WO2022227977A1 - 一种光学器件及光学系统 - Google Patents

一种光学器件及光学系统 Download PDF

Info

Publication number
WO2022227977A1
WO2022227977A1 PCT/CN2022/083331 CN2022083331W WO2022227977A1 WO 2022227977 A1 WO2022227977 A1 WO 2022227977A1 CN 2022083331 W CN2022083331 W CN 2022083331W WO 2022227977 A1 WO2022227977 A1 WO 2022227977A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
optical device
curved surface
light
curved
Prior art date
Application number
PCT/CN2022/083331
Other languages
English (en)
French (fr)
Inventor
谈顺毅
Original Assignee
上海慧希电子科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海慧希电子科技有限公司 filed Critical 上海慧希电子科技有限公司
Publication of WO2022227977A1 publication Critical patent/WO2022227977A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • G02B5/09Multifaceted or polygonal mirrors, e.g. polygonal scanning mirrors; Fresnel mirrors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • G02B5/10Mirrors with curved faces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements

Definitions

  • the present invention relates to the field of optical equipment, in particular, to an optical device and an optical system.
  • a Fresnel mirror design method can be used. The principle is based on compressing the original optical surface into discrete curved surfaces, but the focus of each curved surface is generally still the same as the original surface. .
  • a condensing mirror and an application device are used to replace various concave mirrors with a larger area by using a plurality of mirrors with the same structure with a smaller area. In some applications where there are large angles of off-axis light, this design method often brings a large error to off-axis light.
  • each sub-lens is an independent unit, generally unrelated to each other, and does not require light with the same characteristics to pass through adjacent lenses to produce similar characteristics (such as parallelism). Light passing through the lens array will be focused to the individual focal points of each lens rather than a single focal point of a single lens).
  • the purpose of the present invention is to provide an optical device and an optical system.
  • An optical device provided according to the present invention includes: a plurality of curved surfaces, and the plurality of curved surfaces satisfy the following conditions:
  • the optical center or the clearing point of one of the plurality of curved surfaces is modulated by the curved surface, the optical properties of the output light and the light passing through the focus, optical center or the clearing point of the curved surface are determined by the said curved surface.
  • the optical characteristics of the modulated output rays of the adjacent curved surfaces are the same or within a preset first deviation range, and the first deviation can be the characteristics of the light itself (such as the focus position, the focus position on the horizontal axis and the vertical axis).
  • the size of the distribution, the spot size at a certain position, the divergence angle, the deflection angle, the diopter, the spherical aberration, the coma and other aberrations formed by the light, the center of the spot/optical center, etc.) deviation from the preset value, such as the first A deviation is that the GEO radius of the light spot at the focus position is less than 2um, or the angle between the output rays is less than 0.001°;
  • the focal points, optical centers and/or alignment points of the plurality of curved surfaces are not all coincident, and/or the axes of the plurality of curved surfaces are not all parallel.
  • the focal points, optical centers or alignment points of the plurality of curved surfaces vary along a preset trajectory.
  • the axes of the plurality of curved surfaces are rotated or translated along a preset point or line.
  • the optical characteristics include: the focusing position (focal point) of the light, the optical center (for example, the Rms center of the light spot formed by the light at a certain position), the aperture, the diopter, any one or more of the deflection angle and the divergence angle indivual.
  • the axis of the curved surface is an axis of symmetry (some curved surfaces may have multiple axes of symmetry, such as an ellipse), an optical axis or an axis possessed by a curved surface.
  • the cross-sectional curve of the curved surface is a circle, an ellipse, a parabola or a hyperbola.
  • the curved surface is formed by rotating the curve along a point or line, or by translating the curve along a certain direction.
  • the expression of the section curve of the curved surface is Among them, z and r are the coordinates corresponding to the curve on the cross section, respectively, c, k, and a p are the parameters of the curve, n is the highest order of the high-order item, and p is the ordinal number.
  • a plane having a preset angle with the curved surface is disposed between the plurality of curved surfaces.
  • part or all of the curved surface is coated with a reflective film.
  • a part or all of the curved surface is coated with a polarizing film, light with a preset polarization direction will pass through the curved surface, and light with a polarization direction orthogonal to the preset polarization direction will be reflected by the curved surface.
  • part or all of the curved surface is coated with an anti-reflection film, so that a preset proportion of light is reflected and the rest of the light is transmitted.
  • one side of the optical device is glued or bonded with another optical device whose surface type is complementary to the optical device.
  • the refractive index of the material of the other optical device is the same as that of the optical device or within a predetermined second deviation range.
  • the other optical device has a certain diopter relative to the surface of the optical device, or a lens with a diopter or a transparent lens may be bonded to the surface of the other optical device relative to the optical device.
  • Controllable spatial light modulators such as liquid crystal lenses, phase-modulated LCDs, etc.
  • the curved surface is filled with glue having the same refractive index as the material of the optical device or within a predetermined third deviation range.
  • the surface of the glue opposite to the curved surface has a predetermined surface shape.
  • the surface shape has a preset optical power.
  • a reflective and/or absorptive film layer is coated on the surface of the curved surface and/or the complementary optical device.
  • a polarized reflective film is coated on one of the two complementary surfaces to reflect the image light with the polarization direction S from the inside of the waveguide, and the other surface is coated with a film with polarized absorption properties.
  • the P-polarized light will pass through this surface, and the S-polarized light will be absorbed, so that the imaging will not be affected by the uncontrolled reflection of the S component in the ambient light on the outcoupling device to form stray light, or it can be eliminated.
  • a connecting surface connecting the curved surfaces is provided between the plurality of curved surfaces, and the angle between the tangent line at any point on the connecting surface and the surface of the waveguide is greater than or equal to the maximum value formed by the light totally reflected in the waveguide and the surface of the waveguide. horn. In this way, the image light propagating in the waveguide can only be reflected on the curved surface, and will not hit the connecting surface to form stray light or waste energy.
  • the angle between the tangent of any point on the curved surface and the surface of the waveguide is less than or equal to Among them, n is the refractive index of the material of the waveguide and/or the curved surface part of the device, and ⁇ is the maximum angle formed by the external incident ambient light and the surface normal of the waveguide.
  • some parts of the ambient light such as the S-component light when a polarized coating that transmits P and reverses S
  • 90°
  • An optical system provided according to the present invention includes a plurality of the optical devices.
  • An optical system provided according to the present invention includes the optical device and a spatial light modulator for dynamically modulating the light wavefront.
  • the spatial light modulator can be arranged outside the glued/bonded other optical device to only modulate the ambient light (for example, to compensate for errors such as myopia and astigmatism of the viewer's eyes), or it can be arranged between the imaging device and the optical device. Between the optical paths of the device, it is used to modulate the image light. Alternatively, it can also be provided between the optical device and the viewer for simultaneous modulation of image light and ambient light. Alternatively, multiple pieces of spatial light modulators can be simultaneously arranged at different positions to modulate the image light and the ambient light respectively.
  • the spatial light modulator can be a device that can dynamically modulate LCoS, LCD, LC lens, etc., or a static liquid crystal lens, grating and other devices.
  • An optical system provided according to the present invention includes an optical device, and further includes a waveguide, at least one end of the waveguide is connected to the optical device.
  • different regions of the surface of the waveguide are coated with films with different refractive indices, for example, the entire surface is divided into two parts, one part is uncoated, and the other part is further divided into multiple regions, and the multiple regions are respectively coated with refractive indices different film layers.
  • different regions of the surface of the waveguide are coated with films with different refractive indices, and the surface of the device and the waveguide may also be coated with anti-reflection films according to the different refractive indices of the corresponding regions, or different regions may be coated with different anti-reflection coatings.
  • the transparent film can also be coated with the same anti-reflection film system on the entire waveguide and the surface of the device.
  • an area with a certain optical power is preset on the surface of the waveguide opposite to the optical device, or an optical device with a certain optical power is connected.
  • the present invention has the following beneficial effects:
  • the present invention proposes an optical device composed of a plurality of curved surfaces, wherein the optical center or focus or alignment point of each curved surface does not coincide with the adjacent curved surfaces, and the central axes (if any) of each curved surface are not parallel to each other (with respect to each other).
  • the included angle changes according to a certain law).
