WO2022228508A1 - 工位生产节拍处理方法、系统、装置及存储介质 - Google Patents

工位生产节拍处理方法、系统、装置及存储介质 Download PDF

Info

Publication number
WO2022228508A1
WO2022228508A1 PCT/CN2022/089844 CN2022089844W WO2022228508A1 WO 2022228508 A1 WO2022228508 A1 WO 2022228508A1 CN 2022089844 W CN2022089844 W CN 2022089844W WO 2022228508 A1 WO2022228508 A1 WO 2022228508A1
Authority
WO
WIPO (PCT)
Prior art keywords
station
production
takt
beat
data
Prior art date
Application number
PCT/CN2022/089844
Other languages
English (en)
French (fr)
Inventor
陈旻琪
任孝江
江伟乐
左志军
贺毅
Original Assignee
广州明珞装备股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州明珞装备股份有限公司 filed Critical 广州明珞装备股份有限公司
Priority to JP2023528602A priority Critical patent/JP7466060B2/ja
Priority to EP22794978.1A priority patent/EP4187339A4/en
Publication of WO2022228508A1 publication Critical patent/WO2022228508A1/zh
Priority to US18/182,513 priority patent/US20230229149A1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
    • G05B19/41865Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM] characterised by job scheduling, process planning, material flow
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
    • G05B19/41885Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM] characterised by modeling, simulation of the manufacturing system
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/04Manufacturing
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/31From computer integrated manufacturing till monitoring
    • G05B2219/31368MAP manufacturing automation protocol
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/32Operator till task planning
    • G05B2219/32015Optimize, process management, optimize production line
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/32Operator till task planning
    • G05B2219/32339Object oriented modeling, design, analysis, implementation, simulation language
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Definitions

