WO2022230062A1 - Power conversion device, and method for suppressing inrush current to power conversion device - Google Patents

Power conversion device, and method for suppressing inrush current to power conversion device Download PDF

Info

Publication number
WO2022230062A1
WO2022230062A1 PCT/JP2021/016830 JP2021016830W WO2022230062A1 WO 2022230062 A1 WO2022230062 A1 WO 2022230062A1 JP 2021016830 W JP2021016830 W JP 2021016830W WO 2022230062 A1 WO2022230062 A1 WO 2022230062A1
Authority
WO
WIPO (PCT)
Prior art keywords
smoothing capacitor
relay
rectifier
inrush current
voltage
Prior art date
Application number
PCT/JP2021/016830
Other languages
French (fr)
Japanese (ja)
Inventor
直人 楠
俊介 久保田
智 一木
啓介 植村
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2023516908A priority Critical patent/JP7539563B2/en
Priority to PCT/JP2021/016830 priority patent/WO2022230062A1/en
Publication of WO2022230062A1 publication Critical patent/WO2022230062A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/06Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode

Definitions

  • the present disclosure relates to a power converter having a function of suppressing inrush current and a method for suppressing inrush current in the power converter.
  • a power conversion device that uses an inverter to drive motors used in components such as compressors and fans in electrical equipment such as air conditioners and refrigerators.
  • a power conversion device converts AC power to DC by a diode bridge, boosts the voltage by a converter, and converts it again to AC by an inverter after passing through a smoothing capacitor. Desired AC power can be obtained by using the power converter. AC power obtained by the power converter is supplied to a load such as a motor.
  • Patent Document 1 a smoothing capacitor provided in a DC intermediate circuit that connects a DC side of a rectifier and a DC side of an inverter is divided into two, and an inrush current is reduced by dividing charging of the two smoothing capacitors. Suppression is disclosed.
  • the present disclosure has been made in view of the above, and aims to obtain a power conversion device capable of suppressing inrush current without increasing the size and weight.
  • the power converter according to the present disclosure includes a rectifier that converts AC voltage supplied from an AC power supply to DC voltage, and an inverter that converts the output from the rectifier to AC. and a first smoothing capacitor and a second smoothing capacitor connected in parallel between the rectifier and the inverter for smoothing and charging the output of the rectifier.
  • the power converter includes an inrush current prevention circuit configured to suppress inrush current to the rectifier by parallel connection of an inrush current prevention element and a first relay for suppressing inrush current on the AC input side of the rectifier, and a second smoothing capacitor. and a control unit that controls the first relay and the second relay.
  • the power conversion device has the effect of being able to suppress inrush current without increasing the size and weight.
  • a circuit diagram of the power converter according to the first embodiment 4 is a time chart showing the operation of the power conversion device according to the first embodiment; 4 is a flowchart showing the procedure of operation of the power converter according to the first embodiment; Circuit diagram of the power converter according to the second embodiment Time chart showing the operation of the power converter according to the second embodiment Circuit diagram of the power converter according to the third embodiment Time chart showing the operation of the power converter according to the third embodiment 10 is a flow chart showing the procedure of operation of the power conversion device according to the third embodiment; FIG. 4 is a diagram showing a processor in which the functions of the control unit in Embodiments 1, 2, and 3 are realized by the processor; FIG. 4 is a diagram showing a processing circuit when at least part of the functions of the control unit according to the first, second, and third embodiments are realized by the processing circuit;
  • FIG. 1 is a circuit diagram of a power converter 1 according to a first embodiment.
  • the power converter 1 shown in FIG. 1 converts AC power, which is a system power supply, into DC and then into AC, and supplies the converted current to a load 52 to drive the load 52 .
  • the power conversion device 1 includes a first relay 2, an inrush current prevention element 3, a rectifier 4, a converter 5, a first smoothing capacitor 6, a second smoothing capacitor 7, an inverter 8, and a voltage detector 9. , a second relay 10 and a control unit 11 .
  • the first relay 2 is arranged between an AC power supply 51 that supplies an AC voltage to the power converter 1 and the rectifier 4 to constitute an inrush current prevention circuit 12 . That is, the inrush current prevention circuit 12 is configured by connecting in parallel the inrush current prevention element 3 that suppresses the inrush current on the AC input side of the rectifier 4 and the first relay 2 to suppress the inrush current to the rectifier 4 .
  • the first relay 2 is an a-contact relay. The operation of the first relay 2 is controlled by the controller 11 . The first relay 2 opens and closes based on a control signal transmitted from the control section 11 .
  • the inrush current prevention element 3 suppresses inrush current, which is a large current flowing through the power converter 1 when an AC voltage is applied from the AC power supply 51 to the rectifier 4 .
  • the rectifier 4 is connected to the AC power supply 51 via the inrush current prevention element 3 . Therefore, when the first relay 2 is in an open circuit state, the inrush current, which is a large current flowing through the rectifier 4, is suppressed.
  • a PTC thermistor PTC: Positive Temperature Coefficient
  • FIG. 1 is an AC power supply 51 .
  • the rectifier 4 rectifies the input AC voltage from the AC power supply 51 . That is, the rectifier 4 is connected to the AC power supply 51, rectifies the AC voltage supplied from the AC power supply 51, converts it into a DC voltage, and outputs the DC voltage.
  • the rectifier 4 uses, for example, a diode bridge in which four diodes (not shown) are bridge-connected.
  • the converter 5 is a booster circuit that boosts the DC voltage output from the rectifier 4 .
  • Converter 5 does not operate when first smoothing capacitor 6 and second smoothing capacitor 7 are charged, that is, when a rush current is generated.
  • Various known techniques such as a boost chopper circuit can be used for the converter 5 .
  • the voltage detector 9 detects the voltage across the first smoothing capacitor 6 or the second smoothing capacitor 7 .
  • the voltage detector 9 outputs the detected voltage value of the voltage across the first smoothing capacitor 6 or the second smoothing capacitor 7 to the control unit 11 .
  • a method of detecting the inter-terminal voltage in the voltage detector 9 is not particularly limited, and various known techniques such as a technique using a microcomputer can be used.
  • the first smoothing capacitor 6 and the second smoothing capacitor 7 smooth and charge the output from the converter 5, and are connected to a DC intermediate circuit connecting the DC side of the converter 5 and the DC side of the inverter 8. and connected in parallel with each other.
  • the first smoothing capacitor 6 is arranged relative to the inverter 8 .
  • the second smoothing capacitor 7 is arranged relatively on the converter 5 side.
  • the second relay 10 is connected in series with the second smoothing capacitor 7 .
  • the smoothing capacitor through which the current flows is selected.
  • the second relay 10 is an open circuit state, current does not flow through the second smoothing capacitor 7 and current flows through the first smoothing capacitor 6 .
  • the second relay 10 is in the closed state, current flows through the second smoothing capacitor 7 and the first smoothing capacitor 6 .
  • the second relay 10 is an a-contact relay. The operation of the second relay 10 is controlled by the control section 11 . The second relay 10 opens and closes based on a control signal transmitted from the control section 11 .
  • the inverter 8 converts the DC voltage output from the converter 5 into an AC voltage of constant voltage and constant frequency for driving the load 52 .
  • the inverter 8 is composed of a plurality of switching elements.
  • the inverter 8 supplies the AC voltage obtained by conversion to the load 52 .
  • a load 52 is also shown in FIG.
  • the control unit 11 uses the voltage value detected by the voltage detector 9 to control opening and closing of the first relay 2 or the second relay 10 . Specifically, control unit 11 uses the voltage value detected by voltage detector 9 to generate a control signal for operating first relay 2 or second relay 10 . Control unit 11 outputs the generated control signal to first relay 2 or second relay 10 .
  • control unit 11 includes an inverter drive circuit (not shown) that drives the inverter 8 and an inverter circuit drive control unit (not shown) that controls the inverter drive circuit. Therefore, detailed description is omitted.
  • FIG. 2 is a time chart showing the operation of the power converter 1 according to the first embodiment.
  • FIG. 3 is a flow chart showing the operation procedure of the power converter 1 according to the first embodiment.
  • the time chart shown in FIG. 2 shows which of the open circuit state and the closed circuit state the first relay 2 and the second relay 10 are in.
  • the state of charge that is, the voltage is shown.
  • step S110 the control unit 11 performs control to turn off the first relay 2 and the second relay 10, that is, control to open the first relay 2 and the second relay 10.
  • the first relay 2 and the second relay 10 are opened according to the control of the controller 11 .
  • step S120 an AC voltage is applied from the AC power supply 51 to the rectifier 4.
  • the rectifier 4 rectifies the AC voltage supplied from the AC power supply 51, converts it into a DC voltage, and outputs the DC voltage.
  • step S130 the output from the converter 5 charges the first smoothing capacitor 6. At this time, since the second relay 10 is open, no current flows through the second smoothing capacitor 7 and the second smoothing capacitor 7 is not charged.
  • step S140 the control unit 11 determines whether or not the potential of the first smoothing capacitor 6 has reached a predetermined threshold value A. Specifically, the voltage detector 9 detects the voltage across the first smoothing capacitor 6 and outputs the detected voltage value to the controller 11 . Based on the voltage value of the voltage across the first smoothing capacitor 6 obtained from the voltage detector 9, the control unit 11 determines whether or not the potential of the first smoothing capacitor 6 has reached a predetermined threshold value A. .
  • the threshold A is a threshold for the control unit 11 to determine whether or not charging of the first smoothing capacitor 6 has temporarily ended.
  • the threshold A is a value lower than the value of the target voltage V1, which is the target voltage for charging the first smoothing capacitor 6 and the second smoothing capacitor 7 .
  • the threshold A is determined in advance and stored in the controller 11 .
  • step S140 determines that the charging of the first smoothing capacitor 6 has not temporarily ended. It determines and repeats step S140. If it is determined that the potential of the first smoothing capacitor 6 has reached the predetermined threshold value A, the determination in step S140 is Yes, and the control unit 11 determines that the charging of the first smoothing capacitor 6 has been provisionally terminated. , the process proceeds to step S150. That is, when the potential of the first smoothing capacitor 6 reaches a predetermined threshold value A, the control unit 11 detects temporary termination of charging of the first smoothing capacitor 6 .
  • step S150 the control unit 11 determines whether or not a predetermined charging completion period t1 has elapsed.
  • the charge completion period t1 the first smoothing capacitor 6 is completely charged to the target voltage V1 from the time when the potential of the first smoothing capacitor 6 reaches a predetermined threshold value A, and charging of the first smoothing capacitor 6 is completed. This is a waiting period until the voltage and charge of the first smoothing capacitor 6 are stabilized, and is determined in advance and stored in the control unit 11 .
  • the charging completion period t1 can be rephrased as a first smoothing capacitor voltage stabilization period, which is a period until the voltage of the first smoothing capacitor 6 is stabilized.
  • step S150 When it is determined that the charging completion period t1 has not elapsed, the determination in step S150 is No, and the control unit 11 repeats step S150. If it is determined that the charging completion period t1 has elapsed, the determination in step S150 is Yes, and the process proceeds to step S160.
  • step S160 the control unit 11 performs control to turn on the second relay 10, that is, control to close the second relay 10.
  • the second relay 10 is closed under the control of the controller 11 .
  • step S170 the second smoothing capacitor 7 is charged by the output from the converter 5 as the second relay 10 is closed.
  • step S180 the control unit 11 determines whether or not a predetermined second smoothing capacitor voltage stabilization period t2 has elapsed.
  • the second smoothing capacitor voltage stabilization period t2 the second smoothing capacitor 7 is completely charged to the target voltage V1 from the time the potential of the first smoothing capacitor 6 reaches a predetermined threshold value A, and the second smoothing capacitor 7 is completed and the voltage and charge of the second smoothing capacitor 7 are stabilized.
  • step S180 If it is determined that the second smoothing capacitor voltage stabilization period t2 has not elapsed, the determination in step S180 is No, and the control unit 11 repeats step S180. When it is determined that the second smoothing capacitor voltage stabilization period t2 has elapsed, the determination in step S180 is Yes, and the process proceeds to step S190.
  • step S190 the control unit 11 performs control to turn on the first relay 2, that is, control to close the first relay 2.
  • the first relay 2 is closed under the control of the controller 11 .
  • the charge completion period t1 and the second smoothing capacitor voltage stabilization period t2 are calculated in advance through experiments and simulations so that the first smoothing capacitor 6 and the second smoothing capacitor 7 can be stably charged. It is the set time. There are two reasons for setting the charging completion period t1.
  • the threshold A is set to a value slightly lower than the target voltage V1. In this case, if the charging completion period t1 is not set, the second relay 10 is closed while the first smoothing capacitor 6 is not completely charged, and the current flowing from the converter 5 is reduced to the first smoothing capacitor 6. , and the second smoothing capacitor 7 .
  • the potential of the first smoothing capacitor 6 has reached a voltage very close to the target bus voltage Vdc, it may not reach the target bus voltage Vdc due to variations in accuracy of the components of the first smoothing capacitor 6. In this case, charging of the first smoothing capacitor 6 is actually completed, but the second relay 10 does not proceed to the next operation, that is, the closing operation.
  • the charging completion period t1 is set to prevent the second relay 10 from not moving to the next operation, that is, to prevent malfunction of the second relay 10 as described above.
  • the second relay 10 does not move to the next operation, that is, the closing operation.
  • the threshold value A is set to a value slightly lower than the target bus voltage Vdc. be. Then, the charging completion period t1 starts when the potential of the first smoothing capacitor 6 reaches the threshold value A, the first smoothing capacitor 6 is completely charged, the charging of the first smoothing capacitor 6 is completed, and the first smoothing capacitor It is set to a period until the potential and charge of 6 are stabilized.
  • the charging completion period t1 is set to prevent such erroneous turning-on of the second relay 10 or erroneous turning-off of the second relay 10 .
  • the potential of the first smoothing capacitor 6 decreases when a short-circuit current flows from the first smoothing capacitor 6 to the second smoothing capacitor 7 when the second relay 10 is closed. This is set to prevent the second relay 10 from being erroneously turned off.
  • the ON/OFF control method of the second relay 10 from the current control based on the potential of the first smoothing capacitor 6 to time control based on the charging completion period t1
  • the above-mentioned erroneous ON of the second relay 10 can be prevented.
  • erroneous turning off of the second relay 10 can be prevented.
  • the second reason for setting the charging completion period t1 will be described.
  • an overshoot occurs once, after which the voltage of the first smoothing capacitor 6 becomes a constant voltage. Therefore, if the second relay 10 is closed immediately after it is detected that the potential of the first smoothing capacitor 6 has reached the threshold value A, the energy at the time of overshoot will be the first It may occur as a short-circuit current flowing from the smoothing capacitor 6 to the second smoothing capacitor 7 . In this case, the second relay 10 may be damaged, and the selection of parts for the second relay 10 becomes difficult.
  • the charging completion period t1 is also set to solve such a problem.
  • the reason for setting the second smoothing capacitor voltage stabilization period t2 that is, the reason why the control method of the first relay 2 is time control will be described.
  • the voltage across the first smoothing capacitor 6 and the voltage across the second smoothing capacitor 7 become the same. Although it is the voltage between the terminals, the voltage across the first smoothing capacitor 6 exceeds the threshold value A when the first smoothing capacitor 6 is charged, so the second smoothing capacitor voltage stabilization period t2 is set.
  • the voltage across the terminals of the first smoothing capacitor 6 equals the voltage across the terminals of the second smoothing capacitor 7, and the voltage across the first smoothing capacitor 6 becomes the threshold when the first smoothing capacitor 6 is charged. exceeds A. Therefore, when the first relay 2 is turned on based on the voltage across the terminals of the second smoothing capacitor 7 , that is, when the control method of the first relay 2 is voltage control, the second smoothing capacitor 7 Immediately after the charging of the first relay 2 is started, the first relay 2 is turned on, and malfunction of the first relay 2 occurs.
  • the second smoothing capacitor voltage stabilization period t2 is set in order to prevent malfunction of the first relay 2 by using time control to turn on the first relay 2 .
  • the second smoothing capacitor voltage stabilization period t2 starts when the potential of the second smoothing capacitor 7 reaches a predetermined threshold, in the same manner as the charging completion period t1. It is also possible to set a waiting period until the second smoothing capacitor 7 is completely charged to the voltage V1, charging of the second smoothing capacitor 7 is completed, and the voltage and charge of the second smoothing capacitor 7 are stabilized.
