WO2022228034A1 - 一种光信号放大装置及方法 - Google Patents

一种光信号放大装置及方法 Download PDF

Info

Publication number
WO2022228034A1
WO2022228034A1 PCT/CN2022/084789 CN2022084789W WO2022228034A1 WO 2022228034 A1 WO2022228034 A1 WO 2022228034A1 CN 2022084789 W CN2022084789 W CN 2022084789W WO 2022228034 A1 WO2022228034 A1 WO 2022228034A1
Authority
WO
WIPO (PCT)
Prior art keywords
pump light
optical
power
pump
optical signal
Prior art date
Application number
PCT/CN2022/084789
Other languages
English (en)
French (fr)
Inventor
郭强
周锐
冀小凡
张�林
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP22794506.0A priority Critical patent/EP4318976A1/en
Publication of WO2022228034A1 publication Critical patent/WO2022228034A1/zh
Priority to US18/493,273 priority patent/US20240056210A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0221Power control, e.g. to keep the total optical power constant
    • H04J14/02216Power control, e.g. to keep the total optical power constant by gain equalization
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/29Repeaters
    • H04B10/291Repeaters in which processing or amplification is carried out without conversion of the main signal from optical form
    • H04B10/2912Repeaters in which processing or amplification is carried out without conversion of the main signal from optical form characterised by the medium used for amplification or processing
    • H04B10/2916Repeaters in which processing or amplification is carried out without conversion of the main signal from optical form characterised by the medium used for amplification or processing using Raman or Brillouin amplifiers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06754Fibre amplifiers
    • H01S3/06762Fibre amplifiers having a specific amplification band
    • H01S3/06766C-band amplifiers, i.e. amplification in the range of about 1530 nm to 1560 nm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06754Fibre amplifiers
    • H01S3/06762Fibre amplifiers having a specific amplification band
    • H01S3/0677L-band amplifiers, i.e. amplification in the range of about 1560 nm to 1610 nm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/094069Multi-mode pumping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/094096Multi-wavelength pumping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/13Stabilisation of laser output parameters, e.g. frequency or amplitude
    • H01S3/1301Stabilisation of laser output parameters, e.g. frequency or amplitude in optical amplifiers
    • H01S3/13013Stabilisation of laser output parameters, e.g. frequency or amplitude in optical amplifiers by controlling the optical pumping
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/079Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal
    • H04B10/0795Performance monitoring; Measurement of transmission parameters
    • H04B10/07955Monitoring or measuring power
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/29Repeaters
    • H04B10/291Repeaters in which processing or amplification is carried out without conversion of the main signal from optical form
    • H04B10/293Signal power control
    • H04B10/294Signal power control in a multiwavelength system, e.g. gain equalisation
    • H04B10/2942Signal power control in a multiwavelength system, e.g. gain equalisation using automatic gain control [AGC]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/04Mode multiplex systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06708Constructional details of the fibre, e.g. compositions, cross-section, shape or tapering
    • H01S3/06729Peculiar transverse fibre profile
    • H01S3/06737Fibre having multiple non-coaxial cores, e.g. multiple active cores or separate cores for pump and gain
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06754Fibre amplifiers
    • H01S3/06758Tandem amplifiers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/094003Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light the pumped medium being a fibre
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/1601Solid materials characterised by an active (lasing) ion
    • H01S3/1603Solid materials characterised by an active (lasing) ion rare earth
    • H01S3/1608Solid materials characterised by an active (lasing) ion rare earth erbium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/23Arrangements of two or more lasers not provided for in groups H01S3/02 - H01S3/22, e.g. tandem arrangements of separate active media
    • H01S3/2375Hybrid lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/23Arrangements of two or more lasers not provided for in groups H01S3/02 - H01S3/22, e.g. tandem arrangements of separate active media
    • H01S3/2383Parallel arrangements
    • H01S3/2391Parallel arrangements emitting at different wavelengths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/30Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range using scattering effects, e.g. stimulated Brillouin or Raman effects
    • H01S3/302Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range using scattering effects, e.g. stimulated Brillouin or Raman effects in an optical fibre

