unit, a remote station, and a remote terminal. , remote device, or remote unit.
  • the UE 100 may be a limited capability user equipment (so-called RedCap UE) whose communication capability is more limited than that of a normal UE (general UE). Therefore, RedCap UE has a reduced communication capacity than general UE. RedCap UE may have middle-range performance and price for IoT.
  • the general UE is an NR UE, and has, for example, advanced communication capability that is a feature of NR.
  • a general UE is, for example, a UE that satisfies high-speed, large-capacity (enhanced mobile broadband: eMBB) and ultra-reliable and low latency communications (URLLC).
  • eMBB enhanced mobile broadband
  • URLLC ultra-reliable and low latency communications
  • a RedCap UE may be, for example, a UE with reduced equipment cost and complexity compared to a general UE that meets Rel-15 or Rel-16 high-performance, high-speed, high-capacity and ultra-reliable low-delay.
  • RedCap UE communicates at or above the communication speed specified by the LPWA (Low Power Wide Area) standard (for example, LTE Cat.1/1bis, LTE Cat.M1 (LTE-M), LTE Cat.NB1 (NB-IoT)) It may be possible to communicate at high speed.
  • LPWA Low Power Wide Area
  • a RedCap UE may be able to communicate with a bandwidth equal to or greater than the bandwidth specified by the LPWA standard.
  • a RedCap UE may have a limited bandwidth for communication compared to a Rel-15 or Rel-16 UE.
  • FR1 Frequency Range 1
  • FR2 Frequency Range 2
  • the maximum bandwidth of RedCap UE may be 100 MHz.
  • a RedCap UE may have only one reception chain (Rx chain) for receiving radio signals, or may have only two. Also, in a frequency band where a normal UE (so-called legacy NR UE) needs to have at least two receiving antenna ports (Rx antenna ports), RedCap UE communicates using a single receiving branch (Rx branch) may be supported. In this frequency band, RedCap UEs may support communication using two reception branches.
  • RedCap UEs may support communication using a single reception branch in frequency bands where normal UEs need to be equipped with at least four reception antenna ports. In this frequency band, RedCap UEs may support communication using two reception branches.
  • the maximum number of DL MIMO layers may be one. If the RedCap UE has two reception branches, the maximum number of DL MIMO layers may be two.
  • a RedCap UE may be, for example, an industrial wireless sensor, a video surveillance device, or a wearable device. Note that the RedCap UE may also be referred to as a Reduced capability NR device.
  • the protocol of the radio section between the UE 100 and the base station 200 includes a physical (PHY) layer, a MAC (Medium Access Control) layer, an RLC (Radio Link Control) layer, and a PDCP (Packet Data Convergence Protocol) layer and RRC (Radio Resource Control) layer.
  • PHY physical
  • MAC Medium Access Control
  • RLC Radio Link Control
  • PDCP Packet Data Convergence Protocol
  • RRC Radio Resource Control
  • the PHY layer performs encoding/decoding, modulation/demodulation, antenna mapping/demapping, and resource mapping/demapping. Data and control information are transmitted between the PHY layer of the UE 100 and the PHY layer of the base station 200 via physical channels.
  • the MAC layer performs data priority control, hybrid ARQ (HARQ) retransmission processing, random access procedures, and so on. Data and control information are transmitted between the MAC layer of the UE 100 and the MAC layer of the base station 200 via transport channels.
  • the MAC layer of base station 200 includes a scheduler. The scheduler determines uplink and downlink transport formats (transport block size, modulation and coding scheme (MCS)) and allocation resources to the UE 100 .
  • MCS modulation and coding scheme
  • the RLC layer uses the functions of the MAC layer and PHY layer to transmit data to the RLC layer on the receiving side. Data and control information are transmitted between the RLC layer of the UE 100 and the RLC layer of the base station 200 via logical channels.
  • the PDCP layer performs header compression/decompression and encryption/decryption.
  • An SDAP (Service Data Adaptation Protocol) layer may be provided as an upper layer of the PDCP layer.
  • the SDAP (Service Data Adaptation Protocol) layer performs mapping between an IP flow, which is the unit of QoS control performed by the core network, and a radio bearer, which is the unit of QoS control performed by the AS (Access Stratum).
  • the RRC layer controls logical channels, transport channels and physical channels according to radio bearer establishment, re-establishment and release.
  • RRC signaling for various settings is transmitted between the RRC layer of UE 100 and the RRC layer of base station 200 . If there is an RRC connection between the RRC of UE 100 and the RRC of base station 200 (that is, the RRC connection is established), UE 100 is in the RRC connected state. When there is no RRC connection between the RRC of UE 100 and the RRC of base station 200 (ie, no RRC connection is established), UE 100 is in RRC idle state. When the RRC connection between the RRC of UE 100 and the RRC of base station 200 is suspended, UE 100 is in RRC inactive state.
  • the NAS layer located above the RRC layer performs session management and mobility management for UE100.
  • NAS signaling is transmitted between the NAS layer of UE 100 and the NAS layer of core network device 300 .
  • the UE 100 has an application layer and the like in addition to the radio interface protocol.
  • (1.3) Configuration of UE A configuration example of the UE 100 will be described with reference to FIG. As shown in FIG. 3 , the UE 100 has a communication section 120 and a control section 130 .
  • the communication unit 120 communicates with other communication devices by transmitting and receiving signals.
  • the communication unit 120 for example, receives radio signals from the BS200 and transmits radio signals to the BS200. Also, the communication unit 120 may, for example, receive radio signals from other UEs and transmit radio signals to other UEs.
  • the communication unit 120 has a receiving unit 121 and a transmitting unit 122.
  • Receiving section 121 converts a radio signal received by an antenna into a received signal that is a baseband signal, performs signal processing on the received signal, and outputs the received signal to control section 130 .
  • the transmission unit 122 performs signal processing on a transmission signal, which is a baseband signal output from the control unit 130, converts the signal into a radio signal, and transmits the radio signal from an antenna.
  • the receiver 121 includes one or more receive chains (ie, Rx chains).
  • the receive chain includes a receive antenna port (ie, Rx antenna port) and receive circuitry.
  • a receive chain may constitute a receiver and may be referred to as a receiver.
  • the receive chain may form part of the receiver.
  • a receive chain may also include one or more receive branches (Rx branches).
  • a receive branch may include at least a receive antenna port.
  • a receive antenna port is a logical receive antenna composed of one or more physical antennas.
  • the transmission unit 122 includes one or more transmission chains (that is, Tx chains).
  • the transmit chain includes a transmit antenna port (ie, Tx antenna port) and transmit circuitry.
  • a transmit chain may constitute a transmitter and may be referred to as a transmitter.
  • a transmit chain may form part of a transmitter.
  • a transmit chain may also include one or more transmit branches (Tx branches).
  • a transmit branch may include at least a transmit antenna port.
  • a transmit antenna port is a logical transmit antenna composed of one or more physical antennas.
  • the receiver and transmitter may be configured by one transmitter/receiver.
  • the antenna may be used for both reception and transmission.
  • the control unit 130 performs various controls in the UE 100.
  • the control unit 130 controls communication with the BS 200 or another UE 100 via the communication unit 120, for example.
  • the operation of the UE 100 which will be described later, may be an operation under the control of the control unit 130.
  • the control unit 130 may include one or more processors capable of executing programs and a memory that stores the programs. One or more processors may execute programs to perform the operations of controller 130 .
  • the program may be a program for causing a processor to execute the operation of control unit 130 .
  • the processor performs digital processing of signals transmitted and received via the antenna and RF circuit.
  • the digital processing includes processing of the protocol stack of the RAN.
  • a processor may be a single processor.
  • a processor may include multiple processors.
  • the multiple processors may include a baseband processor for digital processing and one or more processors for other processing.
  • the memory stores programs executed by the processor, parameters for the programs, and data for the programs.
  • the memory may include at least one of ROM (Read Only Memory), EPROM (Erasable Programmable Read Only Memory), EEPROM (Electrically Erasable Programmable Read Only Memory), RAM (Random Access Memory), and flash memory. All or part of the memory may be included within the processor.
  • the UE 100 configured in this way is a RedCap UE with limited communication capabilities. While the UE 100 is communicating with the cell of the BS 200, the communication unit 120 receives a message for determining whether or not the user equipment can communicate in the adjacent cell from the adjacent base station that manages the adjacent cell. Note that the adjacent cell is a cell different from the cell with which the UE 100 is communicating. Also, when the UE 100 is communicating with a cell, the UE 100 may be in an RRC connected state, an RRC idle state, or an RRC inactive state in the cell.
  • the control unit 130 determines whether or not to report the radio quality measurement result for the adjacent cell to the BS200.
  • the BS 200 can determine the candidate cell to which the UE 100 is to be handed over, based on the measurement result obtained by the UE 100 determining whether or not to report based on the message. This allows the BS 200 to appropriately determine a candidate cell for handover. As a result, handover failure of the UE 100 can be suppressed.
  • the UE 100 determines not to report the measurement results of neighboring cells, it is possible to reduce the amount of measurement results to be reported. Furthermore, when the UE 100 does not measure adjacent cells that do not report measurement results, the power consumption of the UE 100 can be further reduced.
  • the control unit 130 may determine not to report the measurement results of the adjacent cell.
  • the measurement report does not include the measurement result of the adjacent cell with which UE 100 cannot communicate
  • BS 200 does not determine the adjacent cell as a handover destination candidate cell.
  • radio resources for measurement reporting can be saved, and the power consumption of the UE 100 can also be reduced.
  • the control unit 130 may determine to report the measurement result of the adjacent cell.
  • the measurement report includes measurement results of adjacent cells with which UE 100 can communicate, so BS 200 can determine the adjacent cells as handover destination candidate cells.
  • the UE 100 can be handed over to an adjacent cell with which the UE 100 can communicate, and the handover success of the UE 100 can be promoted.
