WO2022230650A1 - ニッケル粉及びニッケル粒子の製造方法 - Google Patents

ニッケル粉及びニッケル粒子の製造方法 Download PDF

Info

Publication number
WO2022230650A1
WO2022230650A1 PCT/JP2022/017518 JP2022017518W WO2022230650A1 WO 2022230650 A1 WO2022230650 A1 WO 2022230650A1 JP 2022017518 W JP2022017518 W JP 2022017518W WO 2022230650 A1 WO2022230650 A1 WO 2022230650A1
Authority
WO
WIPO (PCT)
Prior art keywords
nickel
less
nickel powder
particles
particle size
Prior art date
Application number
PCT/JP2022/017518
Other languages
English (en)
French (fr)
Inventor
光彦 西野
隆史 佐々木
仁彦 井手
Original Assignee
三井金属鉱業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井金属鉱業株式会社 filed Critical 三井金属鉱業株式会社
Priority to KR1020237030235A priority Critical patent/KR20240000452A/ko
Priority to JP2023511771A priority patent/JP7406047B2/ja
Priority to CN202280019284.1A priority patent/CN116981526A/zh
Publication of WO2022230650A1 publication Critical patent/WO2022230650A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/15Nickel or cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2304/00Physical aspects of the powder
    • B22F2304/05Submicron size particles
    • B22F2304/054Particle size between 1 and 100 nm