  • the threshold in this case is a value lower than the target voltage V1, and is the same value as the threshold A, for example.
  • step S130 when the first smoothing capacitor 6 is charged in step S130, the second relay 10 is opened so that the charging path is changed to the AC power supply 51, the inrush current prevention element 3, the rectifier 4, the converter 5, The route is taken in order of the first smoothing capacitor 6 .
  • step S170 When the second smoothing capacitor 7 is charged in step S170, the second relay 10 is closed and charging of the first smoothing capacitor 6 is completed. 5, the second relay 10, and the second smoothing capacitor 7 in that order.
  • the circuit of the charging path when charging the first smoothing capacitor 6 in step S130 that is, The impedance of the circuit of the AC power supply 51, the inrush current prevention element 3, the rectifier 4, the converter 5, and the first smoothing capacitor 6 is increased, and the excessive inrush current flowing through the rectifier 4, the converter 5, and the first smoothing capacitor 6 is suppressed. can do.
  • the circuit of the charging path when charging the second smoothing capacitor 7 in step S170 that is, the AC
  • the impedance of the circuit of the power supply 51, the inrush current prevention element 3, the rectifier 4, the converter 5, the second relay 10, and the second smoothing capacitor 7 is increased, and the rectifier 4, the converter 5, the second relay 10, and the second smoothing capacitor 7 It is possible to suppress the flow of an excessive rush current.
  • the impedance Z1 during charging of the first smoothing capacitor 6 is expressed by the following formula (1).
  • the impedance Z2 during charging of the second smoothing capacitor 7 is expressed by the following equation (2).
  • the impedance Z1 when the first smoothing capacitor 6 is charged becomes larger than the impedance Z3 when the first smoothing capacitor 6 and the second smoothing capacitor 7 are charged simultaneously.
  • the impedance Z2 when the second smoothing capacitor 7 is charged has the same formula as the impedance Z3 when the first smoothing capacitor 6 and the second smoothing capacitor 7 are charged simultaneously.
  • the second smoothing capacitor 7 is charged, electric charge is accumulated in the first smoothing capacitor 6.
  • Z is the impedance of the target circuit
  • V is the voltage of the target circuit
  • I is the current flowing through the target circuit. Since Z increases as I decreases, the apparent impedance increases.
  • the apparent impedance Z2 when the second smoothing capacitor 7 is charged becomes larger than the impedance Z3 when the first smoothing capacitor 6 and the second smoothing capacitor 7 are charged simultaneously.
  • the resistance value of the PTC thermistor rises due to the current flowing through the PTC thermistor when the first smoothing capacitor 6 is charged due to the characteristics of the PTC thermistor when the second smoothing capacitor 7 is charged. is doing. Therefore, the resistance value of the rush current prevention element 3 when charging the second smoothing capacitor 7 is greater than the resistance value of the PTC thermistor when charging the first smoothing capacitor. As a result, when the second smoothing capacitor 7 is charged, the rush current flowing from the AC power supply 51 to the rectifier 4 can be suppressed more than when the first smoothing capacitor 6 is charged.
  • the specifications of the inrush current prevention element 3, the rectifier 4, and the converter 5 can be suppressed, and the inrush current prevention element 3, the rectifier 4, and the converter 5 are low in cost. It is possible to reduce the size, size, and weight of the product. As a result, it is possible to reduce the cost, size, and weight of the power conversion device 1 .
  • the life of the first smoothing capacitor 6 and the second smoothing capacitor 7 can be extended. Thereby, the life of the power conversion device 1 can be extended.
  • the power conversion device 1 since the power conversion device 1 according to the first embodiment does not use a transistor switch element for switching charging of the two smoothing capacitors, the cost of the circuit that controls the transistor switch element increases and the control becomes complicated. This eliminates problems such as miniaturization, enlargement of the circuit of the power converter 1, occurrence of switching loss in the transistor switch element, and occurrence of conduction loss due to the transistor switch element.
  • the power conversion device 1 according to the first embodiment does not require a configuration such as a plurality of inrush current prevention circuits for suppressing inrush current, it is possible to increase the capacity of the power conversion device and the size of the circuit of the power conversion device. There are no problems such as simplification and cost increase.
  • the power converter 1 according to the first embodiment has the effect of being able to suppress the inrush current without increasing the size and weight.
  • Embodiment 2 when the second relay 10 is turned on, that is, when the second relay 10 is closed, the current flows through the first smoothing capacitor 6 to the second relay 10 and the second smoothing capacitor 7 . A case of suppressing short-circuit current will be described.
  • FIG. 4 is a circuit diagram of the power converter 1a according to the second embodiment.
  • FIG. 5 is a time chart showing the operation of the power converter 1a according to the second embodiment. The time chart shown in FIG. 5 shows which of the open circuit state and the closed circuit state the first relay 2 and the second relay 10 are in. For the first smoothing capacitor 6 and the second smoothing capacitor 7, the state of charge, that is, the voltage is shown.
  • a power conversion device 1a according to the second embodiment has a backflow prevention diode 21 added to the configuration of the power conversion device 1 according to the first embodiment described above.
  • Backflow prevention diode 21 is connected to one end of first smoothing capacitor 6 and one end of second relay 10 in a DC intermediate circuit that connects the DC side of converter 5 and the DC side of inverter 8. It is That is, the backflow prevention diode 21 is arranged between one end side of the first smoothing capacitor 6 and one end side of the second smoothing capacitor 7 in the DC intermediate circuit. Also, the backflow prevention diode 21 is a backflow prevention diode arranged between the first smoothing capacitor 6 and the second smoothing capacitor 7 with the first smoothing capacitor 6 side as the cathode side.
  • the operation of the power converter 1a is the same as the operation of the power converter 1 according to the first embodiment described above. That is, in the power converter 1a, the first smoothing capacitor 6 and the second smoothing capacitor 7 are charged by performing the operation described along FIG.
  • the backflow prevention diode 21 since the backflow prevention diode 21 is provided, when the second relay 10 is turned on in step S160, that is, the second relay 10 is closed. At times, the short-circuit current flowing through the first smoothing capacitor 6 to the second relay 10 and the second smoothing capacitor 7 can be suppressed. For this reason, in the time chart shown in FIG. 5, the first smoothing capacitor 7 is caused by the short-circuit current flowing through the first smoothing capacitor 6 to the second relay 10 and the second smoothing capacitor 7 shown in the time chart shown in FIG. 6 does not drop in potential.
  • the specifications of the second relay 10 can be suppressed, the cost of the second relay 10 can be reduced, and the second relay 10 and the weight of the second relay 10 can be reduced. This makes it possible to reduce the cost, size, and weight of the power converter 1a.
  • the life of the second smoothing capacitor 7 can be extended. Thereby, the life of the power converter 1a can be extended.
  • Embodiment 3 In the second embodiment described above, the case of suppressing the short-circuit current by the anti-backflow diode 21 in addition to suppressing the inrush current has been described. explain.
  • FIG. 6 is a circuit diagram of the power converter 1b according to the third embodiment.
  • a power conversion device 1b according to the third embodiment has a configuration in which a third relay 22 is added to the configuration of the power conversion device 1 according to the first embodiment.
  • the third relay 22 is a b-contact relay.
  • the third relay 22 is connected to one end of the first smoothing capacitor 6 and one end of the second relay 10 in a DC intermediate circuit that connects the DC side of the converter 5 and the DC side of the inverter 8. It is That is, the power converter 1b according to the third embodiment has a configuration in which the backflow prevention diode 21 in the power converter 1a according to the second embodiment is replaced with the third relay 22.
  • FIG. 7 is a time chart showing the operation of the power converter 1b according to the third embodiment.
  • FIG. 8 is a flow chart showing the operation procedure of the power converter 1b according to the third embodiment.
  • the first relay 2, the second relay 10, and the third relay 22 are shown in which open state or closed state.
  • the state of charge, that is, the voltage is shown.
  • step S310 the control unit 11 performs control to open the first relay 2 and the second relay 10.
  • the first relay 2 and the second relay 10 are opened according to the control of the controller 11 .
  • the control unit 11 performs control to close the third relay 22 .
  • the third relay 22 is closed under the control of the control section 11 .
  • step S320 is performed in the same manner as step S120.
  • step S330 is performed in the same manner as step S130.
  • step S340 is performed in the same manner as step S140.
  • step S350 is performed in the same manner as step S150.
  • step S350 determines whether the charging completion period t1 has not elapsed. If it is determined that the charging completion period t1 has not elapsed, the determination in step S350 is No, and the control unit 11 repeats step S350. If it is determined that the charging completion period t1 has elapsed, the determination in step S350 is Yes, and the process proceeds to step S360.
  • step S360 the control unit 11 performs control to turn on the third relay 22, that is, control to open the third relay 22.
  • the third relay 22 is opened according to the control of the control section 11 .
  • step S370 the control unit 11 determines whether or not a predetermined period of time t3 has elapsed after the control for turning on the third relay 22, that is, after the control for opening the third relay 22 was performed. do.
  • a period t ⁇ b>3 is a standby period in which the switching timing of the switching of the third relay 22 and the switching of the second relay 10 are to be different. That is, the period t3 is a waiting time for preventing the third relay 22 and the second relay 10 from turning on at the same time.
  • the period t3 can be said to be a stabilization period during which the switching of the third relay 22 waits until the influence of the switching of the third relay 22 on the circuit of the power converter 1 stabilizes.
  • step S370 determines whether the period t3 has not elapsed. If it is determined that the period t3 has not elapsed, the determination in step S370 is No, and the control unit 11 repeats step S370. If it is determined that the period t3 has elapsed, the determination in step S370 is Yes, and the process proceeds to step S380.
  • step S380 the control unit 11 performs control to turn on the second relay 10, that is, control to close the second relay 10.
  • the second relay 10 is closed under the control of the controller 11 .
  • step S390 the second smoothing capacitor 7 is charged by the output from the converter 5 as the second relay 10 is closed.
  • the third relay 22 is in an open circuit state, when the second relay 10 is turned on in step S380, that is, when the second relay 10 is closed, the second relay 10 is applied through the first smoothing capacitor 6. Short-circuit current flowing through relay 10 and second smoothing capacitor 7 can be suppressed. For this reason, in the time chart shown in FIG. 7, the first smoothing capacitor 7 is caused by the short-circuit current flowing through the first smoothing capacitor 6 to the second relay 10 and the second smoothing capacitor 7 shown in the time chart shown in FIG. 6 does not drop in potential. Also, since the third relay 22 is in an open circuit state, no current flows through the first smoothing capacitor 6 .
  • the specifications of the second relay 10 can be suppressed, the cost of the second relay 10 can be reduced, and the second relay 10 and the weight of the second relay 10 can be reduced. As a result, the power converter 1b can be reduced in cost, size, and weight.
  • the life of the second smoothing capacitor 7 can be extended. Thereby, the life of the power conversion device 1b can be extended.
  • step S400 the control unit 11 determines whether or not the potential of the second smoothing capacitor 7 has reached a predetermined threshold value B.
  • the voltage detector 9 detects the voltage across the second smoothing capacitor 7 and outputs the detected voltage value to the controller 11 . Based on the voltage value of the voltage across the second smoothing capacitor 7 obtained from the voltage detector 9, the control unit 11 determines whether or not the potential of the second smoothing capacitor 7 has reached a predetermined threshold value B.
  • the threshold B is a threshold for the control unit 11 to determine whether or not charging of the second smoothing capacitor 7 has temporarily ended.
  • the threshold B is determined in advance and stored in the controller 11 .
  • the threshold B in the third embodiment is the target voltage V1.
  • step S400 If it is determined that the potential of the second smoothing capacitor 7 has not reached the predetermined threshold value B, the result is No in step S400, and the control unit 11 determines that the charging of the second smoothing capacitor 7 has not been provisionally terminated. It determines and repeats step S400. If it is determined that the potential of the second smoothing capacitor 7 has reached the predetermined threshold value B, the result is Yes in step S400, and the control unit 11 determines that the charging of the second smoothing capacitor 7 has been provisionally terminated. , go to step S410. That is, when the potential of the second smoothing capacitor 7 reaches a predetermined threshold value B, the control unit 11 detects temporary termination of charging of the second smoothing capacitor 7 .
  • step S410 the control unit 11 determines whether or not a predetermined charging completion period t4 has elapsed.
  • the second smoothing capacitor 7 is fully charged from the point in time when the potential of the second smoothing capacitor 7 reaches a predetermined threshold value B, and charging of the second smoothing capacitor 7 is completed. This is a waiting period until the voltage and charge of the smoothing capacitor 7 are stabilized, and is predetermined and stored in the control section 11 .
  • the charging completion period t4 can be rephrased as a second smoothing capacitor voltage stabilization period, which is a period until the voltage of the second smoothing capacitor 7 is stabilized.
  • step S410 determines whether the charging completion period t4 has not elapsed. If it is determined that the charging completion period t4 has not elapsed, the determination in step S410 is No, and the control unit 11 repeats step S410. If it is determined that the charging completion period t4 has elapsed, the determination in step S410 is Yes, and the process proceeds to step S420.
  • step S420 the control unit 11 performs control to turn off the third relay 22, that is, control to close the third relay 22.
  • the third relay 22 is closed under the control of the control section 11 .
  • step S430 the control unit 11 determines whether or not a predetermined stabilization period t5 has elapsed.
  • the stabilization period t5 is a period until the influence on the circuit of the power converter 1 such as chattering when the third relay 22 is closed is stabilized, and is predetermined and stored in the control unit 11 . If it is determined that the stabilization period t5 has not elapsed, the determination in step S430 is No, and the control unit 11 repeats step S430. If it is determined that the stabilization period t5 has elapsed, the determination in step S430 is Yes, and the process proceeds to step S440.
  • step S440 the control unit 11 performs control to close the first relay 2.
  • the first relay 2 is closed under the control of the controller 11 .
  • the inrush current is suppressed in the same manner as the power conversion device 1 and the power conversion device 1a described above, and the power conversion device As in 1a, the short-circuit current flowing through the second relay 10 and the second smoothing capacitor 7 through the first smoothing capacitor 6 can be suppressed when the second relay 10 is closed.
  • the third relay 22 used in the power converter 1b according to the third embodiment has a smaller conduction loss than the backflow prevention diode 21. Therefore, the power conversion device 1b according to the third embodiment can suppress loss more than the power conversion device 1a described above.
  • FIG. 9 is a diagram showing the processor 301 when the functions of the control unit 11 in Embodiments 1, 2, and 3 described above are implemented by the processor 301.
  • the processor 301 is a microcomputer, CPU (Central Processing Unit), processing device, arithmetic device, microprocessor, or DSP (Digital Signal Processor).
  • Memory 302 is also shown in FIG.
  • the part of the function of the control unit 11 is realized by the processor 301
  • the part of the function is realized by a combination of the processor 301 and software, firmware, or software and firmware.
  • Software or firmware is written as a program and stored in memory 302 .
  • the processor 301 implements at least part of the functions of the control unit 11 by reading and executing programs stored in the memory 302 .
  • control unit 11 when at least part of the function of the control unit 11 is realized by the processor 301, the control unit 11 stores a program that results in the execution of steps executed by at least part of the control unit 11. It has a memory 302 for It can also be said that the program stored in the memory 302 causes the computer to execute the procedure or method executed by at least part of the control unit 11 .
  • the memory 302 is non-volatile such as RAM (Random Access Memory), ROM (Read Only Memory), flash memory, EPROM (Erasable Programmable Read Only Memory), EEPROM (registered trademark) (Electrically Erasable Programmable Read-Only Memory), etc.
  • RAM Random Access Memory
  • ROM Read Only Memory
  • flash memory EPROM (Erasable Programmable Read Only Memory)
  • EEPROM registered trademark
  • it may be a volatile semiconductor memory, magnetic disk, flexible disk, optical disk, compact disk, mini disk, DVD (Digital Versatile Disk), or the like.
  • FIG. 10 is a diagram showing the processing circuit 303 when at least part of the functions of the control unit 11 according to the first, second, and third embodiments are realized by the processing circuit 303.
  • the processing circuit 303 is dedicated hardware.
  • the processing circuit 303 is, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC (Application Specific Integrated Circuit), an FPGA (Field-Programmable Gate Array), or a combination thereof. is. Part of the control unit 11 may be dedicated hardware separate from the rest.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Rectifiers (AREA)