  • the UE 100 may have a single reception branch. If the message does not contain information indicating that RedCap UEs having a single reception branch among the RedCap UEs can be accepted in the adjacent cell, the control unit 130 determines that the message can communicate with the RedCap UE in the adjacent cell. is included, it is determined not to report the measurement results of neighboring cells. As a result, even if RedCap UEs can communicate in adjacent cells, BS200 determines adjacent cells in which RedCap UEs having a single reception branch cannot communicate in the adjacent cells as handover destination candidate cells. do not do. As a result, the UE 100 having a single reception branch can be prevented from handing over to an adjacent cell with which communication is impossible, and handover failure of the UE 100 can be prevented. Moreover, radio resources for measurement reporting can be saved, and the power consumption of the UE 100 can also be reduced.
  • the UE 100 may have two reception branches. If the message does not contain information indicating that RedCap UEs having two receiving branches among the RedCap UEs can be accepted in the adjacent cell, the control unit 130 indicates that the RedCap UE can communicate in the adjacent cell. It is determined not to report the measurement result of the neighbor cell even if the information indicating the cell is included. Thereby, even if the RedCap UE can communicate in the adjacent cell, the BS200 does not determine the adjacent cell in which the RedCap UE having two reception branches cannot communicate in the adjacent cell as a handover destination candidate cell. . As a result, it is possible to prevent the UE 100 having two reception branches from handing over to an adjacent cell incapable of communication, and prevent the UE 100 from failing in handover. Moreover, radio resources for measurement reporting can be saved, and the power consumption of the UE 100 can also be reduced.
  • the operation of the functional units included in the UE 100 may be described as the operation of the UE 100.
  • BS 200 has antenna 211 , communication section 212 , network communication section 213 and control section 214 .
  • the communication unit 212 communicates with the UE 100 via the antenna 211 under the control of the control unit 214.
  • the communication unit 212 has a receiving unit 212a and a transmitting unit 212b.
  • the receiving unit 212 a converts a radio signal received by the antenna 211 into a received signal that is a baseband signal, performs signal processing on the received signal, and outputs the received signal to the control unit 214 .
  • the transmission unit 212 b performs signal processing on a transmission signal, which is a baseband signal output from the control unit 214 , converts the signal into a radio signal, and transmits the radio signal from the antenna 211 .
  • the network communication unit 213 is connected to the core network device 300.
  • the network communication unit 213 performs network communication with the core network device 300 under the control of the control unit 214 .
  • the control unit 214 controls the communication unit 212 and performs various controls in the base station 200 .
  • Control unit 214 includes at least one processor and at least one memory.
  • the memory stores programs executed by the processor and information used for processing by the processor.
  • the memory may include at least one of ROM, EPROM, EEPROM, RAM and flash memory.
  • the processor may include a digital signal processor (DSP), which performs digital processing of digital signals, and a central processing unit (CPU), which executes programs. Note that part of the memory may be provided in the communication unit 212 . Also, the DSP may be provided in the communication unit 212 .
  • DSP digital signal processor
  • the operation of the functional units (specifically, the communication unit 212, the network communication unit 213, and the control unit 214) of the BS 200 may be described as the operation of the BS 200.
  • Operation example 1 Operation example 1 of the UE 100 and the BS 200 (BS 201, BS 202, BS 203) according to the embodiment of the present disclosure will be described with reference to FIGS.
  • the UE 100 is a RedCap UE.
  • BS201 manages cell C1
  • BS202 manages cell C2
  • BS203 manages cell C3.
  • BS201 BS202 and BS203 are neighboring base stations.
  • cell C1 cell C2 and cell C3 are neighboring cells different from cell C1.
  • the explanation proceeds assuming that BS201 and BS202 can communicate with the RedCap UE, and BS203 cannot communicate with the RedCap UE. Therefore, BS201 and BS202 support communication with RedCap UE. BS203 does not support communication with RedCap UE.
  • the UE100 is in communication with cell C1 of BS201. Therefore, the UE 100 may be in an RRC connected state, an RRC idle state, or an RRC inactive state in the cell C1. Note that the UE 100 communicates with the cell C1, such as receiving paging, for example, even in the RRC idle state or RRC inactive state. In this operation example, as shown in FIG. 5, the UE 100 is in the RRC connected state in the cell C1 of the BS201.
  • Step S101 Communication section 212 of BS 201 transmits the measurement setting to UE 100 .
  • the communication unit 120 of the UE 100 receives the measurement settings.
  • a measurement configuration may include a list of cells that specify what to measure.
  • Step S102 Network communication units 213 of BS 202 and BS 203 transmit SIB (system information block) messages.
  • Communication unit 120 of UE 100 receives the SIB messages from BS 202 and BS 203 .
  • the SIB message is, for example, SIB type 1 broadcast from BS200.
  • the SIB message is a message for determining whether or not the RedCap UE can communicate in the adjacent cell.
  • the control unit 214 of the BS 202 generates judgment information for judging whether or not the RedCap UE and the BS 202 can communicate.
  • Control section 214 of BS 202 includes the generated determination information in the SIB message.
  • the determination information may include at least one of the following information.
  • RedCap-AccessAllowed Information indicating whether BS202 or a cell managed by BS202 can accept RedCap UE (hereinafter referred to as redCap-AccessAllowed as appropriate) Information indicating whether BS202 or a cell managed by BS202 can accept a RedCap UE having a single reception branch among RedCap UEs (hereinafter, appropriately referred to as singleRx-AccessAllowed) Information indicating whether BS202 or a cell managed by BS202 can accept RedCap UE having two reception branches among RedCap UEs (hereinafter referred to as twoRx-AccessAllowed as appropriate)
  • redCap-AccessAllowed may be any of the following information.
  • Information indicating that the cell of BS202 (RAN node) supports RedCap UE Information indicating whether the cell of BS202 (RAN node) supports RedCap UE Information indicating that access is possible Information indicating whether or not the RedCap UE can access the cell of the BS 202 (RAN node) (see FIG. 6) - Information indicating that the RedCap UE is permitted to camp on the cell of the BS 202 (RAN node) - Information indicating whether or not the RedCap UE is permitted to camp on the cell of the BS 202 (RAN node)
  • redCap-AccessAllowed may be included in cell access related information (CellAccessRelatedInfo).
  • CellAccessRelatedInfo may indicate whether the cell from which the redCap-AccessAllowed is sent can accept RedCap UEs.
  • Cell access related information is included in SIB type 1.
  • redCap-AccessAllowed may be any of the following information when associated with each cell (eg, physical cell ID) of BS202.
  • singleRx-AccessAllowed may be included in cell access related information.
  • singleRx-AccessAllowed may indicate whether or not the cell from which the singleRx-AccessAllowed is transmitted can accept RedCap UEs with a single receive branch.
  • SingleRx-AccessAllowed may be any of the following information when associated with each cell (eg, physical cell ID) of BS202.
  • Information indicating that the cell supports RedCap UEs having a single reception branch Information indicating whether the cell supports RedCap UEs having a single reception branch RedCap UEs having a single reception branch information indicating that a RedCap UE having a single reception branch can access the cell Information indicating whether a RedCap UE having a single reception branch can access the cell Information indicating that a RedCap UE having a single reception branch is permitted to camp on the cell Information Information indicating whether or not RedCap UEs with a single reception branch are allowed to camp on the cell
  • twoRx-AccessAllowed may be any of the following information.
  • Information indicating that the cell of BS202 (RAN node) supports RedCap UE having two reception branches Information indicating whether the cell of BS202 (RAN node) supports RedCap UE having two reception branches.
  • Information indicating that RedCap UEs with two receive branches are allowed to camp on the cell of BS202 (RAN node) Allow RedCap UEs with two receive branches to camp on the cell of BS202 (RAN node) information indicating whether
  • twoRx-AccessAllowed may be included in the cell access related information.
  • twoRx-AccessAllowed may indicate whether the cell from which the twoRx-AccessAllowed is transmitted can accept a RedCap UE having two receive branches.
  • TwoRx-AccessAllowed may be any of the following information when associated with each cell (eg, physical cell ID) of BS202. - Information indicating that the cell supports a RedCap UE having two reception branches - Information indicating whether the cell supports a RedCap UE having two reception branches - If a RedCap UE having two reception branches is in the cell Information indicating that access is possible Information indicating whether a RedCap UE having two reception branches can access the cell Information indicating that a RedCap UE having two reception branches is permitted to camp on the cell Two reception Information indicating whether to allow RedCap UEs having branches to camp on cells
  • the control unit 214 of the BS203 may generate determination information in the same manner as the BS202.
  • Control section 214 of BS 203 includes the determination information in the Xn setup response message.
  • the control section 214 of the BS 203 does not need to generate determination information.
  • the control unit 214 of the BS 203 does not have to include the determination information in the Xn setup response message.
  • the control unit 130 of the UE 100 acquires information for determination.
  • Control section 130 of UE 100 determines that UE 100 can communicate in cell C2 of BS 202 based on the determination information received from BS 202 .
  • the determination information includes at least one of redCap-AccessAllowed, singleRx-AccessAllowed, and twoRx-AccessAllowed
  • the control unit 130 of the UE 100 may determine that the UE 100 can communicate in the cell C2 of the BS202.
  • the determination information from BS 202 (cell C2) indicates that UE 100 can communicate in cell C2.
  • control section 130 of UE100 determines that UE100 is unable to communicate in cell C3 of BS203.
  • Control section 130 of UE 100 may determine that UE 100 is unable to communicate in cell C3 of BS 203 when the SIB message from BS 203 does not include determination information.
  • the determination information from BS 203 indicates that UE 100 cannot communicate in cell C3.
  • the control unit 130 of the UE 100 may regard the cell in which the UE 100 received the SIB message as a prohibited cell if the SIB message does not include redCap-AccessAllowed, for example.
  • the prohibited cell here is at least one of a cell that does not support RedCap UE, a cell that RedCap UE cannot access, and a cell that does not allow RedCap UE to camp. That is, the UE 100 cannot communicate in the prohibited cell.
  • the cell in which the UE 100 receives the SIB message may be regarded as forbidden cells.