  • the optical properties of the output light after the light passing through the focal point or optical center or the clear point of one of the curved surfaces are modulated by the curved surface are similar to the optical properties of the output light after the light passing through this point is modulated by the adjacent curved surface of the curved surface, or the optical properties of the output light after passing through the adjacent curved surface are similar.
  • An optical characteristic of the output light after at least one ray at the focal point of a curved surface is modulated by the curved surface and an optical characteristic of the output light after at least another light ray passing through this point is modulated by the adjacent curved surface (focus position, angle, etc.) are the same or within the preset first deviation range.
  • Fig. 5a is the structural representation of embodiment 2;
  • Fig. 5b is the light path schematic diagram of embodiment 2;
  • FIG. 6 is a schematic diagram of the structure and optical path of Embodiment 3.
  • Fig. 7 is a kind of deformation structure and optical path schematic diagram of embodiment 3.
  • FIG. 8 is a schematic diagram of a modified structure and an optical path of Embodiment 3.
  • FIG. 8 is a schematic diagram of a modified structure and an optical path of Embodiment 3.
  • FIG. 2a An optical device composed of 100 intersecting curved surfaces with similar surface types, which is simplified to four curved surfaces with reference to FIG. 2 .
  • the first curved surface 1 intersects with 2
  • the second curved surface 2 intersects with the first curved surface 1 and the third curved surface 3
  • the third curved surface 3 intersects with the second curved surface 2
  • the fourth curved surface 4 and so on.
  • the cross-section of each curved surface is a parabola
  • the curved surface is obtained by rotating the parabola around the axis of symmetry.
  • the alignment points of adjacent curved surfaces can be designed to vary along a certain trajectory, and the central axes/symmetry axes (if any) of adjacent curved surfaces are not parallel (varied at a certain angle).
  • the light passing through the first curved surface 1 (which may be formed by rotating a part of the line segment that does not contain vertices on the parabolic edge) is incident on the first curved surface 1 and is reflected. All the rays are emitted parallel to the central axis of the first curved surface 1, and some of the rays passing through the alignment point of the first curved surface 1 are incident on the adjacent second curved surface 2.
  • the aligning points do not coincide, and the above-mentioned light rays are equivalent to the light rays emitted from the points that have a certain offset to the aligning points of the second curved surface 2 for the second curved surface 2, and the angle of the reflected rays will be the same as that of the second curved surface 2.
  • the central axis is at a certain angle.
  • the central axis of the second curved surface 2 is not parallel to the first curved surface 1, it can be designed that the angle between the central axis of the second curved surface 2 and the central axis of the first curved surface 1 combined with the focal length of the curved surface itself (the distance from the parabola to the focal point) just makes the The angle of the light rays from the same point of the first curved surface 1 after being reflected by the second curved surface 2 is approximately parallel with the angle of the light rays reflected by the same point by the first curved surface 1 and the aberration is minimal.
  • the advantage of this design is that when a light with a large off-axis angle (such as a beam of parallel light) is incident on a single surface, its convergence point is far away from the clear point (in a single surface). On-axis) there is a large deviation (large aberration), and the rays with large off-axis angles (such as a parallel light) corresponding to 100 independent curved surfaces will partially pass through one of the 100 curved surfaces.
  • a light with a large off-axis angle such as a beam of parallel light
  • a homogeneous point of a curved surface (the light passing through the homogeneous point has no aberration, for example, the light passing through the homogeneous point of the first curved surface 1 is incident on the first curved surface 1 and then exits without aberration, and the optical path is reversed), and the other part of the light is incident
  • the distance from the convergence point of the adjacent surface (such as the second surface 2) to the alignment point of the adjacent surface is also much smaller than the convergence point of this part of the light on a single surface (actually it may be a light spot with a certain size and shape rather than a single point. ) to the homogeneous point of a single curved surface, so the aberration will be greatly reduced, and this design can effectively reduce the aberration at least in part of the entire device.
  • the section of each curved surface may also be a curve based on a parabola with higher-order terms added, for example, its expression is, where k is the conic coefficient.
  • k is the conic coefficient.
  • the curve is a parabola
  • k -1.
  • the curve is an ellipse
  • the conic coefficient k can also be greater than 1 or Any value less than -1
  • a p is the coefficient of the higher-order term corresponding to the curve.
  • the cross section of the curved surface in the above embodiment may also be an ellipse, and the curved surface is a torus formed by rotating an elliptic curve around a certain line (eg, the major axis or minor axis of an ellipse, or any line in a coordinate system).
  • a certain line eg, the major axis or minor axis of an ellipse, or any line in a coordinate system.
  • the input light passing through the ellipse focus (the point of equivalence) will be focused to the other focus of the ellipse and exit.
  • the entire input object plane is located on the trajectory formed by the focal points on one side of multiple elliptical surfaces. Focus on the trajectory formed by the other focal point of the surface.
  • each independent surface described in the above-mentioned embodiments can be only a small part of a surface formed by a complete mathematical expression, for example, the cross section is only a small segment of a complete parabola that does not contain parabola vertices on one side (of course, according to The application can also be a symmetrical line segment containing vertices), this small line segment itself is not asymmetric (the part that is symmetrical along the central axis is discarded, not designed in the device), and the light rays incident on the surface at its focus have a larger value.
  • Off-axis angle angle relative to the optical axis/median axis/symmetry axis formed by the focus of the parabola to the vertex).
  • the surface of the device may not be coated with a reflective film, but may be coated with an anti-reflection film or not, so that it can be used as a transmission device.
  • optical devices in the above embodiments can be applied to optical instruments such as microscopes and telescopes, and can also be applied to near-eye display systems such as AR/VR.
  • An optical device 20x20x1mm in size, formed by gluing or bonding two optical devices with one surface containing multiple curved surfaces.
  • One of the devices (the first device 5, as shown in Figure 5) contains about 2000 annular surfaces (similar to the annular surface in High-order terms can be added to adjust the conic coefficient and curvature, etc.), and the design of the entire device is similar to that of Example 1.
  • the difference from Embodiment 1 is that in this embodiment, the surface of the first device 5 composed of multiple curved surfaces is coated with a polarized reflective film, and the polarized reflective film reflects light in a specific polarization direction (such as S polarization) while allowing other polarizations. direction of light transmission (eg P-polarized).
  • this device also includes a second device 6, the surface of which is complementary to the surface of the first device 5 including a plurality of curved surfaces (as shown in Figure 5a), and the two surfaces pass through the surface.
  • the first device 5 and the second device 6 are combined together by means of gluing (or bonding) to form the device in this embodiment.
  • the second device 6 and the first device 5 are made of similar or the same material (eg PC, PMMA or optical glass).
  • the device in this embodiment can function as a modulated image and a combiner (as shown in Figure 5b, combining image light and ambient light).
  • the image light is generated and input by imaging devices (such as LCOS, SLM, Micro LED, DLP, OLED, MEMS SCANNER, etc.), and can be modulated into a specific polarization direction (such as linear polarization, S polarization), and ambient light is generally full If it is polarized, the light in one polarization direction (such as S polarization) will be reflected, and the light in the other polarization direction (such as P polarization) will be transmitted, thereby being combined with the image light.
  • imaging devices such as LCOS, SLM, Micro LED, DLP, OLED, MEMS SCANNER, etc.
  • the polarizing film can be a grating-type polarizing film, or a polarizing film composed of multiple layers of media.
  • the polarization type coating may not be used, but a coating method in which a certain proportion of light is transmitted and a certain proportion of light is reflected (for example, 60 % reflection, 40% transmission).
  • the transmitted part of the image light after incident on the curved surface of the first device 5 will be reflected or transmitted in other directions and cannot be returned to the combined circuit after re-entering other surfaces (other curved surfaces or the surface of the second device 6 ). light path without becoming stray light interfering with imaging.
  • the reflected part of the ambient light incident on the curved surface of the first device 5 will be reflected or transmitted to other surfaces after re-entering other surfaces (other curved surfaces or the surface of the second device 6) and cannot return to the combined light path without become stray light to interfere with imaging.
  • a selective coating process can be used, and on the first device 5 including a plurality of curved surfaces, coating a part of each curved surface (metal reflective film or polarizing film or partial reflective film),
  • a part of each curved surface metal reflective film or polarizing film or partial reflective film
  • This kind of coating can be achieved by using a mask similar to the semiconductor process to mask the parts that do not need coating, or you can first use photoresist to make a protective layer in the area that does not need coating (using mask and photolithography process), the whole surface is coated After the desired film layer is applied, the photoresist is washed away, so that the film layer on the photoresist is washed away at the same time to achieve the purpose of coating a part of the area.