Abstract

A power conversion device (1) equipped with a rectifier (4) for converting AC voltage supplied from an AC power source (51) to DC voltage, an inverter (8) for converting the output from the rectifier (4) into an alternating current, and a first smoothing capacitor (6) and a second smoothing capacitor (7) which charge by smoothing the output from the rectifier (4), and are connected in parallel to one another between the rectifier (4) and the inverter (8). The power conversion device (1) is further equipped with: an inrush current prevention circuit (12) which suppresses the inrush current to the rectifier (4) and is configured in a manner such that a first relay (2) and an inrush current prevention element (3) for suppressing the inrush current are connected in parallel to one another on the alternating current input side of the rectifier (4); a second relay (10), which is connected in series to the second smoothing capacitor (7); and a control unit (11) for controlling the first relay (2) and the second relay (10).

Description

電力変換装置および電力変換装置における突入電流抑制方法POWER CONVERTER AND INRUSH CURRENT SUPPRESSION METHOD IN POWER CONVERTER
 本開示は、突入電流を抑制する機能を備えた電力変換装置および電力変換装置における突入電流抑制方法に関する。 The present disclosure relates to a power converter having a function of suppressing inrush current and a method for suppressing inrush current in the power converter.
 従来、空気調和装置および冷蔵庫などの電気機器において圧縮機およびファンなどの構成部に使用されているモータをインバータで駆動する電力変換装置が知られている。電力変換装置は、交流電源をダイオードブリッジにより直流に変換した後にコンバータにより昇圧し、平滑コンデンサを経由させた後にインバータで再度、交流に変換するものである。電力変換装置を用いることにより、所望の交流電力を得ることができる。電力変換装置により得られた交流電力は、モータ等の負荷に供給される。 Conventionally, there has been known a power conversion device that uses an inverter to drive motors used in components such as compressors and fans in electrical equipment such as air conditioners and refrigerators. A power conversion device converts AC power to DC by a diode bridge, boosts the voltage by a converter, and converts it again to AC by an inverter after passing through a smoothing capacitor. Desired AC power can be obtained by using the power converter. AC power obtained by the power converter is supplied to a load such as a motor.
 電力変換装置への電源投入時等においては、平滑コンデンサには電荷がたまっていない。この状態で、電力変換装置に電源が投入されると、突入電流と呼ばれる通常運転時よりも大きな大電流がダイオードブリッジ、コンバータおよび平滑コンデンサを通って流れることにより、ダイオードブリッジ等の素子を破壊するおそれがあった。このため、突入電流防止素子の設置または突入電流の分散などの対策により、電力変換装置に突入電流が流れることを抑制する装置の開発が行われている。 When the power converter is turned on, the smoothing capacitor is not charged. When the power converter is turned on in this state, a large current called rush current flows through the diode bridge, the converter, and the smoothing capacitor, destroying the diode bridge and other elements. I was afraid. For this reason, devices are being developed to suppress the inrush current from flowing through the power conversion device by means of measures such as installing an inrush current prevention element or dispersing the inrush current.
 また、特許文献1には、整流器の直流側とインバータの直流側とを結合している直流中間回路に設ける平滑コンデンサを2つに分割し、2つの平滑コンデンサの充電を分けることで突入電流を抑制することが開示されている。 Further, in Patent Document 1, a smoothing capacitor provided in a DC intermediate circuit that connects a DC side of a rectifier and a DC side of an inverter is divided into two, and an inrush current is reduced by dividing charging of the two smoothing capacitors. Suppression is disclosed.
特開平5-76135号公報JP-A-5-76135
 しかしながら、上記特許文献1の技術では、2つの平滑コンデンサの充電の切り替えのためにトランジスタスイッチ素子を用いるため、回路の大型化および重量化が発生するという問題があった。 However, in the technique of Patent Document 1, since a transistor switch element is used to switch charging of the two smoothing capacitors, there is a problem that the size and weight of the circuit are increased.
 本開示は、上記に鑑みてなされたものであって、大型化および重量化することなく突入電流を抑制することができる電力変換装置を得ることを目的とする。 The present disclosure has been made in view of the above, and aims to obtain a power conversion device capable of suppressing inrush current without increasing the size and weight.
 上述した課題を解決し、目的を達成するために、本開示にかかる電力変換装置は、交流電源から供給される交流電圧を直流電圧に変換する整流器と、整流器からの出力を交流に変換するインバータと、整流器の出力を平滑化し充電するものであって、整流器とインバータとの間において互いに並列に接続された第1平滑コンデンサおよび第2平滑コンデンサと、を備える。電力変換装置は、整流器の交流入力側において突入電流を抑制する突入電流防止素子と第1リレーとが並列接続されて構成され整流器への突入電流を抑制する突入電流防止回路と、第2平滑コンデンサに直列接続された第2リレーと、第1リレーおよび第2リレーを制御する制御部と、を備える。 In order to solve the above-described problems and achieve the object, the power converter according to the present disclosure includes a rectifier that converts AC voltage supplied from an AC power supply to DC voltage, and an inverter that converts the output from the rectifier to AC. and a first smoothing capacitor and a second smoothing capacitor connected in parallel between the rectifier and the inverter for smoothing and charging the output of the rectifier. The power converter includes an inrush current prevention circuit configured to suppress inrush current to the rectifier by parallel connection of an inrush current prevention element and a first relay for suppressing inrush current on the AC input side of the rectifier, and a second smoothing capacitor. and a control unit that controls the first relay and the second relay.
 本開示にかかる電力変換装置は、大型化および重量化することなく突入電流を抑制することができる、という効果を奏する。 The power conversion device according to the present disclosure has the effect of being able to suppress inrush current without increasing the size and weight.
実施の形態1にかかる電力変換装置の回路図A circuit diagram of the power converter according to the first embodiment 実施の形態1にかかる電力変換装置の動作を示すタイムチャート4 is a time chart showing the operation of the power conversion device according to the first embodiment; 実施の形態1にかかる電力変換装置の動作の手順を示すフローチャート4 is a flowchart showing the procedure of operation of the power converter according to the first embodiment; 実施の形態2にかかる電力変換装置の回路図Circuit diagram of the power converter according to the second embodiment 実施の形態2にかかる電力変換装置の動作を示すタイムチャートTime chart showing the operation of the power converter according to the second embodiment 実施の形態3にかかる電力変換装置の回路図Circuit diagram of the power converter according to the third embodiment 実施の形態3にかかる電力変換装置の動作を示すタイムチャートTime chart showing the operation of the power converter according to the third embodiment 実施の形態3にかかる電力変換装置の動作の手順を示すフローチャート10 is a flow chart showing the procedure of operation of the power conversion device according to the third embodiment; 実施の形態1,2,3における制御部の機能がプロセッサによって実現される場合のプロセッサを示す図FIG. 4 is a diagram showing a processor in which the functions of the control unit in Embodiments 1, 2, and 3 are realized by the processor; 実施の形態1,2,3にかかる制御部の少なくとも一部の機能が処理回路によって実現される場合の処理回路を示す図FIG. 4 is a diagram showing a processing circuit when at least part of the functions of the control unit according to the first, second, and third embodiments are realized by the processing circuit;
 以下に、実施の形態にかかる電力変換装置および電力変換装置における突入電流抑制方法を図面に基づいて詳細に説明する。 A power conversion device according to an embodiment and a method for suppressing inrush current in the power conversion device will be described in detail below with reference to the drawings.
実施の形態1.
 図1は、実施の形態1にかかる電力変換装置1の回路図である。図1に示す電力変換装置1は、投入される系統電源である交流電源を直流に変換した後に交流に変換し、変換した電流を負荷52に供給して負荷52を駆動する。電力変換装置1は、第1リレー2と、突入電流防止素子3と、整流器4と、コンバータ5と、第1平滑コンデンサ6と、第2平滑コンデンサ7と、インバータ8と、電圧検出器9と、第2リレー10と、制御部11と、を備えている。
Embodiment 1.
FIG. 1 is a circuit diagram of a power converter 1 according to a first embodiment. The power converter 1 shown in FIG. 1 converts AC power, which is a system power supply, into DC and then into AC, and supplies the converted current to a load 52 to drive the load 52 . The power conversion device 1 includes a first relay 2, an inrush current prevention element 3, a rectifier 4, a converter 5, a first smoothing capacitor 6, a second smoothing capacitor 7, an inverter 8, and a voltage detector 9. , a second relay 10 and a control unit 11 .
 第1リレー2は、電力変換装置1に交流電圧を供給する交流電源51と整流器4との間に配置されて突入電流防止回路12を構成している。すなわち、突入電流防止回路12は、整流器4の交流入力側において突入電流を抑制する突入電流防止素子3と第1リレー2とが並列接続されて構成され整流器4への突入電流を抑制する。第1リレー2は、a接点のリレーである。第1リレー2の動作は、制御部11により制御される。第1リレー2は、制御部11から送信される制御信号に基づいて開閉動作する。 The first relay 2 is arranged between an AC power supply 51 that supplies an AC voltage to the power converter 1 and the rectifier 4 to constitute an inrush current prevention circuit 12 . That is, the inrush current prevention circuit 12 is configured by connecting in parallel the inrush current prevention element 3 that suppresses the inrush current on the AC input side of the rectifier 4 and the first relay 2 to suppress the inrush current to the rectifier 4 . The first relay 2 is an a-contact relay. The operation of the first relay 2 is controlled by the controller 11 . The first relay 2 opens and closes based on a control signal transmitted from the control section 11 .
 突入電流防止素子3は、交流電源51から整流器4に交流電圧を印加した際に電力変換装置1に流れる大電流である突入電流を抑制する。第1リレー2がオフ状態の場合、すなわち第1リレー2が開路状態の場合は、整流器4は、突入電流防止素子3を介して交流電源51に接続されることになる。このため、第1リレー2が開路状態の場合は、整流器4に流れる大電流である突入電流が抑制される。突入電流防止素子3は、例えばPTCサーミスタ(PTC:Positive Temperature Coefficient)が用いられる。図1には、交流電源51も示されている。 The inrush current prevention element 3 suppresses inrush current, which is a large current flowing through the power converter 1 when an AC voltage is applied from the AC power supply 51 to the rectifier 4 . When the first relay 2 is in an off state, that is, when the first relay 2 is in an open circuit state, the rectifier 4 is connected to the AC power supply 51 via the inrush current prevention element 3 . Therefore, when the first relay 2 is in an open circuit state, the inrush current, which is a large current flowing through the rectifier 4, is suppressed. A PTC thermistor (PTC: Positive Temperature Coefficient), for example, is used as the inrush current prevention element 3 . Also shown in FIG. 1 is an AC power supply 51 .
 整流器4は、交流電源51からの入力交流電圧を整流する。すなわち、整流器4は、交流電源51に接続され、交流電源51から供給される交流電圧を整流して直流電圧に変換して出力する。整流器4は、例えば不図示の4個のダイオードをブリッジ接続したダイオードブリッジが用いられる。 The rectifier 4 rectifies the input AC voltage from the AC power supply 51 . That is, the rectifier 4 is connected to the AC power supply 51, rectifies the AC voltage supplied from the AC power supply 51, converts it into a DC voltage, and outputs the DC voltage. The rectifier 4 uses, for example, a diode bridge in which four diodes (not shown) are bridge-connected.
 コンバータ5は、整流器4から出力された直流電圧を昇圧する昇圧回路である。コンバータ5は、第1平滑コンデンサ6と第2平滑コンデンサ7との充電時、すなわち突入電流が発生する状態では、動作しない。コンバータ5には、例えば昇圧チョッパ回路などの種々の公知の技術を用いることができる。 The converter 5 is a booster circuit that boosts the DC voltage output from the rectifier 4 . Converter 5 does not operate when first smoothing capacitor 6 and second smoothing capacitor 7 are charged, that is, when a rush current is generated. Various known techniques such as a boost chopper circuit can be used for the converter 5 .
 電圧検出器9は、第1平滑コンデンサ6または第2平滑コンデンサ7の両端電圧を検出する。電圧検出器9は、検出した第1平滑コンデンサ6または第2平滑コンデンサ7の両端電圧の電圧値を制御部11へ出力する。電圧検出器9における端子間電圧の検出方法は特に限定されず、例えばマイクロコンピュータを用いる技術など、種々の公知の技術を用いることができる。 The voltage detector 9 detects the voltage across the first smoothing capacitor 6 or the second smoothing capacitor 7 . The voltage detector 9 outputs the detected voltage value of the voltage across the first smoothing capacitor 6 or the second smoothing capacitor 7 to the control unit 11 . A method of detecting the inter-terminal voltage in the voltage detector 9 is not particularly limited, and various known techniques such as a technique using a microcomputer can be used.
 第1平滑コンデンサ6および第2平滑コンデンサ7は、コンバータ5からの出力を平滑化し充電するものであって、コンバータ5の直流側とインバータ8の直流側とを結合している直流中間回路に接続して、互いに並列接続されている。第1平滑コンデンサ6は、相対的にインバータ8に配置されている。第2平滑コンデンサ7は、相対的にコンバータ5側に配置されている。 The first smoothing capacitor 6 and the second smoothing capacitor 7 smooth and charge the output from the converter 5, and are connected to a DC intermediate circuit connecting the DC side of the converter 5 and the DC side of the inverter 8. and connected in parallel with each other. The first smoothing capacitor 6 is arranged relative to the inverter 8 . The second smoothing capacitor 7 is arranged relatively on the converter 5 side.
 第2リレー10は、第2平滑コンデンサ7に直列に接続されている。第2リレー10のオンおよびオフを行うことにより、すなわち第2リレー10の開路状態と閉路状態との切り替えを行うことにより、電流が流れる平滑コンデンサが選択される。たとえば第2リレー10が開路状態である場合、第2平滑コンデンサ7に電流が流れず、第1平滑コンデンサ6に電流が流れるようになる。また、第2リレー10が閉路状態である場合、第2平滑コンデンサ7および第1平滑コンデンサ6に電流が流れるようになる。第2リレー10は、a接点のリレーである。第2リレー10の動作は、制御部11により制御される。第2リレー10は、制御部11から送信される制御信号に基づいて開閉動作する。 The second relay 10 is connected in series with the second smoothing capacitor 7 . By turning on and off the second relay 10, that is, by switching the second relay 10 between the open circuit state and the closed circuit state, the smoothing capacitor through which the current flows is selected. For example, when the second relay 10 is in an open circuit state, current does not flow through the second smoothing capacitor 7 and current flows through the first smoothing capacitor 6 . Also, when the second relay 10 is in the closed state, current flows through the second smoothing capacitor 7 and the first smoothing capacitor 6 . The second relay 10 is an a-contact relay. The operation of the second relay 10 is controlled by the control section 11 . The second relay 10 opens and closes based on a control signal transmitted from the control section 11 .
 インバータ8は、コンバータ5から出力された直流電圧を、負荷52を駆動させる一定電圧および一定周波数の交流電圧に変換する。インバータ8は、複数のスイッチング素子で構成される。インバータ8は、変換によって得られた交流電圧を負荷52に供給する。図1には、負荷52も示されている。 The inverter 8 converts the DC voltage output from the converter 5 into an AC voltage of constant voltage and constant frequency for driving the load 52 . The inverter 8 is composed of a plurality of switching elements. The inverter 8 supplies the AC voltage obtained by conversion to the load 52 . A load 52 is also shown in FIG.
 制御部11は、電圧検出器9で検出された電圧値を用いて、第1リレー2または第2リレー10の開閉を制御する。具体的には、制御部11は、電圧検出器9で検出された電圧値を用いて、第1リレー2または第2リレー10を動作させるための制御信号を生成する。制御部11は、生成した制御信号を第1リレー2または第2リレー10へ出力する。 The control unit 11 uses the voltage value detected by the voltage detector 9 to control opening and closing of the first relay 2 or the second relay 10 . Specifically, control unit 11 uses the voltage value detected by voltage detector 9 to generate a control signal for operating first relay 2 or second relay 10 . Control unit 11 outputs the generated control signal to first relay 2 or second relay 10 .
 なお、制御部11は、インバータ8を駆動する不図示のインバータ駆動回路と、インバータ駆動回路を制御する不図示のインバータ回路駆動用制御部とを備えるが、実施の形態1のポイントには直接関わらないため、詳細な説明は省略する。 Note that the control unit 11 includes an inverter drive circuit (not shown) that drives the inverter 8 and an inverter circuit drive control unit (not shown) that controls the inverter drive circuit. Therefore, detailed description is omitted.
 つぎに、電力変換装置1の動作について説明する。図2は、実施の形態1にかかる電力変換装置1の動作を示すタイムチャートである。図3は、実施の形態1にかかる電力変換装置1の動作の手順を示すフローチャートである。図2に示すタイムチャートでは、第1リレー2および第2リレー10については、開路状態および閉路状態のうちのどちらの開閉状態であるかを示している。また、第1平滑コンデンサ6および第2平滑コンデンサ7については、充電状態、すなわち電圧を示している。 Next, the operation of the power converter 1 will be described. FIG. 2 is a time chart showing the operation of the power converter 1 according to the first embodiment. FIG. 3 is a flow chart showing the operation procedure of the power converter 1 according to the first embodiment. The time chart shown in FIG. 2 shows which of the open circuit state and the closed circuit state the first relay 2 and the second relay 10 are in. For the first smoothing capacitor 6 and the second smoothing capacitor 7, the state of charge, that is, the voltage is shown.
 まず、ステップS110において、制御部11は、第1リレー2および第2リレー10をオフする制御、すなわち第1リレー2および第2リレー10を開路する制御を行う。第1リレー2および第2リレー10は、制御部11の制御に従って開路状態となる。 First, in step S110, the control unit 11 performs control to turn off the first relay 2 and the second relay 10, that is, control to open the first relay 2 and the second relay 10. The first relay 2 and the second relay 10 are opened according to the control of the controller 11 .
 ステップS120において、交流電源51から整流器4に交流電圧が印加される。整流器4は、交流電源51から供給された交流電圧を整流して直流電圧に変換して出力する。 In step S120, an AC voltage is applied from the AC power supply 51 to the rectifier 4. The rectifier 4 rectifies the AC voltage supplied from the AC power supply 51, converts it into a DC voltage, and outputs the DC voltage.
 ステップS130において、コンバータ5からの出力により第1平滑コンデンサ6が充電される。このとき、第2リレー10が開路状態とされているため、第2平滑コンデンサ7には電流が流れず、第2平滑コンデンサ7は充電されない。 In step S130, the output from the converter 5 charges the first smoothing capacitor 6. At this time, since the second relay 10 is open, no current flows through the second smoothing capacitor 7 and the second smoothing capacitor 7 is not charged.
