WO2022228574A1 - 一种抗拉强度≥1000MPa的热冲压部件及其制造方法 - Google Patents

一种抗拉强度≥1000MPa的热冲压部件及其制造方法 Download PDF

Info

Publication number
WO2022228574A1
WO2022228574A1 PCT/CN2022/090627 CN2022090627W WO2022228574A1 WO 2022228574 A1 WO2022228574 A1 WO 2022228574A1 CN 2022090627 W CN2022090627 W CN 2022090627W WO 2022228574 A1 WO2022228574 A1 WO 2022228574A1
Authority
WO
WIPO (PCT)
Prior art keywords
hot stamping
tensile strength
hot
mpa
stamping part
Prior art date
Application number
PCT/CN2022/090627
Other languages
English (en)
French (fr)
Inventor
刘浩
谭宁
洪继要
毕文珍
Original Assignee
宝山钢铁股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宝山钢铁股份有限公司 filed Critical 宝山钢铁股份有限公司
Priority to AU2022263750A priority Critical patent/AU2022263750A1/en
Priority to EP22795043.3A priority patent/EP4332246A1/en
Priority to JP2023566557A priority patent/JP2024515833A/ja
Priority to BR112023021820A priority patent/BR112023021820A2/pt
Priority to KR1020237041326A priority patent/KR20240005821A/ko
Publication of WO2022228574A1 publication Critical patent/WO2022228574A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/02Stamping using rigid devices or tools
    • B21D22/022Stamping using rigid devices or tools by heating the blank or stamping associated with heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/12Aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the invention relates to the technical field of automobile materials, in particular to a hot stamping part with a tensile strength of ⁇ 1000 MPa and a manufacturing method thereof.
  • Hot stamping parts have the characteristics of high strengthening, strong forming ability and low springback, so their products have become one of the important technical solutions for lightweight automobile structures. Hot stamping products can be widely used in body-in-white A/B pillars, anti-collision beams, middle passages and other safety structural parts, so the market demand is increasing day by day.
  • the hot stamping products used in the market are concentrated in the strength level of 1500MPa, the VDA cold bending angle is about 50° in terms of toughness, and the impact toughness at room temperature is about 40J/cm 2 .
  • the 1000MPa hot stamping product has higher toughness, so it can be applied to energy-absorbing parts that have higher requirements on toughness.
  • the 1000MPa-level high-toughness hot stamping product has higher collision performance in terms of material properties.
  • the structural reinforcement as an energy-absorbing area it has the advantages of high strength and good local collision.
  • the 1000MPa strength grade hot stamping steel can obtain high strength and high toughness while adding many expensive elements in the composition design.
  • the production and manufacture mostly adopts complex multi-stage control process, which has drawbacks.
  • Chinese patent CN107810281B discloses that "for press hardening steel and press hardening parts made of such steel" can obtain press hardening parts with tensile strength higher than 950MPa and cold bending angle higher than 75°, but its composition design requires A large amount of micro-alloying elements, high-temperature annealing treatment is used in the production process of steel plates, and two-stage cooling control treatment is adopted in the hot stamping process of component production, which leads to complex manufacturing processes and great difficulties in actual operation.
  • Chinese patent CN105829562B discloses "a hot-pressed steel plate member, its manufacturing method, and a steel plate for hot-pressing".
  • the alloy composition is added with 0.060-0.20% Ti element, and it is required to control all Ti to meet the precipitation of 90%.
  • hot stamping is performed in the process.
  • the post-cooling adopts two-stage cooling, and the hot-stamped components only achieve a strength of more than 980 MPa, and it is not mentioned that the hot-stamped components have high toughness.
  • Chinese patent CN104838030B discloses "a hot stamping product with enhanced toughness and its manufacturing method", its alloy composition design B ⁇ 0.001%, mainly by means of other expensive alloys such as Mo to improve the quenching ability to obtain martensite to achieve high performance enhancement .
  • the current traditional high-strength hot stamping steel has problems such as insufficient toughness and poor impact energy absorption effect.
  • the purpose of the present invention is to provide a high-toughness hot stamping part with a tensile strength ⁇ 1000 MPa and a manufacturing method thereof.
  • the yield strength of the obtained hot stamping part is ⁇ 800 MPa
  • the tensile strength is ⁇ 1000 MPa
  • the elongation at break is ⁇ 6%
  • the VDA is cold-formed.
  • Angle ⁇ 80°, impact toughness at room temperature ⁇ 80J/cm 2 , hot stamping parts have high strength and high toughness at the same time, which solves the problems of insufficient toughness and poor impact energy absorption effect of existing high-strength hot stamping parts. It can be widely used in automobiles, ships, machinery and other industries.
  • a hot stamping part with tensile strength ⁇ 1000MPa its chemical composition weight percentages are: C: 0.05-0.20%, Si: 0.02-1.00%, Mn: 0.5-2.0%, P ⁇ 0.10%, S ⁇ 0.05%, Al: 0.01-0.30%, Nb: 0.01-0.04%, Ti: 0.01-0.06%, Cr: 0.12-0.50%, B: 0.001-0.05%, the rest are Fe and other unavoidable impurities, and it is necessary to meet the following requirements:
  • the average grain size of prior austenite of the hot stamping part is ⁇ 10 ⁇ m, the VDA cold bending angle is ⁇ 80°, and the impact toughness at room temperature is ⁇ 80 J/cm 2 .
  • the hot stamping components may further include one or more of Ni: 0.01-1.0%, Mo: 0.01-0.5%, and V: 0.01-0.5% by weight.
  • the P Preferably, the P ⁇ 0.05%.
  • the S Preferably, the S ⁇ 0.01%.
  • the area ratio of martensite and bainite in the microstructure of the hot stamping part of the present invention is greater than or equal to 75%, and the rest is composed of ferrite, retained austenite or a mixture of the two.
  • the yield strength of the hot stamping part of the present invention is greater than or equal to 800MPa, the tensile strength is greater than or equal to 1000MPa, and the elongation at break is greater than or equal to 6%.
  • the hot stamped parts of the present invention have yield strength ⁇ 830 MPa, tensile strength ⁇ 1020 MPa, and elongation at break ⁇ 7.0%. In some embodiments, the hot stamping part of the present invention has a yield strength of 830-1150 MPa, a tensile strength of 1020-1300 MPa, and a fracture elongation of 7.0-9.0%.
  • the VDA cold bend angle of the hot stamped parts of the present invention is > 85°. In some embodiments, the VDA cold bend angle of the hot stamped parts of the present invention is ⁇ 90°. In some embodiments, the VDA cold bend angle of the hot stamped part of the present invention is 85-120°.
  • the room temperature impact toughness of the hot stamped parts of the present invention is greater than or equal to 85 J/cm 2 . In some embodiments, the room temperature impact toughness of the hot stamped parts of the present invention is greater than or equal to 90 J/cm 2 . In some embodiments, the room temperature impact toughness of the hot stamped part of the present invention is 80-115 J/cm 2 .
  • composition design of the present invention is a composition design of the present invention:
  • the carbon content is not less than 0.05% to ensure the strength and hardenability of hot stamped steel parts, so that the tensile strength of hot stamped parts can meet the target requirements.
  • the present invention controls the C content to be 0.05-0.20%.
  • Si Adding a certain amount of Si can dissolve in ferrite and austenite to improve the strength and hardness of hot stamping parts. When the content of Si exceeds 1.0%, it will affect the platability of hot stamping parts. Therefore, the present invention uses Si The content is controlled at 0.02-1.0%. In some embodiments, the Si content is 0..05-0.7%.
  • Mn It has the effect of deoxidation and desulfurization, and can also improve the hardness and strength of hot stamping parts.
  • Mn is a strong stabilizing element of austenite, which can significantly increase the hardenability of hot stamping parts.
  • the content of Mn in steel is not less than 0.5%.
  • the present invention controls the Mn content to be 0.5-2.0%.