  • a plane structure at a certain angle may be periodically inserted between the middle and curved surfaces of the plurality of curved surfaces of the first device 5 . Since the image light is generally incident at a large angle (as shown in Figure 3, Figure 5b), if the angle of the plane relative to the incident image light is well controlled in the design, the image light can not be incident on the inserted plane but only on the curved structure. .
  • the angle between the inserted series of planes and the image object plane is greater than a certain value to ensure that the incident light generated by the object plane can only be incident on the curved surface structure and will not be incident on the surface. on the inserted plane structure.
  • the curved surface structure can be coated with a metal reflective film, while the inserted flat structure is not coated with a reflective coating, which can ensure that all the image light is reflected by the curved surface, which can improve the light efficiency.
  • part of the ambient light will be combined with the image light through the uncoated flat structure, and another part of the ambient light will be reflected by the curved surface.
  • One type of reflected ambient light will return from the incident surface of the second device 6 and will not affect the human eye to view the image, and the other type of reflected ambient light will be incident through the adjacent planar structure. After reaching the adjacent curved surface, the reflections combine and enter the human eye.
  • the curved surface structure itself is small (0.01mm width in this example), and the adjacent curved surfaces are very similar, similar to this part of the light rays are divided by two nearly parallel.
  • the surface is reflected twice (without changing the original angle of the light), so the aberration formed by the multi-reflection and exiting from the adjacent curved surface is also very small, which will not affect the final image quality.
  • the special design of the curved surface and the inserted plane only the first type of reflected light or only the second type of reflected light exists in the part of the ambient light reflected by the curved surface.
  • the surface of the second component 6 that is not glued/bonded can also be designed as a curved surface (with a certain optical power) to calibrate the aberrations (nearsightedness, farsightedness, astigmatism, etc.) of the viewer's own eyes , so as to realize the function equivalent to glasses for external ambient light.
  • the second device 6 may be cast on the first device 5 by a material with a refractive index similar to or the same as that of the first device 5 (eg optical glue, UV glue, molten plastic raw material, etc.). made.
  • the UV-sensitive optical glue with the same refractive index as the first device 5 is directly filled on the surface of the first device 5 including multiple curved surfaces, and after the glue is spun or smoothed, it is slightly higher than the highest point of the curved surface of the first device 5 (for example, 0.1mm), and then cured by UV light exposure.
  • the above production process can also be made by pressing a mold with a special shape on the rubber material and then exposing it. After demolding, the surface of the adhesive material facing away from the first device 5 will form the surface shape of the mold (which may have a certain optical power), so that the aberration of the human eye to ambient light can be calibrated and the function of glasses can be realized.
  • All the coatings mentioned in this embodiment may also be coated on the surface of the second device 6 (the surface glued or bonded with the first device 5 ) instead of the surface of the first device 5 .
  • An optical system comprising two optical devices described in Embodiments 1 and 2 and comprising a plurality of curved surfaces, the plurality of curved surfaces are similar to a paraboloid, as shown in FIG. 6 .
  • the incident image light is parallel light of different angles with an image distance of infinity, first modulated by the device described in Embodiment 1 (defined as the first device in this example), and then modulated by the device described in Embodiment 2 (in this example) Defined as the second device)
  • the middle of the optical path is roughly focused into an intermediate image plane, and then propagated to the device described in Example 2, and then modulated again to form parallel light at different angles with a distance close to infinity.
  • the ambient light can pass through the second device.
  • the device is optically combined with the image to be viewed by the viewer.
  • two-sided similar device can further reduce the aberration and improve the imaging quality.
  • the first and second devices both use reflection to modulate the image light, another advantage is that reflection itself does not produce chromatic aberration, and for color images, the influence of chromatic aberration can be effectively reduced.
  • a reflective type device can be selected as much as possible to avoid chromatic aberration.
  • the first device may also use a transmission mirror composed of multiple curved surfaces to complement the aberration of the second device.
  • the plurality of curved surfaces may also adopt a surface shape with a cross-section approximately hyperbolic, which can modulate the emitted image to a limited distance.
  • the plurality of curved surfaces of the first device may adopt surface shapes similar to ellipses
  • the plurality of curved surfaces of the second device may adopt surface shapes similar to paraboloids or hyperboloids.
  • the loci of the focal points of the plurality of curved surfaces of the second device are set in the vicinity of the focal loci on the other side of the plurality of ellipses.
  • a waveguide 7 (eg 80x40x4mm) can also be added, as shown in FIG. 7 .
  • the function of the waveguide is to compress the volume of the optical path and reduce the size of the system.
  • the image light output by the imaging device is modulated and then guided into the waveguide.
  • Polarizing prisms, TIR prisms, triangular prisms, etc. can be used to connect the imaging device and the waveguide (the imaging device can be glued to one surface of the prism). If LCOS, DMD, MEMS, etc.
  • the light source can be connected to one surface of the prism, and a reflector with a certain surface type can be glued on the other side of the prism to modulate the image light and then guide it into the waveguide.
  • the refractive index can be similar to or the same as that of the waveguide, and the image light entering the waveguide is modulated by the first device and is totally reflected in the waveguide, and an intermediate image plane is formed inside the optical waveguide. After multiple total reflections, it is input to the second device, and after being modulated, it is reflected out of the waveguide device and enters the human eye. The ambient light enters the human eye after being combined with the image light through the second device and the optical waveguide.
  • the image light can be modulated and compensated before being guided into the waveguide, so that it can be viewed normally by viewers with different degrees of myopia or astigmatism.
  • Ambient light can be compensated by fabricating a surface with a certain optical power on the surface of the second device facing the external environment (as described in Example 2) or by adding additional mirrors outside the second device. As shown in FIG.
  • a lens 8 with a certain optical power can also be glued or bonded on the surface of the waveguide facing the human eye, or the relevant area of this surface of the waveguide can be directly manufactured to have A face shape with a certain optical power, thereby compensating for the defects of the human eye itself.
  • the advantage of using this scheme is that the ambient light and the image light can be compensated at the same time, without additional compensation for the image light.
  • the first device can also use a common lens or mirror, instead of the device composed of multiple curved surfaces described in the present invention, the system couples the image light into the waveguide in a certain way (for example, using Add triangular prisms or gratings and other devices in the lens scheme).
  • the part of the surface of the waveguide in contact with the first device and the second device can also be coated with films with different refractive indices, and the exit position of the incident light can be controlled by the angle of the incident light (the angle is larger).
  • the ray angle is greater than the critical angle, and continues to be totally reflected in the waveguide until it reaches the area with large surface refractive index, the critical angle increases, and the optical angle is smaller than the critical angle exit), The problem of light exiting from wrong positions in the waveguide is avoided, so that the thickness of the waveguide can be reduced.
  • An anti-reflection film is also plated between the surface of the waveguide and the different refractive index film layers and between the different refractive index film layers and the first and second devices to increase the transmittance of light.
  • a phase-modulated spatial light modulator (which can dynamically simulate an arbitrary curved surface or modulate an arbitrary light wavefront) can also be added to dynamically modulate the output image light of the imaging device through electrical signal control.
  • the function of dynamically changing the distance of the image seen by the viewer can be one frame of image, one frame of image, or one frame of image contains multiple objects with different distances), as well as compensation for different users' eyes through software parameter settings (different myopia, astigmatism, etc.).
  • the spatial light modulator can be arranged between the imaging device and the waveguide, or it can be directly glued to the surface of the waveguide like the first device or the second device, or the spatial light modulator can be directly replaced by the first device (for example, using phase modulation LCOS). similar device), simulating the modulation of the first device on the input light wavefront.
  • the solution of using the multi-curved optical device in the present invention does not have the problem of pupil splicing, which also avoids these two problems.
  • Waveguide-like can only be applied to the problem of images at a specific distance (generally, it is suitable for imaging parallel light at infinity. After importing an image with a short object distance, the image may be broken, the pupil overlaps, and the image becomes blurred, etc.) .

