WO2017212584A1 - Compressor drive device - Google Patents

Compressor drive device Download PDF

Info

Publication number
WO2017212584A1
WO2017212584A1 PCT/JP2016/067102 JP2016067102W WO2017212584A1 WO 2017212584 A1 WO2017212584 A1 WO 2017212584A1 JP 2016067102 W JP2016067102 W JP 2016067102W WO 2017212584 A1 WO2017212584 A1 WO 2017212584A1
Authority
WO
WIPO (PCT)
Prior art keywords
compressor
command value
outside air
temperature
air temperature
Prior art date
Application number
PCT/JP2016/067102
Other languages
French (fr)
Japanese (ja)
Inventor
崇仁 大西
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2016/067102 priority Critical patent/WO2017212584A1/en
Publication of WO2017212584A1 publication Critical patent/WO2017212584A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/02Stopping, starting, unloading or idling control

Definitions

  • the present invention relates to a compressor driving device that performs preheating control when the compressor is stopped.
  • the voltage value of the DC bus voltage supplied to the three-phase inverter device is detected, and preheating control is performed so that the output power value from the inverter device to the compressor is constant regardless of the received voltage.
  • preheating control is performed so that the output power value from the inverter device to the compressor is constant regardless of the received voltage.
  • the present invention has been made in view of the above, and an object of the present invention is to obtain a compressor driving device capable of accelerating the heating of the compressor and the refrigerant in an environment where the outside air temperature is low.
  • the present invention provides a compressor, a rectifier that rectifies an AC voltage and converts it into a DC bus voltage, and a DC bus when the compressor is stopped.
  • An inverter device that outputs a voltage command value based on the voltage and the restricted energization output command value to the compressor, and a DC bus voltage determined to preheat the compressor when the compressor is stopped.
  • the control part which outputs a restraint electricity supply output command value to an inverter apparatus, and the external temperature sensor which detects external temperature are provided.
  • the control unit corrects the restrained energization output command value based on the outside air temperature.
  • the compressor driving device has an effect that heating of the compressor and the refrigerant can be accelerated under an environment where the outside air temperature is low.
  • FIG. 3 is a flowchart for explaining a method for determining whether or not restraint energization is required according to the first embodiment;
  • the figure which shows the relationship between direct-current bus voltage value Vdc and voltage command value when restraint energization output command value Vout is constant.
  • the figure which shows restraint energization output command value Vout correct
  • FIG. 1 The figure which shows an example of the correction method of the restricted energization output command value Vout depending on the outside temperature in Embodiment 1.
  • FIG. 1 is a diagram illustrating a configuration of a compressor driving device 14 according to the first embodiment of the present invention.
  • the compressor driving device 14 is an outdoor unit of an air conditioner and is connected to a commercial AC power source 1 that supplies AC power.
  • the compressor driving device 14 is connected to the commercial AC power source 1 and has a filter circuit 2 for noise reduction, an element 3 for limiting inrush current at startup, and an ON state during steady driving and a current path.
  • a relay 4, a diode bridge 5 that is a rectifying unit that rectifies an AC voltage and converts it into a DC bus voltage, and a converter circuit 6 for the purpose of power factor improvement.
  • the compressor driving device 14 is a hermetically sealed compressor 7a that smoothes the converted DC voltage, a bus voltage detector 7b that detects the DC bus voltage charged in the capacitor 7a, and a compressor that houses an electric motor therein.
  • Control the pre-heat control by controlling the compressor 9, the inverter device 8 for driving the hermetic compressor 9, the overcurrent detector 10 for detecting the overcurrent of the inverter device 8, the relay 4 and the inverter device 8.
  • a control unit 11 for determining necessity, an outside air temperature sensor 12 for detecting the outside air temperature, and a compressor temperature which is a temperature of the hermetic compressor 9 are attached to the outline of the hermetic compressor 9 for the purpose of detecting the compressor temperature.
  • the inverter device 8 When the inverter device 8 energizes the closed hermetic compressor 9 that is stopped, the inverter device 8 supplies a voltage command value to the hermetic compressor 9 based on the DC bus voltage and the constrained energization output command value Vout from the control unit 11. Is output as power.
  • the controller 11 uses the temperature data acquired from the outside air temperature sensor 12 at a predetermined timing such as every minute, for example, several minutes after the temperature data accumulated several minutes ago and the current temperature data, It is possible to estimate the future outside air temperature after 30 minutes. For example, it is possible to estimate that the outside air temperature becomes higher than the present time in the time when the time is shifted to the noon time zone from about 8 am in fine weather.
  • FIG. 2 is a diagram showing the relationship between the outside air temperature and the temperatures of the hermetic compressor 9 and the heat exchanger in the first embodiment. Since the heat capacity of the hermetic compressor 9 is larger than that of other devices such as a heat exchanger in the compressor driving device 14, when the outside air temperature becomes higher than the present time, the temperature rise rate of the hermetic compressor 9 is different from that of other devices. Slower than that. As a result, the hermetic compressor 9 is kept in a low temperature state. Since the refrigerant moves to a lower temperature, if the temperature of the hermetic compressor 9 is relatively lower than that of a heat exchanger or the like, the refrigerant is likely to accumulate in the hermetic compressor 9.
  • the refrigerant is likely to sleep in the hermetic compressor 9.
  • the refrigerant easily moves to the compressor having a lower temperature.
  • the inverter device 8 When the inverter device 8 tries to start up the hermetic compressor 9 in a state where the refrigerant is accumulated in the hermetic compressor 9, the starting torque of the hermetic compressor 9 is larger than normal, so the inverter device The output current from 8 will increase. Generation of an output current exceeding a predetermined current value is detected by the overcurrent detector 10, and an overcurrent abnormality is notified from the overcurrent detector 10 to the inverter device 8 and the control unit 11, so that protection is possible. However, due to this notification, the hermetic compressor 9 stops due to the occurrence of an abnormality at startup. In order to avoid such a phenomenon due to the stagnation of the refrigerant, after the operation of the hermetic compressor 9 is stopped, the control unit 11 performs control for preheating the hermetic compressor 9 by restraint energization.
  • FIG. 3 is a flowchart illustrating a method for determining whether or not restraint energization is required according to the first embodiment.
  • the flowchart of FIG. 3 is implemented by the control unit 11.
  • step S101 When the hermetic compressor 9 is stopped (step S101), the process proceeds to step S102 and subsequent determinations. It is necessary to determine whether or not the energization of the hermetic compressor 9 is required only when the operation is stopped.
  • Step S101 After the operation of the hermetic compressor 9 is stopped (Step S101), the control unit 11 determines whether or not the energization of the hermetic compressor 9 is necessary (Step S102). That is, the control unit 11 needs to preheat the hermetic compressor 9 based on the outside air temperature detected by the outside air temperature sensor 12 and the temperature of the hermetic compressor 9 detected by the compressor temperature sensor 13. Make a decision of no.
  • step S102 the energization of the hermetic compressor 9 is required (step S102). : Yes) and the control unit 11 determines.
  • the temperature A ° C. is, for example, ⁇ 10 ° C. As described above, even when the outside air temperature is low, the refrigerant easily moves to the compressor having a lower temperature.
  • step S102 determines that restraint energization of the hermetic compressor 9 is necessary (step S102: Yes).
  • the temperature B ° C. is, for example, 70 ° C.
  • the amount of change in the outside air temperature is, for example, a temperature difference obtained by subtracting the outside air temperature five minutes ago from the current outside air temperature detected by the outside air temperature sensor 12.
  • ⁇ C is, for example, 0 ° C.
  • step S102 determines that the energization of the hermetic compressor 9 needs to be restricted (step S102: Yes).
  • step S102: No When neither of the above conditions (condition 1) and (condition 2) is satisfied, the controller 11 determines that the energization of the hermetic compressor 9 is not necessary (step S102: No). For example, when (Condition 1) is not satisfied and the compressor temperature detected by the compressor temperature sensor 13 is higher than the temperature B ° C., (Condition 2) is not satisfied. In this case, since it is considered that there is no temperature difference between the compressor temperature and the temperature of other devices, it is not necessary to energize the hermetic compressor 9 (step S102: No).
  • step S ⁇ b> 102 the reference for determining whether the control unit 11 needs to energize the hermetic compressor 9 is not limited to the above (Condition 1) and (Condition 2). It doesn't matter.
  • step S102 when the control unit 11 determines that the energization of the hermetic compressor 9 is not required (step S102: No), the compressor driving device 14 remains in the operation standby state, and the control unit 11 It is determined whether or not a predetermined first waiting time has elapsed (step S107). When it is determined that the first standby time has not elapsed (step S107: No), the control unit 11 returns to step S107. When it is determined that the first standby time has elapsed (step S107: Yes), the control unit 11 returns to step S102. Return to determine whether restraint energization is necessary.
