WO2022230675A1 - 経路検出装置およびプログラム - Google Patents

経路検出装置およびプログラム Download PDF

Info

Publication number
WO2022230675A1
WO2022230675A1 PCT/JP2022/017779 JP2022017779W WO2022230675A1 WO 2022230675 A1 WO2022230675 A1 WO 2022230675A1 JP 2022017779 W JP2022017779 W JP 2022017779W WO 2022230675 A1 WO2022230675 A1 WO 2022230675A1
Authority
WO
WIPO (PCT)
Prior art keywords
strongly connected
qubo
subgraph
edge
connected components
Prior art date
Application number
PCT/JP2022/017779
Other languages
English (en)
French (fr)
Inventor
賢 鈴木
Original Assignee
株式会社東芝
東芝デジタルソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社東芝, 東芝デジタルソリューションズ株式会社 filed Critical 株式会社東芝
Priority to CA3216729A priority Critical patent/CA3216729A1/en
Publication of WO2022230675A1 publication Critical patent/WO2022230675A1/ja
Priority to US18/494,019 priority patent/US20240054176A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/11Complex mathematical operations for solving equations, e.g. nonlinear equations, general mathematical optimization problems
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/16Matrix or vector computation, e.g. matrix-matrix or matrix-vector multiplication, matrix factorization
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N99/00Subject matter not provided for in other groups of this subclass