 ステップS140において、制御部11は、第1平滑コンデンサ6の電位が予め決められた閾値Aに達したか否かを判定する。具体的に、電圧検出器9が、第1平滑コンデンサ6の両端電圧を検出し、検出した電圧値を制御部11へ出力する。制御部11は、電圧検出器9から取得した第1平滑コンデンサ6の両端電圧の電圧値に基づいて、第1平滑コンデンサ6の電位が予め決められた閾値Aに達したか否かを判定する。閾値Aは、第1平滑コンデンサ6の充電が仮終了したか否かを制御部11が判定するための閾値である。閾値Aは、第1平滑コンデンサ6および第2平滑コンデンサ7の充電において目標とされる電圧である目標電圧V1の値よりも低い値である。閾値Aは、予め決められて制御部11に記憶されている。 In step S140, the control unit 11 determines whether or not the potential of the first smoothing capacitor 6 has reached a predetermined threshold value A. Specifically, the voltage detector 9 detects the voltage across the first smoothing capacitor 6 and outputs the detected voltage value to the controller 11 . Based on the voltage value of the voltage across the first smoothing capacitor 6 obtained from the voltage detector 9, the control unit 11 determines whether or not the potential of the first smoothing capacitor 6 has reached a predetermined threshold value A. . The threshold A is a threshold for the control unit 11 to determine whether or not charging of the first smoothing capacitor 6 has temporarily ended. The threshold A is a value lower than the value of the target voltage V1, which is the target voltage for charging the first smoothing capacitor 6 and the second smoothing capacitor 7 . The threshold A is determined in advance and stored in the controller 11 .
 第1平滑コンデンサ6の電位が予め決められた閾値Aに達していないと判定された場合は、ステップS140においてNoとなり、制御部11は、第1平滑コンデンサ6の充電が仮終了していないと判定して、ステップS140を繰り返す。第1平滑コンデンサ6の電位が予め決められた閾値Aに達したと判定された場合は、ステップS140においてYesとなり、制御部11は、第1平滑コンデンサ6の充電が仮終了したと判定して、ステップS150に進む。すなわち、制御部11は、第1平滑コンデンサ6の電位が予め決められた閾値Aに達することにより、第1平滑コンデンサ6の充電の仮終了を検知する。 If it is determined that the potential of the first smoothing capacitor 6 has not reached the predetermined threshold value A, the result is No in step S140, and the control unit 11 determines that the charging of the first smoothing capacitor 6 has not temporarily ended. It determines and repeats step S140. If it is determined that the potential of the first smoothing capacitor 6 has reached the predetermined threshold value A, the determination in step S140 is Yes, and the control unit 11 determines that the charging of the first smoothing capacitor 6 has been provisionally terminated. , the process proceeds to step S150. That is, when the potential of the first smoothing capacitor 6 reaches a predetermined threshold value A, the control unit 11 detects temporary termination of charging of the first smoothing capacitor 6 .
 ステップS150において、制御部11は、予め決められた充電完了期間t1が経過したか否かを判定する。充電完了期間t1は、第1平滑コンデンサ6の電位が予め決められた閾値Aに達した時点から、第1平滑コンデンサ6が目標電圧V1に完全に充電されて第1平滑コンデンサ6の充電が完了して第1平滑コンデンサ6の電圧および電荷が安定するまで待機する期間であり、予め決められて制御部11に記憶されている。なお、充電完了期間t1は、第1平滑コンデンサ6の電圧が安定化するまでの期間である第1平滑コンデンサ電圧安定化期間と換言できる。 In step S150, the control unit 11 determines whether or not a predetermined charging completion period t1 has elapsed. In the charge completion period t1, the first smoothing capacitor 6 is completely charged to the target voltage V1 from the time when the potential of the first smoothing capacitor 6 reaches a predetermined threshold value A, and charging of the first smoothing capacitor 6 is completed. This is a waiting period until the voltage and charge of the first smoothing capacitor 6 are stabilized, and is determined in advance and stored in the control unit 11 . The charging completion period t1 can be rephrased as a first smoothing capacitor voltage stabilization period, which is a period until the voltage of the first smoothing capacitor 6 is stabilized.
 充電完了期間t1が経過していないと判定された場合は、ステップS150においてNoとなり、制御部11は、ステップS150を繰り返す。充電完了期間t1が経過したと判定された場合は、ステップS150においてYesとなり、ステップS160に進む。 When it is determined that the charging completion period t1 has not elapsed, the determination in step S150 is No, and the control unit 11 repeats step S150. If it is determined that the charging completion period t1 has elapsed, the determination in step S150 is Yes, and the process proceeds to step S160.
 ステップS160において、制御部11は、第2リレー10をオンする制御、すなわち第2リレー10を閉路する制御を行う。第2リレー10は、制御部11の制御に従って閉路状態となる。 In step S160, the control unit 11 performs control to turn on the second relay 10, that is, control to close the second relay 10. The second relay 10 is closed under the control of the controller 11 .
 ステップS170において、第2平滑コンデンサ7が、第2リレー10が閉路状態となったことにより、コンバータ5からの出力により充電される。 In step S170, the second smoothing capacitor 7 is charged by the output from the converter 5 as the second relay 10 is closed.
 このとき、第2リレー10が閉路状態となると、第1平滑コンデンサ6から第2平滑コンデンサ7に短絡電流が流れて、第1平滑コンデンサ6の電位が下がる。すなわち、第1平滑コンデンサ6を通して第2リレー10および第2平滑コンデンサ7に短絡電流が流れることにより、第1平滑コンデンサ6の電位が下がる。その後、第1平滑コンデンサ6は、第2平滑コンデンサ7とともにコンバータ5からの出力により充電される。その後、第1平滑コンデンサ6は、短絡電流が流れることにより減少した分の電荷が貯められると充電が再度完了する。 At this time, when the second relay 10 is closed, a short-circuit current flows from the first smoothing capacitor 6 to the second smoothing capacitor 7, and the potential of the first smoothing capacitor 6 drops. That is, a short-circuit current flows through the first smoothing capacitor 6 to the second relay 10 and the second smoothing capacitor 7, thereby causing the potential of the first smoothing capacitor 6 to drop. After that, the first smoothing capacitor 6 and the second smoothing capacitor 7 are charged by the output from the converter 5 . After that, the charging of the first smoothing capacitor 6 is completed again when the electric charge corresponding to the decrease due to the flow of the short-circuit current is accumulated.
 ステップS180において、制御部11は、予め決められた第2平滑コンデンサ電圧安定化期間t2が経過したか否かを判定する。第2平滑コンデンサ電圧安定化期間t2は、第1平滑コンデンサ6の電位が予め決められた閾値Aに達した時点から、第2平滑コンデンサ7が目標電圧V1に完全に充電されて第2平滑コンデンサ7の充電が完了して第2平滑コンデンサ7の電圧および電荷が安定するまでの期間であり、予め決められて制御部11に記憶されている。 In step S180, the control unit 11 determines whether or not a predetermined second smoothing capacitor voltage stabilization period t2 has elapsed. In the second smoothing capacitor voltage stabilization period t2, the second smoothing capacitor 7 is completely charged to the target voltage V1 from the time the potential of the first smoothing capacitor 6 reaches a predetermined threshold value A, and the second smoothing capacitor 7 is completed and the voltage and charge of the second smoothing capacitor 7 are stabilized.
 第2平滑コンデンサ電圧安定化期間t2が経過していないと判定された場合は、ステップS180においてNoとなり、制御部11は、ステップS180を繰り返す。第2平滑コンデンサ電圧安定化期間t2が経過したと判定された場合は、ステップS180においてYesとなり、ステップS190に進む。 If it is determined that the second smoothing capacitor voltage stabilization period t2 has not elapsed, the determination in step S180 is No, and the control unit 11 repeats step S180. When it is determined that the second smoothing capacitor voltage stabilization period t2 has elapsed, the determination in step S180 is Yes, and the process proceeds to step S190.
 ステップS190において、制御部11は、第1リレー2をオンする制御、すなわち第1リレー2を閉路する制御を行う。第1リレー2は、制御部11の制御に従って閉路状態となる。 In step S190, the control unit 11 performs control to turn on the first relay 2, that is, control to close the first relay 2. The first relay 2 is closed under the control of the controller 11 .
 以上の動作が行われることにより、第1平滑コンデンサ6および第2平滑コンデンサ7の充電が完了する。 By performing the above operations, charging of the first smoothing capacitor 6 and the second smoothing capacitor 7 is completed.
 ここで、充電完了期間t1および第2平滑コンデンサ電圧安定化期間t2は、予め実験およびシミュレーションによる計算により、第1平滑コンデンサ6および第2平滑コンデンサ7の充電を安定して行うことができるように設定された時間である。充電完了期間t1の設定理由は、2つある。 Here, the charge completion period t1 and the second smoothing capacitor voltage stabilization period t2 are calculated in advance through experiments and simulations so that the first smoothing capacitor 6 and the second smoothing capacitor 7 can be stably charged. It is the set time. There are two reasons for setting the charging completion period t1.
 まず、充電完了期間t1の設定理由の1つ目について説明する。第1平滑コンデンサ6、電圧検出器9といった部品の精度の部品バラつき、および第2リレー10が閉路状態となった際に第1平滑コンデンサ6から第2平滑コンデンサ7に流れる短絡電流を考慮すると、第2リレー10の誤ったオンおよびオフ動作の防止のため、閾値Aは目標電圧V1より少し低い値に設定される。この場合、充電完了期間t1が設定されていない状態では、第1平滑コンデンサ6が完全に充電されていない状態で第2リレー10が閉路してしまい、コンバータ5から流れる電流が第1平滑コンデンサ6と第2平滑コンデンサ7とに分流されてしまうためである。 First, the first reason for setting the charging completion period t1 will be described. Considering variations in accuracy of parts such as the first smoothing capacitor 6 and the voltage detector 9, and short-circuit current flowing from the first smoothing capacitor 6 to the second smoothing capacitor 7 when the second relay 10 is closed, To prevent erroneous ON and OFF operations of the second relay 10, the threshold A is set to a value slightly lower than the target voltage V1. In this case, if the charging completion period t1 is not set, the second relay 10 is closed while the first smoothing capacitor 6 is not completely charged, and the current flowing from the converter 5 is reduced to the first smoothing capacitor 6. , and the second smoothing capacitor 7 .
 第1平滑コンデンサ6の電位が、目標とする母線電圧Vdcにごく近い電圧まで到達したものの、第1平滑コンデンサ6の部品の精度の部品バラつきによって目標とする母線電圧Vdcに到達しない場合が生じる。この場合、実際には第1平滑コンデンサ6の充電が完了しているが、第2リレー10が次の動作、すなわち閉動作に移らない。 Although the potential of the first smoothing capacitor 6 has reached a voltage very close to the target bus voltage Vdc, it may not reach the target bus voltage Vdc due to variations in accuracy of the components of the first smoothing capacitor 6. In this case, charging of the first smoothing capacitor 6 is actually completed, but the second relay 10 does not proceed to the next operation, that is, the closing operation.
 そこで、充電完了期間t1は、上記のように第2リレー10が次の動作に移らないことを防ぐため、すなわち第2リレー10の誤動作防止のために設定されている。 Therefore, the charging completion period t1 is set to prevent the second relay 10 from not moving to the next operation, that is, to prevent malfunction of the second relay 10 as described above.
 このとき、閾値Aが目標とする母線電圧Vdcに設定されていると、すなわち閾値A=目標とする母線電圧Vdcとされていると、実際には第1平滑コンデンサ6の充電が完了しているが、第2リレー10が次の動作、すなわち閉動作に移らない。 At this time, if the threshold A is set to the target bus voltage Vdc, that is, if the threshold A=the target bus voltage Vdc, charging of the first smoothing capacitor 6 is actually completed. However, the second relay 10 does not move to the next operation, that is, the closing operation.
 そこで、上記のように第2リレー10が次の動作に移らないことを防ぐため、すなわち第2リレー10の誤動作防止のために、閾値Aが目標とする母線電圧Vdcより少し低い値に設定される。そして、充電完了期間t1が、第1平滑コンデンサ6の電位が閾値Aに達した時点から、第1平滑コンデンサ6が完全に充電されて第1平滑コンデンサ6の充電が完了して第1平滑コンデンサ6の電位および電荷が安定するまでの期間に設定される。 Therefore, in order to prevent the second relay 10 from not moving to the next operation as described above, that is, to prevent malfunction of the second relay 10, the threshold value A is set to a value slightly lower than the target bus voltage Vdc. be. Then, the charging completion period t1 starts when the potential of the first smoothing capacitor 6 reaches the threshold value A, the first smoothing capacitor 6 is completely charged, the charging of the first smoothing capacitor 6 is completed, and the first smoothing capacitor It is set to a period until the potential and charge of 6 are stabilized.
 また、第1平滑コンデンサ6の充電時には、ノイズ等によって生じる第1平滑コンデンサ6の電位の変動に起因して第2リレー10の誤オンまたは第2リレー10の誤オフが発生し得る。充電完了期間t1は、このような第2リレー10の誤オンまたは第2リレー10の誤オフを防止するために設定されている。第2リレー10のオンおよびオフの制御方法を、現在の第1平滑コンデンサ6の電位による制御ではなく、充電完了期間t1による時間制御とすることにより、上記のような第2リレー10の誤オンまたは第2リレー10の誤オフを防止することができる。 Also, when the first smoothing capacitor 6 is charged, erroneous turn-on or erroneous turn-off of the second relay 10 may occur due to fluctuations in the potential of the first smoothing capacitor 6 caused by noise or the like. The charging completion period t1 is set to prevent such erroneous turning-on of the second relay 10 or erroneous turning-off of the second relay 10 . By changing the ON/OFF control method of the second relay 10 from the current control based on the potential of the first smoothing capacitor 6 to time control based on the charging completion period t1, the above-mentioned erroneous ON of the second relay 10 can be prevented. Alternatively, erroneous turning off of the second relay 10 can be prevented.
 また、充電完了期間t1は、第2リレー10が閉路状態となった際に第1平滑コンデンサ6から第2平滑コンデンサ7に流れる短絡電流の発生時の、第1平滑コンデンサ6の電位が低下することによる第2リレー10の誤オフを防止するために設定されている。第2リレー10のオンおよびオフの制御方法を、現在の第1平滑コンデンサ6の電位による制御ではなく、充電完了期間t1による時間制御とすることにより、上記のような第2リレー10の誤オンまたは第2リレー10の誤オフを防止することができる。 Also, during the charging completion period t1, the potential of the first smoothing capacitor 6 decreases when a short-circuit current flows from the first smoothing capacitor 6 to the second smoothing capacitor 7 when the second relay 10 is closed. This is set to prevent the second relay 10 from being erroneously turned off. By changing the ON/OFF control method of the second relay 10 from the current control based on the potential of the first smoothing capacitor 6 to time control based on the charging completion period t1, the above-mentioned erroneous ON of the second relay 10 can be prevented. Alternatively, erroneous turning off of the second relay 10 can be prevented.
 つぎに、充電完了期間t1の設定理由の2つ目について説明する。電力変換装置1における第1平滑コンデンサ6の実際の充電では、一度オーバーシュートが発生し、その後、第1平滑コンデンサ6の電圧が一定電圧となる。このため、第1平滑コンデンサ6の電位が閾値Aに達したことの検知後、直ぐに第2リレー10を閉路すると、電圧検出器9の反応速度などの要因により、オーバーシュート時のエネルギーが第1平滑コンデンサ6から第2平滑コンデンサ7に流れる短絡電流として発生する可能性がある。この場合、第2リレー10の破壊が発生するおそれがあり、また第2リレー10の部品選定が難しくなる。充電完了期間t1は、このような問題を解消するためにも設定されている。 Next, the second reason for setting the charging completion period t1 will be described. In the actual charging of the first smoothing capacitor 6 in the power conversion device 1, an overshoot occurs once, after which the voltage of the first smoothing capacitor 6 becomes a constant voltage. Therefore, if the second relay 10 is closed immediately after it is detected that the potential of the first smoothing capacitor 6 has reached the threshold value A, the energy at the time of overshoot will be the first It may occur as a short-circuit current flowing from the smoothing capacitor 6 to the second smoothing capacitor 7 . In this case, the second relay 10 may be damaged, and the selection of parts for the second relay 10 becomes difficult. The charging completion period t1 is also set to solve such a problem.
 つぎに、第2平滑コンデンサ電圧安定化期間t2の設定理由、すなわち第1リレー2の制御方法を時間制御とした理由について説明する。第2平滑コンデンサ7の充電時には、第1平滑コンデンサ6の両端電圧と第2平滑コンデンサ7の両端電圧とが同じになる、すなわち、第1平滑コンデンサ6の端子間電圧=第2平滑コンデンサ7の端子間電圧となるが、第1平滑コンデンサ6の両端電圧は第1平滑コンデンサ6の充電時に閾値Aを超えているため、第2平滑コンデンサ電圧安定化期間t2が設定されている。 Next, the reason for setting the second smoothing capacitor voltage stabilization period t2, that is, the reason why the control method of the first relay 2 is time control will be described. When the second smoothing capacitor 7 is charged, the voltage across the first smoothing capacitor 6 and the voltage across the second smoothing capacitor 7 become the same. Although it is the voltage between the terminals, the voltage across the first smoothing capacitor 6 exceeds the threshold value A when the first smoothing capacitor 6 is charged, so the second smoothing capacitor voltage stabilization period t2 is set.
 第2平滑コンデンサ7の充電時においては、第1平滑コンデンサ6の端子間電圧=第2平滑コンデンサ7の端子間電圧となり、第1平滑コンデンサ6の両端電圧は第1平滑コンデンサ6の充電時に閾値Aを超えている。このため、第2平滑コンデンサ7の端子間電圧を基準にして第1リレー2をオンにする制御とした場合、すなわち第1リレー2の制御方法を電圧制御とした場合は、第2平滑コンデンサ7の充電の開始後、直ぐに第1リレー2がオンになり、第1リレー2の誤動作が発生する。第2平滑コンデンサ電圧安定化期間t2は、第1リレー2のオンの制御を時間制御として第1リレー2の誤動作を防止するために設定されている。 When the second smoothing capacitor 7 is charged, the voltage across the terminals of the first smoothing capacitor 6 equals the voltage across the terminals of the second smoothing capacitor 7, and the voltage across the first smoothing capacitor 6 becomes the threshold when the first smoothing capacitor 6 is charged. exceeds A. Therefore, when the first relay 2 is turned on based on the voltage across the terminals of the second smoothing capacitor 7 , that is, when the control method of the first relay 2 is voltage control, the second smoothing capacitor 7 Immediately after the charging of the first relay 2 is started, the first relay 2 is turned on, and malfunction of the first relay 2 occurs. The second smoothing capacitor voltage stabilization period t2 is set in order to prevent malfunction of the first relay 2 by using time control to turn on the first relay 2 .