  • step S102 If it is determined that the energization of the hermetic compressor 9 is necessary (step S102: Yes), the control unit 11 first determines whether or not the current outside air temperature detected by the outside air temperature sensor 12 is equal to or lower than X ° C. Is determined (step S103).
  • X ° C. is a predetermined temperature.
  • step S103: No the process proceeds to step S106 because it is necessary to suppress the output in order to avoid excessive preheating to the hermetic compressor 9.
  • step S103: Yes the process proceeds to step S104.
  • step S104 the control unit 11 determines whether or not the compressor temperature detected by the compressor temperature sensor 13 is equal to or lower than Y ° C. (step S104).
  • Y ° C. is a predetermined temperature.
  • step S104: No the voltage command value for restraint energization cannot be increased to protect the temperature of the hermetic compressor 9, and therefore step S106. Proceed to
  • step S106 the control unit 11 executes restraint energization with no outside air temperature correction on the hermetic compressor 9.
  • restraint energization without external temperature correction will be described.
  • the control unit 11 calculates a restricted energization output command value Vout to be output to the inverter device 8 based on the DC bus voltage value Vdc detected by the bus voltage detector 7b.
  • the voltage command value that is the output from the inverter device 8 to the hermetic compressor 9 is determined based on the DC bus voltage value Vdc and the restrained energization output command value Vout.
  • the converter circuit 6, which is a booster circuit is not operating, so the DC bus voltage greatly depends on fluctuations in the received voltage supplied from the commercial AC voltage 1. Therefore, in order to correct the change in the voltage command value due to this fluctuation, the control unit 11 calculates the restricted energization output command value Vout based on the DC bus voltage value Vdc.
  • FIG. 4 is a diagram showing the relationship between the DC bus voltage value Vdc and the voltage command value when the restrained energization output command value Vout is constant.
  • the voltage command value that is the output from the inverter device 8 to the hermetic compressor 9 has a higher DC bus voltage value Vdc as the power reception voltage increases as shown in FIG. It grows as it becomes.
  • the restrained energization output command value Vout output to the inverter device 8 is set to the following based on the DC bus voltage value Vdc detected by the bus voltage detector 7b. It correct
  • Vout a ⁇ Vdc + b (1)
  • a and b are correction coefficients.
  • FIG. 5 is a diagram showing the restricted energization output command value Vout corrected based on the DC bus voltage value Vdc in the first embodiment.
  • FIG. 5 shows a state in which the correction coefficient a is a negative value in Equation (1), and the restrained energization output command value Vout decreases as the DC bus voltage value Vdc increases.
  • the relationship between the DC bus voltage value Vdc and the voltage command value shown in FIG. 4 can be compensated by correcting the restricted energization output command value Vout based on the DC bus voltage value Vdc.
  • control unit 11 determines a restricted energization output command value Vout in accordance with Equation (1).
  • step S106 When the controller 11 outputs the determined restricted energization output command value Vout to the inverter device 8, restricted energization without external temperature correction is performed on the hermetic compressor 9 (step S106).
  • the voltage command value output from the inverter device 8 to the hermetic compressor 9 can be controlled to a constant value regardless of fluctuations in the received voltage supplied from the commercial AC power supply 1.
  • Equation (1) and FIG. 5 show an example of a method of correcting the constrained energization output command value Vout when the DC bus voltage value Vdc varies, but the DC bus voltage Vdc and voltage command shown in FIG. It changes according to the relationship with the value, and is not necessarily limited to the above example.
  • step S104 when the control unit 11 determines that the compressor temperature is equal to or lower than Y ° C. (step S104: Yes), restraint energization with outside air temperature correction is executed (step S105).
  • the outside air temperature correction is intended to further correct the restrained energization output command value Vout when the outside air temperature is low.
  • restraint energization with outside air temperature correction will be described.
  • step S105 based on the outside air temperature detected by the outside air temperature sensor 12, the value of the restricted energization output command value Vout is increased by correcting the mathematical formula (1) used in step S106, so that It becomes possible to carry out the optimum restraint energization corresponding to the fluctuation of the outside air temperature.
  • FIG. 6 is a diagram illustrating an example of a method for correcting the restricted energization output command value Vout depending on the outside air temperature in the first embodiment.
  • An example of a method for correcting such a restricted energization output command value Vout depending on the detected value Ta of the outside air temperature is shown in the following formula (2).
  • Equation (2) is an example of correction depending on the detected value Ta of the outside air temperature, and the correction depending on the outside air temperature is not limited to such correction.
  • Vout a ⁇ Vdc + b + Ta ⁇ c (2)
  • c is a correction coefficient.
  • the correction coefficient c is set to a negative value in Equation (2), the correction shown in FIG. 6 can be realized. Since the correction based on the outside air temperature as described above is the addition of the offset value to the restricted energization output command value Vout, it is not affected by the DC bus voltage. Further, in order to regulate the output to the hermetic compressor 9, a conditional expression such as the following expression (3) is provided so that the restricted energization output command value Vout does not exceed the upper limit value Vout (max). Also good.
  • Vout Vout (max) (3)
  • FIG. 7 is a diagram showing a state in which an upper limit value is provided for the corrected energization output command value Vout corrected in the first embodiment.
  • FIG. 7 shows a state in which an upper limit value is provided to the restricted energization output command value Vout corrected based on the DC bus voltage value Vdc according to the conditional expression (3).
  • FIG. 7 shows, from bottom to top, a graph of the restricted energization output command value Vout corresponding to when the detected value Ta of the outside air temperature is high, normal, and extremely low.
  • the correction coefficient c in Expression (2) may be set to zero.
  • D ° C is a predetermined temperature threshold.
  • control unit 11 When the control unit 11 outputs the restricted energization output command value Vout determined as described above to the inverter device 8, the energization with outside air temperature correction is performed on the hermetic compressor 9 (step). S105).
  • step S108 determines whether or not a predetermined second standby time has elapsed.
  • step S108: No the control unit 11 returns to step S108.
  • step S108: Yes the control unit 11 returns to step S102. Return to determine whether restraint energization is necessary. As a result, when the restraint energization in steps S105 and S106 is executed for the second waiting time, the necessity of restraint energization is again determined.
  • the compressor driving device 14 it is possible to increase the amount of preheating to the hermetic compressor 9 in an environment where the outside air temperature is low, and to perform preheating control more suitable for the environment. Become. That is, it becomes possible to accelerate the heating to the hermetic compressor 9 and the refrigerant. As a result, it is possible to reduce the time required to raise the temperature of the hermetic compressor 9 to the target temperature at the start of sleep.
  • FIG. 8 is a diagram illustrating an example in which the control unit 11 according to the first embodiment is configured with dedicated hardware.
  • the control unit 11 includes a processing circuit 50 that is dedicated hardware as shown in FIG.
  • the processing circuit 50 corresponds to a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC (Application Specific Integrated Circuit), an FPGA (Field Programmable Gate Array), or a combination thereof.
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • each of the plurality of functions of the control unit 11 may be realized by a plurality of separate processing circuits 50.
  • FIG. 9 is a diagram illustrating a hardware configuration when the control unit 11 according to the first embodiment is realized by a computer.
  • the control unit 11 is realized by a CPU (Central Processing Unit) 51 and a memory 52 as shown in FIG. 9 provided in the compressor driving device 14. That is, the function of the control unit 11 is realized by software, firmware, or a combination of software and firmware. Software or firmware is described as a program and stored in the memory 52.
  • the CPU 51 implements the function of the control unit 11 by reading and executing the program stored in the memory 52. That is, the compressor drive device 14 stores a program that results in the step of performing the operation of FIG. 3 by the control unit 11 when the function of the control unit 11 is executed by the computer.
  • the memory 52 is provided. These programs can be said to cause a computer to execute the procedure or method of the control unit 11 related to the control of the compressor driving device 14.
  • the memory 52 is a RAM (Random Access Memory), a ROM (Read Only Memory), a flash memory, an EPROM (Erasable Programmable Read Only Nonvolatile Memory, or an EEPROM (Electrically Erasable Memory)
  • RAM Random Access Memory
  • ROM Read Only Memory
  • flash memory an EPROM (Erasable Programmable Read Only Nonvolatile Memory
  • EEPROM Electrically Erasable Memory
  • a semiconductor memory, a magnetic disk, a flexible disk, an optical disk, a compact disk, a mini disk, and a DVD (Digital Versatile Disk) are applicable.
  • control unit 11 related to the control of the compressor driving device 14 may be realized by dedicated hardware, and a part may be realized by software or firmware.
  • control part 11 concerning control of the compressor drive device 14 can implement
  • the configuration described in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and can be combined with other configurations without departing from the gist of the present invention. It is also possible to omit or change the part.