Definitions

  • the present invention relates to nickel powder, and the present invention relates to a method for producing nickel particles.
  • Nickel particles are generally used to form the internal electrodes of multilayer ceramic capacitors (MLCCs). With the miniaturization and increase in capacity of MLCCs, there is a demand for further miniaturization of nickel particles used for forming internal electrodes. From this point of view, Patent Document 1 proposes a nickel powder having a 50% number diameter of 0.09 ⁇ m or less. According to the document, this nickel powder is produced by a vapor phase reduction method in which nickel chloride gas and a reducing gas are brought into contact, or a spray pyrolysis method in which a pyrolytic nickel compound is sprayed and thermally decomposed.
  • the nickel powder described in Patent Document 1 contains fine nickel particles. However, since this nickel powder is produced by a vapor phase method, it is difficult to control the particle size, and as a result, the particle size distribution tends to be wide. Due to this, the nickel powder contains a relatively high proportion of coarse-grained nickel particles in addition to fine-grained nickel particles. The presence of coarse nickel particles may cause a short circuit between internal electrodes or a decrease in the withstand voltage of the MLCC.
  • an object of the present invention is to provide a nickel powder that has fine particles and a low content of coarse particles, and a method that can easily produce such nickel powder.
  • An object of the present invention is to provide a nickel powder in which the proportion of particles having a diameter of 1.5 times or more of D50 is 0.5% by number or less.
  • the present invention provides a suitable method for producing the nickel powder
  • FIG. 1(a) is a graph showing the measurement results of thermomechanical analysis of the nickel powder obtained in Example 2, and FIG. 1(b) shows the graph shown in FIG. 1(a) differentiated twice. It is a graph which shows a result.
  • FIG. 2(a) is a schematic diagram showing the production process of the nickel powder of the present invention
  • FIG. 2(b) is a schematic diagram showing the production process of the conventional nickel powder.
  • 3 is a scanning electron microscope image of the nickel powder obtained in Example 2.
  • FIG. 4 is a scanning electron microscope image of the nickel powder obtained in Comparative Example 2.
  • FIG. 1(a) is a graph showing the measurement results of thermomechanical analysis of the nickel powder obtained in Example 2
  • FIG. 1(b) shows the graph shown in FIG. 1(a) differentiated twice. It is a graph which shows a result.
  • FIG. 2(a) is a schematic diagram showing the production process of the nickel powder of the present invention
  • FIG. 2(b) is a schematic diagram showing the production process of the conventional
  • nickel powder that is an aggregate of fine nickel particles.
  • nickel powder may refer to either a powder that is an aggregate of nickel particles or individual nickel particles that make up the powder, depending on the context.
  • the nickel powder of the present invention is composed of fine nickel particles.
  • the nickel particles consist of elemental nickel and incidental impurities, or consist of a nickel-based alloy and incidental impurities.
  • the particle size of the nickel particles is measured by observing the nickel powder of the present invention with a scanning electron microscope (SEM). Specifically, the nickel particles forming the nickel powder are photographed with an SEM at a magnification of 50,000 times, and the area of the photographed nickel particles is determined. A circle equivalent diameter is calculated from the area. A particle size distribution is determined based on the calculated equivalent circle diameter. In the particle size distribution, the abscissa indicates the equivalent circle diameter, and the ordinate indicates the number frequency.
  • the number cumulative particle size at 50 % by number is defined as D50.
  • the value of the particle size D50 defined in this way is preferably between 50 nm and 200 nm. Since the particle size D50 of the nickel powder of the present invention is within this range, when the nickel powder of the present invention is used for various purposes, for example, as an internal electrode of an MLCC, a short circuit between the internal electrodes is less likely to occur. There is an advantage. From the viewpoint of making this advantage more remarkable, the particle diameter D50 of the nickel powder is more preferably 50 nm or more and 180 nm or less, further preferably 50 nm or more and 150 nm or less, and 50 nm or more and 90 nm or less. More preferred.
  • the equivalent circle diameter is obtained for 5000 or more nickel particles.
  • Image analysis particle size distribution measurement software Mac-View manufactured by Mountec Co., Ltd.
  • the minimum unit of nickel particles to be observed is determined by whether or not a particle interface recognized as an independent particle is observed by SEM. Therefore, even if an aggregate consisting of a plurality of particles is observed, if a particle interface is observed in the aggregate, the region defined by the particle interface is identified as one particle.
  • the nickel particles constituting the nickel powder are fine particles and that the abundance ratio of coarse particles is small.
  • the presence of coarse particles may cause a short circuit between the internal electrodes. This short circuit can be effectively prevented by reducing the proportion of coarse particles in the nickel powder.
  • the abundance ratio of particles having a particle diameter of 1.5 times or more of D50 (hereinafter also referred to as "coarse particle abundance ratio") is 0.5% by number or less. is preferable, 0.3% by number or less is more preferable, and 0.1% by number or less is preferable.
  • the nickel powder of the present invention be fine particles, have a low proportion of coarse particles, and have as uniform a particle size as possible.
  • the particle size distribution curve is sharp.
  • the sharpness of the particle size distribution curve can be evaluated by the coefficient of variation of particle size.
  • the coefficient of variation is a value defined by ( ⁇ /D 50 ) ⁇ 100 (%), where ⁇ (nm) is the standard deviation of the particle size in the particle size distribution.
  • the nickel powder of the present invention preferably has a coefficient of variation of 14% or less from the viewpoint of improving the surface smoothness of the internal electrodes of the MLCC formed from the nickel powder.
  • the coefficient of variation is more preferably 13% or less, and even more preferably 12% or less. The closer the coefficient of variation is to 0%, the more the surface smoothness of the internal electrodes is improved.
  • the nickel particles constituting the nickel powder have high crystallinity.
  • the high crystallinity of the nickel particles means that the nickel powder of the present invention is resistant to heat shrinkage at low temperatures. In other words, when the nickel powder of the present invention is subjected to the sintering process, the heat shrinkage end temperature rises.
  • the high end temperature of heat shrinkage due to sintering means that when manufacturing an MLCC using the nickel powder of the present invention, the end temperature of heat shrinkage of the nickel powder in the sintering step, which is one of the manufacturing steps, is the same as that of the dielectric powder. This is advantageous in that the temperature can be brought as close as possible to the sintering temperature.
  • Bringing the heat shrinkage end temperature of the nickel powder close to the sintering temperature of the dielectric powder means that the shrinkage degrees of the nickel powder and the dielectric powder are close to each other. Therefore, increasing the heat shrinkage end temperature of the nickel powder of the present invention is advantageous from the viewpoint of effectively preventing the occurrence of defects caused by the incompatibility of the degree of shrinkage between the nickel powder and the dielectric powder. be.
  • a method of evaluating the crystallinity of nickel particles by Cs/ D50 which is the ratio of the crystallite size Cs (nm) to the particle size D50 (nm), is often used in the technical field of metal powders.
  • the higher the Cs/ D50 value the higher the crystallinity of the nickel particles.
  • the nickel powder of the present invention preferably has a Cs/D 50 value of 0.3 or more, more preferably 0.34 or more, and even more preferably 0.38 or more. .
  • the larger the value of Cs /D 50 the higher the heat shrinkage end temperature of nickel powder.
  • the shrinkage end temperature can be made sufficiently high, and from this point of view, the value of Cs/ D50 is more preferably 0.55 or less, even more preferably 0.50 or less.
  • the value of the crystallite size Cs itself is preferably 15 nm or more and 70 nm or less, more preferably 18 nm or more and 70 nm or less, and more preferably 23 nm or more and 70 nm or less, from the viewpoint of sufficiently increasing the heat shrinkage end temperature of the nickel powder. is more preferable.
  • the crystallite size in the present specification is a value measured by the WPPF (whole powder pattern fitting) method. be.
  • the Scherrer method is known as a method for measuring the crystallite size. Therefore, in the present invention, the WPPF method, which is less likely to cause such problems, was adopted. The details of the method for measuring the crystallite size based on the WPPF method will be described in Examples described later.
  • the nickel powder of the present invention preferably has a high heat shrinkage end temperature during sintering.
  • the heat shrinkage end temperature is 650 ° C. or more and 1000 ° C. or less, so that the heat shrinkage end temperature of the nickel powder in the sintering step, which is one step of manufacturing the MLCC, is as close to the sintering temperature of the dielectric powder as possible. It is preferable from the viewpoint of bringing closer.
  • the heat shrinkage end temperature is preferably 680° C. or higher and 980° C. or lower, and more preferably 700° C. or higher and 980° C. or lower.
  • the thermal shrinkage end temperature of the nickel powder is measured by thermomechanical analysis (TMA).
  • TMA thermomechanical analysis
  • the TMA measurement conditions are 1 vol% hydrogen/99 vol% nitrogen atmosphere and a heating rate of 10°C/min.
  • FIG. 1(a) shows the TMA measurement results obtained for the nickel powder obtained in Example 2, which will be described later.
  • the peak top temperature of the upwardly convex peak is defined as the heat shrinkage end temperature.
  • FIG. 1(b) shows a graph obtained by differentiating the graph of FIG. 1(a) twice.
  • the temperature indicated by the arrow is the heat shrinkage end temperature.
  • the nickel powder of the present invention preferably has a high heat shrinkage end temperature and a low degree of heat shrinkage.
  • the low degree of thermal shrinkage of the nickel powder causes defects due to the incompatibility of the degree of shrinkage between the nickel powder and the dielectric powder in the sintering process, which is one process of manufacturing MLCCs.
  • the nickel powder used in the present invention preferably has a heat shrinkage at 900° C. of 30% or less, more preferably 28% or less, and even more preferably 25% or less. The closer the amount of heat shrinkage of the nickel powder is to zero, the better.
  • the thermal contraction amount of the nickel powder is measured by TMA in the same manner as the thermal contraction end temperature described above.
  • the rate of temperature increase is 10° C./min.
  • the amount of displacement (%) on the vertical axis of the graph obtained by TMA measurement is the amount of thermal shrinkage referred to in this specification.
  • the nickel particles that constitute it consist of a nickel element and unavoidable impurities, or consist of a nickel-based alloy and unavoidable impurities.
  • the amount of unavoidable impurities in the nickel particles is as small as possible, from the viewpoint of preventing troubles that may occur when producing MLCCs using the nickel powder of the present invention, This is preferable from the viewpoint of maintaining the quality of MLCC.
  • the amount of carbon contained in the nickel powder is as small as possible. Carbon tends to be mixed due to organic substances used in the production of the nickel powder of the present invention. Since this organic substance is relatively hydrophilic, when preparing a paste in the process of producing an MLCC electrode using the nickel powder of the present invention, the solvent used for the paste (this solvent is hydrophobic), Due to the low affinity with the organic matter (which is relatively hydrophilic as described above), properties of the paste, such as fluidity, may deteriorate. If the fluidity of the paste deteriorates, it causes the inconvenience that the surface of the sintered film formed from the paste becomes rough.
  • the nickel powder of the present invention it is preferable to treat the surface of the nickel particles with a hydrophobic organic substance after reducing the amount of organic-derived carbon mixed during production. If the hydrophobic organic substance is present on the surface of the nickel particles, the affinity between the solvent used in the paste and the hydrophobic organic substance present on the surface of the nickel particles during the preparation of the paste in the process of producing the electrode of the MLCC. Since it is higher, the properties of the paste, such as fluidity, may be improved. From the above viewpoints, in the nickel powder of the present invention, the carbon (C) element content is preferably 3% by mass or less, more preferably 2.5% by mass or less, and 2% by mass or less. More preferably.
  • the value of carbon element content/specific surface area is 0.01 g/(m 2 /g) or more and 0.35 g/(m 2 /g) or less. is preferably 0.03 g/(m 2 /g) or more and 0.30 g/(m 2 /g) or less, and 0.05 g/(m 2 /g) or more and 0.27 g/(m 2 /g) or less, more preferably 0.05 g/(m 2 /g) or more and 0.20 g/(m 2 /g) or less.
  • the amounts of alkali metal elements, halogen elements, and sulfur elements be as small as possible.
  • Alkali metal elements include, for example, sodium element and potassium element. If these elements are mixed into the MLCC, they may contribute to deterioration of the performance of the MLCC.
  • halogen elements include chlorine elements. Since halogen elements and sulfur elements are corrosive elements, the MLCC manufacturing apparatus may be corroded by these elements.
  • the sodium element content is preferably 50 ppm or less, more preferably 30 ppm or less, and even more preferably 10 ppm or less.
  • the content of potassium element is preferably 50 ppm or less, more preferably 30 ppm or less, and even more preferably 10 ppm or less.
  • the chlorine element content is preferably 500 ppm or less, more preferably 300 ppm or less, and even more preferably 50 ppm or less.
  • the elemental sulfur content is preferably 500 ppm or less, more preferably 300 ppm or less, and even more preferably 50 ppm or less.
  • the ppm referred to in this specification is based on mass.
  • the contents of sodium, potassium, and sulfur can be measured by ICP emission spectrometry using a solution obtained by dissolving nickel powder in an acid, for example. Chlorine can be measured by ion chromatography.
  • nickel powder is produced by a so-called polyol method.
  • the polyol method is a method in which a polyol is used as a solvent that also serves as a reducing agent, and the chemical species of nickel is present in the polyol and heated to cause a reduction reaction to generate nickel particles. .
  • nickel hydroxide is added to a mixed solution containing polyol, polyvinylpyrrolidone (hereinafter also referred to as “PVP”) and polyethyleneimine (hereinafter also referred to as “PEI”) to form a reaction solution.
  • PVP polyvinylpyrrolidone
  • PEI polyethyleneimine
  • the polyol contained in the reaction solution is used both as a solvent and as a reducing agent for nickel hydroxide.