 また、第2平滑コンデンサ電圧安定化期間t2は、充電完了期間t1の設定方法と同様に、第2平滑コンデンサ7の電位が予め決められた閾値に達した時点から、第2平滑コンデンサ7が目標電圧V1に完全に充電されて第2平滑コンデンサ7の充電が完了して第2平滑コンデンサ7の電圧および電荷が安定するまで待機する期間として設定することも可能である。この場合の閾値は、目標電圧V1よりも低い値であり、例えば閾値Aと同じ値である。 In addition, the second smoothing capacitor voltage stabilization period t2 starts when the potential of the second smoothing capacitor 7 reaches a predetermined threshold, in the same manner as the charging completion period t1. It is also possible to set a waiting period until the second smoothing capacitor 7 is completely charged to the voltage V1, charging of the second smoothing capacitor 7 is completed, and the voltage and charge of the second smoothing capacitor 7 are stabilized. The threshold in this case is a value lower than the target voltage V1, and is the same value as the threshold A, for example.
 上述した電力変換装置1においては、ステップS130における第1平滑コンデンサ6の充電時には、第2リレー10を開路することにより、充電経路を交流電源51、突入電流防止素子3、整流器4、コンバータ5、第1平滑コンデンサ6の順の経路とする。また、ステップS170における第2平滑コンデンサ7の充電時には、第2リレー10を閉路することおよび第1平滑コンデンサ6の充電完了により、充電経路を交流電源51、突入電流防止素子3、整流器4、コンバータ5、第2リレー10、第2平滑コンデンサ7の順の経路とすることができる。 In the power converter 1 described above, when the first smoothing capacitor 6 is charged in step S130, the second relay 10 is opened so that the charging path is changed to the AC power supply 51, the inrush current prevention element 3, the rectifier 4, the converter 5, The route is taken in order of the first smoothing capacitor 6 . When the second smoothing capacitor 7 is charged in step S170, the second relay 10 is closed and charging of the first smoothing capacitor 6 is completed. 5, the second relay 10, and the second smoothing capacitor 7 in that order.
 これにより、第2リレー10を設けずに第1平滑コンデンサ6と第2平滑コンデンサ7とを同時に充電する場合に比べて、ステップS130における第1平滑コンデンサ6の充電時の充電経路の回路、すなわち交流電源51、突入電流防止素子3、整流器4、コンバータ5、第1平滑コンデンサ6の回路のインピーダンスを増加させ、整流器4、コンバータ5および第1平滑コンデンサ6に過大な突入電流が流れることを抑制することができる。また、第2リレー10を設けずに第1平滑コンデンサ6と第2平滑コンデンサ7とを同時に充電する場合に比べて、ステップS170における第2平滑コンデンサ7の充電時の充電経路の回路、すなわち交流電源51、突入電流防止素子3、整流器4、コンバータ5、第2リレー10、第2平滑コンデンサ7の回路のインピーダンスを増加させ、整流器4、コンバータ5、第2リレー10および第2平滑コンデンサ7に過大な突入電流が流れることを抑制することができる。 As a result, compared to the case where the first smoothing capacitor 6 and the second smoothing capacitor 7 are charged simultaneously without providing the second relay 10, the circuit of the charging path when charging the first smoothing capacitor 6 in step S130, that is, The impedance of the circuit of the AC power supply 51, the inrush current prevention element 3, the rectifier 4, the converter 5, and the first smoothing capacitor 6 is increased, and the excessive inrush current flowing through the rectifier 4, the converter 5, and the first smoothing capacitor 6 is suppressed. can do. In addition, compared to the case where the first smoothing capacitor 6 and the second smoothing capacitor 7 are charged simultaneously without providing the second relay 10, the circuit of the charging path when charging the second smoothing capacitor 7 in step S170, that is, the AC The impedance of the circuit of the power supply 51, the inrush current prevention element 3, the rectifier 4, the converter 5, the second relay 10, and the second smoothing capacitor 7 is increased, and the rectifier 4, the converter 5, the second relay 10, and the second smoothing capacitor 7 It is possible to suppress the flow of an excessive rush current.
 第1平滑コンデンサ6の充電時のインピーダンスZ1は、以下の式(1)で表される。 The impedance Z1 during charging of the first smoothing capacitor 6 is expressed by the following formula (1).
 Z1=1/jwC1・・・(1)  Z1=1/jwC1...(1)
 第2平滑コンデンサ7の充電時のインピーダンスZ2は、以下の式(2)で表される。 The impedance Z2 during charging of the second smoothing capacitor 7 is expressed by the following equation (2).
 Z2=1/jw(C1+C2)・・・(2)  Z2=1/jw(C1+C2)...(2)
 また、図1に示した構成から第2リレー10を除いた回路において、第1平滑コンデンサ6と第2平滑コンデンサ7とを同時に充電する場合のインピーダンスZ3は、以下の式(3)で表される。 In addition, in the circuit shown in FIG. 1 with the second relay 10 removed, the impedance Z3 when the first smoothing capacitor 6 and the second smoothing capacitor 7 are simultaneously charged is expressed by the following equation (3). be.
 Z3=1/jw(C1+C2)・・・(3)  Z3=1/jw(C1+C2)...(3)
 1/wC1は、第1平滑コンデンサ6のリアクタンスである。1/wC2は、第2平滑コンデンサ7のリアクタンスである。jは虚数単位である。 1/wC1 is the reactance of the first smoothing capacitor 6; 1/wC2 is the reactance of the second smoothing capacitor 7; j is the imaginary unit.
 上記の式より、第1平滑コンデンサ6の充電時のインピーダンスZ1は、第1平滑コンデンサ6と第2平滑コンデンサ7とを同時に充電する場合のインピーダンスZ3よりも大きくなる。 From the above formula, the impedance Z1 when the first smoothing capacitor 6 is charged becomes larger than the impedance Z3 when the first smoothing capacitor 6 and the second smoothing capacitor 7 are charged simultaneously.
 また、第2平滑コンデンサ7の充電時のインピーダンスZ2は、第1平滑コンデンサ6と第2平滑コンデンサ7とを同時に充電する場合のインピーダンスZ3と、計算式は同じになる。しかしながら、第2平滑コンデンサ7の充電時には、第1平滑コンデンサ6には電荷がたまっているので、インピーダンスの式:Z=V/Iを考えると、Iが小さくなる。Zは対象回路のインピーダンス、Vは対象回路の電圧、Iは対象回路に流れる電流である。そして、Iが小さくなることによりZは大きくなるので、見かけ上のインピーダンスが大きくなる。これにより、見かけ上の第2平滑コンデンサ7の充電時のインピーダンスZ2は、第1平滑コンデンサ6と第2平滑コンデンサ7とを同時に充電する場合のインピーダンスZ3よりも大きくなる。 Also, the impedance Z2 when the second smoothing capacitor 7 is charged has the same formula as the impedance Z3 when the first smoothing capacitor 6 and the second smoothing capacitor 7 are charged simultaneously. However, when the second smoothing capacitor 7 is charged, electric charge is accumulated in the first smoothing capacitor 6. Considering the impedance formula: Z=V/I, I becomes small. Z is the impedance of the target circuit, V is the voltage of the target circuit, and I is the current flowing through the target circuit. Since Z increases as I decreases, the apparent impedance increases. As a result, the apparent impedance Z2 when the second smoothing capacitor 7 is charged becomes larger than the impedance Z3 when the first smoothing capacitor 6 and the second smoothing capacitor 7 are charged simultaneously.
 また、突入電流防止素子3にPTCサーミスタを用いる場合、PTCサーミスタの特性により、第2平滑コンデンサ7の充電時には、第1平滑コンデンサ6の充電時にPTCサーミスタに流れる電流によってPTCサーミスタの抵抗値が上昇している。このため、第2平滑コンデンサ7の充電時における突入電流防止素子3の抵抗値は、第1平滑コンデンサ充電時におけるPTCサーミスタの抵抗値より大きくなっている。これにより、第2平滑コンデンサ7の充電時においては、第1平滑コンデンサ6の充電時よりも、交流電源51から整流器4に流れる突入電流をより抑制することができる。 When a PTC thermistor is used as the inrush current prevention element 3, the resistance value of the PTC thermistor rises due to the current flowing through the PTC thermistor when the first smoothing capacitor 6 is charged due to the characteristics of the PTC thermistor when the second smoothing capacitor 7 is charged. is doing. Therefore, the resistance value of the rush current prevention element 3 when charging the second smoothing capacitor 7 is greater than the resistance value of the PTC thermistor when charging the first smoothing capacitor. As a result, when the second smoothing capacitor 7 is charged, the rush current flowing from the AC power supply 51 to the rectifier 4 can be suppressed more than when the first smoothing capacitor 6 is charged.
 交流電源51から整流器4に流れる突入電流を抑制することにより、突入電流防止素子3、整流器4およびコンバータ5のスペックを抑えることができ、突入電流防止素子3、整流器4およびコンバータ5の、低コスト化、小型化、および低重量化が可能となる。これにより、電力変換装置1の、低コスト化、小型化、および低重量化を図ることが可能となる。また、交流電源51から整流器4に流れる突入電流を抑制することにより、第1平滑コンデンサ6および第2平滑コンデンサ7の寿命を延ばすことができる。これにより、電力変換装置1の寿命を延ばすことができる。 By suppressing the inrush current flowing from the AC power supply 51 to the rectifier 4, the specifications of the inrush current prevention element 3, the rectifier 4, and the converter 5 can be suppressed, and the inrush current prevention element 3, the rectifier 4, and the converter 5 are low in cost. It is possible to reduce the size, size, and weight of the product. As a result, it is possible to reduce the cost, size, and weight of the power conversion device 1 . In addition, by suppressing the rush current flowing from the AC power supply 51 to the rectifier 4, the life of the first smoothing capacitor 6 and the second smoothing capacitor 7 can be extended. Thereby, the life of the power conversion device 1 can be extended.
 また、実施の形態1にかかる電力変換装置1は、2つの平滑コンデンサの充電の切り替えのためにトランジスタスイッチ素子が用いられていないため、トランジスタスイッチ素子を制御する回路のコストの増加、制御の複雑化、電力変換装置1の回路の大型化、トランジスタスイッチ素子におけるスイッチング損失の発生、およびトランジスタスイッチ素子による導通損失の発生といった問題が生じない。 In addition, since the power conversion device 1 according to the first embodiment does not use a transistor switch element for switching charging of the two smoothing capacitors, the cost of the circuit that controls the transistor switch element increases and the control becomes complicated. This eliminates problems such as miniaturization, enlargement of the circuit of the power converter 1, occurrence of switching loss in the transistor switch element, and occurrence of conduction loss due to the transistor switch element.
 また、実施の形態1にかかる電力変換装置1は、突入電流の抑制のための複数個の突入電流防止回路といった構成が必要ないため、電力変換装置の大容量化、電力変換装置の回路の大型化およびコストの増加といった問題が生じない。 In addition, since the power conversion device 1 according to the first embodiment does not require a configuration such as a plurality of inrush current prevention circuits for suppressing inrush current, it is possible to increase the capacity of the power conversion device and the size of the circuit of the power conversion device. There are no problems such as simplification and cost increase.
 したがって、本実施の形態1にかかる電力変換装置1は、大型化および重量化することなく突入電流を抑制することができる、という効果を奏する。 Therefore, the power converter 1 according to the first embodiment has the effect of being able to suppress the inrush current without increasing the size and weight.
実施の形態2.
 本実施の形態2では、第2リレー10がオンされたときに、すなわち第2リレー10が閉路状態とされたときに、第1平滑コンデンサ6を通して第2リレー10および第2平滑コンデンサ7に流れる短絡電流を抑制する場合について説明する。
Embodiment 2.
In the second embodiment, when the second relay 10 is turned on, that is, when the second relay 10 is closed, the current flows through the first smoothing capacitor 6 to the second relay 10 and the second smoothing capacitor 7 . A case of suppressing short-circuit current will be described.
 図4は、実施の形態2にかかる電力変換装置1aの回路図である。図5は、実施の形態2にかかる電力変換装置1aの動作を示すタイムチャートである。図5に示すタイムチャートでは、第1リレー2および第2リレー10については、開路状態および閉路状態のうちのどちらの開閉状態であるかを示している。また、第1平滑コンデンサ6および第2平滑コンデンサ7については、充電状態、すなわち電圧を示している。 FIG. 4 is a circuit diagram of the power converter 1a according to the second embodiment. FIG. 5 is a time chart showing the operation of the power converter 1a according to the second embodiment. The time chart shown in FIG. 5 shows which of the open circuit state and the closed circuit state the first relay 2 and the second relay 10 are in. For the first smoothing capacitor 6 and the second smoothing capacitor 7, the state of charge, that is, the voltage is shown.
 本実施の形態2にかかる電力変換装置1aは、上述した実施の形態1にかかる電力変換装置1の構成に、逆流防止ダイオード21が追加されている。逆流防止ダイオード21は、コンバータ5の直流側とインバータ8の直流側とを結合している直流中間回路において、第1平滑コンデンサ6の一端側と第2リレー10の一端側とに接続して配置されている。すなわち、逆流防止ダイオード21は、直流中間回路において、第1平滑コンデンサ6の一端側と第2平滑コンデンサ7の一端側との間に配置されている。また、逆流防止ダイオード21は、第1平滑コンデンサ6と第2平滑コンデンサ7との間に、第1平滑コンデンサ6側をカソード側にして配置された逆流防止ダイオードである。 A power conversion device 1a according to the second embodiment has a backflow prevention diode 21 added to the configuration of the power conversion device 1 according to the first embodiment described above. Backflow prevention diode 21 is connected to one end of first smoothing capacitor 6 and one end of second relay 10 in a DC intermediate circuit that connects the DC side of converter 5 and the DC side of inverter 8. It is That is, the backflow prevention diode 21 is arranged between one end side of the first smoothing capacitor 6 and one end side of the second smoothing capacitor 7 in the DC intermediate circuit. Also, the backflow prevention diode 21 is a backflow prevention diode arranged between the first smoothing capacitor 6 and the second smoothing capacitor 7 with the first smoothing capacitor 6 side as the cathode side.
 つぎに、電力変換装置1aの動作について説明する。電力変換装置1aの動作は、上述した実施の形態1にかかる電力変換装置1の動作と同じである。すなわち、電力変換装置1aでは、図3に沿って説明した動作が行われることにより、第1平滑コンデンサ6および第2平滑コンデンサ7の充電が行われる。 Next, the operation of the power converter 1a will be described. The operation of the power converter 1a is the same as the operation of the power converter 1 according to the first embodiment described above. That is, in the power converter 1a, the first smoothing capacitor 6 and the second smoothing capacitor 7 are charged by performing the operation described along FIG.
 ここで、本実施の形態2にかかる電力変換装置1aでは、逆流防止ダイオード21が設けられているため、ステップS160において第2リレー10がオンされたときに、すなわち第2リレー10が閉路されたときに、第1平滑コンデンサ6を通して第2リレー10および第2平滑コンデンサ7に流れる短絡電流を抑制することができる。このため、図5に示すタイムチャートでは、図2に示すタイムチャートにおいて示されていた、第1平滑コンデンサ6を通して第2リレー10および第2平滑コンデンサ7に流れる短絡電流に起因した第1平滑コンデンサ6の電位の低下が生じない。 Here, in the power converter 1a according to the second embodiment, since the backflow prevention diode 21 is provided, when the second relay 10 is turned on in step S160, that is, the second relay 10 is closed. At times, the short-circuit current flowing through the first smoothing capacitor 6 to the second relay 10 and the second smoothing capacitor 7 can be suppressed. For this reason, in the time chart shown in FIG. 5, the first smoothing capacitor 7 is caused by the short-circuit current flowing through the first smoothing capacitor 6 to the second relay 10 and the second smoothing capacitor 7 shown in the time chart shown in FIG. 6 does not drop in potential.
 第1平滑コンデンサ6を通して第2リレー10および第2平滑コンデンサ7に流れる短絡電流を抑制することにより、第2リレー10のスペックを抑えることができ、第2リレー10の低コスト化、第2リレー10の小型化、および第2リレー10の低重量化が可能となる。これにより、電力変換装置1aの、低コスト化、小型化および低重量化を図ることが可能となる。 By suppressing the short-circuit current flowing through the second relay 10 and the second smoothing capacitor 7 through the first smoothing capacitor 6, the specifications of the second relay 10 can be suppressed, the cost of the second relay 10 can be reduced, and the second relay 10 and the weight of the second relay 10 can be reduced. This makes it possible to reduce the cost, size, and weight of the power converter 1a.
 また、第1平滑コンデンサ6を通して第2リレー10および第2平滑コンデンサ7に流れる短絡電流を抑制することにより、第2平滑コンデンサ7の寿命を延ばすことができる。これにより、電力変換装置1aの寿命を延ばすことができる。 Also, by suppressing the short-circuit current flowing through the first smoothing capacitor 6 to the second relay 10 and the second smoothing capacitor 7, the life of the second smoothing capacitor 7 can be extended. Thereby, the life of the power converter 1a can be extended.
実施の形態3. 
 上述した実施の形態2では、突入電流の抑制に加えて逆流防止ダイオード21により短絡電流を抑制する場合について説明したが、本実施の形態3では、さらに逆流防止ダイオード21による損失を抑制する場合について説明する。
Embodiment 3.
In the second embodiment described above, the case of suppressing the short-circuit current by the anti-backflow diode 21 in addition to suppressing the inrush current has been described. explain.
 図6は、実施の形態3にかかる電力変換装置1bの回路図である。本実施の形態3にかかる電力変換装置1bは、上述した実施の形態1にかかる電力変換装置1の構成に、第3リレー22が追加されている。第3リレー22は、b接点のリレーである。第3リレー22は、コンバータ5の直流側とインバータ8の直流側とを結合している直流中間回路において、第1平滑コンデンサ6の一端側と第2リレー10の一端側とに接続して配置されている。すなわち、本実施の形態3にかかる電力変換装置1bは、上述した実施の形態2にかかる電力変換装置1aにおいて逆流防止ダイオード21が第3リレー22に置き換えられた構成を有する。 FIG. 6 is a circuit diagram of the power converter 1b according to the third embodiment. A power conversion device 1b according to the third embodiment has a configuration in which a third relay 22 is added to the configuration of the power conversion device 1 according to the first embodiment. The third relay 22 is a b-contact relay. The third relay 22 is connected to one end of the first smoothing capacitor 6 and one end of the second relay 10 in a DC intermediate circuit that connects the DC side of the converter 5 and the DC side of the inverter 8. It is That is, the power converter 1b according to the third embodiment has a configuration in which the backflow prevention diode 21 in the power converter 1a according to the second embodiment is replaced with the third relay 22. FIG.
 つぎに、電力変換装置1bの動作について説明する。図7は、実施の形態3にかかる電力変換装置1bの動作を示すタイムチャートである。図8は、実施の形態3にかかる電力変換装置1bの動作の手順を示すフローチャートである。図7に示すタイムチャートでは、第1リレー2、第2リレー10および第3リレー22については、開路状態および閉路状態のうちのどちらの開閉状態であるかを示している。また、第1平滑コンデンサ6および第2平滑コンデンサ7については、充電状態、すなわち電圧を示している。 Next, the operation of the power converter 1b will be described. FIG. 7 is a time chart showing the operation of the power converter 1b according to the third embodiment. FIG. 8 is a flow chart showing the operation procedure of the power converter 1b according to the third embodiment. In the time chart shown in FIG. 7, the first relay 2, the second relay 10, and the third relay 22 are shown in which open state or closed state. For the first smoothing capacitor 6 and the second smoothing capacitor 7, the state of charge, that is, the voltage is shown.
 まず、ステップS310において、制御部11は、第1リレー2および第2リレー10を開路する制御を行う。第1リレー2および第2リレー10は、制御部11の制御に従って開路状態となる。また、制御部11は、第3リレー22を閉路する制御を行う。第3リレー22は、制御部11の制御に従って閉路状態となる。 First, in step S310, the control unit 11 performs control to open the first relay 2 and the second relay 10. The first relay 2 and the second relay 10 are opened according to the control of the controller 11 . Further, the control unit 11 performs control to close the third relay 22 . The third relay 22 is closed under the control of the control section 11 .