Definitions

  • Embodiments of the present invention relate to route detection devices and programs.
  • a technique for detecting cycles included in a directed graph is known.
  • a technique for detecting cycles included in a directed graph can be used, for example, to detect cyclic transactions that should be audited in inter-firm transactions.
  • a cyclic transaction between companies can be detected by generating a directed graph with a company as a node and a payment relationship as an edge, and detecting a simple cycle included in the generated directed graph.
  • a simple cycle detection algorithm is known as a conventional technique for detecting cycles contained in a directed graph.
  • a conventional simple cycle detection algorithm detects a simple cycle by detecting strongly connected components included in a directed graph and performing a depth-first search on the detected strongly connected components.
  • the conventional simple cycle detection algorithm calculates O 1 ⁇ ((N + E) ⁇ (C + 1)) where N is the number of nodes included in the directed graph, E is the number of edges, and C is the number of simple cycles.
  • N is the number of nodes included in the directed graph
  • E is the number of edges
  • C is the number of simple cycles.
  • a computational space of time and O 2 ⁇ (N+E) was required. Therefore, conventional simple cycle detection algorithms are not realistic for detecting simple cycles from large-scale directed graphs.
  • the problem to be solved by the present invention is to provide a path detection device and program that can detect a specific type of simple cycle included in a directed graph with less computation time and less computation space.
  • the path detection device detects simple cycles included in a directed graph.
  • the path detection device includes a strongly connected component detection section, a problem generation section, a solution acquisition section, a simple cycle detection section, and an output section.
  • the strongly connected component detection unit detects one or more strongly connected components included in the directed graph.
  • the problem generator generates a QUBO problem for each of the one or more strongly connected components.
  • the solution obtaining unit obtains a solution of the QUBO problem for each of the one or more strongly connected components.
  • the simple cycle detection unit detects the simple cycle included in the subgraph for each of the one or more strongly connected components.
  • the output unit outputs information specifying the detected simple cycle.
  • a plurality of decision variables included in the objective function in the QUBO problem correspond to a plurality of nodes or a plurality of edges included in a target strongly connected component among the one or more strongly connected components.
  • the subgraph can be a portion of the strongly connected component of interest that includes two or more nodes or two or more edges that are selected based on the solution.
  • the QUBO matrix included in the objective function is set such that the objective function is minimized when the subgraph satisfies a preset condition.
  • FIG. 4 is a diagram showing an example of a directed graph; FIG. It is a figure which shows an example of a strongly connected component. It is a figure which shows the 1st example of a simple cycle. It is a figure which shows the 2nd example of a simple cycle. 4 is a flowchart showing processing of the route detection device according to the first embodiment; It is a flow chart which shows processing of a course detection device concerning a 2nd embodiment. It is a figure which shows the hardware constitutions of a path
  • the route detection device 10 according to the embodiment will be described below with reference to the drawings.
  • FIG. 1 is a diagram showing the functional configuration of a route detection device 10 according to the first embodiment.
  • the path detection device 10 detects specific types of simple cycles included in a directed graph with less computation time and less computation space. In the first embodiment, the path detection device 10 probabilistically detects simple cycles with a large number of edges out of all of the plurality of simple cycles included in a directed graph, excluding simple cycles with a small number of edges.
  • the route detection device 10 is implemented by a processor, computer, server, or the like executing a program.
  • the path detection device 10 includes a QUBO solver 22, a graph acquisition unit 24, a strongly connected component detection unit 26, a problem generation unit 28, a solution acquisition unit 30, a subgraph generation unit 32, and a simple cycle detection unit 34. , a repeat control unit 36 and an output unit 38 .
  • the QUBO solver 22 calculates a solution to a QUBO (Quadratic unconstrained binary optimization) problem.
  • the QUBO solver 22 receives QUBO problems and outputs solutions to the received QUBO problems.
  • the QUBO solver 22 may output an optimal solution or an approximate solution.
  • the QUBO solver 22 may be a solver that calculates the solution of the Ising problem.
  • the QUBO solver 22 is implemented, for example, by a processor or computer implementing the path detection device 10 executing a QUBO problem solving program.
  • the QUBO solver 22 may be provided by a server or the like. In this case, the QUBO solver 22 may be implemented outside the path detection device 10 .
  • the path detection device 10 gives the QUBO problem to the QUBO solver 22 via the network and obtains the solution from the QUBO solver 22 via the network. .
  • the graph acquisition unit 24 acquires a directed graph from which simple cycles are to be detected. Directed graphs are described in further detail below with reference to FIG.
  • the strongly connected component detection unit 26 detects one or more strongly connected components included in the acquired digraph. Strongly connected components are described in further detail below with reference to FIG.
  • the problem generation unit 28 generates a QUBO problem for each of the detected one or more strongly connected components.
  • a plurality of decision variables included in the objective function in the QUBO problem correspond to a plurality of nodes or a plurality of edges included in the target strongly connected component among the one or more strongly connected components.
  • multiple decision variables in the QUBO problem correspond one-to-one to multiple edges included in the target strongly connected component.
  • the QUBO matrix included in the objective function in the QUBO problem is set so that the objective function is minimized when the subgraph satisfies preset conditions.
  • a subgraph is a portion of the strongly connected component of interest that contains two or more nodes or two or more edges that are selected based on the solution of the QUBO problem.
  • the QUBO matrix is set to , is set such that the objective function is minimized.
  • the solution acquisition unit 30 provides the generated QUBO problem to the QUBO solver 22 for each of one or more strongly connected components, and requests to solve the QUBO problem. Then, the solution acquisition unit 30 acquires the solution of the generated QUBO problem from the QUBO solver 22 for each of the one or more strongly connected components.
  • the subgraph generator 32 generates a subgraph selected based on the solution of the QUBO problem for each of one or more strongly connected components. More specifically, the subgraph generation unit 32 generates a portion of the target strongly connected component that includes two or more nodes or two or more edges corresponding to the decision variable that gives the QUBO problem a solution of 1 as a subgraph. To detect. In the present embodiment, the subgraph generator 32 detects a portion of the strongly connected component of interest, which includes two or more edges corresponding to the decision variable with the solution of the QUBO problem being 1, as a subgraph.
  • the simple cycle detection unit 34 detects simple cycles included in subgraphs for each of one or more strongly connected components. Simple cycles are described in further detail below with reference to FIGS. 4 and 5. FIG.
  • the iteration control unit 36 causes the problem generation unit 28 to generate a QUBO problem, the solution acquisition unit 30 to obtain a solution to the QUBO problem, and the subgraph generation unit 32 to generate a subgraph for each of one or more strongly connected components. Generation is repeated until the number of edges included in the subgraph is equal to or less than a preset threshold.
  • the repetition control unit 36 uses a new QUBO matrix obtained by changing the QUBO matrix used in the previous process to generate a new QUBO problem. If the number of edges included in the subgraph is equal to or less than the threshold, the iteration control unit 36 terminates the iteration process and causes the simple cycle detection unit 34 to detect simple cycles included in the subgraph. Therefore, the iteration control unit 36 can detect a simple cycle included in a subgraph whose number of edges is less than or equal to the threshold for each of one or more strongly connected components. As a result, the iteration control unit 36 can reduce the calculation time and calculation space for detecting simple paths.
  • the output unit 38 outputs the simple cycles detected for all of the one or more strongly connected components as simple cycles included in the directed graph.
  • the output unit 38 may present the detected simple cycle to the user by displaying it on the display means.
  • the output unit 38 may transmit the detected simple circuit to an external device via a network.
  • FIG. 2 is a diagram showing an example of a directed graph.
  • a directed graph is a graph that represents a connection relationship between a plurality of nodes using oriented edges.
  • a node on the input side of an edge is called a source node, and a node on the output side of an edge is called a destination node.
  • the illustrated directed graph contains five nodes A, B, C, D and E. Also, the illustrated directed graph contains 6 edges. The six edges are the edge from A to B (A ⁇ B), the edge from B to C (B ⁇ C), the edge from C to A (C ⁇ A), and the edge from B to D. It contains an edge (B ⁇ D), an edge going from D to A (D ⁇ A), and an edge going from D to E (D ⁇ E).
  • FIG. 3 is a diagram showing an example of a strongly connected component.
  • a strongly connected component is a partial graph of a directed graph, and is a maximal graph including a bidirectionally traversable path between any two nodes.
  • the strongly connected components included in the illustrated directed graph are graphs containing A, B, C and D.
  • a graph containing A, B, C and D has a bi-directional path if any two nodes of A, B, C and D are selected.
  • a graph containing A, B, C and D does not become a strongly connected component by adding any other node.
  • the graph containing A, B, C, and D is a maximal graph that is part of the illustrated directed graph and contains bi-directional paths between any two nodes.
  • FIG. 4 is a diagram showing a first example of a simple cycle.
  • FIG. 5 is a diagram showing a second example of a simple cycle.
  • a cycle is a path starting from some arbitrary node and returning to the starting node.
  • a simple cycle is a path that does not contain duplicate nodes, that is, does not contain two or more identical nodes.
  • one of the simple cycles included in the illustrated directed graph is the path A ⁇ B ⁇ C ⁇ A.
  • one of the simple cycles included in the exemplified directed graph is the path A ⁇ B ⁇ D ⁇ A.
  • FIG. 6 is a flow chart showing the processing flow of the route detection device 10 according to the first embodiment.
  • the route detection device 10 executes processing according to the flow shown in FIG.
  • the graph acquisition unit 24 acquires a directed graph from which simple cycles are to be detected.
  • the graph acquisition unit 24 acquires information describing a source node and an output destination node for each of a plurality of edges included in a directed graph as shown in Table 1. It should be noted that the graph acquisition unit 24 may acquire a directed graph described by other methods without being limited to such a description.
  • the strongly connected component detection unit 26 analyzes the acquired digraph and detects one or more strongly connected components included in the acquired digraph.
  • the strongly connected component detection unit 26 can detect strongly connected components from a directed graph using Tarjan's algorithm disclosed in Non-Patent Document 3, for example.
  • the path detection device 10 executes the processing from S14 to S20 for each of the one or more strongly connected components (loop processing between S13 and S21).
  • the question generation unit 28 generates a QUBO problem for the strongly connected component for which the processes from S14 to S20 are to be executed.
  • multiple decision variables included in the objective function in the QUBO problem correspond one-to-one to multiple edges included in the target strongly connected component.
  • the solution acquisition unit 30 gives the generated QUBO problem to the QUBO solver 22 for the target strongly connected component, and requests to solve the QUBO problem. Then, the solution acquisition unit 30 acquires the solution of the generated QUBO problem from the QUBO solver 22 for the target strongly connected component.
  • the subgraph generator 32 generates a subgraph selected based on the solution of the QUBO problem for the target strongly connected component. More specifically, the subgraph generation unit 32 generates a portion of the target strongly connected component that includes two or more nodes or two or more edges corresponding to the decision variable that gives the QUBO problem a solution of 1 as a subgraph. To detect. In the first embodiment, the subgraph generation unit 32 includes two or more edges corresponding to decision variables whose solution to the QUBO problem is 1 in the strongly connected component of interest, and corresponds to decision variables whose solution is 0. A subgraph is detected as a part that does not contain edges that overlap.
  • the question generation unit 28 generates the function shown in Equation (1) as the objective function in the QUBO problem.
  • E is the number of edges included in the target strongly connected component.
  • i and j are integers from 1 to E and represent edge indices.
  • x i is the decision variable corresponding to the i-th edge of the E edges.
  • x j is the decision variable corresponding to the jth edge of the E edges.
  • Q i,j is a coefficient by which a set of decision variables corresponding to the i-th edge and j-th edge included in the QUBO matrix is multiplied.
  • the QUBO matrix is an E ⁇ E square matrix.
  • the QUBO matrix is set so that the objective function is minimized when the sum of the input degree and the output degree at each of two or more nodes included in the subgraph is the first set value. be done.
  • the input degree is the number of edges entering the node.
  • the output degree is the number of edges coming out of the node.
  • Equation (2) the coefficients Q i,j included in the QUBO matrix are represented by Equation (2).
  • Q ⁇ i,j is the first term of the coefficient multiplied by the set of decision variables corresponding to the i th edge and the j th edge.
  • Q source i,j is the second term of the coefficient multiplied by the set of decision variables corresponding to the i th edge and the j th edge.
  • Q destination i,j is the third term of the coefficient multiplied by the set of decision variables corresponding to the i th edge and the j th edge.
  • source i represents the original node of the i-th edge.
  • source j represents the original node of the jth edge.
  • destination i represents the output destination node of the i-th edge.
  • destination j represents the output destination node of the j-th edge.
  • is a positive real number.
  • the initial value of ⁇ is set by the user or the like.
  • Q ⁇ i,j which is the first term of the coefficient, represents adding ⁇ 4 ⁇ to the coefficients of the diagonal elements of the QUBO matrix and adding 0 to the coefficients other than the diagonal elements.
  • the second term of the coefficient, Q source i,j adds +1 to the coefficient corresponding to the set of two edges having a common source edge, and 0 to the coefficient corresponding to the set of two edges having no common source edge. represents the addition of
  • the third term of the coefficients, Q destination i,j adds +1 to the coefficient corresponding to the set of two edges that have a common destination edge, and the coefficient that corresponds to the set of two edges that do not have a common destination edge. indicates that 0 is added to .
  • the question generation unit 28 can generate the QUBO matrix shown in Table 2 below when executing Equation (2) for the strongly connected components included in the directed graph shown in Table 1.
  • the objective function including the QUBO matrix calculated according to equation (2) is determined by N determinations such that the sum of the input degree and the output degree at each of two or more nodes included in the subgraph is 2 ⁇ . If the value of the variable is chosen, it will be the minimum value. That is, in the QUBO problem using the objective function including the QUBO matrix calculated according to Equation (2), the sum of the input degree and the output degree at each of two or more nodes included in the subgraph is 2 ⁇ . Returns the global minimum in the neighborhood. 2 ⁇ is a value corresponding to the first set value.
  • a solution can be returned that leaves edges of nodes whose sum of the input degree and the output degree is less than or equal to 2 ⁇ .
  • a QUBO problem with an objective function containing a QUBO matrix computed according to equation (2) can return a solution that selects subgraphs that exclude multiple edges and multiple paths with high probability.
  • the QUBO matrix is not limited to the matrix shown in Equation (2), and may be another matrix.
  • the QUBO matrix may be a matrix obtained by multiplying the matrix shown in Equation (2) by a coefficient.
  • Q ⁇ i,j which is the first term of the coefficients in the QUBO matrix, may be obtained by adding ⁇ 1 ⁇ A ⁇ instead of ⁇ 4 ⁇ to the coefficients of the diagonal components of the QUBO matrix.
  • A is a positive integer.
  • the repetition control unit 36 detects the number of edges in the generated subgraph. Subsequently, in S18, the iteration control unit 36 determines whether or not the number of edges included in the generated subgraph for the target strongly connected component is equal to or less than a preset threshold. If the number of edges included in the generated subgraph is greater than the threshold (No in S18), the repetition control unit 36 advances the process to S19.
  • the repetition control unit 36 decreases ⁇ used for calculating the QUBO matrix by a predetermined amount. After completing S19, the repetition control unit 36 returns the process to S14. Then, the question generator 28 repeats the process from S14.
  • the number of edges included in a subgraph is proportional to the total sum of the sum of the input degree and the output degree of the node for the entire subgraph. Therefore, the number of edges included in the subgraph monotonously increases as ⁇ increases. Therefore, the iteration control unit 36 can control the number of edges included in the subgraph to a target value by repeating generation of the QUBO problem and generation of the subgraph by changing ⁇ . For example, the iteration control unit 36 can control the number of edges included in the subgraph to a target value by binary search.
  • the repetition control unit 36 advances the process to S20.
  • the simple cycle detection unit 34 detects simple cycles included in the subgraph for each strongly connected component of interest. For example, the simple cycle detection unit 34 detects simple cycles from subgraphs by depth-first search processing. For example, the simple cycle detection unit 34 can use Johnson's algorithm described in Non-Patent Document 2 to detect simple cycles included in subgraphs.
  • the path detection device 10 determines whether or not the processes from S14 to S20 have been executed for all of the one or more strongly connected components. If the execution of all of the one or more strongly connected components has not been completed, the path detection device 10 performs the processes from S14 to S20 on the unexecuted strongly connected components. The path detection device 10 advances the process to S22 when the processes from S14 to S20 are completed for all of the one or more strongly connected components.
  • the output unit 38 outputs simple cycles detected for all of the one or more strongly connected components. After ending S22, the route detection device 10 ends this flow.
  • the path detection device 10 removes edges from nodes having a large addition value of the input degree and the output degree for each of one or a plurality of strongly connected components included in the directed graph, and removes the input degree
  • the partial nodes are detected so as not to remove the edge from the node where the addition value of and the output degree is small.
  • the path detection device 10 can detect subgraphs obtained by excluding multiple edges and multiple paths from a directed graph with a high probability.
  • the path detection device 10 detects simple cycles from such subgraphs. Therefore, the path detection device 10 can detect a simple cycle with a large number of edges included in a directed graph in a short calculation time and in a small calculation space.
  • the path detection device 10 according to the second embodiment detects a specific type of simple cycle included in a directed graph with less computation time and less computation space.
  • the path detection device 10 probabilistically detects simple cycles with a small number of edges out of all of the plurality of simple cycles included in the directed graph, excluding simple cycles with a large number of edges.
  • the route detection device 10 has the same block configuration as the first embodiment, and has substantially the same functions.
  • the same or corresponding coefficients, variables, functional blocks, and steps as those in the first embodiment are given the same symbols or symbols, and description thereof will be omitted as appropriate, and the description will focus on the points of difference.
  • FIG. 7 is a flow chart showing the flow of processing of the route detection device 10 according to the second embodiment.
  • the route detection device 10 according to the second embodiment executes processing according to the flow shown in FIG.
  • the processing of the route detection device 10 according to the second embodiment is S31 instead of S14, S32 instead of S16, and S33 instead of S19. different in that
  • the graph acquisition unit 24 acquires a directed graph.
  • the strongly connected component detection unit 26 detects one or more strongly connected components included in the acquired digraph.
  • the route detection device 10 executes the processing from S31 to S20 for each of the one or more strongly connected components (loop processing between S13 and S21).
  • the problem generation unit 28 generates a QUBO problem for the target strongly connected component.
  • multiple decision variables included in the objective function in the QUBO problem correspond one-to-one to multiple nodes included in the target strongly connected component.
  • the solution acquisition unit 30 gives the generated QUBO problem to the QUBO solver 22 for the target strongly connected component, and requests to solve the QUBO problem. Then, the solution acquisition unit 30 acquires the solution of the generated QUBO problem from the QUBO solver 22 for the target strongly connected component.
  • the subgraph generator 32 generates a subgraph selected based on the solution of the QUBO problem for the target strongly connected component.
  • the subgraph generation unit 32 includes two or more nodes corresponding to decision variables whose solution to the QUBO problem is 1 in the target strongly connected component, and corresponds to decision variables whose solution is 0.
  • a subgraph is detected as a part that does not contain any nodes that
  • the question generation unit 28 generates the function shown in Equation (3) as the objective function in the QUBO problem.
  • N is the number of nodes included in the target strongly connected component.
  • i and j are integers from 1 to N and represent node indices.
  • x i is the decision variable corresponding to the i-th node of the N nodes.
  • x j is the decision variable corresponding to the jth node of the N nodes.
  • Q i,j is a coefficient by which a set of a decision variable corresponding to the i-th node and a decision variable corresponding to the j-th node included in the QUBO matrix is multiplied.
  • the QUBO matrix is an N ⁇ N square matrix.
  • the QUBO matrix is set such that the objective function has the minimum value when the number of unconnected nodes in each of the two or more nodes included in the subgraph is the second set value. be.
  • Qi ,j which is a coefficient included in the QUBO matrix, is represented by Equation (4).
  • Q i,j is the coefficient by which the set of decision variables corresponding to the i-th node and the decision variable corresponding to the j-th node are multiplied.
  • Edges represents a set of multiple edges included in the strongly connected components of interest. (i,j) represents an edge leaving the i-th node and entering the j-th node.
  • Q i,j represented by equation (4) has a coefficient of ⁇ 1 corresponding to the same set of nodes.
  • the coefficients corresponding to different node sets are 0 if they are connected by an edge and 1/(1+ ⁇ ) if they are not connected by an edge.
  • is a positive real number and corresponds to the second set value. For example, the initial value of ⁇ is set by the user or the like.
  • the objective function including the QUBO matrix calculated according to equation (4) is such that the values of the N decision variables are such that the number of unconnected nodes in each of the two or more nodes included in the subgraph is ⁇ . If selected, it is the minimum value. That is, the QUBO problem using the objective function including the QUBO matrix calculated according to equation (4) is a global returns the minimum value.
  • the number of unconnected nodes among the target strongly connected components is larger than ⁇ .
  • a solution can be returned such that the number of missing nodes is less than or equal to ⁇ .
  • the QUBO problem using the objective function including the QUBO matrix calculated according to equation (4) is a densely connected 2
  • a solution can be returned that selects the subgraph containing more than one node.
  • the QUBO matrix is not limited to the matrix shown in Equation (4), and may be another matrix.
  • the QUBO matrix may be a matrix obtained by multiplying the matrix shown in Equation (4) by a coefficient.
  • the coefficient corresponding to different sets of nodes connected by edges in the QUBO matrix may be 1/(B+ ⁇ ). Note that B is a positive integer.
  • the repetition control unit 36 detects the number of edges in the subgraph. Subsequently, in S18, the iteration control unit 36 determines whether or not the number of edges included in the generated subgraph for the target strongly connected component is equal to or less than a preset threshold. If the number of edges included in the generated subgraph is greater than the threshold (No in S18), the repetition control unit 36 advances the process to S33.
  • the repetition control unit 36 decreases ⁇ used for calculating the QUBO matrix by a predetermined amount. After completing S33, the repetition control unit 36 returns the process to S31. Then, the question generator 28 repeats the process from S31.
  • the number of edges included in a subgraph increases as the total number of unconnected nodes in the subgraph increases. Therefore, the number of edges included in the subgraph is proportional to ⁇ . Therefore, the repetition control unit 36 can control the number of edges included in the subgraph to a target value by changing ⁇ and repeating generation of the QUBO problem and generation of the subgraph. For example, the iteration control unit 36 can control the number of edges included in the subgraph to a target value by binary search.
  • the repetition control unit 36 advances the process to S20.
  • the simple cycle detection unit 34 detects simple cycles included in the subgraph for each strongly connected component of interest.
  • the path detection device 10 determines whether or not the processes from S31 to S20 have been executed for all of the one or more strongly connected components. If the execution of all of the one or more strongly connected components has not been completed, the path detection device 10 performs the processes from S31 to S20 on the unexecuted strongly connected components. The path detection device 10 advances the process to S22 when the processes from S31 to S20 are completed for all of the one or more strongly connected components.
  • the output unit 38 outputs simple cycles detected for all of the one or more strongly connected components. After ending S22, the route detection device 10 ends this flow.
  • the path detection device 10 for each of one or a plurality of strongly connected components included in the directed graph, excludes nodes having a large number of unconnected nodes. Detect partial nodes so as not to exclude nodes with a small number. As a result, the path detection device 10 can detect subgraphs obtained by excluding simple cycles with a large number of edges from a directed graph with a high probability.
  • the path detection device 10 detects simple cycles from such subgraphs. Therefore, the path detection device 10 can detect a simple cycle with a small number of edges included in a directed graph in a short calculation time and in a small calculation space.
  • FIG. 8 is a hardware block diagram of the route detection device 10. As shown in FIG. As an example, the route detection device 10 is implemented by a hardware configuration similar to that of a general computer (information processing device) as shown in FIG. The route detection device 10 may be realized by one computer or server as shown in FIG. 8, or may be realized by a plurality of computers or servers operating in cooperation. Further, the route detection device 10 may be configured to partially include a dedicated hardware circuit.
  • the route detection device 10 includes a memory 204 , one or more hardware processors 206 , a storage device 208 , an operation device 210 , a display device 212 and a communication device 214 . Each part is connected by a bus.
  • the memory 204 includes, for example, a ROM 222 and a RAM 224.
  • the ROM 222 non-rewritably stores programs and various setting information used for controlling the route detection device 10 .
  • the RAM 224 is a volatile storage medium such as SDRAM (Synchronous Dynamic Random Access Memory). RAM 224 serves as a working area for one or more hardware processors 206 .
  • the one or more hardware processors 206 are connected to memory 204 (ROM 222 and RAM 224) via buses. Each of the one or more hardware processors 206 may be, for example, a CPU (Central Processing Unit) or a hardware circuit for calculation.
  • CPU Central Processing Unit
  • the one or more hardware processors 206 use a predetermined area of the RAM 224 as a work area and execute various processes in cooperation with various programs pre-stored in the ROM 222 or the storage device 208. Overall control of operations.
  • the one or more hardware processors 206 also control the operation device 210 , the display device 212 , the communication device 214 and the like in cooperation with programs prestored in the ROM 222 or the storage device 208 .
  • the storage device 208 is a rewritable recording device such as a semiconductor storage medium such as a flash memory, or a magnetically or optically recordable storage medium.
  • the storage device 208 stores programs used for controlling the route detection device 10, various setting information, and the like.
  • the operating device 210 is an input device such as a mouse and keyboard.
  • the operating device 210 accepts information input by an operation from the user and outputs the accepted information to one or more hardware processors 206 .
  • the display device 212 displays information to the user.
  • Display device 212 receives information and the like from one or more hardware processors 206 and displays the received information. Note that when information is output to the communication device 214, the storage device 208, or the like, the route detection device 10 does not have to include the display device 212.
  • FIG. The communication device 214 communicates with external devices to transmit and receive information via a network or the like.
  • the program executed by the route detection device 10 of this embodiment may be stored on a computer connected to a network such as the Internet, and provided by being downloaded via the network. Further, the program executed by the route detection device 10 of this embodiment may be provided or distributed via a network such as the Internet. Further, the program executed by the route detection device 10 of the present embodiment may be configured so as to be pre-installed in a ROM or the like and provided.
  • a program for causing the information processing device to function as the path detection device 10 includes, for example, a graph acquisition module, a strongly connected component detection module, a problem generation module, a solution acquisition module, a partial graph generation module, a simple cycle detection module, and a repetitive control module. , and an output module. Additionally, the program may include a QUBO solver module. This program is executed by one or more hardware processors 206, each module is loaded into the RAM 224 of the memory 204, and the one or more hardware processors 206 are executed by the graph acquisition unit 24 and the strongly connected component detection unit 26. , the problem generation unit 28, the solution acquisition unit 30, the subgraph generation unit 32, the simple cycle detection unit 34, the iteration control unit 36, and the output unit 38. Additionally, the program may cause one or more hardware processors 206 to function as QUBO solvers 22 . A part or all of these configurations may be configured by hardware.
  • Path detection device 22
  • QUBO solver 24
  • Graph acquisition unit 26
  • Strongly connected component detection unit 28
  • Problem generation unit 30
  • Solution acquisition unit 32
  • Subgraph generation unit 34
  • Simple cycle detection unit 36
  • Iteration control unit 38
  • Output unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Pure & Applied Mathematics (AREA)
  • Software Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Algebra (AREA)
  • Databases & Information Systems (AREA)
  • Computing Systems (AREA)
  • Operations Research (AREA)
  • Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
  • Complex Calculations (AREA)
  • Stored Programmes (AREA)