  • polyols include ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, 1,2-propanediol, dipropylene glycol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, 2,3-butanediol, 1,5-pentanediol, polyethylene glycol and the like can be used.
  • These polyols can be used alone or in combination of two or more.
  • ethylene glycol is preferable because it has a high reduction performance due to a large ratio of hydroxy groups to its molecular weight, and it is liquid at room temperature and is excellent in handleability.
  • the amount of polyol may be appropriately adjusted according to the amount of nickel hydroxide in the reaction solution, so there is no need to set a particular limitation.
  • the concentration of the polyol in the reaction liquid within the range of 50% by mass or more and 99.8% by mass or less.
  • PVP is used as a dispersant for nickel hydroxide.
  • PVP is preferable because it has a remarkable effect as a dispersant and can sharpen the particle size distribution of the nickel particles generated by the reduction.
  • the molecular weight of these PVPs may be appropriately adjusted according to their water-solubility and dispersibility.
  • the amount of PVP in the reaction solution is preferably 0.01 parts by mass or more and 30 parts by mass or less per 100 parts by mass of nickel hydroxide converted to nickel. By setting the viscosity within this range, a sufficient dispersion effect can be exhibited without excessively increasing the viscosity of the reaction liquid.
  • PVP preferably has a number average molecular weight of 5,000 to 200,000, particularly 5,000 to 150,000, particularly 5,000 to 100,000, from the viewpoint of sufficiently uniform adsorption on the particle surface and suppression of aggregation.
  • PEI has the function of reducing the number of nickel ions in the reaction solution while nickel nuclei are being produced in the reaction solution, thereby preventing nucleation and nucleus growth from proceeding at the same time. This is because (a) PEI has an unshared electron pair that interacts with nickel ions, and is capable of forming a coordinate bond with nickel ions, and (b) PEI is the unshared electron pair. and (c) PEI has hydrogen bonding sites that can interact with the surface of nickel hydroxide present in the reaction solution in an undissolved state. is.
  • PEI in the reaction solution enables the nucleation of nickel and the growth of the generated nuclei to occur sequentially, as shown in FIG. 2(a). As a result, a fine nickel powder having a uniform particle size can be successfully obtained. In contrast, in the conventional production of nickel powder by reduction, as shown in FIG. Variation in diameter is likely to occur. From the above point of view, it is more advantageous to use a branched PEI than a straight chain PEI. From the same point of view, it is also preferable to use PEI having a number average molecular weight of 600 or more and 10,000 or less, particularly 800 or more and 5,000 or less, and particularly 1,000 or more and 3,000 or less.
  • the amount of PEI in the reaction solution is appropriately set according to the amount of PVP, provided that the ratio of PVP and PEI satisfies the above range.
  • the reaction solution can also contain a noble metal catalyst.
  • a noble metal catalyst for example, a noble metal compound such as a water-soluble salt of a noble metal can be used.
  • water-soluble salts of noble metals include water-soluble salts of palladium, silver, platinum, gold and the like.
  • the noble metal catalyst can be used by adding it in the form of the compound described above or in the form of an aqueous solution in which the compound is dissolved in water.
  • the amount of the noble metal catalyst contained in the reaction solution is 0.01 parts by mass or more and 5 parts by mass or less, particularly 0.01 parts by mass or more and 1 part by mass or less per 100 parts by mass of nickel hydroxide converted to nickel. is preferred.
  • the slurry containing each of the above components is heated while being stirred to reduce nickel hydroxide.
  • the heating temperature depends on the type of polyol used, but is preferably 150° C. or higher and 200° C. or lower, more preferably 170° C. or higher and 200° C. or lower, and still more preferably 190° C. or higher and 200° C. or lower under atmospheric pressure. can successfully reduce nickel hydroxide.
  • Reduction of nickel hydroxide produces nickel particles in the liquid.
  • decomposition of PVP and PEI may occur to produce hydrophilic organics.
  • this organic matter adheres to the surfaces of the nickel particles, the surfaces of the nickel particles become hydrophilic.
  • properties of the paste such as fluidity, may deteriorate.
  • nickel powder For the purpose of further reducing the amount of carbon contained in the nickel powder, it is preferable to treat the nickel powder after washing with water or the nickel powder that has not undergone washing with a basic aqueous solution. This treatment makes it possible to further remove the hydrophilic organic matter existing on the surfaces of the nickel particles.
  • basic aqueous solutions for treating nickel powder include aqueous solutions of alkali metal hydroxides, alkaline earth metal hydroxides, alkali metal carbonates, alkali metal bicarbonates, quaternary ammonium salts, and ammonia. mentioned.
  • aqueous solutions of sodium hydroxide, potassium hydroxide, tetramethylammonium hydroxide, ammonia, sodium carbonate, sodium hydrogen carbonate, potassium carbonate, potassium hydrogen carbonate, ammonium carbonate, ammonium hydrogen carbonate, etc. can be used.
  • These solutes of basic aqueous solution can be used individually or in combination of 2 or more types.
  • tetramethylammonium hydroxide, ammonia, ammonium carbonate, and ammonium hydrogen carbonate are preferable because they do not contain alkali metal elements.
  • the pH of the basic aqueous solution is preferably 7.5 or more and 14.0 or less, more preferably 9.0 or more and 14.0 or less.
  • the treatment with the basic aqueous solution is preferably carried out until the amount of carbon contained in the nickel powder after washing is 0.10 g/(m 2 /g) or less.
  • Nickel powder subjected to this treatment has a high affinity with the organic solvent contained in the paste when it is used to prepare a paste, so the characteristics of the paste, such as fluidity, are advantageous. There is Good fluidity of the paste is advantageous in that the surface of the sintered film formed from the paste can be made smooth.
  • Treatment with a hydrophobic organic substance is carried out to the extent that the amount of carbon contained in the treated nickel powder does not exceed the amount of carbon contained in the nickel powder immediately after synthesis (that is, before washing with water or before treatment with a basic aqueous solution). This is preferable from the viewpoint of preventing the hydrophobic organic matter excessively adsorbed on the particles from eluting into the paste.
  • hydrophobic organic matter examples include various fatty acids and aliphatic amines.
  • fatty acids and aliphatic amines it is preferable to use a saturated or unsaturated fatty acid or an aliphatic amine having from 6 to 18 carbon atoms, particularly from 10 to 18 carbon atoms, because a paste having good properties can be prepared.
  • fatty acids or aliphatic amines include benzoic acid, capric pentanoic acid, hexanoic acid, octanoic acid, nonanoic acid, decanoic acid, lauric acid, palmitic acid, oleic acid, stearic acid, pentylamine, hexyl amine, octylamine, decylamine, dodecylamine, laurylamine, oleylamine, stearylamine and the like.
  • sulfur-containing organic compounds such as thiols and mercaptans can also be used as hydrophobic organics.
  • decanethiol, dodecanethiol and stearyl mercaptan can be used.
  • a polymer containing a carboxyl group, a polymer containing an amino group, or the like can also be used as the hydrophobic organic substance.
  • Hydrophobic organic matter can be used individually by 1 type, or in combination of 2 or more types, respectively.
  • a commercially available product can also be used as the hydrophobic organic substance. Examples of such commercially available products include ESLEEM (registered trademark) manufactured by NOF Corporation.
  • the nickel powder produced by the above method is used in various fields, taking advantage of its fine and uniform particle size. It is particularly suitable for forming internal electrodes of MLCCs.
  • Example 1 445 g of ethylene glycol, 64 g of nickel hydroxide particles, 12 g of polyvinylpyrrolidone, 0.14 g of polyethyleneimine, and 0.06 ml of an aqueous palladium nitrate solution (concentration: 100 g/l) were added to a 500 ml beaker to prepare a slurry. .
  • the polyethylenimine was branched and had a number average molecular weight of 1,800.
  • the number average molecular weight of polyvinylpyrrolidone was 40,000.
  • the slurry was heated while being stirred, and a reduction reaction was carried out at 198° C. for 6 hours. After that, the heating was stopped to complete the reduction, and the mixture was naturally cooled to room temperature. In this way, a large number of nickel microparticles were produced.
  • Example 2 Nickel powder was obtained in the same manner as in Example 1, except that the amount of polyethyleneimine was changed to 0.2 g and the aqueous palladium nitrate solution was changed to 0.13 ml.
  • Nickel powder was obtained in the same manner as in Example 1, except that the amount of polyvinylpyrrolidone in Example 1 was changed to 14 g, the amount of polyethyleneimine to 0.28 g, and the amount of palladium nitrate aqueous solution to 0.18 ml.
  • Nickel powder was obtained in the same manner as in Example 1, except that 18 g of polyvinylpyrrolidone, 0.3 g of polyethyleneimine, and 0.8 ml of the palladium nitrate aqueous solution were used.
  • Example 5 A magnet was placed at the bottom of the beaker containing the nickel particle dispersion obtained by the reduction reaction of Example 1 to attract the nickel particles to the magnet. Under this condition, the supernatant of the dispersion was removed. After removing the magnet, 50 g of pure water was added and mixed, and the dispersion was stirred for 10 minutes. A magnet was again placed in the bottom of the beaker to attract the nickel particles to the magnet. Under this condition, the supernatant of the dispersion was removed. After removing the magnet, 50 g of a 5% aqueous ammonia solution was added and the dispersion was stirred for 10 minutes. A magnet was again placed in the bottom of the beaker to attract the nickel particles to the magnet.
  • Esleem registered trademark
  • C2093I manufactured by NOF Corporation
  • Example 6 Surface-treated nickel particles were obtained in the same manner as in Example 5, except that the nickel particle dispersion liquid obtained by the reduction reaction in Example 2 was used.
  • Example 7 Surface-treated nickel particles were obtained in the same manner as in Example 5, except that the nickel particle dispersion liquid obtained by the reduction reaction in Example 3 was used.
  • Example 8 Surface-treated nickel particles were obtained in the same manner as in Example 5, except that the nickel particle dispersion liquid obtained by the reduction reaction in Example 4 was used.
  • nickel powder was produced in an aqueous system. Specifically, 900 g of nickel sulfate hexahydrate, 35 g of citric acid, and 12.5 g of sodium phosphinate were dissolved in 1 L of pure water to obtain an aqueous solution. The obtained aqueous solution was added over 10 minutes to 760 g of an aqueous solution having a sodium hydroxide concentration of 25% and the temperature of the solution was maintained at 60° C. to precipitate nickel hydroxide. While maintaining the liquid temperature of this suspension at 80° C., 940 g of hydrazine monohydrate was added over 5 minutes to reduce nickel hydroxide to nickel to obtain nickel powder.
  • Example 2 In this comparative example, PEI was not used in Example 1. Further, a nickel powder was obtained in the same manner as in Example 1, except that the palladium nitrate aqueous solution was changed to 0.4 ml.
  • the crystallite size can be calculated using the WPPF method from the diffraction peak derived from nickel obtained by X-ray diffraction measurement. The conditions for the X-ray diffraction measurement will be described in detail in Examples described later.
  • the measurement holder was covered with the nickel powder to be measured, and smoothed with a glass plate so that the thickness of the nickel powder layer was 0.5 mm and the measurement surface was smooth.
  • analysis was performed using analysis software under the following conditions. The analysis was corrected using data obtained from lanthanum hexaboride powder (SRM660 series), a reference material provided by the National Institute of Standards and Technology (NIST). Crystallite size was calculated using the WPPF method.
  • SRM660 series lanthanum hexaboride powder
  • NIST National Institute of Standards and Technology
  • a solution was obtained by dissolving 1.00 g of nickel powder in 50 ml of a 15% nitric acid aqueous solution. This solution was introduced into an ICP emission spectrometer (PS3520VDDII manufactured by Hitachi High-Tech Science Co., Ltd.) to measure the contents of sodium, potassium and sulfur. Also, 1.00 g of nickel powder was added to 20.0 ml of pure water, and 2 ml of 2.5 g/l silver nitrate aqueous solution and 10 ml of 70% nitric acid aqueous solution were added and heated at 90°C.
  • ICP emission spectrometer PS3520VDDII manufactured by Hitachi High-Tech Science Co., Ltd.
  • This aqueous solution was allowed to cool to room temperature, and 1 ml of a 1.5 g/l potassium bromide aqueous solution was added. The resulting precipitate was suction filtered, washed with pure water, dissolved in 20 mL of a 10 g/l thiourea aqueous solution, and filtered. This solution was introduced into an ion chromatograph analyzer (930 CompactICFlex manufactured by Metrohm Japan Co., Ltd.) to measure the chlorine content. Furthermore, the amount of carbon contained in the nickel powder was measured by the following method before washing with water (C1), after treatment with a basic aqueous solution (C2), and after surface treatment (C3).
  • a carbon/sulfur analyzer (CS844 manufactured by LECO Japan LLC) was used. 0.50 g of nickel powder of Examples and Comparative Examples was placed in a magnetic crucible and measured. Oxygen gas (purity: 99.5%) was used as the carrier gas. Analysis time was 40 seconds.
  • the specific surface area was measured by the nitrogen adsorption method using "Macsorb” manufactured by Mountec Co., Ltd. based on the BET method. The amount of powder measured was 0.2 g. Preliminary degassing conditions were 80° C. for 30 minutes under vacuum.
  • EXSTAR 6000 manufactured by Seiko Instruments Inc. was used as a TMA measuring device. 500 mg of nickel powder was placed in a stainless steel cup of ⁇ 5.0 mm and pressed at 1.0 MPa to produce pellets. The obtained pellet was used as a sample to be measured, and set in a measuring device. The sample was heated at 10° C./min in a 1 vol % hydrogen/99 vol % nitrogen atmosphere. Measurement was started from room temperature (25° C.), and a graph showing the relationship between temperature and displacement (%) was obtained.
  • the wet thickness of the coating film was 35 ⁇ m.
  • This coating film was sintered at 350° C. for 10 minutes in a nitrogen atmosphere to obtain a sintered film.
  • the surface roughness Rz of the obtained sintered film was measured using SURFCOM 130A.
  • the measurement conditions were an evaluation length of 6.0 mm and a measurement speed of 0.6 mm/s.
  • the nickel powder obtained in each example has a high heat shrinkage end temperature and a small surface roughness Rz of the sintered film.
  • the nickel powder obtained in Comparative Example 1 has a low heat shrinkage end temperature and a large surface roughness Rz of the sintered film.
  • the nickel powder obtained in Comparative Example 2 had a high heat shrinkage end temperature, the surface roughness Rz of the sintered film was large due to the presence of many coarse particles.
  • a nickel powder that has fine grains and a low content of coarse grains. Therefore, this nickel powder is suitably used, for example, as a material for forming internal electrodes of MLCCs. Moreover, according to the present invention, such nickel powder can be easily produced.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