  • the invention relates to the technical field of production technology, in particular to a method, a system, a device and a storage medium for processing station production beats.
  • rhythm statistics of each station in the manufacturing industry are generally relatively backward. Enterprises that have not realized automation usually lack an automated takt statistics method. The method of counting production rhythms is often done manually by pinching tables, recording videos, etc., to count several rhythms. After that, the average value or other characteristic values are calculated based on experience as the beat of the station. In the case of automation, the current common practice is to perform beat statistics through PLC. From the beginning of the station to the end of the station, a number of process cycles are accumulated and counted, and then the eigenvalue is calculated manually to obtain the beat of the station.
  • the station beat obtained by the existing beat statistics method can only count the average value of the station beat within a period of time, and cannot accurately reflect the fluctuation range of the station beat, and cannot truly reflect the real production situation.
  • the inability to locate the bottleneck station makes it impossible for the manufacturer to adjust and optimize the process according to the actual production situation, which is not conducive to reducing production costs and restricts the improvement of production efficiency and production quality.
  • PLC Programmable logic controller
  • a programmable memory is used to store instructions for performing operations such as logic operations, sequence control, timing, counting and arithmetic operations, and control various types of mechanical equipment or production processes through digital or analog input and output.
  • a production line is divided into multiple stations, each station is a fixed area for processing a specific process.
  • CYCLE Process cycle, which refers to the cycle from the first process to the last process that is repeated in a station.
  • Takt The time it takes for a station to complete a process cycle.
  • Blocking The processing of the station is completed, and the workpiece is transported to the next station after the processing of the next station is completed.
  • Boxplot A statistical graph used to display the dispersion of a set of data, named for its shape like a box, and is often used in various fields, often in quality management. It is mainly used to reflect the characteristics of the original data distribution, and can also compare the distribution characteristics of multiple groups of data.
  • Mode refers to the value with a clear central tendency point in the statistical distribution, which represents the general level of the data.
  • the purpose of the present invention is to solve one of the technical problems existing in the prior art at least to a certain extent.
  • the present invention provides a method, system, device, and storage medium for processing with station production beats.
  • the fluctuation range of the station rhythm can be accurately reflected, the accuracy of the statistical results of the station rhythm can be greatly improved, and the bottleneck station can be accurately located, which satisfies the manufacturers to improve production quality and production efficiency, and reduce production costs. demand.
  • a work station production takt processing method comprising the following steps: acquiring the indicated production takt of each station in a plurality of stations arranged in a predetermined station sequence within a preset time period according to the production takt data; determine the production takt box plot of each of the stations according to the production takt data; The production takt data, the material blocking time, the material shortage time and the failure time determine the effective production takt of each of the stations; determine the effective production of each of the stations according to the effective production takt of each of the stations beat mode; obtain planning beat data indicating planning beats of each of the stations; generate a station beat wall according to the production beat boxplot, the effective production beat mode, and the planning beat data, wherein all The station beat wall presents the production beat boxplot sequence, the effective production beat mode sequence and the planning beat data sequence in a predetermined coordinate system, and the predetermined coordinate system is composed of the abscissa representing the workstation and the
  • the acquiring the production takt data of each station in the preset time period includes: acquiring the production action data of each station in the preset time period including the time indicating the start of the production action; The interval time between adjacent initial production actions determines a plurality of production takt data for each of the workstations.
  • the determining the production takt boxplot of each station according to the production takt data includes: determining an upper edge, an upper quartile, an upper quartile, and a middle of the production takt data of each station.
  • the number of digits, the lower quartile, and the lower edge, and each of the stations is determined according to the upper edge, the upper quartile, the median, the lower quartile, and the lower edge
  • the production beat boxplot includes: determining an upper edge, an upper quartile, an upper quartile, and a middle of the production takt data of each station. The number of digits, the lower quartile, and the lower edge, and each of the stations is determined according to the upper edge, the upper quartile, the median, the lower quartile, and the lower edge The production beat boxplot.
  • the determining the effective production takt of each of the stations according to the production takt data, the material blocking time, the material shortage time, and the failure time includes: The production takt indicated by the takt data subtracts the material blocking time, material shortage time and failure time in the corresponding production takt to obtain the effective production takt.
  • the determining the effective production takt mode of each of the workstations according to the effective production takt of each of the workstations includes: determining the most frequent occurrence of the effective production takt of each of the workstations
  • the effective production takt is the mode of the effective production takt of the corresponding station.
  • the generating the station beat wall according to the production takt boxplot, the effective production takt mode, and the planned takt data includes: according to the production takt boxplot of each station And the sequence of stations determines the sequence of boxplots of the production beats; the mode of the effective production beats is determined according to the mode of the effective production beats of each station and the sequence of stations; according to the planned beat data of each station and the station sequence determines the planning beat data sequence; generates a station beat in the predetermined coordinate system according to the production beat boxplot sequence, the effective production beat mode sequence and the planned beat data sequence wall.
  • the determining the production takt fluctuation status of each station and the bottleneck station according to the station rhythm wall includes: in the station rhythm wall, by The production takt boxplot is compared with the planned takt data to determine the production takt fluctuation status of each of the stations.
  • the determining the production takt fluctuation status of each station and the bottleneck station according to the station rhythm wall includes: in the station rhythm wall, by The effective production takt mode is compared with the planned takt data to determine whether each of the stations is a bottleneck station.
  • a station production takt processing system comprising: a production takt box-plot determination module for acquiring a plurality of stations arranged in a predetermined station sequence within a preset time period The production beat data indicating the production beat of each station, and the production beat boxplot of each of the stations is determined according to the production beat data; the effective production beat mode determination module is used to obtain each of the stations in The material blocking time, the material shortage time and the failure time in each production takt, and the effective production takt time of each station is determined according to the production takt data, the material blocking time, the material shortage time and the failure time, And determine the effective production beat mode according to the effective production beat of each said station; the station beat wall generation module is used to obtain the planned beat data of each said work station, according to the production beat box plot, the effective production beat The production takt mode and the planning takt data generate a station rhythm wall; a fluctuation state and a bottleneck station determination module is used
  • the effective production takt mode determination module includes: an effective production takt calculation unit, configured to subtract the material blocking time in the corresponding production takt from the production takt indicated by the production takt time data, The material shortage time and the failure time can be used to obtain an effective production tact.
  • the effective production beat mode determination module includes: an effective production beat mode statistics unit, configured to determine the effective production beat with the highest frequency among the effective production beats of each of the workstations as the corresponding effective production beat The effective production cycle mode of the station.
  • the fluctuation condition and bottleneck station determination module includes: a fluctuation condition determination unit, which is used for, in the station beat wall, by comparing the production takt box diagram of each station with the planning The beat data are compared to determine the fluctuation status of the production beat of each of the stations;
  • the fluctuation condition and bottleneck station determination module includes: a bottleneck station determination unit, which is used for, in the station tick wall, by comparing the effective production takt mode of each station with the The planning beat data are compared to determine whether each of the stations is a bottleneck station.
  • a station production beat processing device comprising:
  • At least one memory storing at least one program
  • the at least one processor When the at least one program is executed by the at least one processor, the at least one processor is caused to implement the work station production takt processing method according to the above-mentioned first aspect.
  • a non-volatile computer-readable storage medium in which a processor-executable program is stored, the processor-executable program, when executed by the processor, is used to execute a program according to the The method for processing the production takt of the above-mentioned first aspect.
  • the production takt data of each station in a preset time period is obtained, and the production takt boxplot is determined according to the production takt data of each station, and then the production takt data of each station in each production tick is obtained.
  • Material blocking time, material shortage time and failure time calculate the effective production takt of each station and determine the effective production tact mode, and then obtain the pre-planned planning takt data of each station, according to the production takt box line of each station Figure, effective production beat mode and planning beat data to obtain the station beat wall, so that the generation beat fluctuation of each station and the bottleneck station can be determined according to the station beat wall.
  • the fluctuation range of the station rhythm can be accurately reflected, the accuracy of the statistical results of the station rhythm can be greatly improved, and the bottleneck station can be accurately located, which satisfies the manufacturers to improve production quality and production efficiency, and reduce production costs. demand.
  • Fig. 1 is a flow chart of a method for processing takt time of station production according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of a station beat wall generated according to an embodiment of the present invention.
  • FIG. 3 is a structural block diagram of a station production takt processing system according to an embodiment of the present invention.
  • FIG. 4 is a structural block diagram of a station production takt processing device according to an embodiment of the present invention.
  • the work station production takt processing method is used for processing the production takt of a plurality of work stations arranged in a predetermined work station sequence.
  • the production cycle of this station includes the following steps:
  • Step S101 specifically includes the following steps:
  • S1011 obtaining the production action data of each station in the preset time period including the time indicating the start of the production action, and determining a plurality of production takt data of each station according to the interval time of the adjacent initial production actions;
  • S1012. Determine the upper edge, upper quartile, median, lower quartile, and lower edge of the production takt data of each station, according to the upper edge, upper quartile, median, and lower quartile The number of digits and the lower edge determine the production takt boxplot of each station.
  • the upper computer is used to collect millisecond-level data on the PLC-controlled process equipment action and station status, and the CYCLE time sequence Gantt chart is drawn according to the collected data.
  • the first action of each station CYCLE (the first start of the process The duration from the start of the production action) to the next first action is recorded as a production takt of the station, thereby obtaining multiple production takt data (ie, the actual production takt); for the same station, determine its production takt data
  • the upper edge that is, the maximum value
  • the lower edge that is, the minimum value
  • the median a value in the middle after a set of data is sorted by size
  • the upper and lower quartiles in The quantile is drawn out of the box, and then the upper and lower edges are connected to the box, and the median is in the middle of the box, so as to obtain the production rhythm boxplot of the station.