  • the prohibited cells are cells that do not support RedCap UEs with a single reception branch, cells that RedCap UEs with a single reception branch cannot access, and RedCap UEs with a single reception branch that camp. at least one of the cells, which do not allow That is, the UE 100 cannot communicate in the prohibited cell.
  • the cell in which the UE 100 receives the SIB message is It may be regarded as a forbidden cell.
  • the prohibited cells are cells that do not support RedCap UEs with two reception branches, cells that RedCap UEs with two reception branches cannot access, and RedCap UEs with two reception branches that are not allowed to camp. at least one of: That is, the UE 100 cannot communicate in the prohibited cell.
  • Step S103 The control unit 130 of the UE 100 measures radio quality for cells.
  • the control unit 130 of the UE 100 may measure the radio quality of the cell designated as the measurement target by the measurement settings.
  • the control unit 130 of the UE 100 does not have to measure the radio quality of the cell for which the UE 100 has determined that communication is impossible.
  • the control unit 130 of the UE 100 does not have to measure the radio quality of the cell for which the UE 100 determines that communication is impossible even if the cell is specified as a measurement target by the measurement setting.
  • the control unit 130 of the UE 100 does not have to measure the radio quality for the cells regarded as prohibited cells. Note that the control unit 130 of the UE 100 does not need to calculate the measurement results of cells in which radio quality measurement is not performed.
  • the control unit 130 of the UE 100 determines whether or not to report the radio quality measurement result for the adjacent cell to the BS 201.
  • control unit 130 of the UE 100 determines that the UE 100 can communicate in the adjacent cell, it determines to report the measurement result for the adjacent cell to the BS 201 .
  • control section 130 of UE 100 decides not to report the measurement result for the neighboring cell to BS 201 .
  • UE 100 determines to report the measurement result for cell C2 to BS201, and determines not to report the measurement result for cell C3 to BS201.
  • Step S104 The communication unit 120 of the UE 100 transmits to the BS 201 a measurement report including the radio quality measurement results for neighboring cells.
  • Communication section 212 of BS 201 receives the measurement report from UE 100 .
  • the control unit 130 of the UE 100 includes the measurement results of neighboring cells determined to be reported in the measurement report. On the other hand, control section 130 of UE 100 does not include in the measurement report the measurement results of neighboring cells determined not to be reported. In this operation example, the control unit 130 of the UE 100 includes the measurement result for the cell C2 and does not include the measurement result for the cell C3 in the measurement report.
  • Step S105 Control section 214 of BS 201 determines handover of UE 100 based on the measurement report.
  • control section 214 of BS 201 can determine a cell with which UE 100 can communicate as a handover destination candidate cell. In this operation example, control section 214 of BS 201 determines cell C2 as a candidate cell. Control section 214 of BS 201 starts control to transmit a handover request message to BS 202 that manages the candidate cell.
  • Step S106 Network communication unit 213 of BS201 transmits a handover request message to BS202.
  • Network communication unit 213 of BS202 receives the handover request message from BS201.
  • the control unit 214 of the BS 202 determines whether to approve the handover request. In this operation example, it is assumed that the control unit 214 of the BS 202 has decided to approve the handover request.
  • Step S107 Network communication unit 213 of BS202 transmits a handover request acknowledgment message to BS201.
  • Network communication unit 213 of BS201 receives the handover request acknowledgment message from BS202.
  • Step S108 Communication unit 212 of BS 201 transmits an RRC reconfiguration message for triggering handover to UE 100 .
  • Communication unit 120 of UE 100 receives the RRC reconfiguration message from BS 201 .
  • the RRC reconfiguration message is a message for handing over UE 100 to the cell of BS 202.
  • Step S109 The control unit 130 of the UE 100 detaches from the cell of BS201 and synchronizes with the cell of BS202. That is, the control unit 130 of the UE 100 performs cell switching.
  • Step S110 Communication section 120 of UE 100 transmits an RRC reconfiguration complete message to BS 202 when the handover procedure is completed.
  • Communication section 212 of BS 202 receives the RRC reconfiguration complete message from UE 100 .
  • Operation example 2 Operation example 2 of the UE 100 and the BS 200 according to the embodiment of the present disclosure will be described with reference to FIG. Differences from the contents described above will be mainly described.
  • operation example 1 a case in which general handover is performed has been described, but in operation example 2, a case in which conditional handover (CHO) is performed will be described.
  • Steps S201 to S204 This is the same as steps S101 to S104 in Operation Example 1.
  • Step S205 Control section 214 of BS 201 determines to perform conditional handover to UE 100 .
  • the control unit 214 of the BS 201 determines the transmission destination of the handover request message for requesting conditional handover based on the measurement results.
  • control unit 214 of the BS 201 does not include the measurement results for the cell with which the UE 100 cannot communicate, so the control unit 214 of the BS 201 selects a cell with which the UE 100 can communicate as a handover destination candidate cell. can be determined to In this operation example, control section 214 of BS 201 determines cell C2 as a candidate cell.
  • the control unit 214 of the BS 201 determines the BS 202 managing the candidate cell as the transmission destination (candidate target base station) of the handover request message. On the other hand, the controller 214 of BS201 decides not to send the handover request message to BS203 which does not manage the candidate cell.
  • Step S206 Network communication section 213 of BS201 transmits a handover request message for each candidate cell to BS202.
  • Network communication unit 213 of BS202 receives the handover request message for each candidate cell from BS201.
  • the control unit 214 of the BS 202 determines whether to approve the handover request, similar to step S108.
  • Step S207 Network communication unit 213 of BS 202 transmits a handover request acknowledgment message including setting of conditional handover candidate cells to BS 201 for each candidate cell.
  • Network communication unit 213 of BS201 receives the handover request acknowledgment message from BS202.
  • Step S208 Communication section 212 of BS 201 transmits the RRC reconfiguration message to UE 100 .
  • Communication unit 120 of UE 100 receives the RRC reconfiguration message from BS 201 .
  • the RRC reconfiguration message includes conditional handover candidate cell configuration and conditional handover execution conditions.
  • Step S209 Communication unit 120 of UE 100 transmits an RRC reconfiguration complete message to BS 201 .
  • Communication unit 212 of BS 201 receives the RRC reconfiguration complete message from UE 100 .
  • Step S210 The control unit 130 of the UE 100 starts evaluating conditional handover execution conditions. Control section 130 of UE 100 maintains the RRC connection with BS 201 after receiving the setting of the conditional handover candidate cell.
  • Step S211 If the candidate cell satisfies the corresponding conditional handover execution conditions, the control unit 130 of the UE 100 detaches from the cell of the BS 201 and synchronizes with the candidate cell. That is, the control unit 130 of the UE 100 performs cell switching.
  • Step S212 Communication section 120 of UE 100 transmits an RRC reconfiguration complete message to BS 202 when the handover procedure is completed.
  • Communication section 212 of BS 202 receives the RRC reconfiguration complete message from UE 100 .
  • Step S213 Network communication unit 213 of BS202 transmits a handover success message to BS201 when the handover is successful.
  • Network communication unit 213 of BS201 receives the handover success message from BS202.
  • the message containing the decision information may be a message other than the SIB message described above.
  • singleRx-AccessAllowed is information about a single reception branch, but it is not limited to this.
  • the singleRx-AccessAllowed can be information about either a single receive chain, a single receiver, and a single receive antenna port.
  • "single receive branch” may be replaced with “single receive chain”, “single receiver”, and “single receive antenna port”.
  • twoRx-AccessAllowed is information about two reception branches, but is not limited to this.
  • the singleRx-AccessAllowed can be information about any of two receive chains, two receivers, and two receive antenna ports.
  • "two receive branches" may be replaced with “two receive chains”, “two receivers”, and "two receive antenna ports”.
  • each of the operation examples described above is not limited to being implemented separately and independently, and can be implemented by appropriately combining each operation example.
  • the steps in the processes described herein do not necessarily have to be executed in chronological order according to the order described in the flowcharts or sequence diagrams. For example, steps in a process may be performed in an order different from that depicted in a flowchart or sequence diagram, or in parallel. Also, some of the steps in the process may be deleted and additional steps may be added to the process.
  • each operation flow described above is not limited to being implemented independently, but can be implemented by combining two or more operation flows. For example, some steps of one operation flow may be added to another operation flow, or some steps of one operation flow may be replaced with some steps of another operation flow.
  • a method may be provided that includes the operation of one or more components of the apparatus described herein, and a program may be provided for causing a computer to perform the operation of the components. Further, a computer-readable non-transitional tangible recording medium recording the program may be provided. Such methods, programs, and computer-readable non-transitory tangible computer-readable storage mediums are also included in the present disclosure. Also, at least part of the UE 100 or at least part of the BS 200 may be a chipset or SoC (System on Chip) in which a circuit that executes each process performed by the UE 100 or the BS 200 is integrated.
  • SoC System on Chip
  • transmit may mean performing processing of at least one layer in the protocol stack used for transmission, or physically transmitting a signal wirelessly or by wire. may mean to Alternatively, “transmitting” may mean a combination of performing the at least one layer of processing and physically transmitting the signal wirelessly or by wire. Similarly, “receive” may mean performing processing of at least one layer in the protocol stack used for reception, or physically receiving a signal wirelessly or by wire. may mean that Alternatively, “receiving” may mean a combination of performing the at least one layer of processing and physically receiving the signal wirelessly or by wire.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Databases & Information Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本開示の一態様に係るユーザ装置(100)は、通信能力が限定されたユーザ装置(100)であって、前記ユーザ装置(100)が基地局(200、201)のセルと通信中において、前記セルと異なる隣接セルを管理する隣接基地局(200、202、203)から、前記隣接セルにおいて前記ユーザ装置(100)が通信可能か否かを判定するためのメッセージを受信する通信部(120)と、前記メッセージに基づいて、前記隣接セルに対する無線品質の測定結果を前記基地局(200、201)に報告するか否かを判定する制御部(130)と、を備える。