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

一种光学器件及光学系统,包括:多个曲面,多个曲面满足如下条件:经过多个曲面中一个曲面的焦点、光学中心或齐明点的光线被该曲面调制后输出光线的光学特性与经过该曲面的焦点、光学中心或齐明点的光线被该曲面的临近曲面调制后的输出光线的光学特性相同或在预设的第一偏差范围内;多个曲面的焦点、光学中心或齐明点不全部重合,或多个曲面的轴线之间不全部平行。通过对各个曲面面型参数的改变,以及光学中心或焦点或齐明点或轴线的参数设计,可以相对于较大离轴角度光线仍然成质量较好的像。

Description

一种光学器件及光学系统 技术领域
本发明涉及光学设备领域,具体地,涉及一种光学器件及光学系统。
背景技术
传统的光学器件一般具有单一的连续表面和确定光学中心,焦点,齐明点,光轴等参数。一些应用中,为了减小器件厚度,可以采用菲涅镜的设计方式,其原理是基于将原先的光学表面压缩成一段段离散的曲面来实现,但每一段曲面的焦点一般仍和原表面相同。如专利文献CN101609198所公开的一种聚光反射镜与应用装置,使用多个较小面积结构相同的反射镜代替一个面积较大的各种凹面镜。在一些存在大角度离轴光线的应用中,这种设计方法对于轴外的光线往往会带来很大的误差。
而光学器件中另一类的微透镜阵列等光学器件,每个子透镜都是独立的单元,相互之间一般没有关联,不会要求相同特性的光线经过相邻透镜后产生相似的特性(例如平行光经过透镜阵列后将被聚焦到各透镜各自焦点,而不是单一透镜的单一焦点)。
发明内容
针对现有技术中的缺陷,本发明的目的是提供一种光学器件及光学系统。
根据本发明提供的一种光学器件,包括:多个曲面,所述多个曲面满足如下条件:
经过所述多个曲面中一个曲面的焦点、光学中心或齐明点的光线被所述曲面调制后输出光线的光学特性与经过所述曲面的焦点、光学中心或齐明点的光线被所述曲面的临近曲面调制后的输出光线的光学特性相同或在预设的第一偏差范围内,所述第一偏差可以是光线本身的特性(如聚焦位置,聚焦位置在横轴和纵轴上的分布的尺寸,在某一位置的光斑大小,发散角度,偏折角度,屈光度,光线形成球差彗差等像差,光斑的中心/光学中心等等)相对于预设值的偏差,例如第一偏差为聚焦位置的光斑GEO半径小于2um,或输出光线相互之间的夹角小于0.001°;
所述多个曲面的焦点、光学中心和/或齐明点不全部重合,和/或所述多个曲面的轴 线之间不全部平行。
优选地,所述多个曲面的焦点、光学中心或齐明点沿预设的轨迹变化。
优选地,所述多个曲面的轴线沿预设的点或线旋转或者平移。
优选地,所述光学特性包括:光线的聚焦位置(焦点)、光学中心(例如光线在某一位置形成的光斑的Rms中心)、孔径、屈光度,偏折角度、发散角度的任一个或任多个。
优选地,所述曲面的轴线为对称轴(某些曲面可以有多根对称轴,例如椭圆)、光轴或曲面面型具有的轴线。
优选地,所述曲面的截面曲线为圆、椭圆、抛物线或双曲线。
优选地,所述曲面由曲线沿点或线旋转而成,或由曲线沿某一方向平移而成。
优选地,所述曲面的截面曲线的表达式为
Figure PCTCN2022083331-appb-000001
其中z、r分别是截面上曲线对应的坐标,c、k、a p为曲线的参数,n为高阶项的最高阶数、p为序数。
优选地,所述多个曲面之间设置有与曲面具有预设角度的平面。
优选地,所述曲面的部分或全部区域镀有反射膜。
优选地,所述曲面的部分或全部区域镀有偏振膜,符合预设偏振方向的光线将透过所述曲面,偏振方向与预设偏振方向正交的光线被所述曲面反射。
优选地,所述曲面的部分或全部镀有增反膜,使预设比例的光线反射,其余光线透射。
优选地,所述光学器件的一面胶合或键合有面型与所述光学器件互补的另一光学器件。
优选地,所述另一光学器件的材料折射率与所述光学器件相同或在预设的第二偏差范围内。
优选地,所述另一光学器件相对于所述光学器件的表面具有一定的屈光度,或者也可以在另一光学器件相对于所述光学器件的表面粘合有带有屈光度的镜片,或透明的可控空间光调制器(例如液晶透镜,相位调制的LCD等)
优选地,所述曲面上填充有与所述光学器件的材料折射率相同或再预设的第三偏差范围内的胶水。
优选地,所述胶水与所述曲面相对的表面具有预定的面型。
优选地,所述面型具有预设的光焦度。
优选的,在所述曲面和/或所述互补的光学器件的表面上镀有反射和/或吸收性膜 层。
[根据细则91更正 28.03.2022] 
例如,在互补的两个表面的其中一个上镀偏振反射膜,将从波导内部传来的偏振方向为S的图像光反射,另一个表面上镀有偏振吸收性质的膜层,外部环境光中的P向偏振光将透过这个表面,而S向偏振光将会被吸收,从而不会因环境光中的S分量不受控的在耦出器件上反射形成杂光影响成像,或者可以消除或减少因为图像光中未被反射的少部分S光透过后在波导表面再次反射后入射耦出表面形成鬼影。
优选的,所述多个曲面之间设置有连接所述曲面的连接面,所述连接面上任一点切线与波导表面的夹角大于等于在波导中全反射的光线与波导表面的所成的最大角。这样可以使得在波导中传播而来的图像光只会在曲面上反射出射,而不会击中连接面形成杂光或浪费能量。
优选的,所述曲面上任一点的切线与所述波导表面的夹角小于等于
Figure PCTCN2022083331-appb-000002
Figure PCTCN2022083331-appb-000003
其中n为波导和/或曲面部分器件的材料的折射率,θ为外部入射的环境光与波导表面法线所成的最大角。这样可以使得环境光中的一些部分(例如采用透P反S的偏振镀膜时的S分量光)入射曲面时,不会从与图像光相同的方向入射到曲面的反射表面上(例如反射S光的表面)被错误的反射形成杂光或鬼影。当外界环境光从平行于波导表面的极限角度入射时θ=90°,上式简化为
Figure PCTCN2022083331-appb-000004
在某些应用中,环境光入射角度稍小,也可以取θ=60°来进行设计。
根据本发明提供给的一种光学系统,包括多个所述的光学器件。
根据本发明提供给的一种光学系统,包含所述的光学器件,还包括空间光调制器,用于动态调制光波前。所述空间光调制器可以设置在所述胶合/键合的另一光学器件的外侧只调制环境光(例如补偿观看者眼睛的近视、散光等误差),也可以设置在成像器件与所述光学器件的光路之间,用于调制图像光。或者也可以设置在所述光学器件与观看者之间,用于同时调制图像光与环境光。或者还可以在不同位置同时设置多片空间光调制器,用于分别调制图像光和环境光。所述空间光调制器可以是可动态调制LCoS,LCD,LC透镜等器件,也可以静态的液晶透镜,光栅之类的器件。
根据本发明提供给的一种光学系统,包含光学器件,还包括波导,所述波导的至少一端连接所述的光学器件。
优选地,所述波导的表面不同区域镀有折射率不同的膜层,例如整个表面分为两部分,一部分不镀膜,另一部分再分为多个区域,所述多个区域分别镀有折射率不同的膜层。
优选地,所述波导的表面不同区域镀有折射率不同的膜层,所述器件以及波导表面还可以根据对应区域膜层折射率不同镀有增透膜,可以是不同区域镀有不同的增透膜,也可以是整个波导及器件表面镀有相同的增透膜系。
优选地,所述波导与所述光学器件相对的表面上预设有一定光焦度的区域或连接有具有一定光焦度的光学器件。
与现有技术相比,本发明具有如下的有益效果:
本发明提出了一种由多个曲面构成的光学器件,其中每一个曲面的光学中心或焦点或齐明点与相邻曲面不重合,每一曲面中轴线(若有)相互不平行(相互间夹角按一定规律变化)。经过其中一个曲面的焦点或光学中心或齐明点的光线被所述曲面调制后输出光线的光学特性与经此点的光线被所述曲面临近曲面调制后的输出光线光学特性相近,或经过其中一个曲面的焦点的至少一条光线被所述曲面调制后输出光线的一种光学特性与经此点至少另一条的光线被所述曲面临近曲面调制后的输出光线的一种光学特性(聚焦位置,角度等)相同或在预设的第一偏差范围内。通过对于各个曲面面型参数的改变,其光学中心或焦点或齐明点以及轴线得参数设计,可以相对于较大离轴角度光线仍然成质量较好的像。
附图说明
通过阅读参照以下附图对非限制性实施例所作的详细描述,本发明的其它特征、目的和优点将会变得更明显:
图1、2a、2b、3分别为本发明实施例1光学器件的结构及光路示意图;
图4为所述器件的俯视示意图;
图5a为实施例2的结构示意图;
图5b为实施例2的光路示意图;
图6为实施例3的结构及光路示意图;
图7为实施例3的一种变形结构及光路示意图;
图8为实施例3的一种变形结构及光路示意图。
具体实施方式
下面结合具体实施例对本发明进行详细说明。以下实施例将有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发明。应当指出的是,对本领域的普通技 术人员来说,在不脱离本发明构思的前提下,还可以做出若干变化和改进。这些都属于本发明的保护范围。
实施例1
一种光学器件,由100个面型类似的相交曲面构成,参考图2简化为四个曲面所示。如图2a,第一曲面1与2相交,第二曲面2与第一曲面1和第三曲面3相交,第三曲面3与第二曲面2,第四曲面4相交,依次类推。每个曲面的截面都采用抛物线,曲面由抛物线绕对称轴旋转而得,抛物线的焦点即为齐眀点,抛物线的对称轴即为曲面中轴。可以将相邻的曲面的齐明点设计成沿一定轨迹变化,且相邻曲面的中轴/对称轴(若有)不平行(以一定角度变化)。将所述多个相邻曲面镀上反射膜后,经过第一曲面1(可以是由抛物线边缘不包含顶点的部分线段旋转而成)齐眀点的光线入射到第一曲面1被反射后将全部平行于第一曲面1的中轴线出射,而部分经过第一曲面1齐明点的光线入射到相邻的第二曲面2后,由于第二曲面2的齐明点与第一曲面1的齐眀点不重合,上述光线对于第二曲面2等效于从对第二曲面2的齐明点产生了一定的偏移的点发出的光线,其反射光线的角度将与第二曲面2的中轴成一定角度。由于第二曲面2的中轴与第一曲面1不平行,此处可以设计成第二曲面2中轴与第一曲面1中轴的角度结合曲面本身焦距(抛物线顶点到焦点距离)正好使经第一曲面1齐明点的光线经第二曲面2反射后与过同一点经第一曲面1反射后的光线角度近似平行且像差最小。相比与一个完整的抛物线旋转而成的曲面,如此设计的好处在于,具有较大离轴角度的光线(例如一束平行光)入射单一曲面时其汇聚点距离齐明点(在单一曲面中轴上)有一个很大的偏差(像差很大),而100个独立的曲面对应的具有较大离轴角度的光线(例如一束平行光)会有部分经过所述100个曲面中某一曲面齐明点(过齐眀点的光线无像差,例如经过第一曲面1齐明点的光线入射到第一曲面1后出射无像差,光路反向亦然),另外部分光线入射临近曲面(例如第二曲面2)后其汇聚点到临近曲面的齐明点的距离也远小于这部分光线在单一曲面的汇聚点(实际可能是一个具有一定大小和形状的光斑而非单一点)到单一曲面的齐明点的距离,所以其像差将会大大减小,采用这种设计至少可以在整个器件的部分区域有效减小像差。
在上述实施例的一个变型例中,每个曲面的截面还可以是基于抛物线加入高阶项的曲线,例如其表达式为,
Figure PCTCN2022083331-appb-000005
其中k为圆锥系数,当曲线为抛物线时k=-1,当曲线为椭圆时k∈(-1,0)∪(0,1),当然所述圆锥系数k也可以根据需要取大于1或小于-1任意值,而a p为曲线对应的高阶项系数。通过对每个对应的截面 曲线设置不同的c,k,a p等参数,以及旋转坐标系z,y的角度,可以优化设计结构,减小像差。
上述实施例中曲面的截面还可以是椭圆,曲面是由椭圆曲线绕某一直线(例如椭圆的长轴或短轴,或坐标系中的任意直线)旋转形成的环面。如图2b,经过椭圆焦点(齐眀点)的输入光线将聚焦到椭圆的另一焦点出射,整个输入的物面位于多个椭圆曲面一侧焦点链接成的轨迹上,经调制后将在多个曲面的另一个焦点形成的轨迹上聚焦。
需要指出的是,上述实施例中所述的每个独立曲面都可以只是一个完整数学表达式构成曲面的一小部分,例如截面只是一个完整抛物线一侧不包含抛物线顶点的一小段线段(当然根据应用也可以是包含顶点的对称的线段),这小段线段本身并不对称(沿中轴对称的部分被舍去,未被设计在器件中),其焦点入射到此面的光线具有较大的离轴角度(相对于抛物线焦点到顶点构成的光轴/中轴/对称轴的角度)。
上述实施例中器件表面也可以不镀反射膜而镀增透膜或不镀膜,将其当做透射器件使用。
上述实施例中的光学器件可以应用在显微镜,望远镜等光学仪器上,也可以应用在AR/VR等近眼显示系统中。
实施例2
一种光学器件,尺寸为20x20x1mm,由两片一个表面包含多个曲面的光学器件胶合或键合而成。其中一片器件(第一器件5,如图5所示)上包含约2000个尺寸约为0.01x20x0.01mm的环状曲面(类似图4中环带面),其中各曲面基础面型为抛物面(设计时可以加入高阶项,调整圆锥系数与曲率等),整个器件的设计与实施例1相似。与实施例1的区别在于,此实施例中第一器件5由多个曲面构成的表面上镀有偏振反射膜,所述偏振反射膜反射特定偏振方向的光(例如S偏振)而让其它偏振方向的光透过(例如P偏振)。与实施例1的另一个区别在于此器件中还包含第二器件6,其一个表面的面型与第一器件5包含多个曲面的表面互补(如图5a所示),这两个表面通过胶合(或者也可以是键合)的方式结合在一起,使第一器件5,第二器件6共同构成此实施例中的器件。第二器件6与第一器件5采用相近或相同材质的材料(例如PC,PMMA或者光学玻璃)。
在AR类应用中,此实施例中的器件可以起到调制图像及合路器的作用(如图5b所示,合路图像光和环境光)。其中图像光由成像器件(例如LCOS,SLM,Micro LED,DLP, OLED,MEMS SCANNER等)生成后输入,可将其调制成特定偏振方向(例如线偏,S偏振),环境光一般都是全偏振,则其中某一偏振方向(例如S偏振)的光将被反射,另一偏振方向(例如P偏振)将会透过,从而与图像光合路。由于第一器件5,第二器件6折射率相近或相同,其未被胶合/键合的表面可以设计成平面,从而环境光透过器件类似经过一块平板玻璃,外界环境在人眼中的成像不会受到实质影响。所述的偏振膜可以采用光栅类的偏振膜,也可以是多层介质组成的偏振膜。
在此实施例的一个变形例中,第一器件5的包含多个曲面的表面上,也可以不使用偏振类型的镀膜,而采用一定比例光线透过,一定比例光线反射的镀膜方式(例如60%反射,40%透射)。在一些特殊的设计中,可以使图像光入射第一器件5的曲面后透射的部分再次入射其它表面后(其它曲面或第二器件6的表面)将被反射或透射到其它方向无法返回合路光路而不会成为杂光干扰成像。同样的也可以使环境光入射第一器件5的曲面后反射的部分再次入射其它表面后(其它曲面或第二器件6的表面)将被反射或透射到其它方向无法返回合路光路而不会成为杂光干扰成像。
在此实施例的一个变形例中,可以采用选择性的镀膜工艺,在第一器件5包含多个曲面上,对每一曲面的部分镀膜(镀金属反射膜或偏振膜或部分反射膜),从而实现部分图像光反射成像,同时部分环境光也能透射成像并合路图像光的功能。这种镀膜可以通过使用半导体工艺类似的掩膜遮蔽不需要镀膜的部分实现,或者也可以先用光刻胶在不需要镀膜的区域制作保护层(利用掩膜及光刻工艺),整个面镀上所需膜层后再将光刻胶洗去,从而同时洗去光刻胶上的膜层实现部分区域镀膜的目的。
在此实施例的一个变形例中,可以在第一器件5多个曲面的面型中曲面之间周期性插入成一定角度的平面结构。由于图像光一般以较大角度入射(如图3,图5b),若设计时控制好平面相对于入射图像光的角度,可以使图像光不入射到插入的平面上而只入射到曲面结构上。例如图3,插入的一系列平面与图像物面(此例中物面同为平面)的夹角大于某一值就可保证物面生成的入射光线只能入射到曲面结构而不会入射到插入的平面结构上。使用这种结构时,可以只在曲面结构上镀金属反射膜,而插入的平面结构不镀反射镀膜,这样可以确保所有的图像光都被曲面反射成像,能够提高光效。同时部分的环境光将会透过未镀膜的平面结构与图像光合路,另一部分环境光将被曲面反射。在被反射的环境光中存在两种不同类型的光。一种类型的被反射环境光将会从第二器件6其入射的表面返回出射,并不影响人眼观看成像,另一种类型的被反射的环境光将会透过相邻的平面结构入射到相邻的曲面后反射合路进入人眼,由于曲面结构本身较小 (此例中为0.01mm宽度),且相临的曲面面型非常接近,类似于此部分光线被两个接近平行的面2次反射(不会改变光线原有角度),因而其多反射1次从相邻曲面出射形成的像差也很小,不会影响最终成像质量。当然也可以通过曲面和插入平面的特殊设计,使得被曲面反射的那部分环境光只存在第一种类型的反射光或只存在第二种类型的反射光。
此外,插入平面的另一个好处是方便控制相邻曲面交界处的夹角,方便加工。
在此实施例的一个变形例中第二器件6未被胶合/键合的表面还可以设计成曲面(具有一定光焦度)校准观看者本身眼睛存在的像差(近视、远视、散光等),从而对于外部环境光实现相当于眼镜的功能。
在此实施例的一个变形例中,第二器件6可以是由与第一器件5折射率相近或相同的材料(例如光学胶,紫外胶,熔融的塑料原料等)浇筑在第一器件5上制作而成。例如将与第一器件5折射率相同的紫外敏感光学胶直接填在第一器件5包含多个曲面的表面上,甩胶或刮平后使其稍稍高出第一器件5曲面最高点(例如0.1mm),然后使用紫外灯曝光固化制作而成。上述制作过程也可以使用具有特殊形状的模具压在胶材上,然后曝光制作而成。脱模后胶材背向第一器件5的表面将形成模具的面型(可以具有一定光焦度),从而可以校准人眼对于环境光的像差,实现眼镜的功能。
此实施例中提及的所有镀膜,也可以是镀在第二器件6的表面上(与第一器件5胶合或键合的表面),而不是镀在第一器件5的表面上。
实施例3
一种光学系统,包含2片实施例1和2中所述的包含多个曲面的光学器件,所述多个曲面为类似抛物面面型,如图6所示。入射的图像光线为像距无穷远的不同角度平行光,先经过如实施例1中所描述的器件(此例中定义为第一器件)调制后在至实施例2描述的器件(此例中定义为第二器件)光路中间先大致聚焦成一个中间像面,再传播至实施例2中所描述的器件后再次被调制成像距接近无穷远的不同角度平行光出射,环境光可以通过第二器件与图像光合路被观看者观看。采用第一器件与第二器件两片面型相似的器件可以进一步的减小像差,提高成像质量。此外,第一第二器件都采用反射的方式调制图像光的另一个好处是反射本身不会产生色差,对于彩色图像,可以有效降低色差带来的影响。针对这一特性,当系统中还包含其它光学器件时(例如在第一器件和成像器件之间用于调制图像补偿像差的镜片),可以尽量选择反射类型的器件,从而避免 色差的产生。
此实施例的一个变形例中,第一器件也可以采用多个曲面组成的透射镜来实现与第二器件像差的互补。
此实施例的一个变形例中,所述多个曲面也可以采用截面近似双曲线的面型,可将出射的图像调制到有限远的距离。
此实施例的一个变形例中,第一器件的多个曲面可以采用类似椭圆的面型,第二器件的多个曲面采用类似抛物面或双曲面的面型,可以将成像器件直接设置在多个椭圆的焦点轨迹的附近,将第二器件多个曲面焦点的轨迹设置在多个椭圆另一侧焦点轨迹的附近。这么做得好处是由于成像器件一般都是像素点结构,无需再加入新的光学器件将这些像素点输出的图像光调制成一定角度的平行光导入第一器件。在此实施例的一个变形例中,还可以加入波导7(例如80x40x4mm),如图7所示。波导的作用是压缩光路体积,减小系统尺寸。此例中成像器件输出的图像光经过调制后导入波导,可以使用偏振棱镜,TIR棱镜,三角棱镜等连接成像器件和波导(成像器件可以胶合在棱镜的一个表面),如果使用LCOS、DMD、MEMS SCANNER等需要外部光源的反射式成像器件,则可以在棱镜的一个表面连接光源,还可以在棱镜的其它侧面胶合具有一定面型的反射镜对图像光调制后再导入波导,其中棱镜所用材料的折射率可以和波导相近或相同,进入波导的图像光经第一器件调制后在波导内做全反射,并且在光波导内部形成中间像面。经过多次全反射后输入到第二器件,被调制后反射导出波导器件并进入人眼。环境光则透过第二器件及光波导与图像光合路后进入人眼。在此例中,考虑到人眼的缺陷(近视、远视、散光等)图像光可以在导入波导之前就通过调制做相关补偿,从而能被不同近视或散光度数的观看者正常观看。而环境光则可以通过在第二器件面向外部环境的那个表面制造具有一定光焦度的面型(如实施例2中所述)或在第二器件之外额外增加镜片来实现补偿。如图8所示,在此实施例的一个变形例中,还可以在波导面向人眼的表面胶合或键合具有一定光焦度的镜片8,或者直接将波导此表面的相关区域制造成具有一定光焦度的面型,从而补偿人眼本身的缺陷。采用这种方案的好处是可以将环境光和图像光同时补偿,无需额外对图像光进行补偿。
此实施例的一个变形例中,第一器件也可以使用普通的透镜或反射镜,而非本发明所描述的多个曲面构成的器件,系统以一定的方式将图像光耦合入波导(例如使用透镜方案时增加三角棱镜或者光栅等器件)。
在此实施例的一个变形例中,还可以在波导表面与第一器件和第二器件接触的部分 分区域镀上不同折射率的膜层,通过入射光的角度控制其出射位置(角度较大的光在一些区域由于表面膜层折射率较小,光线角度大于临界角而继续在波导内全反射,直至到达表面折射率较大的区域,临界角增大,光学角度小于临界角出射),避免光线在波导中错误位置出射的问题,从而可以将波导的厚度减薄。在波导表面与所述的不同折射率膜层之间以及不同折射率膜层与第一第二器件之间还镀有增透膜,增加光的透过率。
在此实施例的一个变形例中,还可以加入相位调制的空间光调制器(可以动态模拟任意曲面,或调制任意光波前),通过电信号控制实现对成像器件输出图像光的动态调制,实现动态改变观看者看到的图像距离的功能(可以是一帧图像一个距离,也可以是一帧图像内包含多个不同距离的物体),以及通过软件参数设置补偿不同使用者眼睛的情况(不同近视度数,散光度数等)。空间光调制器可以设置在成像器件与波导之间,也可以直接如第一器件或第二器件一样胶合在波导表面,或者也可以直接用空间光调制器替代第一器件(例如使用相位调制LCOS类器件),模拟第一器件对于输入光波前的调制。相比与业界主流的衍射类波导(SRG,体光栅等)和阵列式波导(棱镜拼接而成)使用本发明中多曲面光学器件的方案不存在光瞳拼接的问题,也就避免了这两类波导只能适用于特定距离图像的问题(一般都是适用于成像无穷远的平行光,物距较近的图像导入后可能出现图像断带,光瞳的重叠,图像变模糊等等问题)。
在本申请的描述中,需要理解的是,术语“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
以上对本发明的具体实施例进行了描述。需要理解的是,本发明并不局限于上述特定实施方式,本领域技术人员可以在权利要求的范围内做出各种变化或修改,这并不影响本发明的实质内容。在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。

Claims (25)

  1. 一种光学器件,其特征在于,包括:多个曲面,所述多个曲面满足如下条件:
    经过所述多个曲面中一个曲面的焦点和/或光学中心和/或齐明点的光线被所述曲面调制后输出光线的光学特性与经过所述曲面的焦点和/或光学中心和/或齐明点的光线被所述曲面的临近曲面调制后的输出光线的光学特性相同或在预设的第一偏差范围内;
    所述多个曲面的焦点和/或光学中心和/或齐明点不全部重合,和/或所述多个曲面的轴线之间不全部平行。
  2. 根据权利要求1所述的光学器件,其特征在于,所述多个曲面的焦点和/或光学中心和/或齐明点沿预设的轨迹变化。
  3. 根据权利要求1所述的光学器件,其特征在于,所述曲面的轴线沿预设的点或线旋转或平移。
  4. 根据权利要求1所述的光学器件,其特征在于,所述光学特性包括:聚焦位置、光学中心、孔径、屈光度,偏折角度、发散角度、像差的任一个或任多个。
  5. 根据权利要求1所述的光学器件,其特征在于,所述曲面的轴线为对称轴或光轴或曲面面型具有的轴线。
  6. 根据权利要求1所述的光学器件,其特征在于,所述曲面的截面曲线为圆或椭圆或抛物线或双曲线。
  7. 根据权利要求1所述的光学器件,其特征在于,所述曲面由曲线沿点或线旋转而成,或由曲线沿某一方向平移而成。
  8. 根据权利要求1所述的光学器件,其特征在于,所述曲面的截面曲线的表达式为
    Figure PCTCN2022083331-appb-100001
    其中z、r分别是截面上曲线对应的坐标,c、k、a p为曲线的参数,n为曲线阶数最高项的阶数,p为序数。
  9. 根据权利要求1所述的光学器件,其特征在于,所述多个曲面之间设置有与曲面具有预设角度的平面。
  10. 根据权利要求1所述的光学器件,其特征在于,所述曲面的部分或全部区域镀有反射膜。
  11. 根据权利要求1所述的光学器件,其特征在于,所述曲面的部分或全部区域镀有偏振膜,符合预设偏振方向的光线将透过所述曲面,偏振方向与预设偏振方向正交的 光线被所述曲面反射。
  12. 根据权利要求1所述的光学器件,其特征在于,所述曲面的部分或全部镀有增反膜,使预设比例的光线反射,其余光线透射。
  13. 根据权利要求1所述的光学器件,其特征在于,所述光学器件的一面胶合或键合有面型与所述光学器件互补的另一光学器件。
  14. 根据权利要求13所述的光学器件,其特征在于,所述另一光学器件的材料折射率与所述光学器件相同或在预设的第二偏差范围内。
  15. 根据权利要求13所述的光学器件,其特征在于,所述曲面上填充有与所述光学器件的材料折射率相同或在预设的第三偏差范围内的胶水。
  16. 根据权利要求13或15所述的光学器件,其特征在于,所述另一光学器件与所述光学器件键合或胶合的面相对的表面具有预定的面型,或所述另一光学器件与所述光学器件键合或胶合的面相对的表面胶合/键合有空间光调制器,或胶水固化后与所述曲面相对的表面具有预定的面型。
  17. 根据权利要求16所述的光学器件,其特征在于,所述面型具有预设的光焦度。
  18. 一种光学系统,其特征在于,包括多个权利要求1所述的光学器件。
  19. 一种光学系统,其特征在于,包含权利要求1所述的光学器件,还包括空间光调制器,用于动态调制光波前。
  20. 一种光学系统,其特征在于,包含权利要求1所述的光学器件,还包括波导,所述波导的至少一端连接所述的光学器件。
  21. 根据权利要求20所述的光学系统,其特征在于,所述波导的表面不同区域镀有折射率不同的膜层。
  22. 根据权利要求20所述的光学系统,其特征在于,所述波导与所述光学器件相对的表面上存在有一定光焦度的区域或连接有具有一定光焦度的光学器件。
  23. 根据权利要求13所述的光学器件,其特征在于,在所述曲面和/或所述互补的光学器件的表面上镀有反射和/或吸收性膜层。
  24. 根据权利要求20所述的光学系统,其特征在于,所述多个曲面之间设置有连接所述曲面的连接面,所述连接面上任一点切线与波导表面的夹角大于等于在波导中全反射的光线与波导表面所成的最大角。
  25. 根据权利20所述的光学系统,其特征在于,所述曲面上任一点的切线与所述波导表面的夹角小于等于
    Figure PCTCN2022083331-appb-100002
    其中n为波导和/或曲面部分器件的材料 的折射率,θ为外部入射的环境光与波导表面法线所成的最大角。
PCT/CN2022/083331 2021-04-27 2022-03-28 一种光学器件及光学系统 WO2022227977A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110460495.6 2021-04-27
CN202110460495.6A CN113126191B (zh) 2021-04-27 2021-04-27 一种光学器件及光学系统

Publications (1)

Publication Number Publication Date
WO2022227977A1 true WO2022227977A1 (zh) 2022-11-03

Family

ID=76780254

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/083331 WO2022227977A1 (zh) 2021-04-27 2022-03-28 一种光学器件及光学系统

Country Status (2)

Country Link
CN (1) CN113126191B (zh)
WO (1) WO2022227977A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113126191B (zh) * 2021-04-27 2023-06-27 上海慧希电子科技有限公司 一种光学器件及光学系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5677983A (en) * 1995-01-11 1997-10-14 Nauchno-Proizvodstvennaya Firma "Adonis" Light beam heater with light source and reflector having two ellipsoidal sections and a truncated spherical surface there between
CN2570824Y (zh) * 2002-09-29 2003-09-03 清华大学 一种多曲面反射光源
CN110542061A (zh) * 2019-10-10 2019-12-06 杭州光锥科技有限公司 菲涅尔结构的窗台灯反射器
CN112684529A (zh) * 2020-12-28 2021-04-20 上海慧希电子科技有限公司 光学器件、系统及光学设备
CN113126191A (zh) * 2021-04-27 2021-07-16 上海慧希电子科技有限公司 一种光学器件及光学系统

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1029183C (zh) * 1992-12-24 1995-06-28 宋福印 多聚焦点双曲线复合抛物面结构
JP2719499B2 (ja) * 1994-08-25 1998-02-25 ホーチキ株式会社 熱線式検知装置のセンサーヘッド
JP3955191B2 (ja) * 2001-06-28 2007-08-08 アルプス電気株式会社 反射体および反射型液晶表示装置
CN2510880Y (zh) * 2001-12-29 2002-09-11 北京工业大学 激光光束聚焦成型积分镜
AR062067A1 (es) * 2006-07-17 2008-10-15 Novartis Ag Lentes de contacto toricas con perfil de potencia optica controlado
US8162504B2 (en) * 2009-04-15 2012-04-24 Sharp Kabushiki Kaisha Reflector and system
CN201654261U (zh) * 2009-11-11 2010-11-24 杭州鸿蒙电子科技有限公司 多面形菲涅尔透镜
JP2011128327A (ja) * 2009-12-17 2011-06-30 Olympus Corp フレネル光学素子及びそれを用いた光学系
CN102981256B (zh) * 2011-09-05 2016-08-24 西安科技大学 多级串联共焦点圆锥曲面二次反射单元光汇聚法
CN102608681B (zh) * 2012-04-01 2015-10-07 浙江大华技术股份有限公司 菲涅尔透镜
CN102809807B (zh) * 2012-07-18 2015-09-09 陈应天 使用高次旋转曲面的非成像反射的太阳能聚光器
CN102768400B (zh) * 2012-08-07 2015-05-06 姜莹 无均光棒的反射太阳能聚光器
CN103336357A (zh) * 2013-06-09 2013-10-02 盖志武 焦点位置可调节的菲涅尔透镜系统
CN103441178B (zh) * 2013-09-10 2016-07-06 浙江大学 基于复眼的紧凑式双反射型光伏聚光器
CN203587825U (zh) * 2013-11-20 2014-05-07 上海太阳能工程技术研究中心有限公司 用于聚光光伏组件的菲涅尔聚光镜
DE102014207492B4 (de) * 2014-04-17 2017-02-09 Carl Zeiss Smart Optics Gmbh Anzeigevorrichtung
CN104199132B (zh) * 2014-09-25 2016-03-02 四川钟顺太阳能开发有限公司 一种多焦点光斑能量均匀化菲涅尔透镜
CN104570342B (zh) * 2014-12-30 2017-06-16 东莞市沃德普自动化科技有限公司 一种检测设备光学系统的设计方法
CN104570178B (zh) * 2014-12-30 2017-02-22 东莞市沃德普自动化科技有限公司 一种应用于检测设备中反光镜的成型方法
CN104570177B (zh) * 2014-12-30 2017-01-18 东莞市沃德普自动化科技有限公司 一种光线聚焦反光镜
JP5943366B1 (ja) * 2015-08-28 2016-07-05 株式会社サタケ 光学ユニットを備えた装置
CN105403986A (zh) * 2015-12-21 2016-03-16 九格能源科技(天津)有限公司 一种多焦点大口径太阳能聚光镜
CN105607237B (zh) * 2016-02-26 2018-02-23 陕西科技大学 应用于聚光光伏发电的七焦点叠加均匀聚光菲涅尔透镜
CN108506743A (zh) * 2017-12-25 2018-09-07 佛山科学技术学院 一种高聚焦度的自由曲面菲涅尔照明系统
CN109581550B (zh) * 2018-12-26 2020-09-29 中国科学院西安光学精密机械研究所 一种菲涅尔聚光透镜及其制作方法
CN112034620A (zh) * 2019-06-04 2020-12-04 怡利电子工业股份有限公司 标靶反射式扩散片抬头显示设备
CN111965813A (zh) * 2020-08-13 2020-11-20 上海慧希电子科技有限公司 光学器件、系统及光学设备
CN111952159B (zh) * 2020-08-17 2024-01-26 北京中科镭特电子有限公司 一种激光退火装置
CN112346241A (zh) * 2020-11-14 2021-02-09 中国计量大学 一种基于视觉传感器的非成像菲涅尔透镜设计方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5677983A (en) * 1995-01-11 1997-10-14 Nauchno-Proizvodstvennaya Firma "Adonis" Light beam heater with light source and reflector having two ellipsoidal sections and a truncated spherical surface there between
CN2570824Y (zh) * 2002-09-29 2003-09-03 清华大学 一种多曲面反射光源
CN110542061A (zh) * 2019-10-10 2019-12-06 杭州光锥科技有限公司 菲涅尔结构的窗台灯反射器
CN112684529A (zh) * 2020-12-28 2021-04-20 上海慧希电子科技有限公司 光学器件、系统及光学设备
CN113126191A (zh) * 2021-04-27 2021-07-16 上海慧希电子科技有限公司 一种光学器件及光学系统

Also Published As

Publication number Publication date
CN113126191A (zh) 2021-07-16
CN113126191B (zh) 2023-06-27

Similar Documents

Publication Publication Date Title
US11868035B2 (en) Projection optical system and image display device with refractive optical system to form an image on a receiving surface
WO2022142602A1 (zh) 光学器件、系统及光学设备
WO2017219433A1 (zh) 波导式的头戴显示器的光学装置
US20230176344A1 (en) Optical system, assembling method and virtual reality device
WO2022032985A1 (zh) 光学器件、系统及光学设备
WO2023108949A1 (zh) 光学器件和光学系统以及ar设备
WO2022227977A1 (zh) 一种光学器件及光学系统
CN215769205U (zh) 一种近眼显示系统
CN111123481A (zh) 一种基于折反式光学镜片的超短焦投影镜头
JP7406028B1 (ja) 光学系
CN217932284U (zh) 光学透镜组及头戴式电子装置
JP2000352668A (ja) 広角反射光学系
CN116009126A (zh) Vr光学系统及近眼显示装置
TWM633841U (zh) 光學透鏡組和頭戴式電子裝置
TWM632322U (zh) 光學透鏡組及頭戴式電子裝置
JP2022132274A (ja) 光学システム及び複合現実装置
CN113568141A (zh) 镜头、投影光机以及近眼显示设备
CN114879348B (zh) 一种投影镜头以及电子设备
TWI829434B (zh) 光學鏡頭模組、光機模組以及頭戴式顯示裝置
CN220305566U (zh) 光学系统及头戴式设备
TWI841321B (zh) 體積全像光學元件投影系統
CN220171335U (zh) 光学系统
TWI813395B (zh) 光學透鏡組和頭戴式電子裝置
CN116841020B (zh) 投影镜头及投影装置
CN116841021B (zh) 投影镜头及投影装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22794450

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22794450

Country of ref document: EP

Kind code of ref document: A1