  • the production takt data of a certain station can be arranged in the order from small to large, the minimum value is taken as the lower edge, the maximum value is taken as the upper edge, and the value in the middle of the arrangement is taken as the median; If there is an even number of beat data, the median is not unique, and the average of the two middlemost values can be taken as the median; similarly, the values arranged in the quarter position are taken as the lower quartile, and the values arranged in the The value in the three-quarter position is taken as the upper quartile.
  • Step S102 specifically includes the following steps:
  • effective production takt production takt data - failure time - material blocking time - material shortage time, after calculating multiple effective production takt of a certain station, count the value with the highest frequency among the effective production takt as the effective production takt mass number.
  • an actual production takt data of a certain process cycle at a certain station is 60s.
  • there is a material shortage of 2s and a material blockage of 5s. If there is no fault, the corresponding effective production cycle is 60-2-5 53s , and so on to calculate the effective production takt of the station within the preset time. Take the value with the highest frequency, 53s, as the effective production beat mode.
  • S103 Acquire planning beat data of each workstation, and generate a workstation beat wall according to the production beat boxplot, the effective production beat mode, and the planned beat data.
  • the planning beat data indicates the planning beat.
  • the planning beat is the theoretical planning time of the beat of the station.
  • the station beat wall presents the production beat boxplot sequence, the effective production beat mode sequence and the planned beat data sequence in a predetermined coordinate system composed of the abscissa representing the workstation and the ordinate representing the beat duration.
  • the step of generating the station beat wall according to the production beat boxplot, the effective production beat mode and the planning beat data specifically includes:
  • A1. Determine the production beat boxplot sequence according to the production beat boxplot of each station and the sequence of stations;
  • A2. Determine the effective production beat mode sequence according to the effective production beat mode of each station and the station sequence;
  • A3. Determine the planned beat data sequence according to the planned beat data of each station and the sequence of stations;
  • A4. Generate the station beat wall according to the production beat boxplot sequence, the effective production beat mode sequence and the planned beat data sequence.
  • FIG. 2 is a schematic diagram of a station beat wall generated according to an embodiment of the present invention.
  • the overall data of the production takt is reflected through the station rhythm wall, wherein the abscissa is the sequence of each station in a certain production line, and the ordinate is the takt duration; the boxplot represents the fluctuation of the actual production rhythm, including the pre-production rhythm.
  • the broken line represents the effective production beat mode sequence formed by the effective production beat mode of each station, reflecting the station The work rhythm of the project;
  • the planning rhythm data sequence (horizontal dashed line) represents the theoretical planning rhythm of the production line.
  • the embodiment of the present invention is represented by a straight line.
  • the bottleneck station is the station in the production line that affects the overall production efficiency, generally manifested as excessive accumulation of products at the station, which is essentially because the production cycle of the station is too long, thus limiting the production efficiency of the entire production line.
  • the embodiment of the present invention can clearly and accurately reflect the production rhythm fluctuations of each workstation and locate the bottleneck workstation through the workstation rhythm wall. Step S104 specifically includes the following steps:
  • the comparison between the production beat box plot and the planned beat data can reflect the actual production beat fluctuation of each work station, and can also determine the actual production beat interval and determine the actual production beat interval. Whether the beat reaches the planned beat, determine whether the median of the actual production beat reaches the planned beat, so as to determine whether most of the actual production beats meet the requirements of the production line planning beat; by comparing the effective production beat mode with the planned beat data, you can It reflects whether each station reaches the ideal production takt index, and it can be determined that the station with the highest difference between the effective production takt mode and the planned takt data is the bottleneck station of the production line.
  • the embodiment of the present invention acquires the production takt data of each station within a preset time period, determines the production takt boxplot according to the production takt data of each station, and then acquires the material blocking time, lack of According to the material time and failure time, calculate the effective production takt of each station and determine the effective production tact mode, and then obtain the pre-planned planned takt data of each station.
  • the mode and planning rhythm data are used to obtain the station rhythm wall, so that the generation rhythm fluctuation of each station and the bottleneck station can be determined according to the station rhythm wall.
  • the embodiment of the present invention can accurately reflect the fluctuation range of the station beat, greatly improve the accuracy of the statistical results of the station beat, and can accurately locate the bottleneck station, which meets the needs of manufacturers to improve production quality and production efficiency, and reduce production costs .
  • the advantages of the embodiments of the present invention compared with the prior art are that: by combining the concept of boxplots with production takt statistics, the fluctuation of actual production takt can be accurately represented; Indicates the fluctuation of the production takt and the bottleneck of the station.
  • a station production takt processing system including: a production takt box-plot determination module, an effective production takt mode determination module, a station takt wall generation module, and fluctuation conditions and Bottleneck station determination module.
  • the production takt boxplot determination module is used to obtain the production takt data indicating the production takt of each of the multiple workstations arranged in a predetermined sequence of workstations within a preset time period, and to determine each workstation according to the production takt data The production beat boxplot.
  • the effective production cycle mode determination module is used to obtain the material blocking time, material shortage time and failure time of each station in each production cycle. According to the production takt data, material blocking time, material shortage time and failure time The effective production cycle is determined, and the mode of the effective production cycle is determined according to the effective production cycle of each of the stations.
  • the station beat wall generation module is used to obtain the planning beat data indicating the planning beat of each station, and generate the station beat wall according to the production beat boxplot, the effective production beat mode and the planned beat data.
  • the fluctuation status and bottleneck station determination module is used to determine the production takt fluctuation status of each station and the bottleneck station according to the station rhythm wall.
  • the effective production takt mode determination module includes: a first acquisition unit for acquiring the material blocking time, material shortage time and failure time of each station in each production tact; an effective production takt calculation unit. , which is used to subtract the material blocking time, material shortage time and failure time in the corresponding production takt from the production takt data to obtain the effective production tact;
  • the effective production cycle with the highest frequency is the mode of the effective production cycle of the corresponding station.
  • the fluctuation condition and the bottleneck station determination module includes: a fluctuation condition determination unit, which is used to perform the production takt box plot of each station with the planning takt data in the station beat wall. comparison, to determine the fluctuation status of the production takt of each station; the bottleneck station determination unit is used in the station rhythm wall, by comparing the effective production takt mode of each station with the planned takt data, to determine each work station. Whether the bit is a bottleneck station.
  • a station production takt processing device including:
  • At least one memory for storing at least one program
  • the above-mentioned at least one processor When the above-mentioned at least one program is executed by the above-mentioned at least one processor, the above-mentioned at least one processor is caused to realize the above-mentioned work station production takt processing method.
  • the workstation production beat processing device further includes a display for displaying the generated workstation beat wall to the user.
  • Embodiments of the present invention further provide a non-volatile computer-readable storage medium, in which a processor-executable program is stored, and when executed by the processor, the processor-executable program is used to execute the above-mentioned workstation production tact Approach.
  • the non-volatile computer-readable storage medium of the embodiment of the present invention can execute the processing method of the station production tact provided by the method embodiment of the present invention, can execute any combination of implementation steps of the method embodiment, and has the corresponding functions and beneficial effect.
  • the embodiment of the present invention also discloses a computer program product or computer program, where the computer program product or computer program includes computer instructions, and the computer instructions are stored in a computer-readable storage medium.
  • a processor of the computer device can read the computer instructions from the computer-readable storage medium, and the processor executes the computer instructions to cause the computer device to perform the method shown in FIG. 1 .
  • the functions/operations noted in the block diagrams may occur out of the order noted in the operational diagrams.
  • two blocks shown in succession may, in fact, be executed substantially concurrently or the blocks may sometimes be executed in the reverse order, depending upon the functionality/operations involved.
  • the embodiments presented and described in the flowcharts of the present invention are provided by way of example in order to provide a more comprehensive understanding of the technology. The disclosed methods are not limited to the operations and logic flows presented herein. Alternative embodiments are contemplated in which the order of the various operations are altered and in which sub-operations described as part of larger operations are performed independently.
  • the above functions are implemented in the form of software functional units and sold or used as independent products, they may be stored in a computer-readable storage medium.
  • the technical solution of the present invention can be embodied in the form of a software product in essence, or the part that contributes to the prior art or the part of the technical solution.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the above-mentioned methods in various embodiments of the present invention.
  • the aforementioned storage medium includes: U disk, mobile hard disk, Read-Only Memory (ROM, Read-Only Memory), Random Access Memory (RAM, Random Access Memory), magnetic disk or optical disk and other media that can store program codes .
  • a "computer-readable medium” can be any device that can contain, store, communicate, propagate, or transport the program for use by or in connection with an instruction execution system, apparatus, or apparatus.
  • computer readable media include the following: electrical connections with one or more wiring (electronic devices), portable computer disk cartridges (magnetic devices), random access memory (RAM), Read Only Memory (ROM), Erasable Editable Read Only Memory (EPROM or Flash Memory), Fiber Optic Devices, and Portable Compact Disc Read Only Memory (CDROM).
  • the computer readable medium may even be paper or other suitable medium on which the above-mentioned program can be printed, as it is possible, for example, by optically scanning the paper or other medium, followed by editing, interpretation or other suitable means if necessary Processing is performed to obtain the above program electronically and then stored in computer memory.
  • various parts of the present invention may be implemented in hardware, software, firmware or a combination thereof.
  • various steps or methods may be implemented in software or firmware stored in memory and executed by a suitable instruction execution system.
  • a suitable instruction execution system For example, if implemented in hardware, as in another embodiment, it can be implemented by any one or a combination of the following techniques known in the art: Discrete logic circuits, application specific integrated circuits with suitable combinational logic gates, Programmable Gate Arrays (PGA), Field Programmable Gate Arrays (FPGA), etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Business, Economics & Management (AREA)
  • Quality & Reliability (AREA)
  • General Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Human Resources & Organizations (AREA)
  • Economics (AREA)
  • Strategic Management (AREA)
  • General Business, Economics & Management (AREA)
  • Tourism & Hospitality (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Theoretical Computer Science (AREA)
  • Marketing (AREA)
  • Development Economics (AREA)
  • Operations Research (AREA)
  • Game Theory and Decision Science (AREA)
  • Educational Administration (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Primary Health Care (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • General Factory Administration (AREA)