Abstract

The compressor drive device (14) comprises: a compressor (9); a rectification unit (5) for rectifying an alternating-current voltage into a direct-current bus voltage; an inverter device (8) for outputting a voltage command value, which is based on the direct-current bus voltage and a constraint energization output command value, to the compressor (9) while the compressor (9) is in a stopped state; a control unit (11) for outputting the constraint energization output command value, which is determined on the basis of the direct-current bus voltage, to the inverter device (8) while the compressor (9) is in a stopped state in order to preheat the compressor (9); and an outside air temperature sensor (12) for detecting the outside air temperature. The control unit (11) corrects the constraint energization output command value on the basis of the outside air temperature.

Description

圧縮機駆動装置Compressor drive unit
 本発明は、圧縮機の停止時に予熱制御を行う圧縮機駆動装置に関する。 The present invention relates to a compressor driving device that performs preheating control when the compressor is stopped.
 従来の予熱制御方式においては、三相のインバータ装置に供給される直流母線電圧の電圧値を検出し、インバータ装置から圧縮機への出力電力値が受電電圧に関わらず一定になるように予熱制御が実行されている(例えば、特許文献1参照)。 In the conventional preheating control method, the voltage value of the DC bus voltage supplied to the three-phase inverter device is detected, and preheating control is performed so that the output power value from the inverter device to the compressor is constant regardless of the received voltage. (For example, refer to Patent Document 1).
国際公開第2012/086010号International Publication No. 2012/088601
 上記従来の技術においては、受電電圧における変動について補正が可能であるが、使用環境によっては外気温度の変動が大きく、最適な制御が出来ていない場合がある。特に、低外気温度時では加熱不足となり、拘束通電制御を長時間継続させる必要が発生してしまう。また、これに伴い運転モードへの移行が遅延する可能性が考えられる。 In the above-mentioned conventional technology, it is possible to correct fluctuations in the received voltage, but depending on the use environment, fluctuations in the outside air temperature are large, and optimal control may not be achieved. In particular, heating is insufficient at a low outside air temperature, and it is necessary to continue restraint energization control for a long time. In addition, there is a possibility that the transition to the operation mode is delayed.
 本発明は、上記に鑑みてなされたものであって、外気温度が低い環境下において、圧縮機ならびに冷媒への加熱を加速することが可能な圧縮機駆動装置を得ることを目的とする。 The present invention has been made in view of the above, and an object of the present invention is to obtain a compressor driving device capable of accelerating the heating of the compressor and the refrigerant in an environment where the outside air temperature is low.
 上述した課題を解決し、目的を達成するために、本発明は、圧縮機と、交流電圧を整流して直流母線電圧へ変換する整流部と、圧縮機が停止しているときに、直流母線電圧と拘束通電出力指令値とに基づいた電圧指令値を圧縮機に出力するインバータ装置と、圧縮機が停止しているときに、圧縮機を予熱するために、直流母線電圧に基づいて決定した拘束通電出力指令値をインバータ装置に出力する制御部と、外気温度を検出する外気温度センサと、を備える。制御部は、外気温度に基づいて拘束通電出力指令値を補正することを特徴とする。 In order to solve the above-described problems and achieve the object, the present invention provides a compressor, a rectifier that rectifies an AC voltage and converts it into a DC bus voltage, and a DC bus when the compressor is stopped. An inverter device that outputs a voltage command value based on the voltage and the restricted energization output command value to the compressor, and a DC bus voltage determined to preheat the compressor when the compressor is stopped The control part which outputs a restraint electricity supply output command value to an inverter apparatus, and the external temperature sensor which detects external temperature are provided. The control unit corrects the restrained energization output command value based on the outside air temperature.
 本発明に係る圧縮機駆動装置は、外気温度が低い環境下において、圧縮機ならびに冷媒への加熱を加速することが可能になるという効果を奏する。 The compressor driving device according to the present invention has an effect that heating of the compressor and the refrigerant can be accelerated under an environment where the outside air temperature is low.
本発明の実施の形態1にかかる圧縮機駆動装置の構成を示す図The figure which shows the structure of the compressor drive device concerning Embodiment 1 of this invention. 実施の形態1における外気温度と密閉型圧縮機および熱交換機の温度との関係を示す図The figure which shows the relationship between the external temperature in Embodiment 1, and the temperature of a hermetic compressor and a heat exchanger 実施の形態1にかかる拘束通電の要否判定方法について説明するフローチャートFIG. 3 is a flowchart for explaining a method for determining whether or not restraint energization is required according to the first embodiment; 拘束通電出力指令値Voutが一定の場合における直流母線電圧値Vdcと電圧指令値との関係を示す図The figure which shows the relationship between direct-current bus voltage value Vdc and voltage command value when restraint energization output command value Vout is constant. 実施の形態1における直流母線電圧値Vdcに基づいて補正した拘束通電出力指令値Voutを示す図The figure which shows restraint energization output command value Vout correct | amended based on DC bus voltage value Vdc in Embodiment 1. 実施の形態1における外気温度に依存した拘束通電出力指令値Voutの補正方法の一例を示す図The figure which shows an example of the correction method of the restricted energization output command value Vout depending on the outside temperature in Embodiment 1. 実施の形態1における補正した拘束通電出力指令値Voutに上限値を設けた様子を示す図The figure which shows a mode that the upper limit was provided in the correct | amended restricted energization output command value Vout in Embodiment 1. FIG. 実施の形態1における制御部を専用のハードウェアで構成する場合の例を示す図The figure which shows the example in the case of comprising the control part in Embodiment 1 with exclusive hardware. 実施の形態1における制御部をコンピュータで実現する場合のハードウェア構成を示す図The figure which shows the hardware constitutions in the case of implement | achieving the control part in Embodiment 1 with a computer
 以下に、本発明の実施の形態に係る圧縮機駆動装置を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。 Hereinafter, a compressor driving device according to an embodiment of the present invention will be described in detail with reference to the drawings. Note that the present invention is not limited to the embodiments.
実施の形態1.
 図1は、本発明の実施の形態1にかかる圧縮機駆動装置14の構成を示す図である。圧縮機駆動装置14は、空気調和機の室外機であり、交流電源を供給する商用交流電源1に接続されている。圧縮機駆動装置14は、商用交流電源1に接続されてノイズカットを目的とするフィルタ回路2と、起動時の突入電流を制限する素子3と、定常駆動時にオン(ON)状態になり電流経路となるリレー4と、交流電圧を整流して直流母線電圧へ変換する整流部であるダイオードブリッジ5と、力率改善を目的としたコンバータ回路6と、を備える。
Embodiment 1 FIG.
FIG. 1 is a diagram illustrating a configuration of a compressor driving device 14 according to the first embodiment of the present invention. The compressor driving device 14 is an outdoor unit of an air conditioner and is connected to a commercial AC power source 1 that supplies AC power. The compressor driving device 14 is connected to the commercial AC power source 1 and has a filter circuit 2 for noise reduction, an element 3 for limiting inrush current at startup, and an ON state during steady driving and a current path. A relay 4, a diode bridge 5 that is a rectifying unit that rectifies an AC voltage and converts it into a DC bus voltage, and a converter circuit 6 for the purpose of power factor improvement.
 圧縮機駆動装置14は、変換された直流電圧を平滑化するコンデンサ7aと、コンデンサ7aへ充電された直流母線電圧を検出する母線電圧検出器7bと、電動機を内部に収容した圧縮機である密閉型圧縮機9と、密閉型圧縮機9を駆動するためのインバータ装置8と、インバータ装置8の過電流を検出する過電流検出器10と、リレー4とインバータ装置8を制御し、予熱制御の要否を判断する制御部11と、外気温度を検出する外気温度センサ12と、密閉型圧縮機9の温度である圧縮機温度を検出することを目的として密閉型圧縮機9の外郭に取り付けられている圧縮機温度センサ13と、をさらに備える。 The compressor driving device 14 is a hermetically sealed compressor 7a that smoothes the converted DC voltage, a bus voltage detector 7b that detects the DC bus voltage charged in the capacitor 7a, and a compressor that houses an electric motor therein. Control the pre-heat control by controlling the compressor 9, the inverter device 8 for driving the hermetic compressor 9, the overcurrent detector 10 for detecting the overcurrent of the inverter device 8, the relay 4 and the inverter device 8. A control unit 11 for determining necessity, an outside air temperature sensor 12 for detecting the outside air temperature, and a compressor temperature which is a temperature of the hermetic compressor 9 are attached to the outline of the hermetic compressor 9 for the purpose of detecting the compressor temperature. And a compressor temperature sensor 13.