  • C+Mn/6 is an important component of alloy composition, which fully reflects the strength, toughness and welding performance of the reaction material.
  • the higher content of C and Mn is easy to obtain higher carbon martensite, which will significantly deteriorate the toughness of the material.
  • higher than 0.45% will significantly reduce the welding performance. Therefore, the present invention controls 0.24% ⁇ C+Mn/6 ⁇ 0.45%.
  • P, S: P and S are all harmful elements.
  • the segregation of P element will cause cold brittleness in hot stamping parts; S segregation at high temperature will reduce the plasticity and even lead to hot brittleness.
  • the main purpose of the design of the present invention is to significantly improve the toughness of the material, and it is necessary to control P ⁇ 0.10% and S ⁇ 0.05%, preferably P ⁇ 0.05% and S ⁇ 0.01%.
  • Al As a deoxidizing element, it is preferable to contain 0.01% or more of Al in the hot stamped part. However, if the hot stamped part contains a large amount of Al, coarse oxides will be formed and the overall performance of the hot stamped part will be deteriorated. Therefore, the Al content in the present invention is controlled at 0.01-0.3%. In some embodiments, Al is found to be 0.01-0.25%.
  • Nb It is an important micro-alloying element. On the one hand, Nb plays a role in solid solution strengthening; on the other hand, Nb has strong bonding force with C and N, which can form stable compounds with it, refine grains, and improve thermal conductivity. The strength and toughness of the stamped parts make the hot stamped parts have good cold bending properties, and the carbonitride of Nb acts as a hydrogen trap to reduce the susceptibility to hydrogen-induced delayed cracking. Therefore, in the present invention, the Nb content is controlled at 0.01-0.04%, the effect of refining crystal grains is insufficient if the content is less than 0.01%, and the product cost is higher if it is higher than 0.04%.
  • Ti is an important micro-alloying element, which has a strong affinity with nitrogen, oxygen and carbon, and is a good effective element for deoxidation and nitrogen fixation, avoiding the formation of BN between boron and nitrogen.
  • Ti has the effect of refining grains and can improve the toughness of the material.
  • the Ti content of the present invention is controlled at 0.01-0.06%, which can improve the toughness and plastic properties of the hot stamping part.
  • B The main function is to greatly increase the hardenability of steel, thereby saving other expensive metals.
  • the addition of B has an optimal range for improving the hardenability. Above a certain amount, the effect of increasing the hardenability is not obvious. Therefore, the content of B in the present invention is controlled at 0.001-0.05%. In some embodiments, the B content is 0.001 to 0.005%.
  • the elements Nb, Ti and B can significantly refine the grain structure of hot stamping parts from different angles.
  • the precipitation of carbon and nitrogen compounds from Nb/Ti can refine the grains in the production of hot stamping parts, and B can improve the hardenability.
  • Nb/Ti has a similar effect, and the added content is of the same order of magnitude, but a small amount of B can achieve the effect of significantly improving the hardenability. If the alloy composition is Nb+Ti+B ⁇ 10 ⁇ 0.05%, the hot stamping part cannot be remarkably fine.
  • the average grain size of the original austenite is larger than 10 ⁇ m, which cannot achieve high toughness;
  • the alloy composition is Nb+Ti+B ⁇ 10>0.15%, on the one hand, the refining effect of increasing the alloy content is not obvious, on the other hand, it increases the alloy cost. , therefore, the present invention controls 0.05% ⁇ Nb+Ti+B ⁇ 10 ⁇ 0.15%.
  • the Cr content of the present invention is controlled at 0.12 ⁇ 0.5%.
  • Ni, Mo and V All are stable and effective elements to ensure the strength and toughness of hot stamping parts.
  • Ni can improve the strength of steel and reduce the low temperature brittle transition temperature of steel, which is of great significance for improving impact toughness.
  • Mo can significantly improve the hardenability of steel, refine austenite grains, prevent temper brittleness, and improve the strength and toughness of hot stamping parts.
  • V refines the austenite grains in the form of fine carbonitrides and improves the toughness of the steel. Therefore, Ni, Mo, and V can all ensure that the hot stamping part has high strength and good toughness.
  • the present invention may further include one or more alloy components of Ni: 0.01-1.0%, Mo: 0.01-0.5%, and V: 0.01-0.5%.
  • Ni 0.01-1.0%, Mo: 0.01-0.5%, and V: 0.01-0.5%.
  • Ni ⁇ 0.3%, Mo ⁇ 0.3%, and V ⁇ 0.2%.
  • the composition of the invention mainly adopts the design idea of low-carbon microalloying, improves the hardenability through C solid solution strengthening and C/Mn compounding to ensure the strength requirements of hot stamping parts, and adds trace amounts of Nb, Ti, B and other microalloying elements to further significantly refine heat Grain size of stamped parts, including prior austenite grain size, to obtain high-strength, high-toughness hot stamped parts.
  • some alloying elements such as Ni, Mo, and V are added to further improve the strength and toughness of the hot stamping part.
  • the manufacturing method of the hot stamping part with a tensile strength of 1000MPa comprises the following steps:
  • the slab heating temperature is 1100-1260°C, and the final rolling temperature is 830-880°C;
  • the coiling temperature is 580-650°C, and then the hot-rolled slab is obtained by pickling;
  • the total reduction of cold rolling is 40-80%, and the annealing temperature is 720-780°C;
  • the heating temperature of the steel plate is A c3 ⁇ 960 ° C, and the heating time is 2 ⁇ 10 minutes; then it is transferred to the mold for stamping and forming, and the forming temperature is ⁇ 700 ° C;
  • the slab is heated to a temperature of 1150-1260°C.
  • step 3 the area ratio of martensite and carbide particles in the structure of the steel sheet after annealing is 10-40%, and the area of a single martensite or carbide particle is less than 25 ⁇ m 2 .
  • step 3 the aspect ratio of more than 80% of the grains in the annealed steel sheet structure is 0.5-2.0.
  • the steel sheet is coated to obtain a steel sheet with a coating layer, and the average weight of the single side of the coating layer is 20-120 g/m 2 .
  • the coating is a pure zinc coating, a zinc-iron alloy coating, a zinc-based alloy coating containing Al and Mg, or an aluminum-silicon alloy coating.
  • the steel plate and the steel for hot stamping parts of other strength levels are welded together by laser tailor welding technology to form a tailor welded part.
  • the heating time in step 4) is 200-600 s.
  • the forming temperature in step 4) is 700-820°C.
  • the cooling rate in step 4) is 35-60°C/s.
  • the steel billets are prepared according to the above components, and hot-rolled, cold-rolled, and annealed to obtain uncoated steel sheets, or hot-rolled, cold-rolled, and annealed, and coated steel sheets in any manner to obtain plated steel sheets.
  • the invention controls the production process of hot stamping parts, and the hot-rolled billet is heated and released at a temperature of 1100-1260°C. If the heating temperature is lower than 1100°C, the microalloy elements cannot be fully dissolved. If the heating temperature is higher than 1260°C, the crystal grains are easily coarsened and the toughness is deteriorated.
  • the final rolling temperature is controlled at 830-880 °C to ensure that the final rolling is rolled in the austenite non-recrystallized range to refine the grain structure.
  • the coiling temperature is controlled at 580-650°C, and a higher proportion of nano-scale distribution can be obtained.
  • NbC and TiC are precipitated, and the obtained NbC and TiC inhibit the growth of prior austenite grains during the subsequent hot stamping heating process, which is beneficial to refine the prior austenite grain size.
  • the coiling temperature is lower than 580°C, the niobium-titanium carbide cannot achieve good precipitation effect, and the strength of the steel plate after hot rolling is high, which makes the cold rolling manufacturing more difficult; the coiling temperature is higher than 650°C, on the one hand, the grain size is coarse. , which is not conducive to the grain refinement control of the whole process. On the other hand, local oxidation will occur on the surface of the steel plate, which is not conducive to the control of the subsequent pickling process, and will affect the platability of the steel plate.
  • the total reduction of cold rolling is controlled at 40 to 80%. If the total reduction of cold rolling is less than 40%, the degree of microstructure fragmentation is low and the grain refinement effect is not obvious. If the total reduction of cold rolling is greater than 80%, the steel The internal residual hardness is large and the band-like structure is large, which is not conducive to subsequent production, and will significantly deteriorate the toughness of hot stamping parts.
  • Annealing after hot rolling is to further control the grain size and shape of the steel sheet and ensure that the hot stamped parts can obtain high toughness.
  • the annealing temperature is controlled at 720-780°C to ensure that more than 80% of the grains in the steel sheet obtained after annealing are approximately equiaxed, that is, the aspect ratio of the grain shape satisfies 0.5-2.0, and a higher proportion of equiaxed
  • the grains can reduce the banded structure and refine the initial steel plate structure, and the subsequent hot stamping parts can be refined, and the annealing temperature is higher than 780 °C, resulting in a significant increase in the grain size.
  • the annealing temperature is controlled at 720 ⁇ 780°C, and the fine martensite and carbide particles are dispersed along the ferrite grain boundary in the structure.
  • Both martensite and carbide are carbon-rich phases, and the other area is less than 25 ⁇ m2. It accounts for 10-40% of the structure, which significantly increases the effective grain boundary area.
  • the carbon-rich phase and the effective grain boundary are the preferential nucleation points of austenite, which is beneficial to increase the nucleation rate of austenite, promote nucleation and then refine the original Austenite grain size.
  • the area proportion of martensite and carbide particles in the structure is higher than 40%, which leads to the high performance of the steel sheet after annealing, which is not conducive to subsequent blanking processing.
  • the area proportion of martensite and carbide particles in the structure is less than 10%. boundary area.
  • the steel plate needs to be annealed at 720-780 °C.
  • the heating temperature of the hot stamped steel sheet of the present invention is lower than AC 3 , the structure of the steel sheet cannot be completely austenitized, the heating time is less than 2 minutes, the degree of austenitization of the steel sheet and the dissolution of carbides are insufficient; the hot stamping temperature is higher than 960° C. or If the heating time exceeds 10min, the austenite grains will be coarse, which will significantly reduce the toughness of hot stamping parts.
  • the deformation temperature of the steel plate is lower than 700 °C, it is difficult to deform and it is easy to precipitate more ferrite and other structures.
  • the subsequent cooling rate after hot stamping should be controlled to be greater than 30 °C/s, which is the critical cooling rate for obtaining martensitic structure. Quenching and cooling to Below 200°C, it is used to ensure that the strength and toughness of hot stamping parts meet the design requirements.
  • the obtained steel plate can be a bare plate without coating, or in order to reduce the influence of the iron oxide scale on the heated surface of the steel plate and the poor subsequent corrosion resistance, an alloy coating can be applied on the surface of the steel plate, and the coating amount of the coating can be controlled at 20 ⁇ 120g/m 2.
  • the coating amount of coating is less than 20g/m 2 , it is difficult to control the on-site production end and the anti-corrosion effect of hot stamping parts is not good.
  • the coating amount is greater than 120 g/m 2 , the anti-corrosion effect is saturated and the cost increases.
  • the coating can be a pure zinc coating; it can also be a zinc-iron alloy coating, such as Zn-Fe, Zn-Al, Zn-Mg, Zn-Al-Mg and other alloy coatings; it can also be a zinc-based alloy coating containing Al and Mg or
  • the aluminum-silicon alloy plating layer includes, for example, 0-4% Fe, 5-11% Si, and the balance is aluminum and unavoidable impurities.
  • the composition of the invention mainly adopts the design idea of low-carbon microalloying, improves the hardenability through C solid solution strengthening and C/Mn composite to ensure the strength requirements of hot stamping parts, adds trace amounts of microalloying elements such as Nb, Ti, B, and controls 0.24% ⁇ C+Mn/6 ⁇ 0.45%, 0.05% ⁇ Nb+Ti+B ⁇ 10 ⁇ 0.15%, significantly refine the grain size of hot stamping parts, and ensure the average grain size of prior austenite of hot stamping parts ⁇ 10 ⁇ m, Improve the toughness of high-strength hot stamping parts, solve the problems of insufficient toughness and poor collision energy absorption effect of existing high-strength hot stamping parts, so that it can be widely used in automobiles, ships, machinery and other industries.
  • the coiling temperature is controlled at 580-650° C. by adding a small amount of microalloy components to ensure that NbC and TiC obtain a higher proportion of precipitation, and the obtained NbC and TiC inhibit subsequent hot stamping heating
  • the original austenite grains grow, and the original austenite grain size is refined; further, the annealing temperature is controlled at 720-780 ° C to ensure that more than 80% of the grains in the steel plate structure obtained after annealing are approximately equiaxed.
  • the strength is ⁇ 800MPa
  • the tensile strength is ⁇ 1000MPa
  • the VDA cold bending angle of the hot stamping part is ⁇ 80°
  • the impact toughness at room temperature is ⁇ 80J/cm 2 .
  • Fig. 1 is a scanning electron microscope microstructure photo of a hot stamping part according to an embodiment of the present invention.
  • FIG. 2 is a photograph of the prior austenite structure of the hot stamping part according to the embodiment of the present invention.
  • FIG 3 is a photo of the metallographic structure of the steel sheet after annealing in the embodiment of the present invention.
  • VDA cold bending angle testing standard VDA238-100 metal material sheet bending test
  • impact toughness testing standard GB/T 229 metal material Charpy pendulum impact test method
  • mechanical property testing standard GB/T 228.1 metal material
  • Tensile testing Part 1 Room temperature tensile test method.
  • Figure 1 presents the SEM micrographs of the hot stamped parts. It can be seen from FIG. 1 that the microstructure of the hot stamping part obtained by the present invention is martensite, bainite and a trace amount of retained austenite, wherein the area ratio of martensite to bainite is ⁇ 75%.
  • Figure 2 shows that the average grain size of prior austenite is ⁇ 10 ⁇ m.
  • Figure 3 it can be observed that about 85% of the grain shape aspect ratio of the annealed steel sheet satisfies 0.5 to 2.0, in which the martensite and carbide particles are distributed in a network-like dispersion, and the area ratio of martensite and carbide particles is greater than 25%, the single particle area is less than 25 ⁇ m 2 .
  • the yield strength of the hot stamping parts prepared by the present invention is ⁇ 800MPa
  • the tensile strength is ⁇ 1000MPa
  • the VDA cold bending angle is ⁇ 80°
  • the impact toughness at room temperature is ⁇ 80J/cm 2
  • the elongation at break is ⁇ 6%.
  • Example 1 0.06 0.32 1.93 0.006 0.010 0.03 0.04 0.04 0.004 0.30 0.15 - - Example 2 0.07 0.68 1.68 0.005 0.002 0.22 0.03 0.02 0.003 0.45 - - - Example 3 0.08 0.36 1.72 0.005 0.003 0.03 0.02 0.03 0.003 0.20 - - - Example 4 0.09 0.36 1.88 0.006 0.003 0.03 0.03 0.03 0.004 0.15 - - 0.10 Example 5 0.12 0.25 1.38 0.006 0.008 0.03 0.02 0.04 0.004 0.25 0.10 - - Example 6 0.13 0.58 1.26 0.005 0.004 0.05 0.03 0.06 0.005 0.18 - - 0.15 Example 7 0.15 0.35 1.35 0.006 0.005 0.10 0.01 0.05 0.002 0.24 - 0.20 - Example 8 0.15 0.50 1.00 0.004 0.003 0.03 0.02 0.05 0.002
  • Example 9 0.16 0.42 1.00 0.005 0.003 0.15 0.03 0.04 0.003 0.12 - - -
  • Example 10 0.18 0.05 0.55 0.007 0.005 0.04 0.03 0.03 0.002 0.14 0.30 - 0.10

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Heat Treatment Of Articles (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Forging (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)
  • Adornments (AREA)

Abstract

一种抗拉强度≥1000MPa的热冲压部件及其制造方法,其化学成分重量百分比为:C 0.05~0.20%,Si 0.02~1.00%,Mn 0.5~2.0%,P≤0.10%,S≤0.05%,Al 0.01~0.30%,Nb 0.01~0.0.04%,Ti 0.01~0.06%,Cr:0.12~0.50%,B 0.001~0.05%,其余为Fe及其它不可避免的杂质,且需要同时满足,0.24%≤C+Mn/6≤0.45%,0.05%≤Nb+Ti+B×10≤0.15%。获得的热冲压部件原始奥氏体平均晶粒尺寸≤10μm,VDA冷弯角≥80°,室温冲击韧性≥80J/cm2,屈服强度≥800MPa,抗拉强度≥1000MPa,断裂延伸率≥6%,热冲压部件在具有高强度的同时还获得高韧性,因此可广泛应用于汽车、船舶、机械等行业。

Description

一种抗拉强度≥1000MPa的热冲压部件及其制造方法 技术领域
本发明涉及汽车材料技术领域,具体涉及一种抗拉强度≥1000MPa的热冲压部件及其制造方法。
背景技术
随着自然环境恶化和石油能源紧缺问题的日益加剧,绿色和安全成为汽车制造业发展的主要方向。目前相关研究表明随着汽车用钢强度等级的逐渐增加,尤其抗拉强度大于1000MPa的钢板在冷成形过程中,冷冲压成形能力显著恶化,导致成形零件尺寸精度较差甚至部分位置出现开裂。热冲压成形部件具有高强化、成形能力强、回弹量低等特点,因此其产品成为汽车结构轻量化的重要技术解决方案之一。热冲压产品可广泛应用于白车身A/B柱、防撞梁、中通道等安全结构件,因此市场需求量日益增加。
目前市场上应用的热冲压产品集中在1500MPa强度级别,其韧性方面VDA冷弯角约50°,室温冲击韧性约40J/cm 2。与其相比1000MPa热冲压产品具有更高的韧性,因此可以应用于对韧性有更高要求的吸能零件。1000MPa级别的高韧性热冲压产品材料性能方面具有更高的碰撞性能,在结构加强件作为吸能区域,其兼具高强度和良好的局部碰撞等优势。目前已公布1000MPa强度级别热冲压用钢获得高强高韧的同时在成分设计添加多数昂贵元素,生产制造多采用复杂的多阶段控制工艺,存在弊端。
中国专利CN107810281B公开了“用于压制硬化的钢和由这样的钢制造的压制硬化的部件”可获得抗拉强度高于950MPa且冷弯角高于75°的压制硬化部件,但其成分设计需要多量微合金元素,且钢板生产过程中采用高温退火处理,部件生产热冲压工艺采用两阶段冷却控制处理等,导致制造工序复杂,实际操作困难较大。
中国专利CN105829562B公开了“一种热压钢板构件、及其制造方法以及热压用钢板”,合金成分添加0.060~0.20%Ti元素,并要求控制全部Ti满足90%的析出,另外工艺上热冲压后冷却采用两阶段冷却,获得热冲压构件仅实现强度980MPa以 上,未提及热冲压构件具备高韧性。
中国专利CN104838030B公开了“一种具有增强的韧性的热冲压产品和其制造方法”,其合金成分设计B≤0.001%,主要是借助Mo等其他昂贵合金提高淬火获得马氏体能力实现性能高强化。
综上,目前传统的高强度热冲压用钢存在韧性不足、碰撞吸能效果较差等问题。
发明内容
本发明目的在于提供一种抗拉强度≥1000MPa的高韧性热冲压部件及其制造方法,获得的热冲压部件的屈服强度≥800MPa,抗拉强度≥1000MPa,断裂延伸率≥6%,VDA冷弯角≥80°,室温冲击韧性≥80J/cm 2,热冲压部件在具有高强度的同时还获得高韧性,解决了现有高强度热冲压部件韧性不足、碰撞吸能效果较差的问题,使其可广泛应用于汽车、船舶、机械等行业。
为达到上述目的,本发明提供的技术方案是:
一种抗拉强度≥1000MPa的热冲压部件,其化学成分重量百分比为:C:0.05~0.20%,Si:0.02~1.00%,Mn:0.5~2.0%,P≤0.10%,S≤0.05%,Al:0.01~0.30%,Nb:0.01~0.04%,Ti:0.01~0.06%,Cr:0.12~0.50%,B:0.001~0.05%,其余为Fe及其它不可避免的杂质,且需要同时满足:
0.24%≤C+Mn/6≤0.45%;
0.05%≤Nb+Ti+B×10≤0.15%;
所述热冲压部件原始奥氏体平均晶粒尺寸≤10μm,VDA冷弯角≥80°,室温冲击韧性≥80J/cm 2
进一步,所述热冲压部件成分按照重量百分比还可以包括:Ni:0.01~1.0%,Mo:0.01~0.5%,V:0.01~0.5%中一种或几种。
优选的,所述P≤0.05%。
优选的,所述S≤0.01%。
本发明所述热冲压部件的显微组织中马氏体与贝氏体的面积占比≥75%,剩余部分由铁素体、残余奥氏体或两者混合构成。
本发明所述热冲压部件的屈服强度≥800MPa,抗拉强度≥1000MPa,断裂延伸率≥6%。
在一些实施方案中,本发明所述热冲压部件的屈服强度≥830MPa,抗拉强度 ≥1020MPa,断裂延伸率≥7.0%。在一些实施方案中,本发明所述热冲压部件的屈服强度为830~1150MPa,抗拉强度为1020~1300MPa,断裂延伸率为7.0~9.0%。
在一些实施方案中,本发明所述热冲压部件的VDA冷弯角≥85°。在一些实施方案中,本发明所述热冲压部件的VDA冷弯角≥90°。在一些实施方案中,本发明所述热冲压部件的VDA冷弯角为85~120°。
在一些实施方案中,本发明所述热冲压部件的室温冲击韧性≥85J/cm 2。在一些实施方案中,本发明所述热冲压部件的室温冲击韧性≥90J/cm 2。在一些实施方案中,本发明所述热冲压部件的室温冲击韧性为80~115J/cm 2
在本发明的成分设计中:
C:是实现强度和硬度提升的关键性元素,碳含量不低于0.05%保证钢板热冲压部件的强度和淬透性,使热冲压部件抗拉强度达到目标要求。另外随着碳含量的增加,热冲压部件的塑性、韧性和焊接性能等会出现恶化,因此,本发明将C含量控制在0.05~0.20%。
Si:添加一定量的Si能溶于铁素体和奥氏体中提高热冲压部件强度和硬度,当Si的含量超过1.0%之后,影响热冲压部件的可镀性,因此,本发明将Si含量控制在0.02~1.0%。在一些实施方案中,Si含量为0..05~0.7%。