Abstract

公开了一种工位生产节拍处理方法,该方法包括:获取预设时间段内各工位的生产节拍数据,并根据生产节拍数据确定各工位的生产节拍箱线图(S101);获取各工位在各个生产节拍内的堵料时间、缺料时间以及故障时间,并根据生产节拍数据、堵料时间、缺料时间以及故障时间确定各工位的有效生产节拍,进而确定有效生产节拍众数(S102);获取各工位的规划节拍数据,根据生产节拍箱线图、有效生产节拍众数以及规划节拍数据生成工位节拍墙(S103);根据工位节拍墙确定各工位的生产节拍波动状况以及瓶颈工位(S104)。还公开了工位生产节拍处理系统、装置,以及存储介质。

Description

工位生产节拍处理方法、系统、装置及存储介质 技术领域
本发明涉及生产工艺技术领域,尤其是一种工位生产节拍处理方法、系统、装置及存储介质。
背景技术
目前生产制造业的各工位节拍统计普遍还相对落后,未实现自动化的企业通常缺少自动化的节拍统计方法,统计生产节拍的方法往往还通过人工掐表、录制视频等方式,在统计若干个节拍后,便依据经验计算平均值或者其他特征值,作为该工位的节拍。而实现自动化的情况下,目前普遍做法为通过PLC进行节拍统计,从工位开始到工位结束,累计统计若干个工艺循环,然后人工进行特征值计算,得出该工位的节拍。
由上可知,现有的节拍统计方法得到的工位节拍仅能统计出一段时间内的工位节拍平均值,并不能准确地反映工位节拍的波动范围,无法真实反映生产的真实情况,也无法定位瓶颈工位,使得厂家无法针对实际生产情况作出工艺调整和优化,不利于降低生产成本,限制了生产效率和生产质量的提高。
术语解释:
PLC:可编程逻辑控制器,是一种专门为在工业环境下应用而设计的数字运算操作电子系统。采用一种可编程的存储器,在其内部存储执行逻辑运算、顺序控制、定时、计数和算术运算等操作的指令,通过数字式或模拟式的输入输出来控制各种类型的机械设备或生产过程。
工位:一条生产线上分为多个工位,每个工位为一个固定区域用于进行特定工艺的加工。
CYCLE:工艺循环,指一个工位中不断重复的第一个工艺到最后一个工艺的循环。
节拍:某个工位完成一个工艺循环所用的时间。
堵料:工位加工完成,等待下工位加工完成后将工件输送至下一个工位。
缺料:本工位加工完成,等待上工位加工完成将工件输送到本工位。
箱线图:一种用作显示一组数据分散情况资料的统计图,因形状如箱子而得名,在各种领域也经常被使用,常见于品质管理。它主要用于反映原始数据分布的特征,还可以进行多组数据分布特征的比较。
众数:指在统计分布上具有明显集中趋势点的数值,代表数据的一般水平。
发明内容
本发明的目的在于至少一定程度上解决现有技术中存在的技术问题之一。
为此,本发明提供了用工位生产节拍处理的方法、系统、装置及存储介质。根据本发明的技术方案可准确反映工位节拍的波动范围,大大提高了工位节拍统计结果的准确性,且可以准确定位瓶颈工位,满足了厂家提高生产质量和生产效率、以及降低生产成本的需求。
根据本发明的第一方面,提供了一种工位生产节拍处理方法,包括以下步骤:获取预设时间段内以预定工位序列排布的多个工位中的各工位的指示生产节拍的生产节拍数据;根据所述生产节拍数据确定各所述工位的生产节拍箱线图;获取各所述工位在各个生产节拍内的堵料时间、缺料时间以及故障时间;根据所述生产节拍数据、所述堵料时间、所述缺料时间以及所述故障时间确定各所述工位的有效生产节拍;根据各所述工位的有效生产节拍确定各所述工位的有效生产节拍众数;获取各所述工位的指示规划节拍的规划节拍数据;根据所述生产节拍箱线图、所述有效生产节拍众数以及所述规划节拍数据生成工位节拍墙,其中,所述工位节拍墙在预定坐标系中呈现生产节拍箱线图序列、有效生产节拍众数序列以及规划节拍数据序列,所述预定坐标系由表示工位的横坐标和表示节拍时长的纵坐标构成;根据所述工位节拍墙确定各所述工位的生产节拍波动状况以及瓶颈工位。
在本发明的一个实施例中,所述获取预设时间段内各工位的生产节拍数据包括:获取预设时间段内各工位的包括指示起始生产动作的时间的生产动作数据;根据相邻的起始生产动作的间隔时间确定各所述工位的多个生产节拍数据。
在本发明的一个实施例中,所述根据所述生产节拍数据确定各所述工位的生产节拍箱线图包括:确定各工位的生产节拍数据的上边缘、上四分位数、中位数、下四分位数以及下边缘,根据所述上边缘、所述上四分位数、所述中位数、所述下四分位数以及所述下边缘确定各所述工位的生产节拍箱线图。
在本发明的一个实施例中,所述根据所述生产节拍数据、所述堵料时间、所述缺料时间以及所述故障时间确定各所述工位的有效生产节拍包括:将所述生产节拍数据所指示的生产节拍减去对应生产节拍内的堵料时间、缺料时间以及故障时间,得到有效生产节拍。
在本发明的一个实施例中,所述根据各所述工位的有效生产节拍确定各所述工位的有效生产节拍众数包括:确定各所述工位的有效生产节拍中出现频次最高的有效生产节拍为对应工位的有效生产节拍众数。
在本发明的一个实施例中,所述根据所述生产节拍箱线图、所述有效生产节拍众数以及所述规划节拍数据生成工位节拍墙包括:根据各工位的生产节拍箱线图以及所述工位序列确定所述生产节拍箱线图序列;根据各工位的有效生产节拍众数以及所述工位序列确定所述有 效生产节拍众数序列;根据各工位的规划节拍数据以及所述工位序列确定所述规划节拍数据序列;根据所述生产节拍箱线图序列、所述有效生产节拍众数序列以及所述规划节拍数据序列在所述预定坐标系中生成工位节拍墙。
在本发明的一个实施例中,所述根据所述工位节拍墙确定各所述工位的生产节拍波动状况以及瓶颈工位包括:在所述工位节拍墙中,通过将各工位的生产节拍箱线图与规划节拍数据进行比较,确定各所述工位的生产节拍波动状况。
在本发明的一个实施例中,所述根据所述工位节拍墙确定各所述工位的生产节拍波动状况以及瓶颈工位包括:在所述工位节拍墙中,通过将各工位的有效生产节拍众数与规划节拍数据进行比较,确定各所述工位是否为瓶颈工位。
根据本发明的第二方面,提供了一种工位生产节拍处理系统,包括:生产节拍箱线图确定模块,用于获取预设时间段内以预定工位序列排布的多个工位中的各工位的指示生产节拍的生产节拍数据,并根据所述生产节拍数据确定各所述工位的生产节拍箱线图;有效生产节拍众数确定模块,用于获取各所述工位在各个生产节拍内的堵料时间、缺料时间以及故障时间,根据所述生产节拍数据、所述堵料时间、所述缺料时间以及所述故障时间确定各所述工位的有效生产节拍,并根据各所述工位的有效生产节拍确定有效生产节拍众数;工位节拍墙生成模块,用于获取各所述工位的规划节拍数据,根据所述生产节拍箱线图、所述有效生产节拍众数以及所述规划节拍数据生成工位节拍墙;波动状况及瓶颈工位确定模块,用于根据所述工位节拍墙确定各所述工位的生产节拍波动状况以及瓶颈工位。
在本发明的一个实施例中,所述有效生产节拍众数确定模块包括:有效生产节拍计算单元,用于将所述生产节拍数据所指示的生产节拍减去对应生产节拍内的堵料时间、缺料时间以及故障时间,得到有效生产节拍。
在本发明的一个实施例中,所述有效生产节拍众数确定模块包括:有效生产节拍众数统计单元,用于确定各所述工位的有效生产节拍中出现频次最高的有效生产节拍为对应工位的有效生产节拍众数。
在本发明的一个实施例中,所述波动状况及瓶颈工位确定模块包括:波动状况确定单元,用于在所述工位节拍墙中,通过将各工位的生产节拍箱线图与规划节拍数据进行比较,确定各所述工位的生产节拍波动状况;
在本发明的一个实施例中,所述波动状况及瓶颈工位确定模块包括:瓶颈工位确定单元,用于在所述工位节拍墙中,通过将各工位的有效生产节拍众数与规划节拍数据进行比较,确定各所述工位是否为瓶颈工位。
根据本发明的第三方面,提供了一种工位生产节拍处理装置,包括:
至少一个处理器;
至少一个存储器,存储有至少一个程序;
当所述至少一个程序被所述至少一个处理器执行时,使得所述至少一个处理器实现根据上述第一方面的工位生产节拍处理方法。
根据本发明的第四方面,提供了一种非易失性计算机可读存储介质,其中存储有处理器可执行的程序,所述处理器可执行的程序在由处理器执行时用于执行根据上述第一方面的工位生产节拍处理方法。
本发明的优点和有益效果将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到:
在根据本发明的技术方案中,获取预设时间段内各工位的生产节拍数据,并根据各工位的生产节拍数据确定生产节拍箱线图,然后获取各工位在各个生产节拍内的堵料时间、缺料时间以及故障时间,计算出各工位的有效生产节拍并确定有效生产节拍众数,再获取各工位预先规划好的规划节拍数据,根据各工位的生产节拍箱线图、有效生产节拍众数以及规划节拍数据得到工位节拍墙,从而可以根据工位节拍墙确定各工位的生成节拍波动状况以及瓶颈工位。根据本发明的技术方案可准确反映工位节拍的波动范围,大大提高了工位节拍统计结果的准确性,且可以准确定位瓶颈工位,满足了厂家提高生产质量和生产效率、以及降低生产成本的需求。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面对本发明实施例中所需要使用的附图作以下介绍,应当理解的是,下面介绍中的附图仅仅为了方便清晰表述本发明的技术方案中的部分实施例,对于本领域的技术人员来说,在无需付出创造性劳动的前提下,还可以根据这些附图获取到其他附图。
图1为根据本发明的一个实施例的工位生产节拍处理方法的流程图;
图2为根据本发明的一个实施例生成的工位节拍墙的示意图;
图3为根据本发明的一个实施例的工位生产节拍处理系统的结构框图;
图4为根据本发明的一个实施例的工位生产节拍处理装置的结构框图。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的 实施例是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。对于以下实施例中的步骤编号,其仅为了便于阐述说明而设置,对步骤之间的顺序不做任何限定,实施例中的各步骤的执行顺序均可根据本领域技术人员的理解来进行适应性调整。
在本发明的描述中,多个的含义是两个或两个以上,如果有描述到第一、第二只是用于区分技术特征为目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量或者隐含指明所指示的技术特征的先后关系。此外,除非另有定义,本文所使用的所有的技术和科学术语与本技术领域的技术人员通常理解的含义相同。
参照图1,示出了根据本发明的一个实施例的工位生产节拍处理方法。该工位生产节拍处理方法用于处理以预定工位序列排布的多个工位的生产节拍。该工位生产节拍包括以下步骤:
S101、获取预设时间段内各工位的生产节拍数据,并根据生产节拍数据确定各工位的生产节拍箱线图。
具体地,生产节拍数据指示生产节拍,生产节拍箱线图表示实际生产节拍的波动情况,其中包括预设时间段内的最大节拍、最小节拍、上四分位节拍、下四分位节拍以及中位节拍。步骤S101具体包括以下步骤:
S1011、获取预设时间段内各工位的包括指示起始生产动作的时间的生产动作数据,根据相邻的起始生产动作的间隔时间确定各工位的多个生产节拍数据;
S1012、确定各工位的生产节拍数据的上边缘、上四分位数、中位数、下四分位数以及下边缘,根据上边缘、上四分位数、中位数、下四分位数以及下边缘确定各工位的生产节拍箱线图。
具体地,通过上位机对PLC控制的工艺设备动作和工位状态进行毫秒级数据采集,根据采集到的数据绘制CYCLE时序甘特图,每个工位CYCLE的首动作(工艺的第一个起始生产动作)到下一次该首动作的时长,记为该工位的一个生产节拍,由此得到多个生产节拍数据(即实际生产节拍);对于同一工位而言,确定其生产节拍数据中的上边缘(即最大值)、下边缘(即最小值)、中位数(一组数据按大小排序后位于正中间的一个数值)和上下两个四分位数,然后连接两个四分位数画出箱体,再将上边缘和下边缘与箱体相连接,中位数在箱体中间,从而得到该工位的生产节拍箱线图。
可选地,可按照从小到大的顺序对某一工位的生产节拍数据进行排列,取其中最小值作为下边缘、最大值作为上边缘,取排列正中间的数值作为中位数;如果生成节拍数据有偶数个,则中位数不唯一,可取最中间的两个数值的平均数作为中位数;同理取排列在四分之一 位置的数值作为下四分位数,取排列在四分之三位置的数值作为上四分位数。
S102、获取各工位在各个生产节拍内的堵料时间、缺料时间以及故障时间,根据生产节拍数据、堵料时间、缺料时间以及故障时间确定各工位的有效生产节拍,根据各工位的有效生产节拍确定有效生产节拍众数。
具体地,一个生产节拍中可能有堵料、缺料或者故障的状态发生,因此需要获取各个生产节拍内的堵料时间、缺料时间以及故障时间,以便于准确统计各个工位的有效生产节拍。步骤S102具体包括以下步骤:
S1021、获取各工位在各个生产节拍内的堵料时间、缺料时间以及故障时间;
S1022、将生产节拍数据所指示的生产节拍减去对应生产节拍内的堵料时间、缺料时间以及故障时间,得到有效生产节拍;
S1023、确定各工位的有效生产节拍中出现频次最高的有效生产节拍为对应工位的有效生产节拍众数。
具体地,有效生产节拍=生产节拍数据-故障时间-堵料时间-缺料时间,计算得到某工位的多个有效生产节拍后,统计有效生产节拍中出现频次最高的数值作为有效生产节拍众数。例如,某工位某工艺循环的一个实际生产节拍数据为60s,工艺循环过程中发生有2s的缺料和5s的堵料,无故障,则对应的有效生产节拍为60-2-5=53s,以此类推计算该工位在预设时间内的有效生产节拍,若计算后的有效节拍为53s、53.2s、53.5s、54s、52s、53s、58s、57s、56s、56s、53s,则取其中频次最高的数值53s作为有效生产节拍众数。
S103、获取各工位的规划节拍数据,根据生产节拍箱线图、有效生产节拍众数以及规划节拍数据生成工位节拍墙。
具体地,规划节拍数据指示规划节拍。规划节拍为该工位该节拍的理论规划时长,通过形成工位节拍墙可以将各个工位的实际生产节拍、理论规划节拍以及有效生产节拍之间进行比对,从而真实反映各个工位的实际生产状况。工位节拍墙在由表示工位的横坐标和表示节拍时长的纵坐标构成的预定坐标系中呈现生产节拍箱线图序列、有效生产节拍众数序列以及规划节拍数据序列。
进一步作为可选的实施方式,根据生产节拍箱线图、有效生产节拍众数以及规划节拍数据生成工位节拍墙这一步骤,其具体包括:
A1、根据各工位的生产节拍箱线图以及工位序列确定生产节拍箱线图序列;
A2、根据各工位的有效生产节拍众数以及工位序列确定有效生产节拍众数序列;
A3、根据各工位的规划节拍数据以及工位序列确定规划节拍数据序列;
A4、根据生产节拍箱线图序列、有效生产节拍众数序列以及规划节拍数据序列生成工位节拍墙。
具体地,如图2所示为根据本发明的一个实施例生成的工位节拍墙的示意图。本发明实施例通过工位节拍墙反映生产节拍的全面数据,其中横坐标为某产线内各个工位的序列,纵坐标为节拍时长;箱线图表示实际生产节拍的波动情况,其中包括预设时间段内的最大节拍、最小节拍、上四分位节拍、下四分位节拍以及中位节拍;折线表示各工位的有效生产节拍众数形成的有效生产节拍众数序列,反映工位立项的工作节拍;规划节拍数据序列(横虚线),表示该产线的理论规划节拍,一般在同一产线的工位中,为保持各个工位的生产动作一直,其理论规划节拍都一样,因此本发明实施例中用一条直线表示。
S104、根据工位节拍墙确定各工位的生产节拍波动状况以及瓶颈工位。
具体地,瓶颈工位即为产线中影响整体生产效率的工位,一般表现为工位产品积累过多,其实质上是工位生产节拍过长,从而限制了整个产线的生产效率。本发明实施例通过工位节拍墙可以清晰准确的反映出各个工位的生产节拍波动状况以及定位出瓶颈工位。步骤S104具体包括以下步骤:
S1041、根据各工位的生产节拍箱线图与规划节拍数据确定各工位的生产节拍波动状况;
S1042、根据各工位的有效生产节拍众数与规划节拍数据确定各工位是否为瓶颈工位。
具体地,在工位节拍墙中,通过生产节拍箱线图与规划节拍数据的比对,可以反映出各个工位实际生产的节拍波动状况,还可以确定实际生产的节拍区间,确定实际生产的节拍是否达到规划节拍,确定实际生产节拍的中位数是否达到规划节拍,从而确定大部分实际生产节拍是否满足产线规划节拍的要求;通过有效生产节拍众数与规划节拍数据的比对,可以反映出各工位是否达到理想的生产节拍指标,并且可以确定有效生产节拍众数与规划节拍数据的差值最高的工位即为该产线的瓶颈工位。