Description

ユーザ装置及び通信制御方法 関連出願への相互参照
 本出願は、2021年4月28日に出願された特許出願番号2021-076759号に基づくものであって、その優先権の利益を主張するものであり、その特許出願のすべての内容が、参照により本明細書に組み入れられる。
 本開示は、移動通信システムで用いるユーザ装置及び通信制御方法に関する。
 近年、移動通信システムの標準化プロジェクトである3GPP(登録商標。以下同じ)において、通常のユーザ装置よりも通信能力が限定された能力限定ユーザ装置(いわゆる、RedCap UE)を5Gシステムで提供することが検討されている(例えば、非特許文献1参照)。このような能力限定ユーザ装置は、例えば、通信に使用する最大帯域幅が制限されていたり、受信ブランチの数が制限されていたりする。
3GPP寄書「R2-210918」
 本開示の一態様に係るユーザ装置は、通信能力が限定されたユーザ装置であって、前記ユーザ装置が基地局のセルと通信中において、前記セルと異なる隣接セルを管理する隣接基地局から、前記隣接セルにおいて前記ユーザ装置が通信可能か否かを判定するためのメッセージを受信する通信部と、前記メッセージに基づいて、前記隣接セルに対する無線品質の測定結果を前記基地局に報告するか否かを判定する制御部と、を備える。
 本開示の一態様に係る通信制御方法は、通信能力が限定されたユーザ装置で実行される通信制御方法であって、前記ユーザ装置が基地局のセルと通信中において、前記セルと異なる隣接セルを管理する隣接基地局から、前記隣接セルにおいて前記ユーザ装置が通信可能か否かを判定するためのメッセージを受信するステップと、前記メッセージに基づいて、前記隣接セルに対する無線品質の測定結果を前記基地局に報告するか否かを判定するステップと、を備える。
 本開示についての目的、特徴、及び利点等は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。
本開示の実施形態に係るシステムの概略的な構成の一例を示す説明図である。 本開示の実施形態に係るシステムのプロトコルスタックの構成例を示す図である。 本開示の実施形態に係るUEの構成例を示す図である。 本開示の実施形態に係るBSの構成例を示す図である。 本開示の実施形態の移動通信システムの動作例1を示す図である。 本開示の実施形態に係るメッセージに含まれる情報の一例を示す図である。 本開示の実施形態の移動通信システムの動作例1のUEの動作例を示す図である。 本開示の実施形態の移動通信システムの動作例2を示す図である。
 以下、添付の図面を参照して本開示の実施形態を詳細に説明する。なお、本明細書及び図面において、同様に説明されることが可能な要素については、同一又は類似の符号を付することにより重複説明が省略され得る。
 基地局にとって、能力限定ユーザ装置との通信は、通常のユーザ装置との通信と異なる制御が必要になるため、能力限定ユーザ装置と通信できない基地局が存在することがある。
 ここで、能力限定ユーザ装置が、基地局と能力限定ユーザ装置との間でRRC接続が確立されているRRCコネクティッド状態にある場合に、例えば、能力限定ユーザ装置の移動により、基地局が管理するセルから隣接基地局が管理する隣接セルへハンドオーバーすることを想定する。
 隣接基地局が、能力限定ユーザ装置との通信をサポートしていない場合、能力限定ユーザ装置が隣接セルへのハンドオーバーに失敗し、能力限定ユーザ装置の通信が中断されるという問題がある。
 そこで、ハンドオーバー失敗を抑制できるユーザ装置及び通信制御方法を提供することを目的の一つとする。
 (1)システムの構成
 (1.1)システム概要
 図1を参照して、本開示の実施形態に係るシステム1の構成の例を説明する。システム1は、例えば、移動通信システムの標準化プロジェクトである3GPPの技術仕様(Technical Specification:TS)に準拠した移動通信システムである。以下において、システム1として、3GPP規格の第5世代システム(5th Generation System:5GS)、すなわち、NR(New Radio)に基づく移動通信システムを例に挙げて説明する。なお、システム1は、この例に限定されない。システム1は、LTE(Long Term Evolution)又は3GPP規格の他の世代システム(例えば、第6世代)のいずれかのTSに準拠したシステムであってよい。システム1は、3GPP規格以外の規格のTSに準拠したシステムであってよい。
 図1に示すように、システム1は、5Gの無線アクセスネットワーク(いわゆる、Next Generation Radio Access Network:NG-RAN)20と、5Gのコアネットワーク(5G Core Network:5GC)30と、ユーザ装置(User Equipment:UE)100と、を含む。
 NG-RAN20は、無線アクセスネットワークのノードである基地局(Base Station:BS)200を含む。BS200は、UE100との無線通信を行う無線通信装置である。BS200は、1又は複数のセルを管理する。BS200は、自セルとの無線リソース制御(RRC)レイヤにおける接続を確立したUE100との無線通信を行う。基地局200は、無線リソース管理(RRM)機能、ユーザデータ(以下、単に「データ」という)のルーティング機能、モビリティ制御・スケジューリングのための測定制御機能等を有する。「セル」は、無線通信エリアの最小単位を示す用語として用いられる。「セル」は、UE100との無線通信を行う機能又はリソースを示す用語としても用いられる。1つのセルは1つのキャリア周波数に属する。図1において、BS201がセルC1を管理し、BS202がセルC2を管理する一例を示している。UE100は、セルC1及びセルC2の重複領域に位置している。
 BS200は、例えば、RANのプロトコルスタックを使用してUE100と通信する。プロトコルスタックは、例えば、RRC(Radio Resource Control)レイヤ、SDAP(Service Data Adaptation Protocol)レイヤ、PDCP(Packet Data Convergence Protocol)レイヤ、RLC(Radio Link Control)レイヤ、MAC(Medium Access Control)レイヤ及び物理(Physical:PHY)レイヤを含む。但し、LTEの場合、SDAPレイヤが存在しなくてよい。
 BS200は、例えば、UE100へ向けたNRユーザプレーン及び制御プレーンプロトコル終端を提供し、NGインターフェイスを介して5GC30に接続されるgNBである。なお、BS200は、例えばLTEにおいてUE100へ向けたE-UTRAユーザプレーン及び制御プレーンプロトコル終端を提供するeNBであってよい。
 BS200は、複数のユニットを含んでもよい。複数のユニットは、プロトコルスタックに含まれる上位レイヤ(higher layer)をホストする第1のユニットと、プロトコルスタックに含まれる下位レイヤ(lower layer)をホストする第2のユニットとを含んでよい。上位レイヤは、RRCレイヤ、SDAPレイヤ及びPDCPレイヤを含んでよく、下位レイヤは、RLCレイヤ、MACレイヤ及びPHYレイヤを含んでよい。第1のユニットは、CU(central unit)であってよく、第2のユニットは、DU(Distributed Unit)であってよい。複数のユニットは、PHYレイヤの下位の処理を行う第3のユニットを含んでよい。第2のユニットは、PHYレイヤの上位の処理を行ってよい。第3のユニットは、RU(Radio Unit)であってよい。BS200は、複数のユニットのうちの1つであってよく、複数のユニットのうちの他のユニットと接続されていてよい。また、BS200は、IAB(Integrated Access and Backhaul)ドナー又はIABノードであってよい。
 5GC30は、コアネットワーク装置300を含む。コアネットワーク装置300は、制御プレーンに対応した装置であって、UE100に対する各種モビリティ管理を行う装置であってよい。コアネットワーク装置300は、NAS(Non-Access Stratum)シグナリングを用いてUE100と通信し、UE100が在圏するトラッキングエリアの情報を管理する。コアネットワーク装置300は、UE100に対して着信を通知するために、基地局200を通じてページングを行う。コアネットワーク装置300は、5G/NRのAMF(Access and Mobility Management Function)、又は4G/LTEのMME(Mobility Management Entity)であってもよい。
 コアネットワーク装置300は、ユーザプレーンに対応した装置であって、UE100のデータの転送制御を行う装置である。コアネットワーク装置300は、5G/NRのUPF(User Plane Function)、又は4G/LTEのS-GW(Serving Gateway)であってもよい。
 コアネットワーク装置300は、例えば、AMF及び/又はUPFを含んでよい。コアネットワーク装置300は、NGインターフェイスを介してBS200と接続される。
 UE100は、BS200のカバレッジエリア内に位置する場合に、BS200と通信できる。UE100は、上述のプロトコルスタックを使用してBS200と通信できる。
 UE100は、基地局200と通信する通信装置の一例である。UE100は、ユーザにより利用される装置であってよい。UE100は、例えば、スマートフォンなどの携帯電話端末、タブレット端末、ノートPC、通信モジュール、又は通信カードなどの移動可能な無線通信装置である。また、UE100は、車両(例えば、車、電車など)又は車両に設けられる装置であってよい。UE100は、車両以外の輸送機体(例えば、船、飛行機など)又は車両以外の輸送機体に設けられる装置であってよい。また、UE100は、センサ又はセンサに設けられる装置であってよい。なお、UE100は、移動局、移動端末、移動装置、移動ユニット、加入者局、加入者端末、加入者装置、加入者ユニット、ワイヤレス局、ワイヤレス端末、ワイヤレス装置、ワイヤレスユニット、リモート局、リモート端末、リモート装置、又はリモートユニット等の別の名称で呼ばれてもよい。
 UE100は、通常のUE(一般UE)よりも通信能力が限定された能力限定ユーザ装置(いわゆる、RedCap UE)であってよい。従って、RedCap UEは、一般UEよりも低減された通信能力を有する。RedCap UEは、IoT向けにミドルレンジの性能・価格を有してよい。なお、一般UEは、NRのUEであり、例えば、NRの特徴である高度な通信能力を有する。具体的には、一般UEは、例えば、高速大容量(enhanced Mobile Broadband:eMBB)及び超高信頼低遅延(Ultra-Reliable and Low Latency Communications:URLLC)を満たすUEである。
 RedCap UEは、例えば、Rel-15又はRel-16の高性能の高速大容量及び超高信頼低遅延を満たす一般UEと比較して、装置コスト及び複雑さが低減されたUEであってよい。RedCap UEは、LPWA (Low Power Wide Area)規格(例えば、LTE Cat.1/1bis、LTECat.M1(LTE-M)、LTECat.NB1(NB-IoT))で規定されている通信速度以上の通信速度で通信可能であってよい。
 RedCap UEは、LPWA規格で規定されている帯域幅以上の帯域幅で通信可能であってよい。RedCap UEは、Rel-15又はRel-16のUEと比較して、通信に用いる帯域幅が限定されていてよい。FR1(Frequency Range 1)では、例えば、RedCap UEの最大帯域幅は、20MHzであってよい。FR2(Frequency Range 2)では、例えば、RedCap UEの最大帯域幅は、100MHzであってよい。
 RedCap UEは、無線信号を受信するための受信チェイン(Rxチェイン)を1つのみ有していてよいし、2つのみ有していてもよい。また、通常のUE(いわゆる、レガシーNR UE)が最低2つの受信アンテナポート(Rxアンテナポート)を備える必要がある周波数帯域において、RedCap UEは、単一の受信ブランチ(Rxブランチ)を用いた通信がサポートされてよい。当該周波数帯域において、RedCap UEは、2つの受信ブランチを用いた通信がサポートされてもよい。