 インバータ装置8は、停止している密閉型圧縮機9を拘束通電する際は、直流母線電圧と制御部11からの拘束通電出力指令値Voutとに基づいて、密閉型圧縮機9に電圧指令値を電力として出力する。制御部11は、たとえば1分毎といった予め定めたタイミングで外気温度センサ12から取得した温度データを利用して、数分前までに積算された温度データと現時点の温度データとから数分後、30分後といった将来の外気温度の推定をすることが可能である。たとえば、晴天時の午前8時頃から正午の時間帯へ移行する時間においては、外気温度が現在より高くなることを推定することが可能である。 When the inverter device 8 energizes the closed hermetic compressor 9 that is stopped, the inverter device 8 supplies a voltage command value to the hermetic compressor 9 based on the DC bus voltage and the constrained energization output command value Vout from the control unit 11. Is output as power. The controller 11 uses the temperature data acquired from the outside air temperature sensor 12 at a predetermined timing such as every minute, for example, several minutes after the temperature data accumulated several minutes ago and the current temperature data, It is possible to estimate the future outside air temperature after 30 minutes. For example, it is possible to estimate that the outside air temperature becomes higher than the present time in the time when the time is shifted to the noon time zone from about 8 am in fine weather.
 図2は、実施の形態1における外気温度と密閉型圧縮機9および熱交換機の温度との関係を示す図である。圧縮機駆動装置14内の熱交換機など他の機器に比べて密閉型圧縮機9の熱容量は大きいため、外気温度が現在より高くなる場合、密閉型圧縮機9の温度上昇速度は他の機器に比べて遅い。その結果、密閉型圧縮機9は温度が低い状態が継続される。冷媒は、温度の低い方へ移動するため、密閉型圧縮機9の温度が熱交換機などに比べて相対的に低いと、冷媒が密閉型圧縮機9内に溜まりやすくなる。これを、冷媒が密閉型圧縮機9内に寝込みやすくなるともいう。また、図2に示すように、たとえば-10℃以下といった外気温度が低い場合においても、冷媒は温度がより低くなる圧縮機へ移動しやすい。 FIG. 2 is a diagram showing the relationship between the outside air temperature and the temperatures of the hermetic compressor 9 and the heat exchanger in the first embodiment. Since the heat capacity of the hermetic compressor 9 is larger than that of other devices such as a heat exchanger in the compressor driving device 14, when the outside air temperature becomes higher than the present time, the temperature rise rate of the hermetic compressor 9 is different from that of other devices. Slower than that. As a result, the hermetic compressor 9 is kept in a low temperature state. Since the refrigerant moves to a lower temperature, if the temperature of the hermetic compressor 9 is relatively lower than that of a heat exchanger or the like, the refrigerant is likely to accumulate in the hermetic compressor 9. This is also said that the refrigerant is likely to sleep in the hermetic compressor 9. In addition, as shown in FIG. 2, even when the outside air temperature is low, for example, −10 ° C. or lower, the refrigerant easily moves to the compressor having a lower temperature.
 密閉型圧縮機9に冷媒が溜まった状態で、インバータ装置8が密閉型圧縮機9を起動させようとした場合、密閉型圧縮機9の始動トルクは通常時より大きくなっているので、インバータ装置8からの出力電流が増えることとなる。予め定めた電流値以上の出力電流の発生は、過電流検出器10によって検出され、過電流検出器10からインバータ装置8および制御部11に過電流異常が通知されるため、保護可能ではある。しかし、この通知により、密閉型圧縮機9は、起動時の異常発生で停止してしまう。冷媒の寝込みによるこのような現象を回避するため、密閉型圧縮機9の運転停止後、制御部11は密閉型圧縮機9に対して拘束通電により予熱するための制御を行う。 When the inverter device 8 tries to start up the hermetic compressor 9 in a state where the refrigerant is accumulated in the hermetic compressor 9, the starting torque of the hermetic compressor 9 is larger than normal, so the inverter device The output current from 8 will increase. Generation of an output current exceeding a predetermined current value is detected by the overcurrent detector 10, and an overcurrent abnormality is notified from the overcurrent detector 10 to the inverter device 8 and the control unit 11, so that protection is possible. However, due to this notification, the hermetic compressor 9 stops due to the occurrence of an abnormality at startup. In order to avoid such a phenomenon due to the stagnation of the refrigerant, after the operation of the hermetic compressor 9 is stopped, the control unit 11 performs control for preheating the hermetic compressor 9 by restraint energization.
 図3は、実施の形態1にかかる拘束通電の要否判定方法について説明するフローチャートである。図3のフローチャートは制御部11により実施される。 FIG. 3 is a flowchart illustrating a method for determining whether or not restraint energization is required according to the first embodiment. The flowchart of FIG. 3 is implemented by the control unit 11.
 密閉型圧縮機9が停止状態になった場合(ステップS101)、ステップS102以下の判定へ移行する。密閉型圧縮機9への拘束通電の要否判定は運転停止中のみ必要となる。 When the hermetic compressor 9 is stopped (step S101), the process proceeds to step S102 and subsequent determinations. It is necessary to determine whether or not the energization of the hermetic compressor 9 is required only when the operation is stopped.
 密閉型圧縮機9の運転停止(ステップS101)の後、密閉型圧縮機9への拘束通電が必要であるか否かについて制御部11が判断する(ステップS102)。すなわち、制御部11は、外気温度センサ12により検出される外気温度と圧縮機温度センサ13により検出される密閉型圧縮機9の温度とに基づいて、密閉型圧縮機9への予熱が必要か否かの判断を実行する。 After the operation of the hermetic compressor 9 is stopped (Step S101), the control unit 11 determines whether or not the energization of the hermetic compressor 9 is necessary (Step S102). That is, the control unit 11 needs to preheat the hermetic compressor 9 based on the outside air temperature detected by the outside air temperature sensor 12 and the temperature of the hermetic compressor 9 detected by the compressor temperature sensor 13. Make a decision of no.
 具体的には、「(条件1):外気温度センサ12により検出された外気温度が予め規定した温度A℃以下」を満たす場合、密閉型圧縮機9への拘束通電が必要である(ステップS102:Yes)と制御部11は判断する。温度A℃はたとえば-10℃である。前述したように、外気温度が低い場合においても、冷媒は温度がより低くなる圧縮機へ移動しやすいからである。 Specifically, in the case where “(condition 1): the outside air temperature detected by the outside air temperature sensor 12 is equal to or lower than the predetermined temperature A ° C.”, the energization of the hermetic compressor 9 is required (step S102). : Yes) and the control unit 11 determines. The temperature A ° C. is, for example, −10 ° C. As described above, even when the outside air temperature is low, the refrigerant easily moves to the compressor having a lower temperature.
 また、「(条件2):圧縮機温度センサ13により検出された圧縮機温度が予め規定した温度B℃以下であり且つ外気温度の変化量が予め規定した値ΔC以上である」を満たす場合、密閉型圧縮機9への拘束通電が必要である(ステップS102:Yes)と制御部11は判断する。温度B℃は、たとえば70℃である。外気温度の変化量は、たとえば、外気温度センサ12により検出された現時点の外気温度から5分前の外気温度を減じた温度の差である。ΔCは、たとえば0℃である。圧縮機温度が温度B℃以下であり且つ外気温度の変化量が値ΔC以上である場合は、外気温度が上昇する環境下であり、前述したように、密閉型圧縮機9は温度が低い状態が継続されると想定されるため、密閉型圧縮機9への拘束通電が必要である(ステップS102:Yes)と制御部11は判断する。 Further, when “(Condition 2): the compressor temperature detected by the compressor temperature sensor 13 is a predetermined temperature B ° C. or less and the change amount of the outside air temperature is a predetermined value ΔC or more” is satisfied, The control unit 11 determines that restraint energization of the hermetic compressor 9 is necessary (step S102: Yes). The temperature B ° C. is, for example, 70 ° C. The amount of change in the outside air temperature is, for example, a temperature difference obtained by subtracting the outside air temperature five minutes ago from the current outside air temperature detected by the outside air temperature sensor 12. ΔC is, for example, 0 ° C. When the compressor temperature is equal to or lower than the temperature B ° C. and the amount of change in the outside air temperature is equal to or greater than the value ΔC, it is in an environment where the outside air temperature rises. As described above, the hermetic compressor 9 is in a low temperature state. Therefore, the controller 11 determines that the energization of the hermetic compressor 9 needs to be restricted (step S102: Yes).
 上記(条件1)および(条件2)のいずれの条件も満たさない場合は、密閉型圧縮機9への拘束通電は不要である(ステップS102:No)と制御部11は判断する。たとえば、(条件1)を満たさず、さらに、圧縮機温度センサ13により検出された圧縮機温度が温度B℃より大きい場合、(条件2)も満たさないことになる。この場合、圧縮機温度と他の機器の温度との温度差がないと考えられるため、密閉型圧縮機9への拘束通電は不要となる(ステップS102:No)。 When neither of the above conditions (condition 1) and (condition 2) is satisfied, the controller 11 determines that the energization of the hermetic compressor 9 is not necessary (step S102: No). For example, when (Condition 1) is not satisfied and the compressor temperature detected by the compressor temperature sensor 13 is higher than the temperature B ° C., (Condition 2) is not satisfied. In this case, since it is considered that there is no temperature difference between the compressor temperature and the temperature of other devices, it is not necessary to energize the hermetic compressor 9 (step S102: No).
 ステップS102において、制御部11が密閉型圧縮機9への拘束通電が必要であるか否かの判断をする基準は上記(条件1)および(条件2)に限定されず他の基準であってもかまわない。 In step S <b> 102, the reference for determining whether the control unit 11 needs to energize the hermetic compressor 9 is not limited to the above (Condition 1) and (Condition 2). It doesn't matter.
 ステップS102において、制御部11が密閉型圧縮機9への拘束通電が不要と判定した場合(ステップS102:No)、圧縮機駆動装置14は運転待機状態のままであり、制御部11は、予め定めた第一待機時間経過したか否かを判定する(ステップS107)。制御部11は、第一待機時間経過していないと判定した場合(ステップS107:No)、ステップS107に戻り、第一待機時間経過したと判定した場合(ステップS107:Yes)、再びステップS102に戻って拘束通電の要否を判断する。 In step S102, when the control unit 11 determines that the energization of the hermetic compressor 9 is not required (step S102: No), the compressor driving device 14 remains in the operation standby state, and the control unit 11 It is determined whether or not a predetermined first waiting time has elapsed (step S107). When it is determined that the first standby time has not elapsed (step S107: No), the control unit 11 returns to step S107. When it is determined that the first standby time has elapsed (step S107: Yes), the control unit 11 returns to step S102. Return to determine whether restraint energization is necessary.