本発明のニッケル粉は、走査型電子顕微鏡による測定から算出された円相当直径に基づく粒度分布において、累積個数50個数%における個数累積粒径をD50としたとき、D50が50nm以上200nm以下であり、且つD50の1.5倍以上の粒径を有する粒子の存在割合が0.5個数%以下である。前記粒度分布における粒径の標準偏差をσ(nm)としたとき、(σ/D50)×100(%)の値が14%以下であることが好適である。WPPF法によって測定された結晶子サイズをCsとしたとき、Cs/D50の値が0.3以上0.6以下であることも好適である。

Description

ニッケル粉及びニッケル粒子の製造方法
 本発明はニッケル粉に関する、また本発明はニッケル粒子の製造方法に関する。
 積層セラミックコンデンサ(MLCC)の内部電極の形成には一般にニッケル粒子が用いられる。MLCCの小型化及び高容量化に伴い、内部電極の形成に用いられるニッケル粒子には一層の微粒化が求められている。この観点から、特許文献1では個数50%径が0.09μm以下であるニッケル粉末が提案されている。同文献によれば、このニッケル粉末は、塩化ニッケルガスと還元性ガスとを接触させる気相還元法や、熱分解性のニッケル化合物を噴霧して熱分解する噴霧熱分解法によって製造される。
国際公開第2015/156080号パンフレット
 特許文献1に記載のニッケル粉末には微粒のニッケル粒子が含まれている。しかし、このニッケル粉末は気相法によって製造されるものであることから粒径の制御が難しく、その結果、粒度分布が広くなりがちである。そのことに起因して、このニッケル粉末は、微粒のニッケル粒子に加えて粗粒のニッケル粒子がある程度の高い割合で含まれている。粗粒のニッケル粒子の存在は、内部電極間の短絡やMLCCの耐電圧の低下の一因となる場合がある。
 したがって本発明の課題は、微粒であり且つ粗粒の含有割合が少ないニッケル粉及びそのようなニッケル粉を容易に製造し得る方法を提供することにある。
 本発明は、走査型電子顕微鏡による測定から算出された円相当直径に基づく粒度分布において、累積個数50個数%における個数累積粒径をD50としたとき、
 D50が50nm以上200nm以下であり、
 D50の1.5倍以上の粒径を有する粒子の存在割合が0.5個数%以下である、ニッケル粉を提供するものである。
 また本発明は、前記のニッケル粉の好適な製造方法として、
 水酸化ニッケル粒子、ポリオール、ポリビニルピロリドン及びポリエチレンイミンを含む液を加熱してニッケル粒子を製造する方法であって、
 1質量部のポリエチレンイミンに対して、ポリビニルピロリドンを30質量部以上200質量部以下用いる、ニッケル粒子の製造方法を提供するものである。
図1(a)は、実施例2で得られたニッケル粉についての熱機械分析の測定結果を示すグラフであり、図1(b)は、図1(a)に示すグラフを2回微分した結果を示すグラフである。 図2(a)は、本発明のニッケル粉の生成過程を示す模式図であり、図2(b)は、従来のニッケル粉の生成過程を示す模式図である。 図3は、実施例2で得られたニッケル粉の走査型電子顕微鏡像である。 図4は、比較例2で得られたニッケル粉の走査型電子顕微鏡像である。
 以下本発明を、その好ましい実施形態に基づき説明する。本発明は微粒のニッケル粒子の集合体であるニッケル粉に関するものである。以下の説明において「ニッケル粉」というときには、文脈に応じ、ニッケル粒子の集合体である粉末を指す場合と、該粉末を構成する個々のニッケル粒子を指す場合とがある。
 上述のとおり、本発明のニッケル粉は、微粒のニッケル粒子から構成されている。ニッケル粒子は、ニッケル元素及び不可避不純物からなるか、又はニッケル基合金及び不可避不純物からなる。ニッケル粒子の粒径は、本発明のニッケル粉を走査型電子顕微鏡(SEM)で観察して測定される。詳細には、ニッケル粉を構成するニッケル粒子をSEMによって拡大倍率50000倍で撮影し、撮影されたニッケル粒子の面積を求める。その面積から円相当直径を算出する。算出された円相当直径に基づき粒度分布を求める。粒度分布は、グラフの横軸に円相当直径をとり、縦軸に個数頻度をとる。このようにして得られた粒度分布曲線において、累積個数50個数%における個数累積粒径をD50と定義する。このように定義された粒径D50の値は50nm以上200nm以下であることが好ましい。本発明のニッケル粉の粒径D50がこの範囲内であることによって、本発明のニッケル粉を各種の用途、例えばMLCCの内部電極として用いた場合に、該内部電極間の短絡が起こりづらくなるという利点がある。この利点を一層顕著なものとする観点から、ニッケル粉の粒径D50は50nm以上180nm以下であることがより好ましく、50nm以上150nm以下であることが更に好ましく、50nm以上90nm以下であることが一層好ましい。
 上述した粒度分布曲線を得るに際しては、5000個以上のニッケル粒子について円相当直径を求める。円相当直径の算出には、画像解析粒度分布測定ソフトウェア(株式会社マウンテック社製Mac-View)を用いる。観察対象とするニッケル粒子の最小単位は、SEMによって、独立した一つの粒子として認められる粒子界面が観察されるか否かで判断する。したがって、複数個の粒子からなる凝集塊が観察されたとしても、該凝集塊に粒子界面が観察される場合は、該粒子界面によって画定される領域が一つの粒子であると認定する。
 本発明のニッケル粉は、これを構成するニッケル粒子が微粒であることに加えて、粗大粒子の存在割合が小さいことが好ましい。粗大粒子の存在は、本発明のニッケル粉を例えばMLCCの内部電極に用いた場合に、該内部電極間の短絡の一因となることがある。ニッケル粉中の粗大粒子の存在割合を低減することで、この短絡を効果的に防止することができる。この観点から、本発明のニッケル粉は、D50の1.5倍以上の粒径を有する粒子の存在割合(以下「粗大粒子存在割合」ともいう。)が0.5個数%以下であることが好ましく、0.3個数%以下であることが更に好ましく、0.1個数%以下であることが好ましい。
 粗大粒子存在割合は0%に近ければ近いほど、内部電極間の短絡発生の防止に有効であるが、0.01%程度に粗大粒子存在割合が低ければ、内部電極間の短絡発生を効果的に防止できる。
 粗大粒子の尺度として、D50の1.5倍以上の粒径を有する粒子を選定した理由は、D50の1.5倍以上の粒径では、導電膜を形成した際に導電膜の表面が粗くなる一因となり、そのことがMLCCの内部電極間の短絡発生とに極めて深く関与していることを本発明者が見出したことによるものである。
 本発明のニッケル粉は、微粒であり、粗大粒子の存在割合が低いことに加えて、粒径が可能な限り均一であることが好ましい。換言すれば粒度分布曲線がシャープであることが好ましい。粒度分布曲線のシャープさは、粒径の変動係数によって評価できる。変動係数は、粒度分布における粒径の標準偏差をσ(nm)としたとき、(σ/D50)×100(%)で定義される値である。本発明のニッケル粉は、この変動係数の値が14%以下であることが、該ニッケル粉から形成されるMLCCの内部電極の表面平滑性を向上させる観点から好ましい。内部電極の表面平滑性を一層向上させる観点から、変動係数は13%以下であることが更に好ましく、12%以下であることが一層好ましい。
 変動係数は0%に近ければ近いほど、内部電極の表面平滑性の一層に寄与するが、5%程度に変動係数が低ければ、十分に満足すべき程度に内部電極の表面を平滑にできる。
 本発明のニッケル粉においては、これを構成するニッケル粒子の結晶性が高いことが好ましい。ニッケル粒子の結晶性が高いことは、本発明のニッケル粉が低温で熱収縮しづらいことを意味する。換言すれば、本発明のニッケル粉を焼結工程に付した場合に熱収縮終了温度が上昇することを意味する。焼結による熱収縮終了温度が高いことは、本発明のニッケル粉を用いてMLCCを製造する場合に、製造の一工程である焼結工程におけるニッケル粉の熱収縮終了温度を、誘電体粉の焼結温度に極力近づけることができる点から有利である。ニッケル粉の熱収縮終了温度と、誘電体粉の焼結温度とを近接させることは、ニッケル粉と誘電体粉との収縮度合いが近接することを意味する。したがって、本発明のニッケル粉の熱収縮終了温度が上昇することは、ニッケル粉と誘電体粉との間での収縮度合いの不適合に起因する欠陥の発生を効果的に防止し得る観点から有利である。
 ニッケル粒子の結晶性は、粒径D50(nm)に対する結晶子サイズCs(nm)の比率であるCs/D50で評価する手法が、金属粉の技術分野においてしばしば用いられる。Cs/D50の値が大きいほど、ニッケル粒子はその結晶性が高いと評価できる。この観点から、本発明のニッケル粉においては、Cs/D50の値が0.3以上であることが好ましく、0.34以上であることが更に好ましく、0.38以上であることが一層好ましい。
 Cs/D50はその値が大きいほどニッケル粉の熱収縮終了温度の上昇に寄与するところ、本発明においては、Cs/D50の値が好ましくは0.6以下であれば、ニッケル粉の熱収縮終了温度を十分に高くすることが可能であり、この観点からCs/D50の値は0.55以下であることが更に好ましく、0.50以下であることが一層好ましい。
 結晶子サイズCsそのものの値については、ニッケル粉の熱収縮終了温度を十分に高くする観点から、15nm以上70nm以下であることが好ましく、18nm以上70nm以下であることが更に好ましく、23nm以上70nm以下であることが一層好ましい。