 また、通常のUEが最低4つの受信アンテナポートを備える必要がある周波数帯域において、RedCap UEは、単一の受信ブランチを用いた通信がサポートされてよい。当該周波数帯域において、RedCap UEは、2つの受信ブランチを用いた通信がサポートされてもよい。
 RedCap UEが、単一の受信ブランチを有する場合、DL MIMOレイヤの最大数は、1つであってよい。RedCap UEが、2つの受信ブランチを有する場合、DL MIMOレイヤの最大数は、2つであってよい。
 RedCap UEは、例えば、産業用ワイヤレスセンサー、ビデオ監視装置、又はウェアラブル装置であってよい。なお、RedCap UEは、Reduced capability NR deviceと称されてもよい。
 (1.2)プロトコルスタックの構成例
 図2を参照して、移動通信システム1のプロトコルスタックの構成例について説明する。図2に示すように、UE100と基地局200との間の無線区間のプロトコルは、物理(PHY)レイヤと、MAC(Medium Access Control)レイヤと、RLC(Radio Link Control)レイヤと、PDCP(Packet Data Convergence Protocol)レイヤと、RRC(Radio Resource Control)レイヤとを有する。
 PHYレイヤは、符号化・復号、変調・復調、アンテナマッピング・デマッピング、及びリソースマッピング・デマッピングを行う。UE100のPHYレイヤと基地局200のPHYレイヤとの間では、物理チャネルを介してデータ及び制御情報が伝送される。
 MACレイヤは、データの優先制御、ハイブリッドARQ(HARQ)による再送処理、及びランダムアクセスプロシージャ等を行う。UE100のMACレイヤと基地局200のMACレイヤとの間では、トランスポートチャネルを介してデータ及び制御情報が伝送される。基地局200のMACレイヤはスケジューラを含む。スケジューラは、上下リンクのトランスポートフォーマット(トランスポートブロックサイズ、変調・符号化方式(MCS))及びUE100への割当リソースを決定する。
 RLCレイヤは、MACレイヤ及びPHYレイヤの機能を利用してデータを受信側のRLCレイヤに伝送する。UE100のRLCレイヤと基地局200のRLCレイヤとの間では、論理チャネルを介してデータ及び制御情報が伝送される。
 PDCPレイヤは、ヘッダ圧縮・伸張、及び暗号化・復号化を行う。
 PDCPレイヤの上位レイヤとしてSDAP(Service Data Adaptation Protocol)レイヤが設けられていてもよい。SDAP(Service Data Adaptation Protocol)レイヤは、コアネットワークがQoS制御を行う単位であるIPフローとAS(Access Stratum)がQoS制御を行う単位である無線ベアラとのマッピングを行う。
 RRCレイヤは、無線ベアラの確立、再確立及び解放に応じて、論理チャネル、トランスポートチャネル、及び物理チャネルを制御する。UE100のRRCレイヤと基地局200のRRCレイヤとの間では、各種設定のためのRRCシグナリングが伝送される。UE100のRRCと基地局200のRRCとの間にRRC接続がある(すなわち、RRC接続が確立されている)場合、UE100はRRCコネクティッド状態にある。UE100のRRCと基地局200のRRCとの間にRRC接続がない(すなわち、RRC接続が確立されていない)場合、UE100はRRCアイドル状態にある。UE100のRRCと基地局200のRRCとの間のRRC接続がサスペンドされている場合、UE100はRRCインアクティブ状態にある。
 RRCレイヤの上位に位置するNASレイヤは、UE100のセッション管理及びモビリティ管理を行う。UE100のNASレイヤとコアネットワーク装置300のNASレイヤとの間では、NASシグナリングが伝送される。
 なお、UE100は、無線インターフェイスのプロトコル以外にアプリケーションレイヤ等を有する。
 (1.3)UEの構成
 図3を参照して、UE100の構成例について説明する。図3に示すように、UE100は、通信部120と、制御部130とを有する。
 通信部120は、信号を送受信することによって他の通信装置との通信を行う。通信部120は、例えば、BS200からの無線信号を受信し、BS200への無線信号を送信する。また、通信部120は、例えば、他のUEからの無線信号を受信し、他のUEへの無線信号を送信してよい。
 通信部120は、受信部121と送信部122とを有する。受信部121は、アンテナが受信する無線信号をベースバンド信号である受信信号に変換し、受信信号に対する信号処理を行ったうえで制御部130に出力する。送信部122は、制御部130が出力するベースバンド信号である送信信号に対する信号処理を行ったうえで無線信号に変換し、無線信号をアンテナから送信する。
 受信部121は、1つ又は複数の受信チェイン(すなわち、Rxチェイン)を含む。受信チェインは、受信アンテナポート(すなわち、Rxアンテナポート)及び受信回路を含む。受信チェインは、受信機を構成するものであってよく、受信機と称されてもよい。受信チェインは、受信機の一部を構成するものであってもよい。また、受信チェインは、1つ又は複数の受信ブランチ(Rxブランチ)を含んでよい。受信ブランチは、少なくとも受信アンテナポートを含んでよい。受信アンテナポートは、1本又は複数の物理アンテナから構成される、論理的な受信用のアンテナである。
 送信部122は、1つ又は複数の送信チェイン(すなわち、Txチェイン)を含む。送信チェインは、送信アンテナポート(すなわち、Txアンテナポート)及び送信回路を含む。送信チェインは、送信機を構成するものであってよく、送信機と称されてもよい。送信チェインは、送信機の一部を構成するものであってもよい。また、送信チェインは、1つ又は複数の送信ブランチ(Txブランチ)を含んでよい。送信ブランチは、少なくとも送信アンテナポートを含んでよい。送信アンテナポートは、1本又は複数の物理アンテナから構成される、論理的な送信用のアンテナである。
 なお、受信機と送信機とは、1つの送受信機により構成されてよい。また、アンテナは、受信と送信とで兼用されてよい。
 制御部130は、UE100における各種の制御を行う。制御部130は、例えば、通信部120を介したBS200又は他のUE100との通信を制御する。後述のUE100の動作は、制御部130の制御による動作であってよい。
 制御部130は、プログラムを実行可能な1つ以上のプロセッサ及びプログラムを記憶するメモリを含んでよい。1つ以上のプロセッサは、プログラムを実行して、制御部130の動作を行ってもよい。プログラムは、制御部130の動作をプロセッサに実行させるためのプログラムであってもよい。
 プロセッサは、アンテナ及びRF回路を介して送受信される信号のデジタル処理を行う。当該デジタル処理は、RANのプロトコルスタックの処理を含む。プロセッサは、単一のプロセッサであってよい。プロセッサは、複数のプロセッサを含んでもよい。当該複数のプロセッサは、デジタル処理を行うベースバンドプロセッサと、他の処理を行う1つ以上のプロセッサとを含んでもよい。メモリは、プロセッサにより実行されるプログラム、当該プログラムに関するパラメータ、及び、当該プログラムに関するデータを記憶する。メモリは、ROM(Read Only Memory)、EPROM(Erasable Programmable Read Only Memory)、EEPROM(Electrically Erasable Programmable Read Only Memory)、RAM(Random Access Memory)及びフラッシュメモリの少なくとも1つを含んでよい。メモリの全部又は一部は、プロセッサ内に含まれていてよい。
 このように構成されたUE100は、通信能力が限定されたRedCap UEである。通信部120は、UE100がBS200のセルと通信中において、隣接セルを管理する隣接基地局から、隣接セルにおいてユーザ装置が通信可能か否かを判定するためのメッセージを受信する。なお、隣接セルは、UE100が通信中のセルと異なるセルである。また、UE100がセルとの通信中である場合、UE100は、当該セルにおいて、RRCコネクティッド状態であってよいし、RRCアイドル状態又はRRCインアクティブ状態であってよい。
 制御部130は、メッセージに基づいて、隣接セルに対する無線品質の測定結果をBS200に報告するか否かを判定する。これにより、BS200は、UE100が、メッセージに基づいて報告するか否かを判定した測定結果に基づいて、UE100のハンドオーバー先の候補セルを決定できる。これにより、BS200は、ハンドオーバー先の候補セルを適切に決定することができる。その結果、UE100のハンドオーバー失敗を抑制できる。
 また、UE100は、隣接セルの測定結果を報告しないと判定した場合、測定結果の報告量を低減できるため、測定報告用の無線リソースを節約でき、UE100の消費電力も低減できる。さらに、UE100が、測定結果を報告しない隣接セルに対する測定を行わない場合には、UE100の消費電力をさらに低減できる。
 また、制御部130は、隣接セルにおいてUE100が通信不能であることを示す情報をメッセージが含む場合、隣接セルの測定結果を報告しないと判定してよい。これにより、UE100が通信不能である隣接セルの測定結果を測定報告が含まないため、BS200は、当該隣接セルをハンドオーバー先の候補セルとして決定しない。その結果、UE100が通信不能である隣接セルへUE100がハンドオーバーすることを抑制でき、UE100のハンドオーバー失敗を抑制できる。また、測定報告用の無線リソースを節約でき、UE100の消費電力も低減できる。
 また、制御部130は、隣接セルにおいてUE100が通信可能であることを示す情報をメッセージが含む場合、隣接セルの測定結果を報告すると判定してよい。これにより、UE100が通信可能である隣接セルの測定結果を測定報告が含むため、BS200は、当該隣接セルをハンドオーバー先の候補セルとして決定できる。その結果、UE100が通信可能である隣接セルへUE100がハンドオーバーすることができ、UE100のハンドオーバー成功を促すことができる。
 また、UE100は、単一の受信ブランチを有してよい。制御部130は、RedCap UEのうち単一の受信ブランチを有するRedCap UEを隣接セルにおいて受け入れ可能であることを示す情報をメッセージが含まない場合、メッセージが隣接セルにおいてRedCap UEが通信可能であることを示す情報を含んでいても、隣接セルの測定結果を報告しないと判定する。これにより、BS200は、隣接セルにおいてRedCap UEが通信可能であったとしても、当該隣接セルにおいて単一の受信ブランチを有するRedCap UEが通信不能である隣接セルを、ハンドオーバー先の候補セルとして決定しない。その結果、単一の受信ブランチを有するUE100が、通信不能な隣接セルへハンドオーバーすることを抑制でき、UE100のハンドオーバー失敗を抑制できる。また、測定報告用の無線リソースを節約でき、UE100の消費電力も低減できる。
 また、UE100は、2つの受信ブランチを有してよい。制御部130は、RedCap UEのうち2つの受信ブランチを有するRedCap UEを隣接セルにおいて受け入れ可能であることを示す情報をメッセージが含まない場合、メッセージが隣接セルにおいてRedCap UEが通信可能であることを示す情報を含んでいても、隣接セルの測定結果を報告しないと判定する。これにより、BS200は、隣接セルにおいてRedCap UEが通信可能であったとしても、当該隣接セルにおいて2つの受信ブランチを有するRedCap UEが通信不能である隣接セルを、ハンドオーバー先の候補セルとして決定しない。その結果、2つの受信ブランチを有するUE100が、通信不能な隣接セルへハンドオーバーすることを抑制でき、UE100のハンドオーバー失敗を抑制できる。また、測定報告用の無線リソースを節約でき、UE100の消費電力も低減できる。
 なお、以下において、UE100が備える機能部(具体的には、通信部120及び制御部130)の動作を、UE100の動作として説明することがある。
 (1.4)BSの構成
 図4を参照して、BS200の構成例について説明する。図4に示すように、BS200は、アンテナ211と、通信部212と、ネットワーク通信部213と、制御部214とを有する。