 密閉型圧縮機9への拘束通電が必要である(ステップS102:Yes)と判断した場合、制御部11は、まず、外気温度センサ12が検出した現時点の外気温度がX℃以下であるか否かを判定する(ステップS103)。X℃は予め定めた温度である。制御部11が現時点の外気温度がX℃より高いと判定した場合(ステップS103:No)、密閉型圧縮機9への過剰な予熱を回避するため出力を抑える必要があるのでステップS106に進む。制御部11が現時点の外気温度がX℃以下であると判定した場合(ステップS103:Yes)、ステップS104に進む。 If it is determined that the energization of the hermetic compressor 9 is necessary (step S102: Yes), the control unit 11 first determines whether or not the current outside air temperature detected by the outside air temperature sensor 12 is equal to or lower than X ° C. Is determined (step S103). X ° C. is a predetermined temperature. When the control unit 11 determines that the current outside air temperature is higher than X ° C. (step S103: No), the process proceeds to step S106 because it is necessary to suppress the output in order to avoid excessive preheating to the hermetic compressor 9. When the control unit 11 determines that the current outside air temperature is equal to or lower than X ° C. (step S103: Yes), the process proceeds to step S104.
 ステップS104では、制御部11は、圧縮機温度センサ13が検出した圧縮機温度がY℃以下であるか否かを判定する(ステップS104)。Y℃は予め定めた温度である。圧縮機温度がY℃より高いと制御部11が判定した場合(ステップS104:No)、密閉型圧縮機9の温度保護のため、拘束通電の電圧指令値を上げることが出来ないので、ステップS106に進む。 In step S104, the control unit 11 determines whether or not the compressor temperature detected by the compressor temperature sensor 13 is equal to or lower than Y ° C. (step S104). Y ° C. is a predetermined temperature. When the control unit 11 determines that the compressor temperature is higher than Y ° C. (step S104: No), the voltage command value for restraint energization cannot be increased to protect the temperature of the hermetic compressor 9, and therefore step S106. Proceed to
 ステップS106で、制御部11は、密閉型圧縮機9に対して、外気温度補正なしの拘束通電を実行する。以下、外気温度補正なしの拘束通電について説明する。 In step S106, the control unit 11 executes restraint energization with no outside air temperature correction on the hermetic compressor 9. Hereinafter, restraint energization without external temperature correction will be described.
 制御部11は、母線電圧検出器7bにより検出された直流母線電圧値Vdcに基づいて、インバータ装置8へ出力する拘束通電出力指令値Voutを算出する。インバータ装置8から密閉型圧縮機9への出力である電圧指令値は、直流母線電圧値Vdcおよび拘束通電出力指令値Voutに基づいて決定される。密閉型圧縮機9の運転停止中は、昇圧回路であるコンバータ回路6が動作していないため、直流母線電圧は商用交流電圧1から供給される受電電圧の変動に大きく依存する。したがって、この変動による電圧指令値の変化を補正するために、制御部11は、直流母線電圧値Vdcに基づいて拘束通電出力指令値Voutを算出する。 The control unit 11 calculates a restricted energization output command value Vout to be output to the inverter device 8 based on the DC bus voltage value Vdc detected by the bus voltage detector 7b. The voltage command value that is the output from the inverter device 8 to the hermetic compressor 9 is determined based on the DC bus voltage value Vdc and the restrained energization output command value Vout. During the shutdown of the hermetic compressor 9, the converter circuit 6, which is a booster circuit, is not operating, so the DC bus voltage greatly depends on fluctuations in the received voltage supplied from the commercial AC voltage 1. Therefore, in order to correct the change in the voltage command value due to this fluctuation, the control unit 11 calculates the restricted energization output command value Vout based on the DC bus voltage value Vdc.
 図4は、拘束通電出力指令値Voutが一定の場合における直流母線電圧値Vdcと電圧指令値との関係を示す図である。拘束通電出力指令値Voutが一定の場合、インバータ装置8から密閉型圧縮機9への出力である電圧指令値は、図4に示すように受電電圧が高くなることで直流母線電圧値Vdcも高くなるにつれて大きくなる。 FIG. 4 is a diagram showing the relationship between the DC bus voltage value Vdc and the voltage command value when the restrained energization output command value Vout is constant. When the restricted energization output command value Vout is constant, the voltage command value that is the output from the inverter device 8 to the hermetic compressor 9 has a higher DC bus voltage value Vdc as the power reception voltage increases as shown in FIG. It grows as it becomes.
 そこで、インバータ装置8から出力される電圧指令値を一定にするため、母線電圧検出器7bより検出された直流母線電圧値Vdcに基づいて、インバータ装置8へ出力する拘束通電出力指令値Voutを以下の数式(1)のように補正する。
 Vout=a×Vdc+b  ・・・(1)
ここで、aおよびbは補正係数である。
Therefore, in order to make the voltage command value output from the inverter device 8 constant, the restrained energization output command value Vout output to the inverter device 8 is set to the following based on the DC bus voltage value Vdc detected by the bus voltage detector 7b. It correct | amends like Numerical formula (1) of these.
Vout = a × Vdc + b (1)
Here, a and b are correction coefficients.
 図5は、実施の形態1における直流母線電圧値Vdcに基づいて補正した拘束通電出力指令値Voutを示す図である。図5は、数式(1)において補正係数aが負の値の場合の様子を示しており、直流母線電圧値Vdcが高くなるに従って、拘束通電出力指令値Voutは小さくなってゆく。図5に示すように、直流母線電圧値Vdcに基づいて拘束通電出力指令値Voutを補正することにより、図4に示した直流母線電圧値Vdcと電圧指令値との関係を補償することができる。直流母線電圧値Vdcに基づいて、数式(1)に従って、制御部11が拘束通電出力指令値Voutを決定する。決定した拘束通電出力指令値Voutを制御部11がインバータ装置8へ出力することにより、密閉型圧縮機9に対して、外気温度補正なしの拘束通電が実行される(ステップS106)。その結果、商用交流電源1から供給される受電電圧の変動によらず、インバータ装置8から密閉型圧縮機9へ出力される電圧指令値を一定の値に制御することが可能となる。 FIG. 5 is a diagram showing the restricted energization output command value Vout corrected based on the DC bus voltage value Vdc in the first embodiment. FIG. 5 shows a state in which the correction coefficient a is a negative value in Equation (1), and the restrained energization output command value Vout decreases as the DC bus voltage value Vdc increases. As shown in FIG. 5, the relationship between the DC bus voltage value Vdc and the voltage command value shown in FIG. 4 can be compensated by correcting the restricted energization output command value Vout based on the DC bus voltage value Vdc. . Based on DC bus voltage value Vdc, control unit 11 determines a restricted energization output command value Vout in accordance with Equation (1). When the controller 11 outputs the determined restricted energization output command value Vout to the inverter device 8, restricted energization without external temperature correction is performed on the hermetic compressor 9 (step S106). As a result, the voltage command value output from the inverter device 8 to the hermetic compressor 9 can be controlled to a constant value regardless of fluctuations in the received voltage supplied from the commercial AC power supply 1.
 なお、数式(1)および図5は、直流母線電圧値Vdcが変動する場合における拘束通電出力指令値Voutの補正方法の一例を示しているが、図4に示した直流母線電圧Vdcと電圧指令値との関係に応じて変化するものであり、上記の例に必ずしも限定されない。 Equation (1) and FIG. 5 show an example of a method of correcting the constrained energization output command value Vout when the DC bus voltage value Vdc varies, but the DC bus voltage Vdc and voltage command shown in FIG. It changes according to the relationship with the value, and is not necessarily limited to the above example.
 ステップS104で、制御部11が圧縮機温度がY℃以下であると判定した場合(ステップS104:Yes)、外気温度補正ありの拘束通電が実行される(ステップS105)。外気温度補正は、外気温度が低い場合に、拘束通電出力指令値Voutに更に補正を加えることを目的としている。以下、外気温度補正ありの拘束通電について説明する。 In step S104, when the control unit 11 determines that the compressor temperature is equal to or lower than Y ° C. (step S104: Yes), restraint energization with outside air temperature correction is executed (step S105). The outside air temperature correction is intended to further correct the restrained energization output command value Vout when the outside air temperature is low. Hereinafter, restraint energization with outside air temperature correction will be described.
 ステップS105においては、外気温度センサ12により検出された外気温度に基づいて、ステップS106で用いた数式(1)に補正を加えることにより、拘束通電出力指令値Voutの値を高めて、使用環境下の外気温度の変動に対応した最適な拘束通電をすることが可能となる。図6は、実施の形態1における外気温度に依存した拘束通電出力指令値Voutの補正方法の一例を示す図である。外気温度の検出値Taに依存したこのような拘束通電出力指令値Voutの補正方法の一例を以下の数式(2)に示す。なお、数式(2)は、外気温度の検出値Taに依存した補正の一例であり、外気温度に依存した補正はこのような補正に限定されるものではない。
 Vout=a×Vdc+b+Ta×c  ・・・(2)
ここで、cは補正係数である。
In step S105, based on the outside air temperature detected by the outside air temperature sensor 12, the value of the restricted energization output command value Vout is increased by correcting the mathematical formula (1) used in step S106, so that It becomes possible to carry out the optimum restraint energization corresponding to the fluctuation of the outside air temperature. FIG. 6 is a diagram illustrating an example of a method for correcting the restricted energization output command value Vout depending on the outside air temperature in the first embodiment. An example of a method for correcting such a restricted energization output command value Vout depending on the detected value Ta of the outside air temperature is shown in the following formula (2). Equation (2) is an example of correction depending on the detected value Ta of the outside air temperature, and the correction depending on the outside air temperature is not limited to such correction.
Vout = a × Vdc + b + Ta × c (2)
Here, c is a correction coefficient.