Definitions

  • the present application relates to the field of optical communication, and more particularly, to an optical signal amplification device and method.
  • Few-mode/multi-core fiber amplifiers are important components in long-distance SDM transmission systems. Few-mode/multi-core fiber amplifiers can achieve simultaneous amplification of different modes/core channels. With the expansion of the number of signal modes/cores, the existing few-mode/multi-core fiber amplifiers cannot achieve good signal gain flatness, which greatly affects the transmission performance of the system.
  • the present application provides an optical signal amplifying device and method, which can achieve better gain flatness, help to improve the transmission performance of the system, and greatly extend the transmission distance.
  • an optical signal amplifying device which is applied in a space division multiplexing transmission system, where a space division multiplexing signal to be detected in the space division multiplexing transmission system includes N spatial dimensions, wherein each The spatial dimension includes G wavelength channels, N is a positive integer, G is a positive integer, and the optical signal amplification device includes: a power detection module, a pump control module, and a Raman amplification module.
  • the power detection module is configured to detect the power of each wavelength channel in the G wavelength channels of the N spatial dimensions to obtain power detection information, and determine power configuration information according to the power detection information, and, The power configuration information is sent to the pump control module; the pump control module is used to output N pump lights, wherein each pump light is composed of M pump lights with different wavelengths, each The proportion of the pump light split in the pump light of the corresponding wavelength is determined according to the power configuration information; the Raman amplifying module is used for using the N channels of pump light to perform the mapping in the N spatial dimensions.
  • the space-division multiplexed signal in each spatial dimension is Raman amplified.
  • the N channels of pump light correspond to N spatial dimensions, and are used to provide corresponding pump light for the space-division multiplexed signal of each spatial dimension, so as to perform Raman amplification and power equalization on the space-division multiplexed signal.
  • the optical signal amplifying device of the embodiment of the present application improves the transmission performance of the space division multiplexing system, and greatly prolongs the transmission distance.
  • the pump control module includes M pump light sources with different wavelengths, M optical splitters, and N wave combiners, wherein each optical splitter has an input port and N output ports, each pump light source is respectively connected to the input port of an optical splitter, and the N output ports of each optical splitter are respectively connected to one of the output ports of the N wave combiners; the M The pump light sources are used to generate M pump lights; each optical splitter is used to split the pump light of the corresponding wavelength according to the first spectral coefficient, and output N pump lights through the N output ports.
  • the N pump light splits output by each optical splitter reach the N wave combiners respectively; the N wave combiners are used for outputting the N channels of pump light, wherein each wave combiner is used for
  • the M pump light splits obtained from the M optical splitters are combined according to the second splitting coefficient to obtain a pump light; wherein the first splitting coefficient and/or the second splitting coefficient are based on the The power configuration information is determined.
  • the spectral coefficient corresponding to the power of the N-channel pump light output by the pump control module is determined based on the power configuration information.
  • the spectral coefficient corresponding to the power of the N-channel pump light can be adjusted in the following two stages: in the first stage, the optical splitter splits the pump light of each wavelength; The light is split and combined.
  • the pump control module can obtain the above-mentioned N-channel pump light (or adjust the spectral coefficient in the above-mentioned two stages) through different implementations.
  • a first spectral coefficient (corresponding to the first stage) and a second spectral coefficient (corresponding to the second stage) are introduced for description.
  • the M optical splitters are tunable optical splitters, wherein the first optical splitting coefficient corresponding to each tunable optical splitter is determined based on the power configuration information.
  • the role of the power configuration information is reflected at each tunable optical splitter, and the M pump light splits are simply weighted and summed at the wave combiner.
  • the second spectroscopic coefficient refers to a weighting coefficient (or a weighting value), and the value of each weighting coefficient is 1.
  • the M optical splitters are uniform optical splitters, the first optical splitting coefficient corresponding to each uniform optical splitter is determined by equally dividing the pump light of the corresponding wavelength, and the second optical splitting coefficient is determined based on the power configuration information.
  • the pump light of the corresponding wavelength can be divided equally at the uniform beam splitter, and the function of the power configuration information is reflected at the wave combiner.
  • the N multiplexers implement the second splitting coefficient through a wavelength selective switch or an optical cross-connect device.
  • both the first spectral coefficient and the second spectral coefficient are determined based on power configuration information. That is to say, the role of the power configuration information is reflected at both the optical splitter and the combiner.
  • the pump control module can dynamically adjust the gains of different channels in different spatial dimensions to compensate for the DMG after the signal light passes through the EDFA, thereby realizing the gain equalization of different channels and different spatial dimensions.
  • the power detection module is configured to determine the power configuration information according to the power detection information, including: the power detection module determines the power configuration information according to the power detection information based on a power flatness criterion.
  • the power detection module may separate each spatial dimension, and further separate each wavelength channel under each spatial dimension.
  • the power detection module includes a spatial channel separation module and a wavelength channel power detection module; the spatial channel separation module is used to separate the space division multiplexed signals of the N spatial dimensions; The wavelength channel power detection module is used for separating G wavelength channels in each spatial dimension, and detecting the power of each wavelength channel.
  • the spatial channel separation module is a space demultiplexer.
  • the wavelength channel power detection module is a wavelength demultiplexer.
  • the optical signal amplifying apparatus further includes a first optical splitter, and the first optical splitter is used to separate the space division multiplexed signal to be detected from the space division optical fiber link,
  • the first optical splitter is connected to the power detection module.
  • the Raman amplification module includes a space division multiplexer and a space division multiplexing fiber; wherein, the N-channel pump light is coupled to the space division multiplexer through the space division multiplexer In the split fiber, the space division multiplexed signal transmitted in the space division multiplexed fiber generates stimulated Raman amplification under the action of the N channels of pump light.
  • the optical signal amplifying device is applied in a few-mode fiber transmission system (such as a few-mode fiber C+L-band transmission system), and the optical signal amplifying device further includes: N phase plates, The N phase plates are arranged between the pump control module and the Raman amplification module; the N phase plates are used to load the N-channel pump light output by the pump control module into the pump control module.
  • the N spatial dimensions are N modes.
  • the optical signal amplifying device of the embodiment of the present application is applied to a few-mode optical fiber transmission system, and can compensate the gains at different channels in different modes, thereby realizing mode channel equalization of the few-mode optical fiber transmission system.
  • the optical signal amplifying device is applied in a multi-core optical fiber transmission system, and the optical signal amplifying device further includes: a multi-core fan-in module, and the multi-core fan-in module is arranged in the between the pump control module and the Raman amplifier module; the multi-core fan-in module is used to inject the N-channel pump light output by the pump control module into the corresponding fiber core, wherein the The N spatial dimensions are N fiber cores.
  • the optical signal amplifying apparatus of the embodiment of the present application is applied to a multi-core optical fiber transmission system, and can compensate the gains at different channels of different fiber cores, thereby realizing multi-core equalization.
  • an optical signal amplifying method is provided, the method is performed by an optical signal amplifying apparatus, and the optical signal amplifying apparatus is applied in a space division multiplexing transmission system, and the space division multiplexing transmission system is to be detected
  • the space division multiplexed signal includes N spatial dimensions, wherein each spatial dimension includes G wavelength channels, N is a positive integer, and G is a positive integer
  • the method includes: for the G wavelengths of the N spatial dimensions
  • the power of each wavelength channel in the channel is detected to obtain power detection information, and the power configuration information is determined according to the power detection information; N channels of pump light are output, wherein each channel of pump light is composed of M pumps of different wavelengths It is composed of pump light splits, and the proportion of each pump light split in the pump light of the corresponding wavelength is determined according to the power configuration information;
  • the spatially multiplexed signal in each spatial dimension is subjected to Raman amplification.
  • the optical signal amplification method of the embodiment of the present application improves the transmission performance of the space division
  • the M pump light splits in each pump light are obtained by combining according to the second splitting coefficient, and each pump light split is obtained by combining the corresponding wavelengths.
  • the pump light is obtained by splitting the pump light according to the first splitting coefficient; wherein, the first splitting coefficient and/or the second splitting coefficient are determined based on the power configuration information.
  • the spectral coefficient corresponding to the power of the N-channel pump light is determined based on the power configuration information.
  • the spectral coefficient corresponding to the power of the N-channel pump light can be adjusted in the following two stages: in the first stage, the optical splitter splits the pump light of each wavelength; The light is split and combined.
  • the pump control module can obtain the above-mentioned N-channel pump light (or adjust the spectral coefficient in the above-mentioned two stages) through different implementations.
  • a first spectral coefficient (corresponding to the first stage) and a second spectral coefficient (corresponding to the second stage) are introduced for description.
  • the determining the power configuration information according to the power detection information includes: determining the power configuration information according to the power detection information based on a power flatness criterion.
  • the optical signal amplifying device is applied in a few-mode fiber transmission system (such as a few-mode fiber C+L-band transmission system), and the method further includes: amplifying the N-channel pump light Loaded onto the corresponding schema, where the N spatial dimensions are N schemas.
  • the optical signal amplifying device of the embodiment of the present application is applied to a few-mode optical fiber transmission system, and can compensate the gains at different channels in different modes, thereby realizing mode channel equalization of the few-mode optical fiber transmission system.
  • the optical signal amplifying device is applied in a multi-core optical fiber transmission system, and the method further includes: injecting the N-channel pump light into a corresponding fiber core, wherein the N spatial dimensions are N cores. That is to say, the optical signal amplification method of the embodiment of the present application is applied to a multi-core optical fiber transmission system, and can compensate the gains at different channels of different fiber cores, thereby realizing multi-core equalization.
  • a computer-readable storage medium for storing a computer program comprising instructions for performing the method of the second aspect.
  • FIG. 1 is a schematic diagram of a space division multiplexing transmission system applying an embodiment of the present application.
  • FIG. 2 is a schematic block diagram of an optical signal amplifying apparatus according to an embodiment of the present application.
  • FIG. 3 is an example diagram of a power detection module according to an embodiment of the present application.
  • FIG. 4 is an example diagram of a pump control module according to an embodiment of the present application.
  • FIG. 5 is another example diagram of a pump control module according to an embodiment of the present application.
  • FIG. 6 is an example diagram of a Raman amplification module according to an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a hybrid Raman/EDFA space-division multiplexing fiber amplifier according to an embodiment of the present application.
  • Figure 8 is a schematic diagram of the structure of a hybrid Raman/EDFA C+L-band few-mode fiber amplifier.
  • FIG. 9 is a schematic structural diagram of a fiber amplifier based on a multi-core fiber transmission system.
  • FIG. 10 is a schematic flowchart of a method for amplifying an optical signal according to an embodiment of the present application.
  • SDM Spatial division multiplexing
  • Spatial division multiplexing is a way to realize multiplexing by using space division. For example, multiple fibers are combined into a bundle to realize space division multiplexing, or space division multiplexing is realized in the same fiber.
  • Few-mode fiber is a single-core fiber, which has a larger mode field area than ordinary single-mode fiber, allowing several independent spatial modes to transmit data streams in parallel, improving system communication capacity.
  • FM-EDFA Few mode erbium-doped fiber amplifier
  • the few-mode erbium-doped fiber amplifier refers to: by doping a small amount of erbium ions in the few-mode fiber, injecting pump light to make the erbium ions population inversion, so that when the few-mode signal light passes through, stimulated radiation occurs to convert the signal light.
  • Amplified Active Optical Device by doping a small amount of erbium ions in the few-mode fiber, injecting pump light to make the erbium ions population inversion, so that when the few-mode signal light passes through, stimulated radiation occurs to convert the signal light.
  • Differential mode gain is the difference in gain obtained in an optical amplifier for each mode in a few-mode fiber.
  • Mode-dependent loss means that each mode has different transmission loss in few-mode fiber.
  • the DMG of the few-mode fiber amplifier is too high, which will lead to an increase in the mode-dependent loss MDL of the mode division multiplexing system at the relay amplifier.
  • MDL mode-dependent loss of the mode division multiplexing system
  • the probability of system interruption will greatly increase, which greatly affects the transmission performance.
  • the present application proposes an optical signal amplifying device and method, which help to improve transmission performance and greatly extend transmission distance.
  • optical communication system For example, space division multiplexing transmission system, few-mode optical fiber transmission system or multi-core optical fiber transmission system, etc.
  • FIG. 1 is a schematic diagram of a space division multiplexing transmission system applying an embodiment of the present application.
  • the system includes P WDM transmitters (for example, N WDM transmitters are denoted as Tx_1, Tx_2, ... Tx_P,), space division multiplexers, space division multiplexing fibers , a plurality of optical signal amplifying devices, a space division multiplexer, and P wavelength division multiplexing receivers (for example, the P wavelength division multiplexing receivers are represented as Rx_1, Rx_2, . . . Rx_P, ).
  • a plurality of wavelength division multiplexing transmitters are connected to the space division multiplexer.
  • a plurality of wavelength division multiplexing receivers are connected to the space division multiplexer.
  • the space division multiplexer is connected to the space division multiplexed fiber.
  • the optical signal amplifying device is cascaded with the space division multiplexing fiber.
  • the wavelength division multiplexed optical signals generated by the multiple wavelength division multiplexing transmitters are converted to different spatial dimensions after passing through the space division multiplexer.
  • the optical signal multiplexed by the space division multiplexer enters the space division multiplexed fiber for transmission.
  • the signal transmitted by the space division multiplexed fiber enters the optical signal amplifying device.
  • the optical signal amplifying device amplifies the signal transmitted from the space-division multiplexing transmission fiber, and inputs the amplified optical signal into the next fiber for transmission, and is then amplified again.