 結晶子サイズの測定方法としては、金属粉の技術分野において様々なものが知られているところ、本明細書における結晶子サイズとはWPPF(whole powder pattern fitting)法によって測定された値のことである。結晶子サイズの測定方法としては、WPPF法の他にシェラー法が知られているところ、結晶の歪みの程度が大きい場合には、シェラー法に基づき求められた結晶子サイズの値は信頼性に欠けるものとなることから、そのようなおそれが少ないWPPF法を本発明では採用した。
 WPPF法に基づく結晶子サイズの測定方法の詳細については後述する実施例において説明する。
 上述のとおり、本発明のニッケル粉は、焼結時の熱収縮終了温度が高いことが好ましい。詳細には、熱収縮終了温度が650℃以上1000℃以下であることが、MLCCの製造の一工程である焼結工程におけるニッケル粉の熱収縮終了温度を、誘電体粉の焼結温度に極力近づける観点から好ましい。この観点から、熱収縮終了温度は680℃以上980℃以下であることが好ましく、700℃以上980℃以下であることが一層好ましい。
 ニッケル粉の熱収縮終了温度は、熱機械分析(TMA)によって測定する、TMAの測定条件は、1体積%水素/99体積%窒素雰囲気、昇温速度10℃/minとする。図1(a)には、後述する実施例2で得られたニッケル粉について得られたTMAの測定結果が示されている。
 TMAによって測定された温度と変位量との関係のグラフを2回微分して得られるグラフにおいて、上に凸のピークにおけるピークトップの温度を熱収縮終了温度と定義する。図1(b)には、図1(a)のグラフを2回微分して得られたグラフが示されている。図1(b)において、矢印で示される温度が、熱収縮終了温度である。2回微分のグラフに2以上のピークが観察される場合には、最も高温側に観察されるピークに着目し、そのピークにおけるピークトップの温度を熱収縮終了温度とする。
 本発明のニッケル粉は、熱収縮終了温度が高いことに加えて、熱収縮の程度が低いことも好ましい。ニッケル粉の熱収縮の程度が低いことは、上述のとおり、MLCCの製造の一工程である焼結工程において、ニッケル粉と誘電体粉との間での収縮度合いの不適合に起因する欠陥の発生を効果的に防止し得る観点から有利である。この観点から、本発明にニッケル粉は、900℃における熱収縮量が30%以下であることが好ましく、28%以下であることが更に好ましく、25%以下であることが一層好ましい。ニッケル粉の熱収縮量は、ゼロに近ければ近いほど好ましい。
 ニッケル粉の熱収縮量は、上述した熱収縮終了温度と同様に、TMAによって測定する、TMAの測定雰囲気は、1体積%水素/99体積%窒素雰囲気とする。昇温速度は10℃/minとする。TMA測定によって得られるグラフの縦軸である変位量(%)が、本明細書にいう熱収縮量のことである。
 本発明のニッケル粉は、これを構成するニッケル粒子が、ニッケル元素及び不可避不純物からなるか、又はニッケル基合金及び不可避不純物からなる。ニッケル粒子がいずれの場合であっても、不可避不純物の量が極力少ないことが、本発明のニッケル粉を用いてMLCCを製造するときに発生する可能性のあるトラブルを未然に防止する観点や、MLCCの品質を維持する観点から好ましい。
 本発明のニッケル粉においては、該ニッケル粉に含まれる炭素の量が極力少ないことが好ましい。炭素は、本発明のニッケル粉の製造時に使用される有機物に由来して混入しやすい。この有機物は比較的親水性であることから、本発明のニッケル粉を用いてMLCCの電極を作製する工程におけるペースト調製時に、該ペーストに用いられる溶媒(この溶媒は疎水性である。)と、前記有機物(上述のとおり比較的親水性である。)との親和性の低さに起因して、該ペーストの特性、例えば流動性が悪化する場合がある。ペーストの流動性が悪化すると、該ペーストから形成された焼結膜の表面が粗くなってしまうという不都合が生じる原因となる。
 また、本発明のニッケル粉においては、製造時に混入する有機物由来の炭素の量を低減させた後に、ニッケル粒子の表面を疎水性有機物で処理をすることが好ましい。疎水性有機物がニッケル粒子の表面に存在していると、MLCCの電極を作製する工程におけるペースト調製時に、該ペーストに用いられる溶媒と、ニッケル粒子の表面に存在する疎水性有機物との親和性が高くなることから、ペーストの特性、例えば流動性が良好になる場合がある。
 以上の観点から、本発明のニッケル粉においては、炭素(C)元素の含有量が3質量%以下であることが好ましく、2.5質量%以下であることが更に好ましく、2質量%以下であることが一層好ましい。
 同様の観点から、本発明のニッケル粉においては、炭素元素の含有量/比表面積の値が、0.01g/(m/g)以上0.35g/(m/g)以下であることが好ましく、0.03g/(m/g)以上0.30g/(m/g)以下であることが更に好ましく、0.05g/(m/g)以上0.27g/(m/g)以下であることが一層好ましく、0.05g/(m/g)以上0.20g/(m/g)以下であることが一層好ましい。
 本発明のニッケル粉においては、上述したとおり、炭素の量が極力少ないことに加えて、アルカリ金属元素や、ハロゲン元素、硫黄元素の量が極力少ないことも好ましい。
 アルカリ金属元素としては例えばナトリウム元素やカリウム元素が挙げられる。これらの元素がMLCCに混入するとMLCCの性能低下の一因となることがある。
 ハロゲン元素としては例えば塩素元素などが挙げられる。ハロゲン元素や硫黄元素は、腐食性の元素であることから、MLCCの製造装置が、これらの元素によって腐食されるおそれがある。
 以上の観点から、本発明のニッケル粉においては、ナトリウム元素の含有量が50ppm以下であることが好ましく、30ppm以下であることが更に好ましく、10ppm以下であることが一層好ましい。
 カリウム元素の含有量については、50ppm以下であることが好ましく、30ppm以下であることが更に好ましく、10ppm以下であることが一層好ましい。
 塩素元素の含有量については、500ppm以下であることが好ましく、300ppm以下であることが更に好ましく、50ppm以下であることが一層好ましい。
 硫黄元素の含有量については、500ppm以下であることが好ましく、300ppm以下であることが更に好ましく、50ppm以下であることが一層好ましい。
 なお本明細書にいうppmは質量基準である。ナトリウム、カリウム、硫黄の含有量は、ニッケル粉を例えば酸で溶解した溶解液を対象としたICP発光分光分析法によって測定することができる。塩素は、イオンクロマトグラフ法によって測定することができる。
 次に、本発明のニッケル粉の好ましい製造方法について説明する。本製造方法においては、いわゆるポリオール法によってニッケル粉を製造する。ポリオール法とは、還元剤を兼ねた溶媒としてポリオールを用い、ニッケルの化学種をポリオール中に存在させた状態下に加熱を行うことで還元反応を生じさせて、ニッケル粒子を生成させる方法である。
 本製造方法においては、ニッケル粒子を生成させるためのニッケルの化学種として水酸化ニッケルを用いることが、目的とするニッケル粉を首尾よく得られる観点から好ましい。水酸化ニッケルは、ポリオール、ポリビニルピロリドン(以下「PVP」ともいう。)及びポリエチレンイミン(以下「PEI」ともいう。)を含む混合液に添加されて反応液となされる。
 反応液に含まれるポリオールは、上述のとおり、溶媒として用いられ且つ水酸化ニッケルの還元剤としても用いられる。
 ポリオールとしては、例えばエチレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、1,2-プロパンジオール、ジプロピレングリコール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、2,3-ブタンジオール1,5-ペンタンジオール及びポリエチレングリコール等を用いることができる。これらのポリオールは単独で又は2種以上を組み合わせて用いることができる。これらのポリオールのうちエチレングリコールは、分子量に対してヒドロキシ基が占める割合が大きいために還元性能が高く、また常温で液状であり取り扱い性に優れることから好ましい。
 ポリオールの使用量は、これを還元剤という観点で考えれば、反応液中の水酸化ニッケルの量に応じて適宜調整されればよいので、特段の限定を設ける必要性はない。一方、溶媒として機能させようとする場合には、反応液中のポリオールの濃度に応じて反応液の性状が変化するので、ある一定の適正な濃度範囲が存在する。この観点から反応液中のポリオールの濃度は50質量%以上99.8質量%以下の範囲に設定することが好ましい。
 PVPは、水酸化ニッケルの分散剤として用いられる。PVPは分散剤としての効果が顕著であり、還元で生じたニッケル粒子の粒度分布をシャープにできるので好ましい。これらのPVPの分子量は、その水溶性の程度や分散能に応じて適切に調整すればよい。反応液中におけるPVPの量は、水酸化ニッケルをニッケルに換算した100質量部に対して0.01質量部以上30質量部以下とすることが好ましい。この範囲に設定することで、反応液の粘度を過度に高くすることなく、分散効果を十分に発現させることができる。また、PVPはその数平均分子量が5000以上200000以下、特に5000以上150000以下、とりわけ5000以上100000以下であることが、粒子表面に十分に均一に吸着し、凝集を抑制できる点から好ましい。