Abstract

有向グラフに含まれる特定の種類の単純閉路を検出する。経路検出装置は、強連結成分検出部と、問題生成部と、解取得部と、単純閉路検出部とを備える。強連結成分検出部は、有向グラフに含まれる強連結成分を検出する。問題生成部は、強連結成分について、QUBO問題を生成する。解取得部は、強連結成分について、QUBO問題の解を取得する。単純閉路検出部は、強連結成分について、部分グラフに含まれる単純閉路を検出する。QUBO問題における目的関数に含まれる複数の決定変数は、強連結成分に含まれる複数のノードまたは複数のエッジに対応する。部分グラフは、強連結成分における、解に基づき選択される2以上のノードまたは2以上のエッジを含む一部分であえる。目的関数に含まれるQUBO行列は、部分グラフが予め設定された条件を満たす場合に、目的関数が最小となるように設定される。

Description

経路検出装置およびプログラム
 本発明の実施形態は、経路検出装置およびプログラムに関する。
 有向グラフに含まれる閉路を検出する技術が知られている。有向グラフに含まれる閉路を検出する技術は、例えば、企業間取引において監査すべき対象である循環取引の検出に用いることができる。例えば、企業をノード、支払関係をエッジとした有向グラフを生成し、生成した有向グラフに含まれる単純閉路を検出することによって、企業間の循環取引を検出することができる。
 有向グラフに含まれる閉路を検出する従来の技術として、単純閉路検出アルゴリズムが知られている。従来の単純閉路検出アルゴリズムは、有向グラフに含まれる強連結成分を検出し、検出した強連結成分に対して深さ優先探索をすることにより単純閉路を検出する。
 しかし、従来の単純閉路検出アルゴリズムは、有向グラフに含まれるノードの個数をN、エッジの個数をE、単純閉路の個数をCとした場合、O×((N+E)×(C+1))の計算時間およびO×(N+E)の計算空間が必要であった。従って、従来の単純閉路検出アルゴリズムは、大規模な有向グラフから単純閉路を検出することは現実的ではなかった。
鈴鹿順美, "グラフ理論を用いた循環取引の検知", 情報センサー Vol.160 December 2020,P8-11, [2021年4月26日検索],インターネット<URL,https://www.eyjapan.jp/library/issue/info-sensor/2020-12-02.html> Johnson, D. B., "Finding all the elementary circuits of a directed graph", SIAM Journal on Computing, 4(1), P77-84, 1975 Tarjan, R., "Depth-first search and linear graph algorithms", SIAM journal on computing, 1(2), P146-160, 1972
 本発明が解決しようとする課題は、有向グラフに含まれる特定の種類の単純閉路を、少ない計算時間および少ない計算空間により検出することができる経路検出装置およびプログラムを提供することにある。
 実施形態に係る経路検出装置は、有向グラフに含まれる単純閉路を検出する。前記経路検出装置は、強連結成分検出部と、問題生成部と、解取得部と、単純閉路検出部と、出力部と、を備える。前記強連結成分検出部は、前記有向グラフに含まれる1または複数の強連結成分を検出する。前記問題生成部は、前記1または複数の強連結成分のそれぞれについて、QUBO問題を生成する。前記解取得部は、前記1または複数の強連結成分のそれぞれについて、前記QUBO問題の解を取得する。前記単純閉路検出部は、前記1または複数の強連結成分のそれぞれについて、部分グラフに含まれる前記単純閉路を検出する。前記出力部は、検出した前記単純閉路を特定する情報を出力する。前記QUBO問題における目的関数に含まれる複数の決定変数は、前記1または複数の強連結成分のうちの対象の強連結成分に含まれる複数のノードまたは複数のエッジに対応する。前記部分グラフは、前記対象の強連結成分における、前記解に基づき選択される2以上のノードまたは2以上のエッジを含む一部分であえる。前記目的関数に含まれるQUBO行列は、前記部分グラフが予め設定された条件を満たす場合に、前記目的関数が最小となるように設定される。
第1実施形態に係る経路検出装置の機能構成を示す図である。 有向グラフの一例を示す図である。 強連結成分の一例を示す図である。 単純閉路の第1例を示す図である。 単純閉路の第2例を示す図である。 第1実施形態に係る経路検出装置の処理を示すフローチャートである。 第2実施形態に係る経路検出装置の処理を示すフローチャートである。 経路検出装置のハードウェア構成を示す図である。
 以下、図面を参照しながら実施形態に係る経路検出装置10について説明する。
 (第1実施形態)
 図1は、第1実施形態に係る経路検出装置10の機能構成を示す図である。
 経路検出装置10は、有向グラフに含まれる特定の種類の単純閉路を、少ない計算時間および少ない計算空間により検出する。第1実施形態において、経路検出装置10は、有向グラフに含まれる複数の単純閉路の全てうちの、確率的に、エッジ数の少ない単純閉路の個数を除き、エッジ数の多い単純閉路を検出する。経路検出装置10は、プロセッサ、コンピュータまたはサーバ等がプログラムを実行することにより実現される。
 経路検出装置10は、QUBOソルバー22と、グラフ取得部24と、強連結成分検出部26と、問題生成部28と、解取得部30と、部分グラフ生成部32と、単純閉路検出部34と、繰返制御部36と、出力部38とを備える。
 QUBOソルバー22は、QUBO(Quadratic unconstrained binary optimization)問題の解を算出する。QUBOソルバー22は、QUBO問題を受け取り、受け取ったQUBO問題の解を出力する。QUBOソルバー22は、最適解を出力してもよいし、近似解を出力してもよい。QUBOソルバー22は、イジング問題の解を算出するソルバーであってもよい。QUBOソルバー22は、例えば、経路検出装置10を実現するプロセッサまたはコンピュータがQUBO問題の求解プログラムを実行することにより実現される。また、QUBOソルバー22は、サーバ等により提供されてもよい。この場合、QUBOソルバー22は、経路検出装置10の外部に実現されてもよい。QUBOソルバー22が経路検出装置10の外部に実現される場合、経路検出装置10は、ネットワークを介してQUBOソルバー22に対してQUBO問題を与えて、解をQUBOソルバー22からネットワークを介して取得する。
 グラフ取得部24は、単純閉路を検出する対象である有向グラフを取得する。有向グラフについては、図2を参照してさらなる詳細を後述する。
 強連結成分検出部26は、取得した有向グラフに含まれる1または複数の強連結成分を検出する。強連結成分については、図3を参照してさらなる詳細を後述する。
 問題生成部28は、検出した1または複数の強連結成分のそれぞれについて、QUBO問題を生成する。QUBO問題における目的関数に含まれる複数の決定変数は、1または複数の強連結成分のうちの対象の強連結成分に含まれる複数のノードまたは複数のエッジに対応する。第1実施形態において、QUBO問題における複数の決定変数は、対象の強連結成分に含まれる複数のエッジに一対一で対応する。
 QUBO問題における目的関数に含まれるQUBO行列は、部分グラフが予め設定された条件を満たす場合に、目的関数が最小となるように設定される。部分グラフは、対象の強連結成分における、QUBO問題の解に基づき選択される2以上のノードまたは2以上のエッジを含む一部分である。第1実施形態において、QUBO行列は、部分グラフに含まれる2以上のノードのそれぞれにおける入力次数(in-degree)と出力次数(out-degree)との加算値が第1設定値となる場合に、目的関数が最小となるように設定される。
 解取得部30は、1または複数の強連結成分のそれぞれについて、生成されたQUBO問題をQUBOソルバー22に与えて、QUBO問題の求解を要求する。そして、解取得部30は、1または複数の強連結成分のそれぞれについて、生成されたQUBO問題の解を、QUBOソルバー22から取得する。
 部分グラフ生成部32は、1または複数の強連結成分のそれぞれについて、QUBO問題の解に基づき選択される部分グラフを生成する。より具体的には、部分グラフ生成部32は、対象の強連結成分における、QUBO問題の解が1となる決定変数に対応する2以上のノードまたは2以上のエッジを含む一部分を、部分グラフとして検出する。本実施形態においては、部分グラフ生成部32は、対象の強連結成分における、QUBO問題の解が1となる決定変数に対応する2以上のエッジを含む一部分を、部分グラフとして検出する。
 単純閉路検出部34は、1または複数の強連結成分のそれぞれについて、部分グラフに含まれる単純閉路を検出する。単純閉路については、図4および図5を参照してさらなる詳細を後述する。
 繰返制御部36は、1または複数の強連結成分のそれぞれ毎に、問題生成部28によるQUBO問題の生成、解取得部30によるQUBO問題の解の取得、部分グラフ生成部32による部分グラフの生成を、部分グラフに含まれるエッジの個数が予め設定された閾値以下となるまで繰り返させる。
 繰返制御部36は、2回目以降のQUBO問題の生成処理において、直前の処理で用いたQUBO行列を変更した新たなQUBO行列を用いて、新たなQUBO問題を生成させる。そして、繰返制御部36は、部分グラフに含まれるエッジの個数が閾値以下である場合、繰返処理を終了して、単純閉路検出部34に部分グラフに含まれる単純閉路を検出させる。従って、繰返制御部36は、1または複数の強連結成分のそれぞれ毎に、エッジ数が閾値以下とされた部分グラフに含まれる単純閉路を検出することができる。これにより、繰返制御部36は、単純経路を検出するための計算時間および計算空間を少なくすることができる。
 出力部38は、1または複数の強連結成分の全てについて検出した単純閉路を、有向グラフに含まれる単純閉路として出力する。出力部38は、検出した単純閉路を表示手段に表示することによりユーザに提示してもよい。また、出力部38は、検出した単純閉路をネットワークを介して外部の装置に送信してもよい。
 図2は、有向グラフの一例を示す図である。有向グラフは、複数のノード間の接続関係を、向きを有するエッジを用いて表したグラフである。エッジの入力側のノードを元ノードと呼び、エッジの出力側のノードを出力先ノードと呼ぶ。
 例示した有向グラフは、A,B,C,DおよびEの5個のノードを含む。また、例示した有向グラフは、6個のエッジを含む。6個のエッジは、AからBに向かうエッジ(A→B)と、BからCに向かうエッジ(B→C)と、CからAに向かうエッジ(C→A)と、BからDに向かうエッジ(B→D)と、DからAに向かうエッジ(D→A)と、DからEに向かうエッジ(D→E)とを含む。
 図3は、強連結成分の一例を示す図である。強連結成分は、有向グラフの一部分のグラフであって、任意の2つのノードの間に双方向に行き来が可能な経路を含む極大なグラフである。
 図3に示すように、例示した有向グラフに含まれる強連結成分は、A、B、CおよびDを含むグラフである。A、B、CおよびDを含むグラフは、A、B、CおよびDのうちの任意の2つのノードを選択した場合、双方向に行き来が可能な経路が存在する。さらに、A、B、CおよびDを含むグラフは、他のどのノードを加えても強連結成分とはならない。従って、A、B、CおよびDを含むグラフは、例示した有向グラフの一部分であって、任意の2つのノードの間に双方向に行き来が可能な経路を含む極大なグラフである。