  • the space division multiplexer separates the space division multiplexed optical signal received from the optical signal amplifying device, and inputs the separated optical signals to a plurality of wavelength division multiplexed receivers respectively.
  • the wavelength division multiplexing receiver demodulates the received optical signal.
  • the optical signal amplifying device in FIG. 1 is an optical signal amplifying device proposed in the present application, which can compensate for the unevenness of wavelength channel power in various spatial dimensions, which helps to improve transmission performance and can realize long-distance transmission.
  • optical signal amplifying apparatus according to the embodiment of the present application will be described below with reference to FIGS. 2 to 9 .
  • FIG. 2 is a schematic block diagram of an optical signal amplifying apparatus according to an embodiment of the present application.
  • the optical signal amplification device includes: a power detection module 210 , a pump control module 220 and a Raman amplification module 230 .
  • the optical signal amplifying device is applied in a space division multiplexing transmission system.
  • the space division multiplexing signal to be transmitted in the space division multiplexing transmission system includes N spatial dimensions, each space dimension includes G wavelength channels, N is a positive integer, and G is a positive integer.
  • the spatial dimensions may include modes or cores.
  • the power detection module 210 is configured to detect the power of each wavelength channel in the G wavelength channels of N spatial dimensions to obtain power detection information, and determine power configuration information according to the power detection information, and, The power configuration information is sent to the pump control module.
  • the pump control module 220 is used to output N pump lights, wherein each pump light is composed of M pump light splits with different wavelengths, and each pump light split is in the pump light of the corresponding wavelength.
  • the proportion is determined according to the power configuration information, and M is an integer greater than 1.
  • the Raman amplification module 230 is configured to perform Raman amplification on the space-division multiplexed signal in each of the N spatial dimensions by using the N channels of pump light.
  • the power detection module 210 obtains the power detection information (or power distribution information) of each wavelength channel in each spatial dimension by detecting the power of each wavelength channel in each spatial dimension, and then uses the power The detection information is calculated to obtain power configuration information, and the power configuration information is fed back to the pump control module 220 .
  • the pump control module 220 is used to output N pump lights, each pump light is composed of M pump light splits of different wavelengths, and the proportion of each pump light split in the pump light of the corresponding wavelength is determined according to the power configuration information.
  • the pump control module 220 uses the power configuration information to adjust the split ratio of the pump light of each wavelength, so that the pump configuration corresponding to each output pump light and the power configuration information fed back by the power detection module Consistent.
  • the Raman amplification module 230 is configured to perform Raman amplification on the space-division multiplexed signal by using the N-channel pump light output by the pump control module.
  • the N channels of pump light correspond to N spatial dimensions, and are used to provide corresponding pump light for the space-division multiplexed signal of each spatial dimension, so as to perform Raman amplification and power on the space-division multiplexed signal. balanced.
  • the optical signal amplifying device of the embodiment of the present application improves the transmission performance of the space division multiplexing system, and greatly prolongs the transmission distance.
  • the power detection module 210 is configured to determine the power configuration information according to the power detection information, including: the power detection module determines the power configuration information according to the power detection information based on a power flatness criterion.
  • the power flatness criterion can be understood as a criterion for ensuring the power balance of each wavelength channel in each spatial dimension.
  • the power detection module 210 detects the power of each wavelength channel in each spatial dimension in real time, determines the power configuration information based on the power flatness criterion, and feeds back the power configuration information to the pump control module 220, so that the pump control module 220 can dynamically adjust the power of each wavelength channel.
  • the spectral coefficient of the pump light is the spectral coefficient of the pump light.
  • the power configuration information is used to achieve power balance among spatial wavelength channels.
  • the power configuration information may include one or more target power values.
  • the target power value can be understood as a power compensation value for a certain wavelength channel in a certain spatial dimension.
  • the process of determining the power configuration information by the power detection module will be described. Assuming that the space division multiplexed signal transmitted in the space division multiplexing system has multiple spatial dimensions, there are 5 wavelength channels in a certain spatial dimension, and the power detection module detects these 5 wavelength channels to obtain each The power value of the wavelength channel. In order to achieve power balance or power flatness, the wavelength channel with lower power value among the 5 wavelength channels can be adjusted up, and the wavelength channel with higher power value can be adjusted down, or, in other words, one of the five wavelength channels can be adjusted. The power value is adjusted to the target power value. It can be understood that the examples here are only for easy understanding, and the present application is not limited thereto, for example, the number of wavelength channels is not limited. It can also be understood that the example here is only for multiple wavelength channels in a certain spatial dimension, but in practical application, it can be extended to each wavelength channel in multiple spatial dimensions, which is not specifically limited.
  • the power detection module 210 may separate each spatial dimension, and further separate each wavelength channel under each spatial dimension.
  • the space division multiplexed signal can be separated in N spatial dimensions through a space channel separation module (such as a space demultiplexer).
  • the separation of the G wavelength channels can be achieved through a wavelength channel power detection module (eg, a wavelength demultiplexer).
  • the power detection module 210 may include a space channel separation module and a wavelength channel power detection module.
  • the spatial channel separation module is used to separate the space-division multiplexed signals of N spatial dimensions.
  • the wavelength channel power detection module is used for separating G wavelength channels in each spatial dimension, and detecting the power of each wavelength channel.
  • the spatial channel separation module can be implemented by a space demultiplexer. It can be understood that the present application is not limited to this, and the spatial channel separation can also be implemented by other devices or modules having the function of spatial channel separation.
  • the wavelength channel power detection module may pass through a wavelength demultiplexer. It can be understood that the present application is not limited to this, and wavelength channel separation and/or detection can also be implemented by other devices or modules with wavelength channel separation function and/or detection function.
  • the power detection module 210 may further include a data collection and processing module, and the data collection and processing module is configured to collect and process the data output by the wavelength channel power detection module.
  • Figure 3 shows an example diagram of a power detection module.
  • the power detection module includes a space channel separation module, a plurality of wavelength channel power detection modules, and a data acquisition and processing module.
  • the spatial channel separation module demultiplexes the light of different spatial dimensions, thereby separating the data of each spatial dimension.
  • the wavelength channel power detection module is used to detect the power value of each wavelength channel in each spatial dimension.
  • power configuration information is output.
  • the power detection module feeds back the power configuration information to the pump control module to adjust the spectral coefficients of the M pump light sources allocated to the N spatial dimensions, for example, the spectral coefficients are expressed as (a 1 , a 2 , . . . , a M , ..., k 1 , k 2 , ..., k M ).
  • the source of the space division multiplexed signal to be detected is not specifically limited in this application.
  • the space-division multiplexed signal detected by the power detection module 210 (or the above-mentioned space-division multiplexed signal to be detected) may be part of the signal light separated from the optical fiber link by a light splitting device (such as an optical splitter).
  • the optical signal amplifying apparatus further includes a first optical splitter, and the first optical splitter is used to separate the space division multiplexed signal to be detected from the space division optical fiber link.
  • the first optical splitter is connected to the power detection module.
  • the power detection module detects the part of the signal light separated by the first optical splitter to obtain the power status of each wavelength channel in each spatial dimension.
  • the pump control module 220 is configured to use the power configuration information obtained from the power detection module 210 to adjust the spectral coefficient of the pump light, so as to output N channels of pump light.
  • the pump control module 220 will be briefly introduced below.
  • the pump control module 220 includes M pump light sources with different wavelengths, M optical splitters, and N wave combiners, wherein each optical splitter has 1 input port and N output ports , each pump light source is respectively connected to the input port of an optical splitter, and the N output ports of each optical splitter are respectively connected to one of the output ports of the N wave combiners; wherein, the M pumps The pump light source is used to generate M pump lights; each optical splitter is used to split the pump light of the corresponding wavelength according to the first splitting coefficient, and output N pump light splits through the N output ports, each of the The N pump lights output by the optical splitters reach the N multiplexers respectively; the N multiplexers are used for outputting the N pump lights, wherein each multiplexer is used for The M pump light splits obtained by the M optical splitters are combined according to the second splitting coefficient to obtain a pump light; wherein, the first splitting coefficient and/or the second splitting coefficient are based on the power configuration information confirmed.
  • a pump light source is used to generate pump light.
  • the above-mentioned pump light source can be realized by a pump laser.
  • the pump laser is only one possible implementation manner, and the present application is not limited to this, and those skilled in the art can use other devices capable of generating pump light to replace the above pump laser.
  • a 980nm laser diode can be used as the pump source.
  • the above-mentioned M pump light sources with different wavelengths are used to generate M pump lights with different wavelengths.
  • the wavelengths corresponding to the M pump lights are denoted as ⁇ 1 , ⁇ 2 , ..., ⁇ M
  • the output powers corresponding to the pump lights of each wavelength are denoted as P ⁇ 1 , P ⁇ 2 , ..., P ⁇ M
  • each combined wave The power of the pump light output by the device is the weighted sum of the M pump light splits.
  • the pump power of the combiner 1 is a 1 P ⁇ 1 +a 2 P ⁇ 2 +...a M P ⁇ M , where a i P ⁇ i is the pump power of the wavelength ⁇ i after splitting, ..., the combiner N
  • the pump power is k 1 P ⁇ 1 +k 2 P ⁇ 2 +...k M P ⁇ M .
  • the power of the N pump lights output by the N multiplexers can be expressed as (a 1 P ⁇ 1 +a 2 P ⁇ 2 +...a M P ⁇ M ,...,k 1 P ⁇ 1 +k 2 P ⁇ 2 +... k M P ⁇ M ).
  • the spectral coefficient corresponding to the power of the N-channel pump light can be expressed as (a 1 , a 2 ,..., a M ,..., k 1 , k 2 ,..., k M ).
  • the spectral coefficient corresponding to the power of the N-channel pump light output by the pump control module 220 is determined based on the power configuration information.
  • the spectral coefficient corresponding to the power of the N-channel pump light can be adjusted in the following two stages: in the first stage, the optical splitter splits the pump light of each wavelength; The light is split and combined.
  • the pump control module can obtain the above-mentioned N-channel pump light (or adjust the spectral coefficient in the above-mentioned two stages) through different implementations.
  • a first spectral coefficient (corresponding to the first stage) and a second spectral coefficient (corresponding to the second stage) are introduced for description.
  • the first spectral coefficient is determined based on the power configuration information.
  • the pump control module 220 distributes the pump optical power of the corresponding wavelength to the N output ports of the tunable optical splitter according to the first splitting coefficient through the tunable optical splitter. In other words, the pump control module determines a first splitting coefficient based on the power configuration information, and adjusts the tunable splitter based on the first splitting coefficient.
  • the role of the power configuration information is reflected in each tunable optical splitter, and a simple weighted summation can be performed on the M pump light splits at the wave combiner.
  • the second spectroscopic coefficient refers to a weighting coefficient (or a weighting value), and the value of each weighting coefficient is 1.
  • the pump control module 220 is composed of M pump light sources with different wavelengths ( ⁇ 1 , ⁇ 2 , . . . , ⁇ M ), M tunable optical splitters, and N wave combiners.
  • Each optical splitter has an input port and N optical splitting output ports, the input port is connected to a pump light source of a specific wavelength, and the splitting ratio (ie the first splitting coefficient) of the N output ports can be adjusted based on the power configuration information.
  • the N pump lights output by each optical splitter are split to reach the N wave combiners respectively.
  • Each combiner will obtain the pump light splits output by each of the M optical splitters, that is, M pump light splits.
  • Each combiner is used to combine the M pump light beams obtained from the M optical splitters according to the second splitting coefficient to obtain one pump light.
  • the output of each wave combiner is M
  • the weighted sum of the split powers of the pump light here, the weighting coefficient is 1).
  • the above-mentioned first spectral coefficient generally refers to the spectral coefficient (or the spectral ratio) adjusted by the spectroscope.
  • the values of the first spectral coefficients corresponding to different optical splitters may be the same or different, which are not specifically limited in this application.
  • the first spectral coefficient corresponding to the same optical splitter may include one or more numerical values, which is not limited.
  • the pump power of the combiner 1 is a 1 P ⁇ 1 +a 2 P ⁇ 2 +...a M P ⁇ M , where a i P ⁇ i is the pump power of the wavelength ⁇ i after splitting, ..., the combiner N
  • the pump power is k 1 P ⁇ 1 +k 2 P ⁇ 2 +...k M P ⁇ M .
  • the first spectral coefficients corresponding to the spectroscope 1 are a 1 , . . . k 1
  • the first spectral coefficients corresponding to the spectroscope M are a M , . . . , k M .
  • the pump control module corresponding to the first implementation is described here with reference to FIG. 4 .
  • the optical pumping unit, the optical splitting unit and the wave combining unit are introduced here.
  • the pump control module consists of three parts: an optical pump unit, a light splitting unit, and a wave combining unit.
  • the optical pumping unit consists of M pump lasers with different wavelengths ( ⁇ 1 , ⁇ 2 , ..., ⁇ M ); the optical splitting unit consists of M tunable optical splitters, each optical splitter has an input port and N optical splitters The output port, whose input port is connected to a pump laser with a specific wavelength, the splitting ratio of the N output ports can be adjusted arbitrarily; the wave combining unit is composed of N wave combiners, and each wave combiner divides the M wavelengths after splitting.
  • the optical pump power is combined, that is, the output of each combiner is the weighted sum of the pump optical powers of M wavelengths.
  • the pump optical power output by the combiner 1 is a 1 P ⁇ 1 +a 2 P ⁇ 2 +...a M P ⁇ M ,...
  • the pump optical power output by the combiner N is k 1 P ⁇ 1 +k 2 P ⁇ 2 +...k M P ⁇ M .
  • the second splitting coefficient is determined based on the power configuration information.
  • the pump control module uses the second splitting coefficient to adjust the split ratio of the pump light of each wavelength at the combiner, and finally outputs N channels of pump light.
  • the pump control module determines the second splitting coefficient based on the power configuration information, and splits the pump light with different wavelengths based on the second splitting coefficient.
  • the pump light of the corresponding wavelength can be divided equally at the uniform optical splitter, and the function of the power configuration information is reflected in the wave combiner.
  • the pump control module is composed of M pump light sources with different wavelengths ( ⁇ 1 , ⁇ 2 , . . . , ⁇ M ), M uniform beam splitters, and N wave combiners.
  • Each optical splitter has an input port and N light splitting output ports, and the input port is connected with a pump light source of a specific wavelength.
  • Each optical splitter divides the power N of the pump light of the corresponding wavelength equally to obtain N pump lights with the same power.
  • the N pump lights output by each optical splitter are split to reach the N wave combiners respectively.
  • Each combiner will obtain the pump light splits output by each of the M uniform splitters, that is, M pump light splits.
  • Each combiner is used to combine the M pump light beams obtained from the M optical splitters according to the second splitting coefficient to obtain one pump light.
  • the output of each wave combiner is M
  • the weighted sum of the power of the pump light splitting here, the weighting coefficient during weighting is the second splitting coefficient, which is determined by the power configuration information).
  • the first splitting coefficient corresponding to each uniform beam splitter is determined by equally dividing the pump light of the corresponding wavelength, and the second splitting coefficient is determined based on the power configuration information. of.
  • the pump power of the combiner 1 is a 1 P ⁇ 1 +a 2 P ⁇ 2 +...a M P ⁇ M , where a i P ⁇ i is the pump power of the wavelength ⁇ i after splitting, ..., the combiner N
  • the pump power is k 1 P ⁇ 1 +k 2 P ⁇ 2 +...k M P ⁇ M .
  • the second spectral coefficients corresponding to the combiner 1 are a 1 , a 2 , ..., a M , ...
  • the second spectral coefficients corresponding to the combiner N are k 1 , k 2 , ... , k M .
  • the N multiplexers implement the second splitting coefficient through a wavelength selective switch or an optical cross-connect device.
  • the pump control module consists of three parts: an optical pump unit, a light splitting unit, and an optical cross unit.
  • the optical pump unit consists of M pump lasers with different wavelengths ( ⁇ 1 , ⁇ 2 , . . . , ⁇ M ).
  • the splitting unit is composed of M uniform splitters, each splitter divides the pump light power of a specific wavelength n equally (P ⁇ 1 /n, P ⁇ 2 /n, ..., P ⁇ M /n), or, in other words, the first The spectral coefficient is 1/n.
  • the optical cross-connect unit has N output ports. The optical cross-connect unit cross-connects the split optical signals through a wavelength selective switch or an optical cross-connect device, flexibly adjusts the ratio of each wavelength component and performs multiplexing, and finally outputs the weighted N-path light as the pump light of different modes. .
  • the pump light at the output port 1 of the optical cross-connect unit is a 1 P ⁇ 1 +a 2 P ⁇ 2 +...a M P ⁇ M ,..., and the pump light at the output port N of the optical cross-connect unit is k 1 P ⁇ 1 +k 2 P ⁇ 2 +...k M P ⁇ M , where a 1 , a 2 ,..., a M ,..., k 1 , k 2 ,..., k M are different spectral coefficients.
  • the optical cross-connect unit can be regarded as N multiplexers. Each combiner corresponds to an output port of an optical cross-connect unit.
  • the third implementation is a combined implementation of the above two implementations. Both the first spectral coefficient and the second spectral coefficient are determined based on the power configuration information. That is to say, in the third implementation, the functions of the power configuration information are reflected in both the optical splitter and the wave combiner.
  • the pump control module distributes the pump optical power of the corresponding wavelength to the N output ports of the tunable optical splitter according to the first splitting coefficient (the first splitting coefficient here is not obtained by bisection) through the adjustable optical splitter, and , using the second splitting coefficient (the value of the second splitting coefficient here is not 1) to combine the beams at the combiner, and finally output N-channel pump light.
  • the N-channel pump light here can also be expressed as a 1 P ⁇ 1 +a 2 P ⁇ 2 +...a M P ⁇ M ,...,k 1 P ⁇ 1 +k 2 P ⁇ 2 +...k M P ⁇ M .
  • the pump control module can dynamically adjust the gain of different channels in different spatial dimensions to compensate the DMG after the signal light passes through the EDFA, so as to realize the gain equalization of different channels and different spatial dimensions.
  • the Raman amplifying module 230 is used for Raman amplifying the signal light transmitted in the optical fiber by using the N-channel pump light obtained from the pump control module 220 .
  • the Raman amplification module 230 will be introduced below.
  • the Raman amplification module 230 includes a space division multiplexer and a space division multiplexing fiber; wherein, the N-channel pump light is coupled to the space division multiplexing fiber through the space division multiplexer , the space-division multiplexed signal transmitted in the space-division fiber generates stimulated Raman amplification under the action of the N-channel pump light.
  • FIG. 6 shows an example diagram of a Raman amplification module according to an embodiment of the present application. As shown in Figure 6, the N-channel pump light output by the pump control module is coupled into the space division multiplexed fiber through the space division multiplexer, and the space division multiplexed signal transmitted in the fiber will be affected by the pump light. Stimulated Raman amplification occurs.
  • the spectral coefficients (a 1 , a 2 , . . . , a M , . . , k 1 , k 2 , . adjustment) to achieve power balance between spatial wavelength channels.
  • the space division multiplexer in this embodiment of the present application may be a mode multiplexer, a fiber core multiplexer, or a multiplexer of other dimensions, which is not specifically limited.
  • the optical signal amplifying device of the embodiment of the present application can be applied to various optical communication systems, for example, a single-mode optical fiber transmission system, a few-mode optical fiber transmission system, a multi-mode optical fiber transmission system, etc., and is applicable to a wide range of scenarios.
  • FIG. 7 shows a schematic structural diagram of a hybrid Raman/EDFA space-division multiplexing fiber amplifier according to an embodiment of the present application.
  • the structure includes: a power detection module, a pump control module, and a Raman amplification module (including a space division multiplexing fiber and a space division multiplexer, and optionally, a dichroic mirror), Space division multiplexing EDFA and optical splitting device.
  • the pump light is coupled into the space-division multiplexed EDFA through a dichroic mirror.
  • the space-division multiplexed optical signal amplified by the space-division multiplexing EDFA is split into a part of the light through an optical splitting device (for example, a first optical splitter) and sent to the power detection module.
  • the power detection module obtains part of the space-division multiplexed optical signal from the optical splitting device, it detects the power (power detection information) of each wavelength channel in each spatial dimension, and calculates the power detection information to obtain the power configuration information, and then converts the power configuration information.
  • the pump control module adjusts the spectral coefficients of pump lights of different wavelengths according to the power configuration information transmitted by the power detection module, and outputs N-channel pump lights.
  • the Raman amplifier module combines the N-channel pump light through the space division multiplexer, and inputs the combined pump light into the space division multiplexing fiber to realize the unevenness of the wavelength channel power in each spatial dimension. to compensate.
  • the optical signal amplifying apparatus in the embodiments of the present application may be applied to a few-mode optical fiber transmission system (for example, a few-mode optical fiber C+L-band transmission system).
  • the optical signal amplifying device further includes N phase plates, and the N phase plates are arranged between the pump control module and the Raman amplifying module; the N phase plates are used for pumping the pump.
  • the N channels of pump light output by the control module are loaded on corresponding modes, wherein the N spatial dimensions include N modes.
  • the different modes can be understood as different distributions of light energy.
  • Figure 8 is a schematic diagram of the structure of a hybrid Raman/EDFA C+L-band few-mode fiber amplifier. As shown in FIG.
  • the fiber amplifier includes a few-mode fiber FMF, two dichroic mirrors, and a C-band and L-band few-mode fiber amplifier EDFA structure (specifically including a C-band few-mode erbium-doped fiber (abbreviated as C-FM- EDF) and L-band few-mode erbium-doped fiber (abbreviated as L-FM-EDF), demultiplexing device, multiplexing device), optical splitting device (such as the first optical splitter), power detection module, pump control module, N Phase plate.
  • C-FM- EDF C-band few-mode erbium-doped fiber
  • L-FM-EDF L-band few-mode erbium-doped fiber
  • demultiplexing device such as the first optical splitter
  • power detection module such as the pump control module
  • pump control module such as the first optical splitter
  • N phase plates, few-mode fiber FMF, and dichroic mirror can form a Raman amplification module.
  • the pump light source (specifically, a pump laser, such as a 980 nm pump laser) pumps the few-mode EDFA.
  • the pump light generated by the pump light source is coupled into the C-band and L-band few-mode EDFA through a dichroic mirror. Due to the different structures of the C-band and L-band few-mode EDFAs, in order to achieve broadband gain amplification in the C+L-band, the signal light can be demultiplexed and passed through the corresponding-band few-mode EDFAs (ie C-FM-EDF and L-FM respectively). -EDF) magnification. The signal light amplified by the C-band and L-band few-mode EDFA is combined by a combining device.
  • the combined signal light is split by the optical splitting device and part of the signal light is transmitted to the power detection module.
  • the power detection module detects the power status (or gain status) of each wavelength channel in each mode, determines the power configuration information (or called gain information), and finally feeds back the configuration information to the pump control module.
  • the pump control module adjusts the power according to the power configuration information sent by the power detection module, that is, adjusts the ratio (or spectral coefficient) of the pump light at different wavelengths.
  • the pump control module outputs N channels of pump light.
  • the N channels of pump light are loaded onto the corresponding N modes through the N phase plates. Different phase plates correspond to different modes. It can be seen from FIG. 8 that the light energy distributions (or cross sections) corresponding to different modes are different.
  • the pump light of each mode is combined and injected into the few-mode fiber FMF through the dichroic mirror, and it is pumped to realize Raman amplification.
  • the C+L-band few-mode fiber amplifier based on hybrid Raman/EDFA in Figure 8 can realize Raman amplification of C+L-band at the same time, and can compensate the gain at different channels of FM-EDFA in different modes, so as to realize C+L Band mode channel equalization.
  • FIG. 8 is only an exemplary description, and the present application is not limited thereto.
  • some of the devices in Figure 8 could reasonably be replaced by other devices.
  • the optical signal amplifying apparatus in the embodiment of the present application can be applied to a multi-core optical fiber transmission system.
  • the optical signal amplifying device further includes: a multi-core fan-in module, the multi-core fan-in module is arranged between the pump control module and the Raman amplifying module; the multi-core fan-in module is used to The N-channel pump light output by the pump control module is injected into the corresponding fiber core, wherein the N spatial dimensions include N fiber cores.
  • FIG. 9 is a schematic structural diagram of a fiber amplifier based on a multi-core fiber transmission system.
  • the fiber amplifier includes a multi-core fiber, two dichroic mirrors, a pump (specifically, a pump laser, such as a 980nm pump laser), a multi-core erbium-doped fiber amplifier EDFA (including a multi-core doped fiber amplifier EDFA) bait fiber), splitting device, power detection module, pump control module, multi-core fan-in module.
  • a multi-core fan-in module, a multi-core optical fiber and a dichroic mirror can form a Raman amplification module.
  • the pump light generated by the pump laser as an example, the pump light is coupled into the multi-core EDFA through a dichroic mirror.
  • the multi-core EDFA amplifies the signal light.
  • the signal light amplified by the multi-core EDFA gain is separated from a part of the signal light by a light splitting device and transmitted to the power detection module.
  • the power detection module After receiving part of the signal light transmitted by the optical splitting device, the power detection module detects the power of each wavelength channel of each fiber core, obtains the power detection information, determines the power configuration information based on the power detection information, and finally feeds back the power configuration information to the Pump Control Module.
  • the pump control module adjusts the pump light configuration according to the power configuration information fed back by the power detection module, and outputs N channels of pump light.
  • the Raman amplification module injects the N-channel pump light into the corresponding fiber core through the multi-core fan-in module and the dichroic mirror device, so as to perform Raman amplification on the signal light transmitted in the corresponding fiber core.
  • the fiber amplifier in FIG. 9 can achieve multi-core channel equalization by compensating the gains at different channels of different cores in the multi-core EDFA.
  • FIG. 9 is only an exemplary description, and the present application is not limited thereto.
  • some of the devices in Figure 9 could reasonably be replaced by other devices.
  • FIG. 10 is a schematic flowchart of a method 1000 for amplifying an optical signal according to an embodiment of the present application.
  • the optical signal amplifying method 1000 is performed by an optical signal amplifying apparatus, and the optical signal amplifying apparatus is applied in a space division multiplexing transmission system, and the space division multiplexing signal to be detected in the space division multiplexing transmission system includes N spaces dimension, wherein each spatial dimension includes G wavelength channels, N is a positive integer, G is a positive integer, and the method 1000 includes:
  • S1010 Detect the power of each wavelength channel in the G wavelength channels of the N spatial dimensions to obtain power detection information, and determine power configuration information according to the power detection information.
  • each pump light consists of M pump light splits of different wavelengths, and the proportion of each pump light split in the pump light of the corresponding wavelength is determined according to the Determined by the power configuration information, M is an integer greater than 1.
  • the M pump light splits in each pump light are obtained by combining according to the second splitting coefficient, and each pump light split is obtained by combining the pump light of the corresponding wavelength according to the first splitting coefficient. Obtained by performing light splitting with a spectral coefficient; wherein, the first spectral coefficient and/or the second spectral coefficient are determined based on the power configuration information.
  • the first spectral coefficient and the second spectral coefficient depend on the specific implementation of the pump control module in the foregoing optical signal amplifying apparatus, and for details, reference may be made to the foregoing description in the foregoing optical signal amplifying apparatus.
  • the determining the power configuration information according to the power detection information includes: determining the power configuration information according to the power detection information based on a power flatness criterion.
  • the present application also provides a computer-readable storage medium for storing a computer program, the computer program including instructions for executing the aforementioned optical signal amplification method.
  • some optional features in the embodiments of the present application can be implemented independently of other features, such as the solution currently based on them, to solve corresponding technical problems and achieve corresponding effects , and can also be combined with other features according to requirements in some scenarios.
  • the apparatuses provided in the embodiments of the present application may also implement these features or functions correspondingly, which will not be repeated here.
  • the size of the sequence numbers of the above-mentioned processes does not mean the sequence of execution, and the execution sequence of each process should be determined by its functions and internal logic.
  • the various numerical numbers or serial numbers involved in the above processes are only for the convenience of description, and should not constitute any limitation on the implementation process of the embodiments of the present application.
  • Those of ordinary skill in the art can realize that the units and algorithm steps of each example described in conjunction with the embodiments disclosed herein can be implemented in electronic hardware, or a combination of computer software and electronic hardware. Whether these functions are performed in hardware or software depends on the specific application and design constraints of the technical solution. Skilled artisans may implement the described functionality using different methods for each particular application, but such implementations should not be considered beyond the scope of this application.
  • the disclosed system, apparatus and method may be implemented in other manners.
  • the apparatus embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the functions, if implemented in the form of software functional units and sold or used as independent products, may be stored in a computer-readable storage medium.
  • the technical solution of the present application can be embodied in the form of a software product in essence, or the part that contributes to the prior art or the part of the technical solution.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program codes .

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Optical Communication System (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

本申请提供了一种光信号放大装置及方法,通过功率配置信息动态调整不同信道不同空间维度的增益,用以补偿信号光经过光纤放大后的差分模式增益DMG,从而实现不同信道不同空间维度的增益均衡。该光信号放大装置包括:功率检测模块,泵浦控制模块以及拉曼放大模块。功率检测模块用于检测N个空间维度的G个波长信道中的每个波长信道的功率,并将功率配置信息发送给泵浦控制模块;泵浦控制模块用于输出N路泵浦光,每路泵浦光由不同波长的M个泵浦光分光组成,每个泵浦光分光在对应波长的泵浦光中所占的比例是根据功率配置信息确定的;拉曼放大模块用于利用N路泵浦光对N个空间维度中的每个空间维度上的空分复用信号进行拉曼放大。

Description

一种光信号放大装置及方法
本申请要求于2021年4月25日提交中国专利局、申请号为202110450172.9、申请名称为“一种光信号放大装置及方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及光通信领域,并且更具体地,涉及一种光信号放大装置及方法。
背景技术
近年来随着网络流量的迅速增长,传统单模光纤通信系统容量正逐渐逼近其理论传输极限。现有单模光纤通信传输技术的提升无法满足网络流量增长,会导致现有的单模光纤通信系统的容量危机。使用少模光纤(few mode fiber,FMF)、多芯光纤(multi core fiber,MCF)作为空分复用(spatial division multiplexing,SDM)系统的传输介质,有望极大地提升光纤通信系统的容量,被认为是解决这一容量危机的有效途径。
少模/多芯光纤放大器是长距离SDM传输系统中的重要组件,少模/多芯光纤放大器能够实现不同模式/纤芯信道的同时放大。随着信号模式/纤芯数量的扩展,现有少模/多芯光纤放大器已不能实现良好的信号增益平坦度,极大影响了系统的传输性能。
发明内容
本申请提供一种光信号放大装置及方法,可以实现较好的增益平坦度,有助于提升系统的传输性能,大大延长传输距离。
第一方面,提供了一种光信号放大装置,应用于空分复用传输系统中,所述空分复用传输系统中待检测的空分复用信号包括N个空间维度,其中,每个空间维度包括G个波长信道,N为正整数,G为正整数,所述光信号放大装置包括:功率检测模块,泵浦控制模块以及拉曼放大模块。
所述功率检测模块用于对所述N个空间维度的G个波长信道中的每个波长信道的功率进行检测以获得功率检测信息,并根据所述功率检测信息确定功率配置信息,以及,将所述功率配置信息发送给所述泵浦控制模块;所述泵浦控制模块用于输出N路泵浦光,其中,每路泵浦光由不同波长的M个泵浦光分光组成,每个泵浦光分光在对应波长的泵浦光中所占的比例是根据所述功率配置信息确定的;所述拉曼放大模块用于利用所述N路泵浦光对所述N个空间维度中的每个空间维度上的空分复用信号进行拉曼放大。
其中,所述N路泵浦光与N个空间维度对应,用于为每个空间维度的空分复用信号提供相应的泵浦光,从而对空分复用信号进行拉曼放大以及功率均衡。本申请实施例的光信号放大装置提升了空分复用系统的传输性能,大大延长传输距离。
在一种可能的实现方式中,所述泵浦控制模块包括不同波长的M个泵浦光源,M个 分光器,以及,N个合波器,其中,每个分光器具有1个输入端口和N个输出端口,每个泵浦光源分别与一个分光器的输入端口相连,所述每个分光器的N个输出端口分别与所述N个合波器的其中一个输出端口相连;所述M个泵浦光源用于产生M个泵浦光;所述每个分光器用于将对应波长的泵浦光按照第一分光系数进行分光,并通过N个输出端口输出N个泵浦光分光,所述每个分光器输出的N个泵浦光分光分别到达所述N个合波器;所述N个合波器用于输出所述N路泵浦光,其中,所述每个合波器用于将从所述M个分光器获得的M个泵浦光分光按照第二分光系数进行合束,得到一路泵浦光;其中,所述第一分光系数和/或第二分光系数是基于所述功率配置信息确定的。
可以理解,泵浦控制模块输出的N路泵浦光的功率对应的分光系数,是基于功率配置信息确定的。所述N路泵浦光的功率对应的分光系数可在以下两个阶段实现调节:第一阶段,分光器对各个波长的泵浦光进行分光;第二阶段:合波器对多个泵浦光分光进行合束。泵浦控制模块可以通过不同的实现方式获得上述N路泵浦光(或者说在上述两个阶段调节分光系数)。为了便于描述,引入第一分光系数(对应第一阶段)和第二分光系数(对应第二阶段)进行描述。
作为一种实现方式,所述M个分光器是可调分光器,其中,每个可调分光器对应的第一分光系数是基于所述功率配置信息确定的。这里,功率配置信息的作用体现在各个可调分光器处,在合波器处将M个泵浦光分光进行简单加权求和即可。此时,相应的,第二分光系数是指加权系数(或者说权重值),各个加权系数的取值为1。
作为另一种实现方式,所述M个分光器是均匀分光器,每个均匀分光器对应的第一分光系数是通过平分对应波长的泵浦光的方式确定的,所述第二分光系数是基于所述功率配置信息确定的。这里,在均匀分光器处将对应波长的泵浦光进行平分即可,功率配置信息的作用体现在合波器处。
可选地,所述N个合波器通过波长选择开关或光交叉设备实现所述第二分光系数。
作为又一种实现方式,第一分光系数与第二分光系数均基于功率配置信息确定。也就是说,功率配置信息的作用在分光器和合波器处均有体现。
通过上述不同的实现方式,泵浦控制模块能够动态调整不同空间维度下不同信道的增益,用以补偿信号光经过EDFA后的DMG,从而实现不同信道不同空间维度的增益均衡。
在一种可能的实现方式中,所述功率检测模块用于根据所述功率检测信息确定功率配置信息,包括:所述功率检测模块基于功率平坦准则,根据所述功率检测信息确定功率配置信息。
功率检测模块在对各个波长信道进行检测之前,可先将各个空间维度进行分离,进一步地,将每个空间维度下的各个波长信道进行分离。
在一种可能的实现方式中,所述功率检测模块包括空间信道分离模块和波长信道功率检测模块;所述空间信道分离模块用于将所述N个空间维度的空分复用信号进行分离;所述波长信道功率检测模块用于对每个空间维度下的G个波长信道进行分离,并对每个波长信道的功率进行检测。
比如,空间信道分离模块是空分解复用器。
比如,波长信道功率检测模块是波长解复用器。
在一种可能的实现方式中,所述光信号放大装置还包括第一分光器,所述第一分光器 用于将所述待检测的空分复用信号从空分光纤链路中分离出来,所述第一分光器与所述功率检测模块相连。
在一种可能的实现方式中,所述拉曼放大模块包括空分复用器和空分复用光纤;其中,所述N路泵浦光经过所述空分复用器耦合至所述空分光纤中,所述空分复用光纤中传输的空分复用信号在所述N路泵浦光的作用下产生受激拉曼放大。
在一种可能的实现方式中,所述光信号放大装置应用于少模光纤传输系统(比如少模光纤C+L波段传输系统)中,所述光信号放大装置还包括:N个相位片,所述N个相位片设置于所述泵浦控制模块与所述拉曼放大模块之间;所述N个相位片用于将所述泵浦控制模块输出的所述N路泵浦光加载到对应的模式上,其中,所述N个空间维度即N个模式。本申请实施例的光信号放大装置应用于少模光纤传输系统中,能够对不同模式不同信道处的增益进行补偿,从而实现少模光纤传输系统的模式信道均衡。
在一种可能的实现方式中,所述光信号放大装置应用于多芯光纤传输系统中,所述光信号放大装置还包括:多芯扇入模块,所述多芯扇入模块设置于所述泵浦控制模块与所述拉曼放大模块之间;所述多芯扇入模块用于将所述泵浦控制模块输出的所述N路泵浦光注入到对应的纤芯中,其中,所述N个空间维度即N个纤芯。本申请实施例的光信号放大装置应用于多芯光纤传输系统中,能够对不同纤芯的不同信道处的增益进行补偿,从而实现多芯均衡。
第二方面,提供了一种光信号放大方法,所述方法由光信号放大装置执行,所述光信号放大装置应用于空分复用传输系统中,所述空分复用传输系统中待检测的空分复用信号包括N个空间维度,其中,每个空间维度包括G个波长信道,N为正整数,G为正整数,所述方法包括:对所述N个空间维度的G个波长信道中的每个波长信道的功率进行检测以获得功率检测信息,并根据所述功率检测信息确定功率配置信息;输出N路泵浦光,其中,每路泵浦光由不同波长的M个泵浦光分光组成,每个泵浦光分光在对应波长的泵浦光中所占的比例是根据所述功率配置信息确定的;利用所述N路泵浦光对所述N个空间维度中的每个空间维度上的空分复用信号进行拉曼放大。本申请实施例的光信号放大方法提升了空分复用系统的传输性能,大大延长传输距离。
在一种可能的实现方式中,所述每路泵浦光中的M个泵浦光分光是按照第二分光系数进行合束得到的,所述每个泵浦光分光是通过对对应波长的泵浦光按照第一分光系数进行分光得到的;其中,所述第一分光系数和/或第二分光系数是基于所述功率配置信息确定的。
可以理解,N路泵浦光的功率对应的分光系数,是基于功率配置信息确定的。所述N路泵浦光的功率对应的分光系数可在以下两个阶段实现调节:第一阶段,分光器对各个波长的泵浦光进行分光;第二阶段:合波器对多个泵浦光分光进行合束。泵浦控制模块可以通过不同的实现方式获得上述N路泵浦光(或者说在上述两个阶段调节分光系数)。为了便于描述,引入第一分光系数(对应第一阶段)和第二分光系数(对应第二阶段)进行描述。
在一种可能的实现方式中,所述根据所述功率检测信息确定功率配置信息,包括:基于功率平坦准则,根据所述功率检测信息确定功率配置信息。
在一种可能的实现方式中,所述光信号放大装置应用于少模光纤传输系统(比如少模 光纤C+L波段传输系统)中,所述方法还包括:将所述N路泵浦光加载到对应的模式上,其中,所述N个空间维度为N个模式。本申请实施例的光信号放大装置应用于少模光纤传输系统中,能够对不同模式不同信道处的增益进行补偿,从而实现少模光纤传输系统的模式信道均衡。
在一种可能的实现方式中,所述光信号放大装置应用于多芯光纤传输系统中,所述方法还包括:将所述N路泵浦光注入到对应的纤芯中,其中,所述N个空间维度为N个纤芯。也就是说,本申请实施例的光信号放大方法应用于多芯光纤传输系统中,能够对不同纤芯的不同信道处的增益进行补偿,从而实现多芯均衡。
第三方面,提供了一种计算机可读存储介质,用于存储计算机程序,该计算机程序包括用于执行第二方面的方法的指令。
附图说明
图1是应用本申请实施例的空分复用传输系统的示意图。
图2是根据本申请实施例的光信号放大装置的一个示意性框图。
图3是根据本申请实施例的功率检测模块的一个示例图。
图4是根据本申请实施例的泵浦控制模块的一个示例图。
图5是根据本申请实施例的泵浦控制模块的另一个示例图。
图6是根据本申请实施例的拉曼放大模块的示例图。
图7是本申请实施例的混合拉曼/EDFA空分复用光纤放大器的结构示意图。
图8是基于混合拉曼/EDFA C+L波段少模光纤放大器的结构示意图。
图9是基于多芯光纤传输系统的光纤放大器的结构示意图。
图10是本申请实施例的一种光信号放大方法的示意性流程图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
为了便于理解本申请实施例,先对本申请涉及到的术语进行简单介绍。
1、空分复用(spatial division multiplexing,SDM)
空分复用是利用空间的分割实现复用的一种方式。比如,将多根光纤组合成束实现空分复用,或者在同一根光纤中实现空分复用。
2、少模光纤(few mode fiber,FMF)
少模光纤是一种单芯光纤,与普通单模光纤相比拥有较大的模场面积,允许几个独立的空间模式并行传输数据流,提高系统通信容量。
3、少模掺铒光纤放大器(few mode erbium-doped fiber amplifier,FM-EDFA)
少模掺铒光纤放大器是指:通过在少模光纤中掺入微量的铒离子,注入泵浦光使铒离子发生粒子数反转,从而在少模信号光通过时发生受激辐射将信号光放大的有源光器件。
4、差分模式增益(differential mode gain,DMG)
差分模式增益是少模光纤中的各模式在光放大器中获得的增益差异。
5、模式相关损耗(mode dependent loss,MDL)
模式相关损耗是指各模式在少模光纤中传输具有不同的传输损耗。
少模/多芯光纤放大器是长距离SDM传输系统中的重要组件。目前,少模/多芯光纤放大器各信道间的增益平坦度比较差,严重影响系统的传输性能。并且,FM-EDFA由于结构过于复杂无法部署到网络中。
以少模光纤放大器为例进行说明,少模光纤放大器的DMG过高会导致模分复用系统在中继放大处的模式相关损耗MDL增加。在长距离传输系统中,经过多个跨段传输后随着MDL积累,系统中断的概率将大大增加,极大影响了传输性能。
基于此,本申请提出了一种光信号放大装置及方法,有助于提升传输性能,大大延长传输距离。
本申请实施例的技术方案应用于光通信系统中。比如,空分复用传输系统、少模光纤传输系统或多芯光纤传输系统等。
图1是应用本申请实施例的空分复用传输系统的示意图。如图1所示,该系统包括P个波分复用发射机(比如,N个波分复用发射机表示为Tx_1,Tx_2,…Tx_P,)、空分复用器、空分复用光纤、多个光信号放大装置、空分解复用器和P个波分复用接收机(比如,P个波分复用接收机表示为Rx_1,Rx_2,…Rx_P,)组成。多个波分复用发射机与空分复用器相连。多个波分复用接收机与空分解复用器相连。空分复用器与空分复用光纤相连。光信号放大装置与空分复用光纤级联。
其中,多个波分复用发射机产生的波分复用光信号经过空分复用器后被转换到不同空间维度上。经过空分复用器复用后的光信号进入空分复用光纤中进行传输。经过空分复用光纤传输后的信号进入光信号放大装置。光信号放大装置将从空分复用传输光纤传输的信号进行放大,并将放大后的光信号输入下一段光纤进行传输,然后再次被放大。在接收端,空分解复用器将从光信号放大装置接收的空分复用光信号进行分离,将分离后的光信号分别输入到多个波分复用接收机。波分复用接收机对接收到的光信号进行解调。
图1中的光信号放大装置是本申请提出的光信号放大装置,能够对各个空间维度下波长信道功率的不平坦进行补偿,有助于提升传输性能,可以实现长距离传输。
下面结合图2至图9描述本申请实施例的光信号放大装置。
图2是根据本申请实施例的光信号放大装置的一个示意性框图。如图2所示,光信号放大装置包括:功率检测模块210,泵浦控制模块220以及拉曼放大模块230。所述光信号放大装置应用于空分复用传输系统中。所述空分复用传输系统中的待传输的空分复用信号包括N个空间维度,每个空间维度包括G个波长信道,N为正整数,G为正整数。示例性地,空间维度可以包括模式或纤芯。
所述功率检测模块210用于对N个空间维度的G个波长信道中的每个波长信道的功率进行检测以获得功率检测信息,并根据所述功率检测信息确定功率配置信息,以及,将所述功率配置信息发送给所述泵浦控制模块。
所述泵浦控制模块220用于输出N路泵浦光,其中,每路泵浦光由M个不同波长的泵浦光分光组成,每个泵浦光分光在对应波长的泵浦光中所占的比例是根据所述功率配置信息确定的,M为大于1的整数。
所述拉曼放大模块230用于利用所述N路泵浦光对所述N个空间维度中的每个空间维度上的空分复用信号进行拉曼放大。
在本申请实施例中,功率检测模块210通过对各个空间维度下的各个波长信道的功率 进行检测,从而获得各个空间维度下各个波长信道的功率检测信息(或者说功率分布信息),然后利用功率检测信息进行计算,得到功率配置信息,并将所述功率配置信息反馈给泵浦控制模块220。泵浦控制模块220用于输出N路泵浦光,每路泵浦光由M个不同波长的泵浦光分光组成,每个泵浦光分光在对应波长的泵浦光中所占的比例是根据所述功率配置信息确定的。或者说,泵浦控制模块220利用所述功率配置信息,调节每个波长的泵浦光的分光比例,以使得输出的每路泵浦光对应的泵浦配置与功率检测模块反馈的功率配置信息一致。拉曼放大模块230用于利用泵浦控制模块输出的N路泵浦光对空分复用信号进行拉曼放大。具体地,所述N路泵浦光与N个空间维度对应,用于为每个空间维度的空分复用信号提供相应的泵浦光,从而对空分复用信号进行拉曼放大以及功率均衡。本申请实施例的光信号放大装置提升了空分复用系统的传输性能,大大延长传输距离。
应理解,图2中的箭头走向只是示例性描述,并不对本申请实施例构成限定。
可选地,功率检测模块210用于根据功率检测信息确定功率配置信息,包括:功率检测模块基于功率平坦准则,根据所述功率检测信息确定功率配置信息。功率平坦准则可以理解为为了确保各个空间维度下的各个波长信道的功率均衡的准则。
功率检测模块210通过对各个空间维度下的各个波长信道的功率实时检测,并基于功率平坦准则确定功率配置信息,将功率配置信息反馈给泵浦控制模块220,以便泵浦控制模块220动态调整各路泵浦光的分光系数。
上述功率配置信息用于实现空间波长信道间的功率均衡。示例性地,功率配置信息可以包括一个或多个目标功率值。目标功率值可以理解为针对某个空间维度的某个波长信道的功率补偿值。
举个例子对功率检测模块确定功率配置信息的过程进行说明。假设空分复用系统中传输的空分复用信号有多个空间维度,其中,某个空间维度中有5个波长信道,功率检测模块通过对这5个波长信道进行检测,可以得到每个波长信道的功率值。为了实现功率均衡或者说功率平坦,可以将这5个波长信道中功率值较低的波长信道调高,将功率值较高的波长信道调低,或者说,将5个波长信道中的某个功率值调至目标功率值。可以理解,这里的示例只是便于理解,本申请并不限于此,比如,对波长信道的数量不作限定。还可以理解,这里只是针对某一个空间维度下的多个波长信道进行举例,但实际应用时,可扩展到多个空间维度的各个波长信道,对此不作具体限定。
上述功率检测模块210在对各个波长信道进行检测之前,可先将各个空间维度进行分离,进一步地,将每个空间维度下的各个波长信道进行分离。具体地,可以通过空间信道分离模块(比如空分解复用器)实现空分复用信号在N个空间维度上的分离。进一步地,可以通过波长信道功率检测模块(比如,波长解复用器)实现G个波长信道的分离。
可选地,所述功率检测模块210可以包括空间信道分离模块以及波长信道功率检测模块。所述空间信道分离模块用于将N个空间维度的空分复用信号进行分离。所述波长信道功率检测模块用于对每个空间维度下的G个波长信道进行分离,并对每个波长信道的功率进行检测。
示例性地,空间信道分离模块可以通过空分解复用器实现。可以理解,本申请并不限于此,也可以通过其他具备空间信道分离功能的器件或模块实现空间信道分离。
示例性地,波长信道功率检测模块可以通过波长解复用器。可以理解,本申请并不限 于此,也可以通过其他具备波长信道分离功能和/或检测功能的器件或模块实现波长信道分离和/或检测。
可选地,功率检测模块210中还可以包括数据采集和处理模块,数据采集处理模块用于对波长信道功率检测模块输出的数据进行采集和处理。
图3示出了功率检测模块的一个示例图。如图3所示,功率检测模块包括空间信道分离模块,多个波长信道功率检测模块,以及数据采集和处理模块。空间信道分离模块将不同空间维度的光解复用,从而将各个空间维度的数据分离。波长信道功率检测模块用于对每个空间维度下的每个波长信道的功率值进行检测。多个波长信道功率检测模块的输出经过数据采集和处理模块处理后,输出功率配置信息。功率检测模块将所述功率配置信息反馈给泵浦控制模块,以调整M个泵浦光源分配到N个空间维度的分光系数,比如,分光系数表示为(a 1,a 2,…,a M,…,k 1,k 2,…,k M)。
本申请对待检测的空分复用信号的来源不作具体限定。功率检测模块210所检测的空分复用信号(或者说上述待检测的空分复用信号)可以是通过分光装置(比如分光器)从光纤链路中分离出来的部分信号光。
可选地,所述光信号放大装置还包括第一分光器,所述第一分光器用于将待检测的空分复用信号从空分光纤链路中分离出来。所述第一分光器与所述功率检测模块相连。所述功率检测模块通过对第一分光器分离出来的部分信号光进行检测,以获得各个空间维度的各个波长信道的功率情况。
在本申请实施例中,泵浦控制模块220用于利用从功率检测模块210获得的功率配置信息调节泵浦光的分光系数,以便输出N路泵浦光。下面对泵浦控制模块220进行简单介绍。
可选地,所述泵浦控制模块220包括不同波长的M个泵浦光源,M个分光器,以及,N个合波器,其中,每个分光器具有1个输入端口和N个输出端口,每个泵浦光源分别与一个分光器的输入端口相连,所述每个分光器的N个输出端口分别与所述N个合波器的其中一个输出端口相连;其中,所述M个泵浦光源用于产生M个泵浦光;所述每个分光器用于将对应波长的泵浦光按照第一分光系数进行分光,并通过N个输出端口输出N个泵浦光分光,所述每个分光器输出的N个泵浦光分光分别到达所述N个合波器;所述N个合波器用于输出所述N路泵浦光,其中,所述每个合波器用于将从所述M个分光器获得的M个泵浦光分光按照第二分光系数进行合束,得到一路泵浦光;其中,所述第一分光系数和/或第二分光系数是基于所述功率配置信息确定的。
泵浦光源用于产生泵浦光。示例性地,上述泵浦光源可以通过泵浦激光器实现。
可以理解,泵浦激光器只是其中一种可能的实现方式,本申请并不限于此,本领域技术人员可以利用其它能够产生泵浦光的装置代替上述泵浦激光器。比如,可以采用980nm的激光二极管作为泵浦源。
上述不同波长的M个泵浦光源用于产生不同波长的M个泵浦光。假设M个泵浦光对应的波长表示为λ 1,λ 2,…,λ M,各个波长的泵浦光对应的输出功率表示为P λ1,P λ2,…,P λM,那么每个合波器输出的泵浦光的功率为M个泵浦光分光的加权和。比如,合波器1的泵浦功率为a 1P λ1+a 2P λ2+…a MP λM,其中a iP λi为分光后波长为λ i的泵浦功率,…,合波器N的泵浦功率为k 1P λ1+k 2P λ2+…k MP λM。或者说,N个合波器输出的N路泵浦光的 功率可以表示为(a 1P λ1+a 2P λ2+…a MP λM,…,k 1P λ1+k 2P λ2+…k MP λM)。其中,N路泵浦光的功率对应的分光系数可表示为(a 1,a 2,…,a M,…,k 1,k 2,…,k M)。
在本申请实施例中,泵浦控制模块220输出的N路泵浦光的功率对应的分光系数,是基于功率配置信息确定的。所述N路泵浦光的功率对应的分光系数可在以下两个阶段实现调节:第一阶段,分光器对各个波长的泵浦光进行分光;第二阶段:合波器对多个泵浦光分光进行合束。泵浦控制模块可以通过不同的实现方式获得上述N路泵浦光(或者说在上述两个阶段调节分光系数)。为了便于描述,引入第一分光系数(对应第一阶段)和第二分光系数(对应第二阶段)进行描述。
实现方式一
第一分光系数是基于功率配置信息确定的。泵浦控制模块220通过可调分光器,将对应波长的泵浦光功率按照第一分光系数分配到可调分光器的N个输出端口。换句话说,泵浦控制模块基于所述功率配置信息确定第一分光系数,并基于所述第一分光系数调节可调分光器。
在实现方式一中,功率配置信息的作用体现在各个可调分光器处,在合波器处将M个泵浦光分光进行简单加权求和即可。此时,相应的,第二分光系数是指加权系数(或者说权重值),各个加权系数的取值为1。
具体地,泵浦控制模块220由不同波长(λ 1,λ 2,…,λ M)的M个泵浦光源,M个可调分光器,以及,N个合波器组成。每个分光器有一个输入端口和N个分光输出端口,输入端口与一个特定波长的泵浦光源相连,N个输出端口的分光比例(即第一分光系数)可以基于功率配置信息调整。每个分光器输出的N个泵浦光分光分别到达所述N个合波器。每个合波器将获得M个分光器中每个分光器输出的泵浦光分光,即M个泵浦光分光。每个合波器用于将从所述M个分光器获得的M个泵浦光分光按照第二分光系数进行合束,得到一路泵浦光,或者说,每个合波器的输出为M个泵浦光分光的功率的加权和(此处的加权系数为1)。
上述第一分光系数泛指通过分光器调节的分光系数(或者说分光比例)。并且,不同的分光器各自对应的第一分光系数的取值可以相同,也可以不同,本申请不作具体限定。同一个分光器对应的第一分光系数可以包括一个或多个数值,对此不作限定。
比如,合波器1的泵浦功率为a 1P λ1+a 2P λ2+…a MP λM,其中a iP λi为分光后波长为λ i的泵浦功率,…,合波器N的泵浦功率为k 1P λ1+k 2P λ2+…k MP λM。相应的,分光器1对应的第一分光系数为a 1,…k 1,分光器M对应的第一分光系数为a M,…,k M
为了便于理解,这里结合图4描述实现方式一对应的泵浦控制模块。为了便于描述,这里引入光泵浦单元,分光单元和合波单元。如图4所示,泵浦控制模块由光泵浦单元,分光单元、合波单元三部分组成。光泵浦单元由M个不同波长(λ 1,λ 2,…,λ M)的泵浦激光器组成;分光单元由M个可调分光器组成,每个分光器有一个输入端口和N个分光输出端口,其输入端口和一个特定波长的泵浦激光器相连,N个输出端口的分光比例可任意调整;合波单元由N个合波器组成,每一个合波器将分光之后的M个波长的光泵浦功率合束,即每一个合波器的输出为M个波长泵浦光功率的加权和。例如合波器1输出的泵浦光功率为a 1P λ1+a 2P λ2+…a MP λM,…,合波器N输出的泵浦光功率为k 1P λ1+k 2P λ2+…k MP λM
实现方式二
第二分光系数是基于功率配置信息确定的。泵浦控制模块利用第二分光系数在合波器处调整各个波长泵浦光分光的配比,最终输出N路泵浦光。换句话说,泵浦控制模块基于所述功率配置信息确定第二分光系数,并基于所述第二分光系数对不同波长的泵浦光分光进行合束。
在实现方式二中,在均匀分光器处将对应波长的泵浦光进行平分即可,功率配置信息的作用体现在合波器处。
具体地,泵浦控制模块由不同波长(λ 1,λ 2,…,λ M)的M个泵浦光源,M个均匀分光器,以及,N个合波器组成。每个分光器有一个输入端口和N个分光输出端口,输入端口与一个特定波长的泵浦光源相连。每个分光器将对应波长的泵浦光的功率N等份,得到N个功率相同的泵浦光分光。每个分光器输出的N个泵浦光分光分别到达所述N个合波器。每个合波器将获得M个均匀分光器中每个分光器输出的泵浦光分光,即M个泵浦光分光。每个合波器用于将从所述M个分光器获得的M个泵浦光分光按照第二分光系数进行合束,得到一路泵浦光,或者说,每个合波器的输出为M个泵浦光分光的功率的加权和(此处加权时的加权系数即为第二分光系数,是通过功率配置信息确定)。
与实现方式一的区别在于,实现方式二中每个均匀分光器对应的第一分光系数是通过平分对应波长的泵浦光的方式确定的,而第二分光系数是基于所述功率配置信息确定的。
比如,合波器1的泵浦功率为a 1P λ1+a 2P λ2+…a MP λM,其中a iP λi为分光后波长为λ i的泵浦功率,…,合波器N的泵浦功率为k 1P λ1+k 2P λ2+…k MP λM。相应的,合波器1对应的第二分光系数为a 1,a 2,…,a M,…,合波器N对应的第二分光系数为k 1,k 2,…,k M
在实现方式二中,可选地,所述N个合波器通过波长选择开关或光交叉设备实现所述第二分光系数。
为了便于理解,这里结合图5描述实现方式二对应的泵浦控制模块。为了便于描述,这里引入光泵浦单元,分光单元、光交叉单元。如图5所示,泵浦控制模块由光泵浦单元,分光单元、光交叉单元三部分组成。光泵浦单元由M个不同波长(λ 1,λ 2,…,λ M)的泵浦激光器组成。分光单元由M个均匀分光器组成,每个分光器将一个特定波长的泵浦光功率n等分(P λ1/n,P λ2/n,…,P λM/n),或者说,第一分光系数为1/n。光交叉单元具有N个输出端口。光交叉单元通过波长选择开关或光交叉设备对分光后的光信号进行交叉连接,灵活地调整各波长分量的配比并进行合波,最终输出加权后的N路光作为不同模式的泵浦光。其中,光交叉单元输出端口1的泵浦光为a 1P λ1+a 2P λ2+…a MP λM,…,光交叉单元输出端口N的泵浦光为k 1P λ1+k 2P λ2+…k MP λM,其中a 1,a 2,…,a M,…,k 1,k 2,…,k M为不同的分光系数。换种表达方式,光交叉单元可以看作N个合波器。每个合波器对应一个光交叉单元输出端口。
实现方式三
实现方式三是对上述两种实现方式的组合实现方式。第一分光系数与第二分光系数均基于功率配置信息确定。也就是说,在实现方式三中,功率配置信息的作用在分光器和合波器处均有体现。
泵浦控制模块通过可调分光器,将对应波长的泵浦光功率按照第一分光系数(这里的 第一分光系数并非是通过平分方式得到)分配到可调分光器的N个输出端口,并且,利用第二分光系数(这里的第二分光系数的取值不为1)在合波器处进行合束,最终输出N路泵浦光。当然,此处的N路泵浦光也可以表示为a 1P λ1+a 2P λ2+…a MP λM,…,k 1P λ1+k 2P λ2+…k MP λM
通过上述三种实现方式,泵浦控制模块能够动态调整不同空间维度下不同信道的增益,用以补偿信号光经过EDFA后的DMG,从而实现不同信道不同空间维度的增益均衡。
拉曼放大模块230用于利用从泵浦控制模块220处获得的N路泵浦光,对光纤中传输的信号光进行拉曼放大。下面对拉曼放大模块230进行介绍。
可选地,所述拉曼放大模块230包括空分复用器和空分复用光纤;其中,所述N路泵浦光经过所述空分复用器耦合至所述空分复用光纤中,所述空分光纤中传输的空分复用信号在所述N路泵浦光的作用下产生受激拉曼放大。图6示出了根据本申请实施例的拉曼放大模块的示例图。如图6所示,泵浦控制模块输出的N路泵浦光经过空分复用器耦合进入空分复用光纤中,在光纤中传输的空分复用信号会受泵浦光的作用,而产生受激拉曼放大。所述N路泵浦光对应的分光系数(a 1,a 2,…,a M,…,k 1,k 2,…,k M)是可调节的(即泵浦控制模块通过功率配置信息进行调节),以实现空间波长信道间的功率平衡。
本申请实施例中的空分复用器可以是模式复用器、纤芯复用器或其他维度的复用器,对此不作具体限定。
本申请实施例的光信号放大装置可应用于多种光通信系统中,比如,单模光纤传输系统,少模光纤传输系统,多模光纤传输系统等,适用场景比较广泛。
作为一种可能的实现方式。本申请中的光信号放大装置可与空分复用EDFA级联混合使用。图7示出了本申请实施例的混合拉曼/EDFA空分复用光纤放大器的结构示意图。如图7所示,该结构包括:功率检测模块,泵浦控制模块,拉曼放大模块(包括空分复用光纤和空分复用器,可选地,还可以包括二向色镜),空分复用EDFA以及分光装置。在图7中,泵浦光通过一个二向色镜耦合到空分复用EDFA中。经空分复用EDFA放大后的空分复用光信号,通过一个分光装置(比如,第一分光器)分出部分光传送至功率检测模块。功率检测模块从分光装置得到部分空分复用光信号后,检测各个空间维度下的各个波长信道的功率(功率检测信息),并对功率检测信息进行计算得到功率配置信息,而后将功率配置信息反馈给泵浦控制模块。泵浦控制模块根据功率检测模块传递的功率配置信息来调节不同波长泵浦光的分光系数,并输出N路泵浦光。拉曼放大模块通过空分复用器将N路泵浦光进行合束,并将合束后的泵浦光输入至空分复用光纤中,实现对各空间维度下波长信道功率的不平坦进行补偿。
作为一种可能的实现方式,本申请实施例的光信号放大装置可以应用于少模光纤传输系统中(比如少模光纤C+L波段传输系统)。所述光信号放大装置还包括N个相位片,所述N个相位片设置于所述泵浦控制模块与所述拉曼放大模块之间;所述N个相位片用于将所述泵浦控制模块输出的所述N路泵浦光加载到对应的模式上,其中,所述N个空间维度包括N个模式。不同的模式可以理解为光能量的分布不同。
下面结合图8描述应用于少模光纤C+L波段传输系统的光信号放大装置。图8是基于混合拉曼/EDFA C+L波段少模光纤放大器的结构示意图。如图8所示,该光纤放大器包括少模光纤FMF,两个二向色镜,C波段和L波段少模光纤放大器EDFA结构(具体包 括C波段少模掺铒光纤(简称为C-FM-EDF)和L波段少模掺铒光纤(简称为L-FM-EDF),分波装置,合波装置),分光装置(比如第一分光器),功率检测模块,泵浦控制模块,N个相位片。其中,N个相位片,少模光纤FMF,二向色镜可以组成拉曼放大模块。在图8中,泵浦光源(具体可以是泵浦激光器,比如980nm泵浦激光器)对少模EDFA进行泵浦。泵浦光源产生的泵浦光通过二向色镜耦合到C波段和L波段少模EDFA中。由于C波段和L波段少模EDFA的结构不同,为了实现C+L波段的宽带增益放大,可以将信号光分波后分别通过对应波段的少模EDFA(即C-FM-EDF和L-FM-EDF)放大。经过C波段和L波段少模EDFA放大后的信号光经过合波装置进行合波。合波后的信号光通过分光装置分出部分信号光传至功率检测模块。功率检测模块通过检测各个模式各个波长信道的功率情况(或者说增益情况),并确定功率配置信息(或称作增益信息),最后将反馈配置信息给泵浦控制模块。泵浦控制模块根据功率检测模块发送的功率配置信息进行功率调节,即调节不同波长处泵浦光配比(或者说分光系数)。泵浦控制模块输出N路泵浦光。所述N路泵浦光通过N个相位片加载到对应的N个模式上。不同的相位片对应不同的模式。从图8中可知,不同的模式对应的光能量分布(或横截面)不同。各模式的泵浦光经过合束后经由二向色镜注入到少模光纤FMF中,对其进行泵浦,以实现拉曼放大。图8中的基于混合拉曼/EDFA C+L波段少模光纤放大器能够同时实现C+L波段的拉曼放大,能够对FM-EDFA不同模式不同信道处的增益进行补偿,从而实现C+L波段的模式信道均衡。
可以理解,图8中的结构只是示例性描述,本申请并不限于此。比如,图8中的一些器件可合理替换为其他器件。
作为一种可能的实现方式,本申请实施例的光信号放大装置可以应用于多芯光纤传输系统中。所述光信号放大装置还包括:多芯扇入模块,所述多芯扇入模块设置于所述泵浦控制模块与所述拉曼放大模块之间;所述多芯扇入模块用于将所述泵浦控制模块输出的所述N路泵浦光注入到对应的纤芯中,其中,所述N个空间维度包括N个纤芯。
下面结合图9描述应用于多芯光纤传输系统的光信号放大装置。图9是基于多芯光纤传输系统的光纤放大器的结构示意图。如图9所示,该光纤放大器包括多芯光纤,两个二向色镜,泵浦(具体可以是泵浦激光器,比如980nm泵浦激光器),多芯掺铒光纤放大器EDFA(包括多芯掺饵光纤),分光装置,功率检测模块,泵浦控制模块,多芯扇入模块。其中,多芯扇入模块、多芯光纤和二向色镜可以组成拉曼放大模块。以泵浦激光器产生的泵浦光为例,泵浦光通过一个二向色镜耦合到多芯EDFA中。多芯EDFA对信号光进行放大。经过多芯EDFA增益放大后的信号光,通过一个分光装置分出部分信号光传至功率检测模块。功率检测模块在接收到分光装置传输的部分信号光后,对各个纤芯的各个波长信道的功率进行检测,得到功率检测信息,并基于功率检测信息确定功率配置信息,最后将功率配置信息反馈给泵浦控制模块。泵浦控制模块根据功率检测模块反馈的功率配置信息调节泵浦光配置,输出N路泵浦光。拉曼放大模块将该N路泵浦光通过多芯扇入模块和二向色镜装置注入到对应的纤芯中,以便对对应纤芯中传输的信号光进行拉曼放大。图9中的光纤放大器通过对多芯EDFA中不同纤芯的不同信道处的增益进行补偿,能够实现多芯信道均衡。
可以理解,图9中的结构只是示例性描述,本申请并不限于此。比如,图9中的一些 器件可合理替换为其他器件。
还可以理解,本申请实施例中的图7至图9中的例子仅仅是为了便于本领域技术人员理解本申请实施例,并非要将本申请实施例限于例示的具体场景。本领域技术人员根据图7至图9的例子,显然可以进行各种等价的修改或变化,这样的修改或变化也落入本申请实施例的范围内。
基于前文的光信号放大装置,本申请还提供了一种光信号放大方法。图10是本申请实施例的一种光信号放大方法1000的示意性流程图。该光信号放大方法1000由光信号放大装置执行,所述光信号放大装置应用于空分复用传输系统中,所述空分复用传输系统中待检测的空分复用信号包括N个空间维度,其中,每个空间维度包括G个波长信道,N为正整数,G为正整数,所述方法1000包括:
S1010,对所述N个空间维度的G个波长信道中的每个波长信道的功率进行检测以获得功率检测信息,并根据所述功率检测信息确定功率配置信息。
S1020,输出N路泵浦光,其中,每路泵浦光由不同波长的M个泵浦光分光组成,每个泵浦光分光在对应波长的泵浦光中所占的比例是根据所述功率配置信息确定的,M为大于1的整数。
S1030,利用所述N路泵浦光对所述N个空间维度中的每个空间维度上的空分复用信号进行拉曼放大。
可选地,所述每路泵浦光中的M个泵浦光分光是按照第二分光系数进行合束得到的,所述每个泵浦光分光是通过对对应波长的泵浦光按照第一分光系数进行分光得到的;其中,所述第一分光系数和/或第二分光系数是基于所述功率配置信息确定的。
第一分光系数和第二分光系数取决于前文光信号放大装置中的泵浦控制模块的具体实现方式,具体可以参考前文光信号放大装置中的描述。
可选地,所述根据所述功率检测信息确定功率配置信息,包括:基于功率平坦准则,根据所述功率检测信息确定功率配置信息。
本申请还提供了一种计算机可读存储介质,用于存储计算机程序,该计算机程序包括用于执行前文的光信号放大方法的指令。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的方法的各步骤的执行,可以基于前述产品实施例中的对应模块、单元和器件来实现,在此不再赘述。
应理解,本文中涉及的各种数字编号仅为描述方便进行的区分,并不用来限制本申请的范围。
可以理解,本申请实施例中的一些可选的特征,在某些场景下,可以不依赖于其他特征,比如其当前所基于的方案,而独立实施,解决相应的技术问题,达到相应的效果,也可以在某些场景下,依据需求与其他特征进行结合。相应的,本申请实施例中给出的装置也可以相应的实现这些特征或功能,在此不予赘述。
还可以理解,这里作统一说明,本申请实施例中涉及到的模块的名称只是便于描述,并不对本申请实施例构成限定。事实上,本申请实施例中涉及到的模块也可以命名为其他名称。
还可以理解,本申请实施例的各个方案可以进行合理的组合使用,并且实施例中出现的各个术语的解释或说明可以在各个实施例中互相参考或解释,对此不作限定。
还可以理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定。上述各个过程涉及的各种数字编号或序号仅为描述方便进行的区分,而不应对本申请实施例的实施过程构成任何限定。本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (15)

  1. 一种光信号放大装置,其特征在于,应用于空分复用传输系统中,所述空分复用传输系统中待检测的空分复用信号包括N个空间维度,其中,每个空间维度包括G个波长信道,N为正整数,G为正整数,所述光信号放大装置包括:功率检测模块,泵浦控制模块以及拉曼放大模块;
    所述功率检测模块用于对所述N个空间维度的G个波长信道中的每个波长信道的功率进行检测以获得功率检测信息,并根据所述功率检测信息确定功率配置信息,以及,将所述功率配置信息发送给所述泵浦控制模块;
    所述泵浦控制模块用于输出N路泵浦光,其中,每路泵浦光由不同波长的M个泵浦光分光组成,每个泵浦光分光在对应波长的泵浦光中所占的比例是根据所述功率配置信息确定的,M为大于1的整数;
    所述拉曼放大模块用于利用所述N路泵浦光对所述N个空间维度中的每个空间维度上的空分复用信号进行拉曼放大。
  2. 根据权利要求1所述的光信号放大装置,其特征在于,所述泵浦控制模块包括不同波长的M个泵浦光源,M个分光器,以及,N个合波器,其中,每个分光器具有1个输入端口和N个输出端口,每个泵浦光源分别与一个分光器的输入端口相连,所述每个分光器的N个输出端口分别与所述N个合波器的其中一个输出端口相连;
    所述M个泵浦光源用于产生M个泵浦光;
    所述每个分光器用于将对应波长的泵浦光按照第一分光系数进行分光,并通过N个输出端口输出N个泵浦光分光,所述每个分光器输出的N个泵浦光分光分别到达所述N个合波器;
    所述N个合波器用于输出所述N路泵浦光,其中,所述每个合波器用于将从所述M个分光器获得的M个泵浦光分光按照第二分光系数进行合束,得到一路泵浦光;
    其中,所述第一分光系数和/或第二分光系数是基于所述功率配置信息确定的。
  3. 根据权利要求2所述的光信号放大装置,其特征在于,所述M个分光器是可调分光器,其中,每个可调分光器对应的第一分光系数是基于所述功率配置信息确定的。
  4. 根据权利要求2所述的光信号放大装置,其特征在于,所述M个分光器是均匀分光器,每个均匀分光器对应的第一分光系数是通过平分对应波长的泵浦光的方式确定的,所述第二分光系数是基于所述功率配置信息确定的。
  5. 根据权利要求4所述的光信号放大装置,其特征在于,所述N个合波器通过波长选择开关或光交叉设备实现所述第二分光系数。
  6. 根据权利要求1至5中任一项所述的光信号放大装置,其特征在于,所述功率检测模块用于根据所述功率检测信息确定功率配置信息,包括:
    所述功率检测模块基于功率平坦准则,根据所述功率检测信息确定功率配置信息。
  7. 根据权利要求1至6中任一项所述的光信号放大装置,其特征在于,所述功率检测模块包括空间信道分离模块和波长信道功率检测模块;
    所述空间信道分离模块用于将所述N个空间维度的空分复用信号进行分离;
    所述波长信道功率检测模块用于对每个空间维度下的K个波长信道进行分离,并对每个波长信道的功率进行检测。
  8. 根据权利要求1至7中任一项所述的光信号放大装置,其特征在于,所述光信号放大装置还包括第一分光器,所述第一分光器用于将所述待检测的空分复用信号从空分光纤链路中分离出来,所述第一分光器与所述功率检测模块相连。
  9. 根据权利要求1至8中任一项所述的光信号放大装置,其特征在于,所述拉曼放大模块包括空分复用器和空分复用光纤;
    其中,所述N路泵浦光经过所述空分复用器耦合至所述空分光纤中,所述空分复用光纤中传输的空分复用信号在所述N路泵浦光的作用下产生受激拉曼放大。
  10. 根据权利要求1至9中任一项所述的光信号放大装置,其特征在于,所述光信号放大装置应用于少模光纤传输系统中,所述光信号放大装置还包括:
    N个相位片,所述N个相位片设置于所述泵浦控制模块与所述拉曼放大模块之间;
    所述N个相位片用于将所述泵浦控制模块输出的所述N路泵浦光加载到对应的模式上,其中,所述N个空间维度为N个模式。
  11. 根据权利要求1至9中任一项所述的光信号放大装置,其特征在于,所述光信号放大装置应用于多芯光纤传输系统中,所述光信号放大装置还包括:
    多芯扇入模块,所述多芯扇入模块设置于所述泵浦控制模块与所述拉曼放大模块之间;
    所述多芯扇入模块用于将所述泵浦控制模块输出的所述N路泵浦光注入到对应的纤芯中,其中,所述N个空间维度为N个纤芯。
  12. 一种光信号放大方法,其特征在于,所述方法由光信号放大装置执行,所述光信号放大装置应用于空分复用传输系统中,所述空分复用传输系统中待检测的空分复用信号包括N个空间维度,其中,每个空间维度包括G个波长信道,所述方法包括:
    对所述N个空间维度的G个波长信道中的每个波长信道的功率进行检测以获得功率检测信息,并根据所述功率检测信息确定功率配置信息;
    输出N路泵浦光,其中,每路泵浦光由不同波长的M个泵浦光分光组成,每个泵浦光分光在对应波长的泵浦光中所占的比例是根据所述功率配置信息确定的;
    利用所述N路泵浦光对所述N个空间维度中的每个空间维度上的空分复用信号进行拉曼放大。
  13. 根据权利要求12所述的光信号放大方法,其特征在于,所述每路泵浦光中的M个泵浦光分光是按照第二分光系数进行合束得到的,所述每个泵浦光分光是通过对对应波长的泵浦光按照第一分光系数进行分光得到的;
    其中,所述第一分光系数和/或第二分光系数是基于所述功率配置信息确定的。
  14. 根据权利要求12或13所述的光信号放大方法,其特征在于,所述根据所述功率检测信息确定功率配置信息,包括:
    基于功率平坦准则,根据所述功率检测信息确定功率配置信息。
  15. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序包括用于执行权利要求12-14中任一项所述方法的指令。
PCT/CN2022/084789 2021-04-25 2022-04-01 一种光信号放大装置及方法 WO2022228034A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22794506.0A EP4318976A1 (en) 2021-04-25 2022-04-01 Optical signal amplification apparatus and method
US18/493,273 US20240056210A1 (en) 2021-04-25 2023-10-24 Optical Signal Amplification Apparatus and Method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110450172.9A CN115250150A (zh) 2021-04-25 2021-04-25 一种光信号放大装置及方法
CN202110450172.9 2021-04-25

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/493,273 Continuation US20240056210A1 (en) 2021-04-25 2023-10-24 Optical Signal Amplification Apparatus and Method

Publications (1)

Publication Number Publication Date
WO2022228034A1 true WO2022228034A1 (zh) 2022-11-03

Family

ID=83696508

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/084789 WO2022228034A1 (zh) 2021-04-25 2022-04-01 一种光信号放大装置及方法

Country Status (4)

Country Link
US (1) US20240056210A1 (zh)
EP (1) EP4318976A1 (zh)
CN (1) CN115250150A (zh)
WO (1) WO2022228034A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115955292B (zh) * 2022-12-02 2024-02-02 江西科技师范大学 一种实现超宽带通信系统自动优化光信噪比与光谱平坦度的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101588208A (zh) * 2008-05-23 2009-11-25 中兴通讯股份有限公司 功率管理方法和装置
US20100266284A1 (en) * 2009-04-15 2010-10-21 Ofs Fitel, Llc Method and Apparatus Using Distributed Raman Amplification and Remote Pumping In Bidirectional Optical Communication Networks
CN112383357A (zh) * 2020-10-20 2021-02-19 电子科技大学 一种空分复用光交换节点的功率均衡装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101588208A (zh) * 2008-05-23 2009-11-25 中兴通讯股份有限公司 功率管理方法和装置
US20100266284A1 (en) * 2009-04-15 2010-10-21 Ofs Fitel, Llc Method and Apparatus Using Distributed Raman Amplification and Remote Pumping In Bidirectional Optical Communication Networks
CN112383357A (zh) * 2020-10-20 2021-02-19 电子科技大学 一种空分复用光交换节点的功率均衡装置

Also Published As

Publication number Publication date
US20240056210A1 (en) 2024-02-15
CN115250150A (zh) 2022-10-28
EP4318976A1 (en) 2024-02-07

Similar Documents

Publication Publication Date Title
CA2227247C (en) Broadband flat gain optical amplifier
Feuer et al. ROADM system for space division multiplexing with spatial superchannels
US6437906B1 (en) All-optical gain controlled L-band EDFA structure with reduced four-wave mixing cross-talk
US6724526B1 (en) Inter-wavelength light power deviation monitoring method and optical equalizer and optical amplifier utilizing the method
JP2734969B2 (ja) 波長多重伝送用光ファイバ増幅器
JP2001053686A (ja) 複合光増幅装置、n波長帯域WDM方式光信号送信装置、光伝送システムおよび光増幅方法
JP2001251245A (ja) 波長分割多重光通信システムにおける伝送特性均一化装置、及び伝送特性均一化方法
WO2020013096A1 (ja) 光増幅中継システム
JP6829318B2 (ja) 光増幅中継システム、および光増幅器
US20240056210A1 (en) Optical Signal Amplification Apparatus and Method
US6147796A (en) Method for determining transmission parameters for the data channels of a WDM optical communication system
US6519080B2 (en) Optical amplifier and optical transmission system
US20060126159A1 (en) Parallel-structured Raman optical amplifier
WO2022091187A1 (ja) 光増幅器、光増幅器の制御方法及び光伝送システム
JP2999758B2 (ja) 波長多重伝送システム及びその伝送方法
WO2022152115A1 (zh) 产生假光信号的装置、方法以及可重构光分插复用器
Yan et al. Experimental investigation on transmission system of dual-polarization mode-division-multiplexing signals with few-mode erbium-doped fiber amplifiers
JP2001044934A (ja) 波長多重光送信器
JPH08204647A (ja) 光中継伝送装置および光通信方法
EP0989693A1 (en) Optical amplification system including an Erbium-Ytterbium co-doped fiber
US6728028B1 (en) Low noise figure optical amplifier for DWDM systems with per sub-band power control
US20240103338A1 (en) Wavelength converter and optical transmission system
Putrina et al. Investigation of EDFA performance in DWDM transmission systems under different operating conditions
JP2000124529A (ja) 広帯域光増幅器
US20240120703A1 (en) Light amplification device and light amplification method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22794506

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022794506

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022794506

Country of ref document: EP

Effective date: 20231025

NENP Non-entry into the national phase

Ref country code: DE