 PEIは、反応液中にニッケルの核が生成している間、反応液中のニッケルイオンの数を減少させて、核生成と核成長とが同時に進行しないようにする働きを有する。この理由は、(a)PEIはニッケルイオンに対して相互作用を有する非共有電子対を有しており、ニッケルイオンと配位結合が可能であること、(b)PEIは前記非共有電子対を多量に有していること、及び(c)PEIは、反応液中に未溶解状態で存在している水酸化ニッケルの表面と相互作用が可能な水素結合部位を有していることによるものである。
 PEIが反応液中に存在していることによって、図2(a)に示すとおり、ニッケルの核生成と、生成した核の成長とを順次行うことが可能になる。その結果、微粒で且つ均一な粒径を有するニッケル粉が首尾よく得られる。このこととは対照的に、還元による従来のニッケル粉の製造においては、図2(b)に示すとおり、核生成と核成長とが同時に生じるので、粗大粒子が生成しやすく、その上、粒径にばらつきが生じやすい。
 以上の観点から、PEIとして、直鎖状のものを用いるよりも、分岐鎖状のものを用いることが有利である。同様の観点から、数平均分子量が600以上10000以下、特に800以上5000以下、とりわけ1000以上3000以下であるPEIを用いることも好ましい。
 特に本製造方法においては、反応液に含まれるPVPとPEIとの比率を特定の範囲に設定することで、図2(a)に示すとおり、ニッケルの核生成と、核成長とを順次行うことが確実になる。詳細には、1質量部のPEIに対して、PVPを30質量部以上200質量部以下用いることが好ましく、40質量部以上150質量部以下用いることが更に好ましく、50質量部以上130質量部以下用いることが一層好ましい。
 反応液中のPEIの量は、PVPとPEIとの比率が上述の範囲を満たすことを条件として、PVPの量に応じて適切に設定される。
 反応液には貴金属触媒を含有させることもできる。これによって、還元の初期段階において貴金属の微細な核粒子が生成し、その核粒子を起点としてニッケルが円滑に還元するようになる。貴金属触媒としては、例えば貴金属の水溶性塩等の貴金属化合物を用いることができる。貴金属の水溶性塩の例としては、パラジウム、銀、白金、金等の水溶性塩が挙げられる。貴金属としてパラジウムを用いる場合には、例えば塩化パラジウム、硝酸パラジウム、酢酸パラジウム、塩化アンモニウムパラジウム等を用いることができる。銀を用いる場合には、例えば硝酸銀、乳酸銀、酸化銀、硫酸銀、シクロヘキサン酸銀、酢酸銀等を用いることができる。白金を用いる場合には、例えば塩化白金酸、塩化白金酸カリウム、塩化白金酸ナトリウム等を用いることができる。金を用いる場合には、例えば塩化金酸、塩化金酸ナトリウム等を用いることができる。これらのうち、硝酸パラジウム、酢酸パラジウム、硝酸銀及び酢酸銀は、安価で経済性がよいので好ましく用いられる。貴金属触媒は、前記の化合物の形態で又は該化合物を水に溶解させた水溶液の形態で添加して用いることができる。反応液に含有させる貴金属触媒の量は、水酸化ニッケルをニッケルに換算した100質量部に対して0.01質量部以上5質量部以下、特に0.01質量部以上1質量部以下であることが好ましい。
 以上の各成分を含むスラリーを撹拌しながら加熱して、水酸化ニッケルの還元を行う。加熱温度は、使用するポリオールの種類にもよるが、大気圧下において好ましくは150℃以上200℃以下、更に好ましくは170℃以上200℃以下、一層好ましくは190℃以上200℃以下で加熱することによって、水酸化ニッケルの還元を首尾よく行うことができる。
 水酸化ニッケルの還元によって液中にニッケル粒子が生成する。還元の副反応として、PVP及びPEIの分解が生じて親水性の有機物が生成することがある。この有機物がニッケル粒子の表面に付着すると、該ニッケル粒子の表面は親水性となる。表面が親水性であるニッケル粒子からなるニッケル粉を用いてペーストを調製すると、先に述べたとおり、該ペーストに用いられる溶媒(この溶媒は疎水性である。)と、前記有機物(上述のとおり親水性である。)との親和性の低さに起因して、該ペーストの特性、例えば流動性が悪化する場合がある。この不都合が生じることを防止することを目的として、生成したニッケル粒子を十分に水洗することが望ましい。水洗は、水洗後のニッケル粉に含まれる炭素の量が、0.25g/(m/g)以下となるまで行うことが好ましい。
 ニッケル粉に含まれる炭素の量を更に低減させることを目的として、水洗後のニッケル粉、又は洗浄を経ていないニッケル粉を塩基性水溶液で処理することが好ましい。この処理によって、ニッケル粒子の表面に存在している親水性の有機物を一層除去することが可能になる。ニッケル粉を処理するための塩基性水溶液としては、例えばアルカリ金属水酸化物、アルカリ土類基金属水酸化物、アルカリ金属炭酸塩、アルカリ金属重炭酸塩、第四級アンモニウム塩、アンモニアの水溶液が挙げられる。具体的には、例えば水酸化ナトリウム、水酸化カリウム、水酸化テトラメチルアンモニウム、アンモニア、炭酸ナトリウム、炭酸水素ナトリウム、炭酸カリウム、炭酸水素カリウム、炭酸アンモニウム、炭酸水素アンモニウム等の水溶液を用いることができる。これらの塩基性水溶液の溶質は単独で又は2種以上を組み合わせて用いることができる。これらの塩基性水溶液の溶質のうち水酸化テトラメチルアンモニウム、アンモニア、炭酸アンモニウム、炭酸水素アンモニウムはアルカリ金属元素を含まないことから好ましい。
 塩基性水溶液のpHは好ましくは7.5以上14.0以下であり、更に好ましく9.0以上14.0以下である。塩基性水溶液による処理は、水洗後のニッケル粉に含まれる炭素の量が、0.10g/(m/g)以下となるまで行うことが好ましい。
 このようにして得られたニッケル粉に対して、疎水性有機物による処理を施すことが好ましい。この処理を施したニッケル粉は、これを用いてペーストを調製するときに、該ペーストに含まれる有機溶媒との親和性が高いことから、該ペーストの特性、例えば流動性が良好になるという利点がある。ペーストの流動性が良好になることは、該ペーストから形成された焼結膜の表面を平滑にできる点から有利である。疎水性有機物による処理は、該処理後のニッケル粉に含まれる炭素の量が、合成直後のニッケル粉(すなわち水洗前又は塩基性水溶液による処理前)に含まれる炭素の量を上回らない限度で行うことが、粒子に余剰に吸着した該疎水性有機物がペースト中へ溶出することを防止する観点から好ましい。
 前記疎水性有機物としては、各種の脂肪酸や脂肪族アミンが挙げられる。特に炭素数6以上18以下、とりわけ炭素数10以上18以下である飽和又は不飽和脂肪酸あるいは脂肪族アミンを用いることが、良好な特性を有するペーストを調製し得る点から好ましい。そのような脂肪酸あるいは脂肪族アミンの具体例としては、安息香酸、カプリン酸ペンタン酸、ヘキサン酸、オクタン酸、ノナン酸、デカン酸、ラウリン酸、パルミチン酸、オレイン酸、ステアリン酸、ペンチルアミン、ヘキシルアミン、オクチルアミン、デシルアミン、ドデシルアミン、ラウリルアミン、オレイルアミン、ステアリルアミンなどが挙げられる。
 脂肪酸及び脂肪族アミン以外に、チオール及びメルカプタンなどの硫黄含有有機化合物も、疎水性有機物として用いることができる。例えばデカンチオール、ドデカンチオール及びステアリルメルカプタンなどを用いることができる。
 更に、カルボキシル基を含む高分子及びアミノ基を含む高分子等を、疎水性有機物として用いることもできる。
 疎水性有機物は、それぞれ1種を単独で、又は2種以上を組み合わせて用いることができる。
 前記疎水性有機物として市販品も用いることができる。そのような市販品としては、例えば日油株式会社のエスリーム(登録商標)などが挙げられる。
 以上の方法で製造されたニッケル粉は、微粒且つ均一な粒径という特徴を活かして様々な分野に用いられる。特にMLCCの内部電極の形成に好適に用いられる。
 以下、実施例により本発明を更に詳細に説明する。しかしながら本発明の範囲は、かかる実施例に制限されない。特に断らない限り、「%」は「質量%」を意味する。
  〔実施例1〕
 500mlのビーカーに、445gのエチレングリコール、64gの水酸化ニッケル粒子、12gのポリビニルピロリドン、0.14gのポリエチレンイミン、及び0.06mlの硝酸パラジウム水溶液(濃度:100g/l)を加えスラリーを調製した。ポリエチレンイミンは分岐鎖状のものであり、数平均分子量は1800であった。ポリビニルピロリドンの数平均分子量は40000であった。スラリーを撹拌しながら加熱し、198℃で6時間還元反応を行った。その後、加熱を停止して還元を終了させ、室温まで自然放冷した。このようにして、多数のニッケル微粒子を生成させた。
  〔実施例2〕
 実施例1において、ポリエチレンイミンを0.2g、硝酸パラジウム水溶液を0.13mlに変更した以外は、実施例1と同様にしてニッケル粉を得た。
  〔実施例3〕
 実施例1において、ポリビニルピロリドンを14g、ポリエチレンイミンを0.28g、硝酸パラジウム水溶液を0.18mlに変更した以外は、実施例1と同様にしてニッケル粉を得た。
  〔実施例4〕
 実施例1において、ポリビニルピロリドンを18g、ポリエチレンイミンを0.3g、硝酸パラジウム水溶液を0.8mlに変更した以外は、実施例1と同様にしてニッケル粉を得た。
  〔実施例5〕
 実施例1の還元反応によって得られたニッケル粒子分散液を含むビーカーの底に磁石を配置してニッケル粒子を磁石に引き寄せた。この状態下に、前記分散液の上澄みを除去した。
 磁石を取り除いた後、純水50gを加えて混合して分散液を10分撹拌した。磁石を再びビーカーの底に配置してニッケル粒子を磁石に引き寄せた。この状態下に、分散液の上澄みを除去した。
 磁石を取り除いた後、5%アンモニア水溶液50gを添加して分散液を10分撹拌した。磁石を再びビーカーの底に配置してニッケル粒子を磁石に引き寄せた。この状態下に、分散液の上澄みを除去した。
 磁石を取り除いた後、純水50gを加えて混合して分散液を10分撹拌した。磁石を再びビーカーの底に配置してニッケル粒子を磁石に引き寄せた。この状態下に、分散液の上澄みを除去することで、残存するアンモニアを除去した。
 次いで、メタノール50gを加えて10分撹拌し、上澄みの除去を磁石によって3回繰り返して溶媒をメタノールに置換した。
 0.8gのエスリーム(登録商標)C2093I(日油株式会社製)を5gのメタノールに溶解した液を、ニッケル粒子の分散液に加えて60分撹拌した。その後、磁石を用いて上澄みを除去して、表面処理されたニッケル粒子を得た。
  〔実施例6〕
 実施例2の還元反応によって得られたニッケル粒子分散液を用いた以外は実施例5と同様の操作を行い、表面処理されたニッケル粒子を得た。
  〔実施例7〕
 実施例3の還元反応によって得られたニッケル粒子分散液を用いた以外は実施例5と同様の操作を行い、表面処理されたニッケル粒子を得た。
  〔実施例8〕
 実施例4の還元反応によって得られたニッケル粒子分散液を用いた以外は実施例5と同様の操作を行い、表面処理されたニッケル粒子を得た。
  〔比較例1〕
 本比較例では水系でニッケル粉を製造した。詳細には、硫酸ニッケル・6水和物900g、クエン酸35g、ホスフィン酸ナトリウム12.5gを純水1Lに溶解させて水溶液を得た。得られた水溶液を、液温を60℃に維持した水酸化ナトリウム濃度25%の水溶液760gに10分間にわたって添加して、ニッケルの水酸化物を析出させた。この懸濁液の液温を80℃に維持しながら、ヒドラジン・1水和物940gを5分間にわたって添加して、ニッケルの水酸化物をニッケルに還元し、ニッケル粉を得た。
  〔比較例2〕
 本比較例では、実施例1においてPEIを用いなかった。また、硝酸パラジウム水溶液を0.4mlに変更した以外は、実施例1と同様にしてニッケル粉を得た。
  〔評価1〕
 実施例及び比較例で得られたニッケル粉について、上述の方法で粒度分布を測定し、粒径D50、粗大粒子存在割合及び変動係数を求めた。SEMとして日本電子株式会社製のJSM-7100Fを用いた。
 また、以下の方法でWPPF法に基づく結晶子サイズを求めた。
 以上の結果を以下の表1に示す。また、実施例2及び比較例2で得られたニッケル粉のSEM像を図3及び図4に示す。
  〔WPPF法に基づく結晶子サイズの測定〕
 結晶子サイズは、X線回折測定によって得られるニッケルに由来する回折ピークから、WPPF法を用いて算出することができる。X線回折測定の条件は、後述する実施例にて詳述する。
装置名 SmartLab(9KW):リガク社製
<装置構成>
 波長
 ・ターゲット:Cu
 ・波長タイプ:Kα1
 ・Kα1:1.54059(Å)
 ・Kα2:1.54441(Å)
 ・Kβ:1.39225(Å)
 ・Kα12強度比:0.4970
 ・水平偏光率:0.500
 回折装置
 ・ゴニオメーター:SmartLab
 ・アタッチメントベース:Zステージ単独
 ・アタッチメント:ASC6-反射
<測定条件>
 ・光学系属性:集中法
 ・CBO選択スリット:BB
 ・入射平行スリット:Soller_slit_5.0deg
 ・入射スリット:2/3deg
 ・長手制限スリット:10.0mm
 ・受光スリット1:20.000mm
 ・受光平行スリット:Soller_slit_5.0deg
 ・受光スリット2:20.000mm
 ・アッテネーター:Open
 ・検出器:D/teX Ultra250
 ・スキャン軸:2θ/θ
 ・スキャンモード:連続
 ・スキャン範囲:5.0000~140.0000deg
 ・ステップ幅:0.0100deg
 ・スキャンスピード/計測時間:2.015572deg/min
 ・データ点数:13501点
 ・管電圧:45kV
 ・管電流:200mA
 ・HV:0.00
<X線回折用試料の調製方法>
 測定対象のニッケル粉を測定ホルダに敷き詰め、ニッケル粉からなる層の厚さが0.5mmで、且つ測定表面が平滑となるように、ガラスプレートを用いて平滑化した。
 上述の測定条件にて得られたX線回折パターンを用いて、以下の条件にて、解析用ソフトウェアによって解析した。解析では、米国国立標準技術局(NIST)が提供する標準物質である六ホウ化ランタン粉末(SRM660シリーズ)から得られたデータを用いて補正した。結晶子サイズは、WPPF法を用いて算出した。
<測定データ解析条件>
 ・解析用ソフトウェア:Rigaku製PDXL2
 ・解析手法:WPPF法
 ・データ処理:自動プロファイル処理
 (リガク社 PDXLユーザーマニュアル p.305)
  〔評価2〕
 以下の方法でニッケル粉に含まれる不純物元素の量を定量した。更に、ニッケル粉の比表面積を以下の方法で測定した。それらの結果を以下の表2に示す。
  〔不純物元素の定量〕
 1.00gのニッケル粉を15%硝酸水溶液50mlに溶解させて溶解液を得た。この溶解液を、ICP発光分光分析装置(株式会社日立ハイテクサイエンス製PS3520VDDII)に導入して、ナトリウム、カリウム及び硫黄の含有量を測定した。
 また、1.00gのニッケル粉を純水20.0mlに加え、更に2.5g/l硝酸銀水溶液を2ml、70%硝酸水溶液を10ml加えて90℃で加熱した。この水溶液を常温まで放冷し、1.5g/l臭化カリウム水溶液を1ml加えた。得られた沈殿物を吸引ろ過後、純水で洗浄し、10g/lチオ尿素水溶液20mLに溶解させ、ろ過した。この溶解液を、イオンクロマトグラフ分析装置(メトロームジャパン株式会社製930CompactICFlex)に導入して、塩素の含有量を測定した。
 更に、ニッケル粉に含まれる炭素の量を、水洗前(C1)、塩基性水溶液による処理後(C2)、及び表面処理後(C3)において、以下の方法で測定した。
 炭素・硫黄分析装置(LECOジャパン合同会社製CS844)を用いた。実施例及び比較例のニッケル粉0.50gを磁性坩堝に入れて測定した。キャリアガスは酸素ガス(純度:99.5%)とした。分析時間は40秒とした。
  〔比表面積の測定〕
 比表面積は、BET法に基づき、株式会社マウンテック製の「Macsorb」を用い、窒素吸着法で測定した。測定粉末の量は0.2gとした。予備脱気条件は真空下、80℃で30分間とした。
  〔評価3〕
 実施例及び比較例で得られたニッケル粉について、以下の方法で、ニッケル粉を含む焼結膜の表面粗さRz、並びに熱収縮終了温度及び熱収縮量を測定した。更に、焼結膜の製造に用いた塗布液の粘度を測定した。それらの結果を以下の表3に示す。
  〔熱収縮終了温度及び熱収縮量〕
 TMAの測定装置としてセイコーインスツル株式会社製のEXSTAR 6000を用いた。500mgのニッケル粉をφ5.0mmのステンレス製カップに入れ、1.0MPaで加圧成形してペレットを製造した。得られたペレットを測定対象試料として用い、これを測定装置にセットした。1体積%水素/99体積%窒素雰囲気下に試料を10℃/minで昇温させた。室温(25℃)から測定を開始し、温度と変位量(%)との関係を示すグラフを得た。
  〔焼結膜の表面粗さRz〕
 4gのターピネオールに0.1gのエチルセルロースを溶解させ、次いで5gのニッケル粉を添加して混合物を得た。この混合物を、自転・公転ミキサー(株式会社シンキー製の「あわとり練太郎(登録商標)」)を用いて混合した。次いで、この混合物を3本ロールに4回通して解砕した。3本ロールのギャップは8μmに設定した。このようして塗布液を得た。
 この塗布液の粘度(25℃)を、サーモフィッシャーサイエンティフィック社製のHAAKE RheoStress3000を用いて測定した。
 この塗布液を、ガラス基板に塗布して塗膜を形成した。塗膜の湿潤厚みは35μmであった。この塗膜を、窒素雰囲気で350℃、10分間で焼結させて焼結膜を得た。
 得られた焼結膜の表面粗さRzを、SURFCOM 130Aを用いて測定した。測定条件は、評価長さ6.0mm、測定速度0.6mm/sとした。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 表1ないし表3に示す結果から明らかなとおり、各実施例で得られたニッケル粉は、熱収縮終了温度が高く且つ焼結膜の表面粗さRzの値が小さいものであることが分かる。
 これに対して、比較例1で得られたニッケル粉は、熱収縮終了温度が低く且つ焼結膜の表面粗さRzの値が大きいものであることが分かる。
 比較例2で得られたニッケル粉は、熱収縮終了温度は高いものの、粗粒が多く存在することに起因して、焼結膜の表面粗さRzの値が大きくなってしまった。
 また、実施例1ないし4と、実施例5ないし8との対比から明らかなとおり、還元によって得られたニッケル粉を塩基性水溶液で処理することで、塗布液の粘度が低下し、そのことに起因して焼結膜の表面の平滑性が向上することが分かる。
 本発明によれば、微粒であり且つ粗粒の含有割合が少ないニッケル粉が提供される。したがって、このニッケル粉は例えばMLCCの内部電極の形成材料として好適に用いられる。また本発明によれば、そのようなニッケル粉を容易に製造することができる。

Claims (13)

  1.  走査型電子顕微鏡による測定から算出された円相当直径に基づく粒度分布において、累積個数50個数%における個数累積粒径をD50としたとき、
     D50が50nm以上200nm以下であり、
     D50の1.5倍以上の粒径を有する粒子の存在割合が0.5個数%以下である、ニッケル粉。
  2.  前記粒度分布における粒径の標準偏差をσ(nm)としたとき、(σ/D50)×100(%)の値が14%以下である、請求項1に記載のニッケル粉。
  3.  WPPF法によって測定された結晶子サイズをCs(nm)としたとき、Cs/D50の値が0.3以上0.6以下である、請求項1又は2に記載のニッケル粉。
  4.  ナトリウム元素の含有量が50ppm以下であり、カリウム元素の含有量が50ppm以下であり、塩素元素の含有量が500ppm以下であり、且つ、硫黄元素の含有量が500ppm以下である、請求項1ないし3のいずれか一項に記載のニッケル粉。
  5.  1体積%水素/99体積%窒素雰囲気下、900℃での熱収縮量が30%以下である、請求項1ないし4のいずれか一項に記載のニッケル粉。
  6.  1体積%水素/99体積%窒素雰囲気下、昇温速度10℃/minでの熱収縮終了温度が650℃以上1000℃以下である、請求項1ないし5のいずれか一項に記載のニッケル粉。
  7.  炭素元素の含有量/比表面積の値が、0.01g/(m/g)以上0.35g/(m/g)以下である、請求項1ないし6のいずれか一項に記載のニッケル粉。
  8.  水酸化ニッケル粒子、ポリオール、ポリビニルピロリドン及びポリエチレンイミンを含む液を加熱してニッケル粒子を製造する方法であって、
     1質量部のポリエチレンイミンに対して、ポリビニルピロリドンを30質量部以上200質量部以下用いる、ニッケル粒子の製造方法。
  9.  前記液を150℃以上200℃以下に加熱する、請求項8に記載の製造方法。
  10.  前記ポリオールとして、エチレングリコールを用いる、請求項8又は9に記載の製造方法。
  11.  前記ポリエチレンイミンとして、数平均分子量が600以上10000以下である分岐鎖ポリエチレンイミンを用いる、請求項8ないし10のいずれか一項に記載の製造方法。
  12.  製造されたニッケル粒子を水洗するか、又は塩基性水溶液で処理する、請求項8ないし11いずれか一項に記載の製造方法。
  13.  水洗後のニッケル粒子、又は前記塩基性水溶液で処理した後のニッケル粒子を、疎水性有機物によって処理する、請求項12に記載の製造方法。
PCT/JP2022/017518 2021-04-26 2022-04-11 ニッケル粉及びニッケル粒子の製造方法 WO2022230650A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020237030235A KR20240000452A (ko) 2021-04-26 2022-04-11 니켈 분 및 니켈 입자의 제조 방법
JP2023511771A JP7406047B2 (ja) 2021-04-26 2022-04-11 ニッケル粉及びニッケル粒子の製造方法
CN202280019284.1A CN116981526A (zh) 2021-04-26 2022-04-11 镍粉和镍颗粒的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-074357 2021-04-26
JP2021074357 2021-04-26

Publications (1)

Publication Number Publication Date
WO2022230650A1 true WO2022230650A1 (ja) 2022-11-03

Family

ID=83847527

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/017518 WO2022230650A1 (ja) 2021-04-26 2022-04-11 ニッケル粉及びニッケル粒子の製造方法

Country Status (5)

Country Link
JP (1) JP7406047B2 (ja)
KR (1) KR20240000452A (ja)
CN (1) CN116981526A (ja)
TW (1) TW202302872A (ja)
WO (1) WO2022230650A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006161128A (ja) * 2004-12-09 2006-06-22 Mitsui Mining & Smelting Co Ltd ニッケルスラリー及びその製造方法並びに該ニッケルスラリーを用いたニッケルペースト又はニッケルインキ
WO2009060803A1 (ja) * 2007-11-05 2009-05-14 Sumitomo Metal Mining Co., Ltd. 銅微粒子とその製造方法及び銅微粒子分散液
WO2017056741A1 (ja) * 2015-09-29 2017-04-06 東邦チタニウム株式会社 ニッケル粉及びニッケルペースト
JP2017179551A (ja) * 2016-03-31 2017-10-05 新日鉄住金化学株式会社 ニッケル粒子、導電性ペースト、内部電極及び積層セラミックコンデンサ

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102292897B1 (ko) 2014-04-08 2021-08-24 도호 티타늄 가부시키가이샤 니켈 분말

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006161128A (ja) * 2004-12-09 2006-06-22 Mitsui Mining & Smelting Co Ltd ニッケルスラリー及びその製造方法並びに該ニッケルスラリーを用いたニッケルペースト又はニッケルインキ
WO2009060803A1 (ja) * 2007-11-05 2009-05-14 Sumitomo Metal Mining Co., Ltd. 銅微粒子とその製造方法及び銅微粒子分散液
WO2017056741A1 (ja) * 2015-09-29 2017-04-06 東邦チタニウム株式会社 ニッケル粉及びニッケルペースト
JP2017179551A (ja) * 2016-03-31 2017-10-05 新日鉄住金化学株式会社 ニッケル粒子、導電性ペースト、内部電極及び積層セラミックコンデンサ

Also Published As

Publication number Publication date
KR20240000452A (ko) 2024-01-02
CN116981526A (zh) 2023-10-31
TW202302872A (zh) 2023-01-16
JP7406047B2 (ja) 2023-12-26
JPWO2022230650A1 (ja) 2022-11-03

Similar Documents

Publication Publication Date Title
JP4428085B2 (ja) 銅微粒子の製造方法
EP3034202A1 (en) Metal powder paste and method for producing same
JP6130209B2 (ja) 導電膜
US6686045B2 (en) Composite fine particles, conductive paste, and conductive film
JP6224933B2 (ja) 銀被覆銅合金粉末およびその製造方法
JP6186197B2 (ja) 銀被覆銅合金粉末およびその製造方法
TW201834767A (zh) 銅粉及其製造方法
JP2008525640A (ja) 高タップ密度超微細球形金属ニッケル粉及びその湿式製造方法
US10307825B2 (en) Metal powder, ink, sintered body, substrate for printed circuit board, and method for manufacturing metal powder
US7909908B2 (en) Method of improving the weatherability of copper powder
JP2019108610A (ja) 球状銀粉およびその製造方法
CN108025358B (zh) 导电材料用粉末、导电材料用油墨、导电糊剂以及导电材料用粉末的制造方法
WO2022230650A1 (ja) ニッケル粉及びニッケル粒子の製造方法
JP6258616B2 (ja) 銀被覆銅合金粉末およびその製造方法
JP4061462B2 (ja) 複合微粒子並びに導電性ペースト及び導電性膜
JP2005023395A (ja) ニッケル粉末の製造方法
WO2024070097A1 (ja) ニッケル粒子及びニッケル粒子の製造方法
JP7340728B1 (ja) ニッケル粒子及びニッケル粒子の製造方法
TW201338893A (zh) 銀粉
WO2017179524A1 (ja) 銀被覆銅粉およびその製造方法
CN113597350B (zh) 银钯合金粉末及其应用
WO2024071303A1 (ja) 銅粉及びこれを含む銅ペースト並びに導電膜の製造方法
WO2023074827A1 (ja) 銅粒子及びその製造方法
TW202415469A (zh) 鎳粒子及鎳粒子之製造方法
TW202415779A (zh) 鎳粒子及鎳粒子之製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22795564

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023511771

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202280019284.1

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22795564

Country of ref document: EP

Kind code of ref document: A1