 数式(2)において補正係数cを負の値にすれば、図6のような補正が実現できる。上述のような外気温度に基づいた補正は、拘束通電出力指令値Voutへのオフセット値の加算となるため、直流母線電圧に影響されることはない。また、密閉型圧縮機9への出力を規制するために、下記の数式(3)のような条件式を設けて、拘束通電出力指令値Voutが上限値Vout(max)を超えないようにしてもよい。 If the correction coefficient c is set to a negative value in Equation (2), the correction shown in FIG. 6 can be realized. Since the correction based on the outside air temperature as described above is the addition of the offset value to the restricted energization output command value Vout, it is not affected by the DC bus voltage. Further, in order to regulate the output to the hermetic compressor 9, a conditional expression such as the following expression (3) is provided so that the restricted energization output command value Vout does not exceed the upper limit value Vout (max). Also good.
 a×Vdc+b+Ta×c>Vout(max)ならば、
 Vout=Vout(max)       ・・・(3)
If a × Vdc + b + Ta × c> Vout (max),
Vout = Vout (max) (3)
 図7は、実施の形態1における補正した拘束通電出力指令値Voutに上限値を設けた様子を示す図である。図7は、直流母線電圧値Vdcに基づいて補正した拘束通電出力指令値Voutに数式(3)の条件式により上限値を設けた様子を示している。図7では、下から上に、外気温度の検出値Taが高温時、常温時、極低温時に対応する拘束通電出力指令値Voutのグラフが示されている。 FIG. 7 is a diagram showing a state in which an upper limit value is provided for the corrected energization output command value Vout corrected in the first embodiment. FIG. 7 shows a state in which an upper limit value is provided to the restricted energization output command value Vout corrected based on the DC bus voltage value Vdc according to the conditional expression (3). FIG. 7 shows, from bottom to top, a graph of the restricted energization output command value Vout corresponding to when the detected value Ta of the outside air temperature is high, normal, and extremely low.
 また、外気温度の検出値Ta>D℃が成立する場合には、数式(2)の補正係数cを0にしてもよい。ここで、D℃は予め定めた温度閾値である。これにより、外気温度が高くて外気温度に基づいた補正が不要な場合には、外気温度に基づいた補正を行わないようにすることも可能である。 In addition, when the detected value Ta> D ° C. of the outside air temperature is satisfied, the correction coefficient c in Expression (2) may be set to zero. Here, D ° C is a predetermined temperature threshold. As a result, when the outside air temperature is high and correction based on the outside air temperature is unnecessary, it is possible not to perform the correction based on the outside air temperature.
 以上のようにして決定した拘束通電出力指令値Voutを、制御部11がインバータ装置8へ出力することにより、密閉型圧縮機9に対して、外気温度補正ありの拘束通電が実行される(ステップS105)。 When the control unit 11 outputs the restricted energization output command value Vout determined as described above to the inverter device 8, the energization with outside air temperature correction is performed on the hermetic compressor 9 (step). S105).
 ステップS105およびS106の後、制御部11は、予め定めた第二待機時間経過したか否かを判定する(ステップS108)。制御部11は、第二待機時間経過していないと判定した場合(ステップS108:No)、ステップS108に戻り、第二待機時間経過したと判定した場合(ステップS108:Yes)、再びステップS102に戻って拘束通電の要否を判断する。これにより、ステップS105およびS106の拘束通電が第二待機時間実行されると、再び、拘束通電の要否が判断されることになる。 After steps S105 and S106, the control unit 11 determines whether or not a predetermined second standby time has elapsed (step S108). When it is determined that the second standby time has not elapsed (step S108: No), the control unit 11 returns to step S108. When it is determined that the second standby time has elapsed (step S108: Yes), the control unit 11 returns to step S102. Return to determine whether restraint energization is necessary. As a result, when the restraint energization in steps S105 and S106 is executed for the second waiting time, the necessity of restraint energization is again determined.
 実施の形態1にかかる圧縮機駆動装置14によれば、外気温度が低い環境下において、密閉型圧縮機9への予熱量を高めて、より環境に適した予熱制御を実施することが可能となる。すなわち、密閉型圧縮機9ならびに冷媒への加熱を加速することが可能になる。これにより、寝込み起動時に密閉型圧縮機9の温度を目標とする温度まで立ち上げるために要する時間を短縮することが可能となる。 According to the compressor driving device 14 according to the first embodiment, it is possible to increase the amount of preheating to the hermetic compressor 9 in an environment where the outside air temperature is low, and to perform preheating control more suitable for the environment. Become. That is, it becomes possible to accelerate the heating to the hermetic compressor 9 and the refrigerant. As a result, it is possible to reduce the time required to raise the temperature of the hermetic compressor 9 to the target temperature at the start of sleep.
 図8は、実施の形態1における制御部11を専用のハードウェアで構成する場合の例を示す図である。この場合、制御部11は、図8に示すように専用のハードウェアである処理回路50で構成される。処理回路50は、単一回路、複合回路、プログラム化したプロセッサー、並列プログラム化したプロセッサー、ASIC(Application Specific Integrated Circuit)、FPGA(Field Programmable Gate Array)、またはこれらを組み合わせたものが該当する。また、制御部11の複数の機能それぞれを別々の複数の処理回路50で実現してもよい。 FIG. 8 is a diagram illustrating an example in which the control unit 11 according to the first embodiment is configured with dedicated hardware. In this case, the control unit 11 includes a processing circuit 50 that is dedicated hardware as shown in FIG. The processing circuit 50 corresponds to a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC (Application Specific Integrated Circuit), an FPGA (Field Programmable Gate Array), or a combination thereof. Further, each of the plurality of functions of the control unit 11 may be realized by a plurality of separate processing circuits 50.
 図9は、実施の形態1における制御部11をコンピュータで実現する場合のハードウェア構成を示す図である。この場合、制御部11は、圧縮機駆動装置14に設けられた図9に示すようなCPU(Central Processing Unit)51およびメモリ52により実現される。すなわち、制御部11の機能は、ソフトウェア、ファームウェア、またはソフトウェアとファームウェアとの組み合わせにより実現される。ソフトウェアまたはファームウェアはプログラムとして記述され、メモリ52に格納される。CPU51は、メモリ52に記憶されたプログラムを読み出して実行することにより、制御部11の機能を実現する。すなわち、圧縮機駆動装置14は、制御部11の機能がコンピュータにより実行されるときに、制御部11による図3の動作を実施するステップが結果的に実行されることになるプログラムを格納するためのメモリ52を備える。また、これらのプログラムは、圧縮機駆動装置14の制御にかかる制御部11の手順または方法をコンピュータに実行させるものであるともいえる。 FIG. 9 is a diagram illustrating a hardware configuration when the control unit 11 according to the first embodiment is realized by a computer. In this case, the control unit 11 is realized by a CPU (Central Processing Unit) 51 and a memory 52 as shown in FIG. 9 provided in the compressor driving device 14. That is, the function of the control unit 11 is realized by software, firmware, or a combination of software and firmware. Software or firmware is described as a program and stored in the memory 52. The CPU 51 implements the function of the control unit 11 by reading and executing the program stored in the memory 52. That is, the compressor drive device 14 stores a program that results in the step of performing the operation of FIG. 3 by the control unit 11 when the function of the control unit 11 is executed by the computer. The memory 52 is provided. These programs can be said to cause a computer to execute the procedure or method of the control unit 11 related to the control of the compressor driving device 14.
 ここで、メモリ52とは、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリー、EPROM(Erasable Programmable Read Only Memory)、EEPROM(Electrically Erasable Programmable Read Only Memory)といった不揮発性または揮発性の半導体メモリ、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスク、DVD(Digital Versatile Disk)が該当する。 Here, the memory 52 is a RAM (Random Access Memory), a ROM (Read Only Memory), a flash memory, an EPROM (Erasable Programmable Read Only Nonvolatile Memory, or an EEPROM (Electrically Erasable Memory) A semiconductor memory, a magnetic disk, a flexible disk, an optical disk, a compact disk, a mini disk, and a DVD (Digital Versatile Disk) are applicable.
 また、圧縮機駆動装置14の制御にかかる制御部11の各機能について、一部を専用のハードウェアで実現し、一部をソフトウェアまたはファームウェアで実現するようにしてもよい。このように圧縮機駆動装置14の制御にかかる制御部11は、ハードウェア、ソフトウェア、ファームウェア、またはこれらの組み合わせによって、上述した各機能を実現することができる。 Further, a part of the functions of the control unit 11 related to the control of the compressor driving device 14 may be realized by dedicated hardware, and a part may be realized by software or firmware. Thus, the control part 11 concerning control of the compressor drive device 14 can implement | achieve each function mentioned above with hardware, software, firmware, or these combination.
 以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。 The configuration described in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and can be combined with other configurations without departing from the gist of the present invention. It is also possible to omit or change the part.
 1 商用交流電源、2 フィルタ回路、3 素子、4 リレー、5 ダイオードブリッジ、6 コンバータ回路、7a コンデンサ、7b 母線電圧検出器、8 インバータ装置、9 密閉型圧縮機、10 過電流検出器、11 制御部、12 外気温度センサ、13 圧縮機温度センサ、14 圧縮機駆動装置、50 処理回路、51 CPU、52 メモリ。 1 commercial AC power supply, 2 filter circuit, 3 elements, 4 relay, 5 diode bridge, 6 converter circuit, 7a capacitor, 7b bus voltage detector, 8 inverter device, 9 hermetic compressor, 10 overcurrent detector, 11 control Part, 12 outside air temperature sensor, 13 compressor temperature sensor, 14 compressor drive device, 50 processing circuit, 51 CPU, 52 memory.