 図4は、単純閉路の第1例を示す図である。図5は、単純閉路の第2例を示す図である。閉路は、ある任意のノードから開始し、開始したノードに戻る経路である。単純閉路は、閉路のうちの、重複するノードが存在しない、すなわち、同一のノードが2個以上含まれない経路である。
 図4に示すように、例示した有向グラフに含まれる単純閉路の一つは、A→B→C→Aの経路である。また、図5に示すように、例示した有向グラフに含まれる単純閉路の一つは、A→B→D→Aの経路である。
 図6は、第1実施形態に係る経路検出装置10の処理の流れを示すフローチャートである。経路検出装置10は、図6に示す流れで処理を実行する。
 まず、S11において、グラフ取得部24は、単純閉路を検出する対象である有向グラフを取得する。
 例えば、グラフ取得部24は、表1に示すような、有向グラフに含まれる複数のエッジのそれぞれについて、元ノードと、出力先ノードとが記述された情報を取得する。なお、グラフ取得部24は、このような記述に限らず他の方法で記述された有向グラフを取得してもよい。
Figure JPOXMLDOC01-appb-T000005
 続いて、S12において、強連結成分検出部26は、取得した有向グラフを解析して、取得した有向グラフに含まれる1または複数の強連結成分を検出する。強連結成分検出部26は、一例として、非特許文献3に示されているTarjan’s algorithmを用いて、有向グラフから強連結成分を検出することができる。
 続いて、経路検出装置10は、1または複数の強連結成分のそれぞれについて、S14からS20までの処理を実行する(S13とS21との間のループ処理)。
 S14において、問題生成部28は、S14からS20までの処理を実行する対象の強連結成分について、QUBO問題を生成する。第1実施形態において、QUBO問題における目的関数に含まれる複数の決定変数は、対象の強連結成分に含まれる複数のエッジに一対一で対応する。
 続いて、S15において、解取得部30は、対象の強連結成分について、生成されたQUBO問題をQUBOソルバー22に与えて、QUBO問題の求解を要求する。そして、解取得部30は、対象の強連結成分について、生成されたQUBO問題の解を、QUBOソルバー22から取得する。
 続いて、S16において、部分グラフ生成部32は、対象の強連結成分について、QUBO問題の解に基づき選択される部分グラフを生成する。より具体的には、部分グラフ生成部32は、対象の強連結成分における、QUBO問題の解が1となる決定変数に対応する2以上のノードまたは2以上のエッジを含む一部分を、部分グラフとして検出する。第1実施形態においては、部分グラフ生成部32は、対象の強連結成分における、QUBO問題の解が1となる決定変数に対応する2以上のエッジを含み、解が0となる決定変数に対応するエッジを含まない一部分を、部分グラフとして検出する。
 ここで、第1実施形態において、問題生成部28は、QUBO問題における目的関数として、式(1)に示す関数を生成する。
Figure JPOXMLDOC01-appb-M000006
 Eは、対象の強連結成分に含まれるエッジの個数である。iおよびjは、1以上E以下の整数であり、エッジのインデックスを表す。xは、E個のエッジのうちのi番目のエッジに対応する決定変数である。xは、E個のエッジのうちのj番目のエッジに対応する決定変数である。
 Qi,jは、QUBO行列に含まれるi番目のエッジに対応する決定変数とj番目のエッジに対応する決定変数との組に乗算される係数である。
 第1実施形態において、QUBO行列は、E×Eの正方行列である。第1実施形態において、QUBO行列は、部分グラフに含まれる2以上のノードのそれぞれにおける入力次数と出力次数との加算値が第1設定値となる場合に、目的関数が最小となるように設定される。入力次数は、ノードへと入るエッジの個数である。出力次数は、ノードから出るエッジの個数である。
 第1実施形態において、QUBO行列に含まれる係数であるQi,jは、式(2)により表される。
Figure JPOXMLDOC01-appb-M000007
 Qα i,jは、i番目のエッジに対応する決定変数とj番目のエッジに対応する決定変数との組に乗算される係数の第1項である。Qsource i,jは、i番目のエッジに対応する決定変数とj番目のエッジに対応する決定変数との組に乗算される係数の第2項である。Qdestination i,jは、i番目のエッジに対応する決定変数とj番目のエッジに対応する決定変数との組に乗算される係数の第3項である。
 sourceは、i番目のエッジの元ノードを表す。sourceは、j番目のエッジの元ノードを表す。destinationは、i番目のエッジの出力先ノードを表す。destinationは、j番目のエッジの出力先ノードを表す。
 そして、αは、正の実数である。例えば、αは、初期値がユーザ等により設定される。
 係数の第1項であるQα i,jは、QUBO行列の対角成分の係数に-4αを加算し、対角成分以外の係数に0を加算することを表す。係数の第2項であるQsource i,jは、元エッジが共通する2つのエッジの組に対応する係数に+1を加算し、元エッジが共通しない2つのエッジの組に対応する係数に0を加算することを表す。係数の第3項であるQdestination i,jは、出力先エッジが共通する2つのエッジの組に対応する係数に+1を加算し、出力先エッジが共通しない2つのエッジの組に対応する係数に0を加算することを表す。
 例えば、問題生成部28は、表1に示した有向グラフに含まれる強連結成分について、式(2)を実行した場合、下記の表2に示すQUBO行列を生成することができる。
Figure JPOXMLDOC01-appb-T000008
 式(2)に従って算出されたQUBO行列を含む目的関数は、部分グラフに含まれる2以上のノードのそれぞれにおける入力次数と出力次数との加算値が2×αとなるように、N個の決定変数の値が選択された場合に、最小値となる。すなわち、式(2)に従って算出されたQUBO行列を含む目的関数を用いたQUBO問題は、部分グラフに含まれる2以上のノードのそれぞれにおける入力次数と出力次数との加算値が2×αとなる近傍において、大域的最小値を返す。なお、2×αは、第1設定値に相当する値である。
 従って、式(2)に従って算出されたQUBO行列を含む目的関数を用いたQUBO問題は、対象の強連結成分のうちの、入力次数と出力次数との加算値が2×αより大きいノードからエッジを除き、入力次数と出力次数との加算値が2×α以下のノードのエッジを残すような、解を返すことができる。このため、式(2)に従って算出されたQUBO行列を含む目的関数を用いたQUBO問題は、多重エッジおよび多重経路を高い確率で除いた部分グラフを選択する解を返すことができる。
 なお、QUBO行列は、式(2)に示す行列に限らず他の行列であってもよい。例えば、QUBO行列は、式(2)に示す行列に係数が乗算された行列であってもよい。また、QUBO行列における係数の第1項であるQα i,jは、QUBO行列の対角成分の係数に-4αを加算するのではなく、-1×A×αを加算してもよい。なお、Aは、正の整数である。
 S16に続いて、S17において、繰返制御部36は、生成した部分グラフのエッジ数を検出する。続いて、S18において、繰返制御部36は、対象の強連結成分について、生成した部分グラフに含まれるエッジの個数が予め設定された閾値以下であるか否かを判断する。繰返制御部36は、生成した部分グラフに含まれるエッジの個数が閾値より多い場合(S18のNo)、処理をS19に進める。
 S19において、繰返制御部36は、QUBO行列の算出に用いるαを所定量減少させる。繰返制御部36は、S19を終えると、処理をS14に戻す。そして、問題生成部28は、S14から処理を繰り返す。
 部分グラフに含まれるエッジの個数は、ノードにおける入力次数と出力次数との加算値の、部分グラフの全体の合計に比例する。このため、部分グラフに含まれるエッジの個数は、αの増加に従って、単調増加する。従って、繰返制御部36は、αを変更して、QUBO問題の生成および部分グラフの生成を繰り返すことにより、部分グラフに含まれるエッジの個数を目的値に制御することができる。例えば、繰返制御部36は、二分探索により部分グラフに含まれるエッジの個数を目的値に制御することができる。
 繰返制御部36は、部分グラフに含まれるエッジの個数が閾値以下である場合(S18のYes)、処理をS20に進める。
 S20において、単純閉路検出部34は、対象の強連結成分のそれぞれについて、部分グラフに含まれる単純閉路を検出する。例えば、単純閉路検出部34は、深さ優先探索処理により、部分グラフから単純閉路を検出する。例えば、単純閉路検出部34は、非特許文献2に記載されたJohnson’s algorithmを用いて、部分グラフに含まれる単純閉路を検出することができる。
 S21において、経路検出装置10は、1または複数の強連結成分の全てについて、S14からS20までの処理を実行したか否かを判断する。経路検出装置10は、1または複数の強連結成分の全てについては実行が完了していない場合には、未実行の強連結成分について、S14からS20までの処理を実行する。経路検出装置10は、1または複数の強連結成分の全てについて、S14からS20までの処理を完了した場合には、処理をS22に進める。
 S22において、出力部38は、1または複数の強連結成分の全てについて検出した単純閉路を、出力する。経路検出装置10は、S22を終了すると、本フローを終了する。
 以上のような第1実施形態に係る経路検出装置10は、有向グラフに含まれる1または複数の強連結成分のそれぞれについて、入力次数と出力次数との加算値が多いノードからエッジを除き、入力次数と出力次数との加算値が少ないノードからエッジを除かないように、部分ノードを検出する。これにより、経路検出装置10は、有向グラフから、多重エッジおよび多重経路を高い確率で除いた部分グラフを検出することができる。
 そして、経路検出装置10は、このような部分グラフから単純閉路を検出する。従って、経路検出装置10は、有向グラフに含まれるエッジ数の多い単純閉路を、少ない計算時間および少ない計算空間で検出することができる。
 (第2実施形態)
 つぎに、第2実施形態に係る経路検出装置10を説明する。第2実施形態に係る経路検出装置10は、有向グラフに含まれる特定の種類の単純閉路を、少ない計算時間および少ない計算空間により検出する。本実施形態において、経路検出装置10は、有向グラフに含まれる複数の単純閉路の全てうちの、確率的に、エッジ数の多い単純閉路の個数を除き、エッジ数の少ない単純閉路を検出する。
 なお、第2実施形態に係る経路検出装置10は、第1実施形態と同一のブロック構成を有し、それぞれが略同一の機能を有する。第2実施形態において、第1実施形態と同一または対応する係数、変数、機能ブロックおよびステップについて、同一の記号または符号を付けて適宜説明を省略し、相違点を中心に説明をする。
 図7は、第2実施形態に係る経路検出装置10の処理の流れを示すフローチャートである。第2実施形態に係る経路検出装置10は、図7に示す流れで処理を実行する。
 第2実施形態に係る経路検出装置10の処理は、図6に示す第1実施形態の処理と比較して、S14に代えてS31となり、S16に代えてS32となり、S19に代えてS33となっている点において異なる。
 まず、S11において、グラフ取得部24は、有向グラフを取得する。続いて、S12において、強連結成分検出部26は、取得した有向グラフに含まれる1または複数の強連結成分を検出する。
 続いて、経路検出装置10は、1または複数の強連結成分のそれぞれについて、S31からS20までの処理を実行する(S13とS21との間のループ処理)。
 S31において、問題生成部28は、対象の強連結成分について、QUBO問題を生成する。第2実施形態において、QUBO問題における目的関数に含まれる複数の決定変数は、対象の強連結成分に含まれる複数のノードに一対一で対応する。
 続いて、S15において、解取得部30は、対象の強連結成分について、生成されたQUBO問題をQUBOソルバー22に与えて、QUBO問題の求解を要求する。そして、解取得部30は、対象の強連結成分について、生成されたQUBO問題の解を、QUBOソルバー22から取得する。
 続いて、S32において、部分グラフ生成部32は、対象の強連結成分について、QUBO問題の解に基づき選択される部分グラフを生成する。第2実施形態においては、部分グラフ生成部32は、対象の強連結成分における、QUBO問題の解が1となる決定変数に対応する2以上のノードを含み、解が0となる決定変数に対応するノードを含まない一部分を、部分グラフとして検出する。
 ここで、第2実施形態において、問題生成部28は、QUBO問題における目的関数として、式(3)に示す関数を生成する。
Figure JPOXMLDOC01-appb-M000009
 Nは、対象の強連結成分に含まれるノードの個数である。iおよびjは、1以上N以下の整数であり、ノードのインデックスを表す。
 xは、N個のノードのうちのi番目のノードに対応する決定変数である。xは、N個のノードのうちのj番目のノードに対応する決定変数である。
 Qi,jは、QUBO行列に含まれるi番目のノードに対応する決定変数とj番目のノードに対応する決定変数との組に乗算される係数である。
 第2実施形態において、QUBO行列は、N×Nの正方行列である。第2実施形態において、QUBO行列は、部分グラフに含まれる2以上のノードのそれぞれにおける接続されていないノードの個数が第2設定値となる場合に、目的関数が最小値となるように設定される。
 第2実施形態において、QUBO行列に含まれる係数であるQi,jは、式(4)により表される。
Figure JPOXMLDOC01-appb-M000010
 Qi,jは、i番目のノードに対応する決定変数とj番目のノードに対応する決定変数との組に乗算される係数である。Edgesは、対象の強連結成分に含まれる複数のエッジの集合を表す。(i,j)は、i番目のノードから出てj番目のノードに入るエッジを表す。
 従って、式(4)により表されるQi,jは、同一のノードの組に対応する係数は、-1となる。異なるノードの組に対応する係数は、エッジにより接続される場合には、0とされ、エッジにより接続されていない場合には、1/(1+β)とされる。βは、正の実数であり、第2設定値に対応する。例えば、βは、初期値がユーザ等により設定される。
 式(4)に従って算出されたQUBO行列を含む目的関数は、部分グラフに含まれる2以上のノードのそれぞれにおける接続していないノードの個数がβとなるように、N個の決定変数の値が選択された場合に、最小値となる。すなわち、式(4)に従って算出されたQUBO行列を含む目的関数を用いたQUBO問題は、部分グラフに含まれる2以上のノードのそれぞれにおける接続していないノードの個数がβとなる近傍において、大域的最小値を返す。
 従って、式(4)に従って算出されたQUBO行列を含む目的関数を用いたQUBO問題は、対象の強連結成分のうちの、接続していないノードの個数がβより多いノードを除き、接続していないノードの個数がβ以下のノードを残すような、解を返すことができる。このため、式(4)に従って算出されたQUBO行列を含む目的関数を用いたQUBO問題は、エッジ数の多い単純閉路を除き、エッジ数の少ない単純閉路を残した相互に密に接続された2以上のノードを含む部分グラフを選択する解を返すことができる。
 なお、QUBO行列は、式(4)に示す行列に限らず他の行列であってもよい。例えば、QUBO行列は、式(4)に示す行列に係数が乗算された行列であってもよい。また、QUBO行列における、エッジにより接続される異なるノードの組に対応する係数は、1/(B+β)であってもよい。なお、Bは、正の整数である。
 S32に続いて、S17において、繰返制御部36は、部分グラフのエッジ数を検出する。続いて、S18において、繰返制御部36は、対象の強連結成分について、生成した部分グラフに含まれるエッジの個数が予め設定された閾値以下であるか否かを判断する。繰返制御部36は、生成した部分グラフに含まれるエッジの個数が閾値より多い場合(S18のNo)、処理をS33に進める。
 S33において、繰返制御部36は、QUBO行列の算出に用いるβを所定量減少させる。繰返制御部36は、S33を終えると、処理をS31に戻す。そして、問題生成部28は、S31から処理を繰り返す。
 部分グラフに含まれるエッジの個数は、ノードにおける接続されていないノードの個数の、部分グラフの全体の合計が多い程、多くなる。このため、部分グラフに含まれるエッジの個数は、βに比例する。従って、繰返制御部36は、βを変更して、QUBO問題の生成および部分グラフの生成を繰り返すことにより、部分グラフに含まれるエッジの個数を目的値に制御することができる。例えば、繰返制御部36は、二分探索により部分グラフに含まれるエッジの個数を目的値に制御することができる。
 繰返制御部36は、部分グラフに含まれるエッジの個数が閾値以下である場合(S18のYes)、処理をS20に進める。
 S20において、単純閉路検出部34は、対象の強連結成分のそれぞれについて、部分グラフに含まれる単純閉路を検出する。
 S21において、経路検出装置10は、1または複数の強連結成分の全てについて、S31からS20までの処理を実行したか否かを判断する。経路検出装置10は、1または複数の強連結成分の全てについては実行が完了していない場合には、未実行の強連結成分について、S31からS20までの処理を実行する。経路検出装置10は、1または複数の強連結成分の全てについて、S31からS20までの処理を完了した場合には、処理をS22に進める。
 S22において、出力部38は、1または複数の強連結成分の全てについて検出した単純閉路を、出力する。経路検出装置10は、S22を終了すると、本フローを終了する。
 以上のような第2実施形態に係る経路検出装置10は、有向グラフに含まれる1または複数の強連結成分のそれぞれについて、接続していないノードの個数が多いノードを除き、接続していないノードの個数が少ないノードを除かないように、部分ノードを検出する。これにより、経路検出装置10は、有向グラフから、エッジ数の多い単純閉路を高い確率で除いた部分グラフを検出することができる。
 そして、経路検出装置10は、このような部分グラフから単純閉路を検出する。従って、経路検出装置10は、有向グラフに含まれるエッジ数の少ない単純閉路を、少ない計算時間および少ない計算空間で検出することができる。
 (ハードウェア構成)
 図8は、経路検出装置10のハードウェアブロック図である。経路検出装置10は、一例として、図8に示すような一般のコンピュータ(情報処理装置)と同様のハードウェア構成により実現される。経路検出装置10は、図8に示すような1つのコンピュータまたはサーバにより実現されてもよいし、協働して動作する複数のコンピュータまたはサーバにより実現されてもよい。また、経路検出装置10は、一部に専用のハードウェア回路を備える構成であってもよい。
 経路検出装置10は、メモリ204と、1または複数のハードウェアプロセッサ206と、記憶装置208と、操作装置210と、表示装置212と、通信装置214とを備える。各部は、バスにより接続される。
 メモリ204は、例えば、ROM222と、RAM224とを含む。ROM222は、経路検出装置10の制御に用いられるプログラムおよび各種設定情報等を書き換え不可能に記憶する。RAM224は、SDRAM(Synchronous Dynamic Random Access Memory)等の揮発性の記憶媒体である。RAM224は、1または複数のハードウェアプロセッサ206の作業領域として機能する。
 1または複数のハードウェアプロセッサ206は、メモリ204(ROM222およびRAM224)にバスを介して接続される。1または複数のハードウェアプロセッサ206のそれぞれは、例えば、CPU(Central Processing Unit)であってもよいし、演算用のハードウェア回路であってもよい。
 1または複数のハードウェアプロセッサ206は、RAM224の所定領域を作業領域としてROM222または記憶装置208に予め記憶された各種プログラムとの協働により各種処理を実行し、経路検出装置10を構成する各部の動作を統括的に制御する。また、1または複数のハードウェアプロセッサ206は、ROM222または記憶装置208に予め記憶されたプログラムとの協働により、操作装置210、表示装置212および通信装置214等を制御する。
 記憶装置208は、フラッシュメモリ等の半導体による記憶媒体、磁気的または光学的に記録可能な記憶媒体等の書き換え可能な記録装置である。記憶装置208は、経路検出装置10の制御に用いられるプログラムおよび各種設定情報等を記憶する。
 操作装置210は、マウスおよびキーボード等の入力デバイスである。操作装置210は、ユーザから操作入力された情報を受け付け、受け付けた情報を1または複数のハードウェアプロセッサ206に出力する。
 表示装置212は、情報をユーザに表示する。表示装置212は、1または複数のハードウェアプロセッサ206から情報等を受け取り、受け取った情報を表示する。なお、通信装置214または記憶装置208等に情報を出力する場合、経路検出装置10は、表示装置212を備えなくてもよい。通信装置214は、外部の機器と通信して、ネットワーク等を介して情報を送受信する。
 本実施形態の経路検出装置10で実行されるプログラムは、インストール可能な形式または実行可能な形式のファイルでCD-ROM、フレキシブルディスク(FD)、CD-R、DVD(Digital Versatile Disk)等のコンピュータで読み取り可能な記録媒体に記録されて提供される。
 また、本実施形態の経路検出装置10で実行されるプログラムを、インターネット等のネットワークに接続されたコンピュータ上に格納し、ネットワーク経由でダウンロードさせることにより提供するように構成してもよい。また、本実施形態の経路検出装置10で実行されるプログラムをインターネット等のネットワーク経由で提供または配布するように構成してもよい。また、本実施形態の経路検出装置10で実行されるプログラムを、ROM等に予め組み込んで提供するように構成してもよい。
 情報処理装置を経路検出装置10として機能させるためのプログラムは、例えば、グラフ取得モジュール、強連結成分検出モジュール、問題生成モジュール、解取得モジュール、部分グラフ生成モジュール、単純閉路検出モジュール、繰返制御モジュール、および、出力モジュールを含むモジュール構成となっている。さらに、プログラムは、QUBOソルバーモジュールを含んでもよい。このプログラムは、1または複数のハードウェアプロセッサ206により実行されることにより各モジュールがメモリ204のRAM224にロードされ、1または複数のハードウェアプロセッサ206を、グラフ取得部24、強連結成分検出部26、問題生成部28、解取得部30、部分グラフ生成部32、単純閉路検出部34、繰返制御部36および出力部38として機能させる。さらに、このプログラムは、1または複数のハードウェアプロセッサ206を、QUBOソルバー22として機能させてもよい。なお、これらの構成は、一部または全部がハードウェアにより構成されていてもよい。
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、請求の範囲に記載された発明とその均等の範囲に含まれる。
10 経路検出装置
22 QUBOソルバー
24 グラフ取得部
26 強連結成分検出部
28 問題生成部
30 解取得部
32 部分グラフ生成部
34 単純閉路検出部
36 繰返制御部
38 出力部

Claims (10)

  1.  有向グラフに含まれる単純閉路を検出する経路検出装置であって、
     前記有向グラフに含まれる1または複数の強連結成分を検出する強連結成分検出部と、
     前記1または複数の強連結成分のそれぞれについて、QUBO問題を生成する問題生成部と、
     前記1または複数の強連結成分のそれぞれについて、前記QUBO問題の解を取得する解取得部と、
     前記1または複数の強連結成分のそれぞれについて、部分グラフに含まれる前記単純閉路を検出する単純閉路検出部と、
     検出した前記単純閉路を特定する情報を出力する出力部と、
     を備え、
     前記QUBO問題における目的関数に含まれる複数の決定変数は、前記1または複数の強連結成分のうちの対象の強連結成分に含まれる複数のノードまたは複数のエッジに対応し、
     前記部分グラフは、前記対象の強連結成分における、前記解に基づき選択される2以上のノードまたは2以上のエッジを含む一部分であり、
     前記目的関数に含まれるQUBO行列は、前記部分グラフが予め設定された条件を満たす場合に、前記目的関数が最小となるように設定される
     経路検出装置。
  2.  前記複数の決定変数は、前記対象の強連結成分に含まれる前記複数のエッジに対応し、
     前記QUBO行列は、前記部分グラフに含まれる2以上のノードのそれぞれにおける入力次数と出力次数との加算値が第1設定値となる場合に、前記目的関数が最小となるように、設定される
     請求項1に記載の経路検出装置。
  3.  前記問題生成部は、下記式(1)に示す前記目的関数を生成し、
    Figure JPOXMLDOC01-appb-M000001
     iおよびjは、1以上E以下の整数であり、
     Eは、前記対象の強連結成分に含まれる前記複数のエッジの個数であり、
     xは、i番目のエッジに対応する決定変数であり、
     xは、j番目のエッジに対応する決定変数であり、
     Qi,jは、前記QUBO行列に含まれるi番目のエッジに対応する決定変数とj番目のエッジに対応する決定変数との組に乗算される係数である
     請求項2に記載の経路検出装置。
  4.  Qi,jは、下記式(2)により表され、
    Figure JPOXMLDOC01-appb-M000002
     Qα i,jは、i番目のエッジに対応する決定変数とj番目のエッジに対応する決定変数との組に乗算される係数の第1項であり、
     Qsource i,jは、i番目のエッジに対応する決定変数とj番目のエッジに対応する決定変数との組に乗算される係数の第2項であり、
     Qdestination i,jは、i番目のエッジに対応する決定変数とj番目のエッジに対応する決定変数との組に乗算される係数の第3項であり、
     αは、正の実数であり、
     sourceは、i番目のエッジの元ノードを表し、
     sourceは、j番目のエッジの出力先ノードを表し、
     destinationは、i番目のエッジの元ノードを表し、
     destinationは、j番目のエッジの出力先ノードを表す
     請求項3に記載の経路検出装置。
  5.  前記1または複数の強連結成分のそれぞれ毎に、前記QUBO問題の生成および前記QUBO問題の解の取得を繰り返させる繰返制御部をさらに備え、
     前記繰返制御部は、
     2回目以降の前記QUBO問題の生成処理において、直前の処理で用いたαから所定量減少させた新たなαを用いて、新たな前記QUBO問題を生成させ、
     前記部分グラフに含まれるエッジの個数が閾値以下である場合、繰返処理を終了して、前記部分グラフに含まれる前記単純閉路を検出させる
     請求項4に記載の経路検出装置。
  6.  前記複数の決定変数は、前記対象の強連結成分に含まれる前記複数のノードに対応し、
     前記QUBO行列は、前記部分グラフに含まれる2以上のノードのそれぞれにおける接続されていないノードの個数が第2設定値となる場合に、前記目的関数が最小値となるように、設定される
     請求項1に記載の経路検出装置。
  7.  前記目的関数は、下記式(3)により表され、
    Figure JPOXMLDOC01-appb-M000003
     iおよびjは、1以上N以下の整数であり、
     Nは、前記対象の強連結成分に含まれる前記複数のノードの個数であり、
     xは、i番目のノードに対応する決定変数であり、
     xは、j番目のノードに対応する決定変数であり、
     Qi,jは、前記QUBO行列に含まれるi番目のノードに対応する決定変数とj番目のノードに対応する決定変数との組に乗算される係数である
     請求項6に記載の経路検出装置。
  8.  Qi,jは、下記式(4)により表され、
    Figure JPOXMLDOC01-appb-M000004
     βは、正の実数であり、
     Edgesは、前記対象の強連結成分に含まれるエッジの集合であり、
     (i,j)は、i番目のノードからj番目のノードへと向かうエッジである
     請求項7に記載の経路検出装置。
  9.  前記1または複数の強連結成分のそれぞれ毎に、前記QUBO問題の生成および前記QUBO問題の解の取得を繰り返させる繰返制御部をさらに備え、
     前記繰返制御部は、
     2回目以降の前記QUBO問題の生成処理において、直前の処理で用いたβから所定量減少させた新たなβを用いて、新たな前記QUBO問題を生成させ、
     前記部分グラフに含まれるエッジの個数が閾値以下である場合、繰返処理を終了して、前記部分グラフに含まれる前記単純閉路を検出させる
     請求項8に記載の経路検出装置。
  10.  情報処理装置を、有向グラフに含まれる単純閉路を検出す経路検出装置として機能させるためのプログラムであって、
     前記情報処理装置を、
     前記有向グラフに含まれる1または複数の強連結成分を検出する強連結成分検出部と、
     前記1または複数の強連結成分のそれぞれについて、QUBO問題を生成する問題生成部と、
     前記1または複数の強連結成分のそれぞれについて、前記QUBO問題の解を取得する解取得部と、
     前記1または複数の強連結成分のそれぞれについて、部分グラフに含まれる前記単純閉路を検出する単純閉路検出部と、
     検出した前記単純閉路を特定する情報を出力する出力部と、
     して機能させ、
     前記QUBO問題における目的関数に含まれる複数の決定変数は、前記1または複数の強連結成分のうちの対象の強連結成分に含まれる複数のノードまたは複数のエッジに対応し、
     前記部分グラフは、前記対象の強連結成分における、前記解に基づき選択される2以上のノードまたは2以上のエッジを含む一部分であり、
     前記目的関数に含まれるQUBO行列は、前記部分グラフが予め設定された条件を満たす場合に、前記目的関数が最小となるように設定される
     プログラム。
PCT/JP2022/017779 2021-04-30 2022-04-14 経路検出装置およびプログラム WO2022230675A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CA3216729A CA3216729A1 (en) 2021-04-30 2022-04-14 Path detection device and program
US18/494,019 US20240054176A1 (en) 2021-04-30 2023-10-25 Path detection device and computer program product

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021077691A JP2022171190A (ja) 2021-04-30 2021-04-30 経路検出装置およびプログラム
JP2021-077691 2021-04-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/494,019 Continuation US20240054176A1 (en) 2021-04-30 2023-10-25 Path detection device and computer program product

Publications (1)

Publication Number Publication Date
WO2022230675A1 true WO2022230675A1 (ja) 2022-11-03

Family

ID=83847505

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/017779 WO2022230675A1 (ja) 2021-04-30 2022-04-14 経路検出装置およびプログラム

Country Status (4)

Country Link
US (1) US20240054176A1 (ja)
JP (1) JP2022171190A (ja)
CA (1) CA3216729A1 (ja)
WO (1) WO2022230675A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11895401B2 (en) 2020-11-18 2024-02-06 Samsung Electronics Co., Ltd Camera module for high resolution auto focusing and electronic device including same
WO2024184963A1 (ja) * 2023-03-03 2024-09-12 日本電信電話株式会社 Qubo行列変換装置、qubo行列変換方法、プログラム

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004220227A (ja) * 2003-01-14 2004-08-05 Nec Corp 遺伝子ネットワーク経路探索装置及び方法並びにプログラム
US20140143110A1 (en) * 2012-11-20 2014-05-22 Sap Ag Circular Transaction Path Detection
JP2021002331A (ja) * 2019-06-20 2021-01-07 富士通株式会社 アニーラシステムにおけるnp問題の解決の自動化
JP2021060864A (ja) * 2019-10-08 2021-04-15 株式会社東芝 探索装置、探索方法、プログラム、探索システムおよび裁定取引システム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004220227A (ja) * 2003-01-14 2004-08-05 Nec Corp 遺伝子ネットワーク経路探索装置及び方法並びにプログラム
US20140143110A1 (en) * 2012-11-20 2014-05-22 Sap Ag Circular Transaction Path Detection
JP2021002331A (ja) * 2019-06-20 2021-01-07 富士通株式会社 アニーラシステムにおけるnp問題の解決の自動化
JP2021060864A (ja) * 2019-10-08 2021-04-15 株式会社東芝 探索装置、探索方法、プログラム、探索システムおよび裁定取引システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SUZUKA AYUMI: "Detection of circular transactions using graph theory", 1 December 2020 (2020-12-01), pages 1 - 9, XP055980937, Retrieved from the Internet <URL:https://www.ey.com/ja_jp/library/info-sensor/2020/info-sensor-2020-12-02> [retrieved on 20221114] *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11895401B2 (en) 2020-11-18 2024-02-06 Samsung Electronics Co., Ltd Camera module for high resolution auto focusing and electronic device including same
WO2024184963A1 (ja) * 2023-03-03 2024-09-12 日本電信電話株式会社 Qubo行列変換装置、qubo行列変換方法、プログラム

Also Published As

Publication number Publication date
CA3216729A1 (en) 2022-11-03
US20240054176A1 (en) 2024-02-15
JP2022171190A (ja) 2022-11-11

Similar Documents

Publication Publication Date Title
WO2022230675A1 (ja) 経路検出装置およびプログラム
JP6751235B2 (ja) 機械学習プログラム、機械学習方法、および機械学習装置
Sariyüce et al. Graph manipulations for fast centrality computation
Jabbari et al. Discovery of causal models that contain latent variables through Bayesian scoring of independence constraints
Alevras et al. GPU computing for accelerating the numerical Path Integration approach
Lin et al. Hypersurfaces and their singularities in partial correlation testing
CN110019973A (zh) 用于估计观测变量之间的因果关系的方法、装置和系统
Maiti et al. Scheduling precedence-constrained jobs on related machines with communication delay
Acebron A Monte Carlo method for computing the action of a matrix exponential on a vector
Nguyen et al. Quantum circuit transformations with a multi-level intermediate representation compiler
Bychkov et al. The applied problems solving technology based on distributed computational subject domain model: a decentralized approach
Aminu et al. Non-linear programs with max-linear constraints: A heuristic approach
Hajdu Extensions to the CEGAR approach on Petri nets
JP2012043437A (ja) 画像処理方法及び画像処理装置
Omer et al. Automatic management of cyclic dependency among web services
US20050021316A1 (en) Modeling directed scale-free object relationships
Atanassov et al. Optimization of the direction numbers of the Sobol sequences
Gleyzer et al. Leveraging linear algebra to count and enumerate simple subgraphs
Werner et al. Experiment-Driven Quantum Error Reduction
Sabharwal et al. Deriving complexity metric based on use case diagram and its validation
Avramidis et al. Efficiency improvements for pricing American options with a stochastic mesh: Parallel implementation
Dallard et al. Instance guaranteed ratio on greedy heuristic for genome scaffolding
Hruz et al. Parallelism in simulation and modeling of scale-free complex networks
Robertson et al. Mitigating Coupling Map Constrained Correlated Measurement Errors on Quantum Devices
Green et al. A fast algorithm for incremental betweenness centrality

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22795589

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 3216729

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22795589

Country of ref document: EP

Kind code of ref document: A1