Mn:具有脱氧和脱硫作用,还能提高热冲压部件的硬度和强度。Mn是奥氏体强稳定化元素,可显著增加热冲压部件的淬透性,为了保证热冲压部件的强度,钢中Mn含量不低于0.5%。另外Mn含量高于2.0%,会恶化热冲压部件的可制造性和可焊接性,因此,本发明将Mn含量控制在0.5~2.0%。
C+Mn/6是合金成分的重要组成,是反应材料强度、韧性和焊接性能的充分体现。合金成分C+Mn/6<0.24%,热冲压部件不能保证具有较高的抗拉强度,且材料获得马氏体能力不足;合金成分C+Mn/6>0.48%热冲压部件马氏体组织C、Mn含量较高,易获得较高碳马氏体,会显著恶化材料韧性,另外高于0.45%会显著降低焊接性能,因此,本发明控制0.24%≤C+Mn/6≤0.45%。
P、S:P和S都是有害元素,P元素偏析会导致热冲压部件出现冷脆现象;高温状态下S偏析会降低塑性甚至导致热脆现象发生。本发明设计主要目的是显著提高材料韧性,需要控制P≤0.10%,S≤0.05%,优选控制P≤0.05%,S≤0.01%。
Al:作为脱氧元素,热冲压部件中最好含有0.01%以上的Al,但是,如果热冲压部件中含有较多的Al,会形成粗大的氧化物,恶化热冲压部件的综合性能。因此, 本发明Al含量控制在0.01~0.3%。在一些实施方案中,Al看了为0.01~0.25%。
Nb:是重要的微合金元素,一方面Nb起到固溶强化作用;另一方面Nb和C、N都有极强的结合力,能与之形成稳定的化合物,细化晶粒,提高热冲压部件的强度、韧性,同时使热冲压部件具有良好的冷弯性能,且Nb的碳氮化物作为氢陷阱可降低氢致延迟开裂敏感性。因此,本发明中Nb含量控制在0.01~0.04%,低于0.01%细化晶粒效果不足,高于0.04%产品成本较高。
Ti:是重要的微合金元素,其与氮、氧、碳具有较强的亲和力,是一种良好的脱氧和固定氮有效元素,避免硼与氮形成BN。另外Ti起到细化晶粒的效果,可提升材料韧性。但是Ti含量太高,易形成块状的氮化物恶化韧塑性能。因此,本发明Ti含量控制在0.01~0.06%,可提高热冲压部件的韧塑性能。
B:主要作用是极大地增加钢的淬透性,从而节约其他昂贵的金属。B的添加有提高淬透性具有最佳的范围区间,高于一定量则淬透性增加效果不明显,因此,本发明中B含量控制在0.001~0.05%。在一些实施方案中,B含量为0.001~0.005%。
其中成分Nb、Ti、B元素从不同角度显著细化热冲压部件晶粒组织,Nb/Ti析出碳氮化合物在热冲压部件生产中均能细化晶粒,B提高淬透性,两者组合作用提高韧性。Nb/Ti具有相似的效果,添加含量数量级一致,但是微量的B就可达到显著提高淬透性的效果,若合金成分Nb+Ti+B×10<0.05%,热冲压部件组织不能得到显著细化,尤其原始奥氏体平均晶粒尺寸大于10μm,不能实现高韧性;合金成分Nb+Ti+B×10>0.15%,一方面合金含量再增加细化效果不明显,另一方面增加合金成本,因此,本发明控制0.05%≤Nb+Ti+B×10≤0.15%。
Cr:有效提高热冲压部件的淬透性,与Mn作用类似,进一步提高热冲压部件的强度和韧性,而且添加Cr元素可防止后续热冲压加热过程中高温表面氧化,因此本发明Cr含量控制在0.12~0.5%。
Ni、Mo和V:均为稳定的保证热冲压部件强韧性能的有效元素。Ni可以提高钢的强度,降低钢的低温脆性转变温度,对提高冲击韧性具有重要意义。Mo能显著提高钢的淬透性,细化奥氏体晶粒,防止回火脆性,提高热冲压部件强度和韧性。V通过细小碳氮化物形式细化奥氏体晶粒,提高钢的韧性。因此,Ni、Mo、V均能保证热冲压部件在具有高强度的同时具有良好的韧性。
综合考虑钢的合金成本和元素效果饱和度,本发明还可以包含Ni:0.01~1.0%,Mo:0.01~0.5%,V:0.01~0.5%中一种或几种合金成分。在一些实施方案中,本发 明的钢中,Ni≤0.3%,Mo≤0.3%,V≤0.2%。
本发明成分主要采用低碳微合金化设计思路,通过C固溶强化和C/Mn复合提高淬透性确保热冲压部件强度要求,添加微量Nb、Ti、B等微合金元素进一步显著细化热冲压部件晶粒尺寸,包括原始奥氏体晶粒尺寸,获得高强度、高韧性热冲压部件。优选地部分添加Ni、Mo、V等合金元素,进一步提高热冲压部件强度和韧性。
本发明所述的抗拉强度1000MPa热冲压部件的制造方法,包括如下步骤:
1)冶炼、铸造
按照上述成分冶炼、铸造成板坯;
2)热轧、卷取、酸洗
所述板坯加热出炉温度为1100~1260℃,终轧温度为830~880℃;
卷取温度为580~650℃,后经酸洗获得热轧板坯;
3)冷轧、退火
冷轧总压下量为40~80%,退火温度为720~780℃;
4)热冲压成形
退火后钢板加热温度A c3~960℃,加热时间2~10min;随后转移至模具进行冲压成形,成形温度≥700℃;
之后以大于30℃/s冷却速率冷却至200℃以下,获得热冲压部件。
在一些实施方案中,板坯加热出炉温度为1150~1260℃。
进一步,步骤3)中,所述退火后钢板组织中呈网状弥散分布的马氏体和碳化物颗粒面积占比为10~40%,且单个马氏体或碳化物颗粒面积小于25μm 2
更进一步,步骤3)中,所述退火后钢板组织中80%以上晶粒纵横比为0.5~2.0。
又,所述步骤3)退火后,对钢板进行涂覆,获得带有镀层的钢板,且所述镀层单面重量平均值为20~120g/m 2
优选的,所述镀层为纯锌镀层、锌铁合金镀层、含有Al和Mg的锌系合金镀层或铝硅合金镀层。
进一步,所述步骤4)热冲压成形前,将钢板与其它强度级别热冲压部件用钢通过激光拼焊技术焊接在一起,形成拼焊部件。
在一些实施方案中,步骤4)中的加热时间为200~600s。
在一些实施方案中,步骤4)中的成形温度为700~820℃。
在一些实施方案中,步骤4)中的冷却速率为35~60℃/s。
按照上述成分制备钢坯,经过热轧、冷轧、退火获得无镀层钢板,或经过热轧、冷轧、退火后,以任意方式对钢板进行涂覆获得带镀层钢板。
本发明针对热冲压部件生产工艺进行控制,热轧坯料加热出炉温度1100~1260℃,如果加热温度低于1100℃,微合金元素不能充分溶解。如果加热温度高于1260℃,晶粒容易粗化,恶化韧性。控制终轧温度在830~880℃,保证终轧在奥氏体未再结晶区间轧制,细化晶粒组织。
由于本发明中添加有微量的Nb、Ti微合金元素,为了使铌钛碳化物在卷取过程中析出较多,卷取温度控制在580~650℃,可获得较高比例的呈现纳米尺度分布NbC、TiC析出,获得的NbC、TiC抑制后续热冲压加热过程中原始奥氏体晶粒长大,有利于细化原始奥氏体晶粒尺寸。卷取温度低于580℃,铌钛碳化物未能达到良好的析出效果,热轧后钢板强度较高,造成冷轧制造难度加大;卷取温度高于650℃,一方面造成晶粒粗大,不利于全流程晶粒细化控制,另一方面钢板表面局部会出现氧化,不利于后续酸洗工艺控制,且会影响钢板的可镀性。
冷轧总压下量控制在40~80%,如果冷轧总压下量小于40%,组织破碎程度较低导致晶粒细化效果不明显,如果冷轧总压下量大于80%,钢板内部残余硬度较大,且带状组织较多,不利于后续生产,并且会显著恶化热冲压部件韧性。
热轧后退火是为了进一步控制钢板的晶粒尺寸和形状,确保热冲压部件能够获得高韧性。基于成分设计,退火温度控制在720~780℃,保证退火后获得的钢板组织中80%以上晶粒近似呈现等轴状,即晶粒形状纵横比值满足0.5~2.0,较高比例的等轴状晶粒可以减少带状组织、细化初始钢板组织,后续热冲压部件组织可以细化,退火温度高于780℃导致晶粒尺寸显著增大。
退火温度控制在720~780℃,组织中沿着铁素体晶界弥散分布细小的马氏体和碳化物颗粒,马氏体和碳化物均是富碳相,另外面积小于25μm 2的细小颗粒物在组织中占比10~40%,显著增加有效晶界面积,富碳相和有效晶界是奥氏体优先形核点,有益于增加奥氏体形核率,促进形核进而细化原始奥氏体晶粒尺寸。组织中马氏体和碳化物颗粒面积占比高于40%,导致退火后钢板性能较高不利于后续落料加工,组织中马氏体和碳化物颗粒面积占比小于10%不能有效增加晶界面积。鉴于上述控制晶粒尺寸才能获得高韧性热冲压部件,钢板需在720~780℃完成退火。
本发明热冲压钢板加热温度低于AC 3,钢板组织不能实现完全奥氏体化,加热 时间低于2min,钢板奥氏体化程度以及碳化物溶解等不充分;热冲压温度高于960℃或加热时间超过10min,奥氏体晶粒粗大,会造成热冲压部件韧性显著降低。钢板变形温度低于700℃时变形困难且易析出较多铁素体等组织,后续需控制热冲压成形后冷却速度大于30℃/s,是获得马氏体组织的临界冷却速率,淬火冷却至200℃以下,用来保证热冲压部件强度和韧性满足设计要求。
退火完成后获得钢板可以是无镀层裸板,也可以为了减少钢板加热表面氧化铁皮和后续耐腐蚀性能恶劣等的影响,在钢板表面涂覆合金镀层,镀层涂覆量控制在20~120g/m 2,镀层涂覆量小于20g/m 2时现场生产端控制程度较难而且热冲压部件抗腐蚀效果不佳,镀层涂覆量大于120g/m 2,抗腐蚀效果饱和且成本加大。
所述镀层可是纯锌镀层;也可以是锌铁合金镀层,例如Zn-Fe、Zn-Al、Zn-Mg、Zn-Al-Mg等合金镀层;还可以是含有Al和Mg的锌系合金镀层或铝硅合金镀层,例如包含0~4%Fe、5~11%Si、余量为铝及不可避免杂质的铝硅合金镀层。
本发明的有益效果:
本发明成分主要采用低碳微合金化设计思路,通过C固溶强化和C/Mn复合提高淬透性确保热冲压部件强度要求,添加微量Nb、Ti、B等微合金元素,并控制0.24%≤C+Mn/6≤0.45%,0.05%≤Nb+Ti+B×10≤0.15%,显著细化热冲压部件晶粒尺寸,保证热冲压部件的原始奥氏体平均晶粒尺寸≤10μm,改善高强度热冲压部件的韧性,解决现有高强度热冲压部件韧性不足、碰撞吸能效果较差的问题,使其可广泛应用于汽车、船舶、机械等行业。
本发明在制备工艺中,由于本发明采用添加微量的微合金成分,将卷取温度控制在580~650℃,保证NbC、TiC获得较高比例的析出,获得的NbC、TiC抑制后续热冲压加热过程中原始奥氏体晶粒长大,细化原始奥氏体晶粒尺寸;进一步,控制退火温度在720~780℃,保证退火后获得的钢板组织中80%以上晶粒近似呈现等轴状,这样才能保证钢板进行热冲压后原始奥氏体晶粒尺寸得到细化,原始奥氏体平均晶粒尺寸≤10μm,使高强度热冲压部件的韧性得到很大提高,获得热冲压部件的屈服强度≥800MPa,抗拉强度≥1000MPa,且,热冲压部件的VDA冷弯角≥80°,室温冲击韧性≥80J/cm 2
附图说明
图1为本发明实施例热冲压部件扫描电镜显微组织照片。
图2为本发明实施例热冲压部件原始奥氏体组织照片。
图3为本发明实施例退火后钢板金相组织照片。
具体实施方式
下面结合实施例对本发明做进一步说明。实施例中,VDA冷弯角检测标准:VDA238-100金属材料板材弯曲试验;冲击韧性检测标准:GB/T 229金属材料夏比摆锤冲击试验方法;力学性能检测标准:GB/T 228.1金属材料拉伸试验第1部分:室温拉伸试验方法。
本发明实施例具体成分、工艺参数如表1、表2所示,各实施例热冲压部件性能如表3所示。
图1给出了热冲压部件的扫描电镜显微组织照片。从图1可以看出,本发明获得的热冲压部件的显微组织为马氏体、贝氏体和微量残余奥氏体,其中,马氏体与贝氏体的面积占比≥75%。
图2可以观察到原始奥氏体平均晶粒尺寸≤10μm。图3可以观察退火后的钢板组织中约85%晶粒形状纵横比值满足0.5~2.0,其中马氏体与碳化物颗粒呈网状弥散分布,且马氏体与碳化物颗粒的面积占比大于25%,单个颗粒面积小于25μm 2
从表3性能可以看出,本发明制备热冲压部件的屈服强度≥800MPa,抗拉强度≥1000MPa,VDA冷弯角≥80°,室温冲击韧性≥80J/cm 2,断裂延伸率≥6%。
表1(单位:重量百分比)
  C Si Mn P S Al Nb Ti B Cr Ni V Mo
实施例1 0.06 0.32 1.93 0.006 0.010 0.03 0.04 0.04 0.004 0.30 0.15 - -
实施例2 0.07 0.68 1.68 0.005 0.002 0.22 0.03 0.02 0.003 0.45 - - -
实施例3 0.08 0.36 1.72 0.005 0.003 0.03 0.02 0.03 0.003 0.20 - - -
实施例4 0.09 0.36 1.88 0.006 0.003 0.03 0.03 0.03 0.004 0.15 - - 0.10
实施例5 0.12 0.25 1.38 0.006 0.008 0.03 0.02 0.04 0.004 0.25 0.10 - -
实施例6 0.13 0.58 1.26 0.005 0.004 0.05 0.03 0.06 0.005 0.18 - - 0.15
实施例7 0.15 0.35 1.35 0.006 0.005 0.10 0.01 0.05 0.002 0.24 - 0.20 -
实施例8 0.15 0.50 1.00 0.004 0.003 0.03 0.02 0.05 0.002 0.15 - - 0.30
实施例9 0.16 0.42 1.00 0.005 0.003 0.15 0.03 0.04 0.003 0.12 - - -
实施例10 0.18 0.05 0.55 0.007 0.005 0.04 0.03 0.03 0.002 0.14 0.30 - 0.10
表2
Figure PCTCN2022090627-appb-000001
表3
Figure PCTCN2022090627-appb-000002
Figure PCTCN2022090627-appb-000003

Claims (15)

  1. 一种抗拉强度≥1000MPa的热冲压部件,其化学成分重量百分比为:C:0.05~0.20%,Si:0.02~1.00%,Mn:0.5~2.0%,P≤0.10%,S≤0.05%,Al:0.01~0.30%,Nb:0.01~0.04%,Ti:0.01~0.06%,Cr:0.12~0.50%,B:0.001~0.05%,其余为Fe及其它不可避免的杂质,且需要同时满足:
    0.24%≤C+Mn/6≤0.45%;
    0.05%≤Nb+Ti+B×10≤0.15%;
    所述热冲压部件原始奥氏体平均晶粒尺寸≤10μm,VDA冷弯角≥80°,室温冲击韧性≥80J/cm 2
  2. 如权利要求1所述的抗拉强度≥1000MPa的热冲压部件,其特征在于,所述热冲压部件成分按照重量百分比还可包括:Ni:0.01~1.0%,Mo:0.01~0.5%,V:0.01~0.5%中一种或几种。
  3. 如权利要求1所述的抗拉强度≥1000MPa的热冲压部件,其特征在于,所述P≤0.05%,和/或所述S≤0.01%。
  4. 如权利要求1所述的抗拉强度≥1000MP的a热冲压部件,其特征在于,所述Si的含量为0.05~0.7%,和/或所述Al的含量为0.01~0.25%,和/或所述B的含量为0.001~0.005%。
  5. 如权利要求1~4任一项所述的抗拉强度≥1000MPa的热冲压部件,其特征在于,所述热冲压部件的显微组织中马氏体与贝氏体的面积占比≥75%,剩余部分由铁素体、残余奥氏体或两者混合构成。
  6. 如权利要求1~5任一项所述的抗拉强度≥1000MPa的热冲压部件,其特征在于,所述热冲压部件的屈服强度≥800MPa,抗拉强度≥1000MPa,断裂延伸率≥6%。
  7. 如权利要求6所述的抗拉强度≥1000MPa的热冲压部件,其特征在于,所述热冲压部件的屈服强度≥830MPa,抗拉强度≥1020MPa,断裂延伸率≥7.0%。
  8. 如权利要求7所述的抗拉强度≥1000MPa的热冲压部件,其特征在于,所述热冲压部件的屈服强度为830~1150MPa,抗拉强度为1020~1300MPa,断裂延伸率为7.0~9.0%。
  9. 如权利要求1~7任一项所述的抗拉强度≥1000MPa的热冲压部件,其特征 在于,所述热冲压部件的VDA冷弯角≥85°,优选≥90°,优选为85~120°;和/或所述热冲压部件的室温冲击韧性≥85J/cm 2,优选≥90J/cm 2,优选为80~115J/cm 2
  10. 如权利要求1~9任一项所述的抗拉强度≥1000MPa热冲压部件的制造方法,其特征在于,包括如下步骤:
    1)冶炼、铸造
    按照权利要求1~4中任一项所述的成分冶炼、铸造成板坯;
    2)热轧、卷取、酸洗
    所述板坯加热出炉温度为1100~1260℃,终轧温度为830~880℃;
    卷取温度为580~650℃,后经酸洗获得热轧板坯;
    3)冷轧、退火
    冷轧总压下量为40~80%,退火温度为720~780℃;
    4)热冲压成形
    退火后钢板加热至Ac 3~960℃,加热时间2~10min;随后转移至模具进行冲压成形,成形温度≥700℃;
    之后以大于30℃/s的冷却速率冷却至200℃以下,获得热冲压部件。
  11. 如权利要求10所述的抗拉强度≥1000MPa热冲压部件的制造方法,其特征在于,步骤3)中,所述退火后钢板组织中呈网状弥散分布的马氏体和碳化物颗粒面积占比为10~40%,且单个马氏体或碳化物颗粒面积小于25μm 2
  12. 如权利要求10或11所述的抗拉强度≥1000MPa热冲压部件的制造方法,其特征在于,步骤3)中,所述退火后钢板组织中80%以上晶粒纵横比为0.5~2.0。
  13. 如权利要求10所述的抗拉强度≥1000MPa热冲压部件的制造方法,其特征在于,所述步骤3)退火后,对钢板进行涂覆,获得带有镀层的钢板,且所述镀层单面重量平均值为20~120g/m 2
  14. 如权利要求11所述的抗拉强度≥1000MPa热冲压部件的制造方法,其特征在于,所述镀层为纯锌镀层、锌铁合金镀层、含有Al和Mg的锌系合金镀层或铝硅合金镀层。
  15. 如权利要求10或11或12所述的抗拉强度≥1000MPa热冲压部件的制造方法,其特征在于,所述步骤4)热冲压成形前,将钢板与其它强度级别热冲压部件用钢板通过激光拼焊技术焊接在一起,形成热冲压拼焊部件。
PCT/CN2022/090627 2021-04-30 2022-04-29 一种抗拉强度≥1000MPa的热冲压部件及其制造方法 WO2022228574A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
AU2022263750A AU2022263750A1 (en) 2021-04-30 2022-04-29 Hot stamping component having tensile strength ≥1000 mpa and fabrication method therefor
EP22795043.3A EP4332246A1 (en) 2021-04-30 2022-04-29 Hot stamping component having tensile strength greater than or equal to 1000 mpa and fabrication method therefor
JP2023566557A JP2024515833A (ja) 2021-04-30 2022-04-29 引張強度≧1000MPaの熱間プレス部品およびその製造方法
BR112023021820A BR112023021820A2 (pt) 2021-04-30 2022-04-29 Componente para estampagem a quente tendo resistência à tração =1000 mpa e respectivo método de fabricação
KR1020237041326A KR20240005821A (ko) 2021-04-30 2022-04-29 인장강도가 1000MPa 이상인 핫 스탬핑 부재 및 이의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110480760.7 2021-04-30
CN202110480760.7A CN115261742B (zh) 2021-04-30 2021-04-30 一种抗拉强度1000MPa热冲压部件及其制造方法

Publications (1)

Publication Number Publication Date
WO2022228574A1 true WO2022228574A1 (zh) 2022-11-03

Family

ID=83745251

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/090627 WO2022228574A1 (zh) 2021-04-30 2022-04-29 一种抗拉强度≥1000MPa的热冲压部件及其制造方法

Country Status (7)

Country Link
EP (1) EP4332246A1 (zh)
JP (1) JP2024515833A (zh)
KR (1) KR20240005821A (zh)
CN (1) CN115261742B (zh)
AU (1) AU2022263750A1 (zh)
BR (1) BR112023021820A2 (zh)
WO (1) WO2022228574A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024105428A1 (en) * 2022-11-14 2024-05-23 Arcelormittal High toughness press-hardened steel part and method of manufacturing the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115652218B (zh) * 2022-11-17 2023-06-06 育材堂(苏州)材料科技有限公司 一种低碳的高韧性热冲压成形构件及钢板

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2664682A1 (de) * 2012-05-16 2013-11-20 ThyssenKrupp Steel Europe AG Stahl für die Herstellung eines Stahlbauteils, daraus bestehendes Stahlflachprodukt, daraus hergestelltes Bauteil und Verfahren zu dessen Herstellung
JP2014118613A (ja) * 2012-12-18 2014-06-30 Nippon Steel & Sumitomo Metal 強度と耐水素脆性に優れたホットスタンプ成形体及びその製造方法
JP2014122398A (ja) * 2012-12-21 2014-07-03 Nippon Steel & Sumitomo Metal 強度と耐水素脆性に優れたホットスタンプ成形体及びホットスタンプ成形体の製造方法
CN104271789A (zh) * 2012-04-23 2015-01-07 株式会社神户制钢所 热冲压用镀锌钢板的制造方法、热冲压用合金化熔融镀锌钢板及其制造方法、以及热冲压部件
JP2015196890A (ja) * 2014-04-02 2015-11-09 本田技研工業株式会社 ホットスタンプ成形体
CN106282873A (zh) * 2015-05-13 2017-01-04 宝山钢铁股份有限公司 一种热冲压钢的合金镀层及其制备方法
CN104838030B (zh) 2013-05-09 2017-07-28 现代制铁株式会社 具有增强的韧性的热冲压产品和其制造方法
CN109371325A (zh) * 2018-11-30 2019-02-22 宝山钢铁股份有限公司 一种冷弯性能优良的锌系镀覆热成型钢板或钢带及其制造方法
CN107810281B (zh) 2015-07-09 2019-06-11 安赛乐米塔尔公司 用于压制硬化的钢和由这样的钢制造的压制硬化的部件
CN105829562B (zh) 2013-12-20 2019-09-20 日本制铁株式会社 热压钢板构件、其制造方法以及热压用钢板

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2478729C2 (ru) * 2011-05-20 2013-04-10 Открытое акционерное общество "Северсталь" (ОАО "Северсталь") Способ производства стальной полосы (варианты)
CN102699031B (zh) * 2012-05-14 2014-03-26 莱芜钢铁集团有限公司 一种900MPa级超高韧性低合金钢及其制造方法
CN105506494B (zh) * 2014-09-26 2017-08-25 宝山钢铁股份有限公司 一种屈服强度800MPa级高韧性热轧高强钢及其制造方法
CN104513927B (zh) * 2014-12-19 2017-04-05 宝山钢铁股份有限公司 一种抗拉强度800MPa级高强度高韧性钢板及其制造方法
CN105483531A (zh) * 2015-12-04 2016-04-13 重庆哈工易成形钢铁科技有限公司 用于冲压成形的钢材及其成形构件与热处理方法
CN106906421A (zh) * 2015-12-29 2017-06-30 宝山钢铁股份有限公司 一种低温热冲压汽车零部件、其热冲压工艺及其制造方法
CN108004475B (zh) * 2016-10-31 2019-12-27 宝山钢铁股份有限公司 一种900MPa级热轧纳米析出强化型高强高韧钢及其制造方法
CN108018484B (zh) * 2016-10-31 2020-01-31 宝山钢铁股份有限公司 抗拉强度1500MPa以上成形性优良的冷轧高强钢及其制造方法
CN109957715A (zh) * 2017-12-14 2019-07-02 鞍钢股份有限公司 热成形用钢板、制造方法、热成形方法、及制得的部件
CN110863138B (zh) * 2019-06-24 2021-07-06 鞍钢股份有限公司 一种1800MPa级热成形钢及其制造方法
CN110257702B (zh) * 2019-06-24 2021-04-27 鞍钢股份有限公司 一种热冲压成形用钢及其热成形方法
CN111748736A (zh) * 2020-06-24 2020-10-09 武汉钢铁有限公司 一种1800MPa级低氢致延迟开裂敏感性热成形钢及其生产方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104271789A (zh) * 2012-04-23 2015-01-07 株式会社神户制钢所 热冲压用镀锌钢板的制造方法、热冲压用合金化熔融镀锌钢板及其制造方法、以及热冲压部件
EP2664682A1 (de) * 2012-05-16 2013-11-20 ThyssenKrupp Steel Europe AG Stahl für die Herstellung eines Stahlbauteils, daraus bestehendes Stahlflachprodukt, daraus hergestelltes Bauteil und Verfahren zu dessen Herstellung
JP2014118613A (ja) * 2012-12-18 2014-06-30 Nippon Steel & Sumitomo Metal 強度と耐水素脆性に優れたホットスタンプ成形体及びその製造方法
JP2014122398A (ja) * 2012-12-21 2014-07-03 Nippon Steel & Sumitomo Metal 強度と耐水素脆性に優れたホットスタンプ成形体及びホットスタンプ成形体の製造方法
CN104838030B (zh) 2013-05-09 2017-07-28 现代制铁株式会社 具有增强的韧性的热冲压产品和其制造方法
CN105829562B (zh) 2013-12-20 2019-09-20 日本制铁株式会社 热压钢板构件、其制造方法以及热压用钢板
JP2015196890A (ja) * 2014-04-02 2015-11-09 本田技研工業株式会社 ホットスタンプ成形体
CN106282873A (zh) * 2015-05-13 2017-01-04 宝山钢铁股份有限公司 一种热冲压钢的合金镀层及其制备方法
CN107810281B (zh) 2015-07-09 2019-06-11 安赛乐米塔尔公司 用于压制硬化的钢和由这样的钢制造的压制硬化的部件
CN109371325A (zh) * 2018-11-30 2019-02-22 宝山钢铁股份有限公司 一种冷弯性能优良的锌系镀覆热成型钢板或钢带及其制造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024105428A1 (en) * 2022-11-14 2024-05-23 Arcelormittal High toughness press-hardened steel part and method of manufacturing the same

Also Published As

Publication number Publication date
CN115261742A (zh) 2022-11-01
AU2022263750A1 (en) 2023-12-14
EP4332246A1 (en) 2024-03-06
KR20240005821A (ko) 2024-01-12
CN115261742B (zh) 2023-06-13
BR112023021820A2 (pt) 2023-12-19
JP2024515833A (ja) 2024-04-10

Similar Documents

Publication Publication Date Title
EP3611288B1 (en) Hot stamped component, pre-coated steel plate for hot stamping, and hot stamping process
EP3476963B1 (en) High-strength cold rolled steel sheet and method for producing the same
US11827950B2 (en) Method of manufacturing high-strength steel sheet having excellent processability
CN109072380B (zh) 钢板、镀覆钢板和它们的制造方法
WO2022228574A1 (zh) 一种抗拉强度≥1000MPa的热冲压部件及其制造方法
KR20200004363A (ko) 열간 프레스 부재 및 그 제조 방법 그리고 열간 프레스용 냉연 강판 및 그 제조 방법
EP2762580A1 (en) Hot-dip galvanized steel sheet and method for producing same
EP1675970A1 (en) A cold-rolled steel sheet having a tensile strength of 780 mpa or more an excellent local formability and a suppressed increase in weld hardness
EP3647450B1 (en) Hot-pressed member and method for manufacturing same, and cold-rolled steel sheet for hot pressing and method for manufacturing same
CN113403550B (zh) 高塑性耐疲劳的冷轧热镀锌dh1180钢板及制备方法
EP3929321B1 (en) Hot-pressed member, cold-rolled steel sheet for hot pressing, and manufacturing methods therefor
WO2019093376A1 (ja) 熱間プレス鋼板部材およびその製造方法
WO2019093384A1 (ja) 熱間プレス鋼板部材およびその製造方法
CN114107806A (zh) 一种高加工硬化率及表面质量的450MPa级热镀锌双相钢及其生产方法
KR20230038239A (ko) 열간 프레스 부재 및 그 제조 방법
CN114807737B (zh) 一种热镀锌钢及其制造方法
CN114585758B (zh) 高强度钢板和碰撞吸收构件以及高强度钢板的制造方法
CN114959441A (zh) 一种热冲压钢板、热冲压部件及其制造方法
WO2023241631A1 (zh) 一种800MPa级高扩孔热镀锌钢板及其制造方法
US20230295759A1 (en) Steel sheet having excellent formability and strain hardening rate
CN116855832A (zh) 一种高强度双相钢及其镀锌生产工艺和应用
CN114959440A (zh) 一种热辊弯成形部件及其热辊弯成形方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22795043

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: MX/A/2023/012607

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 18557724

Country of ref document: US

Ref document number: 2023566557

Country of ref document: JP

Ref document number: 2301007055

Country of ref document: TH

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112023021820

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 2022263750

Country of ref document: AU

Ref document number: AU2022263750

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 20237041326

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2023127732

Country of ref document: RU

Ref document number: 2022795043

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022795043

Country of ref document: EP

Effective date: 20231130

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022263750

Country of ref document: AU

Date of ref document: 20220429

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112023021820

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20231019