Claims (4)

  1.  圧縮機と、
     交流電圧を整流して直流母線電圧へ変換する整流部と、
     前記圧縮機が停止しているときに、前記直流母線電圧と拘束通電出力指令値とに基づいた電圧指令値を前記圧縮機に出力するインバータ装置と、
     前記圧縮機が停止しているときに、前記圧縮機を予熱するために、前記直流母線電圧に基づいて決定した前記拘束通電出力指令値を前記インバータ装置に出力する制御部と、
     外気温度を検出する外気温度センサと、
     を備え、
     前記制御部は、前記外気温度に基づいて前記拘束通電出力指令値を補正する
     ことを特徴とする圧縮機駆動装置。
    A compressor,
    A rectifier that rectifies an AC voltage and converts it to a DC bus voltage;
    When the compressor is stopped, an inverter device that outputs a voltage command value based on the DC bus voltage and a constraint energization output command value to the compressor;
    A controller that outputs the restrained energization output command value determined based on the DC bus voltage to the inverter device in order to preheat the compressor when the compressor is stopped;
    An outside temperature sensor for detecting the outside temperature;
    With
    The said control part correct | amends the said restraining electricity supply output command value based on the said external temperature. The compressor drive device characterized by the above-mentioned.
  2.  前記制御部は、前記外気温度に基づいたオフセット値を加算することにより前記拘束通電出力指令値を補正する
     ことを特徴とする請求項1に記載の圧縮機駆動装置。
    The compressor driving apparatus according to claim 1, wherein the control unit corrects the constraint energization output command value by adding an offset value based on the outside air temperature.
  3.  前記制御部は、前記外気温度に基づいて前記予熱の必要の有無を判断する
     ことを特徴とする請求項1または2に記載の圧縮機駆動装置。
    The compressor driving apparatus according to claim 1, wherein the control unit determines whether the preheating is necessary based on the outside air temperature.
  4.  前記圧縮機の温度を検出する圧縮機温度センサをさらに備え、
     前記制御部は、前記外気温度および前記圧縮機の温度に基づいて前記予熱の必要の有無を判断する
     ことを特徴とする請求項3に記載の圧縮機駆動装置。
    A compressor temperature sensor for detecting the temperature of the compressor;
    The compressor driving device according to claim 3, wherein the control unit determines whether or not the preheating is necessary based on the outside air temperature and the temperature of the compressor.
PCT/JP2016/067102 2016-06-08 2016-06-08 Compressor drive device WO2017212584A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/067102 WO2017212584A1 (en) 2016-06-08 2016-06-08 Compressor drive device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/067102 WO2017212584A1 (en) 2016-06-08 2016-06-08 Compressor drive device

Publications (1)

Publication Number Publication Date
WO2017212584A1 true WO2017212584A1 (en) 2017-12-14

Family

ID=60578487

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/067102 WO2017212584A1 (en) 2016-06-08 2016-06-08 Compressor drive device

Country Status (1)

Country Link
WO (1) WO2017212584A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019186628A1 (en) * 2018-03-26 2019-10-03 三菱電機株式会社 Air conditioner
CN112344538A (en) * 2019-08-07 2021-02-09 广东美的制冷设备有限公司 Air conditioning system, compressor control system and control method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63294461A (en) * 1987-05-26 1988-12-01 株式会社東芝 Air conditioner
WO2012086010A1 (en) * 2010-12-21 2012-06-28 三菱電機株式会社 Heat pump device, heat pump system, and method for controlling three-phase inverter

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63294461A (en) * 1987-05-26 1988-12-01 株式会社東芝 Air conditioner
WO2012086010A1 (en) * 2010-12-21 2012-06-28 三菱電機株式会社 Heat pump device, heat pump system, and method for controlling three-phase inverter

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019186628A1 (en) * 2018-03-26 2019-10-03 三菱電機株式会社 Air conditioner
JPWO2019186628A1 (en) * 2018-03-26 2020-09-03 三菱電機株式会社 Air conditioner
CN112344538A (en) * 2019-08-07 2021-02-09 广东美的制冷设备有限公司 Air conditioning system, compressor control system and control method thereof

Similar Documents

Publication Publication Date Title
RU2480889C1 (en) Converter control device
TWI392213B (en) Power supply
WO2017212584A1 (en) Compressor drive device
JP6912038B2 (en) Motor drive, blower, motor drive method, and recording medium
JP5339985B2 (en) Inverter controller for DC motor drive
JP2017118770A (en) Overcurrent protection circuit
JP6707196B2 (en) Boost converter and motor drive controller
JP5893064B2 (en) Motor control device
JP2017123740A (en) Switching power supply
JP6452906B1 (en) Power converter
US10251320B2 (en) Managing device for cooling inverter
WO2019098004A1 (en) Power conversion device
JP2018007502A (en) Power conversion device, air conditioner and control method for power conversion device
JP5493875B2 (en) Inverter control device, drive device, air conditioner, capacitor discharge control program, and capacitor discharge control method
JP5419290B2 (en) Charger
JP6759830B2 (en) Power converter
WO2022230062A1 (en) Power conversion device, and method for suppressing inrush current to power conversion device
JP6641501B2 (en) Converter control device and converter control method
JP6615421B1 (en) Photovoltaic power generation drive system and control method for solar power generation drive system
US20230387827A1 (en) Power conversion device
WO2023243115A1 (en) Power conversion device
US20230412065A1 (en) Power conversion device and air conditioner
EP2731244B1 (en) Controller for active converter, and method and program therefor
JP6508782B2 (en) Power converter and DC voltage controller
WO2019180828A1 (en) Air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16904619

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16904619

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP