WO2022230669A1 - Substrate processing method and substrate processing device - Google Patents
Substrate processing method and substrate processing device Download PDFInfo
- Publication number
- WO2022230669A1 WO2022230669A1 PCT/JP2022/017689 JP2022017689W WO2022230669A1 WO 2022230669 A1 WO2022230669 A1 WO 2022230669A1 JP 2022017689 W JP2022017689 W JP 2022017689W WO 2022230669 A1 WO2022230669 A1 WO 2022230669A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- substrate
- gas
- pressure
- housing
- substrate processing
- Prior art date
Links
- 239000000758 substrate Substances 0.000 title claims abstract description 756
- 238000012545 processing Methods 0.000 title claims abstract description 261
- 238000003672 processing method Methods 0.000 title claims abstract description 124
- 239000007788 liquid Substances 0.000 claims abstract description 387
- 239000007787 solid Substances 0.000 claims abstract description 289
- 238000002844 melting Methods 0.000 claims abstract description 51
- 230000008018 melting Effects 0.000 claims abstract description 51
- 239000007789 gas Substances 0.000 claims description 341
- 238000000034 method Methods 0.000 claims description 175
- 230000008569 process Effects 0.000 claims description 167
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 143
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 84
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 claims description 67
- 238000009833 condensation Methods 0.000 claims description 60
- 230000005494 condensation Effects 0.000 claims description 60
- 230000008023 solidification Effects 0.000 claims description 60
- 238000007711 solidification Methods 0.000 claims description 60
- 239000002245 particle Substances 0.000 claims description 53
- 230000008022 sublimation Effects 0.000 claims description 40
- 238000000859 sublimation Methods 0.000 claims description 40
- 238000001816 cooling Methods 0.000 claims description 28
- ROSDSFDQCJNGOL-UHFFFAOYSA-N Dimethylamine Chemical compound CNC ROSDSFDQCJNGOL-UHFFFAOYSA-N 0.000 claims description 26
- BAVYZALUXZFZLV-UHFFFAOYSA-N Methylamine Chemical compound NC BAVYZALUXZFZLV-UHFFFAOYSA-N 0.000 claims description 26
- GETQZCLCWQTVFV-UHFFFAOYSA-N trimethylamine Chemical compound CN(C)C GETQZCLCWQTVFV-UHFFFAOYSA-N 0.000 claims description 26
- 239000000155 melt Substances 0.000 claims description 15
- 230000008021 deposition Effects 0.000 abstract description 3
- 238000005092 sublimation method Methods 0.000 description 57
- 240000008168 Ficus benjamina Species 0.000 description 31
- 238000010309 melting process Methods 0.000 description 27
- 230000007723 transport mechanism Effects 0.000 description 23
- 238000010586 diagram Methods 0.000 description 18
- 239000002826 coolant Substances 0.000 description 16
- 238000012546 transfer Methods 0.000 description 15
- 230000015572 biosynthetic process Effects 0.000 description 12
- 238000010894 electron beam technology Methods 0.000 description 12
- 239000012071 phase Substances 0.000 description 12
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 10
- 235000011114 ammonium hydroxide Nutrition 0.000 description 10
- 238000010438 heat treatment Methods 0.000 description 10
- 239000007791 liquid phase Substances 0.000 description 9
- 239000007790 solid phase Substances 0.000 description 8
- 239000000203 mixture Substances 0.000 description 7
- 229910021529 ammonia Inorganic materials 0.000 description 6
- 238000007796 conventional method Methods 0.000 description 6
- 238000001514 detection method Methods 0.000 description 6
- 238000001704 evaporation Methods 0.000 description 6
- 230000032258 transport Effects 0.000 description 6
- 230000008020 evaporation Effects 0.000 description 5
- 230000008859 change Effects 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 239000008400 supply water Substances 0.000 description 3
- 235000012431 wafers Nutrition 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 230000003750 conditioning effect Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 239000008367 deionised water Substances 0.000 description 2
- 229910021641 deionized water Inorganic materials 0.000 description 2
- 238000005401 electroluminescence Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000004973 liquid crystal related substance Substances 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 239000000908 ammonium hydroxide Substances 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 230000015271 coagulation Effects 0.000 description 1
- 238000005345 coagulation Methods 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- QOSATHPSBFQAML-UHFFFAOYSA-N hydrogen peroxide;hydrate Chemical compound O.OO QOSATHPSBFQAML-UHFFFAOYSA-N 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 229920005591 polysilicon Polymers 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical group [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/302—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
- H01L21/304—Mechanical treatment, e.g. grinding, polishing, cutting
Definitions
- the present invention relates to a substrate processing method and a substrate processing apparatus for processing substrates.
- Substrates include, for example, semiconductor wafers, liquid crystal display substrates, organic EL (Electroluminescence) substrates, FPD (Flat Panel Display) substrates, optical display substrates, magnetic disk substrates, optical disk substrates, magneto-optical disk substrates, They are substrates for photomasks and substrates for solar cells.
- Patent Document 1 discloses a substrate processing method and a substrate processing apparatus.
- a substrate processing apparatus includes a spin base, an electric motor, and a nozzle.
- the spin base holds the substrate in a substantially horizontal posture.
- An electric motor rotates the spin base.
- the nozzle ejects the processing liquid onto the substrate held by the spin base.
- the processing liquid is SC1, for example.
- SC1 is a mixture of aqueous ammonia, hydrogen peroxide, and deionized water.
- the substrate processing method includes an SC1 supply step.
- the electric motor rotates the substrate held by the spin base, and the nozzle ejects SC1 onto the substrate. SC1 is thereby supplied to the substrate.
- the conventional substrate processing method is, for example, the substrate processing method disclosed in Japanese Unexamined Patent Application Publication No. 2002-200012.
- a conventional substrate processing apparatus is, for example, the substrate processing apparatus disclosed in Patent Document 1.
- conventional substrate processing methods are arbitrarily abbreviated as "conventional methods.”
- Conventional substrate processing equipment is appropriately abbreviated as “conventional equipment”.
- the conventional substrate processing method and substrate processing apparatus rotate the substrate and discharge the processing liquid from the nozzle onto the substrate. At this time, part of the treatment liquid discharged onto the substrate overflows the substrate. Therefore, it has been necessary to supply a large amount of processing liquid to the substrate in order to process the substrate. As a result, the conventional method and apparatus used a relatively large amount of processing liquid.
- the present invention has been made in view of such circumstances, and an object of the present invention is to provide a substrate processing method and a substrate processing apparatus capable of appropriately processing substrates.
- the present invention is a substrate processing method for processing a substrate, comprising: a placing step of placing the substrate in a substantially horizontal posture in a housing; and a first supplying step of supplying a first processing gas to the housing. a condensation step of condensing the first process gas to form a first solid film covering the top surface of the substrate; and melting the first solid film to form a liquid film covering the top surface of the substrate. and a melting step.
- the substrate processing method includes a placement step and a first supply step.
- the mounting step the substrate is mounted in a substantially horizontal posture within the housing.
- the first supply step supplies the first processing gas to the housing. Therefore, in the placing step and the first supplying step, the upper surface of the substrate does not come into contact with the interface formed between the gas and the liquid.
- the interface formed between the gas and the liquid is appropriately referred to as the "gas-liquid interface”.
- the substrate processing method includes a sublimation process.
- the first process gas condenses within the housing.
- the first process gas is transformed into a first solid film without going through a liquid.
- a first solid film covers the top surface of the substrate. Therefore, in the condensation process, the top surface of the substrate does not contact the gas-liquid interface.
- the substrate processing method includes a melting step.
- the first solid film is melted.
- the first solid film transforms into a liquid film.
- a liquid film covers the top surface of the substrate.
- the first solid film covers the top surface of the substrate. Therefore, the upper surface of the substrate does not contact the gas-liquid interface during the melting process.
- the substrate processing method can form a liquid film on the upper surface of the substrate while protecting the upper surface of the substrate. Therefore, the substrate processing method can properly process the substrate.
- the substrate processing method condenses the first processing gas to form a first solid film covering the upper surface of the substrate, and then melts the first solid film to form a liquid film covering the upper surface of the substrate. Therefore, it is possible to suitably prevent the processing liquid from overflowing from the substrate. That is, it is possible to suitably suppress the loss of the treatment liquid. Therefore, the substrate processing method can efficiently form a liquid film with a smaller amount of processing liquid. That is, the substrate processing method can process the substrate with a small amount of processing liquid. As a result, the substrate processing method uses relatively little processing liquid. For example, the amount of processing liquid used in the substrate processing method is less than the amount of processing liquid used in the conventional method.
- the condensation step includes cooling the first processing gas while maintaining the pressure of the gas in the housing at a pressure at which the first processing gas can condense, and the melting step.
- the first solid film is heated while the pressure of the gas in the housing is maintained at a pressure at which the first solid film can be melted.
- the condensation step maintains the pressure of the gas within the housing at a pressure at which the first process gas can be condensed. For this reason, the condensation process can suitably suppress the first process gas from condensing.
- the condensation process cools the first process gas. Therefore, in the sublimation process, the first process gas is suitably sublimated.
- the melting step maintains the pressure of the gas within the housing at a pressure at which the first solid film can be melted. Therefore, the melting step can suitably suppress the sublimation of the first solid film.
- the melting step heats the first solid film. Therefore, in the melting step, the first solid film is preferably melted.
- the condensation step cools the substrate to a temperature at which the first process gas condenses onto the top surface of the substrate, and the melting step cools the substrate to a temperature at which the first solid film melts.
- the substrate is heated up to .
- the condensation step cools the first process gas through the substrate.
- the top surface of the substrate is in contact with the first process gas. Therefore, the condensation process can efficiently form the first solid film on the upper surface of the substrate.
- the condensation step cools the substrate to a temperature at which the first process gas condenses onto the top surface of the substrate. Therefore, the condensation process can favorably condense the first process gas into the first solid film.
- the first process gas preferably condenses into the first solid film.
- the melting step heats the first solid film through the substrate.
- the top surface of the substrate is in contact with the first solid film. Therefore, the melting process can efficiently form a liquid film.
- the melting step heats the substrate to a temperature at which the first solid film melts. Therefore, the melting step can suitably melt the first solid film into the liquid film.
- the first processing gas preferably contains at least one of water vapor, ammonia gas, methylamine gas, dimethylamine gas, trimethylamine gas, and hydrogen peroxide gas.
- the liquid film originates from the first process gas. Therefore, the liquid film contains at least one of water, ammonia, methylamine, dimethylamine, trimethylamine, and hydrogen peroxide. Therefore, the liquid film can properly treat the substrate.
- the first processing gas is water vapor
- the pressure of the gas in the housing is lower than the pressure at the triple point of water
- the melting step is preferably greater than the pressure at the triple point of water.
- the pressure of the gas within the enclosure is less than the triple point pressure of water. Therefore, in the condensation process, condensation of water vapor can be suitably suppressed.
- the pressure of the gas within the enclosure is greater than the pressure at the triple point of water. Therefore, in the melting step, sublimation of the first solid film can be suppressed favorably.
- the substrate processing method described above preferably includes a solidification step of solidifying the liquid film to form a second solid film on the upper surface of the substrate, and a sublimation step of sublimating the second solid film.
- the substrate processing method includes a solidification step.
- the liquid film solidifies.
- the liquid film transforms into a second solid film.
- a second solid film is formed on the top surface of the substrate.
- the liquid film formed in the melting process covers the top surface of the substrate. Therefore, in the solidification process, the upper surface of the substrate does not contact the gas-liquid interface.
- the substrate processing method includes a sublimation process.
- the second solid film is sublimated.
- the second solid film leaves the substrate without passing through the liquid. Therefore, in the sublimation process, the upper surface of the substrate does not come into contact with the gas-liquid interface.
- the substrate W is dried by sublimation of the second solid film.
- the upper surface of the substrate does not come into contact with the gas-liquid interface during the solidification process and the sublimation process. Therefore, according to the substrate processing method, the substrate can be dried while suitably protecting the upper surface of the substrate. Therefore, the substrate processing method can process the substrate more appropriately.
- the solidification step cools the liquid film while maintaining the pressure of the gas in the housing at a pressure that allows the liquid film to solidify
- the sublimation step cools the gas in the housing. It is preferable to heat the second solid film while maintaining the pressure of the gas at a pressure at which the second solid film can be sublimated.
- the solidification step maintains the pressure of the gas inside the housing at a pressure that allows the liquid film to solidify. For this reason, the solidification process can suitably suppress the evaporation of the liquid film.
- the solidification step cools the liquid film. For this reason, in the solidification step, the liquid film is suitably solidified.
- the sublimation process maintains the pressure of the gas inside the housing at a pressure at which the second solid film can be sublimated. Therefore, the sublimation process can suitably suppress the melting of the second solid film.
- the sublimation process heats the second solid film. Therefore, in the sublimation step, the second solid film sublimates favorably.
- the solidification step cools the substrate to a temperature at which the liquid film solidifies, and the sublimation step heats the substrate to a temperature at which the second solid film sublimates.
- the solidification step cools the liquid film through the substrate. In the solidification process, the upper surface of the substrate is in contact with the liquid film. Therefore, the solidification step can efficiently form the second solid film.
- the solidification step cools the substrate to a temperature at which the liquid film solidifies. Therefore, the solidification step can suitably solidify the liquid film.
- the sublimation process heats the second solid film through the substrate. In the sublimation process, the upper surface of the substrate is in contact with the second solid film. Therefore, the sublimation process efficiently sublimes the second solid film.
- the sublimation step heats the substrate to a temperature at which the second solid film sublimates. Therefore, the sublimation step can favorably sublimate the second solid film.
- the sublimation step preferably discharges the gas inside the housing to the outside of the housing.
- the second solid film sublimates more favorably.
- the first processing gas is water vapor
- the pressure of the gas in the housing is higher than the triple point pressure of water in the solidification step
- the pressure of the gas in the housing is higher than the triple point of water in the sublimation step
- the pressure of the gas is preferably lower than the triple point pressure of water.
- the pressure of the gas inside the enclosure is greater than the pressure at the triple point of water. Therefore, in the solidification step, evaporation of the liquid film can be suitably suppressed.
- the pressure of the gas inside the enclosure is less than the triple point pressure of water. Therefore, in the sublimation process, the melting of the second solid film can be suitably suppressed.
- the above-described substrate processing method preferably includes a second supply step of supplying a second processing gas to the housing, and the liquid film dissolves the second processing gas.
- a second processing gas is supplied. Therefore, in the second supply step, the upper surface of the substrate does not come into contact with the gas-liquid interface.
- the liquid film dissolves the second process gas.
- the liquid film can better treat the substrate.
- the second processing gas preferably contains at least one of water vapor, ammonia gas, methylamine gas, dimethylamine gas, trimethylamine gas, and hydrogen peroxide gas.
- the liquid film contains at least one of water, ammonia, methylamine, dimethylamine, trimethylamine, and hydrogen peroxide.
- the liquid film can better treat the substrate.
- the substrate processing method described above preferably includes a charging step of charging the second solid film.
- the particles contained in the second solid film can also be easily charged. Therefore, particles contained in the second solid film can be preferably removed.
- the substrate processing method described above preferably includes a collecting step of collecting the charged particles.
- the collecting step can advantageously remove charged particles from the substrate.
- the substrate preferably has a pattern formed on the upper surface of the substrate.
- the substrate processing method can properly process the substrate while protecting the pattern.
- the present invention relates to a substrate processing apparatus comprising a hermetically sealable housing, a substrate placement unit installed in the housing for placing a substrate in a substantially horizontal posture, and supplying a first processing gas into the housing.
- a pressure adjusting unit for adjusting the pressure of the gas in the housing
- a temperature adjusting unit for adjusting the temperature of the substrate placed on the substrate placing unit
- the first supplying unit and the a control unit configured to control the pressure adjustment unit and the temperature adjustment unit, the control unit supplying the first processing gas from the first supply unit to the housing, and controlling the pressure adjustment unit and the temperature adjustment unit; forming a first solid film covering the upper surface of the substrate placed on the substrate platform by condensing the first processing gas by controlling the pressure adjusting part and the temperature adjusting part
- the control melts the first solid film to form a liquid film covering the upper surface of the substrate placed on the substrate placement part.
- the housing can be sealed. Therefore, the pressure adjustment section can preferably adjust the pressure of the gas inside the housing.
- the control unit controls the first supply unit.
- the first supply unit supplies the first processing gas to the housing.
- the upper surface of the substrate does not come into contact with the gas-liquid interface.
- the control unit controls the pressure adjustment unit and the temperature adjustment unit. Specifically, the pressure adjustment unit adjusts the pressure of the gas inside the housing.
- the temperature adjuster adjusts the temperature of the substrate placed on the substrate platform. This causes the first process gas to condense. A first solid film is formed. That is, the first process gas is transformed into the first solid film without passing through the liquid. The first solid film covers the upper surface of the substrate placed on the substrate platform. Therefore, when the first process gas transforms into the first solid film, the top surface of the substrate does not contact the gas-liquid interface.
- the control unit controls the pressure adjustment unit and the temperature adjustment unit. This causes the first solid film to melt. A liquid film is formed. That is, the first solid film turns into a liquid film. The liquid film covers the upper surface of the substrate placed on the substrate platform. Therefore, when the first solid film turns into a liquid film, the upper surface of the substrate does not contact the gas-liquid interface.
- control unit comprises a first supply unit, a pressure adjustment unit, and a temperature adjustment unit to supply a first process gas to the housing, cause the first process gas to condense, and melt the first solid film. to control. Therefore, the substrate processing apparatus can form a liquid film on the upper surface of the substrate without contacting the upper surface of the substrate with the gas-liquid interface. Therefore, the substrate processing apparatus can supply the processing liquid to the upper surface of the substrate while protecting the upper surface of the substrate. Therefore, the substrate processing apparatus can appropriately process the substrate.
- the substrate processing apparatus condenses the first processing gas to form a first solid film covering the upper surface of the substrate.
- the substrate processing apparatus melts the first solid film to form a liquid film covering the upper surface of the substrate. Therefore, it is possible to suitably prevent the processing liquid from overflowing from the substrate. That is, it is possible to suitably suppress the loss of the treatment liquid. Therefore, the substrate processing apparatus can efficiently form a liquid film with a smaller amount of processing liquid. That is, the substrate processing apparatus can process the substrate with a small amount of processing liquid. As a result, the substrate processing apparatus uses a relatively small amount of processing liquid. For example, the amount of processing liquid used in a substrate processing apparatus is less than the amount of processing liquid used in a conventional apparatus.
- control unit controls the pressure adjustment unit and the temperature adjustment unit to solidify the liquid film on the upper surface of the substrate placed on the substrate placement unit. and sublimating the second solid film by controlling the pressure control unit and the temperature control unit.
- the control unit controls the pressure adjustment unit and the temperature adjustment unit. This causes the liquid film to solidify.
- a second solid film is formed. That is, the liquid film turns into a second solid film.
- the second solid film is formed on the upper surface of the substrate placed on the substrate platform. As described above, the liquid film covers the upper surface of the substrate placed on the substrate platform. Therefore, when the liquid film turns into the second solid film, the upper surface of the substrate does not contact the gas-liquid interface.
- the control unit controls the pressure adjustment unit and the temperature adjustment unit. This causes the second solid film to sublimate. That is, the second solid film changes to gas without passing through liquid. Therefore, when the second solid film sublimates, the upper surface of the substrate does not come into contact with the gas-liquid interface.
- the controller controls the pressure regulator and the temperature regulator so that the liquid film is solidified and the second solid film is sublimated. Therefore, the substrate processing apparatus can remove the second solid film from the upper surface of the substrate without contacting the upper surface of the substrate with the gas-liquid interface. Therefore, the substrate processing apparatus can dry the substrate while protecting the upper surface of the substrate. Therefore, the substrate processing apparatus can process substrates more appropriately.
- the substrate processing apparatus described above includes a second supply unit that supplies a second processing gas to the housing, and the control unit controls the second supply unit to cause the second gas to be supplied to the housing. It is preferable to supply a processing gas to dissolve the second processing gas in the liquid film.
- the control section controls the second supply section.
- the second supply unit supplies the second processing gas to the housing. A second process gas is dissolved in the liquid film.
- the substrate processing apparatus described above preferably includes an electron emitting section that emits electrons into the housing.
- the electron emission section can suitably charge the second solid film.
- the substrate processing apparatus described above preferably includes an electrode installed in the housing and to which a positive voltage is applied. Electrodes can preferably collect negatively charged particles.
- substrates can be processed appropriately.
- FIG. 10 is a diagram schematically showing the upper surface of the substrate in the charging process; It is a figure which shows typically the upper surface of the board
- FIG. 1 is a plan view showing the inside of the substrate processing apparatus of the embodiment.
- the substrate processing apparatus 1 processes a substrate W.
- the processing that the substrate processing apparatus 1 performs on the substrate W is, for example, liquid processing.
- Liquid processing is to supply the substrate W with a processing liquid.
- the substrate W is, for example, a semiconductor wafer, a liquid crystal display substrate, an organic EL (Electroluminescence) substrate, an FPD (Flat Panel Display) substrate, an optical display substrate, a magnetic disk substrate, an optical disk substrate, or a magneto-optical disk substrate. , photomask substrates, and solar cell substrates.
- the substrate W has a thin flat plate shape.
- the substrate W has a substantially circular shape in plan view.
- the substrate processing apparatus 1 includes an indexer section 3 and a processing block 7.
- a processing block 7 is connected to the indexer section 3 .
- the indexer unit 3 supplies substrates W to the processing block 7 .
- the processing block 7 performs processing on the substrate W.
- FIG. The indexer section 3 retrieves the substrates W from the processing block 7 .
- the direction in which the indexer unit 3 and the processing blocks 7 are arranged is called the "front-back direction X".
- the front-rear direction X is horizontal.
- the direction from the processing block 7 to the indexer unit 3 is called “forward”.
- the direction opposite to forward is called “backward”.
- a horizontal direction orthogonal to the front-rear direction X is called a “width direction Y”.
- One direction of the "width direction Y" is appropriately called “right side”.
- the direction opposite to right is called “left”.
- a direction perpendicular to the horizontal direction is called a “vertical direction Z”.
- front, rear, right, left, top, and bottom are indicated as appropriate for reference.
- the indexer section 3 includes a plurality of (for example, four) carrier placement sections 4 .
- Each carrier mounting portion 4 mounts one carrier C thereon.
- a carrier C accommodates a plurality of substrates W.
- Carrier C is, for example, FOUP (Front Opening Unified Pod), SMIF (Standard Mechanical Interface), and OC (Open Cassette).
- the indexer section 3 has a transport mechanism 5 .
- the transport mechanism 5 is arranged behind the carrier placement section 4 .
- the transport mechanism 5 transports the substrate W. As shown in FIG.
- the transport mechanism 5 can access the carrier C placed on the carrier placement section 4 .
- the transport mechanism 5 includes a hand 5a and a hand driving section 5b.
- the hand 5a supports the substrate W.
- the hand driving section 5b is connected to the hand 5a.
- the hand driving section 5b moves the hand 5a.
- the hand drive unit 5b moves the hand 5a in the front-rear direction X, the width direction Y, and the vertical direction Z, for example.
- the hand drive unit 5b rotates the hand 5a in a horizontal plane, for example.
- the processing block 7 has a transport mechanism 8 .
- the transport mechanism 8 transports the substrate W. As shown in FIG.
- the transport mechanism 8 and the transport mechanism 5 can transfer substrates W to each other.
- the transport mechanism 8 includes a hand 8a and a hand driving section 8b.
- the hand 8a supports the substrate W.
- the hand driving section 8b is connected to the hand 8a.
- the hand driving section 8b moves the hand 8a.
- the hand drive unit 8b moves the hand 8a in the front-rear direction X, the width direction Y, and the vertical direction Z, for example.
- the hand driving section 8b rotates the hand 8a in a horizontal plane, for example.
- the processing block 7 includes a plurality of processing units 11.
- the processing unit 11 is arranged on the side of the transport mechanism 8 .
- Each processing unit 11 processes the substrate W.
- the processing unit 11 includes a housing 12 and a stage 15.
- the stage 15 is installed inside the housing 12 .
- a substrate W is placed on the stage 15 .
- the substrate W is processed within the housing 12 .
- the housing 12 has a substrate transfer port 12a.
- the substrate transfer port 12a is provided on the side of the housing 12, for example.
- the substrate W can pass through the substrate transfer port 12a.
- the processing unit 11 has a shutter 14 .
- the shutter 14 opens and closes the substrate transfer port 12a.
- a shutter 14 is attached to the housing 12 .
- the shutter 14 is movable with respect to the housing 12 .
- the transfer mechanism 8 can move the substrate W between the inside and the outside of the housing 12 through the substrate transfer port 12a.
- FIG. 2 is a control block diagram of the substrate processing apparatus 1.
- the substrate processing apparatus 1 includes a control section 10 .
- the controller 10 controls the transport mechanisms 5 and 8 and the processing unit 11 .
- the controller 10 is electrically connected to the transport mechanisms 5 and 8 and the processing unit 11 so as to be communicable.
- the control unit 10 is realized by a central processing unit (CPU) that executes various processes, a RAM (Random-Access Memory) that serves as a work area for arithmetic processing, a storage medium such as a fixed disk, and the like.
- the control unit 10 has various types of information stored in advance in a storage medium.
- Information held by the control unit 10 is, for example, transport information for controlling the transport mechanisms 5 and 8 .
- the information held by the control unit 10 is, for example, processing information for controlling the processing unit 11 . Processing information is also called a processing recipe.
- the indexer section 3 supplies substrates W to the processing block 7 .
- the transport mechanism 5 transfers the substrate W from the carrier C to the transport mechanism 8 of the processing block 7 .
- the processing block 7 distributes the substrates W from the indexer section 3 to the processing units 11 .
- the shutter 14 opens the substrate transfer port 12a.
- the transport mechanism 8 transports the substrate W from the transport mechanism 5 to the stage 15 of each processing unit 11 .
- the shutter 14 closes the substrate transfer port 12a.
- the processing unit 11 processes the substrate W placed on the stage 15 .
- the processing unit 11 performs liquid processing on the substrate W, for example.
- the processing block 7 After the processing unit 11 processes the substrate W, the processing block 7 returns the substrate W from the processing unit 11 to the indexer section 3 . Specifically, the shutter 14 opens the substrate transfer port 12a. The transport mechanism 8 transports the substrate W from the stage 15 to the transport mechanism 5 .
- the indexer section 3 recovers the substrates W from the processing block 7 .
- the transport mechanism 5 transports the substrate W from the transport mechanism 8 to the carrier C. As shown in FIG.
- FIG. 3 is a diagram showing the configuration of the processing unit 11. As shown in FIG. In FIG. 3, illustration of the substrate transfer port 12a and the shutter 14 is omitted. Each processing unit 11 has the same structure. The processing unit 11 is classified as a single wafer type. That is, each processing unit 11 processes only one substrate W at a time.
- the housing 12 can be sealed. Specifically, the enclosure 12 has a processing space 13 within the enclosure 12 .
- the housing 12 defines a processing space 13 .
- a stage 15 is installed in the processing space 13 .
- a substrate W is processed in the processing space 13 .
- the housing 12 can substantially seal the processing space 13 . For example, when the shutter 14 closes the substrate transfer port 12a, the processing space 13 is substantially sealed.
- a single substrate W is placed on the stage 15 .
- the stage 15 mounts the substrate W in a substantially horizontal posture.
- the stage 15 supports the substrate W.
- the substrate W stands still.
- the stage 15 has a substantially horizontal plate shape.
- the stage 15 has an upper surface 15a.
- the upper surface 15a contacts the lower surface of the substrate W.
- the bottom surface of the substrate W is also called the backside of the substrate W.
- the stage 15 is arranged below the processing space 13, for example.
- the substrate processing apparatus 1 does not have a mechanism for rotating the substrate W placed on the stage 15 .
- the substrate W does not rotate.
- the processing unit 11 includes one or more (for example, three) supply units 17a, 17b, 17c.
- Supply units 17a-17c are connected to housing 12, respectively.
- Supply portions 17a-17c communicate with housing 12, respectively.
- the supply units 17a-17c supply gas to the housing 12, respectively.
- the supply units 17a-17c supply gas to the processing space 13, respectively.
- the gas supplied by the supply unit 17a is water vapor.
- the gas supplied by the supply unit 17b is ammonia gas.
- the gas supplied by the supply unit 17c is dry gas. Water vapor, ammonia gas and dry gas are each in the gas phase.
- Water vapor and ammonia gas are used to process the substrate W.
- Water vapor is, for example, deionized water vapor.
- the dry gas is used to adjust the pressure of the gas inside the housing 12.
- the supply part 17c can adjust the pressure of the gas inside the housing 12 .
- the supply part 17c can increase the pressure of the gas inside the housing 12 .
- a dry gas has a dew point lower than normal temperature.
- the dew point is, for example, about -76°C.
- Dry gas is, for example, air. Dry gas is, for example, compressed air.
- a dry gas is, for example, an inert gas. Dry gas is, for example, nitrogen gas.
- the supply unit 17a does not supply liquid to the housing 12.
- the supply unit 17b does not supply liquid to the housing 12 either.
- the supply unit 17c also does not supply liquid to the housing 12 .
- the supply unit 17a is connected to the supply source 21a.
- the supply part 17a communicates with the supply source 21a.
- the supply source 21a sends water vapor to the supply section 17a.
- the supply part 17b is connected to the supply source 21b.
- the supply part 17b communicates with the supply source 21b.
- Supply source 21b sends ammonia gas to supply unit 17b.
- the supply part 17c is connected to the supply source 21c.
- the supply part 17c communicates with the supply source 21c.
- Supply source 21c delivers dry gas to supply 17c.
- the supply source 21 a may be an element of the substrate processing apparatus 1 .
- source 21 a may not be a component of substrate processing apparatus 1 .
- the supply source 21a may be utility equipment installed outside the substrate processing apparatus 1 .
- source 21 b and source 21 c may each be elements of substrate processing apparatus 1 .
- the supply sources 21b and 21c may not be elements of the substrate processing apparatus 1, respectively.
- the processing unit 11 includes one blowing section 23 .
- the blowout section 23 is connected to the supply sections 17a-17c.
- the blowout section 23 communicates with the supply sections 17a-17c.
- the supply units 17a to 17c supply gas to the housing 12 through the blowout unit 23, respectively.
- the blowout part 23 is arranged at a position higher than the stage 15, for example.
- the blow-out part 23 is attached to the side part of the housing
- the blowout part 23 may be attached to the top of the housing 12 .
- the blowout part 23 may be installed inside the housing 12 .
- the blowout part 23 may be arranged above the stage 15, for example.
- the blowout part 23 blows out gas in a direction away from the substrate W supported by the stage 15, for example.
- the blow-out part 23 blows off gas in a substantially horizontal direction, for example.
- supply unit 17a The arrangement and configuration of the supply unit 17a will be described. At least part of the supply unit 17 a is arranged outside the housing 12 . Supply portions 17b and 17c are also arranged in the same manner as supply portion 17a.
- the supply unit 17a includes a pipe 18a and a valve 19a.
- the valve 19a is provided on the pipe 18a.
- Tubing 18a has a first end connected to source 21a.
- a first end of the pipe 18a communicates with the supply source 21a.
- the pipe 18 a has a second end connected to the blowout portion 23 .
- a second end of the pipe 18 a communicates with the blowout portion 23 .
- the supply unit 17b includes a pipe 18b and a valve 19b.
- the valve 19b is provided on the pipe 18b.
- Tubing 18b has a first end connected to source 21b.
- a first end of the pipe 18b communicates with the supply source 21b.
- the pipe 18b has a second end connected to the blowout portion 23 .
- a second end of the pipe 18 b communicates with the blowout portion 23 .
- the supply unit 17c includes a pipe 18c and a valve 19c.
- the valve 19c is provided on the pipe 18c.
- Tubing 18c has a first end connected to source 21c.
- a first end of the pipe 18c communicates with the supply source 21c.
- the pipe 18c has a second end connected to the blowout portion 23 .
- a second end of the pipe 18 c communicates with the blowout portion 23 .
- the processing unit 11 has an exhaust section 25 .
- the exhaust part 25 is connected to the housing 12 .
- the exhaust part 25 communicates with the housing 12 .
- the exhaust unit 25 exhausts the gas inside the housing 12 to the outside of the housing 12 .
- the exhaust unit 25 exhausts the gas in the processing space 13 to the outside of the housing 12 .
- the exhaust part 25 can adjust the pressure of the gas inside the housing 12 .
- the exhaust part 25 can reduce the pressure of the gas inside the housing 12 .
- the processing unit 11 has one suction part 28 .
- the suction section 28 is connected to the exhaust section 25 .
- the suction portion 28 communicates with the exhaust portion 25 .
- the exhaust part 25 sucks the gas inside the housing 12 through the suction part 28 .
- the suction part 28 is arranged at a position lower than the blowout part 23, for example.
- the suction part 28 is attached to the side of the housing 12, for example.
- suction portion 28 may be attached to the bottom of housing 12 .
- the exhaust unit 25 is connected to processing equipment (not shown).
- the exhaust section 25 communicates with the processing equipment.
- the treatment facility treats the gas.
- the treatment equipment decomposes ammonia gas contained in the gas, for example.
- the treatment facility for example, excludes ammonia gas from the gas.
- the processing equipment is not an element of substrate processing apparatus 1 .
- the processing equipment is, for example, utility equipment installed outside the substrate processing apparatus 1 .
- the arrangement and configuration of the exhaust section 25 will be explained. At least part of the exhaust unit 25 is arranged outside the housing 12 .
- the exhaust section 25 includes a pipe 26 and a vacuum pump 27 .
- a vacuum pump 27 is provided in the pipe 26 .
- Tubing 26 has a first end connected to housing 12 .
- a first end of the pipe 26 communicates with the housing 12 .
- Piping 26 has a second end connected to a processing facility.
- a second end of tubing 26 communicates with a processing facility.
- the exhaust unit 25 exhausts gas from the housing 12 when the vacuum pump 27 operates.
- the processing unit 11 includes a temperature adjustment section 31 .
- the temperature adjuster 31 adjusts the temperature of the substrate W placed on the stage 15 .
- the temperature adjuster 31 cools the substrate W supported by the stage 15 .
- the temperature adjuster 31 heats the substrate W supported by the stage 15 .
- At least part of the temperature control unit 31 is preferably arranged inside the housing 12 .
- the temperature adjustment section 31 includes a cooling section 32 .
- the cooling unit 32 cools the substrate W placed on the stage 15 .
- the cooling unit 32 includes cooling pipes 33 . At least part of the cooling pipe 33 is installed inside the housing 12 .
- a cooling pipe 33 is attached to the stage 15 .
- the cooling pipe 33 is arranged inside the stage 15, for example.
- the cooling pipe 33 also extends outside the housing 12 .
- the cooling pipe 33 is connected to the coolant supply section 34 .
- the cooling pipe 33 communicates with the coolant supply section 34 .
- the coolant supply unit 34 is provided outside the housing 12 .
- a coolant supply unit 34 sends coolant to the cooling pipe 33 .
- the coolant supply unit 34 includes, for example, a pump (not shown).
- a coolant flows through the cooling pipe 33 .
- the coolant supply section 34 may receive coolant from the cooling pipe 33 .
- the coolant may circulate between the coolant supply 34 and the cooling pipes 33 .
- the coolant takes heat from the substrate W supported by the stage 15 .
- the cooling unit 32 cools the substrate W placed on the stage 15 when the coolant flows through the cooling pipe 33 .
- the coolant is liquid nitrogen, for example.
- the temperature adjustment unit 31 includes a heating unit 36.
- the heating unit 36 heats the substrate W placed on the stage 15 .
- the heating section 36 includes an electric heater 37 and a power source 38 .
- the electric heater 37 is installed inside the housing 12 .
- An electric heater 37 is attached to the stage 15 .
- the electric heater 37 is arranged inside the stage 15, for example.
- the electric heater 37 includes, for example, a heating wire.
- a power supply 38 is electrically connected to the electric heater 37 .
- a power supply 38 is provided outside the housing 12 .
- a power supply 38 supplies power to the electric heater 37 .
- the power supply 38 supplies power to the electric heater 37
- the electric heater 37 heats the substrate W supported by the stage 15 .
- the power supply 38 supplies power to the electric heater 37
- the heating section 36 heats the substrate W supported by the stage 15 .
- the processing unit 11 includes an electron emitting section 41 .
- the electron emission section 41 emits electrons into the housing 12 .
- the electron emitter 41 emits electrons to the substrate W placed on the stage 15 .
- At least a part of the electron emitting section 41 may be arranged inside the housing 12, for example. Alternatively, the entire electron emitting section 41 may be arranged outside the housing 12 .
- the electron emitter 41 includes an electron beam source 42 and a power supply 43 .
- the electron beam source 42 is, for example, an electron gun.
- the electron beam source 42 includes, for example, a filament (not shown).
- the material of the filament is tungsten, for example.
- At least part of the electron beam source 42 may be installed within the housing 12 .
- the electron beam source 42 may be provided, for example, so as to penetrate the housing 12 . Alternatively, the entire electron beam source 42 may be installed outside the housing 12 .
- the electron beam source 42 is arranged at a position higher than the stage 15, for example.
- a power supply 43 is electrically connected to the electron beam source 42 .
- the power supply 43 is provided outside the housing 12 .
- a power supply 43 supplies power to the electron beam source 42 .
- When power supply 43 powers electron beam source 42 electron beam source 42 emits electrons into process space 13 .
- the processing unit 11 includes a collection unit 45.
- the collector 45 collects negatively charged particles within the housing 12 .
- At least part of the collection unit 45 is preferably arranged inside the housing 12 .
- the collection unit 45 includes electrodes 46 and a power source 47 .
- the electrodes 46 are preferably installed inside the housing 12, for example.
- the electrode 46 is arranged above the stage 15, for example.
- Electrode 46 is, for example, metal covered with an insulator.
- a power supply 47 is electrically connected to the electrode 46 .
- the power supply 47 is provided outside the housing 12 .
- a power supply 47 applies a voltage to the electrodes 46 .
- Power supply 47 applies a positive voltage to electrode 46 .
- electrode 46 attracts negatively charged particles.
- the processing unit 11 includes a pressure sensor 51.
- the pressure sensor 51 detects the gas pressure inside the housing 12 .
- the pressure sensor 51 is installed inside the housing 12 .
- the processing unit 11 includes a temperature sensor 52.
- a temperature sensor 52 detects the temperature of the substrate W.
- FIG. A temperature sensor 52 is installed within the housing 12 .
- the temperature sensor 52 is attached to the stage 15, for example.
- the temperature sensor 52 may indirectly detect the temperature of the substrate W on the stage 15 by directly detecting the stage 15, for example.
- the stage 15 is an example of the substrate mounting part of the present invention.
- the supply unit 17a is an example of the first supply unit of the present invention.
- Water vapor is an example of the first process gas in the present invention.
- the supply section 17b is an example of the second supply section of the present invention.
- Ammonia gas is an example of the second process gas in the present invention.
- the supply section 17c and the exhaust section 25 are examples of the pressure adjustment section of the present invention.
- the control unit 10 controls the supply units 17a and 17b.
- the control unit 10 controls the valves 19a and 19b.
- the control unit 10 controls the pressure adjustment unit 20.
- the control unit 10 controls the supply unit 17 c and the exhaust unit 25 .
- the controller 10 controls the valve 19 c and the vacuum pump 27 .
- the control unit 10 controls the temperature adjustment unit 31.
- the control section 10 controls the cooling section 32 and the heating section 36 .
- the control unit 10 controls the coolant supply unit 34 and the power supply 38 .
- the control unit 10 controls the electron emission unit 41 .
- the control unit 10 controls the power supply 43 .
- the control unit 10 controls the collection unit 45.
- the control unit 10 controls the power supply 47 .
- the control unit 10 acquires the detection result of the pressure sensor 51.
- the control unit 10 acquires the detection result of the temperature sensor 52 .
- FIG. 4 is a flow chart showing the procedure of the substrate processing method.
- a substrate processing method for processing a substrate W includes steps S1-S11. Steps S 1 -S 11 are substantially performed by processing unit 11 .
- the processing unit 11 operates under the control of the control section 10 .
- Step S ⁇ b>1 Mounting Process As described above, the substrate W is mounted on the stage 15 by the transport mechanism 8 . The substrate W is placed in a substantially horizontal posture within the housing 12 .
- FIG. 5 is a diagram schematically showing the upper surface of the substrate W in the mounting process.
- the substrate W has a pattern R.
- the pattern R is formed on the upper surface W1 of the substrate W. As shown in FIG.
- the pattern R is positioned on the upper surface W1 of the substrate W when the substrate W is placed on the stage 15 . When the substrate W is placed on the stage 15, the pattern R faces upward.
- the pattern R has a convex portion W2 and a concave portion A.
- the protrusion W2 is part of the substrate W. As shown in FIG.
- the protrusion W2 is a structure.
- the protrusion W2 is composed of, for example, a silicon oxide film (SiO2), a silicon nitride film (SiN), or a polysilicon film.
- the protrusion W2 protrudes upward.
- the recess A is a space.
- the recess A is open upward.
- the concave portion A is arranged on the side of the convex portion W2.
- the concave portion A contacts the convex portion W2.
- the convex portion W2 corresponds to a wall that partitions the concave portion A. As shown in FIG.
- particles (foreign matter) B are shown.
- the particles B adhere to the upper surface W1 of the substrate W.
- FIG. 5 particles (foreign matter) B are shown.
- the particles B adhere to the upper surface W1 of the substrate W.
- the upper surface W1 of the substrate W is in contact with the gas G inside the housing 12.
- the substrate W does not come into contact with the liquid. In the mounting step, the substrate W is not wet.
- the interface between the gas G and the liquid is appropriately called the gas-liquid interface.
- the substrate W does not come into contact with the gas-liquid interface. In the first place, no gas-liquid interface occurs in the mounting process.
- the pressure sensor 51 detects the pressure of the gas G inside the housing 12 .
- the control unit 10 monitors detection results of the pressure sensor 51 .
- normal pressure includes standard atmospheric pressure (1 atm, 1013 hPa).
- Normal pressure is, for example, an atmospheric pressure in the range of 0.7 atmospheres or more and 1.3 atmospheres or less. Pressure is indicated herein in terms of absolute pressure relative to absolute vacuum.
- a temperature sensor 52 detects the temperature of the substrate W placed on the stage 15 .
- the control unit 10 monitors the detection result of the temperature sensor 52 .
- the substrate W on the stage 15 is at room temperature, for example.
- normal temperature includes room temperature.
- Normal temperature is, for example, a temperature within the range of 5° C. or higher and 35° C. or lower.
- Normal temperature is, for example, a temperature within the range of 10° C. or higher and 30° C. or lower.
- the substrate W stands still on the stage 15.
- the substrate W does not rotate.
- Steps S2-S9 are performed with the substrate W stationary.
- Steps S2-S11 are performed with the substrate W stationary.
- Step S2 Sealing Step With the substrate W housed in the housing 12, the housing 12 is sealed.
- the shutter 14 closes the substrate transfer port 12a.
- the substrate W does not come into contact with the gas-liquid interface even in the sealing process.
- Step S3 Adjustment process The pressure of the gas G in the housing 12 is adjusted to the first pressure P1.
- the first pressure P1 is a pressure at which water vapor can condense.
- the terms “deposition” and “condensation” refer to the change from gas to solid without passing through liquid.
- “condensation” and “to condense” refer to a change from a gas to a liquid.
- the first pressure P1 is less than the triple point pressure of water.
- the triple point pressure of water is about 611 Pa.
- water vapor gas phase water
- the first pressure P1 is lower than normal pressure. Therefore, the adjustment process reduces the pressure of the gas G in the housing 12 .
- the adjusting step reduces the pressure of the gas G in the housing 12 from normal pressure to the first pressure P1.
- control unit 10 adjusts the pressure of the gas G in the housing 12 by controlling the pressure adjustment unit 20 .
- the pressure of the gas G in the housing 12 is reduced by discharging the gas in the housing 12 using the exhaust unit 25 .
- control unit 10 may refer to the detection result of the pressure sensor 51 .
- the first pressure P1 may be one value.
- the first pressure P1 may range between two values.
- the first pressure P1 is set in advance in the processing information held by the control section 10 .
- the substrate W placed on the stage 15 is adjusted to the first temperature T1.
- the first temperature T1 is the temperature at which water vapor condenses under the first pressure P1.
- the first temperature T1 is the temperature at which water exists in solid phase under the first pressure P1.
- the first temperature T1 is lower than the triple point temperature of water.
- the temperature of the triple point of water is 0.01 degrees.
- the first temperature T1 is lower than normal temperature. Therefore, the adjustment process cools the substrate W placed on the stage 15 . In the adjustment process, the substrate W placed on the stage 15 is cooled from room temperature to the first temperature T1.
- control unit 10 adjusts the temperature of the substrate W placed on the stage 15 by controlling the temperature adjustment unit 31 .
- the cooling unit 32 cools the substrate W placed on the stage 15 .
- the controller 10 may refer to the detection result of the temperature sensor 52 .
- the first temperature T1 may be one value.
- the first temperature T1 may range between two values.
- the first temperature T1 is preset in the processing information held by the control unit 10 .
- Steps S4 and S5 are executed while the pressure of the gas G in the housing 12 is kept at the first pressure P1 and the temperature of the substrate W placed on the stage 15 is kept at the first temperature T1. be.
- Step S ⁇ b>4 First supply step Water vapor is supplied to the housing 12 .
- control unit 10 controls the supply unit 17a.
- the supply unit 17 a supplies water vapor to the housing 12 .
- a top surface W1 of the substrate W is in contact with the gas G inside the housing 12 .
- the gas G contains water vapor. Therefore, the upper surface W1 of the substrate W is in contact with water vapor.
- Water vapor is in the gas phase. That is, water vapor is not in liquid phase. Therefore, the gas G is in the gas phase also in the first supply step.
- the liquid is not supplied to the substrate W in the first supply process.
- the upper surface W1 of the substrate W does not come into contact with the liquid. Therefore, in the first supply step, the upper surface W1 of the substrate W does not come into contact with the gas-liquid interface. In the first place, no gas-liquid interface occurs in the first supply step.
- Step S ⁇ b>5 Condensation Process Water vapor condenses within the housing 12 .
- the period during which the sublimation process is performed may overlap at least part of the period during which the first supply process is performed.
- FIG. 6 is a diagram schematically showing the upper surface W1 of the substrate W in the sublimation process.
- the water vapor is cooled in the housing 12 while the pressure of the gas G in the housing 12 is maintained at the first pressure P1.
- the water vapor is cooled by the substrate W. Through the substrate W, the water vapor is cooled. Water vapor in the vicinity of the substrate W is cooled to the first temperature T1.
- the water vapor turns into the first solid film H without going through liquid.
- the first solid film H is formed on the upper surface W1 of the substrate W. As shown in FIG. A top surface W1 of the substrate W is in contact with the first solid film H. As shown in FIG.
- the first solid film H is a solid phase.
- the first solid film H is ice.
- the first solid film H is not in liquid phase.
- the first solid film H is thinner than the height of the protrusion W2. Therefore, the upper surface W1 (convex portion W2) is in contact with both the first solid film H and the gas G. As shown in FIG. 6, the first solid film H is thinner than the height of the protrusion W2. Therefore, the upper surface W1 (convex portion W2) is in contact with both the first solid film H and the gas G. As shown in FIG. 6, the upper surface W1 (convex portion W2) is in contact with both the first solid film H and the gas G.
- FIG. 6 illustrates the case where the thickness of the first solid film H is not uniform over the upper surface W1 of the substrate W.
- FIG. 6 illustrates a case where the formation speed of the first solidified film H varies on the upper surface W1 of the substrate W.
- Variations in the formation speed of the first solidified film are caused by variations in the temperature of the substrate W over the upper surface W1 of the substrate W, for example.
- the formation speed of the first solidified film H may be uniform over the upper surface W1 of the substrate W.
- the first solid film H gradually thickens.
- FIG. 7 is a diagram schematically showing the upper surface W1 of the substrate W in the sublimation process.
- the first solid film H is thicker than the height of the protrusion W2.
- the first solid film H covers the upper surface W1 of the substrate W.
- the first solid film H covers the entire upper surface W1 of the substrate W. As shown in FIG. A top surface W1 of the substrate W is in contact with the first solid film H. As shown in FIG. However, the upper surface W1 of the substrate W is not in contact with the gas G.
- the upper surface W1 of the substrate W does not come into contact with the gas-liquid interface in the condensation process.
- Step S6 Melting step The first solid film H is melted.
- the second pressure P2 is a pressure at which the first solid film H can be melted.
- melting and “melting” refer to changing from a solid to a liquid.
- sublimation and “sublimate” refer to changing from a solid to a gas without going through a liquid.
- the pressure of the gas G inside the housing 12 is the second pressure P2
- the first solid film H is difficult to sublimate.
- the second pressure P2 is greater than the triple point pressure of water.
- ice solid-phase water
- the second pressure P2 is lower than normal pressure.
- the second pressure P2 is lower than standard atmospheric pressure.
- the second pressure P2 is greater than the first pressure P1. Therefore, the melting process increases the pressure of the gas G in the housing 12 .
- the melting process increases the pressure of the gas G in the housing 12 from the first pressure P1 to the second pressure P2.
- control unit 10 adjusts the pressure of the gas G in the housing 12 by controlling the pressure adjustment unit 20 .
- the supply unit 17c supplies dry gas to the housing 12 to increase the pressure of the gas G in the housing 12 .
- the second pressure P2 may be one value.
- the second pressure P2 may range between two values.
- the second pressure P2 is preset in the processing information held by the controller 10 .
- the substrate W placed on the stage 15 is adjusted to the second temperature T2.
- the substrate W placed on the stage 15 is preferably adjusted to the second temperature T2.
- the second temperature T2 is the temperature at which the first solid film H melts under the second pressure P2.
- the second temperature T2 is the temperature at which the first solid film H exists in the liquid phase under the second pressure P2.
- the second temperature T2 is higher than the triple point temperature of water.
- the second temperature T2 is substantially equal to room temperature.
- the second temperature T2 is higher than the first temperature T1. Therefore, the melting process heats the substrate W placed on the stage 15 . The melting process heats the substrate W placed on the stage 15 from the first temperature T1 to the second temperature T2.
- control unit 10 adjusts the temperature of the substrate W placed on the stage 15 by controlling the temperature adjustment unit 31 .
- the heating unit 36 heats the substrate W placed on the stage 15 .
- the second temperature T2 may be one value.
- the second temperature T2 may range between two values.
- the second temperature T2 is preset in the processing information held by the control unit 10 .
- FIG. 8 is a diagram schematically showing the upper surface W1 of the substrate W in the melting process.
- the first solid film H is heated while the pressure of the gas G in the housing 12 is maintained at the second pressure P2.
- the first solid film H is heated by the substrate W. As shown in FIG. Through the substrate W, the first solid film H is heated.
- the first solid film H is heated to the second temperature T2.
- the first solid film H turns into a liquid film J.
- a liquid film J is formed on the upper surface W1 of the substrate W. As shown in FIG.
- the upper surface W1 of the substrate W is in contact with the liquid film J. As shown in FIG.
- the liquid film J is a liquid phase.
- the liquid film J is formed by the processing liquid.
- the treatment liquid forming the liquid film J is water.
- part of the first solid film H turns into a liquid film J.
- the upper surface W1 of the substrate W is in contact with both the liquid film J and the first solid film H.
- the upper surface W1 of the substrate W is not in contact with the gas G. This is because the upper surface W1 of the substrate W is covered with the liquid film J and the first solid film H.
- FIG. 8 illustrates the case where the thickness of the liquid film J is not uniform over the upper surface W1 of the substrate W.
- FIG. 8 illustrates a case where the formation speed of the liquid film J varies on the upper surface W1 of the substrate W.
- Variations in the formation speed of the liquid film J are caused by variations in the temperature of the substrate W over the upper surface W1 of the substrate W, for example.
- the formation speed of the liquid film J may be uniform over the upper surface W1 of the substrate W.
- the first solid film H gradually decreases.
- the liquid film J gradually increases.
- FIG. 9 is a diagram schematically showing the upper surface W1 of the substrate W in the melting process. 9, the entire first solid film H is transformed into a liquid film J.
- FIG. 9 is a diagram schematically showing the upper surface W1 of the substrate W in the melting process. 9, the entire first solid film H is transformed into a liquid film J.
- the liquid film J covers the upper surface W1 of the substrate W.
- the liquid film J covers the entire upper surface W1 of the substrate W. As shown in FIG.
- the upper surface W1 of the substrate W is in contact with the liquid film J. As shown in FIG. However, the upper surface W1 of the substrate W is not in contact with the gas G.
- Step S ⁇ b>7 Second supply step Ammonia gas is supplied to the housing 12 .
- control unit 10 controls the supply unit 17b.
- the supply unit 17b supplies ammonia gas to the housing 12 .
- FIG. 10 is a diagram schematically showing the upper surface W1 of the substrate W in the second supply step.
- the gas G contains ammonia gas. Ammonia gas is in the gas phase. That is, ammonia gas is not in liquid phase. Also in the second supply step, the gas G is in the gas phase.
- the liquid is not supplied to the substrate W in the second supply process.
- the upper surface W1 of the substrate W does not come into contact with the gas G. This is because the upper surface W1 of the substrate W is covered with the liquid film J. FIG. The upper surface W1 of the substrate W is not in contact with the gas-liquid interface K between the liquid film J and the gas G in the second supply step as well.
- the liquid film J is in contact with the gas G.
- the liquid film J is in contact with the ammonia gas contained in the gas G.
- the liquid film J dissolves the ammonia gas contained in the gas G.
- the liquid film J contains aqueous ammonia.
- Ammonia water is also called ammonium hydroxide.
- the liquid film J dissolves the ammonia gas
- the liquid film J becomes alkaline.
- the upper surface W1 of the substrate W is in contact with the alkaline liquid film J.
- the particles B come into contact with the alkaline liquid film J. Therefore, particle B has a negative zeta potential.
- the zeta potential of the particles B has the same polarity as the zeta potential of the upper surface W1 of the substrate W.
- the particle B leaves the upper surface W1.
- the particles B are liberated in the liquid film J.
- the particles B are less likely to reattach to the upper surface W1.
- the liquid film J separates the particles B from the upper surface W1.
- Step S8 Solidification step The liquid film J is solidified.
- the third pressure P3 is a pressure at which the liquid film J can be solidified.
- the third pressure P3 is greater than the triple point pressure of water.
- water liquid phase water
- the third pressure P3 is lower than normal pressure.
- the third pressure P3 is lower than standard atmospheric pressure.
- the third pressure P3 is approximately equal to the second pressure P2.
- the solidification process adjusts the pressure of the gas G inside the housing 12 from the second pressure P2 to the third pressure P3.
- control unit 10 adjusts the pressure of the gas G in the housing 12 by controlling the pressure adjustment unit 20 .
- the third pressure P3 may be one value.
- the third pressure P3 may range between two values.
- the third pressure P3 is preset in the processing information held by the controller 10 .
- the third temperature T3 is the temperature at which the liquid film J solidifies under the third pressure P3.
- the third temperature T3 is the temperature at which the liquid film J exists in a solid phase under the third pressure P3.
- the third temperature T3 is lower than the triple point temperature of water.
- the third temperature T3 is approximately equal to the first temperature T1.
- the third temperature T3 is lower than the second temperature T2. Therefore, the solidification process cools the substrate W placed on the stage 15 .
- the solidification step cools the substrate W placed on the stage 15 from the second temperature T2 to the third temperature T3.
- control unit 10 controls the temperature adjustment unit 31 to adjust the temperature of the substrate W placed on the stage 15 to the third temperature T3.
- the cooling unit 32 cools the substrate W placed on the stage 15 .
- the third temperature T3 may be one value.
- the third temperature T3 may range between the two values.
- the third temperature T3 is preset in the processing information held by the control unit 10 .
- FIG. 11 is a diagram schematically showing the upper surface W1 of the substrate W in the solidification process.
- the liquid film J is cooled while the pressure of the gas G in the housing 12 is maintained at the third pressure P3.
- the liquid film J is cooled by the substrate W. Through the substrate W, the liquid film J is cooled.
- the liquid film J is cooled to the third temperature T3.
- the liquid film J changes to the second solid film L.
- the second solid film L is formed on the upper surface W1 of the substrate W. As shown in FIG. A top surface W1 of the substrate W is in contact with the second solid film L. As shown in FIG.
- the second solid film L is a solid phase.
- part of the liquid film J changes to the second solid film L.
- the upper surface W1 of the substrate W is in contact with both the liquid film J and the second solid film L.
- the upper surface W1 of the substrate W is not in contact with the gas G. This is because the upper surface W1 of the substrate W is covered with the liquid film J and the second solid film L.
- FIG. 11 illustrates the case where the thickness of the second solid film L is not uniform over the upper surface W1 of the substrate W.
- FIG. 11 exemplifies a case where the formation speed of the second solid film L varies on the upper surface W1 of the substrate W.
- Variations in the formation speed of the second solid film L are caused by variations in the temperature of the substrate W over the upper surface W1 of the substrate W, for example.
- the formation speed of the second solid film L may be uniform over the upper surface W1 of the substrate W.
- the liquid film J gradually decreases.
- the second solid film L gradually increases.
- FIG. 12 is a diagram schematically showing the upper surface W1 of the substrate W in the solidification process. 12, the entire liquid film J is transformed into the second solid film L.
- FIG. 12 is a diagram schematically showing the upper surface W1 of the substrate W in the solidification process. 12, the entire liquid film J is transformed into the second solid film L.
- the second solid film L covers the upper surface W1 of the substrate W.
- the second solid film L covers the entire upper surface W1 of the substrate W. As shown in FIG. A top surface W1 of the substrate W is in contact with the second solid film L. As shown in FIG. However, the upper surface W1 of the substrate W is not in contact with the gas G.
- the liquid film J disappears.
- the zeta potential of the upper surface W1 of the substrate W disappears.
- the zeta potential of particle B also disappears.
- Step S9 Charging Step The second solid film L is charged.
- control unit 10 controls the electron emission unit 41 .
- the electron emitting section 41 emits electrons toward the second solid film L. As shown in FIG.
- FIG. 13 is a diagram schematically showing the upper surface W1 of the substrate W in the charging process.
- the electron emitter 41 emits electrons M.
- the second solid film L receives electrons M. Therefore, the second solid film L is negatively charged.
- the electrons M are distributed on the upper surface L1 of the second solid film L. As shown in FIG. Therefore, the upper surface L1 of the second solid film L is negatively charged.
- Step S10 Sublimation Step The second solid film L is sublimated.
- the fourth pressure P4 is a pressure at which the second solid film L can be sublimated.
- the fourth pressure P4 is less than the triple point pressure of water.
- the pressure of the gas G in the housing 12 is lower than the triple point pressure of water, ice (solid phase water) is difficult to melt.
- the fourth pressure P4 is approximately equal to the first pressure P1.
- the fourth pressure P4 is lower than the third pressure P3. Therefore, the sublimation process reduces the pressure of the gas G in the housing 12 .
- a sublimation process reduces the pressure of the gas G of the housing
- control unit 10 adjusts the pressure of the gas G in the housing 12 by controlling the pressure adjustment unit 20 .
- the exhaust part 25 reduces the pressure of the gas G in the housing 12 .
- the fourth pressure P4 may be one value.
- the fourth pressure P4 may range between two values.
- the fourth pressure P4 is preset in the processing information held by the controller 10 .
- the gas inside the housing 12 is discharged to the outside of the housing 12 .
- the exhaust unit 25 reduces the pressure of the gas G in the housing 12 and discharges the gas in the housing 12 to the outside of the housing 12 .
- the fourth temperature T4 is the temperature at which the second solid film L sublimates under the fourth pressure P4.
- the fourth temperature T4 is the temperature at which the second solid film L exists in the gas phase under the fourth pressure P4.
- the fourth temperature T4 is higher than the triple point temperature of water.
- the fourth temperature T4 is substantially equal to room temperature.
- the fourth temperature T4 is higher than the third temperature T3.
- the sublimation process heats the substrate W placed on the stage 15 .
- a sublimation process heats the board
- control unit 10 controls the temperature adjustment unit 31 to adjust the temperature of the substrate W placed on the stage 15 to the fourth temperature T4.
- the heating unit 36 heats the substrate W placed on the stage 15 .
- the fourth temperature T4 may be one value.
- the fourth temperature T4 may range between the two values.
- the fourth temperature T4 is preset in the processing information held by the controller 10 .
- FIG. 14 is a diagram schematically showing the upper surface W1 of the substrate W in the sublimation process.
- the second solid film L is heated while the pressure of the gas G in the housing 12 is maintained at the fourth pressure P4.
- the second solid film L is heated by the substrate W. As shown in FIG.
- the second solid film L is heated through the substrate W.
- the second solid film L is heated to a fourth temperature T4.
- the second solid film L turns into gas without passing through liquid.
- the gas that has changed from the second solid film L is in the gas phase.
- the gas G includes gas that has changed from the second solid film L.
- the exhaust part 25 exhausts the gas G to the outside of the housing 12 .
- the upper surface L1 of the second solid film L is lowered.
- the upper surface L1 of the second solid film L is lowered while the upper surface L1 of the second solid film L remains negatively charged.
- the particles B are negatively charged.
- the particles B and the upper surface L1 of the second solid film L repel each other. Therefore, the particles B are easily separated from the second solid film L.
- the particles B for example, fly from the second solid film L into the gas G inside the housing 12 .
- part of the second solid film L is sublimated.
- the upper surface W1 of the substrate W is in contact with at least one of the second solid film L and the gas G. As shown in FIG. For example, the upper surface W1 of the substrate W is in contact with both the second solid film L and the gas G. However, the upper surface W1 of the substrate W does not contact the liquid.
- FIG. 14 illustrates the case where the thickness of the second solid film L is not uniform over the upper surface W1 of the substrate W.
- FIG. 14 exemplifies a case where the sublimation speed of the second solid film L varies on the upper surface W1 of the substrate W.
- Variations in the sublimation rate of the second solid film L are caused by variations in the temperature of the substrate W over the upper surface W1 of the substrate W, for example.
- the sublimation rate of the second solid film L may be uniform over the upper surface W1 of the substrate W.
- FIG. 15 is a diagram schematically showing the upper surface W1 of the substrate W in the sublimation process.
- the entire second solid film L is sublimated.
- the second solid film L is removed from the substrate W without the second solid film L changing into liquid.
- the substrate W is dried without the second solid film L changing to liquid.
- the upper surface W1 of the substrate W is in contact with the gas G. However, the upper surface W1 of the substrate W does not contact the liquid.
- the upper surface W1 of the substrate W does not contact the liquid.
- the upper surface W1 of the substrate W does not contact the gas-liquid interface K, and the second solid film L sublimates. Therefore, the upper surface W1 of the substrate W does not come into contact with the gas-liquid interface K in the sublimation process. In the first place, the gas-liquid interface K does not occur in the sublimation process.
- Step S11 Collection Step The collection unit 45 collects the charged particles B.
- the collection step is preferably performed in parallel with the sublimation step.
- the period during which the collection step is performed preferably overlaps at least part of the period during which the sublimation step is performed.
- the collection process begins at the same time as the sublimation process.
- Electrode 46 thus has a positive potential.
- the electrode 46 attracts the charged particles B.
- the electrode 46 attracts the particles B exposed from the second solid film L. Particle B moves toward electrode B. Particle B moves upward, for example.
- the substrate processing method includes a placing step.
- the substrate W is mounted in a substantially horizontal posture within the housing 12 .
- the upper surface W1 of the substrate W does not come into contact with the gas-liquid interface K. As shown in FIG.
- the substrate processing method includes a first supply step.
- the first supply step supplies water vapor to the housing 12 .
- the upper surface W1 of the substrate W is in contact with water vapor.
- Water vapor is in the gas phase. That is, water vapor is not in liquid phase.
- the first supply step does not supply the substrate W with liquid. Therefore, in the first supply step, the upper surface W1 of the substrate W does not contact the liquid. Therefore, the upper surface W1 of the substrate W does not contact the gas-liquid interface K in the first supply step.
- the substrate processing method includes a sublimation process.
- the condensation process water vapor condenses within the housing 12 .
- the coagulation process forms the first solid film H.
- the first solid film H covers the upper surface W1 of the substrate W.
- water vapor transforms into the first solid film H without passing through liquid.
- the upper surface W1 of the substrate W is in contact with the first solid film H in the condensation process.
- the first solid film H is a solid phase. That is, the first solid film H is not in liquid phase. Therefore, when the water vapor transforms into the first solid film H, the upper surface W1 of the substrate W does not contact the liquid.
- the upper surface W1 of the substrate W does not come into contact with the gas-liquid interface K, and the water vapor condenses (changes) into the first solid film H. Therefore, the upper surface W1 of the substrate W does not come into contact with the gas-liquid interface K in the condensation process.
- the substrate processing method includes a melting step.
- the melting step the first solid film H is melted.
- the melting step forms a liquid film J.
- FIG. The liquid film J covers the upper surface W1 of the substrate W.
- the first solid film H transforms into a liquid film J in the melting process.
- the upper surface W1 of the substrate W is in contact with the liquid film J in the melting process.
- the liquid film J is a liquid phase.
- the first solid film H formed in the condensation process covers the upper surface W1 of the substrate W.
- the first solid film H melts into the liquid film J without the upper surface W1 of the substrate W coming into contact with the gas-liquid interface K. Therefore, the upper surface W1 of the substrate W does not come into contact with the gas-liquid interface K in the melting process.
- the upper surface W1 of the substrate W does not come into contact with the gas-liquid interface K in the mounting process, the first supply process, the condensation process, and the melting process. Therefore, the surface tension of the liquid film J does not act on the upper surface W1 of the substrate W substantially. Therefore, the liquid film J can be formed on the upper surface W1 of the substrate W while protecting the upper surface W1 of the substrate W. In other words, the processing liquid can be supplied to the upper surface W1 of the substrate W while protecting the upper surface W1 of the substrate W. Therefore, the substrate processing method can process the substrate W appropriately.
- the substrate W comes into contact with the gas-liquid interface K when the upper surface W1 of the substrate W starts to come into contact with the processing liquid. That is, in the conventional technology, there is a moment when the substrate W comes into contact with the gas-liquid interface K. At this moment, the surface tension of the processing liquid acts on the upper surface W1 of the substrate W. As shown in FIG. Therefore, in the prior art, the upper surface W1 of the substrate W is subjected to relatively large forces.
- the substrate processing method water vapor is condensed to form a first solid film H covering the upper surface W1 of the substrate W, and then the first solid film H is melted to form a liquid film J covering the upper surface W1 of the substrate W. . Therefore, overflow of the processing liquid from the substrate W can be suitably suppressed.
- the amount of processing liquid overflowing from the substrate W is preferably reduced. That is, it is possible to suitably suppress the loss of the treatment liquid. Therefore, the substrate processing method can efficiently form the liquid film J with less processing liquid. That is, the substrate processing method can process the substrate W with a small amount of processing liquid. As a result, the substrate processing method uses relatively little processing liquid. For example, the amount of processing liquid used in the substrate processing method is less than the amount of processing liquid used in the conventional method.
- the condensation process maintains the pressure of the gas G inside the housing 12 at a first pressure P1 at which water vapor can condense. Therefore, the condensation process can suitably suppress the condensation of water vapor.
- the condensation process cools the water vapor. For this reason, in the sublimation process, water vapor is suitably condensed.
- the pressure of the gas G inside the housing 12 is kept at the second pressure P2 at which the first solid film H can be melted. Therefore, the sublimation of the first solid film H can be suitably suppressed in the melting step.
- the melting step heats the first solid film H. Therefore, in the melting step, the first solid film H is preferably melted.
- the sublimation process cools the substrate W.
- the condensation process cools the water vapor through the substrate W.
- FIG. In the condensation process, the upper surface W1 of the substrate W is in contact with water vapor. Therefore, the water vapor is efficiently cooled. Therefore, the condensation process can form the first solid film H efficiently.
- the condensation process cools the substrate W to a first temperature T1 at which water vapor condenses onto the upper surface W1 of the substrate W. Therefore, in the condensation process, water vapor can be suitably condensed (changed) into the first solid film H. In the condensation step, the water vapor is favorably condensed on the first solid film H.
- the melting process heats the substrate W. Therefore, the melting step heats the first solid film H through the substrate W.
- FIG. The upper surface W1 of the substrate W is in contact with the first solid film H in the melting process. Therefore, the first solid film H is efficiently heated. Therefore, the melting process can form the liquid film J efficiently.
- the melting step heats the substrate W to the second temperature T2 at which the first solid film H melts. Therefore, the melting step can suitably melt the first solid film H into the liquid film J.
- the pressure of the gas G inside the housing 12 is lower than the triple point pressure of water. Therefore, in the condensation process, condensation of water vapor can be suitably suppressed.
- the pressure of the gas G inside the housing 12 is higher than the triple point pressure of water. Therefore, in the melting step, sublimation of the first solid film H can be suitably suppressed.
- the substrate processing method includes an adjustment process.
- the adjusting step adjusts the pressure of the gas G inside the housing 12 to the first pressure P1.
- the adjusting step adjusts the temperature of the substrate W to the first temperature T1.
- the conditioning step is performed before the condensation step. Therefore, the sublimation process can be started smoothly. Therefore, the time required for the substrate processing method can be shortened.
- the adjustment process is executed before the first supply process. Therefore, the condensation step can be started immediately after the first supply step is started. Therefore, the time required for the substrate processing method can be further shortened.
- the substrate processing method includes a solidification step.
- the liquid film J is solidified.
- the solidification step forms the second solid film L.
- a second solid film L is formed on the upper surface W1 of the substrate W.
- the liquid film J transforms into a second solid film L in the solidification process.
- the upper surface W1 of the substrate W is in contact with the second solid film L in the solidification step.
- the second solid film L is a solid phase.
- the liquid film J formed in the melting process covers the upper surface W1 of the substrate W.
- the upper surface W1 of the substrate W does not come into contact with the gas G.
- FIG. Therefore, the upper surface W1 of the substrate W does not come into contact with the gas-liquid interface K, and the liquid film J solidifies. Therefore, the upper surface W1 of the substrate W does not come into contact with the gas-liquid interface K in the solidification process.
- the substrate processing method includes a sublimation process.
- the second solid film L is sublimated.
- the second solid film L changes into a gas phase without going through a liquid state. Therefore, when the second solid film L sublimates, the upper surface W1 of the substrate W does not contact the liquid. Therefore, the upper surface W1 of the substrate W does not come into contact with the gas-liquid interface K, and the second solid film L sublimates. Therefore, the upper surface W1 of the substrate W does not come into contact with the gas-liquid interface K in the sublimation process.
- the second solid film leaves from the substrate W as the second solid film L sublimes.
- the substrate W is dried by the sublimation of the second solid film L.
- the upper surface W1 of the substrate W does not contact the gas-liquid interface K in the solidification process and the sublimation process. Therefore, according to the substrate processing method, the substrate W can be dried while the upper surface W1 of the substrate W is properly protected. Therefore, the substrate processing method can process the substrate W more appropriately.
- the pressure of the gas G inside the housing 12 is kept at the third pressure P3 at which the liquid film J can be solidified. Therefore, the evaporation of the liquid film J can be suitably suppressed in the solidification step.
- the solidification process cools the liquid film J. Therefore, in the solidification step, the liquid film J is suitably solidified.
- the pressure of the gas G inside the housing 12 is maintained at a fourth pressure P4 at which the second solid film L can be sublimated. Therefore, the melting of the second solid film L can be suitably suppressed in the sublimation process.
- the sublimation process heats the second solid film L. Therefore, in the sublimation step, the second solid film L sublimates favorably.
- the solidification process cools the substrate W.
- the solidification step cools the liquid film J through the substrate W.
- the upper surface W1 of the substrate W is in contact with the liquid film J in the solidification process. Therefore, the liquid film J is efficiently cooled. Therefore, the solidification step can form the second solid film L efficiently.
- the solidification step cools the substrate W to the third temperature T3 at which the liquid film J solidifies. Therefore, the solidification process can solidify the liquid film J suitably.
- the substrate W is heated in the sublimation process. Therefore, the second solid film L is heated through the substrate W in the sublimation process.
- the upper surface W1 of the substrate W is in contact with the second solid film L in the sublimation process. Therefore, the second solid film L is efficiently heated. Therefore, the sublimation process can sublimate the second solid film L efficiently.
- the substrate W is heated to the fourth temperature T4 at which the second solid film L sublimes. Therefore, the sublimation process can sublimate the second solid film L favorably.
- the sublimation process discharges the gas G inside the housing 12 to the outside of the housing 12 . Therefore, in the sublimation step, the second solid film L sublimates more favorably.
- the second solid film L can be more preferably removed from the substrate W in the sublimation step.
- the pressure of the gas G inside the housing 12 is higher than the triple point pressure of water. Therefore, in the solidification step, evaporation of the liquid film J can be suitably suppressed.
- the pressure of the gas G inside the housing 12 is lower than the triple point pressure of water. Therefore, in the sublimation process, the melting of the second solid film L can be suitably suppressed.
- the substrate processing method includes a second supply step.
- a 2nd supply process supplies ammonia gas.
- Ammonia gas is in the gas phase. Therefore, the upper surface W1 of the substrate W does not come into contact with the gas-liquid interface K in the second supply step. Therefore, in the second supply step, the ammonia gas can be supplied to the housing 12 while the upper surface W1 of the substrate W is properly protected.
- the liquid film J dissolves the ammonia gas. Therefore, the liquid film J originates not only from water vapor but also from ammonia gas.
- the composition of the liquid film J is derived not only from water vapor but also from ammonia gas. Therefore, the liquid film J can process the substrate W more appropriately.
- the substrate processing method includes a charging process.
- the charging step the second solid film L is charged. Therefore, the particles B contained in the second solid film L can be easily charged. Specifically, when the particles B are exposed from the second solid film L in the sublimation process, the particles B can be easily charged.
- the second solid film L is negatively charged. Therefore, the particle B is also negatively charged. Therefore, electrostatic repulsion is generated between the negatively charged second solid film L and the negatively charged particles B. FIG. Therefore, particles B can be preferably removed.
- the substrate processing method includes a collection step.
- the collecting step collects the charged particles B.
- FIG. Therefore, the collecting step can preferably remove the charged particles B from the substrate W.
- the substrate W has a pattern R.
- the pattern R is formed on the upper surface W1 of the substrate W.
- the substrate processing method processes the substrate W without the upper surface W1 of the substrate W coming into contact with the gas-liquid interface K. FIG. Therefore, the pattern R does not come into contact with the gas-liquid interface K. Therefore, the substrate processing method can appropriately process the substrate W while protecting the pattern R.
- the substrate processing method can supply the processing liquid to the pattern R while suitably suppressing the pattern R from collapsing.
- the substrate processing method can suitably prevent the pattern R from collapsing and supply the processing liquid to the pattern R.
- the substrate processing method can supply the processing liquid to the pattern R while suitably suppressing collapse of the protrusions W2.
- the substrate processing method can supply the processing liquid to the pattern R while suitably preventing the protrusion W2 from collapsing.
- the substrate processing apparatus 1 includes a housing 12 and a pressure adjustment section 20.
- the pressure adjuster 20 adjusts the pressure of the gas G inside the housing 12 .
- the housing 12 can be sealed. Therefore, the pressure adjustment unit 20 can adjust the pressure of the gas G inside the housing 12 appropriately.
- the substrate processing apparatus 1 includes a stage 15, a supply section 17a, a temperature adjustment section 31, and a control section 10.
- the stage 15 is installed inside the housing 12 .
- a stage 15 supports the substrate W.
- the stage 15 mounts the substrate W in a substantially horizontal posture.
- the supply unit 17 a supplies water vapor into the housing 12 .
- the temperature adjuster 31 adjusts the temperature of the substrate W placed on the stage 15 .
- the control unit 10 controls the supply unit 17 a, the pressure adjustment unit 20 and the temperature adjustment unit 31 .
- the control unit 10 controls the supply unit 17 a , the supply unit 17 c , the exhaust unit 25 and the temperature adjustment unit 31 .
- the control unit 10 supplies water vapor to the housing 12 from the supply unit 17a.
- the supply unit 17a supplies water vapor to the housing 12
- the upper surface W1 of the substrate W does not contact the gas-liquid interface K. As shown in FIG.
- the control unit 10 condenses water vapor by controlling the pressure adjustment unit 20 and the temperature adjustment unit 31 to form the first solid film H covering the upper surface W1 of the substrate W placed on the stage 15 . Therefore, when the water vapor transforms into the first solid film H, the upper surface W1 of the substrate W does not come into contact with the gas-liquid interface K.
- FIG. 1 A block diagram illustrating an exemplary computing environment in accordance with the present disclosure.
- the control unit 10 melts the first solid film H by controlling the pressure adjustment unit 20 and the temperature adjustment unit 31 to form a liquid film J covering the upper surface W1 of the substrate W placed on the stage 15. . Therefore, when the first solid film H changes to the liquid film J, the upper surface W1 of the substrate W does not come into contact with the gas-liquid interface K.
- FIG. 1
- control unit 10 controls the supply unit 17a, the pressure adjustment unit 20, and the temperature adjustment unit 31 so as to supply water vapor to the housing 12, condense the water vapor, and melt the first solid film H. do. Therefore, the substrate processing apparatus 1 can form the liquid film J on the upper surface W1 of the substrate W without the upper surface W1 of the substrate W coming into contact with the gas-liquid interface K. Therefore, the substrate processing apparatus 1 can process the substrate W appropriately.
- the substrate processing apparatus 1 forms the first solid film H covering the upper surface W1 of the substrate W by condensing water vapor.
- the substrate processing apparatus 1 melts the first solid film H to form a liquid film J covering the upper surface W1 of the substrate W.
- overflow of the processing liquid from the substrate W can be suitably suppressed.
- the amount of processing liquid overflowing from the substrate W is preferably reduced. That is, it is possible to suitably suppress the loss of the treatment liquid. Therefore, the substrate processing apparatus 1 can efficiently form the liquid film J with less processing liquid. That is, the substrate processing apparatus 1 can process the substrate W with a small amount of processing liquid.
- the amount of processing liquid used in the substrate processing apparatus 1 is relatively small. For example, the amount of processing liquid used in the substrate processing apparatus 1 is less than the amount of processing liquid used in the conventional apparatus.
- the control unit 10 solidifies the liquid film J by controlling the pressure adjustment unit 20 and the temperature adjustment unit 31 to form the second solid film L on the upper surface W1 of the substrate W placed on the stage 15. . Therefore, when the liquid film J changes to the second solid film L, the upper surface W1 of the substrate W does not come into contact with the gas-liquid interface K.
- FIG. 1
- the control unit 10 sublimates the second solid film L by controlling the pressure adjustment unit 20 and the temperature adjustment unit 31 . Therefore, the upper surface W1 of the substrate W does not come into contact with the gas-liquid interface K when the second solid film L sublimes.
- control unit 10 controls the pressure adjustment unit 20 and the temperature adjustment unit 31 so that the liquid film J is solidified and the second solid film L is sublimated. Therefore, the substrate processing apparatus 1 can remove the liquid film J from the upper surface W1 of the substrate W without the upper surface W1 of the substrate W coming into contact with the gas-liquid interface K.
- the substrate processing apparatus 1 can remove the second solid film L from the upper surface W1 of the substrate W without the upper surface W1 of the substrate W coming into contact with the gas-liquid interface K. Therefore, the substrate processing apparatus 1 can dry the substrate W while protecting the upper surface W1 of the substrate W. FIG. Therefore, the substrate processing apparatus 1 can process the substrate W more appropriately.
- the substrate processing apparatus 1 includes a supply section 17b.
- the supply unit 17b supplies the housing 12 with ammonia gas.
- the control unit 10 supplies the ammonia gas into the housing 12 and causes the liquid film J to dissolve the ammonia gas by controlling the supply unit 17b.
- the substrate processing apparatus 1 can adjust the components of the liquid film J without the upper surface W1 of the substrate W coming into contact with the gas-liquid interface K.
- FIG. The substrate processing apparatus 1 can adjust the composition of the liquid film J without the upper surface W1 of the substrate W coming into contact with the gas-liquid interface K. Therefore, the substrate processing apparatus 1 can process the substrate W more appropriately while protecting the upper surface W1 of the substrate W.
- the temperature adjustment unit 31 is attached to the stage 15. Therefore, the temperature adjuster 31 can suitably adjust the temperature of the substrate W placed on the stage 15 .
- the substrate processing apparatus 1 includes an electron emitting section 41 .
- the electron emitter 41 emits electrons into the housing 12 . Therefore, the second solid film L can be suitably charged.
- the substrate processing apparatus 1 includes electrodes 46 . Electrode 46 is installed within housing 12 . A positive voltage is applied to the electrode 46 . Therefore, the electrode 46 can preferably collect the negatively charged particles B. FIG.
- the present invention is not limited to the embodiments, and can be modified as follows.
- one kind of gas was condensed in the condensation process.
- the condensation process condensed a gas consisting of one component (water vapor).
- multiple types of gases may be condensed.
- a gas containing multiple components may be sublimated.
- at least one of water vapor, ammonia gas, methylamine gas, dimethylamine gas, trimethylamine gas, and hydrogen peroxide gas may be sublimated.
- the liquid film J derived from at least one of water vapor, ammonia gas, methylamine gas, dimethylamine gas, trimethylamine gas, and hydrogen peroxide gas can be formed.
- the substrate W can be rinsed.
- the substrate W can be cleaned by the liquid film J derived from at least one of ammonia gas, methylamine gas, dimethylamine gas, and trimethylamine gas.
- the particles B can be preferably removed from the upper surface W1 of the substrate W by the liquid film J.
- the substrate W can be oxidized by the liquid film J derived from the hydrogen peroxide gas.
- the upper surface W1 of the substrate W can be oxidized by the liquid film J.
- the multiple types of gases may condense at the same time.
- the multiple types of gases do not have to condense at the same time.
- the multiple gases may be condensed in the same condensation process.
- each of the multiple gases may be sublimated in different sublimation processes.
- FIG. 16 is a flow chart showing the procedure of the substrate processing method of the modified embodiment.
- the same steps as in the embodiment are denoted by the same reference numerals, and detailed description thereof will be omitted.
- the substrate processing method of the modified embodiment differs from the substrate processing method of the embodiment in steps S4-S6.
- step S4 water vapor and ammonia gas are supplied to the housing 12.
- water vapor and ammonia gas are supplied to the housing 12 at the same time. Therefore, the gas G inside the housing 12 contains water vapor and ammonia gas.
- the supply unit 17a and the supply unit 17b may supply water vapor and ammonia gas to the housing 12, respectively.
- the configuration of the supply unit 17 a may be changed so as to supply a mixed gas of water vapor and ammonia gas to the housing 12 .
- step S5 water vapor and ammonia gas are condensed to form the first solid film H.
- the pressure of the gas G in the housing 12 is adjusted to the first pressure P1.
- the substrate W placed on the stage 15 is adjusted to the first temperature T1.
- the first pressure P1 and the first temperature T1 are appropriately selected and changed according to the type of gas to be condensed.
- the first pressure P1 and the first temperature T1 are appropriately selected and changed according to the components of the gas to be condensed.
- the first pressure P1 and the first temperature T1 are appropriately selected and changed according to the composition of the gas to be condensed.
- the first pressure P1 is a pressure at which water vapor and ammonia gas can condense.
- the first temperature T1 is the temperature at which water vapor and ammonia gas condense under the first pressure P1.
- the first solid film H melts and becomes a liquid film J.
- the liquid film J is formed of a treatment liquid derived from water vapor and ammonia gas. That is, the liquid film J contains aqueous ammonia. Therefore, in the melting process, the liquid film J can be used to clean the substrate W.
- the melting step can separate the particles B from the top surface W1 of the substrate W.
- the pressure of the gas G in the housing 12 is adjusted to the second pressure P2.
- the substrate W placed on the stage 15 is adjusted to the second temperature T2.
- the second pressure P2 and the second temperature T2 are appropriately selected and changed according to the components of the first solid film H.
- the second pressure P2 and the second temperature T2 are appropriately selected and changed according to the composition of the first solid film H.
- the third pressure P3 and the third temperature T3 in the solidification process are also appropriately selected and changed according to the components of the liquid film J.
- the third pressure P3 and the third temperature T3 in the solidification step are also appropriately selected and changed according to the composition of the liquid film J.
- the fourth pressure P4 and the fourth temperature T4 in the sublimation step are also appropriately selected and changed according to the components of the second solid film L.
- the fourth pressure P4 and the fourth temperature T4 in the sublimation step are also appropriately selected and changed according to the composition of the second solid film L.
- the second supply step (step S7) may be omitted.
- the supply section 17a and the supply section 17b are examples of the first supply section of the present invention.
- Water vapor and ammonia gas are examples of the first process gas in the present invention.
- FIG. 17 is a flow chart showing the procedure of the substrate processing method of the modified embodiment.
- the same steps as in the embodiment are denoted by the same reference numerals, and detailed description thereof will be omitted.
- the substrate processing method of the modified embodiment differs from the substrate processing method of the embodiment in steps S4-S6.
- the substrate processing method of the modified embodiment includes steps S4a and S4b instead of step S4.
- the substrate processing method of the modified embodiment includes steps S5a and S5b instead of step S5.
- step S4a water vapor is supplied to the housing 12.
- step S5a water vapor condenses.
- FIG. 18 is a diagram schematically showing the upper surface W1 of the substrate W in the solidification process of step S5a.
- the water vapor contained in the gas G inside the housing 12 changes to the first solid film Ha without passing through liquid.
- Ammonia gas is supplied to the housing 12 in the first supply step of step S4b.
- step S5b After the condensation process of step S5a, the condensation process of step S5b is performed. In the condensation process of step S5b, the ammonia gas is condensed.
- FIG. 19 is a diagram schematically showing the upper surface W1 of the substrate W in the condensation process of step S5b.
- the ammonia gas contained in the gas G inside the housing 12 changes to the first solid film Hb without passing through liquid.
- the first solid film Hb is laminated on the first solid film Ha.
- the entire top surface W1 of the substrate W is covered with the first solid film Ha and the first solid film Hb.
- the water vapor condenses first.
- the ammonia gas condenses.
- the ammonia gas may be condensed first, and then the water vapor may be condensed.
- the entire first solid film Ha and first solid film Hb are melted to form the liquid film J.
- the liquid film J is formed of a treatment liquid derived from water vapor and ammonia gas. That is, the liquid film J contains aqueous ammonia. Therefore, in the melting process, the liquid film J can be used to clean the substrate W.
- the melting step can separate the particles B from the top surface W1 of the substrate W.
- the second supply step (step S7) may be omitted.
- the supply section 17a and the supply section 17b are examples of the first supply section of the present invention.
- Water vapor and ammonia gas are examples of the first process gas in the present invention.
- one type of gas was dissolved in the liquid film J in the second supply step.
- gas composed of one component was dissolved in the liquid film J in the second supply step.
- multiple types of gases may be dissolved in the liquid film J in the second supply step.
- gas containing multiple components may be dissolved in the liquid film J in the second supply step.
- at least one of water vapor, ammonia gas, methylamine gas, dimethylamine gas, trimethylamine gas, and hydrogen peroxide gas may dissolve in the liquid film J in the second supply step.
- the liquid film J derived from at least one of water vapor, ammonia gas, methylamine gas, dimethylamine gas, trimethylamine gas, and hydrogen peroxide gas can be formed.
- the multiple types of gases may be dissolved in the liquid film J at the same time.
- the multiple types of gases do not have to be dissolved in the liquid film J at the same time.
- the multiple types of gases may be dissolved in the liquid film J in the same second supply step.
- a plurality of types of gases may be dissolved in the liquid film J in different second supply steps.
- FIG. 20 is a diagram showing the configuration of the processing unit 11 according to the modified embodiment.
- detailed description is abbreviate
- the processing unit 11 includes a supply section 17d in addition to the supply sections 17a to 17c.
- the supply portion 17d is also connected to the housing 12 .
- the supply portion 17 d also communicates with the housing 12 .
- the supply unit 17 d supplies gas to the housing 12 .
- the gas supplied by the supply unit 17d is hydrogen peroxide gas. Hydrogen peroxide gas is in the gas phase.
- the supply unit 17d is connected to the supply source 21d.
- the supply portion 17d communicates with the supply source 21d.
- Supply source 21d delivers hydrogen peroxide gas to supply 17d.
- Supply source 21d may be an element of substrate processing apparatus 1 .
- the supply source 21 d may not be an element of the substrate processing apparatus 1 .
- the supply unit 17d is connected to the blowout unit 23.
- the supply portion 17 d communicates with the blowout portion 23 .
- the supply unit 17d includes a pipe 18d and a valve 19d. 19 d of valves are provided in 18 d of piping.
- the tubing 18d has a first end connected to the source 21d. A first end of the pipe 18d communicates with the supply source 21d.
- the pipe 18 d has a second end connected to the blowout portion 23 . A second end of the pipe 18 d communicates with the blowout portion 23 .
- the substrate processing method of this modified embodiment differs from the substrate processing method of the embodiment in step S7.
- step S7 ammonia gas and hydrogen peroxide gas are supplied to the housing 12.
- ammonia gas and hydrogen peroxide gas are supplied to the housing 12 at the same time. Therefore, the gas G inside the housing 12 contains ammonia gas and hydrogen peroxide gas.
- the supply unit 17b and the supply unit 17d supply ammonia gas and hydrogen peroxide gas to the housing 12, respectively.
- the liquid film J dissolves ammonia gas and hydrogen peroxide gas.
- the liquid film J contains ammonia water and hydrogen peroxide water. Since the liquid film J contains ammonia water, the liquid film J can clean the substrate W.
- the liquid film J can preferably remove the particles B from the upper surface W1 of the substrate W.
- the liquid film J contains the hydrogen peroxide solution, the liquid film J can oxidize the substrate W. As shown in FIG. For example, the liquid film J can oxidize the top surface W1 of the substrate W.
- the supply section 17b and the supply section 17d are examples of the second supply section of the present invention.
- Ammonia gas and hydrogen peroxide gas are examples of the second process gas in the present invention.
- FIG. 21 is a flow chart showing the procedure of the substrate processing method of the modified embodiment.
- the same steps as in the embodiment are denoted by the same reference numerals, and detailed description thereof will be omitted.
- the substrate processing method of the modified embodiment includes steps S7a and S7b instead of step S7.
- step S7a hydrogen peroxide gas is supplied to the housing 12.
- the liquid film J melts the hydrogen peroxide gas.
- the liquid film J contains the hydrogen peroxide solution.
- the liquid film J can oxidize the substrate W. As shown in FIG. For example, the liquid film J can oxidize the top surface W1 of the substrate W.
- step S7b After the second supply process of step S7a, the second supply process of step S7b is performed.
- Ammonia gas is supplied to the housing 12 in the second supply step of step S7b.
- the liquid film J melts the ammonia gas.
- the liquid film J contains aqueous ammonia in addition to aqueous hydrogen peroxide. Since the liquid film J contains ammonia water, the liquid film J can further clean the substrate W.
- the liquid film J can preferably remove the particles B from the upper surface W1 of the substrate W.
- the hydrogen peroxide gas is dissolved in the liquid film J first.
- the ammonia gas is dissolved in the liquid film J.
- the ammonia gas may be dissolved in the liquid film J first, and then the hydrogen peroxide gas may be dissolved in the liquid film J.
- the supply section 17b and the supply section 17d are examples of the second supply section of the present invention.
- Ammonia gas and hydrogen peroxide gas are examples of the second process gas in the present invention.
- the embodiment includes a second supply step.
- the second supply step may be omitted.
- the second supply step may be omitted as in a modified embodiment shown in FIG. 16 or 17.
- FIG. 16 The embodiment includes a second supply step.
- the adjustment process is executed before the first supply process.
- the adjustment step may be performed after the first supply step.
- the conditioning step may be performed after the first feeding step and before the sublimation step.
- the substrate processing method includes an adjustment process.
- the adjustment process may be omitted.
- either the first supply step or the sublimation step may perform an operation equivalent to the adjustment step.
- the pressure of the gas G in the housing 12 and the temperature of the substrate W placed on the stage 15 may be adjusted.
- the pressure of the gas G in the housing 12 and the temperature of the substrate W placed on the stage 15 may be adjusted.
- the solidification step solidifies the liquid film J while suppressing evaporation of the liquid film J.
- the solidification step may allow only a portion of the liquid film J to evaporate.
- the liquid film J may be solidified while allowing the ammonia to evaporate.
- the liquid film J may be solidified while allowing the ammonia to evaporate and suppressing the water from evaporating.
- the embodiment includes a collection step. However, it is not limited to this.
- the collecting step may be omitted.
- the substrate processing method may not include a collection step.
- a repulsive force can be generated between the negatively charged second solid film L and the negatively charged particles B only by the charging process. Therefore, the particles B can be scattered from the second solid film L. Therefore, the particles B can be preferably removed from the substrate W even if the collection step is omitted.
- the embodiment includes a charging step. However, it is not limited to this.
- the charging step may be omitted.
- the substrate processing method may not include the charging step.
- the charging step may be omitted as appropriate.
- the charging step may be omitted.
- the charging step may be omitted if the substrate processing method does not perform a cleaning process on the substrate W.
- the supply unit 17a supplied water vapor to the housing 12.
- the supply unit 17 a may supply at least one of water vapor, ammonia gas, methylamine gas, dimethylamine gas, trimethylamine gas, and hydrogen peroxide gas to the housing 12 .
- the supply portion 17b may also be changed in the same manner as the supply portion 17a.
- the supply unit 17a supplies one type of gas to the housing 12.
- the supply part 17a supplied the gas consisting of one component to the housing 12 .
- the supply unit 17a may supply a mixed gas containing two or more types of gases to the housing 12 .
- the supply unit 17 a may supply a mixed gas containing multiple components to the housing 12 .
- the supply unit 17 a may supply a mixed gas containing at least two of water vapor, ammonia gas, methylamine gas, dimethylamine gas, trimethylamine gas, and hydrogen peroxide gas to the housing 12 .
- the supply portion 17b may also be changed in the same manner as the supply portion 17a.
- the supply units 17a, 17b, and 17c are all connected to the common blowout unit 23.
- the supply parts 17a, 17b, 17c all communicated with a common blowout part 23.
- the supply units 17a, 17b, and 17c may be connected to different blowout units, respectively.
- Each of the supply portions 17a, 17b, and 17c may communicate with different blowout portions.
- the temperature adjustment section 31 includes a cooling pipe 33 and an electric heater 37 .
- the configuration of the temperature adjustment unit 31 may be changed as appropriate.
- the temperature adjuster 31 may include a Peltier element that generates heat and absorbs heat.
- the temperature adjustment unit 31 may include thermoelectric elements that generate heat and absorb heat.
- the substrate W has the pattern R formed on the upper surface W1 of the substrate W.
- the substrate W may not have the pattern R.
- the pattern R does not have to be formed on the upper surface W1 of the substrate W.
- the substrate W may have a top surface W1 on which the pattern R is not formed.
- the substrate processing method and the substrate processing apparatus 1 described above can form the liquid film J on the upper surface W1 of the substrate W while protecting the upper surface W1 of the substrate W. FIG. Therefore, also in these modified embodiments, the substrate W can be appropriately processed by the substrate processing method and the substrate processing apparatus 1 .
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Cleaning Or Drying Semiconductors (AREA)
Abstract
The present invention pertains to a substrate processing method and a substrate processing device. The substrate processing method for processing a substrate comprises a placement step, a first supply step, a deposition step, and a melting step. In the placement step, the substrate is placed in a substantially horizontal orientation inside a casing. In the first supply step, a first processing gas is supplied into the casing. In the deposition step, the first processing gas is deposited to form a first solid film covering the upper surface of the substrate. In the melting step, the first solid film is melted to form a liquid film covering the upper surface of the substrate.
Description
本発明は、基板を処理する基板処理方法および基板処理装置に関する。基板は、例えば、半導体ウエハ、液晶ディスプレイ用基板、有機EL(Electroluminescence)用基板、FPD(Flat Panel Display)用基板、光ディスプレイ用基板、磁気ディスク用基板、光ディスク用基板、光磁気ディスク用基板、フォトマスク用基板、太陽電池用基板である。
The present invention relates to a substrate processing method and a substrate processing apparatus for processing substrates. Substrates include, for example, semiconductor wafers, liquid crystal display substrates, organic EL (Electroluminescence) substrates, FPD (Flat Panel Display) substrates, optical display substrates, magnetic disk substrates, optical disk substrates, magneto-optical disk substrates, They are substrates for photomasks and substrates for solar cells.
特許文献1は、基板処理方法および基板処理装置を開示する。基板処理装置は、スピンベースと電動モータとノズルを備える。スピンベースは、基板を略水平姿勢で保持する。電動モータは、スピンベースを回転する。ノズルは、スピンベースに保持される基板に処理液を吐出する。処理液は、例えば、SC1である。SC1は、アンモニア水と過酸化水素水と脱イオン水の混合液である。
Patent Document 1 discloses a substrate processing method and a substrate processing apparatus. A substrate processing apparatus includes a spin base, an electric motor, and a nozzle. The spin base holds the substrate in a substantially horizontal posture. An electric motor rotates the spin base. The nozzle ejects the processing liquid onto the substrate held by the spin base. The processing liquid is SC1, for example. SC1 is a mixture of aqueous ammonia, hydrogen peroxide, and deionized water.
基板処理方法は、SC1供給工程を備える。SC1供給工程では、電動モータはスピンベースに保持される基板を回転させ、ノズルは基板にSC1を吐出する。これにより、SC1は基板に供給される。
The substrate processing method includes an SC1 supply step. In the SC1 supply step, the electric motor rotates the substrate held by the spin base, and the nozzle ejects SC1 onto the substrate. SC1 is thereby supplied to the substrate.
従来の基板処理方法および基板処理装置であっても、基板を適切に処理できない場合があった。例えば、基板が基板の上面に形成されるパターンを有する場合、従来の基板処理方法および基板処理装置であっても、パターンが倒壊する場合があった。例えば、パターンが微細であるとき、従来の基板処理方法および基板処理装置であっても、パターンの倒壊を十分に抑制できない場合があった。なお、従来の基板処理方法は、例えば、特許文献1に開示される基板処理方法である。従来の基板処理装置は、例えば、特許文献1に開示される基板処理装置である。本明細書では、従来の基板処理方法は、適宜に、「従来方法」と略記される。従来の基板処理装置は、適宜に、「従来装置」と略記される。従来方法と従来装置を特に区別しない場合、従来方法と従来装置は、適宜に、「従来技術」と略記される。
Even with conventional substrate processing methods and substrate processing apparatuses, substrates could not be processed properly in some cases. For example, when a substrate has a pattern formed on the upper surface of the substrate, the pattern may collapse even with the conventional substrate processing method and substrate processing apparatus. For example, when the pattern is fine, even the conventional substrate processing method and substrate processing apparatus may not be able to sufficiently suppress the collapse of the pattern. Incidentally, the conventional substrate processing method is, for example, the substrate processing method disclosed in Japanese Unexamined Patent Application Publication No. 2002-200012. A conventional substrate processing apparatus is, for example, the substrate processing apparatus disclosed in Patent Document 1. As used herein, conventional substrate processing methods are arbitrarily abbreviated as "conventional methods." Conventional substrate processing equipment is appropriately abbreviated as "conventional equipment". Where no distinction is made between conventional methods and conventional devices, conventional methods and conventional devices are abbreviated as "prior art" as appropriate.
また、従来の基板処理方法および基板処理装置は、基板を回転させ、ノズルから基板に処理液を吐出する。このとき、基板に吐出された処理液の一部は、基板上からあふれてしまう。そのため、基板を処理するために多量の処理液を基板に供給する必要があった。その結果、従来方法および従来装置では、処理液の使用量は比較的に多かった。
Further, the conventional substrate processing method and substrate processing apparatus rotate the substrate and discharge the processing liquid from the nozzle onto the substrate. At this time, part of the treatment liquid discharged onto the substrate overflows the substrate. Therefore, it has been necessary to supply a large amount of processing liquid to the substrate in order to process the substrate. As a result, the conventional method and apparatus used a relatively large amount of processing liquid.
本発明は、このような事情に鑑みてなされたものであって、基板を適切に処理できる基板処理方法および基板処理装置を提供することを目的とする。
The present invention has been made in view of such circumstances, and an object of the present invention is to provide a substrate processing method and a substrate processing apparatus capable of appropriately processing substrates.
本発明は、これらの知見に基づいて、さらに鋭意検討することによって得られたものであり、次のような構成をとる。すなわち、本発明は、基板を処理する基板処理方法であって、筐体内において基板を略水平姿勢で載置する載置工程と、前記筐体に第1処理ガスを供給する第1供給工程と、前記第1処理ガスを凝華させて、基板の上面を覆う第1固体膜を形成する凝華工程と、前記第1固体膜を融解させて、基板の前記上面を覆う液膜を形成する融解工程と、を備える基板処理方法である。
The present invention was obtained through further intensive study based on these findings, and has the following configuration. That is, the present invention is a substrate processing method for processing a substrate, comprising: a placing step of placing the substrate in a substantially horizontal posture in a housing; and a first supplying step of supplying a first processing gas to the housing. a condensation step of condensing the first process gas to form a first solid film covering the top surface of the substrate; and melting the first solid film to form a liquid film covering the top surface of the substrate. and a melting step.
基板処理方法は、載置工程と第1供給工程を備える。載置工程では、筐体内において、基板は略水平姿勢で載置される。第1供給工程は、第1処理ガスを筐体に供給する。このため、載置工程および第1供給工程では、基板の上面は、気体と液体の間に形成される界面と接しない。以下では、気体と液体の間に形成される界面を、適宜に「気液界面」と呼ぶ。
The substrate processing method includes a placement step and a first supply step. In the mounting step, the substrate is mounted in a substantially horizontal posture within the housing. The first supply step supplies the first processing gas to the housing. Therefore, in the placing step and the first supplying step, the upper surface of the substrate does not come into contact with the interface formed between the gas and the liquid. In the following, the interface formed between the gas and the liquid is appropriately referred to as the "gas-liquid interface".
基板処理方法は、凝華工程を備える。凝華工程では、第1処理ガスは筐体内において凝華する。凝華工程では、第1処理ガスは、液体を経ずに、第1固体膜に変わる。第1固体膜は、基板の上面を覆う。したがって、凝華工程では、基板の上面は気液界面と接しない。
The substrate processing method includes a sublimation process. In the condensing step, the first process gas condenses within the housing. In the condensation process, the first process gas is transformed into a first solid film without going through a liquid. A first solid film covers the top surface of the substrate. Therefore, in the condensation process, the top surface of the substrate does not contact the gas-liquid interface.
基板処理方法は、融解工程を備える。融解工程では、第1固体膜は融解する。融解工程では、第1固体膜は液膜に変わる。液膜は、基板の上面を覆う。上述の通り、第1固体膜は、基板の上面を覆う。したがって、融解工程では、基板の上面は気液界面と接しない。
The substrate processing method includes a melting step. In the melting step, the first solid film is melted. In the melting step, the first solid film transforms into a liquid film. A liquid film covers the top surface of the substrate. As mentioned above, the first solid film covers the top surface of the substrate. Therefore, the upper surface of the substrate does not contact the gas-liquid interface during the melting process.
まとめると、載置工程と第1供給工程と凝華工程と融解工程では、基板の上面は気液界面と接しない。よって、基板処理方法は、基板の上面を保護しつつ、基板の上面に液膜を形成できる。したがって、基板処理方法は、基板を適切に処理できる。
In summary, the upper surface of the substrate does not come into contact with the gas-liquid interface in the mounting process, the first supply process, the condensation process, and the melting process. Therefore, the substrate processing method can form a liquid film on the upper surface of the substrate while protecting the upper surface of the substrate. Therefore, the substrate processing method can properly process the substrate.
さらに、基板処理方法は、第1処理ガスを凝華させて基板の上面を覆う第1固体膜を形成した後、第1固体膜を融解させて基板の上面を覆う液膜を形成する。このため、基板上から処理液があふれることを好適に抑制できる。すなわち、処理液のロスを好適に抑えることができる。よって、基板処理方法は、より少ない処理液で、液膜を効率良く形成できる。すなわち、基板処理方法は、基板を少量の処理液で処理できる。その結果、基板処理方法では、処理液の使用量は比較的に少ない。例えば、基板処理方法における処理液の使用量は、従来方法における処理液の使用量よりも少ない。
Further, the substrate processing method condenses the first processing gas to form a first solid film covering the upper surface of the substrate, and then melts the first solid film to form a liquid film covering the upper surface of the substrate. Therefore, it is possible to suitably prevent the processing liquid from overflowing from the substrate. That is, it is possible to suitably suppress the loss of the treatment liquid. Therefore, the substrate processing method can efficiently form a liquid film with a smaller amount of processing liquid. That is, the substrate processing method can process the substrate with a small amount of processing liquid. As a result, the substrate processing method uses relatively little processing liquid. For example, the amount of processing liquid used in the substrate processing method is less than the amount of processing liquid used in the conventional method.
上述の基板処理方法において、前記凝華工程は、前記筐体内の気体の圧力を前記第1処理ガスが凝華可能な圧力に保った状態で、前記第1処理ガスを冷却し、前記融解工程は、前記筐体内の気体の圧力を前記第1固体膜が融解可能な圧力に保った状態で、前記第1固体膜を加熱することが好ましい。凝華工程は、筐体内の気体の圧力を第1処理ガスが凝華可能な圧力に保つ。このため、第1処理ガスが凝縮することを、凝華工程は好適に抑制できる。凝華工程は、第1処理ガスを冷却する。このため、凝華工程では、第1処理ガスは好適に凝華する。融解工程は、筐体内の気体の圧力を第1固体膜が融解可能な圧力に保つ。このため、第1固体膜が昇華することを、融解工程は好適に抑制できる。融解工程は、第1固体膜を加熱する。このため、融解工程では、第1固体膜は好適に融解する。
In the substrate processing method described above, the condensation step includes cooling the first processing gas while maintaining the pressure of the gas in the housing at a pressure at which the first processing gas can condense, and the melting step. Preferably, the first solid film is heated while the pressure of the gas in the housing is maintained at a pressure at which the first solid film can be melted. The condensation step maintains the pressure of the gas within the housing at a pressure at which the first process gas can be condensed. For this reason, the condensation process can suitably suppress the first process gas from condensing. The condensation process cools the first process gas. Therefore, in the sublimation process, the first process gas is suitably sublimated. The melting step maintains the pressure of the gas within the housing at a pressure at which the first solid film can be melted. Therefore, the melting step can suitably suppress the sublimation of the first solid film. The melting step heats the first solid film. Therefore, in the melting step, the first solid film is preferably melted.
上述の基板処理方法において、前記凝華工程は、前記第1処理ガスが基板の前記上面上に凝華する温度まで、基板を冷却し、前記融解工程は、前記第1固体膜が融解する温度まで、前記基板を加熱することが好ましい。凝華工程は、基板を介して第1処理ガスを冷却する。凝華工程では、基板の上面は第1処理ガスと接する。よって、凝華工程は、第1固体膜を基板の上面上に効率良く形成できる。凝華工程は、第1処理ガスが基板の上面上に凝華する温度まで、基板を冷却する。よって、凝華工程は、第1処理ガスを第1固体膜に好適に凝華できる。凝華工程では、第1処理ガスは第1固体膜に好適に凝華する。融解工程は、基板を介して第1固体膜を加熱する。融解工程では、基板の上面は第1固体膜と接する。よって、融解工程は、液膜を効率良く形成できる。融解工程は、第1固体膜が融解する温度まで、基板を加熱する。よって、融解工程は、第1固体膜を液膜に好適に融解できる。
In the substrate processing method described above, the condensation step cools the substrate to a temperature at which the first process gas condenses onto the top surface of the substrate, and the melting step cools the substrate to a temperature at which the first solid film melts. Preferably, the substrate is heated up to . The condensation step cools the first process gas through the substrate. In the condensation process, the top surface of the substrate is in contact with the first process gas. Therefore, the condensation process can efficiently form the first solid film on the upper surface of the substrate. The condensation step cools the substrate to a temperature at which the first process gas condenses onto the top surface of the substrate. Therefore, the condensation process can favorably condense the first process gas into the first solid film. In the condensing step, the first process gas preferably condenses into the first solid film. The melting step heats the first solid film through the substrate. In the melting step, the top surface of the substrate is in contact with the first solid film. Therefore, the melting process can efficiently form a liquid film. The melting step heats the substrate to a temperature at which the first solid film melts. Therefore, the melting step can suitably melt the first solid film into the liquid film.
上述の基板処理方法において、前記第1処理ガスは、水蒸気、アンモニアガス、メチルアミンガス、ジメチルアミンガス、トリメチルアミンガス、および、過酸化水素ガスの少なくともいずれかを含むことが好ましい。上述の通り、液膜は、第1処理ガスに由来する。よって、液膜は、水、アンモニア、メチルアミン、ジメチルアミン、トリメチルアミン、および、過酸化水素の少なくともいずれかを含む。したがって、液膜は基板を適切に処理できる。
In the substrate processing method described above, the first processing gas preferably contains at least one of water vapor, ammonia gas, methylamine gas, dimethylamine gas, trimethylamine gas, and hydrogen peroxide gas. As noted above, the liquid film originates from the first process gas. Therefore, the liquid film contains at least one of water, ammonia, methylamine, dimethylamine, trimethylamine, and hydrogen peroxide. Therefore, the liquid film can properly treat the substrate.
上述の基板処理方法において、前記第1処理ガスは、水蒸気であり、前記凝華工程では、前記筐体内の気体の圧力は水の三重点の圧力よりも小さく、前記融解工程では、前記筐体内の前記気体の圧力は前記水の三重点の圧力よりも大きいことが好ましい。凝華工程では、筐体内の気体の圧力が水の三重点の圧力よりも小さい。よって、凝華工程では、水蒸気が凝縮することを好適に抑制できる。融解工程では、筐体内の気体の圧力は水の三重点の圧力よりも大きい。よって、融解工程では、第1固体膜が昇華することを好適に抑制できる。
In the substrate processing method described above, the first processing gas is water vapor, in the condensation step, the pressure of the gas in the housing is lower than the pressure at the triple point of water, and in the melting step, is preferably greater than the pressure at the triple point of water. In the condensation process, the pressure of the gas within the enclosure is less than the triple point pressure of water. Therefore, in the condensation process, condensation of water vapor can be suitably suppressed. During the melting process, the pressure of the gas within the enclosure is greater than the pressure at the triple point of water. Therefore, in the melting step, sublimation of the first solid film can be suppressed favorably.
上述の基板処理方法において、前記液膜を凝固させて、基板の前記上面上に第2固体膜を形成する凝固工程と、前記第2固体膜を昇華させる昇華工程と、を備えることが好ましい。
The substrate processing method described above preferably includes a solidification step of solidifying the liquid film to form a second solid film on the upper surface of the substrate, and a sublimation step of sublimating the second solid film.
基板処理方法は、凝固工程を備える。凝固工程では、液膜は凝固する。凝固工程では、液膜は第2固体膜に変わる。第2固体膜は基板の上面上に形成される。上述の通り、融解工程で形成される液膜は、基板の上面を覆う。したがって、凝固工程では、基板の上面は気液界面と接しない。
The substrate processing method includes a solidification step. In the solidification step, the liquid film solidifies. In the solidification step, the liquid film transforms into a second solid film. A second solid film is formed on the top surface of the substrate. As mentioned above, the liquid film formed in the melting process covers the top surface of the substrate. Therefore, in the solidification process, the upper surface of the substrate does not contact the gas-liquid interface.
基板処理方法は、昇華工程を備える。昇華工程では、第2固体膜は昇華する。昇華工程では、第2固体膜は、液体を経ずに、基板から去る。したがって、昇華工程では、基板の上面は気液界面と接しない。第2固体膜が昇華することによって、基板Wは乾燥される。
The substrate processing method includes a sublimation process. In the sublimation step, the second solid film is sublimated. In the sublimation process, the second solid film leaves the substrate without passing through the liquid. Therefore, in the sublimation process, the upper surface of the substrate does not come into contact with the gas-liquid interface. The substrate W is dried by sublimation of the second solid film.
まとめると、凝固工程と昇華工程では、基板の上面は気液界面と接しない。よって、基板処理方法によれば、基板の上面を好適に保護しつつ、基板を乾燥できる。したがって、基板処理方法は、基板を一層適切に処理できる。
In summary, the upper surface of the substrate does not come into contact with the gas-liquid interface during the solidification process and the sublimation process. Therefore, according to the substrate processing method, the substrate can be dried while suitably protecting the upper surface of the substrate. Therefore, the substrate processing method can process the substrate more appropriately.
上述の基板処理方法において、前記凝固工程は、前記筐体内の気体の圧力を前記液膜が凝固可能な圧力に保った状態で、前記液膜を冷却し、前記昇華工程は、前記筐体内の気体の圧力を前記第2固体膜が昇華可能な圧力に保った状態で、前記第2固体膜を加熱することが好ましい。凝固工程は、筐体内の気体の圧力を液膜が凝固可能な圧力に保つ。このため、液膜が蒸発することを、凝固工程は好適に抑制できる。凝固工程は、液膜を冷却する。このため、凝固工程では、液膜は好適に凝固する。昇華工程は、筐体内の気体の圧力を第2固体膜が昇華可能な圧力に保つ。このため、第2固体膜が融解することを、昇華工程は好適に抑制できる。昇華工程は、第2固体膜を加熱する。このため、昇華工程では、第2固体膜は好適に昇華する。
In the above-described substrate processing method, the solidification step cools the liquid film while maintaining the pressure of the gas in the housing at a pressure that allows the liquid film to solidify, and the sublimation step cools the gas in the housing. It is preferable to heat the second solid film while maintaining the pressure of the gas at a pressure at which the second solid film can be sublimated. The solidification step maintains the pressure of the gas inside the housing at a pressure that allows the liquid film to solidify. For this reason, the solidification process can suitably suppress the evaporation of the liquid film. The solidification step cools the liquid film. For this reason, in the solidification step, the liquid film is suitably solidified. The sublimation process maintains the pressure of the gas inside the housing at a pressure at which the second solid film can be sublimated. Therefore, the sublimation process can suitably suppress the melting of the second solid film. The sublimation process heats the second solid film. Therefore, in the sublimation step, the second solid film sublimates favorably.
上述の基板処理方法において、前記凝固工程は、前記液膜が凝固する温度まで、基板を冷却し、前記昇華工程は、前記第2固体膜が昇華する温度まで、基板を加熱することが好ましい。凝固工程は、基板を介して液膜を冷却する。凝固工程では、基板の上面は液膜と接する。よって、凝固工程は、第2固体膜を効率良く形成できる。凝固工程は、液膜が凝固する温度まで、基板を冷却する。よって、凝固工程は、液膜を好適に凝固できる。昇華工程は、基板を介して第2固体膜は加熱する。昇華工程では、基板の上面は第2固体膜と接する。よって、昇華工程は、第2固体膜を効率良く昇華する。昇華工程は、第2固体膜が昇華する温度まで、基板を加熱する。よって、昇華工程は、第2固体膜を好適に昇華できる。
In the substrate processing method described above, it is preferable that the solidification step cools the substrate to a temperature at which the liquid film solidifies, and the sublimation step heats the substrate to a temperature at which the second solid film sublimates. The solidification step cools the liquid film through the substrate. In the solidification process, the upper surface of the substrate is in contact with the liquid film. Therefore, the solidification step can efficiently form the second solid film. The solidification step cools the substrate to a temperature at which the liquid film solidifies. Therefore, the solidification step can suitably solidify the liquid film. The sublimation process heats the second solid film through the substrate. In the sublimation process, the upper surface of the substrate is in contact with the second solid film. Therefore, the sublimation process efficiently sublimes the second solid film. The sublimation step heats the substrate to a temperature at which the second solid film sublimates. Therefore, the sublimation step can favorably sublimate the second solid film.
上述の基板処理方法において、前記昇華工程は、前記筐体内の気体を筐体の外部に排出することが好ましい。昇華工程では、第2固体膜は一層好適に昇華する。
In the substrate processing method described above, the sublimation step preferably discharges the gas inside the housing to the outside of the housing. In the sublimation step, the second solid film sublimates more favorably.
上述の基板処理方法において、前記第1処理ガスは、水蒸気であり、前記凝固工程では、前記筐体内の気体の圧力は水の三重点の圧力よりも大きく、前記昇華工程では、前記筐体内の気体の圧力は前記水の三重点の圧力よりも小さいことが好ましい。凝固工程では、筐体内の気体の圧力が水の三重点の圧力よりも大きい。よって、凝固工程では、液膜が蒸発することを好適に抑制できる。昇華工程では、筐体内の気体の圧力は水の三重点の圧力よりも小さい。よって、昇華工程では、第2固体膜が融解することを好適に抑制できる。
In the substrate processing method described above, the first processing gas is water vapor, the pressure of the gas in the housing is higher than the triple point pressure of water in the solidification step, and the pressure of the gas in the housing is higher than the triple point of water in the sublimation step The pressure of the gas is preferably lower than the triple point pressure of water. In the solidification process, the pressure of the gas inside the enclosure is greater than the pressure at the triple point of water. Therefore, in the solidification step, evaporation of the liquid film can be suitably suppressed. In the sublimation process, the pressure of the gas inside the enclosure is less than the triple point pressure of water. Therefore, in the sublimation process, the melting of the second solid film can be suitably suppressed.
上述の基板処理方法において、前記筐体に第2処理ガスを供給する第2供給工程と、を備え、前記液膜は、前記第2処理ガスを溶解することが好ましい。第2供給工程では、第2処理ガスを供給する。このため、第2供給工程では、基板の上面は気液界面と接しない。
The above-described substrate processing method preferably includes a second supply step of supplying a second processing gas to the housing, and the liquid film dissolves the second processing gas. In the second supply step, a second processing gas is supplied. Therefore, in the second supply step, the upper surface of the substrate does not come into contact with the gas-liquid interface.
液膜は、第2処理ガスを溶解する。よって、液膜は基板を一層適切に処理できる。
The liquid film dissolves the second process gas. Thus, the liquid film can better treat the substrate.
上述の基板処理方法において、前記第2処理ガスは、水蒸気、アンモニアガス、メチルアミンガス、ジメチルアミンガス、トリメチルアミンガス、および、過酸化水素ガスの少なくともいずれかを含むことが好ましい。液膜が第2処理ガスを溶解した後、液膜は、水、アンモニア、メチルアミン、ジメチルアミン、トリメチルアミン、および、過酸化水素の少なくともいずれかを含む。よって、液膜は基板を一層適切に処理できる。
In the substrate processing method described above, the second processing gas preferably contains at least one of water vapor, ammonia gas, methylamine gas, dimethylamine gas, trimethylamine gas, and hydrogen peroxide gas. After the liquid film dissolves the second process gas, the liquid film contains at least one of water, ammonia, methylamine, dimethylamine, trimethylamine, and hydrogen peroxide. Thus, the liquid film can better treat the substrate.
上述の基板処理方法において、前記第2固体膜を帯電させる帯電工程と、を備えることが好ましい。第2固体膜を帯電させることによって、第2固体膜に含まれるパーティクルも容易に帯電させることができる。よって、第2固体膜に含まれるパーティクルを好適に除去できる。
The substrate processing method described above preferably includes a charging step of charging the second solid film. By charging the second solid film, the particles contained in the second solid film can also be easily charged. Therefore, particles contained in the second solid film can be preferably removed.
上述の基板処理方法において、帯電したパーティクルを収集する収集工程と、を備えることが好ましい。収集工程は、帯電したパーティクルを基板から好適に除去できる。
The substrate processing method described above preferably includes a collecting step of collecting the charged particles. The collecting step can advantageously remove charged particles from the substrate.
上述の基板処理方法において、基板は、基板の前記上面に形成されるパターンを有することが好ましい。基板処理方法は、パターンを保護しつつ、基板を適切に処理できる。
In the substrate processing method described above, the substrate preferably has a pattern formed on the upper surface of the substrate. The substrate processing method can properly process the substrate while protecting the pattern.
本発明は、基板処理装置であって、密閉可能な筐体と、前記筐体内に設置され、基板を略水平姿勢で載置する基板載置部と、前記筐体内に第1処理ガスを供給する第1供給部と、前記筐体内の気体の圧力を調整する圧力調整部と、前記基板載置部に載置される基板の温度を調整する温度調整部と、前記第1供給部と前記圧力調整部と前記温度調整部を制御する制御部と、を備え、前記制御部は、前記第1供給部から前記筐体に前記第1処理ガスを供給させ、前記圧力調整部と前記温度調整部を制御することによって、第1処理ガスを凝華させて、前記基板載置部に載置される基板の上面を覆う第1固体膜を形成し、前記圧力調整部と前記温度調整部を制御することによって、前記第1固体膜を融解させて、前記基板載置部に載置される基板の前記上面を覆う液膜を形成する基板処理装置である。
The present invention relates to a substrate processing apparatus comprising a hermetically sealable housing, a substrate placement unit installed in the housing for placing a substrate in a substantially horizontal posture, and supplying a first processing gas into the housing. a pressure adjusting unit for adjusting the pressure of the gas in the housing; a temperature adjusting unit for adjusting the temperature of the substrate placed on the substrate placing unit; the first supplying unit and the a control unit configured to control the pressure adjustment unit and the temperature adjustment unit, the control unit supplying the first processing gas from the first supply unit to the housing, and controlling the pressure adjustment unit and the temperature adjustment unit; forming a first solid film covering the upper surface of the substrate placed on the substrate platform by condensing the first processing gas by controlling the pressure adjusting part and the temperature adjusting part; In the substrate processing apparatus, the control melts the first solid film to form a liquid film covering the upper surface of the substrate placed on the substrate placement part.
筐体は、密閉可能である。このため、圧力調整部は、筐体内の気体の圧力を好適に調整できる。
The housing can be sealed. Therefore, the pressure adjustment section can preferably adjust the pressure of the gas inside the housing.
制御部は、第1供給部を制御する。第1供給部は、第1処理ガスを筐体に供給する。第1供給部が第1処理ガスを筐体に供給するとき、基板の上面は気液界面と接しない。
The control unit controls the first supply unit. The first supply unit supplies the first processing gas to the housing. When the first supply unit supplies the first processing gas to the housing, the upper surface of the substrate does not come into contact with the gas-liquid interface.
制御部は、圧力調整部と温度調整部を制御する。具体的には、圧力調整部は筐体内の気体の圧力を調整する。温度調整部は基板載置部に載置される基板の温度を調整する。これにより、第1処理ガスは凝華する。第1固体膜が形成される。すなわち、第1処理ガスは、液体を経ずに、第1固体膜に変わる。第1固体膜は、基板載置部に載置される基板の上面を覆う。よって、第1処理ガスが第1固体膜に変わるとき、基板の上面は気液界面と接しない。
The control unit controls the pressure adjustment unit and the temperature adjustment unit. Specifically, the pressure adjustment unit adjusts the pressure of the gas inside the housing. The temperature adjuster adjusts the temperature of the substrate placed on the substrate platform. This causes the first process gas to condense. A first solid film is formed. That is, the first process gas is transformed into the first solid film without passing through the liquid. The first solid film covers the upper surface of the substrate placed on the substrate platform. Therefore, when the first process gas transforms into the first solid film, the top surface of the substrate does not contact the gas-liquid interface.
制御部は、圧力調整部と温度調整部を制御する。これにより、第1固体膜は融解する。液膜が形成される。すなわち、第1固体膜は液膜に変わる。液膜は、基板載置部に載置される基板の上面を覆う。よって、第1固体膜が液膜に変わるとき、基板の上面は気液界面と接しない。
The control unit controls the pressure adjustment unit and the temperature adjustment unit. This causes the first solid film to melt. A liquid film is formed. That is, the first solid film turns into a liquid film. The liquid film covers the upper surface of the substrate placed on the substrate platform. Therefore, when the first solid film turns into a liquid film, the upper surface of the substrate does not contact the gas-liquid interface.
まとめると、第1処理ガスを筐体に供給し、第1処理ガスを凝華させ、かつ、第1固体膜を融解させるように、制御部は第1供給部と圧力調整部と温度調整部を制御する。このため、基板処理装置は、基板の上面が気液界面と接することなく、基板の上面上に液膜を形成できる。よって、基板処理装置は、基板の上面を保護しつつ、基板の上面に処理液を供給できる。したがって、基板処理装置は、基板を適切に処理できる。
In summary, the control unit comprises a first supply unit, a pressure adjustment unit, and a temperature adjustment unit to supply a first process gas to the housing, cause the first process gas to condense, and melt the first solid film. to control. Therefore, the substrate processing apparatus can form a liquid film on the upper surface of the substrate without contacting the upper surface of the substrate with the gas-liquid interface. Therefore, the substrate processing apparatus can supply the processing liquid to the upper surface of the substrate while protecting the upper surface of the substrate. Therefore, the substrate processing apparatus can appropriately process the substrate.
さらに、基板処理装置は、第1処理ガスを凝華させて基板の上面を覆う第1固体膜を形成する。基板処理装置は、第1固体膜を融解させて基板の上面を覆う液膜を形成する。このため、基板上から処理液があふれることを好適に抑制できる。すなわち、処理液のロスを好適に抑えることができる。よって、基板処理装置は、より少ない処理液で、液膜を効率良く形成できる。すなわち、基板処理装置は、基板を少量の処理液で処理できる。その結果、基板処理装置では、処理液の使用量は比較的に少ない。例えば、基板処理装置における処理液の使用量は、従来装置における処理液の使用量よりも少ない。
Further, the substrate processing apparatus condenses the first processing gas to form a first solid film covering the upper surface of the substrate. The substrate processing apparatus melts the first solid film to form a liquid film covering the upper surface of the substrate. Therefore, it is possible to suitably prevent the processing liquid from overflowing from the substrate. That is, it is possible to suitably suppress the loss of the treatment liquid. Therefore, the substrate processing apparatus can efficiently form a liquid film with a smaller amount of processing liquid. That is, the substrate processing apparatus can process the substrate with a small amount of processing liquid. As a result, the substrate processing apparatus uses a relatively small amount of processing liquid. For example, the amount of processing liquid used in a substrate processing apparatus is less than the amount of processing liquid used in a conventional apparatus.
上述した基板処理装置において、前記制御部は、前記圧力調整部と前記温度調整部を制御することによって、前記液膜を凝固させて、前記基板載置部に載置される基板の前記上面上に第2固体膜を形成し、前記圧力調整部と前記温度調整部を制御することによって、前記第2固体膜を昇華させることが好ましい。
In the above-described substrate processing apparatus, the control unit controls the pressure adjustment unit and the temperature adjustment unit to solidify the liquid film on the upper surface of the substrate placed on the substrate placement unit. and sublimating the second solid film by controlling the pressure control unit and the temperature control unit.
制御部は、圧力調整部と温度調整部を制御する。これにより、液膜は凝固する。第2固体膜が形成される。すなわち、液膜は第2固体膜に変わる。第2固体膜は、基板載置部に載置される基板の上面上に形成される。上述の通り、液膜は、基板載置部に載置される基板の上面を覆う。よって、液膜が第2固体膜に変わるとき、基板の上面は気液界面と接しない。
The control unit controls the pressure adjustment unit and the temperature adjustment unit. This causes the liquid film to solidify. A second solid film is formed. That is, the liquid film turns into a second solid film. The second solid film is formed on the upper surface of the substrate placed on the substrate platform. As described above, the liquid film covers the upper surface of the substrate placed on the substrate platform. Therefore, when the liquid film turns into the second solid film, the upper surface of the substrate does not contact the gas-liquid interface.
制御部は、圧力調整部と温度調整部を制御する。これにより、第2固体膜は昇華する。すなわち、第2固体膜は、液体を経ずに、気体に変わる。よって、第2固体膜が昇華するとき、基板の上面は気液界面と接しない。
The control unit controls the pressure adjustment unit and the temperature adjustment unit. This causes the second solid film to sublimate. That is, the second solid film changes to gas without passing through liquid. Therefore, when the second solid film sublimates, the upper surface of the substrate does not come into contact with the gas-liquid interface.
まとめると、液膜を凝固させ、かつ、第2固体膜を昇華させるように、制御部は圧力調整部と温度調整部を制御する。このため、基板処理装置は、基板の上面が気液界面と接することなく、基板の上面から第2固体膜を除去できる。よって、基板処理装置は、基板の上面を保護しつつ、基板を乾燥できる。したがって、基板処理装置は、基板を一層適切に処理できる。
In summary, the controller controls the pressure regulator and the temperature regulator so that the liquid film is solidified and the second solid film is sublimated. Therefore, the substrate processing apparatus can remove the second solid film from the upper surface of the substrate without contacting the upper surface of the substrate with the gas-liquid interface. Therefore, the substrate processing apparatus can dry the substrate while protecting the upper surface of the substrate. Therefore, the substrate processing apparatus can process substrates more appropriately.
上述した基板処理装置において、前記筐体に第2処理ガスを供給する第2供給部と、を備え、前記制御部は、前記第2供給部を制御することによって、前記筐体内に前記第2処理ガスを供給し、前記液膜に前記第2処理ガスを溶解させることが好ましい。制御部は、第2供給部を制御する。第2供給部は、第2処理ガスを筐体に供給する。第2処理ガスは液膜に溶解される。このように、基板処理装置は、基板の上面が気液界面と接することなく、液膜の成分を調整できる。よって、基板処理装置は、基板の上面を保護しつつ、基板を一層適切に処理できる。
The substrate processing apparatus described above includes a second supply unit that supplies a second processing gas to the housing, and the control unit controls the second supply unit to cause the second gas to be supplied to the housing. It is preferable to supply a processing gas to dissolve the second processing gas in the liquid film. The control section controls the second supply section. The second supply unit supplies the second processing gas to the housing. A second process gas is dissolved in the liquid film. Thus, the substrate processing apparatus can adjust the components of the liquid film without the upper surface of the substrate coming into contact with the gas-liquid interface. Therefore, the substrate processing apparatus can process the substrate more appropriately while protecting the upper surface of the substrate.
上述した基板処理装置において、前記筐体内に電子を放射する電子放射部と、を備えることが好ましい。電子放射部は、第2固体膜を好適に帯電させることができる。
The substrate processing apparatus described above preferably includes an electron emitting section that emits electrons into the housing. The electron emission section can suitably charge the second solid film.
上述した基板処理装置において、前記筐体内に設置され、正電圧が印加される電極と、を備えることが好ましい。電極は、負に帯電したパーティクルを好適に収集できる。
The substrate processing apparatus described above preferably includes an electrode installed in the housing and to which a positive voltage is applied. Electrodes can preferably collect negatively charged particles.
本発明の基板処理方法および基板処理装置によれば、基板を適切に処理できる。
According to the substrate processing method and substrate processing apparatus of the present invention, substrates can be processed appropriately.
以下、図面を参照して本発明の基板処理方法および基板処理装置を説明する。
The substrate processing method and substrate processing apparatus of the present invention will be described below with reference to the drawings.
<1.基板処理装置の概要>
図1は、実施形態の基板処理装置の内部を示す平面図である。基板処理装置1は、基板Wに処理を行う。基板処理装置1が基板Wに行う処理は、例えば、液処理である。液処理は、基板Wに処理液を供給することである。 <1. Overview of Substrate Processing Apparatus>
FIG. 1 is a plan view showing the inside of the substrate processing apparatus of the embodiment. Thesubstrate processing apparatus 1 processes a substrate W. As shown in FIG. The processing that the substrate processing apparatus 1 performs on the substrate W is, for example, liquid processing. Liquid processing is to supply the substrate W with a processing liquid.
図1は、実施形態の基板処理装置の内部を示す平面図である。基板処理装置1は、基板Wに処理を行う。基板処理装置1が基板Wに行う処理は、例えば、液処理である。液処理は、基板Wに処理液を供給することである。 <1. Overview of Substrate Processing Apparatus>
FIG. 1 is a plan view showing the inside of the substrate processing apparatus of the embodiment. The
基板Wは、例えば、半導体ウエハ、液晶ディスプレイ用基板、有機EL(Electroluminescence)用基板、FPD(Flat Panel Display)用基板、光ディスプレイ用基板、磁気ディスク用基板、光ディスク用基板、光磁気ディスク用基板、フォトマスク用基板、太陽電池用基板である。基板Wは、薄い平板形状を有する。基板Wは、平面視で略円形状を有する。
The substrate W is, for example, a semiconductor wafer, a liquid crystal display substrate, an organic EL (Electroluminescence) substrate, an FPD (Flat Panel Display) substrate, an optical display substrate, a magnetic disk substrate, an optical disk substrate, or a magneto-optical disk substrate. , photomask substrates, and solar cell substrates. The substrate W has a thin flat plate shape. The substrate W has a substantially circular shape in plan view.
基板処理装置1は、インデクサ部3と処理ブロック7を備える。処理ブロック7はインデクサ部3に接続される。インデクサ部3は、処理ブロック7に基板Wを供給する。処理ブロック7は、基板Wに処理を行う。インデクサ部3は、処理ブロック7から基板Wを回収する。
The substrate processing apparatus 1 includes an indexer section 3 and a processing block 7. A processing block 7 is connected to the indexer section 3 . The indexer unit 3 supplies substrates W to the processing block 7 . The processing block 7 performs processing on the substrate W. FIG. The indexer section 3 retrieves the substrates W from the processing block 7 .
本明細書では、便宜上、インデクサ部3と処理ブロック7が並ぶ方向を、「前後方向X」と呼ぶ。前後方向Xは水平である。前後方向Xのうち、処理ブロック7からインデクサ部3に向かう方向を「前方」と呼ぶ。前方と反対の方向を「後方」と呼ぶ。前後方向Xと直交する水平方向を、「幅方向Y」と呼ぶ。「幅方向Y」の一方向を適宜に「右方」と呼ぶ。右方とは反対の方向を「左方」と呼ぶ。水平方向に対して垂直な方向を「鉛直方向Z」と呼ぶ。各図では、参考として、前、後、右、左、上、下を適宜に示す。
In this specification, for the sake of convenience, the direction in which the indexer unit 3 and the processing blocks 7 are arranged is called the "front-back direction X". The front-rear direction X is horizontal. Of the front-back direction X, the direction from the processing block 7 to the indexer unit 3 is called "forward". The direction opposite to forward is called "backward". A horizontal direction orthogonal to the front-rear direction X is called a “width direction Y”. One direction of the "width direction Y" is appropriately called "right side". The direction opposite to right is called "left". A direction perpendicular to the horizontal direction is called a “vertical direction Z”. In each figure, front, rear, right, left, top, and bottom are indicated as appropriate for reference.
インデクサ部3は、複数(例えば、4つ)のキャリア載置部4を備える。各キャリア載置部4はそれぞれ、1つのキャリアCを載置する。キャリアCは、複数枚の基板Wを収容する。キャリアCは、例えば、FOUP(Front Opening Unified Pod)、SMIF(Standard Mechanical Interface)、OC(Open Cassette)である。
The indexer section 3 includes a plurality of (for example, four) carrier placement sections 4 . Each carrier mounting portion 4 mounts one carrier C thereon. A carrier C accommodates a plurality of substrates W. As shown in FIG. Carrier C is, for example, FOUP (Front Opening Unified Pod), SMIF (Standard Mechanical Interface), and OC (Open Cassette).
インデクサ部3は、搬送機構5を備える。搬送機構5は、キャリア載置部4の後方に配置される。搬送機構5は、基板Wを搬送する。搬送機構5は、キャリア載置部4に載置されるキャリアCにアクセス可能である。搬送機構5はハンド5aとハンド駆動部5bを備える。ハンド5aは、基板Wを支持する。ハンド駆動部5bは、ハンド5aに連結される。ハンド駆動部5bは、ハンド5aを移動させる。ハンド駆動部5bは、例えば、前後方向X、幅方向Yおよび鉛直方向Zにハンド5aを移動させる。ハンド駆動部5bは、例えば、水平面内においてハンド5aを回転させる。
The indexer section 3 has a transport mechanism 5 . The transport mechanism 5 is arranged behind the carrier placement section 4 . The transport mechanism 5 transports the substrate W. As shown in FIG. The transport mechanism 5 can access the carrier C placed on the carrier placement section 4 . The transport mechanism 5 includes a hand 5a and a hand driving section 5b. The hand 5a supports the substrate W. The hand driving section 5b is connected to the hand 5a. The hand driving section 5b moves the hand 5a. The hand drive unit 5b moves the hand 5a in the front-rear direction X, the width direction Y, and the vertical direction Z, for example. The hand drive unit 5b rotates the hand 5a in a horizontal plane, for example.
処理ブロック7は、搬送機構8を備える。搬送機構8は、基板Wを搬送する。搬送機構8と搬送機構5は、相互に、基板Wを受け渡し可能である。搬送機構8は、ハンド8aとハンド駆動部8bを備える。ハンド8aは、基板Wを支持する。ハンド駆動部8bは、ハンド8aに連結される。ハンド駆動部8bは、ハンド8aを移動させる。ハンド駆動部8bは、例えば、前後方向X、幅方向Yおよび鉛直方向Zにハンド8aを移動させる。ハンド駆動部8bは、例えば、水平面内においてハンド8aを回転させる。
The processing block 7 has a transport mechanism 8 . The transport mechanism 8 transports the substrate W. As shown in FIG. The transport mechanism 8 and the transport mechanism 5 can transfer substrates W to each other. The transport mechanism 8 includes a hand 8a and a hand driving section 8b. The hand 8a supports the substrate W. The hand driving section 8b is connected to the hand 8a. The hand driving section 8b moves the hand 8a. The hand drive unit 8b moves the hand 8a in the front-rear direction X, the width direction Y, and the vertical direction Z, for example. The hand driving section 8b rotates the hand 8a in a horizontal plane, for example.
処理ブロック7は、複数の処理ユニット11を備える。処理ユニット11は、搬送機構8の側方に配置される。各処理ユニット11は、基板Wに処理を行う。
The processing block 7 includes a plurality of processing units 11. The processing unit 11 is arranged on the side of the transport mechanism 8 . Each processing unit 11 processes the substrate W. FIG.
処理ユニット11は、筐体12とステージ15を備える。ステージ15は、筐体12内に設置される。ステージ15は、基板Wを載置する。基板Wは、筐体12内において、処理される。
The processing unit 11 includes a housing 12 and a stage 15. The stage 15 is installed inside the housing 12 . A substrate W is placed on the stage 15 . The substrate W is processed within the housing 12 .
筐体12は、基板搬送口12aを有する。基板搬送口12aは、例えば、筐体12の側部に設けられる。基板Wは、基板搬送口12aを通過可能である。
The housing 12 has a substrate transfer port 12a. The substrate transfer port 12a is provided on the side of the housing 12, for example. The substrate W can pass through the substrate transfer port 12a.
処理ユニット11は、シャッタ14を備える。シャッタ14は、基板搬送口12aを開閉する。シャッタ14は、筐体12に取り付けられる。シャッタ14は、筐体12に対して移動可能である。シャッタ14が基板搬送口12aを開放するとき、搬送機構8は、基板搬送口12aを通じて、筐体12の内部と筐体12の外部の間で、基板Wを移動できる。
The processing unit 11 has a shutter 14 . The shutter 14 opens and closes the substrate transfer port 12a. A shutter 14 is attached to the housing 12 . The shutter 14 is movable with respect to the housing 12 . When the shutter 14 opens the substrate transfer port 12a, the transfer mechanism 8 can move the substrate W between the inside and the outside of the housing 12 through the substrate transfer port 12a.
図2は、基板処理装置1の制御ブロック図である。基板処理装置1は、制御部10を備える。制御部10は、搬送機構5、8と処理ユニット11を制御する。制御部10は、搬送機構5、8および処理ユニット11と、通信可能に電気的に接続される。
FIG. 2 is a control block diagram of the substrate processing apparatus 1. FIG. The substrate processing apparatus 1 includes a control section 10 . The controller 10 controls the transport mechanisms 5 and 8 and the processing unit 11 . The controller 10 is electrically connected to the transport mechanisms 5 and 8 and the processing unit 11 so as to be communicable.
制御部10は、各種処理を実行する中央演算処理装置(CPU)、演算処理の作業領域となるRAM(Random-Access Memory)、固定ディスク等の記憶媒体等によって実現されている。制御部10は、記憶媒体に予め格納される各種の情報を有する。制御部10が有する情報は、例えば、搬送機構5、8を制御するための搬送情報である。制御部10が有する情報は、例えば、処理ユニット11を制御するための処理情報である。処理情報は、処理レシピとも呼ばれる。
The control unit 10 is realized by a central processing unit (CPU) that executes various processes, a RAM (Random-Access Memory) that serves as a work area for arithmetic processing, a storage medium such as a fixed disk, and the like. The control unit 10 has various types of information stored in advance in a storage medium. Information held by the control unit 10 is, for example, transport information for controlling the transport mechanisms 5 and 8 . The information held by the control unit 10 is, for example, processing information for controlling the processing unit 11 . Processing information is also called a processing recipe.
基板処理装置1の動作例を簡単に説明する。
An operation example of the substrate processing apparatus 1 will be briefly described.
インデクサ部3は、処理ブロック7に基板Wを供給する。具体的には、搬送機構5は、キャリアCから処理ブロック7の搬送機構8に基板Wを渡す。
The indexer section 3 supplies substrates W to the processing block 7 . Specifically, the transport mechanism 5 transfers the substrate W from the carrier C to the transport mechanism 8 of the processing block 7 .
処理ブロック7は、インデクサ部3から、処理ユニット11に基板Wを分配する。具体的には、シャッタ14は基板搬送口12aを開放する。搬送機構8は、搬送機構5から、各処理ユニット11のステージ15に基板Wを搬送する。
The processing block 7 distributes the substrates W from the indexer section 3 to the processing units 11 . Specifically, the shutter 14 opens the substrate transfer port 12a. The transport mechanism 8 transports the substrate W from the transport mechanism 5 to the stage 15 of each processing unit 11 .
シャッタ14は基板搬送口12aを閉塞する。処理ユニット11は、ステージ15に載置された基板Wを処理する。処理ユニット11は、例えば、基板Wに液処理を行う。
The shutter 14 closes the substrate transfer port 12a. The processing unit 11 processes the substrate W placed on the stage 15 . The processing unit 11 performs liquid processing on the substrate W, for example.
処理ユニット11が基板Wを処理した後、処理ブロック7は、処理ユニット11からインデクサ部3に基板Wを戻す。具体的には、シャッタ14が基板搬送口12aを開放する。搬送機構8は、ステージ15から搬送機構5に基板Wを搬送する。
After the processing unit 11 processes the substrate W, the processing block 7 returns the substrate W from the processing unit 11 to the indexer section 3 . Specifically, the shutter 14 opens the substrate transfer port 12a. The transport mechanism 8 transports the substrate W from the stage 15 to the transport mechanism 5 .
インデクサ部3は、処理ブロック7から基板Wを回収する。具体的には、搬送機構5は、搬送機構8からキャリアCに基板Wを搬送する。
The indexer section 3 recovers the substrates W from the processing block 7 . Specifically, the transport mechanism 5 transports the substrate W from the transport mechanism 8 to the carrier C. As shown in FIG.
<2.処理ユニット11の構成>
図3は、処理ユニット11の構成を示す図である。図3では、基板搬送口12aとシャッタ14の図示を省略する。各処理ユニット11は、同一の構造を有する。処理ユニット11は、枚葉式に分類される。すなわち、各処理ユニット11は、一度に1枚の基板Wのみを処理する。 <2. Configuration ofProcessing Unit 11>
FIG. 3 is a diagram showing the configuration of theprocessing unit 11. As shown in FIG. In FIG. 3, illustration of the substrate transfer port 12a and the shutter 14 is omitted. Each processing unit 11 has the same structure. The processing unit 11 is classified as a single wafer type. That is, each processing unit 11 processes only one substrate W at a time.
図3は、処理ユニット11の構成を示す図である。図3では、基板搬送口12aとシャッタ14の図示を省略する。各処理ユニット11は、同一の構造を有する。処理ユニット11は、枚葉式に分類される。すなわち、各処理ユニット11は、一度に1枚の基板Wのみを処理する。 <2. Configuration of
FIG. 3 is a diagram showing the configuration of the
筐体12は、密閉可能である。具体的には、筐体12は、筐体12内に処理空間13を有する。筐体12は、処理空間13を区画する。ステージ15は、処理空間13に設置される。基板Wは、処理空間13内において、処理される。筐体12は、処理空間13を実質的に密閉可能である。例えば、シャッタ14が基板搬送口12aを閉塞するとき、処理空間13は実質的に密閉される。
The housing 12 can be sealed. Specifically, the enclosure 12 has a processing space 13 within the enclosure 12 . The housing 12 defines a processing space 13 . A stage 15 is installed in the processing space 13 . A substrate W is processed in the processing space 13 . The housing 12 can substantially seal the processing space 13 . For example, when the shutter 14 closes the substrate transfer port 12a, the processing space 13 is substantially sealed.
ステージ15は、1枚の基板Wを載置する。ステージ15は、基板Wを略水平姿勢で載置する。ステージ15は、基板Wを支持する。基板Wがステージ15に載置されるとき、基板Wは静止する。
A single substrate W is placed on the stage 15 . The stage 15 mounts the substrate W in a substantially horizontal posture. The stage 15 supports the substrate W. When the substrate W is placed on the stage 15, the substrate W stands still.
ステージ15は、略水平な板形状を有する。ステージ15は、上面15aを有する。上面15aは、基板Wの下面と接触する。基板Wの下面は、基板Wのバックサイドとも呼ばれる。ステージ15は、例えば、処理空間13の下部に配置される。
The stage 15 has a substantially horizontal plate shape. The stage 15 has an upper surface 15a. The upper surface 15a contacts the lower surface of the substrate W. As shown in FIG. The bottom surface of the substrate W is also called the backside of the substrate W. As shown in FIG. The stage 15 is arranged below the processing space 13, for example.
基板処理装置1は、ステージ15に載置される基板Wを回転させる機構を備えない。基板Wがステージ15に載置されるとき、基板Wは回転しない。
The substrate processing apparatus 1 does not have a mechanism for rotating the substrate W placed on the stage 15 . When the substrate W is placed on the stage 15, the substrate W does not rotate.
処理ユニット11は、1つ以上(例えば3つ)の供給部17a、17b、17cを備える。供給部17a-17cはそれぞれ、筐体12に接続される。供給部17a-17cはそれぞれ、筐体12に連通する。供給部17a-17cはそれぞれ、筐体12にガスを供給する。供給部17a-17cはそれぞれ、処理空間13にガスを供給する。
The processing unit 11 includes one or more (for example, three) supply units 17a, 17b, 17c. Supply units 17a-17c are connected to housing 12, respectively. Supply portions 17a-17c communicate with housing 12, respectively. The supply units 17a-17c supply gas to the housing 12, respectively. The supply units 17a-17c supply gas to the processing space 13, respectively.
供給部17aが供給するガスは、水蒸気である。供給部17bが供給するガスは、アンモニアガスである。供給部17cが供給するガスは、乾燥ガスである。水蒸気、アンモニアガスおよび乾燥ガスはそれぞれ、気相である。
The gas supplied by the supply unit 17a is water vapor. The gas supplied by the supply unit 17b is ammonia gas. The gas supplied by the supply unit 17c is dry gas. Water vapor, ammonia gas and dry gas are each in the gas phase.
水蒸気とアンモニアガスは、基板Wを処理するために使用される。水蒸気は、例えば、脱イオン水の蒸気である。
Water vapor and ammonia gas are used to process the substrate W. Water vapor is, for example, deionized water vapor.
乾燥ガスは、筐体12内の気体の圧力を調整するために使用される。供給部17cは、筐体12内の気体の圧力を調整可能である。供給部17cは、筐体12内の気体の圧力を高めることができる。
The dry gas is used to adjust the pressure of the gas inside the housing 12. The supply part 17c can adjust the pressure of the gas inside the housing 12 . The supply part 17c can increase the pressure of the gas inside the housing 12 .
乾燥ガスは、常温よりも低い露点を有する。露点は、例えば、約-76℃である。乾燥ガスは、例えば、空気である。乾燥ガスは、例えば、圧縮エアである。乾燥ガスは、例えば、不活性ガスである。乾燥ガスは、例えば、窒素ガスである。
A dry gas has a dew point lower than normal temperature. The dew point is, for example, about -76°C. Dry gas is, for example, air. Dry gas is, for example, compressed air. A dry gas is, for example, an inert gas. Dry gas is, for example, nitrogen gas.
なお、供給部17aは、筐体12に液体を供給しない。供給部17bも、筐体12に液体を供給しない。供給部17cも、筐体12に液体を供給しない。
Note that the supply unit 17a does not supply liquid to the housing 12. The supply unit 17b does not supply liquid to the housing 12 either. The supply unit 17c also does not supply liquid to the housing 12 .
供給部17aは、供給源21aに接続される。供給部17aは、供給源21aに連通する。供給源21aは、水蒸気を供給部17aに送る。供給部17bは、供給源21bに接続される。供給部17bは、供給源21bに連通する。供給源21bは、アンモニアガスを供給部17bに送る。供給部17cは、供給源21cに接続される。供給部17cは、供給源21cに連通する。供給源21cは、乾燥ガスを供給部17cに送る。
The supply unit 17a is connected to the supply source 21a. The supply part 17a communicates with the supply source 21a. The supply source 21a sends water vapor to the supply section 17a. The supply part 17b is connected to the supply source 21b. The supply part 17b communicates with the supply source 21b. Supply source 21b sends ammonia gas to supply unit 17b. The supply part 17c is connected to the supply source 21c. The supply part 17c communicates with the supply source 21c. Supply source 21c delivers dry gas to supply 17c.
供給源21aは、基板処理装置1の要素であってもよい。あるいは、供給源21aは、基板処理装置1の要素でなくてもよい。例えば、供給源21aは、基板処理装置1の外部に設置されるユーティリティ設備であってもよい。同様に、供給源21b、供給源21cはそれぞれ、基板処理装置1の要素であってもよい。あるいは、供給源21b、供給源21cはそれぞれ、基板処理装置1の要素でなくてもよい。
The supply source 21 a may be an element of the substrate processing apparatus 1 . Alternatively, source 21 a may not be a component of substrate processing apparatus 1 . For example, the supply source 21a may be utility equipment installed outside the substrate processing apparatus 1 . Similarly, source 21 b and source 21 c may each be elements of substrate processing apparatus 1 . Alternatively, the supply sources 21b and 21c may not be elements of the substrate processing apparatus 1, respectively.
処理ユニット11は、1つの吹出部23を備える。吹出部23は、供給部17a-17cに接続される。吹出部23は、供給部17a-17cに連通する。供給部17a-17cはそれぞれ、吹出部23を通じて、筐体12にガスを供給する。
The processing unit 11 includes one blowing section 23 . The blowout section 23 is connected to the supply sections 17a-17c. The blowout section 23 communicates with the supply sections 17a-17c. The supply units 17a to 17c supply gas to the housing 12 through the blowout unit 23, respectively.
吹出部23は、例えば、ステージ15よりも高い位置に配置される。吹出部23は、例えば、筐体12の側部に取り付けられている。あるいは、吹出部23は、筐体12の上部に取り付けられてもよい。あるいは、吹出部23は、筐体12の内部に設置されてもよい。吹出部23は、例えば、ステージ15の上方に配置されてもよい。
The blowout part 23 is arranged at a position higher than the stage 15, for example. The blow-out part 23 is attached to the side part of the housing|casing 12, for example. Alternatively, the blowout part 23 may be attached to the top of the housing 12 . Alternatively, the blowout part 23 may be installed inside the housing 12 . The blowout part 23 may be arranged above the stage 15, for example.
吹出部23は、例えば、ステージ15に支持される基板Wから外れた方向にガスを吹き出す。吹出部23は、例えば、略水平方向にガスを吹き出す。
The blowout part 23 blows out gas in a direction away from the substrate W supported by the stage 15, for example. The blow-out part 23 blows off gas in a substantially horizontal direction, for example.
供給部17aの配置と構成を説明する。供給部17aの少なくとも一部は、筐体12の外部に配置される。供給部17b、17cも、供給部17aと同様に配置される。
The arrangement and configuration of the supply unit 17a will be described. At least part of the supply unit 17 a is arranged outside the housing 12 . Supply portions 17b and 17c are also arranged in the same manner as supply portion 17a.
供給部17aは、配管18aと弁19aを備える。弁19aは、配管18aに設けられる。配管18aは、供給源21aに接続される第1端を有する。配管18aの第1端は、供給源21aに連通する。配管18aは、吹出部23に接続される第2端を有する。配管18aの第2端は、吹出部23に連通する。弁19aが開くとき、供給部17aは、吹出部23を通じて筐体12に水蒸気を供給する。弁19aが閉じるとき、供給部17aは、水蒸気を筐体12に供給しない。
The supply unit 17a includes a pipe 18a and a valve 19a. The valve 19a is provided on the pipe 18a. Tubing 18a has a first end connected to source 21a. A first end of the pipe 18a communicates with the supply source 21a. The pipe 18 a has a second end connected to the blowout portion 23 . A second end of the pipe 18 a communicates with the blowout portion 23 . When the valve 19a is opened, the supply section 17a supplies water vapor to the housing 12 through the blowout section 23. As shown in FIG. When the valve 19a is closed, the supply 17a does not supply water vapor to the housing 12;
同様に、供給部17bは、配管18bと弁19bを備える。弁19bは、配管18bに設けられる。配管18bは、供給源21bに接続される第1端を有する。配管18bの第1端は、供給源21bに連通する。配管18bは、吹出部23に接続される第2端を有する。配管18bの第2端は、吹出部23に連通する。弁19bが開くとき、供給部17bは、吹出部23を通じて筐体12にアンモニアガスを供給する。弁19bが閉じるとき、供給部17bは、アンモニアガスを筐体12に供給しない。
Similarly, the supply unit 17b includes a pipe 18b and a valve 19b. The valve 19b is provided on the pipe 18b. Tubing 18b has a first end connected to source 21b. A first end of the pipe 18b communicates with the supply source 21b. The pipe 18b has a second end connected to the blowout portion 23 . A second end of the pipe 18 b communicates with the blowout portion 23 . When the valve 19b opens, the supply unit 17b supplies ammonia gas to the housing 12 through the blowout unit 23. As shown in FIG. When the valve 19b is closed, the supply part 17b does not supply the ammonia gas to the housing 12.
供給部17cは、配管18cと弁19cを備える。弁19cは、配管18cに設けられる。配管18cは、供給源21cに接続される第1端を有する。配管18cの第1端は、供給源21cに連通する。配管18cは、吹出部23に接続される第2端を有する。配管18cの第2端は、吹出部23に連通する。弁19cが開くとき、供給部17cは、吹出部23を通じて筐体12に乾燥ガスを供給する。弁19cが閉じるとき、供給部17cは、乾燥ガスを筐体12に供給しない。
The supply unit 17c includes a pipe 18c and a valve 19c. The valve 19c is provided on the pipe 18c. Tubing 18c has a first end connected to source 21c. A first end of the pipe 18c communicates with the supply source 21c. The pipe 18c has a second end connected to the blowout portion 23 . A second end of the pipe 18 c communicates with the blowout portion 23 . When the valve 19c is opened, the supply section 17c supplies dry gas to the housing 12 through the blowout section 23. As shown in FIG. The supply 17c does not supply dry gas to the housing 12 when the valve 19c is closed.
処理ユニット11は、排気部25を備える。排気部25は、筐体12に接続される。排気部25は、筐体12に連通する。排気部25は、筐体12内の気体を筐体12の外部に排出する。排気部25は、処理空間13の気体を筐体12の外部に排出する。
The processing unit 11 has an exhaust section 25 . The exhaust part 25 is connected to the housing 12 . The exhaust part 25 communicates with the housing 12 . The exhaust unit 25 exhausts the gas inside the housing 12 to the outside of the housing 12 . The exhaust unit 25 exhausts the gas in the processing space 13 to the outside of the housing 12 .
排気部25は、筐体12内の気体の圧力を調整可能である。排気部25は、筐体12内の気体の圧力を低下させることができる。
The exhaust part 25 can adjust the pressure of the gas inside the housing 12 . The exhaust part 25 can reduce the pressure of the gas inside the housing 12 .
処理ユニット11は、1つの吸込部28を備える。吸込部28は、排気部25に接続される。吸込部28は、排気部25に連通する。排気部25は、吸込部28を通じて、筐体12内の気体を吸い込む。
The processing unit 11 has one suction part 28 . The suction section 28 is connected to the exhaust section 25 . The suction portion 28 communicates with the exhaust portion 25 . The exhaust part 25 sucks the gas inside the housing 12 through the suction part 28 .
吸込部28は、例えば、吹出部23よりも低い位置に配置される。吸込部28は、例えば、筐体12の側部に取り付けられている。あるいは、吸込部28は、筐体12の底部に取り付けられてもよい。
The suction part 28 is arranged at a position lower than the blowout part 23, for example. The suction part 28 is attached to the side of the housing 12, for example. Alternatively, suction portion 28 may be attached to the bottom of housing 12 .
排気部25は、不図示の処理設備に接続される。排気部25は、処理設備に連通する。処理設備は、気体を処理する。処理設備は、例えば、気体に含まれるアンモニアガスを分解する。処理設備は、例えば、気体からアンモニアガスを除外する。処理設備は、基板処理装置1の要素ではない。処理設備は、例えば、基板処理装置1の外部に設置されるユーティリティ設備である。
The exhaust unit 25 is connected to processing equipment (not shown). The exhaust section 25 communicates with the processing equipment. The treatment facility treats the gas. The treatment equipment decomposes ammonia gas contained in the gas, for example. The treatment facility, for example, excludes ammonia gas from the gas. The processing equipment is not an element of substrate processing apparatus 1 . The processing equipment is, for example, utility equipment installed outside the substrate processing apparatus 1 .
排気部25の配置と構成を説明する。排気部25の少なくとも一部は、筐体12の外部に配置される。
The arrangement and configuration of the exhaust section 25 will be explained. At least part of the exhaust unit 25 is arranged outside the housing 12 .
排気部25は、配管26と真空ポンプ27を備える。真空ポンプ27は、配管26に設けられる。配管26は、筐体12に接続される第1端を有する。配管26の第1端は、筐体12に連通する。配管26は、処理設備に接続される第2端を有する。配管26の第2端は、処理設備に連通する。真空ポンプ27が作動するとき、排気部25は、筐体12から気体を排出する。
The exhaust section 25 includes a pipe 26 and a vacuum pump 27 . A vacuum pump 27 is provided in the pipe 26 . Tubing 26 has a first end connected to housing 12 . A first end of the pipe 26 communicates with the housing 12 . Piping 26 has a second end connected to a processing facility. A second end of tubing 26 communicates with a processing facility. The exhaust unit 25 exhausts gas from the housing 12 when the vacuum pump 27 operates.
処理ユニット11は、温度調整部31を備える。温度調整部31は、ステージ15に載置される基板Wの温度を調整する。温度調整部31は、ステージ15に支持される基板Wを、冷却する。温度調整部31は、ステージ15に支持される基板Wを、加熱する。
The processing unit 11 includes a temperature adjustment section 31 . The temperature adjuster 31 adjusts the temperature of the substrate W placed on the stage 15 . The temperature adjuster 31 cools the substrate W supported by the stage 15 . The temperature adjuster 31 heats the substrate W supported by the stage 15 .
温度調整部31の少なくとも一部は、筐体12内に配置されることが好ましい。
At least part of the temperature control unit 31 is preferably arranged inside the housing 12 .
温度調整部31は、冷却部32を備える。冷却部32は、ステージ15に載置される基板Wを冷却する。
The temperature adjustment section 31 includes a cooling section 32 . The cooling unit 32 cools the substrate W placed on the stage 15 .
冷却部32の構成例を説明する。冷却部32は、冷却管33を備える。冷却管33の少なくとも一部は、筐体12内に設置される。冷却管33は、ステージ15に取り付けられている。冷却管33は、例えば、ステージ15の内部に配置される。冷却管33は、さらに、筐体12の外部に延びている。冷却管33は、冷媒供給部34に接続される。冷却管33は、冷媒供給部34に連通する。冷媒供給部34は、筐体12の外部に設けられる。冷媒供給部34は、冷却管33に冷媒を送る。冷媒供給部34は、例えば、不図示のポンプを含む。冷媒は、冷却管33を流れる。さらに、冷媒供給部34は、冷却管33から冷媒を受けてもよい。言い換えれば、冷媒は、冷媒供給部34と冷却管33の間で循環してもよい。冷媒が冷却管33を流れるとき、冷媒はステージ15に支持される基板Wから熱を奪う。冷媒が冷却管33を流れるとき、冷却部32はステージ15に載置される基板Wを冷却する。冷媒は、例えば、液体窒素である。
A configuration example of the cooling unit 32 will be described. The cooling unit 32 includes cooling pipes 33 . At least part of the cooling pipe 33 is installed inside the housing 12 . A cooling pipe 33 is attached to the stage 15 . The cooling pipe 33 is arranged inside the stage 15, for example. The cooling pipe 33 also extends outside the housing 12 . The cooling pipe 33 is connected to the coolant supply section 34 . The cooling pipe 33 communicates with the coolant supply section 34 . The coolant supply unit 34 is provided outside the housing 12 . A coolant supply unit 34 sends coolant to the cooling pipe 33 . The coolant supply unit 34 includes, for example, a pump (not shown). A coolant flows through the cooling pipe 33 . Furthermore, the coolant supply section 34 may receive coolant from the cooling pipe 33 . In other words, the coolant may circulate between the coolant supply 34 and the cooling pipes 33 . When the coolant flows through the cooling pipe 33 , the coolant takes heat from the substrate W supported by the stage 15 . The cooling unit 32 cools the substrate W placed on the stage 15 when the coolant flows through the cooling pipe 33 . The coolant is liquid nitrogen, for example.
温度調整部31は、加熱部36を備える。加熱部36は、ステージ15に載置される基板Wを加熱する。
The temperature adjustment unit 31 includes a heating unit 36. The heating unit 36 heats the substrate W placed on the stage 15 .
加熱部36の構成例を説明する。加熱部36は、電気ヒータ37と電源38を備える。電気ヒータ37は、筐体12内に設置される。電気ヒータ37は、ステージ15に取り付けられる。電気ヒータ37は、例えば、ステージ15の内部に配置される。電気ヒータ37は、例えば、電熱線を含む。電源38は、電気ヒータ37に電気的に接続される。電源38は、筐体12の外部に設けられる。電源38は、電気ヒータ37に電力を供給する。電源38が電気ヒータ37に電力を供給するとき、電気ヒータ37はステージ15に支持される基板Wに熱を与える。電源38が電気ヒータ37に電力を供給するとき、加熱部36はステージ15に支持される基板Wを加熱する。
A configuration example of the heating unit 36 will be described. The heating section 36 includes an electric heater 37 and a power source 38 . The electric heater 37 is installed inside the housing 12 . An electric heater 37 is attached to the stage 15 . The electric heater 37 is arranged inside the stage 15, for example. The electric heater 37 includes, for example, a heating wire. A power supply 38 is electrically connected to the electric heater 37 . A power supply 38 is provided outside the housing 12 . A power supply 38 supplies power to the electric heater 37 . When the power supply 38 supplies power to the electric heater 37 , the electric heater 37 heats the substrate W supported by the stage 15 . When the power supply 38 supplies power to the electric heater 37 , the heating section 36 heats the substrate W supported by the stage 15 .
処理ユニット11は、電子放射部41を備える。電子放射部41は、電子を筐体12内に放射する。電子放射部41は、ステージ15に載置される基板Wに電子を放射する。
The processing unit 11 includes an electron emitting section 41 . The electron emission section 41 emits electrons into the housing 12 . The electron emitter 41 emits electrons to the substrate W placed on the stage 15 .
電子放射部41の少なくとも一部は、例えば、筐体12内に配置されてもよい。あるいは、電子放射部41の全部は、筐体12の外部に配置されてもよい。
At least a part of the electron emitting section 41 may be arranged inside the housing 12, for example. Alternatively, the entire electron emitting section 41 may be arranged outside the housing 12 .
電子放射部41の構成例を説明する。電子放射部41は、電子線源42と電源43を備える。電子線源42は、例えば、電子銃である。電子線源42は、例えば、不図示のフィラメントを含む。フィラメントの材質は、例えば、タングステンである。電子線源42の少なくとも一部は、筐体12内に設置されてもよい。電子線源42は、例えば、筐体12を貫通するように設けられてもよい。あるいは、電子線源42の全部は、筐体12の外部に設置されてもよい。電子線源42は、例えば、ステージ15よりも高い位置に配置される。電源43は、電子線源42に電気的に接続される。電源43は、筐体12の外部に設けられる。電源43は、電子線源42に電力を供給する。電源43が電子線源42に電力を供給するとき、電子線源42は電子を処理空間13に放射する。
A configuration example of the electron emission unit 41 will be described. The electron emitter 41 includes an electron beam source 42 and a power supply 43 . The electron beam source 42 is, for example, an electron gun. The electron beam source 42 includes, for example, a filament (not shown). The material of the filament is tungsten, for example. At least part of the electron beam source 42 may be installed within the housing 12 . The electron beam source 42 may be provided, for example, so as to penetrate the housing 12 . Alternatively, the entire electron beam source 42 may be installed outside the housing 12 . The electron beam source 42 is arranged at a position higher than the stage 15, for example. A power supply 43 is electrically connected to the electron beam source 42 . The power supply 43 is provided outside the housing 12 . A power supply 43 supplies power to the electron beam source 42 . When power supply 43 powers electron beam source 42 , electron beam source 42 emits electrons into process space 13 .
処理ユニット11は、収集部45を備える。収集部45は、筐体12内において負に帯電されたパーティクルを収集する。
The processing unit 11 includes a collection unit 45. The collector 45 collects negatively charged particles within the housing 12 .
収集部45の少なくとも一部は、筐体12内に配置されることが好ましい。
At least part of the collection unit 45 is preferably arranged inside the housing 12 .
収集部45の構成例を説明する。収集部45は、電極46と電源47を備える。電極46は、例えば、筐体12の内部に設置されることが好ましい。電極46は、例えば、ステージ15の上方に配置される。電極46は、例えば、絶縁体で被覆された金属である。電源47は、電極46に電気的に接続される。電源47は、筐体12の外部に設けられる。電源47は、電極46に電圧を印加する。電源47は、電極46に正の電圧を印加する。電源47が電極46に正の電圧を印加するとき、電極46は、負に帯電したパーティクルを引き寄せる。
A configuration example of the collection unit 45 will be described. The collection unit 45 includes electrodes 46 and a power source 47 . The electrodes 46 are preferably installed inside the housing 12, for example. The electrode 46 is arranged above the stage 15, for example. Electrode 46 is, for example, metal covered with an insulator. A power supply 47 is electrically connected to the electrode 46 . The power supply 47 is provided outside the housing 12 . A power supply 47 applies a voltage to the electrodes 46 . Power supply 47 applies a positive voltage to electrode 46 . When power supply 47 applies a positive voltage to electrode 46, electrode 46 attracts negatively charged particles.
処理ユニット11は、圧力センサ51を備える。圧力センサ51は、筐体12内の気体の圧力を検出する。圧力センサ51は、筐体12内に設置される。
The processing unit 11 includes a pressure sensor 51. The pressure sensor 51 detects the gas pressure inside the housing 12 . The pressure sensor 51 is installed inside the housing 12 .
処理ユニット11は、温度センサ52を備える。温度センサ52は、基板Wの温度を検出する。温度センサ52は、筐体12内に設置される。温度センサ52は、例えば、ステージ15に取り付けられる。温度センサ52は、例えば、ステージ15を直接的に検出することによって、ステージ15上の基板Wの温度を間接的に検出してもよい。
The processing unit 11 includes a temperature sensor 52. A temperature sensor 52 detects the temperature of the substrate W. FIG. A temperature sensor 52 is installed within the housing 12 . The temperature sensor 52 is attached to the stage 15, for example. The temperature sensor 52 may indirectly detect the temperature of the substrate W on the stage 15 by directly detecting the stage 15, for example.
ステージ15は、本発明の基板載置部の例である。
The stage 15 is an example of the substrate mounting part of the present invention.
供給部17aは、本発明の第1供給部の例である。水蒸気は、本発明における第1処理ガスの例である。供給部17bは、本発明の第2供給部の例である。アンモニアガスは、本発明における第2処理ガスの例である。
The supply unit 17a is an example of the first supply unit of the present invention. Water vapor is an example of the first process gas in the present invention. The supply section 17b is an example of the second supply section of the present invention. Ammonia gas is an example of the second process gas in the present invention.
供給部17cと排気部25は、本発明の圧力調整部の例である。
The supply section 17c and the exhaust section 25 are examples of the pressure adjustment section of the present invention.
以下では、供給部17cと排気部25を区別しない場合には、適宜に「圧力調整部20」と呼ぶ。
Hereinafter, when the supply section 17c and the exhaust section 25 are not distinguished from each other, they are appropriately referred to as the "pressure adjustment section 20".
図2を参照する。制御部10は、供給部17a、17bを制御する。制御部10は、弁19a、19bを制御する。
See Figure 2. The control unit 10 controls the supply units 17a and 17b. The control unit 10 controls the valves 19a and 19b.
制御部10は、圧力調整部20を制御する。制御部10は、供給部17cと排気部25を制御する。制御部10は、弁19cと真空ポンプ27を制御する。
The control unit 10 controls the pressure adjustment unit 20. The control unit 10 controls the supply unit 17 c and the exhaust unit 25 . The controller 10 controls the valve 19 c and the vacuum pump 27 .
制御部10は、温度調整部31を制御する。制御部10は、冷却部32と加熱部36を制御する。制御部10は、冷媒供給部34と電源38を制御する。
The control unit 10 controls the temperature adjustment unit 31. The control section 10 controls the cooling section 32 and the heating section 36 . The control unit 10 controls the coolant supply unit 34 and the power supply 38 .
制御部10は、電子放射部41を制御する。制御部10は、電源43を制御する。
The control unit 10 controls the electron emission unit 41 . The control unit 10 controls the power supply 43 .
制御部10は、収集部45を制御する。制御部10は、電源47を制御する。
The control unit 10 controls the collection unit 45. The control unit 10 controls the power supply 47 .
制御部10は、圧力センサ51の検出結果を取得する。制御部10は、温度センサ52の検出結果を取得する。
The control unit 10 acquires the detection result of the pressure sensor 51. The control unit 10 acquires the detection result of the temperature sensor 52 .
<3.処理ユニット11の動作例>
図4は、基板処理方法の手順を示すフローチャートである。基板Wを処理する基板処理方法は、ステップS1-S11を備える。ステップS1-S11は、実質的に処理ユニット11によって実行される。制御部10の制御にしたがって、処理ユニット11は、動作する。 <3. Example of Operation ofProcessing Unit 11>
FIG. 4 is a flow chart showing the procedure of the substrate processing method. A substrate processing method for processing a substrate W includes steps S1-S11. Steps S 1 -S 11 are substantially performed by processing unit 11 . The processing unit 11 operates under the control of the control section 10 .
図4は、基板処理方法の手順を示すフローチャートである。基板Wを処理する基板処理方法は、ステップS1-S11を備える。ステップS1-S11は、実質的に処理ユニット11によって実行される。制御部10の制御にしたがって、処理ユニット11は、動作する。 <3. Example of Operation of
FIG. 4 is a flow chart showing the procedure of the substrate processing method. A substrate processing method for processing a substrate W includes steps S1-S11. Steps S 1 -
ステップS1:載置工程
上述の通り、搬送機構8によって、基板Wはステージ15に載置される。基板Wは、筐体12内において略水平姿勢で載置される。 Step S<b>1 : Mounting Process As described above, the substrate W is mounted on thestage 15 by the transport mechanism 8 . The substrate W is placed in a substantially horizontal posture within the housing 12 .
上述の通り、搬送機構8によって、基板Wはステージ15に載置される。基板Wは、筐体12内において略水平姿勢で載置される。 Step S<b>1 : Mounting Process As described above, the substrate W is mounted on the
図5は、載置工程における基板Wの上面を模式的に示す図である。基板Wは、パターンRを有する。パターンRは、基板Wの上面W1に形成される。基板Wがステージ15に載置されるとき、パターンRは基板Wの上面W1に位置する。基板Wがステージ15に載置されるとき、パターンRは上方を向く。
FIG. 5 is a diagram schematically showing the upper surface of the substrate W in the mounting process. The substrate W has a pattern R. The pattern R is formed on the upper surface W1 of the substrate W. As shown in FIG. The pattern R is positioned on the upper surface W1 of the substrate W when the substrate W is placed on the stage 15 . When the substrate W is placed on the stage 15, the pattern R faces upward.
パターンRは、凸部W2と凹部Aを有する。凸部W2は、基板Wの一部である。凸部W2は、構造体である。凸部W2は、例えば、シリコン酸化膜(SiO2)やシリコン窒化膜(SiN)やポリシリコン膜で構成される。凸部W2は、上方に隆起する。凹部Aは、空間である。凹部Aは、上方に開放されている。凹部Aは、凸部W2の側方に配置される。凹部Aは、凸部W2に接する。凸部W2は、凹部Aを区画する壁に相当する。
The pattern R has a convex portion W2 and a concave portion A. The protrusion W2 is part of the substrate W. As shown in FIG. The protrusion W2 is a structure. The protrusion W2 is composed of, for example, a silicon oxide film (SiO2), a silicon nitride film (SiN), or a polysilicon film. The protrusion W2 protrudes upward. The recess A is a space. The recess A is open upward. The concave portion A is arranged on the side of the convex portion W2. The concave portion A contacts the convex portion W2. The convex portion W2 corresponds to a wall that partitions the concave portion A. As shown in FIG.
さらに、図5では、パーティクル(異物)Bを示す。パーティクルBは、基板Wの上面W1に付着する。
Furthermore, in FIG. 5, particles (foreign matter) B are shown. The particles B adhere to the upper surface W1 of the substrate W. As shown in FIG.
基板Wの上面W1は、筐体12内の気体Gと接する。
The upper surface W1 of the substrate W is in contact with the gas G inside the housing 12.
載置工程では、基板Wは液体と接触しない。載置工程では、基板Wは、濡れていない。
In the mounting process, the substrate W does not come into contact with the liquid. In the mounting step, the substrate W is not wet.
ここで、気体Gと液体の界面を適宜に気液界面と呼ぶ。載置工程では、基板Wは、気液界面と接しない。そもそも、載置工程では、気液界面は生じない。
Here, the interface between the gas G and the liquid is appropriately called the gas-liquid interface. In the mounting step, the substrate W does not come into contact with the gas-liquid interface. In the first place, no gas-liquid interface occurs in the mounting process.
圧力センサ51は、筐体12内の気体Gの圧力を検出する。制御部10は、圧力センサ51の検出結果を監視する。
The pressure sensor 51 detects the pressure of the gas G inside the housing 12 . The control unit 10 monitors detection results of the pressure sensor 51 .
載置工程では、筐体12内の気体Gの圧力は、常圧である。ここで、常圧は、標準大気圧(1気圧、1013hPa)を含む。常圧は、例えば、0.7気圧以上で、1.3気圧以下の範囲内の気圧である。本明細書では、絶対真空を基準とした絶対圧力で、圧力を示す。
In the placing process, the pressure of the gas G inside the housing 12 is normal pressure. Here, normal pressure includes standard atmospheric pressure (1 atm, 1013 hPa). Normal pressure is, for example, an atmospheric pressure in the range of 0.7 atmospheres or more and 1.3 atmospheres or less. Pressure is indicated herein in terms of absolute pressure relative to absolute vacuum.
温度センサ52は、ステージ15に載置される基板Wの温度を検出する。制御部10は、温度センサ52の検出結果を監視する。
A temperature sensor 52 detects the temperature of the substrate W placed on the stage 15 . The control unit 10 monitors the detection result of the temperature sensor 52 .
載置工程では、ステージ15上の基板Wは、例えば、常温である。ここで、常温は、室温を含む。常温は、例えば、5℃以上で35℃以下の範囲内の温度である。常温は、例えば、10℃以上で30℃以下の範囲内の温度である。
In the mounting process, the substrate W on the stage 15 is at room temperature, for example. Here, normal temperature includes room temperature. Normal temperature is, for example, a temperature within the range of 5° C. or higher and 35° C. or lower. Normal temperature is, for example, a temperature within the range of 10° C. or higher and 30° C. or lower.
基板Wは、ステージ15上で静止する。基板Wは、回転しない。ステップS2-S9は、基板Wが静止した状態で、実行される。ステップS2-S11は、基板Wが静止した状態で、実行される。
The substrate W stands still on the stage 15. The substrate W does not rotate. Steps S2-S9 are performed with the substrate W stationary. Steps S2-S11 are performed with the substrate W stationary.
ステップS2:密閉工程
筐体12が基板Wを収容した状態で、筐体12は密閉される。例えば、シャッタ14は、基板搬送口12aを閉じる。 Step S2: Sealing Step With the substrate W housed in thehousing 12, the housing 12 is sealed. For example, the shutter 14 closes the substrate transfer port 12a.
筐体12が基板Wを収容した状態で、筐体12は密閉される。例えば、シャッタ14は、基板搬送口12aを閉じる。 Step S2: Sealing Step With the substrate W housed in the
便宜上、図5を参照する。密閉工程でも、基板Wは、気液界面と接しない。
For convenience, refer to Figure 5. The substrate W does not come into contact with the gas-liquid interface even in the sealing process.
ステップS3:調整工程
筐体12の気体Gの圧力は、第1圧力P1に調整される。第1圧力P1は、水蒸気が凝華可能な圧力である。 Step S3: Adjustment process The pressure of the gas G in thehousing 12 is adjusted to the first pressure P1. The first pressure P1 is a pressure at which water vapor can condense.
筐体12の気体Gの圧力は、第1圧力P1に調整される。第1圧力P1は、水蒸気が凝華可能な圧力である。 Step S3: Adjustment process The pressure of the gas G in the
ここで、「凝華(deposition)」および「凝華する」とは、気体から、液体を経ずに、固体に変化することである。他方、「凝縮(condensation)」および「凝縮する」とは、気体から、液体に変化することである。筐体12の気体Gの圧力が第1圧力P1であるとき、水蒸気は凝縮し難い。
Here, the terms "deposition" and "condensation" refer to the change from gas to solid without passing through liquid. On the other hand, "condensation" and "to condense" refer to a change from a gas to a liquid. When the pressure of the gas G in the housing 12 is the first pressure P1, water vapor is difficult to condense.
例えば、第1圧力P1は、水の三重点の圧力よりも小さい。水の三重点の圧力は、約611Paである。筐体12の気体Gの圧力が水の三重点の圧力よりも小さいとき、水蒸気(気相の水)は凝縮し難い。
For example, the first pressure P1 is less than the triple point pressure of water. The triple point pressure of water is about 611 Pa. When the pressure of the gas G in the housing 12 is lower than the triple point pressure of water, water vapor (gas phase water) is less likely to condense.
第1圧力P1は常圧よりも小さい。このため、調整工程は、筐体12の気体Gの圧力を低下させる。調整工程は、筐体12の気体Gの圧力を、常圧から第1圧力P1に低下させる。
The first pressure P1 is lower than normal pressure. Therefore, the adjustment process reduces the pressure of the gas G in the housing 12 . The adjusting step reduces the pressure of the gas G in the housing 12 from normal pressure to the first pressure P1.
具体的には、制御部10は、圧力調整部20を制御することによって、筐体12の気体Gの圧力を調整する。例えば、排気部25が筐体12内の気体を排出することによって、筐体12の気体Gの圧力を低下させる。制御部10が筐体12の気体Gの圧力を調整するとき、制御部10は、圧力センサ51の検出結果を参照してもよい。
Specifically, the control unit 10 adjusts the pressure of the gas G in the housing 12 by controlling the pressure adjustment unit 20 . For example, the pressure of the gas G in the housing 12 is reduced by discharging the gas in the housing 12 using the exhaust unit 25 . When the control unit 10 adjusts the pressure of the gas G in the housing 12 , the control unit 10 may refer to the detection result of the pressure sensor 51 .
第1圧力P1は、1つの値であってもよい。第1圧力P1は、2つの値の間の範囲であってもよい。第1圧力P1は、制御部10が有する処理情報において予め設定されている。
The first pressure P1 may be one value. The first pressure P1 may range between two values. The first pressure P1 is set in advance in the processing information held by the control section 10 .
さらに、調整工程では、ステージ15に載置される基板Wは、第1温度T1に調整される。第1温度T1は、第1圧力P1の下で、水蒸気が凝華する温度である。言い換えれば、第1温度T1は、第1圧力P1の下で、水が固相で存在する温度である。
Furthermore, in the adjustment process, the substrate W placed on the stage 15 is adjusted to the first temperature T1. The first temperature T1 is the temperature at which water vapor condenses under the first pressure P1. In other words, the first temperature T1 is the temperature at which water exists in solid phase under the first pressure P1.
例えば、第1温度T1は、水の三重点の温度よりも低い。水の三重点の温度は、0.01度である。
For example, the first temperature T1 is lower than the triple point temperature of water. The temperature of the triple point of water is 0.01 degrees.
第1温度T1は、常温よりも低い。このため、調整工程は、ステージ15に載置される基板Wを冷却する。調整工程は、ステージ15に載置される基板Wを、常温から第1温度T1まで冷却する。
The first temperature T1 is lower than normal temperature. Therefore, the adjustment process cools the substrate W placed on the stage 15 . In the adjustment process, the substrate W placed on the stage 15 is cooled from room temperature to the first temperature T1.
具体的には、制御部10は、温度調整部31を制御することによって、ステージ15に載置される基板Wの温度を調整する。例えば、冷却部32は、ステージ15に載置される基板Wを冷却する。制御部10が基板Wの温度を調整するとき、制御部10は、温度センサ52の検出結果を参照してもよい。
Specifically, the control unit 10 adjusts the temperature of the substrate W placed on the stage 15 by controlling the temperature adjustment unit 31 . For example, the cooling unit 32 cools the substrate W placed on the stage 15 . When the controller 10 adjusts the temperature of the substrate W, the controller 10 may refer to the detection result of the temperature sensor 52 .
第1温度T1は、1つの値であってもよい。第1温度T1は、2つの値の間の範囲であってもよい。第1温度T1は、制御部10が有する処理情報において予め設定されている。
The first temperature T1 may be one value. The first temperature T1 may range between two values. The first temperature T1 is preset in the processing information held by the control unit 10 .
ステップS4、S5は、筐体12の気体Gの圧力が第1圧力P1に保たれ、かつ、ステージ15に載置される基板Wの温度が第1温度T1に保たれた状態で、実行される。
Steps S4 and S5 are executed while the pressure of the gas G in the housing 12 is kept at the first pressure P1 and the temperature of the substrate W placed on the stage 15 is kept at the first temperature T1. be.
ステップS4:第1供給工程
水蒸気が筐体12に供給される。 Step S<b>4 : First supply step Water vapor is supplied to thehousing 12 .
水蒸気が筐体12に供給される。 Step S<b>4 : First supply step Water vapor is supplied to the
具体的には、制御部10は供給部17aを制御する。これにより、供給部17aは、筐体12に水蒸気を供給する。
Specifically, the control unit 10 controls the supply unit 17a. Thereby, the supply unit 17 a supplies water vapor to the housing 12 .
便宜上、図5を参照する。基板Wの上面W1は、筐体12内の気体Gと接する。気体Gは、水蒸気を含む。このため、基板Wの上面W1は、水蒸気と接する。
For convenience, refer to Figure 5. A top surface W1 of the substrate W is in contact with the gas G inside the housing 12 . The gas G contains water vapor. Therefore, the upper surface W1 of the substrate W is in contact with water vapor.
水蒸気は、気相である。すなわち、水蒸気は液相ではない。このため、第1供給工程においても、気体Gは気相である。
"Water vapor is in the gas phase." That is, water vapor is not in liquid phase. Therefore, the gas G is in the gas phase also in the first supply step.
第1供給工程は、基板Wに液体を供給しない。
The liquid is not supplied to the substrate W in the first supply process.
第1供給工程では、基板Wの上面W1は、液体と接触しない。このため、第1供給工程では、基板Wの上面W1は、気液界面と接しない。そもそも、第1供給工程では、気液界面は生じない。
In the first supply step, the upper surface W1 of the substrate W does not come into contact with the liquid. Therefore, in the first supply step, the upper surface W1 of the substrate W does not come into contact with the gas-liquid interface. In the first place, no gas-liquid interface occurs in the first supply step.
ステップS5:凝華工程
水蒸気は筐体12内において凝華する。 Step S<b>5 : Condensation Process Water vapor condenses within thehousing 12 .
水蒸気は筐体12内において凝華する。 Step S<b>5 : Condensation Process Water vapor condenses within the
水蒸気が筐体12に供給された直後から、水蒸気は凝華し始める。このため、凝華工程が実行される期間は、第1供給工程が実行される期間の少なくとも一部と重なってもよい。
Immediately after the water vapor is supplied to the housing 12, the water vapor begins to condense. Therefore, the period during which the sublimation process is performed may overlap at least part of the period during which the first supply process is performed.
図6は、凝華工程における基板Wの上面W1を模式的に示す図である。筐体12の気体Gの圧力が第1圧力P1に保たれた状態で、水蒸気は筐体12において冷却される。水蒸気は、基板Wによって冷却される。水蒸気は、基板Wを介して、冷却される。基板Wの近傍の水蒸気は、第1温度T1まで冷却される。
FIG. 6 is a diagram schematically showing the upper surface W1 of the substrate W in the sublimation process. The water vapor is cooled in the housing 12 while the pressure of the gas G in the housing 12 is maintained at the first pressure P1. The water vapor is cooled by the substrate W. Through the substrate W, the water vapor is cooled. Water vapor in the vicinity of the substrate W is cooled to the first temperature T1.
水蒸気は、液体を経ずに、第1固体膜Hに変わる。第1固体膜Hは、基板Wの上面W1に形成される。基板Wの上面W1は、第1固体膜Hと接する。
The water vapor turns into the first solid film H without going through liquid. The first solid film H is formed on the upper surface W1 of the substrate W. As shown in FIG. A top surface W1 of the substrate W is in contact with the first solid film H. As shown in FIG.
第1固体膜Hは、固相である。第1固体膜Hは、氷である。第1固体膜Hは、液相でない。
The first solid film H is a solid phase. The first solid film H is ice. The first solid film H is not in liquid phase.
図6では、第1固体膜Hは、凸部W2の高さよりも薄い。このため、上面W1(凸部W2)は、第1固体膜Hおよび気体Gの両方と接する。
In FIG. 6, the first solid film H is thinner than the height of the protrusion W2. Therefore, the upper surface W1 (convex portion W2) is in contact with both the first solid film H and the gas G. As shown in FIG.
図6は、第1固体膜Hの厚みが基板Wの上面W1にわたって均一でない場合を例示する。すなわち、図6は、第1固化膜Hの形成速度が、基板Wの上面W1において、ばらつく場合を例示する。第1固化膜の形成速度のばらつきは、例えば、基板Wの温度が基板Wの上面W1にわたってばらつくことに起因する。なお、第1固化膜Hの形成速度は、基板Wの上面W1にわたって均一であってもよい。
6 illustrates the case where the thickness of the first solid film H is not uniform over the upper surface W1 of the substrate W. FIG. That is, FIG. 6 illustrates a case where the formation speed of the first solidified film H varies on the upper surface W1 of the substrate W. As shown in FIG. Variations in the formation speed of the first solidified film are caused by variations in the temperature of the substrate W over the upper surface W1 of the substrate W, for example. The formation speed of the first solidified film H may be uniform over the upper surface W1 of the substrate W.
第1固体膜Hは、徐々に厚くなる。
The first solid film H gradually thickens.
図7は、凝華工程における基板Wの上面W1を模式的に示す図である。図7では、第1固体膜Hは、凸部W2の高さよりも厚い。
FIG. 7 is a diagram schematically showing the upper surface W1 of the substrate W in the sublimation process. In FIG. 7, the first solid film H is thicker than the height of the protrusion W2.
第1固体膜Hは、基板Wの上面W1を覆う。第1固体膜Hは、基板Wの上面W1の全体を覆う。基板Wの上面W1は、第1固体膜Hと接する。但し、基板Wの上面W1は、気体Gと接しない。
The first solid film H covers the upper surface W1 of the substrate W. The first solid film H covers the entire upper surface W1 of the substrate W. As shown in FIG. A top surface W1 of the substrate W is in contact with the first solid film H. As shown in FIG. However, the upper surface W1 of the substrate W is not in contact with the gas G.
図6、7から明らかな通り、水蒸気が第1固体膜Hに変わるとき、基板Wの上面W1は、液体と接しない。基板Wの上面W1が気液界面と接することなく、水蒸気は第1固体膜Hに変わる。したがって、凝華工程では、基板Wの上面W1は気液界面と接しない。そもそも、凝華工程では、気液界面は生じない。
As is clear from FIGS. 6 and 7, when the water vapor transforms into the first solid film H, the upper surface W1 of the substrate W does not contact the liquid. The water vapor transforms into the first solid film H without the upper surface W1 of the substrate W contacting the gas-liquid interface. Therefore, in the condensation process, the upper surface W1 of the substrate W does not come into contact with the gas-liquid interface. In the first place, no gas-liquid interface occurs in the condensation process.
第1固化膜Hの形成速度が基板Wの上面W1においてばらつく場合であっても、凝華工程では、基板Wの上面W1は気液界面と接しない。
Even if the formation speed of the first solidified film H varies on the upper surface W1 of the substrate W, the upper surface W1 of the substrate W does not come into contact with the gas-liquid interface in the condensation process.
ステップS6:融解工程
第1固体膜Hは融解する。 Step S6: Melting step The first solid film H is melted.
第1固体膜Hは融解する。 Step S6: Melting step The first solid film H is melted.
融解工程では、筐体12内の気体Gの圧力は、第2圧力P2に調整される。第2圧力P2は、第1固体膜Hが融解可能な圧力である。
In the melting process, the pressure of the gas G inside the housing 12 is adjusted to the second pressure P2. The second pressure P2 is a pressure at which the first solid film H can be melted.
ここで、「融解(melting)」および「融解する」とは、固体から、液体に変化することである。他方、「昇華(sublimation)」および「昇華する」とは、固体から、液体を経ずに、気体に変化することである。筐体12内の気体Gの圧力が第2圧力P2であるとき、第1固体膜Hは昇華し難い。
Here, "melting" and "melting" refer to changing from a solid to a liquid. On the other hand, "sublimation" and "sublimate" refer to changing from a solid to a gas without going through a liquid. When the pressure of the gas G inside the housing 12 is the second pressure P2, the first solid film H is difficult to sublimate.
例えば、第2圧力P2は、水の三重点の圧力よりも大きい。筐体12の気体Gの圧力が水の三重点の圧力よりも大きいとき、氷(固相の水)は昇華し難い。
For example, the second pressure P2 is greater than the triple point pressure of water. When the pressure of the gas G in the housing 12 is higher than the triple point pressure of water, ice (solid-phase water) is difficult to sublimate.
例えば、第2圧力P2は、常圧よりも低い。例えば、第2圧力P2は、標準大気圧よりも低い。
For example, the second pressure P2 is lower than normal pressure. For example, the second pressure P2 is lower than standard atmospheric pressure.
第2圧力P2は第1圧力P1よりも大きい。このため、融解工程は、筐体12の気体Gの圧力を高める。融解工程は、筐体12の気体Gの圧力を、第1圧力P1から第2圧力P2に高める。
The second pressure P2 is greater than the first pressure P1. Therefore, the melting process increases the pressure of the gas G in the housing 12 . The melting process increases the pressure of the gas G in the housing 12 from the first pressure P1 to the second pressure P2.
具体的には、制御部10は、圧力調整部20を制御することによって、筐体12の気体Gの圧力を調整する。例えば、供給部17cが筐体12に乾燥ガスを供給することによって、筐体12の気体Gの圧力を高める。
Specifically, the control unit 10 adjusts the pressure of the gas G in the housing 12 by controlling the pressure adjustment unit 20 . For example, the supply unit 17c supplies dry gas to the housing 12 to increase the pressure of the gas G in the housing 12 .
第2圧力P2は、1つの値であってもよい。第2圧力P2は、2つの値の間の範囲であってもよい。第2圧力P2は、制御部10が有する処理情報において予め設定されている。
The second pressure P2 may be one value. The second pressure P2 may range between two values. The second pressure P2 is preset in the processing information held by the controller 10 .
さらに、ステージ15に載置される基板Wは、第2温度T2に調整される。ここで、筐体12内の気体Gの圧力が第2圧力P2に調整された後、ステージ15に載置される基板Wは、第2温度T2に調整されることが好ましい。第2温度T2は、第2圧力P2の下で、第1固体膜Hが融解する温度である。言い換えれば、第2温度T2は、第2圧力P2の下で、第1固体膜Hが液相で存在する温度である。
Furthermore, the substrate W placed on the stage 15 is adjusted to the second temperature T2. Here, after the pressure of the gas G inside the housing 12 is adjusted to the second pressure P2, the substrate W placed on the stage 15 is preferably adjusted to the second temperature T2. The second temperature T2 is the temperature at which the first solid film H melts under the second pressure P2. In other words, the second temperature T2 is the temperature at which the first solid film H exists in the liquid phase under the second pressure P2.
例えば、第2温度T2は、水の三重点の温度よりも高い。例えば、第2温度T2は、常温と略等しい。
For example, the second temperature T2 is higher than the triple point temperature of water. For example, the second temperature T2 is substantially equal to room temperature.
第2温度T2は、第1温度T1よりも高い。このため、融解工程は、ステージ15に載置される基板Wを加熱する。融解工程は、ステージ15に載置される基板Wを、第1温度T1から第2温度T2まで加熱する。
The second temperature T2 is higher than the first temperature T1. Therefore, the melting process heats the substrate W placed on the stage 15 . The melting process heats the substrate W placed on the stage 15 from the first temperature T1 to the second temperature T2.
具体的には、制御部10は、温度調整部31を制御することによって、ステージ15に載置される基板Wの温度を調整する。例えば、加熱部36は、ステージ15に載置される基板Wを加熱する。
Specifically, the control unit 10 adjusts the temperature of the substrate W placed on the stage 15 by controlling the temperature adjustment unit 31 . For example, the heating unit 36 heats the substrate W placed on the stage 15 .
第2温度T2は、1つの値であってもよい。第2温度T2は、2つの値の間の範囲であってもよい。第2温度T2は、制御部10が有する処理情報において予め設定されている。
The second temperature T2 may be one value. The second temperature T2 may range between two values. The second temperature T2 is preset in the processing information held by the control unit 10 .
図8は、融解工程における基板Wの上面W1を模式的に示す図である。筐体12の気体Gの圧力が第2圧力P2に保たれた状態で、第1固体膜Hは加熱される。第1固体膜Hは、基板Wによって加熱される。第1固体膜Hは、基板Wを介して、加熱される。第1固体膜Hは、第2温度T2まで加熱される。
FIG. 8 is a diagram schematically showing the upper surface W1 of the substrate W in the melting process. The first solid film H is heated while the pressure of the gas G in the housing 12 is maintained at the second pressure P2. The first solid film H is heated by the substrate W. As shown in FIG. Through the substrate W, the first solid film H is heated. The first solid film H is heated to the second temperature T2.
第1固体膜Hは、液膜Jに変わる。液膜Jは、基板Wの上面W1に形成される。基板Wの上面W1は、液膜Jと接する。
The first solid film H turns into a liquid film J. A liquid film J is formed on the upper surface W1 of the substrate W. As shown in FIG. The upper surface W1 of the substrate W is in contact with the liquid film J. As shown in FIG.
液膜Jは、液相である。液膜Jは、処理液によって形成される。液膜Jを形成する処理液は、水である。
The liquid film J is a liquid phase. The liquid film J is formed by the processing liquid. The treatment liquid forming the liquid film J is water.
図8では、第1固体膜Hの一部が、液膜Jに変わる。基板Wの上面W1は、液膜Jおよび第1固体膜Hの両方と接する。但し、基板Wの上面W1は、気体Gと接しない。基板Wの上面W1は、液膜Jおよび第1固体膜Hによって覆われているからである。
In FIG. 8, part of the first solid film H turns into a liquid film J. The upper surface W1 of the substrate W is in contact with both the liquid film J and the first solid film H. However, the upper surface W1 of the substrate W is not in contact with the gas G. This is because the upper surface W1 of the substrate W is covered with the liquid film J and the first solid film H.
図8は、液膜Jの厚みが基板Wの上面W1にわたって均一でない場合を例示する。すなわち、図8は、液膜Jの形成速度が、基板Wの上面W1において、ばらつく場合を例示する。液膜Jの形成速度のばらつきは、例えば、基板Wの温度が基板Wの上面W1にわたってばらつくことに起因する。なお、液膜Jの形成速度は、基板Wの上面W1にわたって均一であってもよい。
8 illustrates the case where the thickness of the liquid film J is not uniform over the upper surface W1 of the substrate W. FIG. That is, FIG. 8 illustrates a case where the formation speed of the liquid film J varies on the upper surface W1 of the substrate W. FIG. Variations in the formation speed of the liquid film J are caused by variations in the temperature of the substrate W over the upper surface W1 of the substrate W, for example. The formation speed of the liquid film J may be uniform over the upper surface W1 of the substrate W.
第1固体膜Hは徐々に減少する。液膜Jは徐々に増大する。
The first solid film H gradually decreases. The liquid film J gradually increases.
図9は、融解工程における基板Wの上面W1を模式的に示す図である。図9では、第1固体膜Hの全部が、液膜Jに変わる。
FIG. 9 is a diagram schematically showing the upper surface W1 of the substrate W in the melting process. 9, the entire first solid film H is transformed into a liquid film J. In FIG.
液膜Jは、基板Wの上面W1を覆う。液膜Jは、基板Wの上面W1の全体を覆う。基板Wの上面W1は、液膜Jと接する。但し、基板Wの上面W1は、気体Gと接しない。
The liquid film J covers the upper surface W1 of the substrate W. The liquid film J covers the entire upper surface W1 of the substrate W. As shown in FIG. The upper surface W1 of the substrate W is in contact with the liquid film J. As shown in FIG. However, the upper surface W1 of the substrate W is not in contact with the gas G.
図8、9から明らかな通り、第1固体膜Hから液膜Jに変わるとき、気液界面Kが生じる。気液界面Kは、液膜Jと気体Gの間に位置する。しかし、基板Wの上面W1は気液界面Kと接しない。基板Wの上面W1が気液界面Kと接することなく、第1固体膜Hは液膜Jに変わる。したがって、融解工程では、基板Wの上面W1は気液界面Kと接しない。
As is clear from FIGS. 8 and 9, when the first solid film H changes to the liquid film J, a gas-liquid interface K occurs. A gas-liquid interface K is located between the liquid film J and the gas G. FIG. However, the upper surface W1 of the substrate W is not in contact with the gas-liquid interface K. The first solid film H changes into a liquid film J without the upper surface W1 of the substrate W coming into contact with the gas-liquid interface K. Therefore, the upper surface W1 of the substrate W does not come into contact with the gas-liquid interface K in the melting process.
液膜Jの形成速度が基板Wの上面W1においてばらつく場合であっても、融解工程では、基板Wの上面W1は気液界面Kと接しない。
Even if the formation speed of the liquid film J varies on the upper surface W1 of the substrate W, the upper surface W1 of the substrate W does not come into contact with the gas-liquid interface K in the melting process.
ステップS7:第2供給工程
アンモニアガスが筐体12に供給される。 Step S<b>7 : Second supply step Ammonia gas is supplied to thehousing 12 .
アンモニアガスが筐体12に供給される。 Step S<b>7 : Second supply step Ammonia gas is supplied to the
具体的には、制御部10は供給部17bを制御する。これにより、供給部17bは、筐体12にアンモニアガスを供給する。
Specifically, the control unit 10 controls the supply unit 17b. Thereby, the supply unit 17b supplies ammonia gas to the housing 12 .
図10は、第2供給工程における基板Wの上面W1を模式的に示す図である。気体Gは、アンモニアガスを含む。アンモニアガスは気相である。すなわち、アンモニアガスは液相でない。第2供給工程においても、気体Gは気相である。
FIG. 10 is a diagram schematically showing the upper surface W1 of the substrate W in the second supply step. The gas G contains ammonia gas. Ammonia gas is in the gas phase. That is, ammonia gas is not in liquid phase. Also in the second supply step, the gas G is in the gas phase.
第2供給工程は、基板Wに液体を供給しない。
The liquid is not supplied to the substrate W in the second supply process.
基板Wの上面W1は、気体Gと接しない。基板Wの上面W1は、液膜Jに覆われているからである。第2供給工程においても、基板Wの上面W1は、液膜Jと気体Gの間の気液界面Kと接しない。
The upper surface W1 of the substrate W does not come into contact with the gas G. This is because the upper surface W1 of the substrate W is covered with the liquid film J. FIG. The upper surface W1 of the substrate W is not in contact with the gas-liquid interface K between the liquid film J and the gas G in the second supply step as well.
液膜Jは、気体Gと接する。液膜Jは、気体Gに含まれるアンモニアガスと接する。液膜Jは、気体Gに含まれるアンモニアガスを溶解する。その結果、液膜Jは、アンモニア水を含む。アンモニア水は、水酸化アンモニウムとも言う。
The liquid film J is in contact with the gas G. The liquid film J is in contact with the ammonia gas contained in the gas G. The liquid film J dissolves the ammonia gas contained in the gas G. As a result, the liquid film J contains aqueous ammonia. Ammonia water is also called ammonium hydroxide.
液膜Jがアンモニアガスを溶解した後、液膜Jはアルカリ性を有する。基板Wの上面W1はアルカリ性の液膜Jと接する。このため、基板Wの上面W1は、負のゼータ電位を有する。同様に、パーティクルBは、アルカリ性の液膜Jと接する。このため、パーティクルBは、負のゼータ電位を有する。パーティクルBが有するゼータ電位は、基板Wの上面W1が有するゼータ電位と同じ極性である。したがって、上面W1とパーティクルBは、互いに反発する。パーティクルBは上面W1から離れる。パーティクルBは液膜J中に遊離する。さらに、パーティクルBが上面W1から離れた後、パーティクルBは、上面W1に再付着し難い。このように、液膜Jは、上面W1からパーティクルBを離脱させる。
After the liquid film J dissolves the ammonia gas, the liquid film J becomes alkaline. The upper surface W1 of the substrate W is in contact with the alkaline liquid film J. As shown in FIG. Therefore, the upper surface W1 of the substrate W has a negative zeta potential. Similarly, the particles B come into contact with the alkaline liquid film J. Therefore, particle B has a negative zeta potential. The zeta potential of the particles B has the same polarity as the zeta potential of the upper surface W1 of the substrate W. FIG. Therefore, the upper surface W1 and the particles B repel each other. The particle B leaves the upper surface W1. The particles B are liberated in the liquid film J. Furthermore, after the particles B have separated from the upper surface W1, the particles B are less likely to reattach to the upper surface W1. Thus, the liquid film J separates the particles B from the upper surface W1.
ステップS8:凝固工程
液膜Jは凝固する。 Step S8: Solidification step The liquid film J is solidified.
液膜Jは凝固する。 Step S8: Solidification step The liquid film J is solidified.
凝固工程では、筐体12の気体Gの圧力は、第3圧力P3に調整される。第3圧力P3は、液膜Jが凝固可能な圧力である。
In the solidification process, the pressure of the gas G in the housing 12 is adjusted to the third pressure P3. The third pressure P3 is a pressure at which the liquid film J can be solidified.
ここで、「凝固(freezing)」および「凝固する」とは、液体から固体に変化することである。他方、「蒸発(vaporization)」および「蒸発する」とは、液体から気体に変化することである。筐体12内の気体Gの圧力が第3圧力P3であるとき、液膜Jは蒸発し難い。
Here, "freezing" and "solidifying" refer to changing from a liquid to a solid. "Vaporization" and "vaporize," on the other hand, are the change from a liquid to a gas. When the pressure of the gas G inside the housing 12 is the third pressure P3, the liquid film J is difficult to evaporate.
例えば、第3圧力P3は、水の三重点の圧力よりも大きい。筐体12の気体Gの圧力が水の三重点の圧力よりも大きいとき、水(液相の水)は蒸発し難い。
For example, the third pressure P3 is greater than the triple point pressure of water. When the pressure of the gas G in the housing 12 is higher than the pressure at the triple point of water, water (liquid phase water) is difficult to evaporate.
例えば、第3圧力P3は、常圧よりも低い。例えば、第3圧力P3は、標準大気圧よりも低い。
For example, the third pressure P3 is lower than normal pressure. For example, the third pressure P3 is lower than standard atmospheric pressure.
例えば、第3圧力P3は、第2圧力P2と略等しい。
For example, the third pressure P3 is approximately equal to the second pressure P2.
凝固工程は、筐体12内の気体Gの圧力を、第2圧力P2から第3圧力P3に調整する。
The solidification process adjusts the pressure of the gas G inside the housing 12 from the second pressure P2 to the third pressure P3.
具体的には、制御部10は、圧力調整部20を制御することによって、筐体12の気体Gの圧力を調整する。
Specifically, the control unit 10 adjusts the pressure of the gas G in the housing 12 by controlling the pressure adjustment unit 20 .
第3圧力P3は、1つの値であってもよい。第3圧力P3は、2つの値の間の範囲であってもよい。第3圧力P3は、制御部10が有する処理情報において予め設定されている。
The third pressure P3 may be one value. The third pressure P3 may range between two values. The third pressure P3 is preset in the processing information held by the controller 10 .
さらに、ステージ15に載置される基板Wは、第3温度T3に調整される。第3温度T3は、第3圧力P3の下で、液膜Jが凝固する温度である。言い換えれば、第3温度T3は、第3圧力P3の下で、液膜Jが固相で存在する温度である。
Furthermore, the substrate W placed on the stage 15 is adjusted to the third temperature T3. The third temperature T3 is the temperature at which the liquid film J solidifies under the third pressure P3. In other words, the third temperature T3 is the temperature at which the liquid film J exists in a solid phase under the third pressure P3.
例えば、第3温度T3は、水の三重点の温度よりも低い。例えば、第3温度T3は、第1温度T1と略等しい。
For example, the third temperature T3 is lower than the triple point temperature of water. For example, the third temperature T3 is approximately equal to the first temperature T1.
第3温度T3は、第2温度T2よりも低い。このため、凝固工程は、ステージ15に載置される基板Wを冷却する。凝固工程は、ステージ15に載置される基板Wを、第2温度T2から第3温度T3まで冷却する。
The third temperature T3 is lower than the second temperature T2. Therefore, the solidification process cools the substrate W placed on the stage 15 . The solidification step cools the substrate W placed on the stage 15 from the second temperature T2 to the third temperature T3.
具体的には、制御部10は、温度調整部31を制御することによって、ステージ15に載置される基板Wの温度を、第3温度T3に調整する。例えば、冷却部32は、ステージ15に載置される基板Wを冷却する。
Specifically, the control unit 10 controls the temperature adjustment unit 31 to adjust the temperature of the substrate W placed on the stage 15 to the third temperature T3. For example, the cooling unit 32 cools the substrate W placed on the stage 15 .
第3温度T3は、1つの値であってもよい。第3温度T3は、2つの値の間の範囲であってもよい。第3温度T3は、制御部10が有する処理情報において予め設定されている。
The third temperature T3 may be one value. The third temperature T3 may range between the two values. The third temperature T3 is preset in the processing information held by the control unit 10 .
図11は、凝固工程における基板Wの上面W1を模式的に示す図である。筐体12の気体Gの圧力が第3圧力P3に保たれた状態で、液膜Jは冷却される。液膜Jは、基板Wによって冷却される。液膜Jは、基板Wを介して、冷却される。液膜Jは、第3温度T3まで冷却される。
FIG. 11 is a diagram schematically showing the upper surface W1 of the substrate W in the solidification process. The liquid film J is cooled while the pressure of the gas G in the housing 12 is maintained at the third pressure P3. The liquid film J is cooled by the substrate W. Through the substrate W, the liquid film J is cooled. The liquid film J is cooled to the third temperature T3.
液膜Jは、第2固体膜Lに変わる。第2固体膜Lは、基板Wの上面W1に形成される。基板Wの上面W1は、第2固体膜Lと接する。
The liquid film J changes to the second solid film L. The second solid film L is formed on the upper surface W1 of the substrate W. As shown in FIG. A top surface W1 of the substrate W is in contact with the second solid film L. As shown in FIG.
第2固体膜Lは、固相である。
The second solid film L is a solid phase.
図11では、液膜Jの一部が、第2固体膜Lに変わる。基板Wの上面W1は、液膜Jおよび第2固体膜Lの両方と接する。但し、基板Wの上面W1は、気体Gと接しない。基板Wの上面W1は、液膜Jおよび第2固体膜Lによって覆われているからである。
In FIG. 11, part of the liquid film J changes to the second solid film L. The upper surface W1 of the substrate W is in contact with both the liquid film J and the second solid film L. As shown in FIG. However, the upper surface W1 of the substrate W is not in contact with the gas G. This is because the upper surface W1 of the substrate W is covered with the liquid film J and the second solid film L.
図11は、第2固体膜Lの厚みが基板Wの上面W1にわたって均一でない場合を例示する。すなわち、図11は、第2固体膜Lの形成速度が、基板Wの上面W1において、ばらつく場合を例示する。第2固体膜Lの形成速度のばらつきは、例えば、基板Wの温度が基板Wの上面W1にわたってばらつくことに起因する。なお、第2固体膜Lの形成速度は、基板Wの上面W1にわたって均一であってもよい。
11 illustrates the case where the thickness of the second solid film L is not uniform over the upper surface W1 of the substrate W. FIG. That is, FIG. 11 exemplifies a case where the formation speed of the second solid film L varies on the upper surface W1 of the substrate W. As shown in FIG. Variations in the formation speed of the second solid film L are caused by variations in the temperature of the substrate W over the upper surface W1 of the substrate W, for example. The formation speed of the second solid film L may be uniform over the upper surface W1 of the substrate W.
液膜Jは徐々に減少する。第2固体膜Lは徐々に増大する。
The liquid film J gradually decreases. The second solid film L gradually increases.
図12は、凝固工程における基板Wの上面W1を模式的に示す図である。図12では、液膜Jの全部が、第2固体膜Lに変わる。
FIG. 12 is a diagram schematically showing the upper surface W1 of the substrate W in the solidification process. 12, the entire liquid film J is transformed into the second solid film L. In FIG.
第2固体膜Lは、基板Wの上面W1を覆う。第2固体膜Lは、基板Wの上面W1の全体を覆う。基板Wの上面W1は、第2固体膜Lと接する。但し、基板Wの上面W1は、気体Gと接しない。
The second solid film L covers the upper surface W1 of the substrate W. The second solid film L covers the entire upper surface W1 of the substrate W. As shown in FIG. A top surface W1 of the substrate W is in contact with the second solid film L. As shown in FIG. However, the upper surface W1 of the substrate W is not in contact with the gas G.
液膜Jは、消失する。これにより、基板Wの上面W1のゼータ電位は、消失する。パーティクルBのゼータ電位も、消失する。
The liquid film J disappears. As a result, the zeta potential of the upper surface W1 of the substrate W disappears. The zeta potential of particle B also disappears.
図11、12から明らかな通り、液膜Jから第2固体膜Lに変わるとき、気液界面Kが生じる。液膜Jから第2固体膜Lに変わるとき、気液界面Kが存在する。気液界面Kは、液膜Jと気体Gの間に位置する。しかし、基板Wの上面W1は気液界面Kと接しない。基板Wの上面W1が気液界面Kと接することなく、液膜Jは第2固体膜Lに変わる。したがって、凝固工程では、基板Wの上面W1は気液界面Kと接しない。液膜Jが消失するとき、気液界面Kは消失する。
As is clear from FIGS. 11 and 12, when the liquid film J changes to the second solid film L, a gas-liquid interface K occurs. When the liquid film J changes to the second solid film L, a gas-liquid interface K exists. A gas-liquid interface K is located between the liquid film J and the gas G. FIG. However, the upper surface W1 of the substrate W is not in contact with the gas-liquid interface K. The liquid film J changes into the second solid film L without the upper surface W1 of the substrate W coming into contact with the gas-liquid interface K. Therefore, the upper surface W1 of the substrate W does not come into contact with the gas-liquid interface K in the solidification step. When the liquid film J disappears, the gas-liquid interface K disappears.
第2固体膜Lの形成速度が基板Wの上面W1においてばらつく場合であっても、凝固工程では、基板Wの上面W1は気液界面Kと接しない。
Even if the formation speed of the second solid film L varies on the upper surface W1 of the substrate W, the upper surface W1 of the substrate W does not come into contact with the gas-liquid interface K in the solidification process.
ステップS9:帯電工程
第2固体膜Lは帯電する。 Step S9: Charging Step The second solid film L is charged.
第2固体膜Lは帯電する。 Step S9: Charging Step The second solid film L is charged.
具体的には、制御部10は、電子放射部41を制御する。これにより、電子放射部41は、第2固体膜Lに向けて、電子を放射する。
Specifically, the control unit 10 controls the electron emission unit 41 . Thereby, the electron emitting section 41 emits electrons toward the second solid film L. As shown in FIG.
図13は、帯電工程における基板Wの上面W1を模式的に示す図である。電子放射部41は、電子Mを放射する。第2固体膜Lは、電子Mを受ける。このため、第2固体膜Lは、負に帯電する。電子Mは、第2固体膜Lの上面L1に分布する。このため、第2固体膜Lの上面L1は、負に帯電する。
FIG. 13 is a diagram schematically showing the upper surface W1 of the substrate W in the charging process. The electron emitter 41 emits electrons M. As shown in FIG. The second solid film L receives electrons M. Therefore, the second solid film L is negatively charged. The electrons M are distributed on the upper surface L1 of the second solid film L. As shown in FIG. Therefore, the upper surface L1 of the second solid film L is negatively charged.
ステップS10:昇華工程
第2固体膜Lは昇華する。 Step S10: Sublimation Step The second solid film L is sublimated.
第2固体膜Lは昇華する。 Step S10: Sublimation Step The second solid film L is sublimated.
昇華工程では、筐体12の気体Gの圧力を、第4圧力P4に調整する。第4圧力P4は、第2固体膜Lが昇華可能な圧力である。
In the sublimation process, the pressure of the gas G in the housing 12 is adjusted to the fourth pressure P4. The fourth pressure P4 is a pressure at which the second solid film L can be sublimated.
上述のとおり、「昇華(sublimation)」および「昇華する」とは、固体から、液体を経ずに、気体に変化することである。他方、「融解(melting)」および「融解する」とは、固体から液体に変化することである。筐体12内の気体Gの圧力が第4圧力P4であるとき、第2固体膜Lは融解し難い。
As mentioned above, "sublimation" and "sublimation" refer to changing from a solid to a gas without passing through a liquid. "Melting" and "melting", on the other hand, is the change from a solid to a liquid. When the pressure of the gas G inside the housing 12 is the fourth pressure P4, the second solid film L is difficult to melt.
例えば、第4圧力P4は、水の三重点の圧力よりも小さい。筐体12の気体Gの圧力が水の三重点の圧力よりも小さいとき、氷(固相の水)は融解し難い。
For example, the fourth pressure P4 is less than the triple point pressure of water. When the pressure of the gas G in the housing 12 is lower than the triple point pressure of water, ice (solid phase water) is difficult to melt.
例えば、第4圧力P4は、第1圧力P1と略等しい。
For example, the fourth pressure P4 is approximately equal to the first pressure P1.
第4圧力P4は、第3圧力P3よりも低い。このため、昇華工程は、筐体12の気体Gの圧力を低下させる。昇華工程は、筐体12の気体Gの圧力を、第3圧力P3から第4圧力P4に低下させる。
The fourth pressure P4 is lower than the third pressure P3. Therefore, the sublimation process reduces the pressure of the gas G in the housing 12 . A sublimation process reduces the pressure of the gas G of the housing|casing 12 from the 3rd pressure P3 to the 4th pressure P4.
具体的には、制御部10は、圧力調整部20を制御することによって、筐体12の気体Gの圧力を調整する。例えば、排気部25は、筐体12の気体Gの圧力を低下させる。
Specifically, the control unit 10 adjusts the pressure of the gas G in the housing 12 by controlling the pressure adjustment unit 20 . For example, the exhaust part 25 reduces the pressure of the gas G in the housing 12 .
第4圧力P4は、1つの値であってもよい。第4圧力P4は、2つの値の間の範囲であってもよい。第4圧力P4は、制御部10が有する処理情報において予め設定されている。
The fourth pressure P4 may be one value. The fourth pressure P4 may range between two values. The fourth pressure P4 is preset in the processing information held by the controller 10 .
昇華工程では、筐体12内の気体を筐体12の外部に排出する。
In the sublimation process, the gas inside the housing 12 is discharged to the outside of the housing 12 .
具相的には、排気部25は、筐体12の気体Gの圧力を減圧するとともに、筐体12内の気体を筐体12の外部に排出する。
Specifically, the exhaust unit 25 reduces the pressure of the gas G in the housing 12 and discharges the gas in the housing 12 to the outside of the housing 12 .
さらに、ステージ15に載置される基板Wは、第4温度T4に調整される。第4温度T4は、第4圧力P4の下で、第2固体膜Lが昇華する温度である。言い換えれば、第4温度T4は、第4圧力P4の下で、第2固体膜Lが気相で存在する温度である。
Further, the substrate W placed on the stage 15 is adjusted to the fourth temperature T4. The fourth temperature T4 is the temperature at which the second solid film L sublimates under the fourth pressure P4. In other words, the fourth temperature T4 is the temperature at which the second solid film L exists in the gas phase under the fourth pressure P4.
例えば、第4温度T4は、水の三重点の温度よりも高い。例えば、第4温度T4は、常温と略等しい。
For example, the fourth temperature T4 is higher than the triple point temperature of water. For example, the fourth temperature T4 is substantially equal to room temperature.
例えば、第4温度T4は、第3温度T3よりも高い。この場合、昇華工程は、ステージ15に載置される基板Wを加熱する。昇華工程は、ステージ15に載置される基板Wを、第3温度T3から第4温度T4まで加熱する。
For example, the fourth temperature T4 is higher than the third temperature T3. In this case, the sublimation process heats the substrate W placed on the stage 15 . A sublimation process heats the board|substrate W mounted in the stage 15 from 3rd temperature T3 to 4th temperature T4.
具体的には、制御部10は、温度調整部31を制御することによって、ステージ15に載置される基板Wの温度を、第4温度T4に調整する。例えば、加熱部36は、ステージ15に載置される基板Wを加熱する。
Specifically, the control unit 10 controls the temperature adjustment unit 31 to adjust the temperature of the substrate W placed on the stage 15 to the fourth temperature T4. For example, the heating unit 36 heats the substrate W placed on the stage 15 .
第4温度T4は、1つの値であってもよい。第4温度T4は、2つの値の間の範囲であってもよい。第4温度T4は、制御部10が有する処理情報において予め設定されている。
The fourth temperature T4 may be one value. The fourth temperature T4 may range between the two values. The fourth temperature T4 is preset in the processing information held by the controller 10 .
図14は、昇華工程における基板Wの上面W1を模式的に示す図である。筐体12の気体Gの圧力が第4圧力P4に保たれた状態で、第2固体膜Lは加熱される。第2固体膜Lは、基板Wによって加熱される。第2固体膜Lは、基板Wを介して、加熱される。第2固体膜Lは、第4温度T4まで加熱される。
FIG. 14 is a diagram schematically showing the upper surface W1 of the substrate W in the sublimation process. The second solid film L is heated while the pressure of the gas G in the housing 12 is maintained at the fourth pressure P4. The second solid film L is heated by the substrate W. As shown in FIG. The second solid film L is heated through the substrate W. The second solid film L is heated to a fourth temperature T4.
第2固体膜Lは、液体を経ずに、気体に変わる。第2固体膜Lから変化した気体は、気相である。気体Gは、第2固体膜Lから変化した気体を含む。排気部25は、気体Gを、筐体12の外部に排出する。
The second solid film L turns into gas without passing through liquid. The gas that has changed from the second solid film L is in the gas phase. The gas G includes gas that has changed from the second solid film L. As shown in FIG. The exhaust part 25 exhausts the gas G to the outside of the housing 12 .
第2固体膜Lの上面L1は、低くなる。第2固体膜Lの上面L1が負に帯電したままで、第2固体膜Lの上面L1は低くなる。第2固体膜Lの上面L1がパーティクルBと同じ高さ位置まで低くなると、パーティクルBは負に帯電される。言い換えれば、パーティクルBが第2固体膜Lの上面L1に露出するとき、パーティクルBは負に帯電される。パーティクルBが負に帯電したとき、パーティクルBと第2固体膜Lの上面L1は、互いに反発する。よって、パーティクルBは、第2固体膜Lから容易に離れる。パーティクルBは、例えば、第2固体膜Lから、筐体12内の気体G中に飛ぶ。
The upper surface L1 of the second solid film L is lowered. The upper surface L1 of the second solid film L is lowered while the upper surface L1 of the second solid film L remains negatively charged. When the upper surface L1 of the second solid film L is lowered to the same height position as the particles B, the particles B are negatively charged. In other words, when the particles B are exposed on the upper surface L1 of the second solid film L, the particles B are negatively charged. When the particles B are negatively charged, the particles B and the upper surface L1 of the second solid film L repel each other. Therefore, the particles B are easily separated from the second solid film L. The particles B, for example, fly from the second solid film L into the gas G inside the housing 12 .
図14では、第2固体膜Lの一部が、昇華する。基板Wの上面W1は、第2固体膜Lおよび気体Gの少なくとも一方と接する。例えば、基板Wの上面W1は、第2固体膜Lおよび気体Gの両方と接する。但し、基板Wの上面W1は、液体と接しない。
In FIG. 14, part of the second solid film L is sublimated. The upper surface W1 of the substrate W is in contact with at least one of the second solid film L and the gas G. As shown in FIG. For example, the upper surface W1 of the substrate W is in contact with both the second solid film L and the gas G. However, the upper surface W1 of the substrate W does not contact the liquid.
図14は、第2固体膜Lの厚みが基板Wの上面W1にわたって均一でない場合を例示する。すなわち、図14は、第2固体膜Lの昇華速度が、基板Wの上面W1において、ばらつく場合を例示する。第2固体膜Lの昇華速度のばらつきは、例えば、基板Wの温度が基板Wの上面W1にわたってばらつくことに起因する。なお、第2固体膜Lの昇華速度は、基板Wの上面W1にわたって均一であってもよい。
14 illustrates the case where the thickness of the second solid film L is not uniform over the upper surface W1 of the substrate W. FIG. That is, FIG. 14 exemplifies a case where the sublimation speed of the second solid film L varies on the upper surface W1 of the substrate W. As shown in FIG. Variations in the sublimation rate of the second solid film L are caused by variations in the temperature of the substrate W over the upper surface W1 of the substrate W, for example. The sublimation rate of the second solid film L may be uniform over the upper surface W1 of the substrate W.
図15は、昇華工程における基板Wの上面W1を模式的に示す図である。図15では、第2固体膜Lの全部が、昇華する。
FIG. 15 is a diagram schematically showing the upper surface W1 of the substrate W in the sublimation process. In FIG. 15, the entire second solid film L is sublimated.
第2固体膜Lが液体に変化することなく、第2固体膜Lは基板Wから除去される。第2固体膜Lが液体に変化することなく、基板Wは乾燥される。
The second solid film L is removed from the substrate W without the second solid film L changing into liquid. The substrate W is dried without the second solid film L changing to liquid.
基板Wの上面W1は、気体Gと接する。但し、基板Wの上面W1は、液体と接しない。
The upper surface W1 of the substrate W is in contact with the gas G. However, the upper surface W1 of the substrate W does not contact the liquid.
図14、15から明らかな通り、第2固体膜Lが気体に変わるとき、基板Wの上面W1は液体と接しない。基板Wの上面W1が気液界面Kと接することなく、第2固体膜Lは昇華する。このため、昇華工程では、基板Wの上面W1は気液界面Kと接しない。そもそも、昇華工程では、気液界面Kは生じない。
As is clear from FIGS. 14 and 15, when the second solid film L turns into gas, the upper surface W1 of the substrate W does not contact the liquid. The upper surface W1 of the substrate W does not contact the gas-liquid interface K, and the second solid film L sublimates. Therefore, the upper surface W1 of the substrate W does not come into contact with the gas-liquid interface K in the sublimation process. In the first place, the gas-liquid interface K does not occur in the sublimation process.
第2固体膜Lの昇華速度が基板Wの上面W1においてばらつく場合であっても、昇華工程では、基板Wの上面W1は気液界面Kと接しない。
Even if the sublimation speed of the second solid film L varies on the upper surface W1 of the substrate W, the upper surface W1 of the substrate W does not contact the gas-liquid interface K in the sublimation process.
ステップS11:収集工程
収集部45は、帯電したパーティクルBを収集する。 Step S11: Collection Step Thecollection unit 45 collects the charged particles B. FIG.
収集部45は、帯電したパーティクルBを収集する。 Step S11: Collection Step The
収集工程は、昇華工程と並行して実行されることが好ましい。収集工程が実行される期間は、昇華工程が実行される期間の少なくとも一部と重なることが好ましい。例えば、収集工程は、昇華工程と同時に始まる。
The collection step is preferably performed in parallel with the sublimation step. The period during which the collection step is performed preferably overlaps at least part of the period during which the sublimation step is performed. For example, the collection process begins at the same time as the sublimation process.
具体的には、制御部10は、収集部45を制御する。これにより、電極46は、正の電位を有する。
Specifically, the control unit 10 controls the collection unit 45 . Electrode 46 thus has a positive potential.
図14を参照する。電極46は、帯電したパーティクルBを引き寄せる。電極46は、第2固体膜Lから露出したパーティクルBを引き寄せる。パーティクルBは、電極Bに向かって移動する。パーティクルBは、例えば、上方に移動する。
See Figure 14. The electrode 46 attracts the charged particles B. The electrode 46 attracts the particles B exposed from the second solid film L. Particle B moves toward electrode B. Particle B moves upward, for example.
図15を参照する。第2固体膜Lに含まれる全てのパーティクルBは、電極46に収集される。第2固体膜Lに含まれる全てのパーティクルBは、基板Wから除去される。
See Figure 15. All particles B contained in the second solid film L are collected by the electrode 46 . All the particles B contained in the second solid film L are removed from the substrate W.
<4.実施形態の効果>
基板処理方法は、載置工程を備える。載置工程では、筐体12内において、基板Wは略水平姿勢で載置される。載置工程では、基板Wの上面W1は気液界面Kと接しない。 <4. Effect of Embodiment>
The substrate processing method includes a placing step. In the mounting step, the substrate W is mounted in a substantially horizontal posture within thehousing 12 . In the mounting step, the upper surface W1 of the substrate W does not come into contact with the gas-liquid interface K. As shown in FIG.
基板処理方法は、載置工程を備える。載置工程では、筐体12内において、基板Wは略水平姿勢で載置される。載置工程では、基板Wの上面W1は気液界面Kと接しない。 <4. Effect of Embodiment>
The substrate processing method includes a placing step. In the mounting step, the substrate W is mounted in a substantially horizontal posture within the
基板処理方法は、第1供給工程を備える。第1供給工程は、水蒸気を筐体12に供給する。第1供給工程では、基板Wの上面W1は、水蒸気と接する。水蒸気は、気相である。すなわち、水蒸気は、液相でない。第1供給工程は、基板Wに液体を供給しない。このため、第1供給工程では、基板Wの上面W1は、液体と接しない。したがって、第1供給工程では、基板Wの上面W1は、気液界面Kと接しない。
The substrate processing method includes a first supply step. The first supply step supplies water vapor to the housing 12 . In the first supply step, the upper surface W1 of the substrate W is in contact with water vapor. Water vapor is in the gas phase. That is, water vapor is not in liquid phase. The first supply step does not supply the substrate W with liquid. Therefore, in the first supply step, the upper surface W1 of the substrate W does not contact the liquid. Therefore, the upper surface W1 of the substrate W does not contact the gas-liquid interface K in the first supply step.
基板処理方法は、凝華工程を備える。凝華工程では、水蒸気は筐体12内において凝華する。これにより、凝華工程は第1固体膜Hを形成する。第1固体膜Hは、基板Wの上面W1を覆う。凝華工程では、水蒸気は、液体を経ずに、第1固体膜Hに変わる。凝華工程では、基板Wの上面W1は、第1固体膜Hと接する。第1固体膜Hは、固相である。すなわち、第1固体膜Hは、液相でない。このため、水蒸気が第1固体膜Hに変わるとき、基板Wの上面W1は、液体と接しない。よって、基板Wの上面W1が気液界面Kと接することなく、水蒸気は第1固体膜Hに凝華(変化)する。したがって、凝華工程では、基板Wの上面W1は気液界面Kと接しない。
The substrate processing method includes a sublimation process. In the condensation process, water vapor condenses within the housing 12 . Thereby, the coagulation process forms the first solid film H. As shown in FIG. The first solid film H covers the upper surface W1 of the substrate W. As shown in FIG. In the condensation process, water vapor transforms into the first solid film H without passing through liquid. The upper surface W1 of the substrate W is in contact with the first solid film H in the condensation process. The first solid film H is a solid phase. That is, the first solid film H is not in liquid phase. Therefore, when the water vapor transforms into the first solid film H, the upper surface W1 of the substrate W does not contact the liquid. Therefore, the upper surface W1 of the substrate W does not come into contact with the gas-liquid interface K, and the water vapor condenses (changes) into the first solid film H. Therefore, the upper surface W1 of the substrate W does not come into contact with the gas-liquid interface K in the condensation process.
基板処理方法は、融解工程を備える。融解工程では、第1固体膜Hは融解する。これにより、融解工程は液膜Jを形成する。液膜Jは、基板Wの上面W1を覆う。融解工程では、第1固体膜Hは、液膜Jに変わる。融解工程では、基板Wの上面W1は、液膜Jと接する。液膜Jは、液相である。上述の通り、凝華工程で形成される第1固体膜Hは、基板Wの上面W1を覆う。このため、第1固体膜Hが液膜Jに変わるとき、基板Wの上面W1は気体Gと接しない。よって、基板Wの上面W1が気液界面Kと接することなく、第1固体膜Hは液膜Jに融解する。したがって、融解工程では、基板Wの上面W1は気液界面Kと接しない。
The substrate processing method includes a melting step. In the melting step, the first solid film H is melted. Thus, the melting step forms a liquid film J. FIG. The liquid film J covers the upper surface W1 of the substrate W. As shown in FIG. The first solid film H transforms into a liquid film J in the melting process. The upper surface W1 of the substrate W is in contact with the liquid film J in the melting process. The liquid film J is a liquid phase. As described above, the first solid film H formed in the condensation process covers the upper surface W1 of the substrate W. As shown in FIG. Therefore, when the first solid film H changes to the liquid film J, the upper surface W1 of the substrate W does not come into contact with the gas G. As shown in FIG. Therefore, the first solid film H melts into the liquid film J without the upper surface W1 of the substrate W coming into contact with the gas-liquid interface K. Therefore, the upper surface W1 of the substrate W does not come into contact with the gas-liquid interface K in the melting process.
まとめると、載置工程と第1供給工程と凝華工程と融解工程では、基板Wの上面W1は気液界面Kと接しない。このため、液膜Jの表面張力は、基板Wの上面W1に実質的に作用しない。よって、基板Wの上面W1を保護しつつ、基板Wの上面W1に液膜Jを形成できる。言い換えれば、基板Wの上面W1を保護しつつ、基板Wの上面W1に処理液を供給できる。したがって、基板処理方法は、基板Wを適切に処理できる。
In summary, the upper surface W1 of the substrate W does not come into contact with the gas-liquid interface K in the mounting process, the first supply process, the condensation process, and the melting process. Therefore, the surface tension of the liquid film J does not act on the upper surface W1 of the substrate W substantially. Therefore, the liquid film J can be formed on the upper surface W1 of the substrate W while protecting the upper surface W1 of the substrate W. In other words, the processing liquid can be supplied to the upper surface W1 of the substrate W while protecting the upper surface W1 of the substrate W. Therefore, the substrate processing method can process the substrate W appropriately.
なお、仮に、ノズルが基板Wの上面W1に処理液を吐出する従来技術では、基板Wの上面W1が処理液と接触し始める時、基板Wは気液界面Kと接する。すなわち、従来技術では、基板Wが気液界面Kと接する瞬間が生じる。この瞬間、処理液の表面張力が基板Wの上面W1に作用する。よって、従来技術では、基板Wの上面W1は、比較的に大きな力を受ける。
It should be noted that in the conventional technology in which the nozzle discharges the processing liquid onto the upper surface W1 of the substrate W, the substrate W comes into contact with the gas-liquid interface K when the upper surface W1 of the substrate W starts to come into contact with the processing liquid. That is, in the conventional technology, there is a moment when the substrate W comes into contact with the gas-liquid interface K. At this moment, the surface tension of the processing liquid acts on the upper surface W1 of the substrate W. As shown in FIG. Therefore, in the prior art, the upper surface W1 of the substrate W is subjected to relatively large forces.
基板処理方法は、水蒸気を凝華させて基板Wの上面W1を覆う第1固体膜Hを形成した後、第1固体膜Hを融解させて基板Wの上面W1を覆う液膜Jを形成する。このため、基板W上から処理液があふれることを好適に抑制できる。基板W上からあふれる処理液の量は、好適に低減される。すなわち、処理液のロスを好適に抑えることができる。よって、基板処理方法は、より少ない処理液で、液膜Jを効率良く形成できる。すなわち、基板処理方法は、基板Wを少量の処理液で処理できる。その結果、基板処理方法では、処理液の使用量は比較的に少ない。例えば、基板処理方法における処理液の使用量は、従来方法における処理液の使用量よりも少ない。
In the substrate processing method, water vapor is condensed to form a first solid film H covering the upper surface W1 of the substrate W, and then the first solid film H is melted to form a liquid film J covering the upper surface W1 of the substrate W. . Therefore, overflow of the processing liquid from the substrate W can be suitably suppressed. The amount of processing liquid overflowing from the substrate W is preferably reduced. That is, it is possible to suitably suppress the loss of the treatment liquid. Therefore, the substrate processing method can efficiently form the liquid film J with less processing liquid. That is, the substrate processing method can process the substrate W with a small amount of processing liquid. As a result, the substrate processing method uses relatively little processing liquid. For example, the amount of processing liquid used in the substrate processing method is less than the amount of processing liquid used in the conventional method.
凝華工程は、筐体12内の気体Gの圧力を、水蒸気が凝華可能な第1圧力P1に保つ。このため、水蒸気が凝縮することを、凝華工程は好適に抑制できる。
The condensation process maintains the pressure of the gas G inside the housing 12 at a first pressure P1 at which water vapor can condense. Therefore, the condensation process can suitably suppress the condensation of water vapor.
凝華工程は、水蒸気を冷却する。このため、凝華工程では、水蒸気は好適に凝華する。
The condensation process cools the water vapor. For this reason, in the sublimation process, water vapor is suitably condensed.
融解工程は、筐体12内の気体Gの圧力を、第1固体膜Hが融解可能な第2圧力P2に保つ。このため、第1固体膜Hが昇華することを、融解工程は好適に抑制できる。
In the melting process, the pressure of the gas G inside the housing 12 is kept at the second pressure P2 at which the first solid film H can be melted. Therefore, the sublimation of the first solid film H can be suitably suppressed in the melting step.
融解工程は、第1固体膜Hを加熱する。このため、融解工程では、第1固体膜Hは好適に融解する。
The melting step heats the first solid film H. Therefore, in the melting step, the first solid film H is preferably melted.
凝華工程は、基板Wを冷却する。このため、凝華工程は、基板Wを介して水蒸気を冷却する。凝華工程では、基板Wの上面W1は水蒸気と接する。このため、水蒸気は効率良く冷却される。よって、凝華工程は、第1固体膜Hを効率良く形成できる。
The sublimation process cools the substrate W. Thus, the condensation process cools the water vapor through the substrate W. FIG. In the condensation process, the upper surface W1 of the substrate W is in contact with water vapor. Therefore, the water vapor is efficiently cooled. Therefore, the condensation process can form the first solid film H efficiently.
凝華工程は、水蒸気が基板Wの上面W1上に凝華する第1温度T1まで、基板Wを冷却する。よって、凝華工程は、水蒸気を第1固体膜Hに好適に凝華(変化)できる。凝華工程では、水蒸気は第1固体膜Hに好適に凝華する。
The condensation process cools the substrate W to a first temperature T1 at which water vapor condenses onto the upper surface W1 of the substrate W. Therefore, in the condensation process, water vapor can be suitably condensed (changed) into the first solid film H. In the condensation step, the water vapor is favorably condensed on the first solid film H.
融解工程は、基板Wを加熱する。このため、融解工程は、基板Wを介して第1固体膜Hを加熱する。融解工程では、基板Wの上面W1は第1固体膜Hと接する。このため、第1固体膜Hは、効率良く加熱される。よって、融解工程は、液膜Jを効率良く形成できる。
The melting process heats the substrate W. Therefore, the melting step heats the first solid film H through the substrate W. FIG. The upper surface W1 of the substrate W is in contact with the first solid film H in the melting process. Therefore, the first solid film H is efficiently heated. Therefore, the melting process can form the liquid film J efficiently.
融解工程は、第1固体膜Hが融解する第2温度T2まで、基板Wを加熱する。よって、融解工程は、第1固体膜Hを液膜Jに好適に融解できる。
The melting step heats the substrate W to the second temperature T2 at which the first solid film H melts. Therefore, the melting step can suitably melt the first solid film H into the liquid film J. FIG.
凝華工程では、筐体12内の気体Gの圧力は水の三重点の圧力よりも小さい。よって、凝華工程では、水蒸気が凝縮することを好適に抑制できる。
In the condensation process, the pressure of the gas G inside the housing 12 is lower than the triple point pressure of water. Therefore, in the condensation process, condensation of water vapor can be suitably suppressed.
融解工程では、筐体12内の気体Gの圧力は水の三重点の圧力よりも大きい。よって、融解工程では、第1固体膜Hが昇華することを好適に抑制できる。
In the melting process, the pressure of the gas G inside the housing 12 is higher than the triple point pressure of water. Therefore, in the melting step, sublimation of the first solid film H can be suitably suppressed.
基板処理方法は、調整工程を備える。調整工程は、筐体12内の気体Gの圧力を、第1圧力P1に調整する。調整工程は、基板Wの温度を、第1温度T1に調整する。調整工程は、凝華工程の前に実行される。このため、凝華工程を円滑に開始できる。よって、基板処理方法に要する時間を短縮できる。
The substrate processing method includes an adjustment process. The adjusting step adjusts the pressure of the gas G inside the housing 12 to the first pressure P1. The adjusting step adjusts the temperature of the substrate W to the first temperature T1. The conditioning step is performed before the condensation step. Therefore, the sublimation process can be started smoothly. Therefore, the time required for the substrate processing method can be shortened.
調整工程は、第1供給工程の前に実行される。このため、第1供給工程が開始した直後に、凝華工程を開始できる。よって、基板処理方法に要する時間を一層短縮できる。
The adjustment process is executed before the first supply process. Therefore, the condensation step can be started immediately after the first supply step is started. Therefore, the time required for the substrate processing method can be further shortened.
基板処理方法は、凝固工程を備える。凝固工程では、液膜Jは凝固する。これにより、凝固工程は、第2固体膜Lを形成する。第2固体膜Lは基板Wの上面W1上に形成される。凝固工程では、液膜Jは第2固体膜Lに変わる。凝固工程では、基板Wの上面W1は、第2固体膜Lと接する。第2固体膜Lは、固相である。上述の通り、融解工程で形成される液膜Jは、基板Wの上面W1を覆う。このため、液膜Jが第2固体膜Lに変わるとき、基板Wの上面W1は気体Gと接しない。よって、基板Wの上面W1が気液界面Kと接することなく、液膜Jは凝固する。したがって、凝固工程では、基板Wの上面W1は気液界面Kと接しない。
The substrate processing method includes a solidification step. In the solidification step, the liquid film J is solidified. Thereby, the solidification step forms the second solid film L. As shown in FIG. A second solid film L is formed on the upper surface W1 of the substrate W. As shown in FIG. The liquid film J transforms into a second solid film L in the solidification process. The upper surface W1 of the substrate W is in contact with the second solid film L in the solidification step. The second solid film L is a solid phase. As described above, the liquid film J formed in the melting process covers the upper surface W1 of the substrate W. As shown in FIG. Therefore, when the liquid film J changes to the second solid film L, the upper surface W1 of the substrate W does not come into contact with the gas G. FIG. Therefore, the upper surface W1 of the substrate W does not come into contact with the gas-liquid interface K, and the liquid film J solidifies. Therefore, the upper surface W1 of the substrate W does not come into contact with the gas-liquid interface K in the solidification process.
基板処理方法は、昇華工程を備える。昇華工程では、第2固体膜Lは昇華する。昇華工程では、第2固体膜Lは、液体を経ずに、気相に変わる。このため、第2固体膜Lが昇華するとき、基板Wの上面W1は液体と接しない。よって、基板Wの上面W1が気液界面Kと接することなく、第2固体膜Lは昇華する。したがって、昇華工程では、基板Wの上面W1は気液界面Kと接しない。
The substrate processing method includes a sublimation process. In the sublimation step, the second solid film L is sublimated. In the sublimation process, the second solid film L changes into a gas phase without going through a liquid state. Therefore, when the second solid film L sublimates, the upper surface W1 of the substrate W does not contact the liquid. Therefore, the upper surface W1 of the substrate W does not come into contact with the gas-liquid interface K, and the second solid film L sublimates. Therefore, the upper surface W1 of the substrate W does not come into contact with the gas-liquid interface K in the sublimation process.
第2固体膜Lが昇華することによって、第2固体膜は基板Wから去る。第2固体膜Lが昇華することによって、基板Wは乾燥される。
The second solid film leaves from the substrate W as the second solid film L sublimes. The substrate W is dried by the sublimation of the second solid film L.
まとめると、凝固工程と昇華工程では、基板Wの上面W1は気液界面Kと接しない。よって、基板処理方法によれば、基板Wの上面W1を好適に保護しつつ、基板Wを乾燥できる。したがって、基板処理方法は、基板Wを一層適切に処理できる。
In summary, the upper surface W1 of the substrate W does not contact the gas-liquid interface K in the solidification process and the sublimation process. Therefore, according to the substrate processing method, the substrate W can be dried while the upper surface W1 of the substrate W is properly protected. Therefore, the substrate processing method can process the substrate W more appropriately.
凝固工程は、筐体12内の気体Gの圧力を、液膜Jが凝固可能な第3圧力P3に保つ。このため、液膜Jが蒸発することを、凝固工程は好適に抑制できる。
In the solidification process, the pressure of the gas G inside the housing 12 is kept at the third pressure P3 at which the liquid film J can be solidified. Therefore, the evaporation of the liquid film J can be suitably suppressed in the solidification step.
凝固工程は、液膜Jを冷却する。このため、凝固工程では、液膜Jは好適に凝固する。
The solidification process cools the liquid film J. Therefore, in the solidification step, the liquid film J is suitably solidified.
昇華工程は、筐体12内の気体Gの圧力を、第2固体膜Lが昇華可能な第4圧力P4に保つ。このため、第2固体膜Lが融解することを、昇華工程は好適に抑制できる。
In the sublimation process, the pressure of the gas G inside the housing 12 is maintained at a fourth pressure P4 at which the second solid film L can be sublimated. Therefore, the melting of the second solid film L can be suitably suppressed in the sublimation process.
昇華工程は、第2固体膜Lを加熱する。このため、昇華工程では、第2固体膜Lは好適に昇華する。
The sublimation process heats the second solid film L. Therefore, in the sublimation step, the second solid film L sublimates favorably.
凝固工程は、基板Wを冷却する。このため、凝固工程は、基板Wを介して液膜Jを冷却する。凝固工程では、基板Wの上面W1は液膜Jと接する。このため、液膜Jは、効率良く冷却される。よって、凝固工程は、第2固体膜Lを効率良く形成できる。
The solidification process cools the substrate W. Thus, the solidification step cools the liquid film J through the substrate W. FIG. The upper surface W1 of the substrate W is in contact with the liquid film J in the solidification process. Therefore, the liquid film J is efficiently cooled. Therefore, the solidification step can form the second solid film L efficiently.
凝固工程は、液膜Jが凝固する第3温度T3まで、基板Wを冷却する。よって、凝固工程は、液膜Jを好適に凝固できる。
The solidification step cools the substrate W to the third temperature T3 at which the liquid film J solidifies. Therefore, the solidification process can solidify the liquid film J suitably.
昇華工程は、基板Wを加熱する。このため、昇華工程は、基板Wを介して第2固体膜Lを加熱する。昇華工程では、基板Wの上面W1は第2固体膜Lと接する。このため、第2固体膜Lは、効率良く加熱される。よって、昇華工程は、第2固体膜Lを効率良く昇華できる。
The substrate W is heated in the sublimation process. Therefore, the second solid film L is heated through the substrate W in the sublimation process. The upper surface W1 of the substrate W is in contact with the second solid film L in the sublimation process. Therefore, the second solid film L is efficiently heated. Therefore, the sublimation process can sublimate the second solid film L efficiently.
昇華工程は、第2固体膜Lが昇華する第4温度T4まで、基板Wを加熱する。よって、昇華工程は、第2固体膜Lを好適に昇華できる。
In the sublimation process, the substrate W is heated to the fourth temperature T4 at which the second solid film L sublimes. Therefore, the sublimation process can sublimate the second solid film L favorably.
昇華工程は、筐体12内の気体Gを筐体12の外部に排出する。このため、昇華工程では、第2固体膜Lは一層好適に昇華する。昇華工程では、第2固体膜Lを基板Wから一層好適に除去できる。
The sublimation process discharges the gas G inside the housing 12 to the outside of the housing 12 . Therefore, in the sublimation step, the second solid film L sublimates more favorably. The second solid film L can be more preferably removed from the substrate W in the sublimation step.
凝固工程では、筐体12内の気体Gの圧力は水の三重点の圧力よりも大きい。よって、凝固工程では、液膜Jが蒸発することを好適に抑制できる。
In the solidification process, the pressure of the gas G inside the housing 12 is higher than the triple point pressure of water. Therefore, in the solidification step, evaporation of the liquid film J can be suitably suppressed.
昇華工程では、筐体12内の気体Gの圧力は水の三重点の圧力よりも小さい。よって、昇華工程では、第2固体膜Lが融解することを好適に抑制できる。
In the sublimation process, the pressure of the gas G inside the housing 12 is lower than the triple point pressure of water. Therefore, in the sublimation process, the melting of the second solid film L can be suitably suppressed.
基板処理方法は、第2供給工程を備える。第2供給工程は、アンモニアガスを供給する。アンモニアガスは気相である。このため、第2供給工程では、基板Wの上面W1は気液界面Kと接しない。よって、第2供給工程は、基板Wの上面W1を好適に保護しつつ、筐体12にアンモニアガスを供給できる。
The substrate processing method includes a second supply step. A 2nd supply process supplies ammonia gas. Ammonia gas is in the gas phase. Therefore, the upper surface W1 of the substrate W does not come into contact with the gas-liquid interface K in the second supply step. Therefore, in the second supply step, the ammonia gas can be supplied to the housing 12 while the upper surface W1 of the substrate W is properly protected.
液膜Jは、アンモニアガスを溶解する。このため、液膜Jは、水蒸気のみならずアンモニアガスにも由来する。液膜Jの組成は、水蒸気のみならずアンモニアガスにも由来する。よって、液膜Jは基板Wを一層適切に処理できる。
The liquid film J dissolves the ammonia gas. Therefore, the liquid film J originates not only from water vapor but also from ammonia gas. The composition of the liquid film J is derived not only from water vapor but also from ammonia gas. Therefore, the liquid film J can process the substrate W more appropriately.
基板処理方法は、帯電工程を備える。帯電工程は、第2固体膜Lを帯電させる。このため、第2固体膜Lに含まれるパーティクルBを容易に帯電させることができる。具体的には、昇華工程においてパーティクルBが第2固体膜Lから露出するとき、パーティクルBを容易に帯電させることができる。
The substrate processing method includes a charging process. In the charging step, the second solid film L is charged. Therefore, the particles B contained in the second solid film L can be easily charged. Specifically, when the particles B are exposed from the second solid film L in the sublimation process, the particles B can be easily charged.
帯電工程では、第2固体膜Lは負に帯電する。このため、パーティクルBも負に帯電する。よって、負に帯電した第2固体膜Lと、負に帯電したパーティクルBの間に、静電反発が生じる。したがって、パーティクルBを好適に除去できる。
In the charging process, the second solid film L is negatively charged. Therefore, the particle B is also negatively charged. Therefore, electrostatic repulsion is generated between the negatively charged second solid film L and the negatively charged particles B. FIG. Therefore, particles B can be preferably removed.
基板処理方法は、収集工程を備える。収集工程は、帯電したパーティクルBを収集する。このため、収集工程は、帯電したパーティクルBを基板Wから好適に除去できる。
The substrate processing method includes a collection step. The collecting step collects the charged particles B. FIG. Therefore, the collecting step can preferably remove the charged particles B from the substrate W. FIG.
基板Wは、パターンRを有する。パターンRは、基板Wの上面W1に形成される。上述の通り、基板処理方法は、基板Wの上面W1が気液界面Kと接することなく、基板Wを処理する。よって、パターンRは気液界面Kと接しない。したがって、基板処理方法は、パターンRを保護しつつ、基板Wを適切に処理できる。例えば、基板処理方法は、パターンRが倒壊することを好適に抑制しつつ、パターンRに処理液を供給できる。例えば、基板処理方法は、パターンRの倒壊を好適に防止しつつ、パターンRに処理液を供給できる。例えば、基板処理方法は、凸部W2が倒壊することを好適に抑制しつつ、パターンRに処理液を供給できる。例えば、基板処理方法は、凸部W2の倒壊を好適に防止しつつ、パターンRに処理液を供給できる。
The substrate W has a pattern R. The pattern R is formed on the upper surface W1 of the substrate W. As shown in FIG. As described above, the substrate processing method processes the substrate W without the upper surface W1 of the substrate W coming into contact with the gas-liquid interface K. FIG. Therefore, the pattern R does not come into contact with the gas-liquid interface K. Therefore, the substrate processing method can appropriately process the substrate W while protecting the pattern R. For example, the substrate processing method can supply the processing liquid to the pattern R while suitably suppressing the pattern R from collapsing. For example, the substrate processing method can suitably prevent the pattern R from collapsing and supply the processing liquid to the pattern R. For example, the substrate processing method can supply the processing liquid to the pattern R while suitably suppressing collapse of the protrusions W2. For example, the substrate processing method can supply the processing liquid to the pattern R while suitably preventing the protrusion W2 from collapsing.
基板処理装置1は、筐体12と圧力調整部20を備える。圧力調整部20は、筐体12内の気体Gの圧力を調整する。筐体12は密閉可能である。このため、圧力調整部20は、筐体12内の気体Gの圧力を好適に調整できる。
The substrate processing apparatus 1 includes a housing 12 and a pressure adjustment section 20. The pressure adjuster 20 adjusts the pressure of the gas G inside the housing 12 . The housing 12 can be sealed. Therefore, the pressure adjustment unit 20 can adjust the pressure of the gas G inside the housing 12 appropriately.
基板処理装置1は、ステージ15と供給部17aと温度調整部31と制御部10を備える。ステージ15は、筐体12内に設置される。ステージ15は基板Wを支持する。ステージ15は基板Wを略水平姿勢で載置する。供給部17aは、筐体12内に水蒸気を供給する。温度調整部31はステージ15に載置される基板Wの温度を調整する。制御部10は、供給部17aと圧力調整部20と温度調整部31を制御する。具体的には、制御部10は、供給部17aと供給部17cと排気部25と温度調整部31を制御する。
The substrate processing apparatus 1 includes a stage 15, a supply section 17a, a temperature adjustment section 31, and a control section 10. The stage 15 is installed inside the housing 12 . A stage 15 supports the substrate W. FIG. The stage 15 mounts the substrate W in a substantially horizontal posture. The supply unit 17 a supplies water vapor into the housing 12 . The temperature adjuster 31 adjusts the temperature of the substrate W placed on the stage 15 . The control unit 10 controls the supply unit 17 a, the pressure adjustment unit 20 and the temperature adjustment unit 31 . Specifically, the control unit 10 controls the supply unit 17 a , the supply unit 17 c , the exhaust unit 25 and the temperature adjustment unit 31 .
制御部10は、供給部17aから筐体12に水蒸気を供給させる。供給部17aが水蒸気を筐体12に供給するとき、基板Wの上面W1は気液界面Kと接しない。
The control unit 10 supplies water vapor to the housing 12 from the supply unit 17a. When the supply unit 17a supplies water vapor to the housing 12, the upper surface W1 of the substrate W does not contact the gas-liquid interface K. As shown in FIG.
制御部10は、圧力調整部20と温度調整部31を制御することによって、水蒸気を凝華させて、ステージ15に載置される基板Wの上面W1を覆う第1固体膜Hを形成する。よって、水蒸気が第1固体膜Hに変わるとき、基板Wの上面W1は気液界面Kと接しない。
The control unit 10 condenses water vapor by controlling the pressure adjustment unit 20 and the temperature adjustment unit 31 to form the first solid film H covering the upper surface W1 of the substrate W placed on the stage 15 . Therefore, when the water vapor transforms into the first solid film H, the upper surface W1 of the substrate W does not come into contact with the gas-liquid interface K. FIG.
制御部10は、圧力調整部20と温度調整部31を制御することによって、第1固体膜Hを融解させて、ステージ15に載置される基板Wの上面W1を覆う液膜Jを形成する。よって、第1固体膜Hが液膜Jに変わるとき、基板Wの上面W1は気液界面Kと接しない。
The control unit 10 melts the first solid film H by controlling the pressure adjustment unit 20 and the temperature adjustment unit 31 to form a liquid film J covering the upper surface W1 of the substrate W placed on the stage 15. . Therefore, when the first solid film H changes to the liquid film J, the upper surface W1 of the substrate W does not come into contact with the gas-liquid interface K. FIG.
まとめると、水蒸気を筐体12に供給し、水蒸気を凝華させ、かつ、第1固体膜Hを融解させるように、制御部10は供給部17aと圧力調整部20と温度調整部31を制御する。このため、基板処理装置1は、基板Wの上面W1が気液界面Kと接することなく、基板Wの上面W1上に液膜Jを形成できる。したがって、基板処理装置1は、基板Wを適切に処理できる。
In summary, the control unit 10 controls the supply unit 17a, the pressure adjustment unit 20, and the temperature adjustment unit 31 so as to supply water vapor to the housing 12, condense the water vapor, and melt the first solid film H. do. Therefore, the substrate processing apparatus 1 can form the liquid film J on the upper surface W1 of the substrate W without the upper surface W1 of the substrate W coming into contact with the gas-liquid interface K. Therefore, the substrate processing apparatus 1 can process the substrate W appropriately.
基板処理装置1は、水蒸気を凝華させて基板Wの上面W1を覆う第1固体膜Hを形成する。基板処理装置1は、第1固体膜Hを融解させて基板Wの上面W1を覆う液膜Jを形成する。このため、基板W上から処理液があふれることを好適に抑制できる。基板W上からあふれる処理液の量は、好適に低減される。すなわち、処理液のロスを好適に抑えることができる。よって、基板処理装置1は、より少ない処理液で、液膜Jを効率良く形成できる。すなわち、基板処理装置1は、基板Wを少量の処理液で処理できる。その結果、基板処理装置1では、処理液の使用量は比較的に少ない。例えば、基板処理装置1における処理液の使用量は、従来装置における処理液の使用量よりも少ない。
The substrate processing apparatus 1 forms the first solid film H covering the upper surface W1 of the substrate W by condensing water vapor. The substrate processing apparatus 1 melts the first solid film H to form a liquid film J covering the upper surface W1 of the substrate W. As shown in FIG. Therefore, overflow of the processing liquid from the substrate W can be suitably suppressed. The amount of processing liquid overflowing from the substrate W is preferably reduced. That is, it is possible to suitably suppress the loss of the treatment liquid. Therefore, the substrate processing apparatus 1 can efficiently form the liquid film J with less processing liquid. That is, the substrate processing apparatus 1 can process the substrate W with a small amount of processing liquid. As a result, the amount of processing liquid used in the substrate processing apparatus 1 is relatively small. For example, the amount of processing liquid used in the substrate processing apparatus 1 is less than the amount of processing liquid used in the conventional apparatus.
制御部10は、圧力調整部20と温度調整部31を制御することによって、液膜Jを凝固させて、ステージ15に載置される基板Wの上面W1上に第2固体膜Lを形成する。よって、液膜Jが第2固体膜Lに変わるとき、基板Wの上面W1は気液界面Kと接しない。
The control unit 10 solidifies the liquid film J by controlling the pressure adjustment unit 20 and the temperature adjustment unit 31 to form the second solid film L on the upper surface W1 of the substrate W placed on the stage 15. . Therefore, when the liquid film J changes to the second solid film L, the upper surface W1 of the substrate W does not come into contact with the gas-liquid interface K. FIG.
制御部10は、圧力調整部20と温度調整部31を制御することによって、第2固体膜Lを昇華させる。よって、第2固体膜Lが昇華するとき、基板Wの上面W1は気液界面Kと接しない。
The control unit 10 sublimates the second solid film L by controlling the pressure adjustment unit 20 and the temperature adjustment unit 31 . Therefore, the upper surface W1 of the substrate W does not come into contact with the gas-liquid interface K when the second solid film L sublimes.
まとめると、液膜Jを凝固させ、かつ、第2固体膜Lを昇華させるように、制御部10は圧力調整部20と温度調整部31を制御する。このため、基板処理装置1は、基板Wの上面W1が気液界面Kと接することなく、基板Wの上面W1から液膜Jを除去できる。基板処理装置1は、基板Wの上面W1が気液界面Kと接することなく、基板Wの上面W1から第2固体膜Lを除去できる。よって、基板処理装置1は、基板Wの上面W1を保護しつつ、基板Wを乾燥できる。したがって、基板処理装置1は、基板Wを一層適切に処理できる。
In summary, the control unit 10 controls the pressure adjustment unit 20 and the temperature adjustment unit 31 so that the liquid film J is solidified and the second solid film L is sublimated. Therefore, the substrate processing apparatus 1 can remove the liquid film J from the upper surface W1 of the substrate W without the upper surface W1 of the substrate W coming into contact with the gas-liquid interface K. The substrate processing apparatus 1 can remove the second solid film L from the upper surface W1 of the substrate W without the upper surface W1 of the substrate W coming into contact with the gas-liquid interface K. Therefore, the substrate processing apparatus 1 can dry the substrate W while protecting the upper surface W1 of the substrate W. FIG. Therefore, the substrate processing apparatus 1 can process the substrate W more appropriately.
基板処理装置1は、供給部17bを備える。供給部17bは、筐体12にアンモニアガスを供給する。制御部10は、供給部17bを制御することによって、筐体12内にアンモニアガスを供給し、液膜Jにアンモニアガスを溶解させる。このように、基板処理装置1は、基板Wの上面W1が気液界面Kと接することなく、液膜Jの成分を調整できる。基板処理装置1は、基板Wの上面W1が気液界面Kと接することなく、液膜Jの組成を調整できる。よって、基板処理装置1は、基板Wの上面W1を保護しつつ、基板Wを一層適切に処理できる。
The substrate processing apparatus 1 includes a supply section 17b. The supply unit 17b supplies the housing 12 with ammonia gas. The control unit 10 supplies the ammonia gas into the housing 12 and causes the liquid film J to dissolve the ammonia gas by controlling the supply unit 17b. Thus, the substrate processing apparatus 1 can adjust the components of the liquid film J without the upper surface W1 of the substrate W coming into contact with the gas-liquid interface K. FIG. The substrate processing apparatus 1 can adjust the composition of the liquid film J without the upper surface W1 of the substrate W coming into contact with the gas-liquid interface K. Therefore, the substrate processing apparatus 1 can process the substrate W more appropriately while protecting the upper surface W1 of the substrate W. FIG.
温度調整部31は、ステージ15に取り付けられる。よって、温度調整部31は、ステージ15に載置される基板Wの温度を好適に調整できる。
The temperature adjustment unit 31 is attached to the stage 15. Therefore, the temperature adjuster 31 can suitably adjust the temperature of the substrate W placed on the stage 15 .
基板処理装置1は、電子放射部41を備える。電子放射部41は、筐体12内に電子を放射する。よって、第2固体膜Lを好適に帯電させることができる。
The substrate processing apparatus 1 includes an electron emitting section 41 . The electron emitter 41 emits electrons into the housing 12 . Therefore, the second solid film L can be suitably charged.
基板処理装置1は、電極46を備える。電極46は、筐体12内に設置される。電極46は、正電圧が印加される。よって、電極46は、負に帯電したパーティクルBを好適に収集できる。
The substrate processing apparatus 1 includes electrodes 46 . Electrode 46 is installed within housing 12 . A positive voltage is applied to the electrode 46 . Therefore, the electrode 46 can preferably collect the negatively charged particles B. FIG.
本発明は、実施形態に限られることはなく、下記のように変形実施することができる。
The present invention is not limited to the embodiments, and can be modified as follows.
(1)実施形態では、凝華工程では、1つの種類のガス(水蒸気)が凝華した。実施形態では、凝華工程では、1つの成分(水蒸気)からなるガスが凝華した。但し、これに限られない。例えば、凝華工程では、複数種類のガスが凝華してもよい。例えば、凝華工程では、複数の成分を含むガスが凝華してもよい。例えば、凝華工程では、水蒸気、アンモニアガス、メチルアミンガス、ジメチルアミンガス、トリメチルアミンガス、および、過酸化水素ガスの少なくともいずれかが、凝華してもよい。本変形実施形態によれば、水蒸気、アンモニアガス、メチルアミンガス、ジメチルアミンガス、トリメチルアミンガス、および、過酸化水素ガスの少なくともいずれかに由来する液膜Jを形成できる。
(1) In the embodiment, one kind of gas (water vapor) was condensed in the condensation process. In embodiments, the condensation process condensed a gas consisting of one component (water vapor). However, it is not limited to this. For example, in the condensation process, multiple types of gases may be condensed. For example, in a sublimation process, a gas containing multiple components may be sublimated. For example, in the sublimation step, at least one of water vapor, ammonia gas, methylamine gas, dimethylamine gas, trimethylamine gas, and hydrogen peroxide gas may be sublimated. According to this modified embodiment, the liquid film J derived from at least one of water vapor, ammonia gas, methylamine gas, dimethylamine gas, trimethylamine gas, and hydrogen peroxide gas can be formed.
例えば、水蒸気に由来する液膜Jによれば、基板Wにリンス処理を行うことができる。アンモニアガス、メチルアミンガス、ジメチルアミンガス、および、トリメチルアミンガスの少なくともいずれかに由来する液膜Jによれば、基板Wに洗浄処理を行うことができる。例えば、液膜Jによって、基板Wの上面W1からパーティクルBを好適に除去できる。過酸化水素ガスに由来する液膜Jによれば、基板Wに酸化処理を行うことができる。例えば、液膜Jによって、基板Wの上面W1を酸化させることができる。
For example, according to the liquid film J derived from water vapor, the substrate W can be rinsed. The substrate W can be cleaned by the liquid film J derived from at least one of ammonia gas, methylamine gas, dimethylamine gas, and trimethylamine gas. For example, the particles B can be preferably removed from the upper surface W1 of the substrate W by the liquid film J. The substrate W can be oxidized by the liquid film J derived from the hydrogen peroxide gas. For example, the upper surface W1 of the substrate W can be oxidized by the liquid film J.
複数種類のガスが凝華する場合、複数種類のガスは同時に凝華してもよい。複数種類のガスが凝華する場合、複数種類のガスは同時に凝華しなくもよい。例えば、複数種類のガスが凝華する場合、複数種類のガスは、同じ凝華工程で凝華してもよい。あるいは、複数種類のガスはそれぞれ、互いに異なる凝華工程で、凝華してもよい。
When multiple types of gases condense, the multiple types of gases may condense at the same time. When multiple types of gases condense, the multiple types of gases do not have to condense at the same time. For example, if multiple gases are condensed, the multiple gases may be condensed in the same condensation process. Alternatively, each of the multiple gases may be sublimated in different sublimation processes.
2つの変形実施形態を説明する。
Two modified embodiments will be described.
(1-1)図16は、変形実施形態の基板処理方法の手順を示すフローチャートである。なお、実施形態と同じステップについては同符号を付すことで詳細な説明を省略する。変形実施形態の基板処理方法は、ステップS4-S6の点で、実施形態の基板処理方法と異なる。
(1-1) FIG. 16 is a flow chart showing the procedure of the substrate processing method of the modified embodiment. The same steps as in the embodiment are denoted by the same reference numerals, and detailed description thereof will be omitted. The substrate processing method of the modified embodiment differs from the substrate processing method of the embodiment in steps S4-S6.
第1供給工程(ステップS4)では、水蒸気とアンモニアガスが筐体12に供給される。例えば、水蒸気とアンモニアガスは、同時に筐体12に供給される。このため、筐体12内の気体Gは、水蒸気とアンモニアガスを含む。
In the first supply step (step S4), water vapor and ammonia gas are supplied to the housing 12. For example, water vapor and ammonia gas are supplied to the housing 12 at the same time. Therefore, the gas G inside the housing 12 contains water vapor and ammonia gas.
具体的には、供給部17aと供給部17bがそれぞれ、水蒸気とアンモニアガスを筐体12に供給してもよい。あるいは、水蒸気とアンモニアガスの混合ガスを筐体12に供給するように、供給部17aの構成を変更してもよい。
Specifically, the supply unit 17a and the supply unit 17b may supply water vapor and ammonia gas to the housing 12, respectively. Alternatively, the configuration of the supply unit 17 a may be changed so as to supply a mixed gas of water vapor and ammonia gas to the housing 12 .
凝華工程(ステップS5)では、水蒸気とアンモニアガスが凝華して、第1固体膜Hになる。
In the condensation step (step S5), water vapor and ammonia gas are condensed to form the first solid film H.
凝華工程では、筐体12の気体Gの圧力は、第1圧力P1に調整される。凝華工程では、ステージ15に載置される基板Wは、第1温度T1に調整される。ここで、凝華させるガスの種類に応じて、第1圧力P1と第1温度T1は、適宜に選択、変更される。第1圧力P1と第1温度T1は、凝華させるガスの成分に応じて、適宜に選択、変更される。第1圧力P1と第1温度T1は、凝華させるガスの組成に応じて、適宜に選択、変更される。例えば、第1圧力P1は、水蒸気およびアンモニアガスが凝華可能な圧力である。例えば、第1温度T1は、第1圧力P1の下で、水蒸気およびアンモニアガスが凝華する温度である。
In the condensation process, the pressure of the gas G in the housing 12 is adjusted to the first pressure P1. In the condensation process, the substrate W placed on the stage 15 is adjusted to the first temperature T1. Here, the first pressure P1 and the first temperature T1 are appropriately selected and changed according to the type of gas to be condensed. The first pressure P1 and the first temperature T1 are appropriately selected and changed according to the components of the gas to be condensed. The first pressure P1 and the first temperature T1 are appropriately selected and changed according to the composition of the gas to be condensed. For example, the first pressure P1 is a pressure at which water vapor and ammonia gas can condense. For example, the first temperature T1 is the temperature at which water vapor and ammonia gas condense under the first pressure P1.
融解工程(ステップS6)では、第1固体膜Hが融解して、液膜Jになる。液膜Jは、水蒸気とアンモニアガスに由来する処理液で形成される。すなわち、液膜Jは、アンモニア水を含む。このため、融解工程は、液膜Jを用いて、基板Wに洗浄処理を行うことができる。例えば、融解工程は、基板Wの上面W1からパーティクルBを離すことができる。
In the melting step (step S6), the first solid film H melts and becomes a liquid film J. The liquid film J is formed of a treatment liquid derived from water vapor and ammonia gas. That is, the liquid film J contains aqueous ammonia. Therefore, in the melting process, the liquid film J can be used to clean the substrate W. FIG. For example, the melting step can separate the particles B from the top surface W1 of the substrate W. FIG.
融解工程では、筐体12の気体Gの圧力は、第2圧力P2に調整される。融解工程では、ステージ15に載置される基板Wは、第2温度T2に調整される。ここで、第2圧力P2と第2温度T2は、第1固体膜Hの成分に応じて、適宜に選択、変更される。第2圧力P2と第2温度T2は、第1固体膜Hの組成に応じて、適宜に選択、変更される。
In the melting process, the pressure of the gas G in the housing 12 is adjusted to the second pressure P2. In the melting step, the substrate W placed on the stage 15 is adjusted to the second temperature T2. Here, the second pressure P2 and the second temperature T2 are appropriately selected and changed according to the components of the first solid film H. The second pressure P2 and the second temperature T2 are appropriately selected and changed according to the composition of the first solid film H.
同様に、凝固工程における第3圧力P3および第3温度T3も、液膜Jの成分に応じて、適宜に選択、変更される。凝固工程における第3圧力P3および第3温度T3も、液膜Jの組成に応じて、適宜に選択、変更される。昇華工程における第4圧力P4および第4温度T4も、第2固体膜Lの成分に応じて、適宜に選択、変更される。昇華工程における第4圧力P4および第4温度T4も、第2固体膜Lの組成に応じて、適宜に選択、変更される。
Similarly, the third pressure P3 and the third temperature T3 in the solidification process are also appropriately selected and changed according to the components of the liquid film J. The third pressure P3 and the third temperature T3 in the solidification step are also appropriately selected and changed according to the composition of the liquid film J. The fourth pressure P4 and the fourth temperature T4 in the sublimation step are also appropriately selected and changed according to the components of the second solid film L. The fourth pressure P4 and the fourth temperature T4 in the sublimation step are also appropriately selected and changed according to the composition of the second solid film L.
本変形実施形態では、第2供給工程(ステップS7)を省略してもよい。
In this modified embodiment, the second supply step (step S7) may be omitted.
本変形実施形態では、供給部17aおよび供給部17bは、本発明の第1供給部の例である。水蒸気およびアンモニアガスは、本発明における第1処理ガスの例である。
In this modified embodiment, the supply section 17a and the supply section 17b are examples of the first supply section of the present invention. Water vapor and ammonia gas are examples of the first process gas in the present invention.
(1-2)図17は、変形実施形態の基板処理方法の手順を示すフローチャートである。なお、実施形態と同じステップについては同符号を付すことで詳細な説明を省略する。変形実施形態の基板処理方法は、ステップS4-S6の点で、実施形態の基板処理方法と異なる。
(1-2) FIG. 17 is a flow chart showing the procedure of the substrate processing method of the modified embodiment. The same steps as in the embodiment are denoted by the same reference numerals, and detailed description thereof will be omitted. The substrate processing method of the modified embodiment differs from the substrate processing method of the embodiment in steps S4-S6.
変形実施形態の基板処理方法は、ステップS4に代えて、ステップS4a、S4bを備える。変形実施形態の基板処理方法は、ステップS5に代えて、ステップS5a、S5bを備える。
The substrate processing method of the modified embodiment includes steps S4a and S4b instead of step S4. The substrate processing method of the modified embodiment includes steps S5a and S5b instead of step S5.
ステップS4aの第1供給工程では、水蒸気が筐体12に供給される。
In the first supply step of step S4a, water vapor is supplied to the housing 12.
ステップS5aの凝華工程では、水蒸気が凝華する。
In the condensation process of step S5a, water vapor condenses.
図18は、ステップS5aの凝固工程における基板Wの上面W1を模式的に示す図である。筐体12内の気体Gに含まれる水蒸気は、液体を経ずに、第1固体膜Haに変わる。
FIG. 18 is a diagram schematically showing the upper surface W1 of the substrate W in the solidification process of step S5a. The water vapor contained in the gas G inside the housing 12 changes to the first solid film Ha without passing through liquid.
ステップS4bの第1供給工程では、アンモニアガスが筐体12に供給される。
Ammonia gas is supplied to the housing 12 in the first supply step of step S4b.
ステップS5aの凝華工程の後に、ステップS5bの凝華工程が実行される。ステップS5bの凝華工程では、アンモニアガスが凝華する。
After the condensation process of step S5a, the condensation process of step S5b is performed. In the condensation process of step S5b, the ammonia gas is condensed.
図19は、ステップS5bの凝華工程における基板Wの上面W1を模式的に示す図である。筐体12内の気体Gに含まれるアンモニアガスは、液体を経ずに、第1固体膜Hbに変わる。第1固体膜Hbは、第1固体膜Ha上に積層される。第1固体膜Haと第1固体膜Hbの全体は、基板Wの上面W1を覆う。
FIG. 19 is a diagram schematically showing the upper surface W1 of the substrate W in the condensation process of step S5b. The ammonia gas contained in the gas G inside the housing 12 changes to the first solid film Hb without passing through liquid. The first solid film Hb is laminated on the first solid film Ha. The entire top surface W1 of the substrate W is covered with the first solid film Ha and the first solid film Hb.
このように、水蒸気は先に凝華する。水蒸気が凝華した後に、アンモニアガスは凝華する。なお、アンモニアガスが先に凝華し、その後、水蒸気が凝華してもよい。
In this way, the water vapor condenses first. After the water vapor condenses, the ammonia gas condenses. Incidentally, the ammonia gas may be condensed first, and then the water vapor may be condensed.
融解工程(ステップS6)では、第1固体膜Haおよび第1固体膜Hbの全体が融解して、液膜Jになる。液膜Jは、水蒸気とアンモニアガスに由来する処理液で形成される。すなわち、液膜Jは、アンモニア水を含む。このため、融解工程は、液膜Jを用いて、基板Wに洗浄処理を行うことができる。例えば、融解工程は、基板Wの上面W1からパーティクルBを離すことができる。
In the melting step (step S6), the entire first solid film Ha and first solid film Hb are melted to form the liquid film J. The liquid film J is formed of a treatment liquid derived from water vapor and ammonia gas. That is, the liquid film J contains aqueous ammonia. Therefore, in the melting process, the liquid film J can be used to clean the substrate W. FIG. For example, the melting step can separate the particles B from the top surface W1 of the substrate W. FIG.
本変形実施形態では、第2供給工程(ステップS7)を省略してもよい。
In this modified embodiment, the second supply step (step S7) may be omitted.
本変形実施形態では、供給部17aおよび供給部17bは、本発明の第1供給部の例である。水蒸気およびアンモニアガスは、本発明における第1処理ガスの例である。
In this modified embodiment, the supply section 17a and the supply section 17b are examples of the first supply section of the present invention. Water vapor and ammonia gas are examples of the first process gas in the present invention.
(2)実施形態では、第2供給工程では、1つの種類のガス(アンモニアガス)が液膜Jに溶解した。実施形態では、第2供給工程では、1つの成分(アンモニアガス)からなるガスが液膜Jに溶解した。但し、これに限られない。例えば、第2供給工程では、複数種類のガスが液膜Jに溶解してもよい。例えば、第2供給工程では、複数の成分を含むガスが液膜Jに溶解してもよい。例えば、第2供給工程では、水蒸気、アンモニアガス、メチルアミンガス、ジメチルアミンガス、トリメチルアミンガス、および、過酸化水素ガスの少なくともいずれかが、液膜Jに溶解してもよい。本変形実施形態によれば、水蒸気、アンモニアガス、メチルアミンガス、ジメチルアミンガス、トリメチルアミンガス、および、過酸化水素ガスの少なくともいずれかに由来する液膜Jを形成できる。
(2) In the embodiment, one type of gas (ammonia gas) was dissolved in the liquid film J in the second supply step. In the embodiment, gas composed of one component (ammonia gas) was dissolved in the liquid film J in the second supply step. However, it is not limited to this. For example, multiple types of gases may be dissolved in the liquid film J in the second supply step. For example, gas containing multiple components may be dissolved in the liquid film J in the second supply step. For example, at least one of water vapor, ammonia gas, methylamine gas, dimethylamine gas, trimethylamine gas, and hydrogen peroxide gas may dissolve in the liquid film J in the second supply step. According to this modified embodiment, the liquid film J derived from at least one of water vapor, ammonia gas, methylamine gas, dimethylamine gas, trimethylamine gas, and hydrogen peroxide gas can be formed.
複数種類のガスが液膜Jに溶解する場合、複数種類のガスは同時に液膜Jに溶解してもよい。複数種類のガスが液膜Jに溶解する場合、複数種類のガスは同時に液膜Jに溶解しなくてもよい。例えば、複数種類のガスが液膜Jに溶解する場合、複数種類のガスは、同じ第2供給工程で、液膜Jに溶解してもよい。あるいは、複数種類のガスはそれぞれ、互いに異なる第2供給工程で、液膜Jに溶解してもよい。
When multiple types of gases are dissolved in the liquid film J, the multiple types of gases may be dissolved in the liquid film J at the same time. When multiple types of gases are dissolved in the liquid film J, the multiple types of gases do not have to be dissolved in the liquid film J at the same time. For example, when multiple types of gases are dissolved in the liquid film J, the multiple types of gases may be dissolved in the liquid film J in the same second supply step. Alternatively, a plurality of types of gases may be dissolved in the liquid film J in different second supply steps.
2つの変形実施形態を説明する。
Two modified embodiments will be described.
(2-1)図20は、変形実施形態にかかる処理ユニット11の構成を示す図である。なお、実施形態と同じ構成については同符号を付すことで詳細な説明を省略する。
(2-1) FIG. 20 is a diagram showing the configuration of the processing unit 11 according to the modified embodiment. In addition, detailed description is abbreviate|omitted by attaching|subjecting the same code|symbol about the same structure as embodiment.
処理ユニット11は、供給部17a-17cに加えて、供給部17dを備える。供給部17dも、筐体12に接続される。供給部17dも、筐体12に連通する。供給部17dは、筐体12にガスを供給する。供給部17dが供給するガスは、過酸化水素ガスである。過酸化水素ガスは、気相である。
The processing unit 11 includes a supply section 17d in addition to the supply sections 17a to 17c. The supply portion 17d is also connected to the housing 12 . The supply portion 17 d also communicates with the housing 12 . The supply unit 17 d supplies gas to the housing 12 . The gas supplied by the supply unit 17d is hydrogen peroxide gas. Hydrogen peroxide gas is in the gas phase.
供給部17dは、供給源21dに接続される。供給部17dは、供給源21dに連通する。供給源21dは、過酸化水素ガスを供給部17dに送る。供給源21dは、基板処理装置1の要素であってもよい。供給源21dは、基板処理装置1の要素でなくてもよい。
The supply unit 17d is connected to the supply source 21d. The supply portion 17d communicates with the supply source 21d. Supply source 21d delivers hydrogen peroxide gas to supply 17d. Supply source 21d may be an element of substrate processing apparatus 1 . The supply source 21 d may not be an element of the substrate processing apparatus 1 .
供給部17dは、吹出部23に接続される。供給部17dは、吹出部23に連通する。
The supply unit 17d is connected to the blowout unit 23. The supply portion 17 d communicates with the blowout portion 23 .
供給部17dは、配管18dと弁19dを備える。弁19dは、配管18dに設けられる。配管18dは、供給源21dに接続される第1端を有する。配管18dの第1端は、供給源21dに連通する。配管18dは、吹出部23に接続される第2端を有する。配管18dの第2端は、吹出部23に連通する。弁19dが開くとき、供給部17dは、吹出部23を通じて筐体12に過酸化水素ガスを供給する。弁19dが閉じるとき、供給部17dは、過酸化水素ガスを筐体12に供給しない。
The supply unit 17d includes a pipe 18d and a valve 19d. 19 d of valves are provided in 18 d of piping. The tubing 18d has a first end connected to the source 21d. A first end of the pipe 18d communicates with the supply source 21d. The pipe 18 d has a second end connected to the blowout portion 23 . A second end of the pipe 18 d communicates with the blowout portion 23 . When the valve 19 d is opened, the supply section 17 d supplies hydrogen peroxide gas to the housing 12 through the blowout section 23 . When the valve 19d is closed, the supply portion 17d does not supply hydrogen peroxide gas to the housing 12.
便宜上、図4を参照する。なお、実施形態と同じステップについては詳細な説明を省略する。本変形実施形態の基板処理方法は、ステップS7の点で、実施形態の基板処理方法と異なる。
For convenience, refer to Figure 4. Note that detailed description of steps that are the same as those in the embodiment will be omitted. The substrate processing method of this modified embodiment differs from the substrate processing method of the embodiment in step S7.
第2供給工程(ステップS7)では、アンモニアガスと過酸化水素ガスが筐体12に供給される。例えば、アンモニアガスと過酸化水素ガスは、同時に筐体12に供給される。このため、筐体12内の気体Gは、アンモニアガスと過酸化水素ガスを含む。
In the second supply step (step S7), ammonia gas and hydrogen peroxide gas are supplied to the housing 12. For example, ammonia gas and hydrogen peroxide gas are supplied to the housing 12 at the same time. Therefore, the gas G inside the housing 12 contains ammonia gas and hydrogen peroxide gas.
具体的には、供給部17bと供給部17dがそれぞれ、アンモニアガスと過酸化水素ガスを筐体12に供給する。
Specifically, the supply unit 17b and the supply unit 17d supply ammonia gas and hydrogen peroxide gas to the housing 12, respectively.
第2供給工程(ステップS7)では、液膜Jは、アンモニアガスと過酸化水素ガスを溶解する。その結果、液膜Jは、アンモニア水と過酸化水素水を含む。液膜Jがアンモニア水を含むので、液膜Jは、基板Wに洗浄処理を行うことができる。例えば、液膜Jは、基板Wの上面W1からパーティクルBを好適に除去できる。液膜Jが過酸化水素水を含むので、液膜Jは、基板Wに酸化処理を行うことができる。例えば、液膜Jは、基板Wの上面W1を酸化させることができる。
In the second supply step (step S7), the liquid film J dissolves ammonia gas and hydrogen peroxide gas. As a result, the liquid film J contains ammonia water and hydrogen peroxide water. Since the liquid film J contains ammonia water, the liquid film J can clean the substrate W. FIG. For example, the liquid film J can preferably remove the particles B from the upper surface W1 of the substrate W. FIG. Since the liquid film J contains the hydrogen peroxide solution, the liquid film J can oxidize the substrate W. As shown in FIG. For example, the liquid film J can oxidize the top surface W1 of the substrate W. FIG.
本変形実施形態では、供給部17bおよび供給部17dは、本発明の第2供給部の例である。アンモニアガスおよび過酸化水素ガスは、本発明における第2処理ガスの例である。
In this modified embodiment, the supply section 17b and the supply section 17d are examples of the second supply section of the present invention. Ammonia gas and hydrogen peroxide gas are examples of the second process gas in the present invention.
(2-2)図21は、変形実施形態の基板処理方法の手順を示すフローチャートである。なお、実施形態と同じステップについては同符号を付すことで詳細な説明を省略する。変形実施形態の基板処理方法は、ステップS7に代えて、ステップS7a、S7bを備える。
(2-2) FIG. 21 is a flow chart showing the procedure of the substrate processing method of the modified embodiment. The same steps as in the embodiment are denoted by the same reference numerals, and detailed description thereof will be omitted. The substrate processing method of the modified embodiment includes steps S7a and S7b instead of step S7.
ステップS7aの第2供給工程では、過酸化水素ガスが筐体12に供給される。ステップS7aの第2供給工程では、液膜Jは、過酸化水素ガスを融解する。その結果、液膜Jは、過酸化水素水を含む。液膜Jが過酸化水素水を含むので、液膜Jは、基板Wに酸化処理を行うことができる。例えば、液膜Jは、基板Wの上面W1を酸化させることができる。
In the second supply step of step S7a, hydrogen peroxide gas is supplied to the housing 12. In the second supply step of step S7a, the liquid film J melts the hydrogen peroxide gas. As a result, the liquid film J contains the hydrogen peroxide solution. Since the liquid film J contains the hydrogen peroxide solution, the liquid film J can oxidize the substrate W. As shown in FIG. For example, the liquid film J can oxidize the top surface W1 of the substrate W. FIG.
ステップS7aの第2供給工程の後に、ステップS7bの第2供給工程は実行される。ステップS7bの第2供給工程では、アンモニアガスが筐体12に供給される。ステップS7bの第2供給工程では、液膜Jは、アンモニアガスを融解する。その結果、液膜Jは、過酸化水素水に加えて、アンモニア水を含む。液膜Jがアンモニア水を含むので、液膜Jは、さらに、基板Wに洗浄処理を行うことができる。例えば、液膜Jは、基板Wの上面W1からパーティクルBを好適に除去できる。
After the second supply process of step S7a, the second supply process of step S7b is performed. Ammonia gas is supplied to the housing 12 in the second supply step of step S7b. In the second supply step of step S7b, the liquid film J melts the ammonia gas. As a result, the liquid film J contains aqueous ammonia in addition to aqueous hydrogen peroxide. Since the liquid film J contains ammonia water, the liquid film J can further clean the substrate W. FIG. For example, the liquid film J can preferably remove the particles B from the upper surface W1 of the substrate W. FIG.
このように、過酸化水素ガスは先に液膜Jに溶解される。過酸化水素ガスが液膜Jに溶解された後に、アンモニアガスは液膜Jに溶解される。なお、アンモニアガスが先に液膜Jに溶解され、その後、過酸化水素ガスが液膜Jに溶解されてもよい。
In this way, the hydrogen peroxide gas is dissolved in the liquid film J first. After the hydrogen peroxide gas is dissolved in the liquid film J, the ammonia gas is dissolved in the liquid film J. Alternatively, the ammonia gas may be dissolved in the liquid film J first, and then the hydrogen peroxide gas may be dissolved in the liquid film J.
本変形実施形態では、供給部17bおよび供給部17dは、本発明の第2供給部の例である。アンモニアガスおよび過酸化水素ガスは、本発明における第2処理ガスの例である。
In this modified embodiment, the supply section 17b and the supply section 17d are examples of the second supply section of the present invention. Ammonia gas and hydrogen peroxide gas are examples of the second process gas in the present invention.
(3)実施形態では、第2供給工程を備えた。但し、これに限られない。第2供給工程を省略してもよい。例えば、図16または図17に示す変形実施形態のように、第2供給工程を省略してもよい。
(3) The embodiment includes a second supply step. However, it is not limited to this. The second supply step may be omitted. For example, the second supply step may be omitted as in a modified embodiment shown in FIG. 16 or 17. FIG.
(4)実施形態では、第1供給工程の前に調整工程は実行される。但し、これに限られない。例えば、第1供給工程の後に調整工程は実行されてもよい。例えば、第1供給工程の後で、かつ、凝華工程の前に調整工程は実行されてもよい。
(4) In the embodiment, the adjustment process is executed before the first supply process. However, it is not limited to this. For example, the adjustment step may be performed after the first supply step. For example, the conditioning step may be performed after the first feeding step and before the sublimation step.
(5)実施形態では、基板処理方法は調整工程を備えた。但し、これに限られない。調整工程を省略してもよい。例えば、第1供給工程および昇華工程のいずれかが、調整工程と同等の動作を実行してもよい。例えば、第1供給工程において、筐体12の気体Gの圧力とステージ15に載置される基板Wの温度を調整してもよい。例えば、昇華工程において、筐体12の気体Gの圧力とステージ15に載置される基板Wの温度を調整してもよい。
(5) In the embodiment, the substrate processing method includes an adjustment process. However, it is not limited to this. The adjustment process may be omitted. For example, either the first supply step or the sublimation step may perform an operation equivalent to the adjustment step. For example, in the first supply step, the pressure of the gas G in the housing 12 and the temperature of the substrate W placed on the stage 15 may be adjusted. For example, in the sublimation process, the pressure of the gas G in the housing 12 and the temperature of the substrate W placed on the stage 15 may be adjusted.
(6)実施形態では、凝固工程は、液膜Jの蒸発を抑制しつつ、液膜Jを凝固させる。ただし、これに限られない。例えば、凝固工程は、液膜Jの一部のみが蒸発することを許容してもよい。例えば、液膜Jが水とアンモニアを含む場合、アンモニアが蒸発することを許容しつつ、液膜Jを凝固させてもよい。例えば、液膜Jが水とアンモニアを含む場合、アンモニアが蒸発することを許容し、かつ、水が蒸発することを抑制しつつ、液膜Jを凝固させてもよい。
(6) In the embodiment, the solidification step solidifies the liquid film J while suppressing evaporation of the liquid film J. However, it is not limited to this. For example, the solidification step may allow only a portion of the liquid film J to evaporate. For example, when the liquid film J contains water and ammonia, the liquid film J may be solidified while allowing the ammonia to evaporate. For example, when the liquid film J contains water and ammonia, the liquid film J may be solidified while allowing the ammonia to evaporate and suppressing the water from evaporating.
(7)実施形態では、収集工程を備えた。但し、これに限られない。収集工程を省略してもよい。例えば、図17、21に示すように、基板処理方法は、収集工程を備えなくてもよい。帯電工程のみでも、負に帯電した第2固体膜Lと、負に帯電したパーティクルBの間に斥力を発生させることができる。このため、パーティクルBを第2固体膜Lから飛散させることができる。このため、収集工程を省略しても、基板WからパーティクルBを好適に除去できる。
(7) The embodiment includes a collection step. However, it is not limited to this. The collecting step may be omitted. For example, as shown in FIGS. 17 and 21, the substrate processing method may not include a collection step. A repulsive force can be generated between the negatively charged second solid film L and the negatively charged particles B only by the charging process. Therefore, the particles B can be scattered from the second solid film L. Therefore, the particles B can be preferably removed from the substrate W even if the collection step is omitted.
(8)実施形態では、帯電工程を備えた。但し、これに限られない。帯電工程を省略してもよい。例えば、図21に示すように、基板処理方法は、帯電工程を備えなくてもよい。例えば、基板処理方法が基板Wに行う処理に応じて、帯電工程を適宜に省略してもよい。例えば、基板処理方法が基板Wに酸化処理を行う場合、帯電工程を省略してもよい。例えば、基板処理方法が基板Wに洗浄処理を行わない場合、帯電工程を省略してもよい。
(8) The embodiment includes a charging step. However, it is not limited to this. The charging step may be omitted. For example, as shown in FIG. 21, the substrate processing method may not include the charging step. For example, depending on the processing to be performed on the substrate W by the substrate processing method, the charging step may be omitted as appropriate. For example, when the substrate processing method performs an oxidation treatment on the substrate W, the charging step may be omitted. For example, if the substrate processing method does not perform a cleaning process on the substrate W, the charging step may be omitted.
(9)実施形態では、供給部17aは水蒸気を筐体12に供給した。但し、これに限られない。例えば、供給部17aは、水蒸気、アンモニアガス、メチルアミンガス、ジメチルアミンガス、トリメチルアミンガス、および、過酸化水素ガスの少なくともいずれかを、筐体12に供給してもよい。供給部17bについても、供給部17aと同様に変更してもよい。
(9) In the embodiment, the supply unit 17a supplied water vapor to the housing 12. However, it is not limited to this. For example, the supply unit 17 a may supply at least one of water vapor, ammonia gas, methylamine gas, dimethylamine gas, trimethylamine gas, and hydrogen peroxide gas to the housing 12 . The supply portion 17b may also be changed in the same manner as the supply portion 17a.
(10)実施形態では、供給部17aは1つの種類のガスを筐体12に供給した。実施形態では、供給部17aは1つの成分からなるガスを筐体12に供給した。但し、これに限られない。例えば、供給部17aは、2種以上のガスを含む混合ガスを、筐体12に供給してもよい。例えば、供給部17aは、複数の成分を含む混合ガスを、筐体12に供給してもよい。例えば、供給部17aは、水蒸気、アンモニアガス、メチルアミンガス、ジメチルアミンガス、トリメチルアミンガス、および、過酸化水素ガスの少なくとも2つ以上を含む混合ガスを、筐体12に供給してもよい。供給部17bについても、供給部17aと同様に変更してもよい。
(10) In the embodiment, the supply unit 17a supplies one type of gas to the housing 12. In the embodiment, the supply part 17a supplied the gas consisting of one component to the housing 12 . However, it is not limited to this. For example, the supply unit 17a may supply a mixed gas containing two or more types of gases to the housing 12 . For example, the supply unit 17 a may supply a mixed gas containing multiple components to the housing 12 . For example, the supply unit 17 a may supply a mixed gas containing at least two of water vapor, ammonia gas, methylamine gas, dimethylamine gas, trimethylamine gas, and hydrogen peroxide gas to the housing 12 . The supply portion 17b may also be changed in the same manner as the supply portion 17a.
(11)実施形態では、供給部17a、17b、17cはともに、共通の吹出部23に接続された。供給部17a、17b、17cはともに、共通の吹出部23に連通した。但し、これに限られない。供給部17a、17b、17cはそれぞれ、互いに異なる吹出部に接続されてもよい。供給部17a、17b、17cはそれぞれ、互いに異なる吹出部に連通してもよい。
(11) In the embodiment, the supply units 17a, 17b, and 17c are all connected to the common blowout unit 23. The supply parts 17a, 17b, 17c all communicated with a common blowout part 23. As shown in FIG. However, it is not limited to this. The supply units 17a, 17b, and 17c may be connected to different blowout units, respectively. Each of the supply portions 17a, 17b, and 17c may communicate with different blowout portions.
(12)実施形態では、温度調整部31の具体的な構成を例示した。例えば、温度調整部31は、冷却管33と電気ヒータ37と備えた。但し、これに限られない。温度調整部31の構成を適宜に変更してもよい。例えば、温度調整部31は、発熱および吸熱するペルチエ素子を備えてもよい。例えば、温度調整部31は、発熱および吸熱する熱電素子を備えてもよい。
(12) In the embodiment, a specific configuration of the temperature adjustment section 31 is illustrated. For example, the temperature adjustment section 31 includes a cooling pipe 33 and an electric heater 37 . However, it is not limited to this. The configuration of the temperature adjustment unit 31 may be changed as appropriate. For example, the temperature adjuster 31 may include a Peltier element that generates heat and absorbs heat. For example, the temperature adjustment unit 31 may include thermoelectric elements that generate heat and absorb heat.
(13)実施形態では、基板Wは、基板Wの上面W1に形成されるパターンRを有した。但し、これに限られない。例えば、基板Wは、パターンRを有しなくてもよい。例えば、パターンRは、基板Wの上面W1に形成されていなくてもよい。例えば、基板Wは、パターンRが形成されていない上面W1を有してもよい。これらの変形実施形態においても、上述した基板処理方法および基板処理装置1は、基板Wの上面W1を保護しつつ、基板Wの上面W1に液膜Jを形成できる。したがって、これらの変形実施形態においても、基板処理方法および基板処理装置1によって、基板Wを適切に処理できる。
(13) In the embodiment, the substrate W has the pattern R formed on the upper surface W1 of the substrate W. However, it is not limited to this. For example, the substrate W may not have the pattern R. For example, the pattern R does not have to be formed on the upper surface W1 of the substrate W. FIG. For example, the substrate W may have a top surface W1 on which the pattern R is not formed. Also in these modified embodiments, the substrate processing method and the substrate processing apparatus 1 described above can form the liquid film J on the upper surface W1 of the substrate W while protecting the upper surface W1 of the substrate W. FIG. Therefore, also in these modified embodiments, the substrate W can be appropriately processed by the substrate processing method and the substrate processing apparatus 1 .
(14)実施形態および上記(1)から(13)で説明した各変形実施形態については、さらに各構成を他の変形実施形態の構成に置換または組み合わせるなどして適宜に変更してもよい。
(14) The embodiment and each modified embodiment described in (1) to (13) above may be modified as appropriate by replacing or combining each configuration with the configuration of another modified embodiment.
1 … 基板処理装置
10 … 制御部
11 … 処理ユニット
12 … 筐体
13 … 処理空間
15 … ステージ(基板載置部)
17a … 供給部(第1供給部/第2供給部)
17b … 供給部(第2供給部)
17c … 供給部(圧力調整部)
20 … 圧力調整部
25 … 排気部(圧力調整部)
31 … 温度調整部
32 … 冷却部
36 … 加熱部
41 … 電子放射部
43 … 電子線源
45 … 収集部
46 … 電極
P1 … 第1圧力(第1処理ガスが凝華可能な圧力)
P2 … 第2圧力(第1固体膜が融解可能な圧力)
P3 … 第3圧力(液膜が凝固可能な圧力)
P4 … 第4圧力(第2固体膜が昇華可能な圧力)
T1 … 第1温度(第1圧力の下で、第1処理ガスが凝華する温度)
T2 … 第2温度(第2圧力の下で、第1固体膜Hが融解する温度)
T3 … 第3温度(第3圧力の下で、液膜が凝固する温度)
T4 … 第4温度(第4圧力の下で、第2固体膜が昇華する温度)
A … 凹部
B … パーティクル
G … 筐体内の気体
H、Ha、Hb … 第1固体膜
J … 液膜
K … 気液界面
L … 第2固体膜
R … パターン
W … 基板
W1 … 基板の上面
W2 … 凸部 DESCRIPTION OFSYMBOLS 1... Substrate processing apparatus 10... Control part 11... Processing unit 12... Case 13... Processing space 15... Stage (substrate mounting part)
17a ... supply unit (first supply unit/second supply unit)
17b ... supply unit (second supply unit)
17c ... supply unit (pressure adjustment unit)
20...Pressure adjustment part 25... Exhaust part (pressure adjustment part)
REFERENCE SIGNS LIST 31: Temperature control unit 32: Cooling unit 36: Heating unit 41: Electron emitting unit 43: Electron beam source 45: Collecting unit 46: Electrode P1: First pressure (pressure at which the first processing gas can condense)
P2 … Second pressure (pressure at which the first solid film can be melted)
P3 ... Third pressure (pressure at which the liquid film can be solidified)
P4 ... fourth pressure (pressure at which the second solid film can be sublimated)
T1 ... first temperature (temperature at which the first process gas condenses under the first pressure)
T2 ... second temperature (temperature at which the first solid film H melts under the second pressure)
T3 ... third temperature (temperature at which the liquid film solidifies under the third pressure)
T4 ... fourth temperature (temperature at which the second solid film sublimates under the fourth pressure)
A... Concave part B... Particle G... Gas in housing H, Ha, Hb... First solid film J... Liquid film K... Gas-liquid interface L... Second solid film R... Pattern W... Substrate W1... Upper surface of substrate W2... Convex part
10 … 制御部
11 … 処理ユニット
12 … 筐体
13 … 処理空間
15 … ステージ(基板載置部)
17a … 供給部(第1供給部/第2供給部)
17b … 供給部(第2供給部)
17c … 供給部(圧力調整部)
20 … 圧力調整部
25 … 排気部(圧力調整部)
31 … 温度調整部
32 … 冷却部
36 … 加熱部
41 … 電子放射部
43 … 電子線源
45 … 収集部
46 … 電極
P1 … 第1圧力(第1処理ガスが凝華可能な圧力)
P2 … 第2圧力(第1固体膜が融解可能な圧力)
P3 … 第3圧力(液膜が凝固可能な圧力)
P4 … 第4圧力(第2固体膜が昇華可能な圧力)
T1 … 第1温度(第1圧力の下で、第1処理ガスが凝華する温度)
T2 … 第2温度(第2圧力の下で、第1固体膜Hが融解する温度)
T3 … 第3温度(第3圧力の下で、液膜が凝固する温度)
T4 … 第4温度(第4圧力の下で、第2固体膜が昇華する温度)
A … 凹部
B … パーティクル
G … 筐体内の気体
H、Ha、Hb … 第1固体膜
J … 液膜
K … 気液界面
L … 第2固体膜
R … パターン
W … 基板
W1 … 基板の上面
W2 … 凸部 DESCRIPTION OF
17a ... supply unit (first supply unit/second supply unit)
17b ... supply unit (second supply unit)
17c ... supply unit (pressure adjustment unit)
20...
REFERENCE SIGNS LIST 31: Temperature control unit 32: Cooling unit 36: Heating unit 41: Electron emitting unit 43: Electron beam source 45: Collecting unit 46: Electrode P1: First pressure (pressure at which the first processing gas can condense)
P2 … Second pressure (pressure at which the first solid film can be melted)
P3 ... Third pressure (pressure at which the liquid film can be solidified)
P4 ... fourth pressure (pressure at which the second solid film can be sublimated)
T1 ... first temperature (temperature at which the first process gas condenses under the first pressure)
T2 ... second temperature (temperature at which the first solid film H melts under the second pressure)
T3 ... third temperature (temperature at which the liquid film solidifies under the third pressure)
T4 ... fourth temperature (temperature at which the second solid film sublimates under the fourth pressure)
A... Concave part B... Particle G... Gas in housing H, Ha, Hb... First solid film J... Liquid film K... Gas-liquid interface L... Second solid film R... Pattern W... Substrate W1... Upper surface of substrate W2... Convex part
Claims (20)
- 基板を処理する基板処理方法であって、
筐体内において基板を略水平姿勢で載置する載置工程と、
前記筐体に第1処理ガスを供給する第1供給工程と、
前記第1処理ガスを凝華させて、基板の上面を覆う第1固体膜を形成する凝華工程と、
前記第1固体膜を融解させて、基板の前記上面を覆う液膜を形成する融解工程と、
を備える基板処理方法。 A substrate processing method for processing a substrate,
a placing step of placing the substrate in a substantially horizontal posture in the housing;
a first supply step of supplying a first processing gas to the housing;
a condensation step of condensing the first process gas to form a first solid film covering the top surface of the substrate;
a melting step of melting the first solid film to form a liquid film covering the top surface of the substrate;
A substrate processing method comprising: - 請求項1に記載の基板処理方法において、
前記凝華工程は、前記筐体内の気体の圧力を前記第1処理ガスが凝華可能な圧力に保った状態で、前記第1処理ガスを冷却し、
前記融解工程は、前記筐体内の気体の圧力を前記第1固体膜が融解可能な圧力に保った状態で、前記第1固体膜を加熱する
基板処理方法。 In the substrate processing method according to claim 1,
The condensation step includes cooling the first processing gas while maintaining the pressure of the gas in the housing at a pressure at which the first processing gas can be condensed;
The melting step heats the first solid film while maintaining the pressure of the gas in the housing at a pressure at which the first solid film can be melted. - 請求項1に記載の基板処理方法において、
前記凝華工程は、前記第1処理ガスが基板の前記上面上に凝華する温度まで、基板を冷却し、
前記融解工程は、前記第1固体膜が融解する温度まで、前記基板を加熱する
基板処理方法。 In the substrate processing method according to claim 1,
the step of condensing comprises cooling the substrate to a temperature at which the first process gas condenses onto the top surface of the substrate;
The melting step heats the substrate to a temperature at which the first solid film melts. - 請求項1に記載の基板処理方法であって、
前記第1処理ガスは、水蒸気、アンモニアガス、メチルアミンガス、ジメチルアミンガス、トリメチルアミンガス、および、過酸化水素ガスの少なくともいずれかを含む
基板処理方法。 The substrate processing method according to claim 1,
The substrate processing method, wherein the first processing gas includes at least one of water vapor, ammonia gas, methylamine gas, dimethylamine gas, trimethylamine gas, and hydrogen peroxide gas. - 請求項1に記載の基板処理方法であって、
前記第1処理ガスは、水蒸気であり、
前記凝華工程では、前記筐体内の気体の圧力は水の三重点の圧力よりも小さく、
前記融解工程では、前記筐体内の前記気体の圧力は前記水の三重点の圧力よりも大きい
基板処理方法。 The substrate processing method according to claim 1,
wherein the first processing gas is water vapor;
in the condensation step, the pressure of the gas in the housing is less than the triple point pressure of water;
In the melting step, the pressure of the gas within the housing is higher than the triple point pressure of the water. - 請求項1に記載の基板処理方法において、
前記液膜を凝固させて、基板の前記上面上に第2固体膜を形成する凝固工程と、
前記第2固体膜を昇華させる昇華工程と、
を備える基板処理方法。 In the substrate processing method according to claim 1,
solidifying the liquid film to form a second solid film on the upper surface of the substrate;
a sublimation step of sublimating the second solid film;
A substrate processing method comprising: - 請求項6に記載の基板処理方法において、
前記凝固工程は、前記筐体内の気体の圧力を前記液膜が凝固可能な圧力に保った状態で、前記液膜を冷却し、
前記昇華工程は、前記筐体内の気体の圧力を前記第2固体膜が昇華可能な圧力に保った状態で、前記第2固体膜を加熱する
基板処理方法。 In the substrate processing method according to claim 6,
The solidification step includes cooling the liquid film while maintaining the pressure of the gas in the housing at a pressure that allows the liquid film to solidify,
In the substrate processing method, the sublimation step heats the second solid film while maintaining the pressure of the gas in the housing at a pressure at which the second solid film can sublimate. - 請求項6に記載の基板処理方法において、
前記凝固工程は、前記液膜が凝固する温度まで、基板を冷却し、
前記昇華工程は、前記第2固体膜が昇華する温度まで、基板を加熱する
基板処理方法。 In the substrate processing method according to claim 6,
The solidification step includes cooling the substrate to a temperature at which the liquid film solidifies,
The substrate processing method, wherein the sublimation step heats the substrate to a temperature at which the second solid film sublimates. - 請求項6に記載の基板処理方法であって、
前記昇華工程は、前記筐体内の気体を筐体の外部に排出する
基板処理方法。 The substrate processing method according to claim 6,
The substrate processing method according to claim 1, wherein the sublimation step discharges the gas inside the housing to the outside of the housing. - 請求項6に記載の基板処理方法であって、
前記第1処理ガスは、水蒸気であり、
前記凝固工程では、前記筐体内の気体の圧力は水の三重点の圧力よりも大きく、
前記昇華工程では、前記筐体内の気体の圧力は前記水の三重点の圧力よりも小さい
基板処理方法。 The substrate processing method according to claim 6,
wherein the first processing gas is water vapor;
In the solidification step, the pressure of the gas within the housing is greater than the pressure at the triple point of water,
In the sublimation step, the pressure of the gas within the housing is lower than the pressure of the triple point of water. - 請求項6に記載の基板処理方法であって、
前記第2固体膜を帯電させる帯電工程と、
を備える
基板処理方法。 The substrate processing method according to claim 6,
a charging step of charging the second solid film;
A substrate processing method. - 請求項1に記載の基板処理方法であって、
前記筐体に第2処理ガスを供給する第2供給工程と、
を備え、
前記液膜は、前記第2処理ガスを溶解する
基板処理方法。 The substrate processing method according to claim 1,
a second supply step of supplying a second processing gas to the housing;
with
The substrate processing method, wherein the liquid film dissolves the second processing gas. - 請求項12に記載の基板処理方法であって、
前記第2処理ガスは、水蒸気、アンモニアガス、メチルアミンガス、ジメチルアミンガス、トリメチルアミンガス、および、過酸化水素ガスの少なくともいずれかを含む
基板処理方法。 The substrate processing method according to claim 12,
The substrate processing method, wherein the second processing gas includes at least one of water vapor, ammonia gas, methylamine gas, dimethylamine gas, trimethylamine gas, and hydrogen peroxide gas. - 請求項1に記載の基板処理方法であって、
帯電したパーティクルを収集する収集工程と、
を備える
基板処理方法。 The substrate processing method according to claim 1,
a collecting step of collecting the charged particles;
A substrate processing method. - 請求項1に記載の基板処理方法であって、
基板は、基板の前記上面に形成されるパターンを有する
基板処理方法。 The substrate processing method according to claim 1,
The substrate processing method, wherein the substrate has a pattern formed on the upper surface of the substrate. - 基板処理装置であって、
密閉可能な筐体と、
前記筐体内に設置され、基板を略水平姿勢で載置する基板載置部と、
前記筐体内に第1処理ガスを供給する第1供給部と、
前記筐体内の気体の圧力を調整する圧力調整部と、
前記基板載置部に載置される基板の温度を調整する温度調整部と、
前記第1供給部と前記圧力調整部と前記温度調整部を制御する制御部と、
を備え、
前記制御部は、
前記第1供給部から前記筐体に前記第1処理ガスを供給させ、
前記圧力調整部と前記温度調整部を制御することによって、第1処理ガスを凝華させて、前記基板載置部に載置される基板の上面を覆う第1固体膜を形成し、
前記圧力調整部と前記温度調整部を制御することによって、前記第1固体膜を融解させて、前記基板載置部に載置される基板の前記上面を覆う液膜を形成する
基板処理装置。 A substrate processing apparatus,
a sealable enclosure; and
a substrate placement unit installed in the housing for placing the substrate in a substantially horizontal posture;
a first supply unit that supplies a first processing gas into the housing;
a pressure adjustment unit that adjusts the pressure of the gas in the housing;
a temperature adjustment unit that adjusts the temperature of the substrate placed on the substrate placement unit;
a control unit that controls the first supply unit, the pressure adjustment unit, and the temperature adjustment unit;
with
The control unit
supplying the first processing gas from the first supply unit to the housing;
forming a first solid film covering the upper surface of the substrate placed on the substrate placing part by condensing the first processing gas by controlling the pressure adjusting part and the temperature adjusting part;
A substrate processing apparatus for forming a liquid film covering the upper surface of a substrate placed on the substrate placing part by melting the first solid film by controlling the pressure adjusting part and the temperature adjusting part. - 請求項16に記載の基板処理装置において、
前記制御部は、
前記圧力調整部と前記温度調整部を制御することによって、前記液膜を凝固させて、前記基板載置部に載置される基板の前記上面上に第2固体膜を形成し、
前記圧力調整部と前記温度調整部を制御することによって、前記第2固体膜を昇華させる
基板処理装置。 In the substrate processing apparatus according to claim 16,
The control unit
solidifying the liquid film by controlling the pressure adjustment unit and the temperature adjustment unit to form a second solid film on the upper surface of the substrate mounted on the substrate mounting unit;
A substrate processing apparatus for sublimating the second solid film by controlling the pressure adjustment unit and the temperature adjustment unit. - 請求項17に記載の基板処理装置において、
前記筐体内に電子を放射する電子放射部と、
を備え、
前記制御部は、前記電子放射部によって前記第2固体膜を負に帯電させる
基板処理装置。 In the substrate processing apparatus according to claim 17,
an electron emitting unit that emits electrons into the housing;
with
The substrate processing apparatus, wherein the control unit negatively charges the second solid film by the electron emission unit. - 請求項16に記載の基板処理装置において、
前記筐体に第2処理ガスを供給する第2供給部と、
を備え、
前記制御部は、
前記第2供給部から前記筐体に前記第2処理ガスを供給させ、前記液膜に前記第2処理ガスを溶解させる
基板処理装置。 In the substrate processing apparatus according to claim 16,
a second supply unit that supplies a second processing gas to the housing;
with
The control unit
A substrate processing apparatus for supplying the second processing gas from the second supply unit to the housing and dissolving the second processing gas in the liquid film. - 請求項16に記載の基板処理装置において、
前記筐体内に設置され、正電圧が印加される電極と、
を備える
基板処理装置。 In the substrate processing apparatus according to claim 16,
an electrode installed in the housing and to which a positive voltage is applied;
A substrate processing apparatus.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021075835A JP2022170013A (en) | 2021-04-28 | 2021-04-28 | Substrate processing method and substrate processing apparatus |
JP2021-075835 | 2021-04-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022230669A1 true WO2022230669A1 (en) | 2022-11-03 |
Family
ID=83847503
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/017689 WO2022230669A1 (en) | 2021-04-28 | 2022-04-13 | Substrate processing method and substrate processing device |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2022170013A (en) |
WO (1) | WO2022230669A1 (en) |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS649624A (en) * | 1987-07-02 | 1989-01-12 | Mitsubishi Electric Corp | Method of drying semiconductor device |
JP2002329700A (en) * | 2001-04-27 | 2002-11-15 | Sony Corp | Surface processing method |
JP2004311854A (en) * | 2003-04-10 | 2004-11-04 | Renesas Technology Corp | Cleaning method, method and device for cleaning semiconductor device |
JP2007273806A (en) * | 2006-03-31 | 2007-10-18 | Matsushita Electric Ind Co Ltd | Semiconductor substrate cleaning method and cleaning apparatus |
JP2009231354A (en) * | 2008-03-19 | 2009-10-08 | Fujifilm Corp | Cleaning liquid for semiconductor device and cleaning method |
JP2010056309A (en) * | 2008-08-28 | 2010-03-11 | Sokudo Co Ltd | Substrate processing apparatus, method for supplying gas-dissolved liquid and method for processing substrate |
JP2013042094A (en) * | 2011-08-19 | 2013-02-28 | Central Glass Co Ltd | Wafer cleaning method |
JP2014011426A (en) * | 2012-07-03 | 2014-01-20 | Dainippon Screen Mfg Co Ltd | Substrate drying method and apparatus for drying substrate |
JP2014127640A (en) * | 2012-12-27 | 2014-07-07 | Toshiba Corp | Foreign matter removal device, foreign matter removal method, and manufacturing method for microstructure |
JP2015133444A (en) * | 2014-01-15 | 2015-07-23 | 株式会社東芝 | Semiconductor manufacturing apparatus and semiconductor device manufacturing method |
WO2017057623A1 (en) * | 2015-09-30 | 2017-04-06 | 東京エレクトロン株式会社 | Substrate processing device and substrate processing method |
JP2020170808A (en) * | 2019-04-04 | 2020-10-15 | 株式会社Screenホールディングス | Processing liquid generation device, substrate processing device, processing liquid generation method and substrate processing method |
-
2021
- 2021-04-28 JP JP2021075835A patent/JP2022170013A/en active Pending
-
2022
- 2022-04-13 WO PCT/JP2022/017689 patent/WO2022230669A1/en active Application Filing
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS649624A (en) * | 1987-07-02 | 1989-01-12 | Mitsubishi Electric Corp | Method of drying semiconductor device |
JP2002329700A (en) * | 2001-04-27 | 2002-11-15 | Sony Corp | Surface processing method |
JP2004311854A (en) * | 2003-04-10 | 2004-11-04 | Renesas Technology Corp | Cleaning method, method and device for cleaning semiconductor device |
JP2007273806A (en) * | 2006-03-31 | 2007-10-18 | Matsushita Electric Ind Co Ltd | Semiconductor substrate cleaning method and cleaning apparatus |
JP2009231354A (en) * | 2008-03-19 | 2009-10-08 | Fujifilm Corp | Cleaning liquid for semiconductor device and cleaning method |
JP2010056309A (en) * | 2008-08-28 | 2010-03-11 | Sokudo Co Ltd | Substrate processing apparatus, method for supplying gas-dissolved liquid and method for processing substrate |
JP2013042094A (en) * | 2011-08-19 | 2013-02-28 | Central Glass Co Ltd | Wafer cleaning method |
JP2014011426A (en) * | 2012-07-03 | 2014-01-20 | Dainippon Screen Mfg Co Ltd | Substrate drying method and apparatus for drying substrate |
JP2014127640A (en) * | 2012-12-27 | 2014-07-07 | Toshiba Corp | Foreign matter removal device, foreign matter removal method, and manufacturing method for microstructure |
JP2015133444A (en) * | 2014-01-15 | 2015-07-23 | 株式会社東芝 | Semiconductor manufacturing apparatus and semiconductor device manufacturing method |
WO2017057623A1 (en) * | 2015-09-30 | 2017-04-06 | 東京エレクトロン株式会社 | Substrate processing device and substrate processing method |
JP2020170808A (en) * | 2019-04-04 | 2020-10-15 | 株式会社Screenホールディングス | Processing liquid generation device, substrate processing device, processing liquid generation method and substrate processing method |
Also Published As
Publication number | Publication date |
---|---|
JP2022170013A (en) | 2022-11-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100580584B1 (en) | Method for cleaning a surface of a remote plasma generating tube and method and apparatus for processing a substrate using the same | |
KR20170017810A (en) | Substrate processing apparatus and substrate processing method | |
JP2004503099A (en) | Dual deaeration / cooling load lock cluster tool | |
US9236216B2 (en) | In-vacuum high speed pre-chill and post-heat stations | |
US9711324B2 (en) | Inert atmospheric pressure pre-chill and post-heat | |
US20030198021A1 (en) | Structure with heat dissipating device and method to produce a computer | |
WO2007097329A1 (en) | Film forming apparatus and method for manufacturing light emitting element | |
US8647442B2 (en) | Cleaning substrate and cleaning method | |
US20150200086A1 (en) | Semiconductor manufacturing apparatus and manufacturing method of semiconductor device | |
US20180240684A1 (en) | Substrate processing apparatus and substrate processing method | |
TW201506550A (en) | Method and apparatus for cleaning organic materials | |
WO2022230669A1 (en) | Substrate processing method and substrate processing device | |
JP4833088B2 (en) | High temperature reflow sputtering equipment | |
JPH09310173A (en) | Method for treating substrate after sputtering and sputtering device | |
JP4439827B2 (en) | Manufacturing apparatus and light emitting device manufacturing method | |
JP2022170681A (en) | Substrate processing method and processing liquid | |
JP5619028B2 (en) | Vacuum deposition apparatus and maintenance method thereof | |
JP4833014B2 (en) | High temperature reflow sputtering equipment | |
JP2006054282A (en) | Vacuum processing device and wafer temperature returning method | |
US20240290608A1 (en) | Substrate processing method and sublimation drying processing agent | |
TWI829142B (en) | Substrate treatment method and treatment liquid | |
WO2023068133A1 (en) | Substrate processing method and substrate processing device | |
WO2023047724A1 (en) | Substrate processing method, substrate processing apparatus, and processing liquid | |
WO2024176515A1 (en) | Substrate processing method, substrate processing apparatus, and processing liquid | |
CN117242550A (en) | Substrate processing method and processing liquid |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22795583 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22795583 Country of ref document: EP Kind code of ref document: A1 |