 通信部212は、制御部214の制御下で、アンテナ211を介してUE100との通信を行う。通信部212は、受信部212aと、送信部212bとを有する。受信部212aは、アンテナ211が受信する無線信号をベースバンド信号である受信信号に変換し、受信信号に対する信号処理を行ったうえで制御部214に出力する。送信部212bは、制御部214が出力するベースバンド信号である送信信号に対する信号処理を行ったうえで無線信号に変換し、無線信号をアンテナ211から送信する。
 ネットワーク通信部213は、コアネットワーク装置300と接続される。ネットワーク通信部213は、制御部214の制御下で、コアネットワーク装置300とのネットワーク通信を行う。
 制御部214は、通信部212を制御するとともに、基地局200における各種の制御を行う。制御部214は、少なくとも1つのプロセッサ及び少なくとも1つのメモリを含む。メモリは、プロセッサにより実行されるプログラム、及びプロセッサによる処理に用いられる情報を記憶する。メモリは、ROM、EPROM、EEPROM、RAM及びフラッシュメモリの少なくとも1つを含んでもよい。プロセッサは、デジタル信号のデジタル処理を行うデジタル信号プロセッサ(DSP)と、プログラムを実行する中央演算処理装置(CPU)とを含んでもよい。なお、メモリの一部は通信部212に設けられていてもよい。また、DSPは、通信部212に設けられていてもよい。
 なお、以下において、BS200が備える機能部(具体的には、通信部212と、ネットワーク通信部213と、及び制御部214)の動作を、BS200の動作として説明することがある。
 (2)システムの動作
 (2.1)動作例1
 図5から図7を参照して、本開示の実施形態に係るUE100及びBS200(BS201、BS202、BS203)の動作例1を説明する。
 UE100は、RedCap UEである。本動作例において、BS201は、セルC1を管理し、BS202は、セルC2を管理し、BS203は、セルC3を管理する。BS201にとって、BS202及びBS203は、隣接基地局である。セルC1にとって、セルC2及びセルC3は、セルC1と異なる隣接セルである。
 BS201及びBS202は、RedCap UEと通信可能であり、BS203は、RedCap UEと通信不能であるとして説明を進める。従って、BS201及びBS202は、RedCap UEとの通信をサポートしている。BS203は、RedCap UEとの通信をサポートしていない。
 UE100は、BS201のセルC1と通信中である。従って、UE100は、セルC1において、RRCコネクティッド状態であってよいし、RRCアイドル状態又はRRCインアクティブ状態であってよい。なお、UE100は、RRCアイドル状態又はRRCインアクティブ状態にあっても、例えば、ページングの受信などのセルC1との通信を行う。本動作例では、図5に示すように、UE100は、BS201のセルC1においてRRCコネクティッド状態にある。
 ステップS101:
 BS201の通信部212は、測定設定をUE100へ送信する。UE100の通信部120は、測定設定を受信する。測定設定は、測定対象を指定するセルのリストを含んでよい。
 ステップS102:
 BS202及びBS203のネットワーク通信部213は、SIB(system information block)メッセージを送信する。UE100の通信部120は、SIBメッセージをBS202及びBS203から受信する。
 SIBメッセージは、例えば、BS200からブロードキャストされるSIBタイプ1である。本動作例では、SIBメッセージは、隣接セルにおいてRedCap UEが通信可能か否かを判定するためのメッセージである。
 BS202の制御部214は、RedCap UEとBS202が通信可能か否かを判定するための判定用情報を生成する。BS202の制御部214は、生成した判定用情報をSIBメッセージに含める。判定用情報は、以下の情報の少なくともいずれかを含んでよい。
  ・BS202又はBS202が管理するセルがRedCap UEを受け入れ可能か否かを示す情報(以下、redCap-AccessAllowedと適宜称する)
  ・BS202又はBS202が管理するセルがRedCap UEのうち単一の受信ブランチを有するRedCap UEを受け入れ可能か否かを示す情報(以下、singleRx-AccessAllowedと適宜称する)
  ・BS202又はBS202が管理するセルがRedCap UEのうち2つの受信ブランチを有するRedCap UEを受け入れ可能か否かを示す情報(以下、twoRx-AccessAllowedと適宜称する)
 redCap-AccessAllowedは、以下のいずれかの情報であってよい。
  ・BS202(RANノード)のセルがRedCap UEをサポートすることを示す情報
  ・BS202(RANノード)のセルがRedCap UEをサポートするか否かを示す情報
  ・RedCap UEがBS202(RANノード)のセルにアクセスできることを示す情報
  ・RedCap UEがBS202(RANノード)のセルにアクセスできるか否かを示す情報(図6参照)
  ・RedCap UEがBS202(RANノード)のセルにキャンプすることを許可すること示す情報
  ・RedCap UEがBS202(RANノード)のセルにキャンプすることを許可するか否かを示す情報
 図6に示すように、redCap-AccessAllowedは、セルアクセス関連情報(CellAccessRelatedInfo)に含まれていてよい。redCap-AccessAllowedは、redCap-AccessAllowedの送信元のセルがRedCap UEを受け入れ可能か否かを示してよい。なお、セルアクセス関連情報は、SIBタイプ1に含まれる。
 redCap-AccessAllowedは、BS202のセル(例えば、物理セルID)毎に対応付けられている場合、以下のいずれかの情報であってよい。
  ・セルがRedCap UEをサポートすることを示す情報
  ・セルがRedCap UEをサポートするか否かを示す情報
  ・RedCap UEがセルにアクセスできることを示す情報
  ・RedCap UEがセルにアクセスできるか否かを示す情報
  ・RedCap UEがセルにキャンプすることを許可すること示す情報
  ・RedCap UEがセルにキャンプすることを許可するか否かを示す情報
 singleRx-AccessAllowedは、以下のいずれかの情報であってよい。
  ・BS202(RANノード)のセルが単一の受信ブランチを有するRedCap UEをサポートすることを示す情報
  ・BS202(RANノード)のセルが単一の受信ブランチを有するRedCap UEをサポートするか否かを示す情報
  ・単一の受信ブランチを有するRedCap UEがBS202(RANノード)のセルにアクセスできることを示す情報
  ・単一の受信ブランチを有するRedCap UEがBS202(RANノード)のセルにアクセスできるか否かを示す情報
  ・単一の受信ブランチを有するRedCap UEがBS202(RANノード)のセルにキャンプすることを許可すること示す情報
  ・単一の受信ブランチを有するRedCap UEがBS202(RANノード)のセルにキャンプすることを許可するか否かを示す情報
 図6に示すように、singleRx-AccessAllowedは、セルアクセス関連情報に含まれていてよい。singleRx-AccessAllowedは、singleRx-AccessAllowedの送信元のセルが単一の受信ブランチを有するRedCap UEを受け入れ可能か否かを示してよい。
 singleRx-AccessAllowedは、BS202のセル(例えば、物理セルID)毎に対応付けられている場合、以下のいずれかの情報であってよい。
  ・セルが単一の受信ブランチを有するRedCap UEをサポートすることを示す情報
  ・セルが単一の受信ブランチを有するRedCap UEをサポートするか否かを示す情報
  ・単一の受信ブランチを有するRedCap UEがセルにアクセスできることを示す情報
  ・単一の受信ブランチを有するRedCap UEがセルにアクセスできるか否かを示す情報
  ・単一の受信ブランチを有するRedCap UEがセルにキャンプすることを許可すること示す情報
  ・単一の受信ブランチを有するRedCap UEがセルにキャンプすることを許可するか否かを示す情報
 twoRx-AccessAllowedは、以下のいずれかの情報であってよい。
  ・BS202(RANノード)のセルが2つの受信ブランチを有するRedCap UEをサポートすることを示す情報
  ・BS202(RANノード)のセルが2つの受信ブランチを有するRedCap UEをサポートするか否かを示す情報
  ・2つの受信ブランチを有するRedCap UEがBS202(RANノード)のセルにアクセスできることを示す情報
  ・2つの受信ブランチを有するRedCap UEがBS202(RANノード)のセルにアクセスできるか否かを示す情報
  ・2つの受信ブランチを有するRedCap UEがBS202(RANノード)のセルにキャンプすることを許可すること示す情報
  ・2つの受信ブランチを有するRedCap UEがBS202(RANノード)のセルにキャンプすることを許可するか否かを示す情報
 図6に示すように、twoRx-AccessAllowedは、セルアクセス関連情報に含まれていてよい。twoRx-AccessAllowedは、twoRx-AccessAllowedの送信元のセルが2つの受信ブランチを有するRedCap UEを受け入れ可能か否かを示してよい。
 twoRx-AccessAllowedは、BS202のセル(例えば、物理セルID)毎に対応付けられている場合、以下のいずれかの情報であってよい。
  ・セルが2つの受信ブランチを有するRedCap UEをサポートすることを示す情報
  ・セルが2つの受信ブランチを有するRedCap UEをサポートするか否かを示す情報
  ・2つの受信ブランチを有するRedCap UEがセルにアクセスできることを示す情報
  ・2つの受信ブランチを有するRedCap UEがセルにアクセスできるか否かを示す情報
  ・2つの受信ブランチを有するRedCap UEがセルにキャンプすることを許可すること示す情報
  ・2つの受信ブランチを有するRedCap UEがセルにキャンプすることを許可するか否かを示す情報
 BS203の制御部214は、BS202と同様に判定用情報を生成してよい。BS203の制御部214は、判定用情報をXnセットアップ応答メッセージに含める。或いは、BS203の制御部214は、判定用情報を生成しなくてよい。BS203の制御部214は、判定用情報をXnセットアップ応答メッセージに含めなくてよい。
 UE100の制御部130は、判定用情報を取得する。UE100の制御部130は、BS202から受信した判定用情報に基づいて、BS202のセルC2においてUE100が通信可能であると判定する。UE100の制御部130は、判定用情報がredCap-AccessAllowed、singleRx-AccessAllowed及びtwoRx-AccessAllowedの少なくともいずれかを含む場合、BS202のセルC2においてUE100が通信可能であると判定してよい。本動作例では、BS202(セルC2)からの判定用情報は、セルC2においてUE100が通信可能であることを示す。
 UE100の制御部130は、BS203から受信した判定用情報に基づいて、BS203のセルC3においてUE100が通信不能であると判定する。UE100の制御部130は、BS203からのSIBメッセージに判定用情報が含まれない場合、BS203のセルC3においてUE100が通信不能であると判定してもよい。本動作例では、BS203(セルC3)からの判定用情報は、セルC3においてUE100が通信不能であることを示す。
 図7に示すように、RedCapUEであるUE100の制御部130は、例えば、redCap-AccessAllowedをSIBメッセージが含まない場合、UE100がSIBメッセージを受信したセルを禁止セルとみなしてよい。なお、ここでの禁止セルは、RedCap UEをサポートしないセル、RedCap UEがアクセスできないセル、RedCap UEがキャンプすることを許可しないセル、の少なくともいずれかである。すなわち、UE100は、当該禁止セルにおいて通信不能である。
 UE100の制御部130は、単一の受信ブランチのみを有する場合には、singleRx-AccessAllowedをSIBメッセージが含まない場合、redCap-AccessAllowedをSIBメッセージが含んでいても、UE100がSIBメッセージを受信したセルを禁止セルとみなしてよい。なお、ここでの禁止セルは、単一の受信ブランチを有するRedCap UEをサポートしないセル、単一の受信ブランチを有するRedCap UEがアクセスできないセル、単一の受信ブランチを有するRedCap UEがキャンプすることを許可しないセル、の少なくともいずれかである。すなわち、UE100は、当該禁止セルにおいて通信不能である。
 UE100の制御部130は、2つの受信ブランチのみを有する場合には、twoRx-AccessAllowedをSIBメッセージが含まない場合、redCap-AccessAllowedをSIBメッセージが含んでいても、UE100がSIBメッセージを受信したセルを禁止セルとみなしてよい。なお、ここでの禁止セルは、2つの受信ブランチを有するRedCap UEをサポートしないセル、2つの受信ブランチを有するRedCap UEがアクセスできないセル、2つの受信ブランチを有するRedCap UEがキャンプすることを許可しないセル、の少なくともいずれかである。すなわち、UE100は、当該禁止セルにおいて通信不能である。
 ステップS103:
 UE100の制御部130は、セルに対する無線品質の測定を行う。UE100の制御部130は、測定設定により測定対象として指定されたセルに対する無線品質の測定を行ってよい。
 UE100の制御部130は、UE100が通信不能であると判定したセルに対する無線品質の測定を行わなくてもよい。UE100の制御部130は、測定設定により測定対象として指定されたセルであっても、UE100が通信不能であると判定したセルに対する無線品質の測定を行わなくてもよい。UE100の制御部130は、禁止セルとみなしたセルに対する無線品質の測定を行わなくてもよい。なお、UE100の制御部130は、無線品質の測定を行わないセルの測定結果を算出しなくてもよい。
 UE100の制御部130は、SIBメッセージに基づいて、隣接セルに対する無線品質の測定結果をBS201へ報告するか否かを判定する。
 具体的には、UE100の制御部130は、隣接セルにおいてUE100が通信可能であると判定した場合、当該隣接セルに対する測定結果をBS201に報告すると判定する。UE100の制御部130は、隣接セルにおいてUE100が通信不能であると判定した場合、当該隣接セルに対する測定結果をBS201に報告しないと判定する。本動作例では、UE100は、セルC2に対する測定結果をBS201に報告すると判定し、セルC3に対する測定結果をBS201に報告しないと判定する。
 ステップS104:
 UE100の通信部120は、隣接セルに対する無線品質の測定結果を含む測定報告をBS201へ送信する。BS201の通信部212は、測定報告をUE100から受信する。
 UE100の制御部130は、報告すると判定した隣接セルの測定結果を測定報告に含める。一方で、UE100の制御部130は、報告しないと判定した隣接セルの測定結果を測定報告に含めない。本動作例では、UE100の制御部130は、測定報告に、セルC2に対する測定結果を含めて、セルC3に対する測定結果を含めない。
 ステップS105:
 BS201の制御部214は、測定報告に基づいて、UE100のハンドオーバーを決定する。
 また、UE100が通信不能なセルに対する測定結果を測定報告が含まないため、BS201の制御部214は、UE100が通信可能なセルをハンドオーバー先の候補セルに決定できる。本動作例では、BS201の制御部214は、セルC2を候補セルに決定する。BS201の制御部214は、候補セルを管理するBS202へハンドオーバー要求メッセージを送信する制御を開始する。
 ステップS106:
 BS201のネットワーク通信部213は、ハンドオーバー要求メッセージをBS202へ送信する。BS202のネットワーク通信部213は、ハンドオーバー要求メッセージをBS201から受信する。
 BS202の制御部214は、ハンドオーバー要求を承認するか否かを決定する。本動作例では、BS202の制御部214は、ハンドオーバー要求を承認すると決定したとして説明を進める。
 ステップS107:
 BS202のネットワーク通信部213は、ハンドオーバー要求承認メッセージをBS201へ送信する。BS201のネットワーク通信部213は、ハンドオーバー要求承認メッセージをBS202から受信する。
 ステップS108:
 BS201の通信部212は、ハンドオーバーをトリガするためのRRC再設定メッセージをUE100へ送信する。UE100の通信部120は、RRC再設定メッセージをBS201から受信する。
 本動作例では、RRC再設定メッセージは、BS202のセルへUE100をハンドオーバーさせるためのメッセージである。
 ステップS109:
 UE100の制御部130は、BS201のセルからデタッチして、BS202のセルに同期する。すなわち、UE100の制御部130は、セルの切り替えを実行する。
 ステップS110:
 UE100の通信部120は、ハンドオーバー手順が完了した場合に、RRC再設定完了メッセージをBS202へ送信する。BS202の通信部212は、RRC再設定完了メッセージをUE100から受信する。
 (2.2)動作例2
 図8を参照して、本開示の実施形態に係るUE100及びBS200の動作例2を説明する。上述した内容との相違点を主として説明する。動作例1では、一般的なハンドオーバーが行われるケースについて説明したが、動作例2では、条件付きハンドオーバー(CHO)が行われるケースについて説明する。
 ステップS201からS204:
 動作例1におけるステップS101からS104と同様である。
 ステップS205:
 BS201の制御部214は、UE100に対して、条件付きハンドオーバーを行うと決定する。
 BS201の制御部214は、測定結果に基づいて、条件付きハンドオーバーを要求するためのハンドオーバー要求メッセージの送信先を決定する。
 BS201の制御部214は、ステップS107と同様に、UE100が通信不能なセルに対する測定結果を測定報告が含まないため、BS201の制御部214は、UE100が通信可能なセルをハンドオーバー先の候補セルに決定できる。本動作例では、BS201の制御部214は、セルC2を候補セルに決定する。
 本動作例では、BS201の制御部214は、候補セルを管理するBS202をハンドオーバー要求メッセージの送信先(候補ターゲット基地局)として決定する。一方で、BS201の制御部214は、候補セルを管理しないBS203にハンドオーバー要求メッセージを送信しないと決定する。
 ステップS206:
 BS201のネットワーク通信部213は、候補セル毎のハンドオーバー要求メッセージをBS202へ送信する。BS202のネットワーク通信部213は、候補セル毎のハンドオーバー要求メッセージをBS201から受信する。
 BS202の制御部214は、ステップS108と同様に、ハンドオーバー要求を承認するか否かを決定する。
 ステップS207:
 BS202のネットワーク通信部213は、条件付きハンドオーバー候補セルの設定を含むハンドオーバー要求承認メッセージを候補セル毎にBS201へ送信する。BS201のネットワーク通信部213は、ハンドオーバー要求承認メッセージをBS202から受信する。
 ステップS208:
 BS201の通信部212は、RRC再設定メッセージをUE100へ送信する。UE100の通信部120は、RRC再設定メッセージをBS201から受信する。
 RRC再設定メッセージは、条件付きハンドオーバー候補セルの設定及び条件付きハンドオーバー実行条件を含む。
 ステップS209:
 UE100の通信部120は、RRC再設定完了メッセージをBS201へ送信する。BS201の通信部212は、RRC再設定完了メッセージをUE100から受信する。
 ステップS210:
 UE100の制御部130は、条件付きハンドオーバー実行条件の評価を開始する。UE100の制御部130は、条件付きハンドオーバー候補セルの設定を受信した後、BS201とのRRC接続を維持する。
 ステップS211:
 UE100の制御部130は、候補セルが対応する条件付きハンドオーバー実行条件を満たす場合、BS201のセルからデタッチして、当該候補セルに同期する。すなわち、UE100の制御部130は、セルの切り替えを実行する。
 ステップS212:
 UE100の通信部120は、ハンドオーバー手順が完了した場合に、RRC再設定完了メッセージをBS202へ送信する。BS202の通信部212は、RRC再設定完了メッセージをUE100から受信する。
 ステップS213:
 BS202のネットワーク通信部213は、ハンドオーバーが成功した場合に、ハンドオーバー成功メッセージをBS201へ送信する。BS201のネットワーク通信部213は、ハンドオーバー成功メッセージをBS202から受信する。
 (その他の実施形態)
 以上では、本開示の実施形態を説明したが、本開示は実施形態に限定されるものではない。例えば、判定用情報を含むメッセージは、上述のSIBメッセージ以外のメッセージであってよい。
 また、上述の各動作例では、singleRx-AccessAllowedは、単一の受信ブランチに関する情報であったが、これに限られない。singleRx-AccessAllowedは、単一の受信チェイン、単一の受信機、及び単一の受信アンテナポートのいずれかに関する情報であってよい。従って、上述の各動作例において、「単一の受信ブランチ」は、「単一の受信チェイン」、「単一の受信機」、及び「単一の受信アンテナポート」に置き換えられてもよい。
 また、上述の各動作例では、twoRx-AccessAllowedは、2つの受信ブランチに関する情報であったが、これに限られない。singleRx-AccessAllowedは、2つの受信チェイン、2つの受信機、及び2つの受信アンテナポートのいずれかに関する情報であってよい。従って、上述の各動作例において、「2つの受信ブランチ」は、「2つの受信チェイン」、「2つの受信機」、及び「2つの受信アンテナポート」に置き換えられてもよい。
 また、上述の各動作例は、別個独立して実施する場合に限らず、各動作例を適宜組み合わせて実施可能である。また、例えば、本明細書に記載されている処理におけるステップは、必ずしもフローチャート又はシーケンス図に記載された順序に沿って時系列に実行されなくてよい。例えば、処理におけるステップは、フローチャート又はシーケンス図として記載した順序と異なる順序で実行されても、並列的に実行されてもよい。また、処理におけるステップの一部が削除されてもよく、さらなるステップが処理に追加されてもよい。さらに、上述の各動作フローは、別個独立に実施する場合に限らず、2以上の動作フローを組み合わせて実施可能である。例えば、1つの動作フローの一部のステップを他の動作フローに追加してもよいし、1つの動作フローの一部のステップを他の動作フローの一部のステップと置換してもよい。
 例えば、本明細書において説明した装置の1つ以上の構成要素の動作を含む方法が提供されてもよく、上記構成要素の動作をコンピュータに実行させるためのプログラムが提供されてもよい。また、当該プログラムを記録したコンピュータに読み取り可能な非遷移的実体的記録媒体が提供されてもよい。このような方法、プログラム、及びコンピュータに読み取り可能な非遷移的実体的記録媒体(non-transitory tangible computer-readable storage medium)も、本開示に含まれる。また、UE100の少なくとも一部又はBS200の少なくとも一部は、UE100又はBS200が行う各処理を実行する回路が集積化されたチップセット又はSoC(System on Chip)であってよい。
 本開示において、「送信する(transmit)」は、送信に使用されるプロトコルスタック内の少なくとも1つのレイヤの処理を行うことを意味してもよく、又は、無線又は有線で信号を物理的に送信することを意味してもよい。或いは、「送信する」は、上記少なくとも1つのレイヤの処理を行うことと、無線又は有線で信号を物理的に送信することとの組合せを意味してもよい。同様に、「受信する(receive)」は、受信に使用されるプロトコルスタック内の少なくとも1つのレイヤの処理を行うことを意味してもよく、又は、無線又は有線で信号を物理的に受信することを意味してもよい。或いは、「受信する」は、上記少なくとも1つのレイヤの処理を行うことと、無線又は有線で信号を物理的に受信することとの組合せを意味してもよい。
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。

Claims (6)

  1.  通信能力が限定されたユーザ装置(100)であって、
     前記ユーザ装置(100)が基地局(200、201)のセルと通信中において、前記セルと異なる隣接セルを管理する隣接基地局(200、202、203)から、前記隣接セルにおいて前記ユーザ装置(100)が通信可能か否かを判定するためのメッセージを受信する通信部(120)と、
     前記メッセージに基づいて、前記隣接セルに対する無線品質の測定結果を前記基地局(200、201)に報告するか否かを判定する制御部(130)と、を備える
     ユーザ装置。
  2.  前記制御部(130)は、前記隣接セルにおいて前記ユーザ装置(100)が通信不能であることを示す情報を前記メッセージが含む場合、前記隣接セルの前記測定結果を報告しないと判定する
     請求項1に記載のユーザ装置。
  3.  前記制御部(130)は、前記隣接セルにおいて前記ユーザ装置(100)が通信可能であることを示す情報を前記メッセージが含む場合、前記隣接セルの前記測定結果を報告すると判定する
     請求項1又は2に記載のユーザ装置。
  4.  前記ユーザ装置(100)は、単一の受信ブランチを有し、
     前記制御部(130)は、前記通信能力が限定された能力限定ユーザ装置(100)のうち単一の受信ブランチを有するユーザ装置(100)を前記隣接セルにおいて受け入れ可能であることを示す情報を前記メッセージが含まない場合、前記メッセージが前記隣接セルにおいて前記ユーザ装置(100)が通信可能であることを示す情報を含んでいても、前記隣接セルの前記測定結果を報告しないと判定する
     請求項3に記載のユーザ装置。
  5.  前記ユーザ装置(100)は、2つの受信ブランチを有し、
     前記制御部(130)は、前記通信能力が限定された能力限定ユーザ装置(100)のうち2つの受信ブランチを有するユーザ装置(100)を前記隣接セルにおいて受け入れ可能であることを示す情報を前記メッセージが含まない場合、前記メッセージが前記隣接セルにおいて前記ユーザ装置(100)が通信可能であることを示す情報を含んでいても、前記隣接セルの前記測定結果を報告しないと判定する
     請求項3に記載のユーザ装置。
  6.  通信能力が限定されたユーザ装置(100)で実行される通信制御方法であって、
     前記ユーザ装置(100)が基地局(200、201)のセルと通信中において、前記セルと異なる隣接セルを管理する隣接基地局(200、202、203)から、前記隣接セルにおいて前記ユーザ装置(100)が通信可能か否かを判定するためのメッセージを受信するステップと、
     前記メッセージに基づいて、前記隣接セルに対する無線品質の測定結果を前記基地局(200、201)に報告するか否かを判定するステップと、を備える
     通信制御方法。
      
PCT/JP2022/017992 2021-04-28 2022-04-18 ユーザ装置及び通信制御方法 WO2022230701A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021076759A JP2022170559A (ja) 2021-04-28 2021-04-28 ユーザ装置及び通信制御方法
JP2021-076759 2021-04-28

Publications (1)

Publication Number Publication Date
WO2022230701A1 true WO2022230701A1 (ja) 2022-11-03

Family

ID=83847052

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/017992 WO2022230701A1 (ja) 2021-04-28 2022-04-18 ユーザ装置及び通信制御方法

Country Status (2)

Country Link
JP (1) JP2022170559A (ja)
WO (1) WO2022230701A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190327651A1 (en) * 2017-01-06 2019-10-24 Intel IP Corporation Generation node-b (gnb), user equipment (ue) and methods for handover in new radio (nr) systems
US20190387426A1 (en) * 2016-11-29 2019-12-19 Sk Telecom Co., Ltd. Method for providing streaming service and apparatus therefor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190387426A1 (en) * 2016-11-29 2019-12-19 Sk Telecom Co., Ltd. Method for providing streaming service and apparatus therefor
US20190327651A1 (en) * 2017-01-06 2019-10-24 Intel IP Corporation Generation node-b (gnb), user equipment (ue) and methods for handover in new radio (nr) systems

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: "RRM measurement relaxation for REDCAP UE", 3GPP DRAFT; R2-2007347, vol. RAN WG2, 7 August 2020 (2020-08-07), pages 1 - 4, XP051912115 *

Also Published As

Publication number Publication date
JP2022170559A (ja) 2022-11-10

Similar Documents

Publication Publication Date Title
US10925106B2 (en) Mobile communication system, control apparatus, base station, and user terminal supporting dual connectivity
US10727925B2 (en) Method and apparatus for supporting movement of user equipment in wireless communications
US10057810B2 (en) Communication system, cellular base station, and WLAN access point
US11172491B2 (en) Data transmission method, apparatus and system, network element, storage medium and processor
US20230239714A1 (en) Communication control method, relay user equipment, and remote user equipment
JP7212204B2 (ja) 通信制御方法
US20220159771A1 (en) Communication control method and relay apparatus
US20230362750A1 (en) Data transmission method and apparatus
EP4110008A1 (en) Communication control method
WO2017124900A1 (zh) 电子设备和通信方法
JP2024020471A (ja) 通信制御方法、遠隔ユーザ装置、及びプロセッサ
WO2022230701A1 (ja) ユーザ装置及び通信制御方法
US20210298123A1 (en) Wireless communication system, transmission and reception method, recording medium, wireless communication base station device, control circuit, and control method
WO2021241663A1 (ja) 通信制御方法及びユーザ装置
WO2022230700A1 (ja) 基地局及び通信制御方法
CN111757395B (zh) 信息传输方法、通信装置及存储介质
WO2022234781A1 (ja) 基地局及び通信制御方法
US20230262826A1 (en) Communication control method
WO2023149490A1 (ja) 通信方法、ユーザ装置、及び基地局
WO2024096092A1 (ja) 通信装置、基地局及び通信方法
WO2023127638A1 (ja) 基地局及び通信方法
WO2023010367A1 (zh) 终端设备的转移方法、装置和系统
WO2023204171A1 (ja) スライスサポート有無確認方法及びユーザ装置
CN111406393B (zh) 参数调整方法及相关设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22795614

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22795614

Country of ref document: EP

Kind code of ref document: A1