 つぎに、ステップS120と同様にして、ステップS320が行われる。 Next, step S320 is performed in the same manner as step S120.
 つぎに、ステップS130と同様にして、ステップS330が行われる。 Next, step S330 is performed in the same manner as step S130.
 つぎに、ステップS140と同様にして、ステップS340が行われる。 Next, step S340 is performed in the same manner as step S140.
 つぎに、ステップS150と同様にして、ステップS350が行われる。 Next, step S350 is performed in the same manner as step S150.
 充電完了期間t1が経過していないと判定された場合は、ステップS350においてNoとなり、制御部11は、ステップS350を繰り返す。充電完了期間t1が経過したと判定された場合は、ステップS350においてYesとなり、ステップS360に進む。 If it is determined that the charging completion period t1 has not elapsed, the determination in step S350 is No, and the control unit 11 repeats step S350. If it is determined that the charging completion period t1 has elapsed, the determination in step S350 is Yes, and the process proceeds to step S360.
 ステップS360において、制御部11は、第3リレー22をオンする制御、すなわち第3リレー22を開路する制御を行う。第3リレー22は、制御部11の制御に従って開路状態となる。 In step S360, the control unit 11 performs control to turn on the third relay 22, that is, control to open the third relay 22. The third relay 22 is opened according to the control of the control section 11 .
 ステップS370において、制御部11は、第3リレー22をオンする制御を行ってから、すなわち第3リレー22を開路する制御を行ってから、予め決められた期間t3が経過したか否かを判定する。期間t3は、第3リレー22の切替と、第2リレー10の切替との切替タイミングを異ならせるために待機する待機期間である。すなわち、期間t3は、第3リレー22と第2リレー10との同時オンを防ぐための待機時間である。期間t3は、広義では、第3リレー22の切替による電力変換装置1の回路への影響が安定するまで待機する安定化期間といえる。期間t3が経過していないと判定された場合は、ステップS370においてNoとなり、制御部11は、ステップS370を繰り返す。期間t3が経過したと判定された場合は、ステップS370においてYesとなり、ステップS380に進む。 In step S370, the control unit 11 determines whether or not a predetermined period of time t3 has elapsed after the control for turning on the third relay 22, that is, after the control for opening the third relay 22 was performed. do. A period t<b>3 is a standby period in which the switching timing of the switching of the third relay 22 and the switching of the second relay 10 are to be different. That is, the period t3 is a waiting time for preventing the third relay 22 and the second relay 10 from turning on at the same time. In a broad sense, the period t3 can be said to be a stabilization period during which the switching of the third relay 22 waits until the influence of the switching of the third relay 22 on the circuit of the power converter 1 stabilizes. If it is determined that the period t3 has not elapsed, the determination in step S370 is No, and the control unit 11 repeats step S370. If it is determined that the period t3 has elapsed, the determination in step S370 is Yes, and the process proceeds to step S380.
 ステップS380において、制御部11は、第2リレー10をオンする制御、すなわち第2リレー10を閉路する制御を行う。第2リレー10は、制御部11の制御に従って閉路状態となる。 In step S380, the control unit 11 performs control to turn on the second relay 10, that is, control to close the second relay 10. The second relay 10 is closed under the control of the controller 11 .
 ステップS390において、第2平滑コンデンサ7が、第2リレー10が閉路状態となったことにより、コンバータ5からの出力により充電される。 In step S390, the second smoothing capacitor 7 is charged by the output from the converter 5 as the second relay 10 is closed.
 ここで、第3リレー22が開路状態となっているため、ステップS380において第2リレー10がオンされたときに、すなわち第2リレー10が閉路されたときに、第1平滑コンデンサ6を通して第2リレー10および第2平滑コンデンサ7に流れる短絡電流を抑制することができる。このため、図7に示すタイムチャートでは、図2に示すタイムチャートにおいて示されていた、第1平滑コンデンサ6を通して第2リレー10および第2平滑コンデンサ7に流れる短絡電流に起因した第1平滑コンデンサ6の電位の低下が生じない。また、第3リレー22が開路状態とされているため、第1平滑コンデンサ6には電流が流れない。 Here, since the third relay 22 is in an open circuit state, when the second relay 10 is turned on in step S380, that is, when the second relay 10 is closed, the second relay 10 is applied through the first smoothing capacitor 6. Short-circuit current flowing through relay 10 and second smoothing capacitor 7 can be suppressed. For this reason, in the time chart shown in FIG. 7, the first smoothing capacitor 7 is caused by the short-circuit current flowing through the first smoothing capacitor 6 to the second relay 10 and the second smoothing capacitor 7 shown in the time chart shown in FIG. 6 does not drop in potential. Also, since the third relay 22 is in an open circuit state, no current flows through the first smoothing capacitor 6 .
 第1平滑コンデンサ6を通して第2リレー10および第2平滑コンデンサ7に流れる短絡電流を抑制することにより、第2リレー10のスペックを抑えることができ、第2リレー10の低コスト化、第2リレー10の小型化、および第2リレー10の低重量化が可能となる。これにより、電力変換装置1bは、低コスト化、小型化および低重量化が可能となる。 By suppressing the short-circuit current flowing through the second relay 10 and the second smoothing capacitor 7 through the first smoothing capacitor 6, the specifications of the second relay 10 can be suppressed, the cost of the second relay 10 can be reduced, and the second relay 10 and the weight of the second relay 10 can be reduced. As a result, the power converter 1b can be reduced in cost, size, and weight.
 また、第1平滑コンデンサ6を通して第2リレー10および第2平滑コンデンサ7に流れる短絡電流を抑制することにより、第2平滑コンデンサ7の寿命を延ばすことができる。これにより、電力変換装置1bの寿命を延ばすことができる。 Also, by suppressing the short-circuit current flowing through the first smoothing capacitor 6 to the second relay 10 and the second smoothing capacitor 7, the life of the second smoothing capacitor 7 can be extended. Thereby, the life of the power conversion device 1b can be extended.
 ステップS400において、制御部11は、第2平滑コンデンサ7の電位が予め決められた閾値Bに達したか否かを判定する。具体的に、電圧検出器9が、第2平滑コンデンサ7の両端電圧を検出し、検出した電圧値を制御部11へ出力する。制御部11は、電圧検出器9から取得した第2平滑コンデンサ7の両端電圧の電圧値に基づいて、第2平滑コンデンサ7の電位が予め決められた閾値Bに達したか否かを判定する。閾値Bは、第2平滑コンデンサ7の充電が仮終了したか否かを制御部11が判定するための閾値である。閾値Bは、予め決められて制御部11に記憶されている。本実施の形態3における閾値Bは、目標電圧V1である。 In step S400, the control unit 11 determines whether or not the potential of the second smoothing capacitor 7 has reached a predetermined threshold value B. Specifically, the voltage detector 9 detects the voltage across the second smoothing capacitor 7 and outputs the detected voltage value to the controller 11 . Based on the voltage value of the voltage across the second smoothing capacitor 7 obtained from the voltage detector 9, the control unit 11 determines whether or not the potential of the second smoothing capacitor 7 has reached a predetermined threshold value B. . The threshold B is a threshold for the control unit 11 to determine whether or not charging of the second smoothing capacitor 7 has temporarily ended. The threshold B is determined in advance and stored in the controller 11 . The threshold B in the third embodiment is the target voltage V1.
 第2平滑コンデンサ7の電位が予め決められた閾値Bに達していないと判定された場合は、ステップS400においてNoとなり、制御部11は、第2平滑コンデンサ7の充電が仮終了していないと判定して、ステップS400を繰り返す。第2平滑コンデンサ7の電位が予め決められた閾値Bに達したと判定された場合は、ステップS400においてYesとなり、制御部11は、第2平滑コンデンサ7の充電が仮終了したと判定して、ステップS410に進む。すなわち、制御部11は、第2平滑コンデンサ7の電位が予め決められた閾値Bに達することにより、第2平滑コンデンサ7の充電の仮終了を検知する。 If it is determined that the potential of the second smoothing capacitor 7 has not reached the predetermined threshold value B, the result is No in step S400, and the control unit 11 determines that the charging of the second smoothing capacitor 7 has not been provisionally terminated. It determines and repeats step S400. If it is determined that the potential of the second smoothing capacitor 7 has reached the predetermined threshold value B, the result is Yes in step S400, and the control unit 11 determines that the charging of the second smoothing capacitor 7 has been provisionally terminated. , go to step S410. That is, when the potential of the second smoothing capacitor 7 reaches a predetermined threshold value B, the control unit 11 detects temporary termination of charging of the second smoothing capacitor 7 .
 ステップS410において、制御部11は、予め決められた充電完了期間t4が経過したか否かを判定する。充電完了期間t4は、第2平滑コンデンサ7の電位が予め決められた閾値Bに達した時点から、第2平滑コンデンサ7が完全に充電されて第2平滑コンデンサ7の充電が完了して第2平滑コンデンサ7の電圧および電荷が安定するまで待機する期間であり、予め決められて制御部11に記憶されている。なお、充電完了期間t4は、第2平滑コンデンサ7の電圧が安定化するまでの期間である第2平滑コンデンサ電圧安定化期間と換言できる。 In step S410, the control unit 11 determines whether or not a predetermined charging completion period t4 has elapsed. In the charging completion period t4, the second smoothing capacitor 7 is fully charged from the point in time when the potential of the second smoothing capacitor 7 reaches a predetermined threshold value B, and charging of the second smoothing capacitor 7 is completed. This is a waiting period until the voltage and charge of the smoothing capacitor 7 are stabilized, and is predetermined and stored in the control section 11 . The charging completion period t4 can be rephrased as a second smoothing capacitor voltage stabilization period, which is a period until the voltage of the second smoothing capacitor 7 is stabilized.
 充電完了期間t4が経過していないと判定された場合は、ステップS410においてNoとなり、制御部11は、ステップS410を繰り返す。充電完了期間t4が経過したと判定された場合は、ステップS410においてYesとなり、ステップS420に進む。 If it is determined that the charging completion period t4 has not elapsed, the determination in step S410 is No, and the control unit 11 repeats step S410. If it is determined that the charging completion period t4 has elapsed, the determination in step S410 is Yes, and the process proceeds to step S420.
 ステップS420において、制御部11は、第3リレー22をオフする制御、すなわち第3リレー22を閉路する制御を行う。第3リレー22は、制御部11の制御に従って閉路状態となる。 In step S420, the control unit 11 performs control to turn off the third relay 22, that is, control to close the third relay 22. The third relay 22 is closed under the control of the control section 11 .
 ステップS430において、制御部11は、予め決められた安定化期間t5が経過したか否かを判定する。安定化期間t5は、第3リレー22を閉路したときのチャタリング等の電力変換装置1の回路への影響が安定するまでの期間であり、予め決められて制御部11に記憶されている。安定化期間t5が経過していないと判定された場合は、ステップS430においてNoとなり、制御部11は、ステップS430を繰り返す。安定化期間t5が経過したと判定された場合は、ステップS430においてYesとなり、ステップS440に進む。 In step S430, the control unit 11 determines whether or not a predetermined stabilization period t5 has elapsed. The stabilization period t5 is a period until the influence on the circuit of the power converter 1 such as chattering when the third relay 22 is closed is stabilized, and is predetermined and stored in the control unit 11 . If it is determined that the stabilization period t5 has not elapsed, the determination in step S430 is No, and the control unit 11 repeats step S430. If it is determined that the stabilization period t5 has elapsed, the determination in step S430 is Yes, and the process proceeds to step S440.
 ステップS440において、制御部11は、第1リレー2を閉路する制御を行う。第1リレー2は、制御部11の制御に従って閉路状態となる。 In step S440, the control unit 11 performs control to close the first relay 2. The first relay 2 is closed under the control of the controller 11 .
 以上の動作が行われることにより、第1平滑コンデンサ6および第2平滑コンデンサ7の充電が完了する。 By performing the above operations, charging of the first smoothing capacitor 6 and the second smoothing capacitor 7 is completed.
 上述したように、実施の形態3にかかる電力変換装置1bでは、第3リレー22を備えることにより、上述した電力変換装置1および電力変換装置1aと同様に突入電流を抑制するとともに、電力変換装置1aと同様に第2リレー10が閉路状態とされたときに第1平滑コンデンサ6を通して第2リレー10および第2平滑コンデンサ7に流れる短絡電流を抑制することができる。 As described above, in the power conversion device 1b according to the third embodiment, by including the third relay 22, the inrush current is suppressed in the same manner as the power conversion device 1 and the power conversion device 1a described above, and the power conversion device As in 1a, the short-circuit current flowing through the second relay 10 and the second smoothing capacitor 7 through the first smoothing capacitor 6 can be suppressed when the second relay 10 is closed.
 また、実施の形態3にかかる電力変換装置1bで用いる第3リレー22は、逆流防止ダイオード21に比べて導通損失が小さい。したがって、実施の形態3にかかる電力変換装置1bは、上述した電力変換装置1aと比べて、損失を抑制することができる。 Also, the third relay 22 used in the power converter 1b according to the third embodiment has a smaller conduction loss than the backflow prevention diode 21. Therefore, the power conversion device 1b according to the third embodiment can suppress loss more than the power conversion device 1a described above.
 図9は、上述した実施の形態1,2,3における制御部11の機能がプロセッサ301によって実現される場合のプロセッサ301を示す図である。つまり、制御部11の少なくとも一部の機能は、メモリ302に格納されるプログラムを実行するプロセッサ301によって実現されてもよい。プロセッサ301は、マイクロコンピュータ、CPU(Central Processing Unit)、処理装置、演算装置、マイクロプロセッサ、又はDSP(Digital Signal Processor)である。図9には、メモリ302も示されている。 FIG. 9 is a diagram showing the processor 301 when the functions of the control unit 11 in Embodiments 1, 2, and 3 described above are implemented by the processor 301. FIG. That is, at least part of the functions of the control unit 11 may be realized by the processor 301 executing programs stored in the memory 302 . The processor 301 is a microcomputer, CPU (Central Processing Unit), processing device, arithmetic device, microprocessor, or DSP (Digital Signal Processor). Memory 302 is also shown in FIG.
 制御部11の少なくとも一部の機能がプロセッサ301によって実現される場合、当該一部の機能は、プロセッサ301と、ソフトウェア、ファームウェア、又は、ソフトウェア及びファームウェアとの組み合わせにより実現される。ソフトウェア又はファームウェアはプログラムとして記述され、メモリ302に格納される。プロセッサ301は、メモリ302に記憶されたプログラムを読み出して実行することにより、制御部11の少なくとも一部の機能を実現する。 When at least part of the function of the control unit 11 is realized by the processor 301, the part of the function is realized by a combination of the processor 301 and software, firmware, or software and firmware. Software or firmware is written as a program and stored in memory 302 . The processor 301 implements at least part of the functions of the control unit 11 by reading and executing programs stored in the memory 302 .
 すなわち、制御部11の少なくとも一部の機能がプロセッサ301によって実現される場合、制御部11は、制御部11の少なくとも一部によって実行されるステップが結果的に実行されることになるプログラムを格納するためのメモリ302を有する。メモリ302に格納されるプログラムは、制御部11の少なくとも一部が実行する手順又は方法をコンピュータに実行させるものであるともいえる。 That is, when at least part of the function of the control unit 11 is realized by the processor 301, the control unit 11 stores a program that results in the execution of steps executed by at least part of the control unit 11. It has a memory 302 for It can also be said that the program stored in the memory 302 causes the computer to execute the procedure or method executed by at least part of the control unit 11 .
 メモリ302は、例えば、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ、EPROM(Erasable Programmable Read Only Memory)、EEPROM(登録商標)(Electrically Erasable Programmable Read-Only Memory)等の不揮発性もしくは揮発性の半導体メモリ、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスク又はDVD(Digital Versatile Disk)等である。 The memory 302 is non-volatile such as RAM (Random Access Memory), ROM (Read Only Memory), flash memory, EPROM (Erasable Programmable Read Only Memory), EEPROM (registered trademark) (Electrically Erasable Programmable Read-Only Memory), etc. Alternatively, it may be a volatile semiconductor memory, magnetic disk, flexible disk, optical disk, compact disk, mini disk, DVD (Digital Versatile Disk), or the like.
 図10は、実施の形態1,2,3にかかる制御部11の少なくとも一部の機能が処理回路303によって実現される場合の処理回路303を示す図である。つまり、制御部11の少なくとも一部は、処理回路303によって実現されてもよい。 FIG. 10 is a diagram showing the processing circuit 303 when at least part of the functions of the control unit 11 according to the first, second, and third embodiments are realized by the processing circuit 303. FIG. That is, at least part of the control unit 11 may be implemented by the processing circuit 303 .
 処理回路303は、専用のハードウェアである。処理回路303は、例えば、単一回路、複合回路、プログラム化されたプロセッサ、並列プログラム化されたプロセッサ、ASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)、又はこれらを組み合わせたものである。制御部11の一部は、残部とは別個の専用のハードウェアであってもよい。 The processing circuit 303 is dedicated hardware. The processing circuit 303 is, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC (Application Specific Integrated Circuit), an FPGA (Field-Programmable Gate Array), or a combination thereof. is. Part of the control unit 11 may be dedicated hardware separate from the rest.
 以上の実施の形態に示した構成は、一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、実施の形態同士を組み合わせることも可能であるし、要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。 The configurations shown in the above embodiments are only examples, and can be combined with other known techniques, or can be combined with other embodiments, without departing from the scope of the invention. It is also possible to omit or change part of the configuration.
 1,1a,1b 電力変換装置、2 第1リレー、3 突入電流防止素子、4 整流器、5 コンバータ、6 第1平滑コンデンサ、7 第2平滑コンデンサ、8 インバータ、9 電圧検出器、10 第2リレー、11 制御部、12 突入電流防止回路、21 逆流防止ダイオード、22 第3リレー、51 交流電源、52 負荷、301 プロセッサ、302 メモリ、303 処理回路。 1, 1a, 1b power converter, 2 first relay, 3 inrush current prevention element, 4 rectifier, 5 converter, 6 first smoothing capacitor, 7 second smoothing capacitor, 8 inverter, 9 voltage detector, 10 second relay , 11 control unit, 12 inrush current prevention circuit, 21 backflow prevention diode, 22 third relay, 51 AC power supply, 52 load, 301 processor, 302 memory, 303 processing circuit.

Claims (8)

  1.  交流電源から供給される交流電圧を直流電圧に変換する整流器と、
     前記整流器からの出力を交流に変換するインバータと、
     前記整流器の出力を平滑化し充電するものであって、前記整流器と前記インバータとの間において互いに並列に接続された第1平滑コンデンサおよび第2平滑コンデンサと、
     前記整流器の交流入力側において突入電流を抑制する突入電流防止素子と第1リレーとが並列接続されて構成され前記整流器への突入電流を抑制する突入電流防止回路と、
     前記第2平滑コンデンサに直列接続された第2リレーと、
     前記第1リレーおよび前記第2リレーを制御する制御部と、
     を備える電力変換装置。
    a rectifier that converts an AC voltage supplied from an AC power supply to a DC voltage;
    an inverter that converts the output from the rectifier into alternating current;
    a first smoothing capacitor and a second smoothing capacitor connected in parallel between the rectifier and the inverter for smoothing and charging the output of the rectifier;
    an inrush current prevention circuit configured by connecting in parallel a first relay and an inrush current prevention element that suppresses an inrush current on the AC input side of the rectifier, and suppressing an inrush current to the rectifier;
    a second relay connected in series with the second smoothing capacitor;
    a control unit that controls the first relay and the second relay;
    A power conversion device comprising:
  2.  前記制御部は、前記第1リレーおよび前記第2リレーが開路の状態で前記第1平滑コンデンサを充電し、前記第1平滑コンデンサの充電の終了後に前記第2リレーを閉路して前記第2平滑コンデンサを充電する制御を行う、
     請求項1に記載の電力変換装置。
    The control unit charges the first smoothing capacitor when the first relay and the second relay are open, and closes the second relay after charging of the first smoothing capacitor to perform the second smoothing. to control the charging of the capacitor,
    The power converter according to claim 1.
  3.  前記第1平滑コンデンサが、前記インバータ側に配置され、
     前記第2平滑コンデンサが、前記整流器側に配置され、
     前記第1平滑コンデンサと前記第2平滑コンデンサとの間に、前記第1平滑コンデンサ側をカソード側にした逆流防止ダイオードを備える、
     請求項2に記載の電力変換装置。
    The first smoothing capacitor is arranged on the inverter side,
    The second smoothing capacitor is arranged on the rectifier side,
    Between the first smoothing capacitor and the second smoothing capacitor, a backflow prevention diode is provided with the first smoothing capacitor side as the cathode side,
    The power converter according to claim 2.
  4.  前記第1平滑コンデンサが、前記インバータ側に配置され、
     前記第2平滑コンデンサが、前記整流器側に配置され、
     前記第1平滑コンデンサと前記第2平滑コンデンサとの間に配置された第3リレーを備える、
     請求項2に記載の電力変換装置。
    The first smoothing capacitor is arranged on the inverter side,
    The second smoothing capacitor is arranged on the rectifier side,
    A third relay disposed between the first smoothing capacitor and the second smoothing capacitor,
    The power converter according to claim 2.
  5.  前記制御部は、前記第1リレーおよび前記第2リレーが開路の状態で、且つ前記第3リレーが閉路の状態で前記第1平滑コンデンサを充電し、前記第1平滑コンデンサの充電の終了後に前記第3リレーを開路し、且つ前記第2リレーを閉路して前記第2平滑コンデンサを充電する制御を行う、
     請求項4に記載の電力変換装置。
    The control unit charges the first smoothing capacitor while the first relay and the second relay are open and the third relay is closed, and after the charging of the first smoothing capacitor is completed, the Control to open a third relay and close the second relay to charge the second smoothing capacitor;
    The power converter according to claim 4.
  6.  交流電源から供給される交流電圧を直流電圧に変換する整流器と、前記整流器からの出力を交流に変換するインバータと、前記整流器の出力を平滑化し充電するものであって、前記整流器と前記インバータとの間において互いに並列に接続された第1平滑コンデンサおよび第2平滑コンデンサと、前記整流器の交流入力側において突入電流を抑制する突入電流防止素子と第1リレーとが並列接続されて構成され前記整流器への突入電流を抑制する突入電流防止回路と、前記第2平滑コンデンサに直列接続された突入電流を抑制する第2リレーと、前記第1リレーおよび前記第2リレーを制御する制御部と、を備える電力変換装置における突入電流抑制方法であって、
     前記第1リレーおよび前記第2リレーが開路の状態で前記第1平滑コンデンサを充電するステップと、
     前記第1平滑コンデンサの充電の終了後に前記第2リレーを閉路して前記第2平滑コンデンサを充電するステップと、
     を含む電力変換装置における突入電流抑制方法。
    A rectifier that converts an AC voltage supplied from an AC power supply to a DC voltage, an inverter that converts an output from the rectifier to an AC voltage, and a device that smoothes and charges the output of the rectifier, the rectifier and the inverter. A first smoothing capacitor and a second smoothing capacitor connected in parallel between the rectifier, and a rush current prevention element for suppressing a rush current on the AC input side of the rectifier and a first relay are connected in parallel. an inrush current prevention circuit that suppresses inrush current to the second smoothing capacitor, a second relay that suppresses inrush current connected in series with the second smoothing capacitor, and a control unit that controls the first relay and the second relay; An inrush current suppression method in a power conversion device comprising:
    charging the first smoothing capacitor with the first relay and the second relay open;
    closing the second relay to charge the second smoothing capacitor after the charging of the first smoothing capacitor is completed;
    A method for suppressing an inrush current in a power conversion device comprising:
  7.  前記第1平滑コンデンサが、前記インバータ側に配置され、
     前記第2平滑コンデンサが、前記整流器側に配置され、
     前記第1平滑コンデンサと前記第2平滑コンデンサとの間に、前記第1平滑コンデンサ側をカソード側にした逆流防止ダイオードを備える、
     請求項6に記載の電力変換装置における突入電流抑制方法。
    The first smoothing capacitor is arranged on the inverter side,
    The second smoothing capacitor is arranged on the rectifier side,
    Between the first smoothing capacitor and the second smoothing capacitor, a backflow prevention diode is provided with the first smoothing capacitor side as the cathode side,
    The inrush current suppression method in the power converter according to claim 6.
  8.  前記第1平滑コンデンサが、前記インバータ側に配置され、
     前記第2平滑コンデンサが、前記整流器側に配置され、
     前記第1平滑コンデンサと前記第2平滑コンデンサとの間に配置された第3リレーを備え、
     前記制御部は、前記第1リレーおよび前記第2リレーが開路の状態で、且つ前記第3リレーが閉路の状態で前記第1平滑コンデンサを充電するステップと、
     前記第1平滑コンデンサの充電の終了後に、前記第3リレーを開路し、且つ前記第2リレーを閉路して前記第2平滑コンデンサを充電するステップと、
     を含む請求項6に記載の電力変換装置における突入電流抑制方法。
    The first smoothing capacitor is arranged on the inverter side,
    The second smoothing capacitor is arranged on the rectifier side,
    A third relay disposed between the first smoothing capacitor and the second smoothing capacitor,
    the control unit charging the first smoothing capacitor while the first relay and the second relay are open and the third relay is closed;
    opening the third relay and closing the second relay to charge the second smoothing capacitor after charging the first smoothing capacitor;
    The inrush current suppression method in the power converter according to claim 6, comprising:
PCT/JP2021/016830 2021-04-27 2021-04-27 Power conversion device, and method for suppressing inrush current to power conversion device WO2022230062A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023516908A JP7539563B2 (en) 2021-04-27 2021-04-27 POWER CONVERSION DEVICE AND METHOD FOR SUPPLYING IN-RUSH CURRENT SUCH DEVICE
PCT/JP2021/016830 WO2022230062A1 (en) 2021-04-27 2021-04-27 Power conversion device, and method for suppressing inrush current to power conversion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/016830 WO2022230062A1 (en) 2021-04-27 2021-04-27 Power conversion device, and method for suppressing inrush current to power conversion device

Publications (1)

Publication Number Publication Date
WO2022230062A1 true WO2022230062A1 (en) 2022-11-03

Family

ID=83847891

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/016830 WO2022230062A1 (en) 2021-04-27 2021-04-27 Power conversion device, and method for suppressing inrush current to power conversion device

Country Status (2)

Country Link
JP (1) JP7539563B2 (en)
WO (1) WO2022230062A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002325452A (en) * 2001-04-27 2002-11-08 Daikin Ind Ltd Power supply unit
WO2014073087A1 (en) * 2012-11-09 2014-05-15 ボルボ ラストバグナー アクチエボラグ Power source device
WO2014106894A1 (en) * 2013-01-07 2014-07-10 三菱電機株式会社 Electric power conversion device and air conditioning device using same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002325452A (en) * 2001-04-27 2002-11-08 Daikin Ind Ltd Power supply unit
WO2014073087A1 (en) * 2012-11-09 2014-05-15 ボルボ ラストバグナー アクチエボラグ Power source device
WO2014106894A1 (en) * 2013-01-07 2014-07-10 三菱電機株式会社 Electric power conversion device and air conditioning device using same

Also Published As

Publication number Publication date
JP7539563B2 (en) 2024-08-23
JPWO2022230062A1 (en) 2022-11-03

Similar Documents

Publication Publication Date Title
JP5822792B2 (en) Power supply circuit and air conditioner having the same
CN107750424B (en) Power conversion apparatus and method for controlling the same
JP2014107989A (en) Dc-dc converter
CN112640283B (en) Inverter control method, power supply system for AC load, and refrigeration circuit
US11171573B2 (en) Power conversion apparatus and control method of the same
CN110959092B (en) Air conditioner
JP2017123740A (en) Switching power supply
WO2022230062A1 (en) Power conversion device, and method for suppressing inrush current to power conversion device
JP6300664B2 (en) Railway vehicle power circuit
JP6689688B2 (en) Power converter, air conditioner, and method for controlling power converter
JP5713978B2 (en) DC power supply device, motor drive device, air conditioner, refrigerator and heat pump water heater
JP6608761B2 (en) Motor drive device for suppressing voltage fluctuation of DC link capacitor
JP5897170B2 (en) DC power supply device, motor drive device, air conditioner, refrigerator and heat pump water heater
WO2017212584A1 (en) Compressor drive device
JP6824479B1 (en) Power converter
JP2016111729A (en) Inverter device
CN111630765B (en) Control method of inverter, alternating-current load driving system and refrigeration circuit
JP7475435B2 (en) Control board and air conditioner
JP7209893B2 (en) Converter circuit and motor drive circuit
JP7483055B2 (en) Power conversion device and air conditioner
WO2022185374A1 (en) Ac-dc conversion device, electric motor drive device, and refrigeration cycle device
JP7412388B2 (en) power converter
US11984884B2 (en) Power supply device, and method for controlling same
JP7059140B2 (en) Power converter
JP7049770B2 (en) Power converter and motor drive system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21939223

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023516908

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21939223

Country of ref document: EP

Kind code of ref document: A1