本发明实施例获取预设时间段内各工位的生产节拍数据,并根据各工位的生产节拍数据确定生产节拍箱线图,然后获取各工位在各个生产节拍内的堵料时间、缺料时间以及故障时间,计算出各工位的有效生产节拍并确定有效生产节拍众数,再获取各工位预先规划好的规划节拍数据,根据各工位的生产节拍箱线图、有效生产节拍众数以及规划节拍数据得到工位节拍墙,从而可以根据工位节拍墙确定各工位的生成节拍波动状况以及瓶颈工位。本发明实施例可准确反映工位节拍的波动范围,大大提高了工位节拍统计结果的准确性,且可以准确定位瓶颈工位,满足了厂家提高生产质量和生产效率、以及降低生产成本的需求。
此外,本发明实施例与现有技术相比的优势还在于:将箱线图的概念与生产节拍统计相结合,可以准确表示实际生产节拍的波动状况;通过生成工位节拍墙可以多维度的表示出工位生产节拍波动状况以及瓶颈状况。
参照图3,示出了根据本发明的一个实施例的工位生产节拍处理系统,包括:生产节拍箱线图确定模块、有效生产节拍众数确定模块、工位节拍墙生成模块和波动状况及瓶颈工位确定模块。
生产节拍箱线图确定模块用于获取预设时间段内以预定工位序列排布的多个工位中的各工位的指示生产节拍的生产节拍数据,并根据生产节拍数据确定各工位的生产节拍箱线图。
有效生产节拍众数确定模块用于获取各工位在各个生产节拍内的堵料时间、缺料时间以及故障时间,根据生产节拍数据、堵料时间、缺料时间以及故障时间确定各工位的有效生产节拍,并根据各所述工位的有效生产节拍确定有效生产节拍众数。
工位节拍墙生成模块用于获取各工位的指示规划节拍的规划节拍数据,根据生产节拍箱线图、有效生产节拍众数以及规划节拍数据生成工位节拍墙。
波动状况及瓶颈工位确定模块用于根据工位节拍墙确定各工位的生产节拍波动状况以及瓶颈工位。
进一步作为可选的实施方式,有效生产节拍众数确定模块包括:第一获取单元,用于获取各工位在各个生产节拍内的堵料时间、缺料时间以及故障时间;有效生产节拍计算单元,用于将生产节拍数据减去对应生产节拍内的堵料时间、缺料时间以及故障时间,得到有效生产节拍;有效生产节拍众数统计单元,用于确定各工位的有效生产节拍中出现频次最高的有效生产节拍为对应工位的有效生产节拍众数。
进一步作为可选的实施方式,波动状况及瓶颈工位确定模块包括:波动状况确定单元,用于在所述工位节拍墙中,通过将各工位的生产节拍箱线图与规划节拍数据进行比较,确定各工位的生产节拍波动状况;瓶颈工位确定单元,用于在所述工位节拍墙中,通过将各工位的有效生产节拍众数与规划节拍数据进行比较,确定各工位是否为瓶颈工位。
上述方法实施例中的内容均适用于本系统实施例中,本系统实施例所具体实现的功能与上述方法实施例相同,并且达到的有益效果与上述方法实施例所达到的有益效果也相同。
参照图4,示出了根据本发明的一个实施例的工位生产节拍处理装置,包括:
至少一个处理器;
至少一个存储器,用于存储至少一个程序;
当上述至少一个程序被上述至少一个处理器执行时,使得上述至少一个处理器实现上述 工位生产节拍处理方法。
工位生产节拍处理装置还包括显示器,该显示器用于向用户显示生成的工位节拍墙。
上述方法实施例中的内容均适用于本装置实施例中,本装置实施例所具体实现的功能与上述方法实施例相同,并且达到的有益效果与上述方法实施例所达到的有益效果也相同。
本发明实施例还提供了一种非易失性计算机可读存储介质,其中存储有处理器可执行的程序,该处理器可执行的程序在由处理器执行时用于执行上述工位生产节拍处理方法。
本发明实施例的非易失性计算机可读存储介质,可执行本发明方法实施例所提供的工位生产节拍处理方法,可执行方法实施例的任意组合实施步骤,具备该方法相应的功能和有益效果。
本发明实施例还公开了一种计算机程序产品或计算机程序,该计算机程序产品或计算机程序包括计算机指令,该计算机指令存储在计算机可读存介质中。计算机设备的处理器可以从计算机可读存储介质读取该计算机指令,处理器执行该计算机指令,使得该计算机设备执行图1所示的方法。
在一些可选择的实施例中,在方框图中提到的功能/操作可以不按照操作示图提到的顺序发生。例如,取决于所涉及的功能/操作,连续示出的两个方框实际上可以被大体上同时地执行或上述方框有时能以相反顺序被执行。此外,在本发明的流程图中所呈现和描述的实施例以示例的方式被提供,目的在于提供对技术更全面的理解。所公开的方法不限于本文所呈现的操作和逻辑流程。可选择的实施例是可预期的,其中各种操作的顺序被改变以及其中被描述为较大操作的一部分的子操作被独立地执行。
此外,虽然在功能性模块的背景下描述了本发明,但应当理解的是,除非另有相反说明,上述的功能和/或特征中的一个或多个可以被集成在单个物理装置和/或软件模块中,或者一个或多个功能和/或特征可以在单独的物理装置或软件模块中被实现。还可以理解的是,有关每个模块的实际实现的详细讨论对于理解本发明是不必要的。更确切地说,考虑到在本文中公开的装置中各种功能模块的属性、功能和内部关系的情况下,在工程师的常规技术内将会了解该模块的实际实现。因此,本领域技术人员运用普通技术就能够在无需过度试验的情况下实现在权利要求书中所阐明的本发明。还可以理解的是,所公开的特定概念仅仅是说明性的,并不意在限制本发明的范围,本发明的范围由所附权利要求书及其等同方案的全部范围来决定。
上述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技 术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例上述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
在流程图中表示或在此以其他方式描述的逻辑和/或步骤,例如,可以被认为是用于实现逻辑功能的可执行指令的定序列表,可以具体实现在任何计算机可读介质中,以供指令执行系统、装置或设备(如基于计算机的系统、包括处理器的系统或其他可以从指令执行系统、装置或设备取指令并执行指令的系统)使用,或结合这些指令执行系统、装置或设备而使用。就本说明书而言,“计算机可读介质”可以是任何可以包含、存储、通信、传播或传输程序以供指令执行系统、装置或设备或结合这些指令执行系统、装置或设备而使用的装置。
计算机可读介质的更具体的示例(非穷尽性列表)包括以下:具有一个或多个布线的电连接部(电子装置),便携式计算机盘盒(磁装置),随机存取存储器(RAM),只读存储器(ROM),可擦除可编辑只读存储器(EPROM或闪速存储器),光纤装置,以及便携式光盘只读存储器(CDROM)。另外,计算机可读介质甚至可以是可在其上打印上述程序的纸或其他合适的介质,因为可以例如通过对纸或其他介质进行光学扫描,接着进行编辑、解译或必要时以其他合适方式进行处理来以电子方式获得上述程序,然后将其存储在计算机存储器中。
应当理解,本发明的各部分可以用硬件、软件、固件或它们的组合来实现。在上述实施方式中,多个步骤或方法可以用存储在存储器中且由合适的指令执行系统执行的软件或固件来实现。例如,如果用硬件来实现,和在另一实施方式中一样,可用本领域公知的下列技术中的任一项或他们的组合来实现:具有用于对数据信号实现逻辑功能的逻辑门电路的离散逻辑电路,具有合适的组合逻辑门电路的专用集成电路,可编程门阵列(PGA),现场可编程门阵列(FPGA)等。
在本说明书的上述描述中,参考术语“一个实施方式/实施例”、“另一实施方式/实施例”或“某些实施方式/实施例”等的描述意指结合实施方式或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施方式或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施方式或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施方式或示例中以合适的方式结合。
尽管已经示出和描述了本发明的实施方式,本领域的普通技术人员可以理解:在不脱离本发明的原理和宗旨的情况下可以对这些实施方式进行多种变化、修改、替换和变型,本发 明的范围由权利要求及其等同物限定。
以上是对本发明的较佳实施进行了具体说明,但本发明并不限于上述实施例,熟悉本领域的技术人员在不违背本发明精神的前提下还可做作出种种的等同变形或替换,这些等同的变形或替换均包含在本申请权利要求所限定的范围内。

Claims (15)

  1. 一种工位生产节拍处理方法,其特征在于,包括以下步骤:
    获取预设时间段内以预定工位序列排布的多个工位中的各工位的指示生产节拍的生产节拍数据;
    根据所述生产节拍数据确定各所述工位的生产节拍箱线图;
    获取各所述工位在各个生产节拍内的堵料时间、缺料时间以及故障时间;
    根据所述生产节拍数据、所述堵料时间、所述缺料时间以及所述故障时间确定各所述工位的有效生产节拍;
    根据各所述工位的有效生产节拍确定各所述工位的有效生产节拍众数;
    获取各所述工位的指示规划节拍的规划节拍数据;
    根据所述生产节拍箱线图、所述有效生产节拍众数以及所述规划节拍数据生成工位节拍墙,其中,所述工位节拍墙在预定坐标系中呈现生产节拍箱线图序列、有效生产节拍众数序列以及规划节拍数据序列,所述预定坐标系由表示工位的横坐标和表示节拍时长的纵坐标构成;
    根据所述工位节拍墙确定各所述工位的生产节拍波动状况以及瓶颈工位。
  2. 根据权利要求1所述的工位生产节拍处理方法,其特征在于,所述获取预设时间段内各工位的生产节拍数据包括:
    获取预设时间段内各工位的包括指示起始生产动作的时间的生产动作数据;
    根据相邻的起始生产动作的间隔时间确定各所述工位的多个生产节拍数据。
  3. 根据权利要求1所述的工位生产节拍处理方法,其特征在于,所述根据所述生产节拍数据确定各所述工位的生产节拍箱线图包括:
    确定各工位的生产节拍数据的上边缘、上四分位数、中位数、下四分位数以及下边缘;
    根据所述上边缘、所述上四分位数、所述中位数、所述下四分位数以及所述下边缘确定各所述工位的生产节拍箱线图。
  4. 根据权利要求1所述的工位生产节拍处理方法,其特征在于,所述根据所述生产节拍数据、所述堵料时间、所述缺料时间以及所述故障时间确定各所述工位的有效生产节拍包括:
    将所述生产节拍数据所指示的生产节拍减去对应生产节拍内的堵料时间、缺料时间以及故障时间,得到有效生产节拍。
  5. 根据权利要求1所述的工位生产节拍处理方法,其特征在于,所述根据各所述工位的 有效生产节拍确定各所述工位的有效生产节拍众数包括:
    确定各所述工位的有效生产节拍中出现频次最高的有效生产节拍为对应工位的有效生产节拍众数。
  6. 根据权利要求1所述的工位生产节拍处理方法,其特征在于,所述根据所述生产节拍箱线图、所述有效生产节拍众数以及所述规划节拍数据生成工位节拍墙包括:
    根据各工位的生产节拍箱线图以及所述工位序列确定所述生产节拍箱线图序列;
    根据各工位的有效生产节拍众数以及所述工位序列确定所述有效生产节拍众数序列;
    根据各工位的规划节拍数据以及所述工位序列确定所述规划节拍数据序列;
    根据所述生产节拍箱线图序列、所述有效生产节拍众数序列以及所述规划节拍数据序列在所述预定坐标系中生成工位节拍墙。
  7. 根据权利要求1至6中任一项所述的工位生产节拍处理方法,其特征在于,所述根据所述工位节拍墙确定各所述工位的生产节拍波动状况以及瓶颈工位包括:
    在所述工位节拍墙中,通过将各工位的生产节拍箱线图与规划节拍数据进行比较,确定各所述工位的生产节拍波动状况。
  8. 根据权利要求1至6中任一项所述的工位生产节拍处理方法,其特征在于,所述根据所述工位节拍墙确定各所述工位的生产节拍波动状况以及瓶颈工位包括:
    在所述工位节拍墙中,通过将各工位的有效生产节拍众数与规划节拍数据进行比较,确定各所述工位是否为瓶颈工位。
  9. 一种工位生产节拍处理系统,其特征在于,包括:
    生产节拍箱线图确定模块,用于获取预设时间段内以预定工位序列排布的多个工位中的各工位的指示生产节拍的生产节拍数据,并根据所述生产节拍数据确定各所述工位的生产节拍箱线图;
    有效生产节拍众数确定模块,用于获取各所述工位在各个生产节拍内的堵料时间、缺料时间以及故障时间,根据所述生产节拍数据、所述堵料时间、所述缺料时间以及所述故障时间确定各所述工位的有效生产节拍,并根据各所述工位的有效生产节拍确定有效生产节拍众数;
    工位节拍墙生成模块,用于获取各所述工位的指示规划节拍的规划节拍数据,根据所述生产节拍箱线图、所述有效生产节拍众数以及所述规划节拍数据生成工位节拍墙,其中,所述工位节拍墙在预定坐标系中呈现生产节拍箱线图序列、有效生产节拍众数序列以及规划节拍数据序列,所述预定坐标系由表示工位的横坐标和表示节拍时长的纵坐标构成;
    波动状况及瓶颈工位确定模块,用于根据所述工位节拍墙确定各所述工位的生产节拍波动状况以及瓶颈工位。
  10. 根据权利要求9所述的工位生产节拍处理系统,其特征在于,所述有效生产节拍众数确定模块包括:
    有效生产节拍计算单元,用于将所述生产节拍数据所指示的生产节拍减去对应生产节拍内的堵料时间、缺料时间以及故障时间,得到有效生产节拍。
  11. 根据权利要求9所述的工位生产节拍处理系统,其特征在于,所有效生产节拍众数确定模块包括:
    有效生产节拍众数统计单元,用于确定各所述工位的有效生产节拍中出现频次最高的有效生产节拍为对应工位的有效生产节拍众数。
  12. 根据权利要求9至11中任一项所述的工位生产节拍处理系统,其特征在于,所述波动状况及瓶颈工位确定模块包括:
    波动状况确定单元,用于在所述工位节拍墙中,通过将各工位的生产节拍箱线图与规划节拍数据进行比较,确定各所述工位的生产节拍波动状况。
  13. 根据权利要求9至11中任一项所述的工位生产节拍处理系统,其特征在于,所述波动状况及瓶颈工位确定模块包括:
    瓶颈工位确定单元,用于在所述工位节拍墙中,通过将各工位的有效生产节拍众数与规划节拍数据进行比较,确定各所述工位是否为瓶颈工位。
  14. 一种工位生产节拍处理装置,其特征在于,包括:
    至少一个处理器;
    至少一个存储器,存储有至少一个程序;
    当所述至少一个程序被所述至少一个处理器执行,使得所述至少一个处理器实现根据权利要求1至8中任一项所述的工位生产节拍处理方法。
  15. 一种非易失性计算机可读存储介质,其中存储有处理器可执行的指令,其特征在于,所述处理器可执行的指令在由处理器执行时用于执行根据权利要求1至8中任一项所述的工位生产节拍处理方法。
PCT/CN2022/089844 2021-04-30 2022-04-28 工位生产节拍处理方法、系统、装置及存储介质 WO2022228508A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2023528602A JP7466060B2 (ja) 2021-04-30 2022-04-28 ステーションのタクトタイムの処理方法、システム、装置及び記憶媒体
EP22794978.1A EP4187339A4 (en) 2021-04-30 2022-04-28 METHOD, SYSTEM AND DEVICE FOR PROCESSING THE STATION CLOCK TIME AND STORAGE MEDIUM
US18/182,513 US20230229149A1 (en) 2021-04-30 2023-03-13 Method and apparatus for processing takt at station, and storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110486108.6 2021-04-30
CN202110486108.6A CN113219921B (zh) 2021-04-30 2021-04-30 一种工位生产节拍处理方法、系统、装置及存储介质

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/182,513 Continuation US20230229149A1 (en) 2021-04-30 2023-03-13 Method and apparatus for processing takt at station, and storage medium

Publications (1)

Publication Number Publication Date
WO2022228508A1 true WO2022228508A1 (zh) 2022-11-03

Family

ID=77090803

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/089844 WO2022228508A1 (zh) 2021-04-30 2022-04-28 工位生产节拍处理方法、系统、装置及存储介质

Country Status (5)

Country Link
US (1) US20230229149A1 (zh)
EP (1) EP4187339A4 (zh)
JP (1) JP7466060B2 (zh)
CN (1) CN113219921B (zh)
WO (1) WO2022228508A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113219921B (zh) * 2021-04-30 2022-05-27 广州明珞装备股份有限公司 一种工位生产节拍处理方法、系统、装置及存储介质
CN114462669A (zh) * 2021-12-23 2022-05-10 广州明珞装备股份有限公司 一种生产线优化方法、装置和存储介质
CN114546031B (zh) * 2021-12-31 2023-10-13 广州明珞装备股份有限公司 一种工艺节拍计算方法、系统、设备及存储介质
CN114393578B (zh) * 2021-12-31 2024-06-14 广州明珞装备股份有限公司 一种工艺动作判断方法、系统、设备及存储介质
CN114326640B (zh) * 2021-12-31 2024-05-17 广州明珞装备股份有限公司 一种瓶颈工位寻找方法、系统、设备及存储介质
CN114637264B (zh) * 2022-03-15 2024-05-17 广州明珞装备股份有限公司 动作稳定性分析方法、系统、设备及存储介质
CN114594745A (zh) * 2022-03-15 2022-06-07 广州明珞装备股份有限公司 瓶颈工位分析方法、分析设备及计算机存储介质
CN114625088B (zh) * 2022-03-15 2024-02-02 广州明珞装备股份有限公司 自动化生产线的效能优化方法、系统、设备及存储介质
CN114625087A (zh) * 2022-03-15 2022-06-14 广州明珞装备股份有限公司 工位异常动作分析方法、系统、设备及存储介质
CN114693129A (zh) * 2022-04-01 2022-07-01 广州明珞装备股份有限公司 工业物联网智能制造服务平台、方法、设备及介质
CN114706361B (zh) * 2022-06-07 2022-09-02 工业富联(杭州)数据科技有限公司 离散制造生产系统修复方法、计算机装置及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107065793A (zh) * 2017-02-07 2017-08-18 西门子传感器与通讯有限公司 流水线实时监控管理方法、流水线实时监控管理装置
CN110852617A (zh) * 2019-11-11 2020-02-28 中电工业互联网有限公司 基于实时数据采集的smt产线分析方法及系统
CN111913449A (zh) * 2020-07-24 2020-11-10 Tcl王牌电器(惠州)有限公司 生产系统及其生产节拍监控方法、监控装置和存储介质
CN112288175A (zh) * 2020-11-02 2021-01-29 联通(浙江)产业互联网有限公司 产线实时优化方法及装置
CN112329981A (zh) * 2020-09-27 2021-02-05 广州明珞装备股份有限公司 一种工位优化点确定方法、系统、装置及存储介质
CN113219921A (zh) * 2021-04-30 2021-08-06 广州明珞装备股份有限公司 一种工位生产节拍处理方法、系统、装置及存储介质

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008112209A (ja) 2006-10-27 2008-05-15 Omron Corp 稼働状態モニタリング装置、稼働状態モニタリング方法、およびプログラム
CN103246228B (zh) * 2012-02-14 2016-01-20 厦门烟草工业有限责任公司 一种在线监控均值和标准差的系统
JP2013211000A (ja) 2012-02-28 2013-10-10 Sharp Corp 携帯型端末装置
JP2018092248A (ja) * 2016-11-30 2018-06-14 トヨタ自動車株式会社 圧縮エア流量の算出方法、その装置、及びプログラム
CN106897941A (zh) * 2017-01-03 2017-06-27 北京国能日新系统控制技术有限公司 一种基于四分位箱线图的风机异常数据处理方法及装置
CN107506885A (zh) * 2017-06-28 2017-12-22 杭州中车车辆有限公司 地铁列车工位制节拍化生产模式的构建方法
JP6824838B2 (ja) 2017-07-07 2021-02-03 株式会社日立製作所 作業データ管理システム及び作業データ管理方法
CN107329415B (zh) * 2017-08-04 2024-01-12 苏州池久节能电气有限公司 一种生产数据采集分析平衡控制设备及其控制方法
CN108776831A (zh) * 2018-05-15 2018-11-09 中南大学 一种基于动态卷积神经网络的复杂工业过程数据建模方法
JP7181554B2 (ja) 2019-04-05 2022-12-01 i Smart Technologies株式会社 生産効率向上支援システム
JP2020205027A (ja) 2019-06-14 2020-12-24 オムロン株式会社 データ抽出装置、データ抽出装置の制御方法、情報処理プログラム、および記録媒体
CN111178660A (zh) * 2019-10-31 2020-05-19 青岛海尔工业智能研究院有限公司 混合产品生产线中生产节拍确定方法、装置及电子设备
JP7533148B2 (ja) 2020-11-17 2024-08-14 セイコーエプソン株式会社 射出成形機管理システムおよびコンピュータープログラム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107065793A (zh) * 2017-02-07 2017-08-18 西门子传感器与通讯有限公司 流水线实时监控管理方法、流水线实时监控管理装置
CN110852617A (zh) * 2019-11-11 2020-02-28 中电工业互联网有限公司 基于实时数据采集的smt产线分析方法及系统
CN111913449A (zh) * 2020-07-24 2020-11-10 Tcl王牌电器(惠州)有限公司 生产系统及其生产节拍监控方法、监控装置和存储介质
CN112329981A (zh) * 2020-09-27 2021-02-05 广州明珞装备股份有限公司 一种工位优化点确定方法、系统、装置及存储介质
CN112288175A (zh) * 2020-11-02 2021-01-29 联通(浙江)产业互联网有限公司 产线实时优化方法及装置
CN113219921A (zh) * 2021-04-30 2021-08-06 广州明珞装备股份有限公司 一种工位生产节拍处理方法、系统、装置及存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4187339A4 *

Also Published As

Publication number Publication date
JP7466060B2 (ja) 2024-04-11
EP4187339A1 (en) 2023-05-31
CN113219921B (zh) 2022-05-27
JP2023549845A (ja) 2023-11-29
US20230229149A1 (en) 2023-07-20
EP4187339A4 (en) 2024-03-20
CN113219921A (zh) 2021-08-06

Similar Documents

Publication Publication Date Title
WO2022228508A1 (zh) 工位生产节拍处理方法、系统、装置及存储介质
CN110276126B (zh) 基于缓存区容量计算的自动化生产线优化方法
CN113361139B (zh) 一种基于数字孪生的产线仿真滚动优化系统及方法
US7962440B2 (en) Adaptive industrial systems via embedded historian data
Colledani et al. Analytical methods to support continuous improvements at Scania
US20100121664A1 (en) Conditional download of data from embedded historians
US10908833B2 (en) Data migration method for a storage system after expansion and storage system
WO2019210653A1 (zh) 支持工序任务量拆分的智能排产方法
Guo et al. Stability analysis of a new kind series system
JP7053152B2 (ja) 推奨点検間隔を最適化するシステム及び方法
CN103761595A (zh) 一种erp系统的业务流程监控方法及装置
CN112583610B (zh) 系统状态的预测方法、装置、服务器及存储介质
CN108984104A (zh) 用于缓存管理的方法和设备
CN111190814A (zh) 软件测试用例的生成方法、装置、存储介质及终端
CN110837496A (zh) 一种基于动态sql实现的数据质量管理方法及系统
CN116185788A (zh) 用于soc系统的调试或性能分析的可视化系统
JP7107991B2 (ja) 運用管理装置及び運用管理方法
WO2023174252A1 (zh) 瓶颈工位分析方法、分析设备及计算机存储介质
CN202395816U (zh) 网络税控器集群系统
CN117057550A (zh) 一种物料需求计划的计算方法、装置、网络设备及介质
Li et al. Mission reliability modeling of multistation manufacturing systems considering cascading functional failure
JP5905786B2 (ja) 原価計算プログラム、原価計算コンピュータ、原価計算装置
Hwang et al. Simple contracts for reliable supply: Capacity versus yield uncertainty
CN109191330A (zh) 线损电量计算方法、装置、计算机设备和存储介质
Zhang et al. A simulation‐based differential evolution algorithm for stochastic parallel machine scheduling with operational considerations

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22794978

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022794978

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022794978

Country of ref document: EP

Effective date: 20230224

WWE Wipo information: entry into national phase

Ref document number: 2023528602

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE